1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * Copyright (c) 2021 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Ararat River 6 * Consulting, LLC under sponsorship of the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * Cryptographic Subsystem. 34 * 35 * This code is derived from the Openbsd Cryptographic Framework (OCF) 36 * that has the copyright shown below. Very little of the original 37 * code remains. 38 */ 39 40 /*- 41 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 42 * 43 * This code was written by Angelos D. Keromytis in Athens, Greece, in 44 * February 2000. Network Security Technologies Inc. (NSTI) kindly 45 * supported the development of this code. 46 * 47 * Copyright (c) 2000, 2001 Angelos D. Keromytis 48 * 49 * Permission to use, copy, and modify this software with or without fee 50 * is hereby granted, provided that this entire notice is included in 51 * all source code copies of any software which is or includes a copy or 52 * modification of this software. 53 * 54 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 55 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 56 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 57 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 58 * PURPOSE. 59 */ 60 61 #include "opt_compat.h" 62 #include "opt_ddb.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/counter.h> 67 #include <sys/kernel.h> 68 #include <sys/kthread.h> 69 #include <sys/linker.h> 70 #include <sys/lock.h> 71 #include <sys/module.h> 72 #include <sys/mutex.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/proc.h> 76 #include <sys/refcount.h> 77 #include <sys/sdt.h> 78 #include <sys/smp.h> 79 #include <sys/sysctl.h> 80 #include <sys/taskqueue.h> 81 #include <sys/uio.h> 82 83 #include <ddb/ddb.h> 84 85 #include <machine/vmparam.h> 86 #include <vm/uma.h> 87 88 #include <crypto/intake.h> 89 #include <opencrypto/cryptodev.h> 90 #include <opencrypto/xform_auth.h> 91 #include <opencrypto/xform_enc.h> 92 93 #include <sys/kobj.h> 94 #include <sys/bus.h> 95 #include "cryptodev_if.h" 96 97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 98 #include <machine/pcb.h> 99 #endif 100 101 SDT_PROVIDER_DEFINE(opencrypto); 102 103 /* 104 * Crypto drivers register themselves by allocating a slot in the 105 * crypto_drivers table with crypto_get_driverid(). 106 */ 107 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 108 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 109 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 110 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 111 112 /* 113 * Crypto device/driver capabilities structure. 114 * 115 * Synchronization: 116 * (d) - protected by CRYPTO_DRIVER_LOCK() 117 * (q) - protected by CRYPTO_Q_LOCK() 118 * Not tagged fields are read-only. 119 */ 120 struct cryptocap { 121 device_t cc_dev; 122 uint32_t cc_hid; 123 uint32_t cc_sessions; /* (d) # of sessions */ 124 125 int cc_flags; /* (d) flags */ 126 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 127 int cc_qblocked; /* (q) symmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 struct crypto_session_params csp; 138 uint64_t id; 139 /* Driver softc follows. */ 140 }; 141 142 static int crp_sleep = 0; 143 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 144 static struct mtx crypto_q_mtx; 145 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 146 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 147 148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 149 "In-kernel cryptography"); 150 151 /* 152 * Taskqueue used to dispatch the crypto requests 153 * that have the CRYPTO_F_ASYNC flag 154 */ 155 static struct taskqueue *crypto_tq; 156 157 /* 158 * Crypto seq numbers are operated on with modular arithmetic 159 */ 160 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 161 162 struct crypto_ret_worker { 163 struct mtx crypto_ret_mtx; 164 165 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 166 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 167 168 uint32_t reorder_ops; /* total ordered sym jobs received */ 169 uint32_t reorder_cur_seq; /* current sym job dispatched */ 170 171 struct thread *td; 172 }; 173 static struct crypto_ret_worker *crypto_ret_workers = NULL; 174 175 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 176 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 177 #define FOREACH_CRYPTO_RETW(w) \ 178 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 179 180 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 181 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 182 183 static int crypto_workers_num = 0; 184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 185 &crypto_workers_num, 0, 186 "Number of crypto workers used to dispatch crypto jobs"); 187 #ifdef COMPAT_FREEBSD12 188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 189 &crypto_workers_num, 0, 190 "Number of crypto workers used to dispatch crypto jobs"); 191 #endif 192 193 static uma_zone_t cryptop_zone; 194 195 int crypto_devallowsoft = 0; 196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN, 197 &crypto_devallowsoft, 0, 198 "Enable use of software crypto by /dev/crypto"); 199 #ifdef COMPAT_FREEBSD12 200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN, 201 &crypto_devallowsoft, 0, 202 "Enable/disable use of software crypto by /dev/crypto"); 203 #endif 204 205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 206 207 static void crypto_dispatch_thread(void *arg); 208 static struct thread *cryptotd; 209 static void crypto_ret_thread(void *arg); 210 static void crypto_destroy(void); 211 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 212 static void crypto_task_invoke(void *ctx, int pending); 213 static void crypto_batch_enqueue(struct cryptop *crp); 214 215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 217 cryptostats, nitems(cryptostats), 218 "Crypto system statistics"); 219 220 #define CRYPTOSTAT_INC(stat) do { \ 221 counter_u64_add( \ 222 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 223 1); \ 224 } while (0) 225 226 static void 227 cryptostats_init(void *arg __unused) 228 { 229 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 230 } 231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 232 233 static void 234 cryptostats_fini(void *arg __unused) 235 { 236 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 237 } 238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 239 NULL); 240 241 /* Try to avoid directly exposing the key buffer as a symbol */ 242 static struct keybuf *keybuf; 243 244 static struct keybuf empty_keybuf = { 245 .kb_nents = 0 246 }; 247 248 /* Obtain the key buffer from boot metadata */ 249 static void 250 keybuf_init(void) 251 { 252 caddr_t kmdp; 253 254 kmdp = preload_search_by_type("elf kernel"); 255 256 if (kmdp == NULL) 257 kmdp = preload_search_by_type("elf64 kernel"); 258 259 keybuf = (struct keybuf *)preload_search_info(kmdp, 260 MODINFO_METADATA | MODINFOMD_KEYBUF); 261 262 if (keybuf == NULL) 263 keybuf = &empty_keybuf; 264 } 265 266 /* It'd be nice if we could store these in some kind of secure memory... */ 267 struct keybuf * 268 get_keybuf(void) 269 { 270 271 return (keybuf); 272 } 273 274 static struct cryptocap * 275 cap_ref(struct cryptocap *cap) 276 { 277 278 refcount_acquire(&cap->cc_refs); 279 return (cap); 280 } 281 282 static void 283 cap_rele(struct cryptocap *cap) 284 { 285 286 if (refcount_release(&cap->cc_refs) == 0) 287 return; 288 289 KASSERT(cap->cc_sessions == 0, 290 ("freeing crypto driver with active sessions")); 291 292 free(cap, M_CRYPTO_DATA); 293 } 294 295 static int 296 crypto_init(void) 297 { 298 struct crypto_ret_worker *ret_worker; 299 struct proc *p; 300 int error; 301 302 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF); 303 304 TAILQ_INIT(&crp_q); 305 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF); 306 307 cryptop_zone = uma_zcreate("cryptop", 308 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 309 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 310 311 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 312 crypto_drivers = malloc(crypto_drivers_size * 313 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 314 315 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 316 crypto_workers_num = mp_ncpus; 317 318 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 319 taskqueue_thread_enqueue, &crypto_tq); 320 321 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 322 "crypto"); 323 324 p = NULL; 325 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd, 326 0, 0, "crypto", "crypto"); 327 if (error) { 328 printf("crypto_init: cannot start crypto thread; error %d", 329 error); 330 goto bad; 331 } 332 333 crypto_ret_workers = mallocarray(crypto_workers_num, 334 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 335 336 FOREACH_CRYPTO_RETW(ret_worker) { 337 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 338 TAILQ_INIT(&ret_worker->crp_ret_q); 339 340 ret_worker->reorder_ops = 0; 341 ret_worker->reorder_cur_seq = 0; 342 343 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues", 344 NULL, MTX_DEF); 345 346 error = kthread_add(crypto_ret_thread, ret_worker, p, 347 &ret_worker->td, 0, 0, "crypto returns %td", 348 CRYPTO_RETW_ID(ret_worker)); 349 if (error) { 350 printf("crypto_init: cannot start cryptoret thread; error %d", 351 error); 352 goto bad; 353 } 354 } 355 356 keybuf_init(); 357 358 return 0; 359 bad: 360 crypto_destroy(); 361 return error; 362 } 363 364 /* 365 * Signal a crypto thread to terminate. We use the driver 366 * table lock to synchronize the sleep/wakeups so that we 367 * are sure the threads have terminated before we release 368 * the data structures they use. See crypto_finis below 369 * for the other half of this song-and-dance. 370 */ 371 static void 372 crypto_terminate(struct thread **tdp, void *q) 373 { 374 struct thread *td; 375 376 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 377 td = *tdp; 378 *tdp = NULL; 379 if (td != NULL) { 380 wakeup_one(q); 381 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0); 382 } 383 } 384 385 static void 386 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 387 void *auth_ctx, uint8_t padval) 388 { 389 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 390 u_int i; 391 392 KASSERT(axf->blocksize <= sizeof(hmac_key), 393 ("Invalid HMAC block size %d", axf->blocksize)); 394 395 /* 396 * If the key is larger than the block size, use the digest of 397 * the key as the key instead. 398 */ 399 memset(hmac_key, 0, sizeof(hmac_key)); 400 if (klen > axf->blocksize) { 401 axf->Init(auth_ctx); 402 axf->Update(auth_ctx, key, klen); 403 axf->Final(hmac_key, auth_ctx); 404 klen = axf->hashsize; 405 } else 406 memcpy(hmac_key, key, klen); 407 408 for (i = 0; i < axf->blocksize; i++) 409 hmac_key[i] ^= padval; 410 411 axf->Init(auth_ctx); 412 axf->Update(auth_ctx, hmac_key, axf->blocksize); 413 explicit_bzero(hmac_key, sizeof(hmac_key)); 414 } 415 416 void 417 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 418 void *auth_ctx) 419 { 420 421 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 422 } 423 424 void 425 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 426 void *auth_ctx) 427 { 428 429 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 430 } 431 432 static void 433 crypto_destroy(void) 434 { 435 struct crypto_ret_worker *ret_worker; 436 int i; 437 438 /* 439 * Terminate any crypto threads. 440 */ 441 if (crypto_tq != NULL) 442 taskqueue_drain_all(crypto_tq); 443 CRYPTO_DRIVER_LOCK(); 444 crypto_terminate(&cryptotd, &crp_q); 445 FOREACH_CRYPTO_RETW(ret_worker) 446 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q); 447 CRYPTO_DRIVER_UNLOCK(); 448 449 /* XXX flush queues??? */ 450 451 /* 452 * Reclaim dynamically allocated resources. 453 */ 454 for (i = 0; i < crypto_drivers_size; i++) { 455 if (crypto_drivers[i] != NULL) 456 cap_rele(crypto_drivers[i]); 457 } 458 free(crypto_drivers, M_CRYPTO_DATA); 459 460 if (cryptop_zone != NULL) 461 uma_zdestroy(cryptop_zone); 462 mtx_destroy(&crypto_q_mtx); 463 FOREACH_CRYPTO_RETW(ret_worker) 464 mtx_destroy(&ret_worker->crypto_ret_mtx); 465 free(crypto_ret_workers, M_CRYPTO_DATA); 466 if (crypto_tq != NULL) 467 taskqueue_free(crypto_tq); 468 mtx_destroy(&crypto_drivers_mtx); 469 } 470 471 uint32_t 472 crypto_ses2hid(crypto_session_t crypto_session) 473 { 474 return (crypto_session->cap->cc_hid); 475 } 476 477 uint32_t 478 crypto_ses2caps(crypto_session_t crypto_session) 479 { 480 return (crypto_session->cap->cc_flags & 0xff000000); 481 } 482 483 void * 484 crypto_get_driver_session(crypto_session_t crypto_session) 485 { 486 return (crypto_session + 1); 487 } 488 489 const struct crypto_session_params * 490 crypto_get_params(crypto_session_t crypto_session) 491 { 492 return (&crypto_session->csp); 493 } 494 495 const struct auth_hash * 496 crypto_auth_hash(const struct crypto_session_params *csp) 497 { 498 499 switch (csp->csp_auth_alg) { 500 case CRYPTO_SHA1_HMAC: 501 return (&auth_hash_hmac_sha1); 502 case CRYPTO_SHA2_224_HMAC: 503 return (&auth_hash_hmac_sha2_224); 504 case CRYPTO_SHA2_256_HMAC: 505 return (&auth_hash_hmac_sha2_256); 506 case CRYPTO_SHA2_384_HMAC: 507 return (&auth_hash_hmac_sha2_384); 508 case CRYPTO_SHA2_512_HMAC: 509 return (&auth_hash_hmac_sha2_512); 510 case CRYPTO_NULL_HMAC: 511 return (&auth_hash_null); 512 case CRYPTO_RIPEMD160_HMAC: 513 return (&auth_hash_hmac_ripemd_160); 514 case CRYPTO_RIPEMD160: 515 return (&auth_hash_ripemd_160); 516 case CRYPTO_SHA1: 517 return (&auth_hash_sha1); 518 case CRYPTO_SHA2_224: 519 return (&auth_hash_sha2_224); 520 case CRYPTO_SHA2_256: 521 return (&auth_hash_sha2_256); 522 case CRYPTO_SHA2_384: 523 return (&auth_hash_sha2_384); 524 case CRYPTO_SHA2_512: 525 return (&auth_hash_sha2_512); 526 case CRYPTO_AES_NIST_GMAC: 527 switch (csp->csp_auth_klen) { 528 case 128 / 8: 529 return (&auth_hash_nist_gmac_aes_128); 530 case 192 / 8: 531 return (&auth_hash_nist_gmac_aes_192); 532 case 256 / 8: 533 return (&auth_hash_nist_gmac_aes_256); 534 default: 535 return (NULL); 536 } 537 case CRYPTO_BLAKE2B: 538 return (&auth_hash_blake2b); 539 case CRYPTO_BLAKE2S: 540 return (&auth_hash_blake2s); 541 case CRYPTO_POLY1305: 542 return (&auth_hash_poly1305); 543 case CRYPTO_AES_CCM_CBC_MAC: 544 switch (csp->csp_auth_klen) { 545 case 128 / 8: 546 return (&auth_hash_ccm_cbc_mac_128); 547 case 192 / 8: 548 return (&auth_hash_ccm_cbc_mac_192); 549 case 256 / 8: 550 return (&auth_hash_ccm_cbc_mac_256); 551 default: 552 return (NULL); 553 } 554 default: 555 return (NULL); 556 } 557 } 558 559 const struct enc_xform * 560 crypto_cipher(const struct crypto_session_params *csp) 561 { 562 563 switch (csp->csp_cipher_alg) { 564 case CRYPTO_AES_CBC: 565 return (&enc_xform_aes_cbc); 566 case CRYPTO_AES_XTS: 567 return (&enc_xform_aes_xts); 568 case CRYPTO_AES_ICM: 569 return (&enc_xform_aes_icm); 570 case CRYPTO_AES_NIST_GCM_16: 571 return (&enc_xform_aes_nist_gcm); 572 case CRYPTO_CAMELLIA_CBC: 573 return (&enc_xform_camellia); 574 case CRYPTO_NULL_CBC: 575 return (&enc_xform_null); 576 case CRYPTO_CHACHA20: 577 return (&enc_xform_chacha20); 578 case CRYPTO_AES_CCM_16: 579 return (&enc_xform_ccm); 580 case CRYPTO_CHACHA20_POLY1305: 581 return (&enc_xform_chacha20_poly1305); 582 default: 583 return (NULL); 584 } 585 } 586 587 static struct cryptocap * 588 crypto_checkdriver(uint32_t hid) 589 { 590 591 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 592 } 593 594 /* 595 * Select a driver for a new session that supports the specified 596 * algorithms and, optionally, is constrained according to the flags. 597 */ 598 static struct cryptocap * 599 crypto_select_driver(const struct crypto_session_params *csp, int flags) 600 { 601 struct cryptocap *cap, *best; 602 int best_match, error, hid; 603 604 CRYPTO_DRIVER_ASSERT(); 605 606 best = NULL; 607 for (hid = 0; hid < crypto_drivers_size; hid++) { 608 /* 609 * If there is no driver for this slot, or the driver 610 * is not appropriate (hardware or software based on 611 * match), then skip. 612 */ 613 cap = crypto_drivers[hid]; 614 if (cap == NULL || 615 (cap->cc_flags & flags) == 0) 616 continue; 617 618 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 619 if (error >= 0) 620 continue; 621 622 /* 623 * Use the driver with the highest probe value. 624 * Hardware drivers use a higher probe value than 625 * software. In case of a tie, prefer the driver with 626 * the fewest active sessions. 627 */ 628 if (best == NULL || error > best_match || 629 (error == best_match && 630 cap->cc_sessions < best->cc_sessions)) { 631 best = cap; 632 best_match = error; 633 } 634 } 635 return best; 636 } 637 638 static enum alg_type { 639 ALG_NONE = 0, 640 ALG_CIPHER, 641 ALG_DIGEST, 642 ALG_KEYED_DIGEST, 643 ALG_COMPRESSION, 644 ALG_AEAD 645 } alg_types[] = { 646 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 647 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 648 [CRYPTO_AES_CBC] = ALG_CIPHER, 649 [CRYPTO_SHA1] = ALG_DIGEST, 650 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 651 [CRYPTO_NULL_CBC] = ALG_CIPHER, 652 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 653 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 654 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 655 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 656 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 657 [CRYPTO_AES_XTS] = ALG_CIPHER, 658 [CRYPTO_AES_ICM] = ALG_CIPHER, 659 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 660 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 661 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 662 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 663 [CRYPTO_CHACHA20] = ALG_CIPHER, 664 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 665 [CRYPTO_RIPEMD160] = ALG_DIGEST, 666 [CRYPTO_SHA2_224] = ALG_DIGEST, 667 [CRYPTO_SHA2_256] = ALG_DIGEST, 668 [CRYPTO_SHA2_384] = ALG_DIGEST, 669 [CRYPTO_SHA2_512] = ALG_DIGEST, 670 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 671 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 672 [CRYPTO_AES_CCM_16] = ALG_AEAD, 673 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD, 674 }; 675 676 static enum alg_type 677 alg_type(int alg) 678 { 679 680 if (alg < nitems(alg_types)) 681 return (alg_types[alg]); 682 return (ALG_NONE); 683 } 684 685 static bool 686 alg_is_compression(int alg) 687 { 688 689 return (alg_type(alg) == ALG_COMPRESSION); 690 } 691 692 static bool 693 alg_is_cipher(int alg) 694 { 695 696 return (alg_type(alg) == ALG_CIPHER); 697 } 698 699 static bool 700 alg_is_digest(int alg) 701 { 702 703 return (alg_type(alg) == ALG_DIGEST || 704 alg_type(alg) == ALG_KEYED_DIGEST); 705 } 706 707 static bool 708 alg_is_keyed_digest(int alg) 709 { 710 711 return (alg_type(alg) == ALG_KEYED_DIGEST); 712 } 713 714 static bool 715 alg_is_aead(int alg) 716 { 717 718 return (alg_type(alg) == ALG_AEAD); 719 } 720 721 static bool 722 ccm_tag_length_valid(int len) 723 { 724 /* RFC 3610 */ 725 switch (len) { 726 case 4: 727 case 6: 728 case 8: 729 case 10: 730 case 12: 731 case 14: 732 case 16: 733 return (true); 734 default: 735 return (false); 736 } 737 } 738 739 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 740 741 /* Various sanity checks on crypto session parameters. */ 742 static bool 743 check_csp(const struct crypto_session_params *csp) 744 { 745 const struct auth_hash *axf; 746 747 /* Mode-independent checks. */ 748 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 749 return (false); 750 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 751 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 752 return (false); 753 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 754 return (false); 755 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 756 return (false); 757 758 switch (csp->csp_mode) { 759 case CSP_MODE_COMPRESS: 760 if (!alg_is_compression(csp->csp_cipher_alg)) 761 return (false); 762 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 763 return (false); 764 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 765 return (false); 766 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 767 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 768 csp->csp_auth_mlen != 0) 769 return (false); 770 break; 771 case CSP_MODE_CIPHER: 772 if (!alg_is_cipher(csp->csp_cipher_alg)) 773 return (false); 774 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 775 return (false); 776 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 777 if (csp->csp_cipher_klen == 0) 778 return (false); 779 if (csp->csp_ivlen == 0) 780 return (false); 781 } 782 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 783 return (false); 784 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 785 csp->csp_auth_mlen != 0) 786 return (false); 787 break; 788 case CSP_MODE_DIGEST: 789 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 790 return (false); 791 792 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 793 return (false); 794 795 /* IV is optional for digests (e.g. GMAC). */ 796 switch (csp->csp_auth_alg) { 797 case CRYPTO_AES_CCM_CBC_MAC: 798 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 799 return (false); 800 break; 801 case CRYPTO_AES_NIST_GMAC: 802 if (csp->csp_ivlen != AES_GCM_IV_LEN) 803 return (false); 804 break; 805 default: 806 if (csp->csp_ivlen != 0) 807 return (false); 808 break; 809 } 810 811 if (!alg_is_digest(csp->csp_auth_alg)) 812 return (false); 813 814 /* Key is optional for BLAKE2 digests. */ 815 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 816 csp->csp_auth_alg == CRYPTO_BLAKE2S) 817 ; 818 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 819 if (csp->csp_auth_klen == 0) 820 return (false); 821 } else { 822 if (csp->csp_auth_klen != 0) 823 return (false); 824 } 825 if (csp->csp_auth_mlen != 0) { 826 axf = crypto_auth_hash(csp); 827 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 828 return (false); 829 830 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC && 831 !ccm_tag_length_valid(csp->csp_auth_mlen)) 832 return (false); 833 } 834 break; 835 case CSP_MODE_AEAD: 836 if (!alg_is_aead(csp->csp_cipher_alg)) 837 return (false); 838 if (csp->csp_cipher_klen == 0) 839 return (false); 840 if (csp->csp_ivlen == 0 || 841 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 842 return (false); 843 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 844 return (false); 845 846 switch (csp->csp_cipher_alg) { 847 case CRYPTO_AES_CCM_16: 848 if (csp->csp_auth_mlen != 0 && 849 !ccm_tag_length_valid(csp->csp_auth_mlen)) 850 return (false); 851 852 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 853 return (false); 854 break; 855 case CRYPTO_AES_NIST_GCM_16: 856 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN) 857 return (false); 858 859 if (csp->csp_ivlen != AES_GCM_IV_LEN) 860 return (false); 861 break; 862 case CRYPTO_CHACHA20_POLY1305: 863 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12) 864 return (false); 865 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 866 return (false); 867 break; 868 } 869 break; 870 case CSP_MODE_ETA: 871 if (!alg_is_cipher(csp->csp_cipher_alg)) 872 return (false); 873 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 874 if (csp->csp_cipher_klen == 0) 875 return (false); 876 if (csp->csp_ivlen == 0) 877 return (false); 878 } 879 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 880 return (false); 881 if (!alg_is_digest(csp->csp_auth_alg)) 882 return (false); 883 884 /* Key is optional for BLAKE2 digests. */ 885 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 886 csp->csp_auth_alg == CRYPTO_BLAKE2S) 887 ; 888 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 889 if (csp->csp_auth_klen == 0) 890 return (false); 891 } else { 892 if (csp->csp_auth_klen != 0) 893 return (false); 894 } 895 if (csp->csp_auth_mlen != 0) { 896 axf = crypto_auth_hash(csp); 897 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 898 return (false); 899 } 900 break; 901 default: 902 return (false); 903 } 904 905 return (true); 906 } 907 908 /* 909 * Delete a session after it has been detached from its driver. 910 */ 911 static void 912 crypto_deletesession(crypto_session_t cses) 913 { 914 struct cryptocap *cap; 915 916 cap = cses->cap; 917 918 zfree(cses, M_CRYPTO_DATA); 919 920 CRYPTO_DRIVER_LOCK(); 921 cap->cc_sessions--; 922 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 923 wakeup(cap); 924 CRYPTO_DRIVER_UNLOCK(); 925 cap_rele(cap); 926 } 927 928 /* 929 * Create a new session. The crid argument specifies a crypto 930 * driver to use or constraints on a driver to select (hardware 931 * only, software only, either). Whatever driver is selected 932 * must be capable of the requested crypto algorithms. 933 */ 934 int 935 crypto_newsession(crypto_session_t *cses, 936 const struct crypto_session_params *csp, int crid) 937 { 938 static uint64_t sessid = 0; 939 crypto_session_t res; 940 struct cryptocap *cap; 941 int err; 942 943 if (!check_csp(csp)) 944 return (EINVAL); 945 946 res = NULL; 947 948 CRYPTO_DRIVER_LOCK(); 949 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 950 /* 951 * Use specified driver; verify it is capable. 952 */ 953 cap = crypto_checkdriver(crid); 954 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 955 cap = NULL; 956 } else { 957 /* 958 * No requested driver; select based on crid flags. 959 */ 960 cap = crypto_select_driver(csp, crid); 961 } 962 if (cap == NULL) { 963 CRYPTO_DRIVER_UNLOCK(); 964 CRYPTDEB("no driver"); 965 return (EOPNOTSUPP); 966 } 967 cap_ref(cap); 968 cap->cc_sessions++; 969 CRYPTO_DRIVER_UNLOCK(); 970 971 /* Allocate a single block for the generic session and driver softc. */ 972 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA, 973 M_WAITOK | M_ZERO); 974 res->cap = cap; 975 res->csp = *csp; 976 res->id = atomic_fetchadd_64(&sessid, 1); 977 978 /* Call the driver initialization routine. */ 979 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 980 if (err != 0) { 981 CRYPTDEB("dev newsession failed: %d", err); 982 crypto_deletesession(res); 983 return (err); 984 } 985 986 *cses = res; 987 return (0); 988 } 989 990 /* 991 * Delete an existing session (or a reserved session on an unregistered 992 * driver). 993 */ 994 void 995 crypto_freesession(crypto_session_t cses) 996 { 997 struct cryptocap *cap; 998 999 if (cses == NULL) 1000 return; 1001 1002 cap = cses->cap; 1003 1004 /* Call the driver cleanup routine, if available. */ 1005 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1006 1007 crypto_deletesession(cses); 1008 } 1009 1010 /* 1011 * Return a new driver id. Registers a driver with the system so that 1012 * it can be probed by subsequent sessions. 1013 */ 1014 int32_t 1015 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1016 { 1017 struct cryptocap *cap, **newdrv; 1018 int i; 1019 1020 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1021 device_printf(dev, 1022 "no flags specified when registering driver\n"); 1023 return -1; 1024 } 1025 1026 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1027 cap->cc_dev = dev; 1028 cap->cc_session_size = sessionsize; 1029 cap->cc_flags = flags; 1030 refcount_init(&cap->cc_refs, 1); 1031 1032 CRYPTO_DRIVER_LOCK(); 1033 for (;;) { 1034 for (i = 0; i < crypto_drivers_size; i++) { 1035 if (crypto_drivers[i] == NULL) 1036 break; 1037 } 1038 1039 if (i < crypto_drivers_size) 1040 break; 1041 1042 /* Out of entries, allocate some more. */ 1043 1044 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1045 CRYPTO_DRIVER_UNLOCK(); 1046 printf("crypto: driver count wraparound!\n"); 1047 cap_rele(cap); 1048 return (-1); 1049 } 1050 CRYPTO_DRIVER_UNLOCK(); 1051 1052 newdrv = malloc(2 * crypto_drivers_size * 1053 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1054 1055 CRYPTO_DRIVER_LOCK(); 1056 memcpy(newdrv, crypto_drivers, 1057 crypto_drivers_size * sizeof(*crypto_drivers)); 1058 1059 crypto_drivers_size *= 2; 1060 1061 free(crypto_drivers, M_CRYPTO_DATA); 1062 crypto_drivers = newdrv; 1063 } 1064 1065 cap->cc_hid = i; 1066 crypto_drivers[i] = cap; 1067 CRYPTO_DRIVER_UNLOCK(); 1068 1069 if (bootverbose) 1070 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1071 device_get_nameunit(dev), i, flags); 1072 1073 return i; 1074 } 1075 1076 /* 1077 * Lookup a driver by name. We match against the full device 1078 * name and unit, and against just the name. The latter gives 1079 * us a simple widlcarding by device name. On success return the 1080 * driver/hardware identifier; otherwise return -1. 1081 */ 1082 int 1083 crypto_find_driver(const char *match) 1084 { 1085 struct cryptocap *cap; 1086 int i, len = strlen(match); 1087 1088 CRYPTO_DRIVER_LOCK(); 1089 for (i = 0; i < crypto_drivers_size; i++) { 1090 if (crypto_drivers[i] == NULL) 1091 continue; 1092 cap = crypto_drivers[i]; 1093 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1094 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1095 CRYPTO_DRIVER_UNLOCK(); 1096 return (i); 1097 } 1098 } 1099 CRYPTO_DRIVER_UNLOCK(); 1100 return (-1); 1101 } 1102 1103 /* 1104 * Return the device_t for the specified driver or NULL 1105 * if the driver identifier is invalid. 1106 */ 1107 device_t 1108 crypto_find_device_byhid(int hid) 1109 { 1110 struct cryptocap *cap; 1111 device_t dev; 1112 1113 dev = NULL; 1114 CRYPTO_DRIVER_LOCK(); 1115 cap = crypto_checkdriver(hid); 1116 if (cap != NULL) 1117 dev = cap->cc_dev; 1118 CRYPTO_DRIVER_UNLOCK(); 1119 return (dev); 1120 } 1121 1122 /* 1123 * Return the device/driver capabilities. 1124 */ 1125 int 1126 crypto_getcaps(int hid) 1127 { 1128 struct cryptocap *cap; 1129 int flags; 1130 1131 flags = 0; 1132 CRYPTO_DRIVER_LOCK(); 1133 cap = crypto_checkdriver(hid); 1134 if (cap != NULL) 1135 flags = cap->cc_flags; 1136 CRYPTO_DRIVER_UNLOCK(); 1137 return (flags); 1138 } 1139 1140 /* 1141 * Unregister all algorithms associated with a crypto driver. 1142 * If there are pending sessions using it, leave enough information 1143 * around so that subsequent calls using those sessions will 1144 * correctly detect the driver has been unregistered and reroute 1145 * requests. 1146 */ 1147 int 1148 crypto_unregister_all(uint32_t driverid) 1149 { 1150 struct cryptocap *cap; 1151 1152 CRYPTO_DRIVER_LOCK(); 1153 cap = crypto_checkdriver(driverid); 1154 if (cap == NULL) { 1155 CRYPTO_DRIVER_UNLOCK(); 1156 return (EINVAL); 1157 } 1158 1159 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1160 crypto_drivers[driverid] = NULL; 1161 1162 /* 1163 * XXX: This doesn't do anything to kick sessions that 1164 * have no pending operations. 1165 */ 1166 while (cap->cc_sessions != 0) 1167 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1168 CRYPTO_DRIVER_UNLOCK(); 1169 cap_rele(cap); 1170 1171 return (0); 1172 } 1173 1174 /* 1175 * Clear blockage on a driver. The what parameter indicates whether 1176 * the driver is now ready for cryptop's and/or cryptokop's. 1177 */ 1178 int 1179 crypto_unblock(uint32_t driverid, int what) 1180 { 1181 struct cryptocap *cap; 1182 int err; 1183 1184 CRYPTO_Q_LOCK(); 1185 cap = crypto_checkdriver(driverid); 1186 if (cap != NULL) { 1187 if (what & CRYPTO_SYMQ) 1188 cap->cc_qblocked = 0; 1189 if (crp_sleep) 1190 wakeup_one(&crp_q); 1191 err = 0; 1192 } else 1193 err = EINVAL; 1194 CRYPTO_Q_UNLOCK(); 1195 1196 return err; 1197 } 1198 1199 size_t 1200 crypto_buffer_len(struct crypto_buffer *cb) 1201 { 1202 switch (cb->cb_type) { 1203 case CRYPTO_BUF_CONTIG: 1204 return (cb->cb_buf_len); 1205 case CRYPTO_BUF_MBUF: 1206 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1207 return (cb->cb_mbuf->m_pkthdr.len); 1208 return (m_length(cb->cb_mbuf, NULL)); 1209 case CRYPTO_BUF_SINGLE_MBUF: 1210 return (cb->cb_mbuf->m_len); 1211 case CRYPTO_BUF_VMPAGE: 1212 return (cb->cb_vm_page_len); 1213 case CRYPTO_BUF_UIO: 1214 return (cb->cb_uio->uio_resid); 1215 default: 1216 return (0); 1217 } 1218 } 1219 1220 #ifdef INVARIANTS 1221 /* Various sanity checks on crypto requests. */ 1222 static void 1223 cb_sanity(struct crypto_buffer *cb, const char *name) 1224 { 1225 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1226 ("incoming crp with invalid %s buffer type", name)); 1227 switch (cb->cb_type) { 1228 case CRYPTO_BUF_CONTIG: 1229 KASSERT(cb->cb_buf_len >= 0, 1230 ("incoming crp with -ve %s buffer length", name)); 1231 break; 1232 case CRYPTO_BUF_VMPAGE: 1233 KASSERT(CRYPTO_HAS_VMPAGE, 1234 ("incoming crp uses dmap on supported arch")); 1235 KASSERT(cb->cb_vm_page_len >= 0, 1236 ("incoming crp with -ve %s buffer length", name)); 1237 KASSERT(cb->cb_vm_page_offset >= 0, 1238 ("incoming crp with -ve %s buffer offset", name)); 1239 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1240 ("incoming crp with %s buffer offset greater than page size" 1241 , name)); 1242 break; 1243 default: 1244 break; 1245 } 1246 } 1247 1248 static void 1249 crp_sanity(struct cryptop *crp) 1250 { 1251 struct crypto_session_params *csp; 1252 struct crypto_buffer *out; 1253 size_t ilen, len, olen; 1254 1255 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1256 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1257 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1258 ("incoming crp with invalid output buffer type")); 1259 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1260 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1261 ("incoming crp already done")); 1262 1263 csp = &crp->crp_session->csp; 1264 cb_sanity(&crp->crp_buf, "input"); 1265 ilen = crypto_buffer_len(&crp->crp_buf); 1266 olen = ilen; 1267 out = NULL; 1268 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1269 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1270 cb_sanity(&crp->crp_obuf, "output"); 1271 out = &crp->crp_obuf; 1272 olen = crypto_buffer_len(out); 1273 } 1274 } else 1275 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1276 ("incoming crp with separate output buffer " 1277 "but no session support")); 1278 1279 switch (csp->csp_mode) { 1280 case CSP_MODE_COMPRESS: 1281 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1282 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1283 ("invalid compression op %x", crp->crp_op)); 1284 break; 1285 case CSP_MODE_CIPHER: 1286 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1287 crp->crp_op == CRYPTO_OP_DECRYPT, 1288 ("invalid cipher op %x", crp->crp_op)); 1289 break; 1290 case CSP_MODE_DIGEST: 1291 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1292 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1293 ("invalid digest op %x", crp->crp_op)); 1294 break; 1295 case CSP_MODE_AEAD: 1296 KASSERT(crp->crp_op == 1297 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1298 crp->crp_op == 1299 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1300 ("invalid AEAD op %x", crp->crp_op)); 1301 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1302 ("AEAD without a separate IV")); 1303 break; 1304 case CSP_MODE_ETA: 1305 KASSERT(crp->crp_op == 1306 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1307 crp->crp_op == 1308 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1309 ("invalid ETA op %x", crp->crp_op)); 1310 break; 1311 } 1312 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1313 if (crp->crp_aad == NULL) { 1314 KASSERT(crp->crp_aad_start == 0 || 1315 crp->crp_aad_start < ilen, 1316 ("invalid AAD start")); 1317 KASSERT(crp->crp_aad_length != 0 || 1318 crp->crp_aad_start == 0, 1319 ("AAD with zero length and non-zero start")); 1320 KASSERT(crp->crp_aad_length == 0 || 1321 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1322 ("AAD outside input length")); 1323 } else { 1324 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1325 ("session doesn't support separate AAD buffer")); 1326 KASSERT(crp->crp_aad_start == 0, 1327 ("separate AAD buffer with non-zero AAD start")); 1328 KASSERT(crp->crp_aad_length != 0, 1329 ("separate AAD buffer with zero length")); 1330 } 1331 } else { 1332 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1333 crp->crp_aad_length == 0, 1334 ("AAD region in request not supporting AAD")); 1335 } 1336 if (csp->csp_ivlen == 0) { 1337 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1338 ("IV_SEPARATE set when IV isn't used")); 1339 KASSERT(crp->crp_iv_start == 0, 1340 ("crp_iv_start set when IV isn't used")); 1341 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1342 KASSERT(crp->crp_iv_start == 0, 1343 ("IV_SEPARATE used with non-zero IV start")); 1344 } else { 1345 KASSERT(crp->crp_iv_start < ilen, 1346 ("invalid IV start")); 1347 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1348 ("IV outside buffer length")); 1349 } 1350 /* XXX: payload_start of 0 should always be < ilen? */ 1351 KASSERT(crp->crp_payload_start == 0 || 1352 crp->crp_payload_start < ilen, 1353 ("invalid payload start")); 1354 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1355 ilen, ("payload outside input buffer")); 1356 if (out == NULL) { 1357 KASSERT(crp->crp_payload_output_start == 0, 1358 ("payload output start non-zero without output buffer")); 1359 } else { 1360 KASSERT(crp->crp_payload_output_start == 0 || 1361 crp->crp_payload_output_start < olen, 1362 ("invalid payload output start")); 1363 KASSERT(crp->crp_payload_output_start + 1364 crp->crp_payload_length <= olen, 1365 ("payload outside output buffer")); 1366 } 1367 if (csp->csp_mode == CSP_MODE_DIGEST || 1368 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1369 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1370 len = ilen; 1371 else 1372 len = olen; 1373 KASSERT(crp->crp_digest_start == 0 || 1374 crp->crp_digest_start < len, 1375 ("invalid digest start")); 1376 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1377 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1378 ("digest outside buffer")); 1379 } else { 1380 KASSERT(crp->crp_digest_start == 0, 1381 ("non-zero digest start for request without a digest")); 1382 } 1383 if (csp->csp_cipher_klen != 0) 1384 KASSERT(csp->csp_cipher_key != NULL || 1385 crp->crp_cipher_key != NULL, 1386 ("cipher request without a key")); 1387 if (csp->csp_auth_klen != 0) 1388 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1389 ("auth request without a key")); 1390 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1391 } 1392 #endif 1393 1394 static int 1395 crypto_dispatch_one(struct cryptop *crp, int hint) 1396 { 1397 struct cryptocap *cap; 1398 int result; 1399 1400 #ifdef INVARIANTS 1401 crp_sanity(crp); 1402 #endif 1403 CRYPTOSTAT_INC(cs_ops); 1404 1405 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1406 1407 /* 1408 * Caller marked the request to be processed immediately; dispatch it 1409 * directly to the driver unless the driver is currently blocked, in 1410 * which case it is queued for deferred dispatch. 1411 */ 1412 cap = crp->crp_session->cap; 1413 if (!atomic_load_int(&cap->cc_qblocked)) { 1414 result = crypto_invoke(cap, crp, hint); 1415 if (result != ERESTART) 1416 return (result); 1417 1418 /* 1419 * The driver ran out of resources, put the request on the 1420 * queue. 1421 */ 1422 } 1423 crypto_batch_enqueue(crp); 1424 return (0); 1425 } 1426 1427 int 1428 crypto_dispatch(struct cryptop *crp) 1429 { 1430 return (crypto_dispatch_one(crp, 0)); 1431 } 1432 1433 int 1434 crypto_dispatch_async(struct cryptop *crp, int flags) 1435 { 1436 struct crypto_ret_worker *ret_worker; 1437 1438 if (!CRYPTO_SESS_SYNC(crp->crp_session)) { 1439 /* 1440 * The driver issues completions asynchonously, don't bother 1441 * deferring dispatch to a worker thread. 1442 */ 1443 return (crypto_dispatch(crp)); 1444 } 1445 1446 #ifdef INVARIANTS 1447 crp_sanity(crp); 1448 #endif 1449 CRYPTOSTAT_INC(cs_ops); 1450 1451 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1452 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) { 1453 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED; 1454 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1455 CRYPTO_RETW_LOCK(ret_worker); 1456 crp->crp_seq = ret_worker->reorder_ops++; 1457 CRYPTO_RETW_UNLOCK(ret_worker); 1458 } 1459 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1460 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1461 return (0); 1462 } 1463 1464 void 1465 crypto_dispatch_batch(struct cryptopq *crpq, int flags) 1466 { 1467 struct cryptop *crp; 1468 int hint; 1469 1470 while ((crp = TAILQ_FIRST(crpq)) != NULL) { 1471 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0; 1472 TAILQ_REMOVE(crpq, crp, crp_next); 1473 if (crypto_dispatch_one(crp, hint) != 0) 1474 crypto_batch_enqueue(crp); 1475 } 1476 } 1477 1478 static void 1479 crypto_batch_enqueue(struct cryptop *crp) 1480 { 1481 1482 CRYPTO_Q_LOCK(); 1483 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1484 if (crp_sleep) 1485 wakeup_one(&crp_q); 1486 CRYPTO_Q_UNLOCK(); 1487 } 1488 1489 static void 1490 crypto_task_invoke(void *ctx, int pending) 1491 { 1492 struct cryptocap *cap; 1493 struct cryptop *crp; 1494 int result; 1495 1496 crp = (struct cryptop *)ctx; 1497 cap = crp->crp_session->cap; 1498 result = crypto_invoke(cap, crp, 0); 1499 if (result == ERESTART) 1500 crypto_batch_enqueue(crp); 1501 } 1502 1503 /* 1504 * Dispatch a crypto request to the appropriate crypto devices. 1505 */ 1506 static int 1507 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1508 { 1509 1510 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1511 KASSERT(crp->crp_callback != NULL, 1512 ("%s: crp->crp_callback == NULL", __func__)); 1513 KASSERT(crp->crp_session != NULL, 1514 ("%s: crp->crp_session == NULL", __func__)); 1515 1516 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1517 struct crypto_session_params csp; 1518 crypto_session_t nses; 1519 1520 /* 1521 * Driver has unregistered; migrate the session and return 1522 * an error to the caller so they'll resubmit the op. 1523 * 1524 * XXX: What if there are more already queued requests for this 1525 * session? 1526 * 1527 * XXX: Real solution is to make sessions refcounted 1528 * and force callers to hold a reference when 1529 * assigning to crp_session. Could maybe change 1530 * crypto_getreq to accept a session pointer to make 1531 * that work. Alternatively, we could abandon the 1532 * notion of rewriting crp_session in requests forcing 1533 * the caller to deal with allocating a new session. 1534 * Perhaps provide a method to allow a crp's session to 1535 * be swapped that callers could use. 1536 */ 1537 csp = crp->crp_session->csp; 1538 crypto_freesession(crp->crp_session); 1539 1540 /* 1541 * XXX: Key pointers may no longer be valid. If we 1542 * really want to support this we need to define the 1543 * KPI such that 'csp' is required to be valid for the 1544 * duration of a session by the caller perhaps. 1545 * 1546 * XXX: If the keys have been changed this will reuse 1547 * the old keys. This probably suggests making 1548 * rekeying more explicit and updating the key 1549 * pointers in 'csp' when the keys change. 1550 */ 1551 if (crypto_newsession(&nses, &csp, 1552 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1553 crp->crp_session = nses; 1554 1555 crp->crp_etype = EAGAIN; 1556 crypto_done(crp); 1557 return 0; 1558 } else { 1559 /* 1560 * Invoke the driver to process the request. 1561 */ 1562 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1563 } 1564 } 1565 1566 void 1567 crypto_destroyreq(struct cryptop *crp) 1568 { 1569 #ifdef DIAGNOSTIC 1570 { 1571 struct cryptop *crp2; 1572 struct crypto_ret_worker *ret_worker; 1573 1574 CRYPTO_Q_LOCK(); 1575 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1576 KASSERT(crp2 != crp, 1577 ("Freeing cryptop from the crypto queue (%p).", 1578 crp)); 1579 } 1580 CRYPTO_Q_UNLOCK(); 1581 1582 FOREACH_CRYPTO_RETW(ret_worker) { 1583 CRYPTO_RETW_LOCK(ret_worker); 1584 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1585 KASSERT(crp2 != crp, 1586 ("Freeing cryptop from the return queue (%p).", 1587 crp)); 1588 } 1589 CRYPTO_RETW_UNLOCK(ret_worker); 1590 } 1591 } 1592 #endif 1593 } 1594 1595 void 1596 crypto_freereq(struct cryptop *crp) 1597 { 1598 if (crp == NULL) 1599 return; 1600 1601 crypto_destroyreq(crp); 1602 uma_zfree(cryptop_zone, crp); 1603 } 1604 1605 static void 1606 _crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1607 { 1608 crp->crp_session = cses; 1609 } 1610 1611 void 1612 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1613 { 1614 memset(crp, 0, sizeof(*crp)); 1615 _crypto_initreq(crp, cses); 1616 } 1617 1618 struct cryptop * 1619 crypto_getreq(crypto_session_t cses, int how) 1620 { 1621 struct cryptop *crp; 1622 1623 MPASS(how == M_WAITOK || how == M_NOWAIT); 1624 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1625 if (crp != NULL) 1626 _crypto_initreq(crp, cses); 1627 return (crp); 1628 } 1629 1630 /* 1631 * Invoke the callback on behalf of the driver. 1632 */ 1633 void 1634 crypto_done(struct cryptop *crp) 1635 { 1636 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1637 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1638 crp->crp_flags |= CRYPTO_F_DONE; 1639 if (crp->crp_etype != 0) 1640 CRYPTOSTAT_INC(cs_errs); 1641 1642 /* 1643 * CBIMM means unconditionally do the callback immediately; 1644 * CBIFSYNC means do the callback immediately only if the 1645 * operation was done synchronously. Both are used to avoid 1646 * doing extraneous context switches; the latter is mostly 1647 * used with the software crypto driver. 1648 */ 1649 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 && 1650 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 || 1651 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 && 1652 CRYPTO_SESS_SYNC(crp->crp_session)))) { 1653 /* 1654 * Do the callback directly. This is ok when the 1655 * callback routine does very little (e.g. the 1656 * /dev/crypto callback method just does a wakeup). 1657 */ 1658 crp->crp_callback(crp); 1659 } else { 1660 struct crypto_ret_worker *ret_worker; 1661 bool wake; 1662 1663 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1664 1665 /* 1666 * Normal case; queue the callback for the thread. 1667 */ 1668 CRYPTO_RETW_LOCK(ret_worker); 1669 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) { 1670 struct cryptop *tmp; 1671 1672 TAILQ_FOREACH_REVERSE(tmp, 1673 &ret_worker->crp_ordered_ret_q, cryptop_q, 1674 crp_next) { 1675 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1676 TAILQ_INSERT_AFTER( 1677 &ret_worker->crp_ordered_ret_q, tmp, 1678 crp, crp_next); 1679 break; 1680 } 1681 } 1682 if (tmp == NULL) { 1683 TAILQ_INSERT_HEAD( 1684 &ret_worker->crp_ordered_ret_q, crp, 1685 crp_next); 1686 } 1687 1688 wake = crp->crp_seq == ret_worker->reorder_cur_seq; 1689 } else { 1690 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q); 1691 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, 1692 crp_next); 1693 } 1694 1695 if (wake) 1696 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1697 CRYPTO_RETW_UNLOCK(ret_worker); 1698 } 1699 } 1700 1701 /* 1702 * Terminate a thread at module unload. The process that 1703 * initiated this is waiting for us to signal that we're gone; 1704 * wake it up and exit. We use the driver table lock to insure 1705 * we don't do the wakeup before they're waiting. There is no 1706 * race here because the waiter sleeps on the proc lock for the 1707 * thread so it gets notified at the right time because of an 1708 * extra wakeup that's done in exit1(). 1709 */ 1710 static void 1711 crypto_finis(void *chan) 1712 { 1713 CRYPTO_DRIVER_LOCK(); 1714 wakeup_one(chan); 1715 CRYPTO_DRIVER_UNLOCK(); 1716 kthread_exit(); 1717 } 1718 1719 /* 1720 * Crypto thread, dispatches crypto requests. 1721 */ 1722 static void 1723 crypto_dispatch_thread(void *arg __unused) 1724 { 1725 struct cryptop *crp, *submit; 1726 struct cryptocap *cap; 1727 int result, hint; 1728 1729 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1730 fpu_kern_thread(FPU_KERN_NORMAL); 1731 #endif 1732 1733 CRYPTO_Q_LOCK(); 1734 for (;;) { 1735 /* 1736 * Find the first element in the queue that can be 1737 * processed and look-ahead to see if multiple ops 1738 * are ready for the same driver. 1739 */ 1740 submit = NULL; 1741 hint = 0; 1742 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1743 cap = crp->crp_session->cap; 1744 /* 1745 * Driver cannot disappeared when there is an active 1746 * session. 1747 */ 1748 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1749 __func__, __LINE__)); 1750 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1751 /* Op needs to be migrated, process it. */ 1752 if (submit == NULL) 1753 submit = crp; 1754 break; 1755 } 1756 if (!cap->cc_qblocked) { 1757 if (submit != NULL) { 1758 /* 1759 * We stop on finding another op, 1760 * regardless whether its for the same 1761 * driver or not. We could keep 1762 * searching the queue but it might be 1763 * better to just use a per-driver 1764 * queue instead. 1765 */ 1766 if (submit->crp_session->cap == cap) 1767 hint = CRYPTO_HINT_MORE; 1768 } else { 1769 submit = crp; 1770 } 1771 break; 1772 } 1773 } 1774 if (submit != NULL) { 1775 TAILQ_REMOVE(&crp_q, submit, crp_next); 1776 cap = submit->crp_session->cap; 1777 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1778 __func__, __LINE__)); 1779 CRYPTO_Q_UNLOCK(); 1780 result = crypto_invoke(cap, submit, hint); 1781 CRYPTO_Q_LOCK(); 1782 if (result == ERESTART) { 1783 /* 1784 * The driver ran out of resources, mark the 1785 * driver ``blocked'' for cryptop's and put 1786 * the request back in the queue. It would 1787 * best to put the request back where we got 1788 * it but that's hard so for now we put it 1789 * at the front. This should be ok; putting 1790 * it at the end does not work. 1791 */ 1792 cap->cc_qblocked = 1; 1793 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1794 CRYPTOSTAT_INC(cs_blocks); 1795 } 1796 } else { 1797 /* 1798 * Nothing more to be processed. Sleep until we're 1799 * woken because there are more ops to process. 1800 * This happens either by submission or by a driver 1801 * becoming unblocked and notifying us through 1802 * crypto_unblock. Note that when we wakeup we 1803 * start processing each queue again from the 1804 * front. It's not clear that it's important to 1805 * preserve this ordering since ops may finish 1806 * out of order if dispatched to different devices 1807 * and some become blocked while others do not. 1808 */ 1809 crp_sleep = 1; 1810 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1811 crp_sleep = 0; 1812 if (cryptotd == NULL) 1813 break; 1814 CRYPTOSTAT_INC(cs_intrs); 1815 } 1816 } 1817 CRYPTO_Q_UNLOCK(); 1818 1819 crypto_finis(&crp_q); 1820 } 1821 1822 /* 1823 * Crypto returns thread, does callbacks for processed crypto requests. 1824 * Callbacks are done here, rather than in the crypto drivers, because 1825 * callbacks typically are expensive and would slow interrupt handling. 1826 */ 1827 static void 1828 crypto_ret_thread(void *arg) 1829 { 1830 struct crypto_ret_worker *ret_worker = arg; 1831 struct cryptop *crpt; 1832 1833 CRYPTO_RETW_LOCK(ret_worker); 1834 for (;;) { 1835 /* Harvest return q's for completed ops */ 1836 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 1837 if (crpt != NULL) { 1838 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 1839 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 1840 ret_worker->reorder_cur_seq++; 1841 } else { 1842 crpt = NULL; 1843 } 1844 } 1845 1846 if (crpt == NULL) { 1847 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 1848 if (crpt != NULL) 1849 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 1850 } 1851 1852 if (crpt != NULL) { 1853 CRYPTO_RETW_UNLOCK(ret_worker); 1854 /* 1855 * Run callbacks unlocked. 1856 */ 1857 if (crpt != NULL) 1858 crpt->crp_callback(crpt); 1859 CRYPTO_RETW_LOCK(ret_worker); 1860 } else { 1861 /* 1862 * Nothing more to be processed. Sleep until we're 1863 * woken because there are more returns to process. 1864 */ 1865 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 1866 "crypto_ret_wait", 0); 1867 if (ret_worker->td == NULL) 1868 break; 1869 CRYPTOSTAT_INC(cs_rets); 1870 } 1871 } 1872 CRYPTO_RETW_UNLOCK(ret_worker); 1873 1874 crypto_finis(&ret_worker->crp_ret_q); 1875 } 1876 1877 #ifdef DDB 1878 static void 1879 db_show_drivers(void) 1880 { 1881 int hid; 1882 1883 db_printf("%12s %4s %8s %2s\n" 1884 , "Device" 1885 , "Ses" 1886 , "Flags" 1887 , "QB" 1888 ); 1889 for (hid = 0; hid < crypto_drivers_size; hid++) { 1890 const struct cryptocap *cap = crypto_drivers[hid]; 1891 if (cap == NULL) 1892 continue; 1893 db_printf("%-12s %4u %08x %2u\n" 1894 , device_get_nameunit(cap->cc_dev) 1895 , cap->cc_sessions 1896 , cap->cc_flags 1897 , cap->cc_qblocked 1898 ); 1899 } 1900 } 1901 1902 DB_SHOW_COMMAND(crypto, db_show_crypto) 1903 { 1904 struct cryptop *crp; 1905 struct crypto_ret_worker *ret_worker; 1906 1907 db_show_drivers(); 1908 db_printf("\n"); 1909 1910 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1911 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1912 "Device", "Callback"); 1913 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1914 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 1915 , crp->crp_session->cap->cc_hid 1916 , (int) crypto_ses2caps(crp->crp_session) 1917 , crp->crp_olen 1918 , crp->crp_etype 1919 , crp->crp_flags 1920 , device_get_nameunit(crp->crp_session->cap->cc_dev) 1921 , crp->crp_callback 1922 ); 1923 } 1924 FOREACH_CRYPTO_RETW(ret_worker) { 1925 db_printf("\n%8s %4s %4s %4s %8s\n", 1926 "ret_worker", "HID", "Etype", "Flags", "Callback"); 1927 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1928 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 1929 db_printf("%8td %4u %4u %04x %8p\n" 1930 , CRYPTO_RETW_ID(ret_worker) 1931 , crp->crp_session->cap->cc_hid 1932 , crp->crp_etype 1933 , crp->crp_flags 1934 , crp->crp_callback 1935 ); 1936 } 1937 } 1938 } 1939 } 1940 #endif 1941 1942 int crypto_modevent(module_t mod, int type, void *unused); 1943 1944 /* 1945 * Initialization code, both for static and dynamic loading. 1946 * Note this is not invoked with the usual MODULE_DECLARE 1947 * mechanism but instead is listed as a dependency by the 1948 * cryptosoft driver. This guarantees proper ordering of 1949 * calls on module load/unload. 1950 */ 1951 int 1952 crypto_modevent(module_t mod, int type, void *unused) 1953 { 1954 int error = EINVAL; 1955 1956 switch (type) { 1957 case MOD_LOAD: 1958 error = crypto_init(); 1959 if (error == 0 && bootverbose) 1960 printf("crypto: <crypto core>\n"); 1961 break; 1962 case MOD_UNLOAD: 1963 /*XXX disallow if active sessions */ 1964 error = 0; 1965 crypto_destroy(); 1966 return 0; 1967 } 1968 return error; 1969 } 1970 MODULE_VERSION(crypto, 1); 1971 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 1972