xref: /freebsd/sys/opencrypto/crypto.c (revision 6fd05b64b5b65dd4ba9b86482a0634a5f0b96c29)
1 /*	$OpenBSD: crypto.c,v 1.38 2002/06/11 11:14:29 beck Exp $	*/
2 /*
3  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
4  *
5  * This code was written by Angelos D. Keromytis in Athens, Greece, in
6  * February 2000. Network Security Technologies Inc. (NSTI) kindly
7  * supported the development of this code.
8  *
9  * Copyright (c) 2000, 2001 Angelos D. Keromytis
10  *
11  * Permission to use, copy, and modify this software with or without fee
12  * is hereby granted, provided that this entire notice is included in
13  * all source code copies of any software which is or includes a copy or
14  * modification of this software.
15  *
16  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
17  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
18  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
19  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
20  * PURPOSE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #define	CRYPTO_TIMING				/* enable timing support */
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/eventhandler.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/lock.h>
34 #include <sys/module.h>
35 #include <sys/mutex.h>
36 #include <sys/malloc.h>
37 #include <sys/proc.h>
38 #include <sys/sysctl.h>
39 
40 #include <vm/uma.h>
41 #include <opencrypto/cryptodev.h>
42 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
43 
44 /*
45  * Crypto drivers register themselves by allocating a slot in the
46  * crypto_drivers table with crypto_get_driverid() and then registering
47  * each algorithm they support with crypto_register() and crypto_kregister().
48  */
49 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
50 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
51 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
52 static	struct cryptocap *crypto_drivers = NULL;
53 static	int crypto_drivers_num = 0;
54 
55 /*
56  * There are two queues for crypto requests; one for symmetric (e.g.
57  * cipher) operations and one for asymmetric (e.g. MOD)operations.
58  * A single mutex is used to lock access to both queues.  We could
59  * have one per-queue but having one simplifies handling of block/unblock
60  * operations.
61  */
62 static	TAILQ_HEAD(,cryptop) crp_q;		/* request queues */
63 static	TAILQ_HEAD(,cryptkop) crp_kq;
64 static	struct mtx crypto_q_mtx;
65 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
66 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
67 
68 /*
69  * There are two queues for processing completed crypto requests; one
70  * for the symmetric and one for the asymmetric ops.  We only need one
71  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
72  * mutex is used to lock access to both queues.  Note that this lock
73  * must be separate from the lock on request queues to insure driver
74  * callbacks don't generate lock order reversals.
75  */
76 static	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queues */
77 static	TAILQ_HEAD(,cryptkop) crp_ret_kq;
78 static	struct mtx crypto_ret_q_mtx;
79 #define	CRYPTO_RETQ_LOCK()	mtx_lock(&crypto_ret_q_mtx)
80 #define	CRYPTO_RETQ_UNLOCK()	mtx_unlock(&crypto_ret_q_mtx)
81 
82 static	uma_zone_t cryptop_zone;
83 static	uma_zone_t cryptodesc_zone;
84 
85 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
86 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
87 	   &crypto_userasymcrypto, 0,
88 	   "Enable/disable user-mode access to asymmetric crypto support");
89 int	crypto_devallowsoft = 0;	/* only use hardware crypto for asym */
90 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
91 	   &crypto_devallowsoft, 0,
92 	   "Enable/disable use of software asym crypto support");
93 
94 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
95 
96 static	void crypto_proc(void);
97 static	struct proc *cryptoproc;
98 static	void crypto_ret_proc(void);
99 static	struct proc *cryptoretproc;
100 static	void crypto_destroy(void);
101 static	int crypto_invoke(struct cryptop *crp, int hint);
102 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
103 
104 static	struct cryptostats cryptostats;
105 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
106 	    cryptostats, "Crypto system statistics");
107 
108 #ifdef CRYPTO_TIMING
109 static	int crypto_timing = 0;
110 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
111 	   &crypto_timing, 0, "Enable/disable crypto timing support");
112 #endif
113 
114 static int
115 crypto_init(void)
116 {
117 	int error;
118 
119 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
120 		MTX_DEF|MTX_QUIET);
121 
122 	TAILQ_INIT(&crp_q);
123 	TAILQ_INIT(&crp_kq);
124 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
125 
126 	TAILQ_INIT(&crp_ret_q);
127 	TAILQ_INIT(&crp_ret_kq);
128 	mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
129 
130 	cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
131 				    0, 0, 0, 0,
132 				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
133 	cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
134 				    0, 0, 0, 0,
135 				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
136 	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
137 		printf("crypto_init: cannot setup crypto zones\n");
138 		error = ENOMEM;
139 		goto bad;
140 	}
141 
142 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
143 	crypto_drivers = malloc(crypto_drivers_num *
144 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
145 	if (crypto_drivers == NULL) {
146 		printf("crypto_init: cannot setup crypto drivers\n");
147 		error = ENOMEM;
148 		goto bad;
149 	}
150 
151 	error = kthread_create((void (*)(void *)) crypto_proc, NULL,
152 		    &cryptoproc, 0, 0, "crypto");
153 	if (error) {
154 		printf("crypto_init: cannot start crypto thread; error %d",
155 			error);
156 		goto bad;
157 	}
158 
159 	error = kthread_create((void (*)(void *)) crypto_ret_proc, NULL,
160 		    &cryptoretproc, 0, 0, "crypto returns");
161 	if (error) {
162 		printf("crypto_init: cannot start cryptoret thread; error %d",
163 			error);
164 		goto bad;
165 	}
166 	return 0;
167 bad:
168 	crypto_destroy();
169 	return error;
170 }
171 
172 /*
173  * Signal a crypto thread to terminate.  We use the driver
174  * table lock to synchronize the sleep/wakeups so that we
175  * are sure the threads have terminated before we release
176  * the data structures they use.  See crypto_finis below
177  * for the other half of this song-and-dance.
178  */
179 static void
180 crypto_terminate(struct proc **pp, void *q)
181 {
182 	struct proc *p;
183 
184 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
185 	p = *pp;
186 	*pp = NULL;
187 	if (p) {
188 		wakeup_one(q);
189 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
190 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
191 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
192 		PROC_UNLOCK(p);
193 		CRYPTO_DRIVER_LOCK();
194 	}
195 }
196 
197 static void
198 crypto_destroy(void)
199 {
200 	/*
201 	 * Terminate any crypto threads.
202 	 */
203 	CRYPTO_DRIVER_LOCK();
204 	crypto_terminate(&cryptoproc, &crp_q);
205 	crypto_terminate(&cryptoretproc, &crp_ret_q);
206 	CRYPTO_DRIVER_UNLOCK();
207 
208 	/* XXX flush queues??? */
209 
210 	/*
211 	 * Reclaim dynamically allocated resources.
212 	 */
213 	if (crypto_drivers != NULL)
214 		free(crypto_drivers, M_CRYPTO_DATA);
215 
216 	if (cryptodesc_zone != NULL)
217 		uma_zdestroy(cryptodesc_zone);
218 	if (cryptop_zone != NULL)
219 		uma_zdestroy(cryptop_zone);
220 	mtx_destroy(&crypto_q_mtx);
221 	mtx_destroy(&crypto_ret_q_mtx);
222 	mtx_destroy(&crypto_drivers_mtx);
223 }
224 
225 /*
226  * Initialization code, both for static and dynamic loading.
227  */
228 static int
229 crypto_modevent(module_t mod, int type, void *unused)
230 {
231 	int error = EINVAL;
232 
233 	switch (type) {
234 	case MOD_LOAD:
235 		error = crypto_init();
236 		if (error == 0 && bootverbose)
237 			printf("crypto: <crypto core>\n");
238 		break;
239 	case MOD_UNLOAD:
240 		/*XXX disallow if active sessions */
241 		error = 0;
242 		crypto_destroy();
243 		return 0;
244 	}
245 	return error;
246 }
247 
248 static moduledata_t crypto_mod = {
249 	"crypto",
250 	crypto_modevent,
251 	0
252 };
253 MODULE_VERSION(crypto, 1);
254 DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
255 
256 /*
257  * Create a new session.
258  */
259 int
260 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
261 {
262 	struct cryptoini *cr;
263 	u_int32_t hid, lid;
264 	int err = EINVAL;
265 
266 	CRYPTO_DRIVER_LOCK();
267 
268 	if (crypto_drivers == NULL)
269 		goto done;
270 
271 	/*
272 	 * The algorithm we use here is pretty stupid; just use the
273 	 * first driver that supports all the algorithms we need.
274 	 *
275 	 * XXX We need more smarts here (in real life too, but that's
276 	 * XXX another story altogether).
277 	 */
278 
279 	for (hid = 0; hid < crypto_drivers_num; hid++) {
280 		struct cryptocap *cap = &crypto_drivers[hid];
281 		/*
282 		 * If it's not initialized or has remaining sessions
283 		 * referencing it, skip.
284 		 */
285 		if (cap->cc_newsession == NULL ||
286 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP))
287 			continue;
288 
289 		/* Hardware required -- ignore software drivers. */
290 		if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE))
291 			continue;
292 		/* Software required -- ignore hardware drivers. */
293 		if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
294 			continue;
295 
296 		/* See if all the algorithms are supported. */
297 		for (cr = cri; cr; cr = cr->cri_next)
298 			if (cap->cc_alg[cr->cri_alg] == 0)
299 				break;
300 
301 		if (cr == NULL) {
302 			/* Ok, all algorithms are supported. */
303 
304 			/*
305 			 * Can't do everything in one session.
306 			 *
307 			 * XXX Fix this. We need to inject a "virtual" session layer right
308 			 * XXX about here.
309 			 */
310 
311 			/* Call the driver initialization routine. */
312 			lid = hid;		/* Pass the driver ID. */
313 			err = (*cap->cc_newsession)(cap->cc_arg, &lid, cri);
314 			if (err == 0) {
315 				/* XXX assert (hid &~ 0xffffff) == 0 */
316 				/* XXX assert (cap->cc_flags &~ 0xff) == 0 */
317 				(*sid) = ((cap->cc_flags & 0xff) << 24) | hid;
318 				(*sid) <<= 32;
319 				(*sid) |= (lid & 0xffffffff);
320 				cap->cc_sessions++;
321 			}
322 			break;
323 		}
324 	}
325 done:
326 	CRYPTO_DRIVER_UNLOCK();
327 	return err;
328 }
329 
330 /*
331  * Delete an existing session (or a reserved session on an unregistered
332  * driver).
333  */
334 int
335 crypto_freesession(u_int64_t sid)
336 {
337 	u_int32_t hid;
338 	int err;
339 
340 	CRYPTO_DRIVER_LOCK();
341 
342 	if (crypto_drivers == NULL) {
343 		err = EINVAL;
344 		goto done;
345 	}
346 
347 	/* Determine two IDs. */
348 	hid = CRYPTO_SESID2HID(sid);
349 
350 	if (hid >= crypto_drivers_num) {
351 		err = ENOENT;
352 		goto done;
353 	}
354 
355 	if (crypto_drivers[hid].cc_sessions)
356 		crypto_drivers[hid].cc_sessions--;
357 
358 	/* Call the driver cleanup routine, if available. */
359 	if (crypto_drivers[hid].cc_freesession)
360 		err = crypto_drivers[hid].cc_freesession(
361 				crypto_drivers[hid].cc_arg, sid);
362 	else
363 		err = 0;
364 
365 	/*
366 	 * If this was the last session of a driver marked as invalid,
367 	 * make the entry available for reuse.
368 	 */
369 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
370 	    crypto_drivers[hid].cc_sessions == 0)
371 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
372 
373 done:
374 	CRYPTO_DRIVER_UNLOCK();
375 	return err;
376 }
377 
378 /*
379  * Return an unused driver id.  Used by drivers prior to registering
380  * support for the algorithms they handle.
381  */
382 int32_t
383 crypto_get_driverid(u_int32_t flags)
384 {
385 	struct cryptocap *newdrv;
386 	int i;
387 
388 	CRYPTO_DRIVER_LOCK();
389 
390 	for (i = 0; i < crypto_drivers_num; i++)
391 		if (crypto_drivers[i].cc_process == NULL &&
392 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
393 		    crypto_drivers[i].cc_sessions == 0)
394 			break;
395 
396 	/* Out of entries, allocate some more. */
397 	if (i == crypto_drivers_num) {
398 		/* Be careful about wrap-around. */
399 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
400 			CRYPTO_DRIVER_UNLOCK();
401 			printf("crypto: driver count wraparound!\n");
402 			return -1;
403 		}
404 
405 		newdrv = malloc(2 * crypto_drivers_num *
406 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
407 		if (newdrv == NULL) {
408 			CRYPTO_DRIVER_UNLOCK();
409 			printf("crypto: no space to expand driver table!\n");
410 			return -1;
411 		}
412 
413 		bcopy(crypto_drivers, newdrv,
414 		    crypto_drivers_num * sizeof(struct cryptocap));
415 
416 		crypto_drivers_num *= 2;
417 
418 		free(crypto_drivers, M_CRYPTO_DATA);
419 		crypto_drivers = newdrv;
420 	}
421 
422 	/* NB: state is zero'd on free */
423 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
424 	crypto_drivers[i].cc_flags = flags;
425 	if (bootverbose)
426 		printf("crypto: assign driver %u, flags %u\n", i, flags);
427 
428 	CRYPTO_DRIVER_UNLOCK();
429 
430 	return i;
431 }
432 
433 static struct cryptocap *
434 crypto_checkdriver(u_int32_t hid)
435 {
436 	if (crypto_drivers == NULL)
437 		return NULL;
438 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
439 }
440 
441 /*
442  * Register support for a key-related algorithm.  This routine
443  * is called once for each algorithm supported a driver.
444  */
445 int
446 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
447     int (*kprocess)(void*, struct cryptkop *, int),
448     void *karg)
449 {
450 	struct cryptocap *cap;
451 	int err;
452 
453 	CRYPTO_DRIVER_LOCK();
454 
455 	cap = crypto_checkdriver(driverid);
456 	if (cap != NULL &&
457 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
458 		/*
459 		 * XXX Do some performance testing to determine placing.
460 		 * XXX We probably need an auxiliary data structure that
461 		 * XXX describes relative performances.
462 		 */
463 
464 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
465 		if (bootverbose)
466 			printf("crypto: driver %u registers key alg %u flags %u\n"
467 				, driverid
468 				, kalg
469 				, flags
470 			);
471 
472 		if (cap->cc_kprocess == NULL) {
473 			cap->cc_karg = karg;
474 			cap->cc_kprocess = kprocess;
475 		}
476 		err = 0;
477 	} else
478 		err = EINVAL;
479 
480 	CRYPTO_DRIVER_UNLOCK();
481 	return err;
482 }
483 
484 /*
485  * Register support for a non-key-related algorithm.  This routine
486  * is called once for each such algorithm supported by a driver.
487  */
488 int
489 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
490     u_int32_t flags,
491     int (*newses)(void*, u_int32_t*, struct cryptoini*),
492     int (*freeses)(void*, u_int64_t),
493     int (*process)(void*, struct cryptop *, int),
494     void *arg)
495 {
496 	struct cryptocap *cap;
497 	int err;
498 
499 	CRYPTO_DRIVER_LOCK();
500 
501 	cap = crypto_checkdriver(driverid);
502 	/* NB: algorithms are in the range [1..max] */
503 	if (cap != NULL &&
504 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
505 		/*
506 		 * XXX Do some performance testing to determine placing.
507 		 * XXX We probably need an auxiliary data structure that
508 		 * XXX describes relative performances.
509 		 */
510 
511 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
512 		cap->cc_max_op_len[alg] = maxoplen;
513 		if (bootverbose)
514 			printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
515 				, driverid
516 				, alg
517 				, flags
518 				, maxoplen
519 			);
520 
521 		if (cap->cc_process == NULL) {
522 			cap->cc_arg = arg;
523 			cap->cc_newsession = newses;
524 			cap->cc_process = process;
525 			cap->cc_freesession = freeses;
526 			cap->cc_sessions = 0;		/* Unmark */
527 		}
528 		err = 0;
529 	} else
530 		err = EINVAL;
531 
532 	CRYPTO_DRIVER_UNLOCK();
533 	return err;
534 }
535 
536 /*
537  * Unregister a crypto driver. If there are pending sessions using it,
538  * leave enough information around so that subsequent calls using those
539  * sessions will correctly detect the driver has been unregistered and
540  * reroute requests.
541  */
542 int
543 crypto_unregister(u_int32_t driverid, int alg)
544 {
545 	int i, err;
546 	u_int32_t ses;
547 	struct cryptocap *cap;
548 
549 	CRYPTO_DRIVER_LOCK();
550 
551 	cap = crypto_checkdriver(driverid);
552 	if (cap != NULL &&
553 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
554 	    cap->cc_alg[alg] != 0) {
555 		cap->cc_alg[alg] = 0;
556 		cap->cc_max_op_len[alg] = 0;
557 
558 		/* Was this the last algorithm ? */
559 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
560 			if (cap->cc_alg[i] != 0)
561 				break;
562 
563 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
564 			ses = cap->cc_sessions;
565 			bzero(cap, sizeof(struct cryptocap));
566 			if (ses != 0) {
567 				/*
568 				 * If there are pending sessions, just mark as invalid.
569 				 */
570 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
571 				cap->cc_sessions = ses;
572 			}
573 		}
574 		err = 0;
575 	} else
576 		err = EINVAL;
577 
578 	CRYPTO_DRIVER_UNLOCK();
579 	return err;
580 }
581 
582 /*
583  * Unregister all algorithms associated with a crypto driver.
584  * If there are pending sessions using it, leave enough information
585  * around so that subsequent calls using those sessions will
586  * correctly detect the driver has been unregistered and reroute
587  * requests.
588  */
589 int
590 crypto_unregister_all(u_int32_t driverid)
591 {
592 	int i, err;
593 	u_int32_t ses;
594 	struct cryptocap *cap;
595 
596 	CRYPTO_DRIVER_LOCK();
597 
598 	cap = crypto_checkdriver(driverid);
599 	if (cap != NULL) {
600 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
601 			cap->cc_alg[i] = 0;
602 			cap->cc_max_op_len[i] = 0;
603 		}
604 		ses = cap->cc_sessions;
605 		bzero(cap, sizeof(struct cryptocap));
606 		if (ses != 0) {
607 			/*
608 			 * If there are pending sessions, just mark as invalid.
609 			 */
610 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
611 			cap->cc_sessions = ses;
612 		}
613 		err = 0;
614 	} else
615 		err = EINVAL;
616 
617 	CRYPTO_DRIVER_UNLOCK();
618 	return err;
619 }
620 
621 /*
622  * Clear blockage on a driver.  The what parameter indicates whether
623  * the driver is now ready for cryptop's and/or cryptokop's.
624  */
625 int
626 crypto_unblock(u_int32_t driverid, int what)
627 {
628 	struct cryptocap *cap;
629 	int needwakeup, err;
630 
631 	CRYPTO_Q_LOCK();
632 	cap = crypto_checkdriver(driverid);
633 	if (cap != NULL) {
634 		needwakeup = 0;
635 		if (what & CRYPTO_SYMQ) {
636 			needwakeup |= cap->cc_qblocked;
637 			cap->cc_qblocked = 0;
638 		}
639 		if (what & CRYPTO_ASYMQ) {
640 			needwakeup |= cap->cc_kqblocked;
641 			cap->cc_kqblocked = 0;
642 		}
643 		if (needwakeup)
644 			wakeup_one(&crp_q);
645 		err = 0;
646 	} else
647 		err = EINVAL;
648 	CRYPTO_Q_UNLOCK();
649 
650 	return err;
651 }
652 
653 /*
654  * Add a crypto request to a queue, to be processed by the kernel thread.
655  */
656 int
657 crypto_dispatch(struct cryptop *crp)
658 {
659 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
660 	int result;
661 
662 	cryptostats.cs_ops++;
663 
664 #ifdef CRYPTO_TIMING
665 	if (crypto_timing)
666 		binuptime(&crp->crp_tstamp);
667 #endif
668 
669 	CRYPTO_Q_LOCK();
670 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
671 		struct cryptocap *cap;
672 		/*
673 		 * Caller marked the request to be processed
674 		 * immediately; dispatch it directly to the
675 		 * driver unless the driver is currently blocked.
676 		 */
677 		cap = crypto_checkdriver(hid);
678 		if (cap && !cap->cc_qblocked) {
679 			result = crypto_invoke(crp, 0);
680 			if (result == ERESTART) {
681 				/*
682 				 * The driver ran out of resources, mark the
683 				 * driver ``blocked'' for cryptop's and put
684 				 * the request on the queue.
685 				 *
686 				 * XXX ops are placed at the tail so their
687 				 * order is preserved but this can place them
688 				 * behind batch'd ops.
689 				 */
690 				crypto_drivers[hid].cc_qblocked = 1;
691 				TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
692 				cryptostats.cs_blocks++;
693 				result = 0;
694 			}
695 		} else {
696 			/*
697 			 * The driver is blocked, just queue the op until
698 			 * it unblocks and the kernel thread gets kicked.
699 			 */
700 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
701 			result = 0;
702 		}
703 	} else {
704 		int wasempty;
705 		/*
706 		 * Caller marked the request as ``ok to delay'';
707 		 * queue it for the dispatch thread.  This is desirable
708 		 * when the operation is low priority and/or suitable
709 		 * for batching.
710 		 */
711 		wasempty = TAILQ_EMPTY(&crp_q);
712 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
713 		if (wasempty)
714 			wakeup_one(&crp_q);
715 		result = 0;
716 	}
717 	CRYPTO_Q_UNLOCK();
718 
719 	return result;
720 }
721 
722 /*
723  * Add an asymetric crypto request to a queue,
724  * to be processed by the kernel thread.
725  */
726 int
727 crypto_kdispatch(struct cryptkop *krp)
728 {
729 	struct cryptocap *cap;
730 	int result;
731 
732 	cryptostats.cs_kops++;
733 
734 	CRYPTO_Q_LOCK();
735 	cap = crypto_checkdriver(krp->krp_hid);
736 	if (cap && !cap->cc_kqblocked) {
737 		result = crypto_kinvoke(krp, 0);
738 		if (result == ERESTART) {
739 			/*
740 			 * The driver ran out of resources, mark the
741 			 * driver ``blocked'' for cryptkop's and put
742 			 * the request back in the queue.  It would
743 			 * best to put the request back where we got
744 			 * it but that's hard so for now we put it
745 			 * at the front.  This should be ok; putting
746 			 * it at the end does not work.
747 			 */
748 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
749 			TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
750 			cryptostats.cs_kblocks++;
751 		}
752 	} else {
753 		/*
754 		 * The driver is blocked, just queue the op until
755 		 * it unblocks and the kernel thread gets kicked.
756 		 */
757 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
758 		result = 0;
759 	}
760 	CRYPTO_Q_UNLOCK();
761 
762 	return result;
763 }
764 
765 /*
766  * Dispatch an assymetric crypto request to the appropriate crypto devices.
767  */
768 static int
769 crypto_kinvoke(struct cryptkop *krp, int hint)
770 {
771 	u_int32_t hid;
772 	int error;
773 
774 	mtx_assert(&crypto_q_mtx, MA_OWNED);
775 
776 	/* Sanity checks. */
777 	if (krp == NULL)
778 		return EINVAL;
779 	if (krp->krp_callback == NULL) {
780 		free(krp, M_XDATA);		/* XXX allocated in cryptodev */
781 		return EINVAL;
782 	}
783 
784 	for (hid = 0; hid < crypto_drivers_num; hid++) {
785 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
786 		    !crypto_devallowsoft)
787 			continue;
788 		if (crypto_drivers[hid].cc_kprocess == NULL)
789 			continue;
790 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
791 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
792 			continue;
793 		break;
794 	}
795 	if (hid < crypto_drivers_num) {
796 		krp->krp_hid = hid;
797 		error = crypto_drivers[hid].cc_kprocess(
798 				crypto_drivers[hid].cc_karg, krp, hint);
799 	} else
800 		error = ENODEV;
801 
802 	if (error) {
803 		krp->krp_status = error;
804 		crypto_kdone(krp);
805 	}
806 	return 0;
807 }
808 
809 #ifdef CRYPTO_TIMING
810 static void
811 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
812 {
813 	struct bintime now, delta;
814 	struct timespec t;
815 	uint64_t u;
816 
817 	binuptime(&now);
818 	u = now.frac;
819 	delta.frac = now.frac - bt->frac;
820 	delta.sec = now.sec - bt->sec;
821 	if (u < delta.frac)
822 		delta.sec--;
823 	bintime2timespec(&delta, &t);
824 	timespecadd(&ts->acc, &t);
825 	if (timespeccmp(&t, &ts->min, <))
826 		ts->min = t;
827 	if (timespeccmp(&t, &ts->max, >))
828 		ts->max = t;
829 	ts->count++;
830 
831 	*bt = now;
832 }
833 #endif
834 
835 /*
836  * Dispatch a crypto request to the appropriate crypto devices.
837  */
838 static int
839 crypto_invoke(struct cryptop *crp, int hint)
840 {
841 	u_int32_t hid;
842 	int (*process)(void*, struct cryptop *, int);
843 
844 #ifdef CRYPTO_TIMING
845 	if (crypto_timing)
846 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
847 #endif
848 	/* Sanity checks. */
849 	if (crp == NULL)
850 		return EINVAL;
851 	if (crp->crp_callback == NULL) {
852 		crypto_freereq(crp);
853 		return EINVAL;
854 	}
855 	if (crp->crp_desc == NULL) {
856 		crp->crp_etype = EINVAL;
857 		crypto_done(crp);
858 		return 0;
859 	}
860 
861 	hid = CRYPTO_SESID2HID(crp->crp_sid);
862 	if (hid < crypto_drivers_num) {
863 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
864 			crypto_freesession(crp->crp_sid);
865 		process = crypto_drivers[hid].cc_process;
866 	} else {
867 		process = NULL;
868 	}
869 
870 	if (process == NULL) {
871 		struct cryptodesc *crd;
872 		u_int64_t nid;
873 
874 		/*
875 		 * Driver has unregistered; migrate the session and return
876 		 * an error to the caller so they'll resubmit the op.
877 		 */
878 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
879 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
880 
881 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
882 			crp->crp_sid = nid;
883 
884 		crp->crp_etype = EAGAIN;
885 		crypto_done(crp);
886 		return 0;
887 	} else {
888 		/*
889 		 * Invoke the driver to process the request.
890 		 */
891 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
892 	}
893 }
894 
895 /*
896  * Release a set of crypto descriptors.
897  */
898 void
899 crypto_freereq(struct cryptop *crp)
900 {
901 	struct cryptodesc *crd;
902 
903 	if (crp == NULL)
904 		return;
905 
906 	while ((crd = crp->crp_desc) != NULL) {
907 		crp->crp_desc = crd->crd_next;
908 		uma_zfree(cryptodesc_zone, crd);
909 	}
910 
911 	uma_zfree(cryptop_zone, crp);
912 }
913 
914 /*
915  * Acquire a set of crypto descriptors.
916  */
917 struct cryptop *
918 crypto_getreq(int num)
919 {
920 	struct cryptodesc *crd;
921 	struct cryptop *crp;
922 
923 	crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
924 	if (crp != NULL) {
925 		while (num--) {
926 			crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
927 			if (crd == NULL) {
928 				crypto_freereq(crp);
929 				return NULL;
930 			}
931 
932 			crd->crd_next = crp->crp_desc;
933 			crp->crp_desc = crd;
934 		}
935 	}
936 	return crp;
937 }
938 
939 /*
940  * Invoke the callback on behalf of the driver.
941  */
942 void
943 crypto_done(struct cryptop *crp)
944 {
945 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
946 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
947 	crp->crp_flags |= CRYPTO_F_DONE;
948 	if (crp->crp_etype != 0)
949 		cryptostats.cs_errs++;
950 #ifdef CRYPTO_TIMING
951 	if (crypto_timing)
952 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
953 #endif
954 	/*
955 	 * CBIMM means unconditionally do the callback immediately;
956 	 * CBIFSYNC means do the callback immediately only if the
957 	 * operation was done synchronously.  Both are used to avoid
958 	 * doing extraneous context switches; the latter is mostly
959 	 * used with the software crypto driver.
960 	 */
961 	if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
962 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
963 	     (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
964 		/*
965 		 * Do the callback directly.  This is ok when the
966 		 * callback routine does very little (e.g. the
967 		 * /dev/crypto callback method just does a wakeup).
968 		 */
969 #ifdef CRYPTO_TIMING
970 		if (crypto_timing) {
971 			/*
972 			 * NB: We must copy the timestamp before
973 			 * doing the callback as the cryptop is
974 			 * likely to be reclaimed.
975 			 */
976 			struct bintime t = crp->crp_tstamp;
977 			crypto_tstat(&cryptostats.cs_cb, &t);
978 			crp->crp_callback(crp);
979 			crypto_tstat(&cryptostats.cs_finis, &t);
980 		} else
981 #endif
982 			crp->crp_callback(crp);
983 	} else {
984 		int wasempty;
985 		/*
986 		 * Normal case; queue the callback for the thread.
987 		 */
988 		CRYPTO_RETQ_LOCK();
989 		wasempty = TAILQ_EMPTY(&crp_ret_q);
990 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
991 
992 		if (wasempty)
993 			wakeup_one(&crp_ret_q);	/* shared wait channel */
994 		CRYPTO_RETQ_UNLOCK();
995 	}
996 }
997 
998 /*
999  * Invoke the callback on behalf of the driver.
1000  */
1001 void
1002 crypto_kdone(struct cryptkop *krp)
1003 {
1004 	int wasempty;
1005 
1006 	if (krp->krp_status != 0)
1007 		cryptostats.cs_kerrs++;
1008 	CRYPTO_RETQ_LOCK();
1009 	wasempty = TAILQ_EMPTY(&crp_ret_kq);
1010 	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1011 
1012 	if (wasempty)
1013 		wakeup_one(&crp_ret_q);		/* shared wait channel */
1014 	CRYPTO_RETQ_UNLOCK();
1015 }
1016 
1017 int
1018 crypto_getfeat(int *featp)
1019 {
1020 	int hid, kalg, feat = 0;
1021 
1022 	if (!crypto_userasymcrypto)
1023 		goto out;
1024 
1025 	CRYPTO_DRIVER_LOCK();
1026 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1027 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1028 		    !crypto_devallowsoft) {
1029 			continue;
1030 		}
1031 		if (crypto_drivers[hid].cc_kprocess == NULL)
1032 			continue;
1033 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1034 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1035 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1036 				feat |=  1 << kalg;
1037 	}
1038 	CRYPTO_DRIVER_UNLOCK();
1039 out:
1040 	*featp = feat;
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Terminate a thread at module unload.  The process that
1046  * initiated this is waiting for us to signal that we're gone;
1047  * wake it up and exit.  We use the driver table lock to insure
1048  * we don't do the wakeup before they're waiting.  There is no
1049  * race here because the waiter sleeps on the proc lock for the
1050  * thread so it gets notified at the right time because of an
1051  * extra wakeup that's done in exit1().
1052  */
1053 static void
1054 crypto_finis(void *chan)
1055 {
1056 	CRYPTO_DRIVER_LOCK();
1057 	wakeup_one(chan);
1058 	CRYPTO_DRIVER_UNLOCK();
1059 	kthread_exit(0);
1060 }
1061 
1062 /*
1063  * Crypto thread, dispatches crypto requests.
1064  */
1065 static void
1066 crypto_proc(void)
1067 {
1068 	struct cryptop *crp, *submit;
1069 	struct cryptkop *krp;
1070 	struct cryptocap *cap;
1071 	int result, hint;
1072 
1073 	CRYPTO_Q_LOCK();
1074 	for (;;) {
1075 		/*
1076 		 * Find the first element in the queue that can be
1077 		 * processed and look-ahead to see if multiple ops
1078 		 * are ready for the same driver.
1079 		 */
1080 		submit = NULL;
1081 		hint = 0;
1082 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1083 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1084 			cap = crypto_checkdriver(hid);
1085 			if (cap == NULL || cap->cc_process == NULL) {
1086 				/* Op needs to be migrated, process it. */
1087 				if (submit == NULL)
1088 					submit = crp;
1089 				break;
1090 			}
1091 			if (!cap->cc_qblocked) {
1092 				if (submit != NULL) {
1093 					/*
1094 					 * We stop on finding another op,
1095 					 * regardless whether its for the same
1096 					 * driver or not.  We could keep
1097 					 * searching the queue but it might be
1098 					 * better to just use a per-driver
1099 					 * queue instead.
1100 					 */
1101 					if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1102 						hint = CRYPTO_HINT_MORE;
1103 					break;
1104 				} else {
1105 					submit = crp;
1106 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1107 						break;
1108 					/* keep scanning for more are q'd */
1109 				}
1110 			}
1111 		}
1112 		if (submit != NULL) {
1113 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1114 			result = crypto_invoke(submit, hint);
1115 			if (result == ERESTART) {
1116 				/*
1117 				 * The driver ran out of resources, mark the
1118 				 * driver ``blocked'' for cryptop's and put
1119 				 * the request back in the queue.  It would
1120 				 * best to put the request back where we got
1121 				 * it but that's hard so for now we put it
1122 				 * at the front.  This should be ok; putting
1123 				 * it at the end does not work.
1124 				 */
1125 				/* XXX validate sid again? */
1126 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1127 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1128 				cryptostats.cs_blocks++;
1129 			}
1130 		}
1131 
1132 		/* As above, but for key ops */
1133 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1134 			cap = crypto_checkdriver(krp->krp_hid);
1135 			if (cap == NULL || cap->cc_kprocess == NULL) {
1136 				/* Op needs to be migrated, process it. */
1137 				break;
1138 			}
1139 			if (!cap->cc_kqblocked)
1140 				break;
1141 		}
1142 		if (krp != NULL) {
1143 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1144 			result = crypto_kinvoke(krp, 0);
1145 			if (result == ERESTART) {
1146 				/*
1147 				 * The driver ran out of resources, mark the
1148 				 * driver ``blocked'' for cryptkop's and put
1149 				 * the request back in the queue.  It would
1150 				 * best to put the request back where we got
1151 				 * it but that's hard so for now we put it
1152 				 * at the front.  This should be ok; putting
1153 				 * it at the end does not work.
1154 				 */
1155 				/* XXX validate sid again? */
1156 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1157 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1158 				cryptostats.cs_kblocks++;
1159 			}
1160 		}
1161 
1162 		if (submit == NULL && krp == NULL) {
1163 			/*
1164 			 * Nothing more to be processed.  Sleep until we're
1165 			 * woken because there are more ops to process.
1166 			 * This happens either by submission or by a driver
1167 			 * becoming unblocked and notifying us through
1168 			 * crypto_unblock.  Note that when we wakeup we
1169 			 * start processing each queue again from the
1170 			 * front. It's not clear that it's important to
1171 			 * preserve this ordering since ops may finish
1172 			 * out of order if dispatched to different devices
1173 			 * and some become blocked while others do not.
1174 			 */
1175 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1176 			if (cryptoproc == NULL)
1177 				break;
1178 			cryptostats.cs_intrs++;
1179 		}
1180 	}
1181 	CRYPTO_Q_UNLOCK();
1182 
1183 	crypto_finis(&crp_q);
1184 }
1185 
1186 /*
1187  * Crypto returns thread, does callbacks for processed crypto requests.
1188  * Callbacks are done here, rather than in the crypto drivers, because
1189  * callbacks typically are expensive and would slow interrupt handling.
1190  */
1191 static void
1192 crypto_ret_proc(void)
1193 {
1194 	struct cryptop *crpt;
1195 	struct cryptkop *krpt;
1196 
1197 	CRYPTO_RETQ_LOCK();
1198 	for (;;) {
1199 		/* Harvest return q's for completed ops */
1200 		crpt = TAILQ_FIRST(&crp_ret_q);
1201 		if (crpt != NULL)
1202 			TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1203 
1204 		krpt = TAILQ_FIRST(&crp_ret_kq);
1205 		if (krpt != NULL)
1206 			TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1207 
1208 		if (crpt != NULL || krpt != NULL) {
1209 			CRYPTO_RETQ_UNLOCK();
1210 			/*
1211 			 * Run callbacks unlocked.
1212 			 */
1213 			if (crpt != NULL) {
1214 #ifdef CRYPTO_TIMING
1215 				if (crypto_timing) {
1216 					/*
1217 					 * NB: We must copy the timestamp before
1218 					 * doing the callback as the cryptop is
1219 					 * likely to be reclaimed.
1220 					 */
1221 					struct bintime t = crpt->crp_tstamp;
1222 					crypto_tstat(&cryptostats.cs_cb, &t);
1223 					crpt->crp_callback(crpt);
1224 					crypto_tstat(&cryptostats.cs_finis, &t);
1225 				} else
1226 #endif
1227 					crpt->crp_callback(crpt);
1228 			}
1229 			if (krpt != NULL)
1230 				krpt->krp_callback(krpt);
1231 			CRYPTO_RETQ_LOCK();
1232 		} else {
1233 			/*
1234 			 * Nothing more to be processed.  Sleep until we're
1235 			 * woken because there are more returns to process.
1236 			 */
1237 			msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
1238 				"crypto_ret_wait", 0);
1239 			if (cryptoretproc == NULL)
1240 				break;
1241 			cryptostats.cs_rets++;
1242 		}
1243 	}
1244 	CRYPTO_RETQ_UNLOCK();
1245 
1246 	crypto_finis(&crp_ret_q);
1247 }
1248