1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_ddb.h" 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/kthread.h> 66 #include <sys/linker.h> 67 #include <sys/lock.h> 68 #include <sys/module.h> 69 #include <sys/mutex.h> 70 #include <sys/malloc.h> 71 #include <sys/proc.h> 72 #include <sys/sdt.h> 73 #include <sys/smp.h> 74 #include <sys/sysctl.h> 75 #include <sys/taskqueue.h> 76 77 #include <ddb/ddb.h> 78 79 #include <vm/uma.h> 80 #include <crypto/intake.h> 81 #include <opencrypto/cryptodev.h> 82 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 83 84 #include <sys/kobj.h> 85 #include <sys/bus.h> 86 #include "cryptodev_if.h" 87 88 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 89 #include <machine/pcb.h> 90 #endif 91 92 SDT_PROVIDER_DEFINE(opencrypto); 93 94 /* 95 * Crypto drivers register themselves by allocating a slot in the 96 * crypto_drivers table with crypto_get_driverid() and then registering 97 * each algorithm they support with crypto_register() and crypto_kregister(). 98 */ 99 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 100 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 101 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 102 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 103 104 /* 105 * Crypto device/driver capabilities structure. 106 * 107 * Synchronization: 108 * (d) - protected by CRYPTO_DRIVER_LOCK() 109 * (q) - protected by CRYPTO_Q_LOCK() 110 * Not tagged fields are read-only. 111 */ 112 struct cryptocap { 113 device_t cc_dev; /* (d) device/driver */ 114 u_int32_t cc_sessions; /* (d) # of sessions */ 115 u_int32_t cc_koperations; /* (d) # os asym operations */ 116 /* 117 * Largest possible operator length (in bits) for each type of 118 * encryption algorithm. XXX not used 119 */ 120 u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; 121 u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; 122 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 123 124 int cc_flags; /* (d) flags */ 125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 126 int cc_qblocked; /* (q) symmetric q blocked */ 127 int cc_kqblocked; /* (q) asymmetric q blocked */ 128 }; 129 static struct cryptocap *crypto_drivers = NULL; 130 static int crypto_drivers_num = 0; 131 132 /* 133 * There are two queues for crypto requests; one for symmetric (e.g. 134 * cipher) operations and one for asymmetric (e.g. MOD)operations. 135 * A single mutex is used to lock access to both queues. We could 136 * have one per-queue but having one simplifies handling of block/unblock 137 * operations. 138 */ 139 static int crp_sleep = 0; 140 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 141 static TAILQ_HEAD(,cryptkop) crp_kq; 142 static struct mtx crypto_q_mtx; 143 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 144 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 145 146 /* 147 * Taskqueue used to dispatch the crypto requests 148 * that have the CRYPTO_F_ASYNC flag 149 */ 150 static struct taskqueue *crypto_tq; 151 152 /* 153 * Crypto seq numbers are operated on with modular arithmetic 154 */ 155 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 156 157 struct crypto_ret_worker { 158 struct mtx crypto_ret_mtx; 159 160 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 161 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 162 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 163 164 u_int32_t reorder_ops; /* total ordered sym jobs received */ 165 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 166 167 struct proc *cryptoretproc; 168 }; 169 static struct crypto_ret_worker *crypto_ret_workers = NULL; 170 171 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 172 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 173 #define FOREACH_CRYPTO_RETW(w) \ 174 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 175 176 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 177 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 178 #define CRYPTO_RETW_EMPTY(w) \ 179 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 180 181 static int crypto_workers_num = 0; 182 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 183 &crypto_workers_num, 0, 184 "Number of crypto workers used to dispatch crypto jobs"); 185 186 static uma_zone_t cryptop_zone; 187 static uma_zone_t cryptodesc_zone; 188 189 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 190 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 191 &crypto_userasymcrypto, 0, 192 "Enable/disable user-mode access to asymmetric crypto support"); 193 int crypto_devallowsoft = 0; /* only use hardware crypto */ 194 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 195 &crypto_devallowsoft, 0, 196 "Enable/disable use of software crypto by /dev/crypto"); 197 198 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 199 200 static void crypto_proc(void); 201 static struct proc *cryptoproc; 202 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 203 static void crypto_destroy(void); 204 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 205 static int crypto_kinvoke(struct cryptkop *krp, int flags); 206 static void crypto_task_invoke(void *ctx, int pending); 207 static void crypto_batch_enqueue(struct cryptop *crp); 208 209 static struct cryptostats cryptostats; 210 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats, 211 cryptostats, "Crypto system statistics"); 212 213 #ifdef CRYPTO_TIMING 214 static int crypto_timing = 0; 215 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 216 &crypto_timing, 0, "Enable/disable crypto timing support"); 217 #endif 218 219 /* Try to avoid directly exposing the key buffer as a symbol */ 220 static struct keybuf *keybuf; 221 222 static struct keybuf empty_keybuf = { 223 .kb_nents = 0 224 }; 225 226 /* Obtain the key buffer from boot metadata */ 227 static void 228 keybuf_init(void) 229 { 230 caddr_t kmdp; 231 232 kmdp = preload_search_by_type("elf kernel"); 233 234 if (kmdp == NULL) 235 kmdp = preload_search_by_type("elf64 kernel"); 236 237 keybuf = (struct keybuf *)preload_search_info(kmdp, 238 MODINFO_METADATA | MODINFOMD_KEYBUF); 239 240 if (keybuf == NULL) 241 keybuf = &empty_keybuf; 242 } 243 244 /* It'd be nice if we could store these in some kind of secure memory... */ 245 struct keybuf * get_keybuf(void) { 246 247 return (keybuf); 248 } 249 250 static int 251 crypto_init(void) 252 { 253 struct crypto_ret_worker *ret_worker; 254 int error; 255 256 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 257 MTX_DEF|MTX_QUIET); 258 259 TAILQ_INIT(&crp_q); 260 TAILQ_INIT(&crp_kq); 261 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 262 263 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 264 0, 0, 0, 0, 265 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 266 cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc), 267 0, 0, 0, 0, 268 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 269 if (cryptodesc_zone == NULL || cryptop_zone == NULL) { 270 printf("crypto_init: cannot setup crypto zones\n"); 271 error = ENOMEM; 272 goto bad; 273 } 274 275 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 276 crypto_drivers = malloc(crypto_drivers_num * 277 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 278 if (crypto_drivers == NULL) { 279 printf("crypto_init: cannot setup crypto drivers\n"); 280 error = ENOMEM; 281 goto bad; 282 } 283 284 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 285 crypto_workers_num = mp_ncpus; 286 287 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 288 taskqueue_thread_enqueue, &crypto_tq); 289 if (crypto_tq == NULL) { 290 printf("crypto init: cannot setup crypto taskqueue\n"); 291 error = ENOMEM; 292 goto bad; 293 } 294 295 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 296 "crypto"); 297 298 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 299 &cryptoproc, 0, 0, "crypto"); 300 if (error) { 301 printf("crypto_init: cannot start crypto thread; error %d", 302 error); 303 goto bad; 304 } 305 306 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 307 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 308 if (crypto_ret_workers == NULL) { 309 error = ENOMEM; 310 printf("crypto_init: cannot allocate ret workers\n"); 311 goto bad; 312 } 313 314 315 FOREACH_CRYPTO_RETW(ret_worker) { 316 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 317 TAILQ_INIT(&ret_worker->crp_ret_q); 318 TAILQ_INIT(&ret_worker->crp_ret_kq); 319 320 ret_worker->reorder_ops = 0; 321 ret_worker->reorder_cur_seq = 0; 322 323 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 324 325 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 326 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 327 if (error) { 328 printf("crypto_init: cannot start cryptoret thread; error %d", 329 error); 330 goto bad; 331 } 332 } 333 334 keybuf_init(); 335 336 return 0; 337 bad: 338 crypto_destroy(); 339 return error; 340 } 341 342 /* 343 * Signal a crypto thread to terminate. We use the driver 344 * table lock to synchronize the sleep/wakeups so that we 345 * are sure the threads have terminated before we release 346 * the data structures they use. See crypto_finis below 347 * for the other half of this song-and-dance. 348 */ 349 static void 350 crypto_terminate(struct proc **pp, void *q) 351 { 352 struct proc *p; 353 354 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 355 p = *pp; 356 *pp = NULL; 357 if (p) { 358 wakeup_one(q); 359 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 360 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 361 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 362 PROC_UNLOCK(p); 363 CRYPTO_DRIVER_LOCK(); 364 } 365 } 366 367 static void 368 crypto_destroy(void) 369 { 370 struct crypto_ret_worker *ret_worker; 371 372 /* 373 * Terminate any crypto threads. 374 */ 375 if (crypto_tq != NULL) 376 taskqueue_drain_all(crypto_tq); 377 CRYPTO_DRIVER_LOCK(); 378 crypto_terminate(&cryptoproc, &crp_q); 379 FOREACH_CRYPTO_RETW(ret_worker) 380 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 381 CRYPTO_DRIVER_UNLOCK(); 382 383 /* XXX flush queues??? */ 384 385 /* 386 * Reclaim dynamically allocated resources. 387 */ 388 if (crypto_drivers != NULL) 389 free(crypto_drivers, M_CRYPTO_DATA); 390 391 if (cryptodesc_zone != NULL) 392 uma_zdestroy(cryptodesc_zone); 393 if (cryptop_zone != NULL) 394 uma_zdestroy(cryptop_zone); 395 mtx_destroy(&crypto_q_mtx); 396 FOREACH_CRYPTO_RETW(ret_worker) 397 mtx_destroy(&ret_worker->crypto_ret_mtx); 398 free(crypto_ret_workers, M_CRYPTO_DATA); 399 if (crypto_tq != NULL) 400 taskqueue_free(crypto_tq); 401 mtx_destroy(&crypto_drivers_mtx); 402 } 403 404 static struct cryptocap * 405 crypto_checkdriver(u_int32_t hid) 406 { 407 if (crypto_drivers == NULL) 408 return NULL; 409 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 410 } 411 412 /* 413 * Compare a driver's list of supported algorithms against another 414 * list; return non-zero if all algorithms are supported. 415 */ 416 static int 417 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) 418 { 419 const struct cryptoini *cr; 420 421 /* See if all the algorithms are supported. */ 422 for (cr = cri; cr; cr = cr->cri_next) 423 if (cap->cc_alg[cr->cri_alg] == 0) 424 return 0; 425 return 1; 426 } 427 428 /* 429 * Select a driver for a new session that supports the specified 430 * algorithms and, optionally, is constrained according to the flags. 431 * The algorithm we use here is pretty stupid; just use the 432 * first driver that supports all the algorithms we need. If there 433 * are multiple drivers we choose the driver with the fewest active 434 * sessions. We prefer hardware-backed drivers to software ones. 435 * 436 * XXX We need more smarts here (in real life too, but that's 437 * XXX another story altogether). 438 */ 439 static struct cryptocap * 440 crypto_select_driver(const struct cryptoini *cri, int flags) 441 { 442 struct cryptocap *cap, *best; 443 int match, hid; 444 445 CRYPTO_DRIVER_ASSERT(); 446 447 /* 448 * Look first for hardware crypto devices if permitted. 449 */ 450 if (flags & CRYPTOCAP_F_HARDWARE) 451 match = CRYPTOCAP_F_HARDWARE; 452 else 453 match = CRYPTOCAP_F_SOFTWARE; 454 best = NULL; 455 again: 456 for (hid = 0; hid < crypto_drivers_num; hid++) { 457 cap = &crypto_drivers[hid]; 458 /* 459 * If it's not initialized, is in the process of 460 * going away, or is not appropriate (hardware 461 * or software based on match), then skip. 462 */ 463 if (cap->cc_dev == NULL || 464 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || 465 (cap->cc_flags & match) == 0) 466 continue; 467 468 /* verify all the algorithms are supported. */ 469 if (driver_suitable(cap, cri)) { 470 if (best == NULL || 471 cap->cc_sessions < best->cc_sessions) 472 best = cap; 473 } 474 } 475 if (best == NULL && match == CRYPTOCAP_F_HARDWARE && 476 (flags & CRYPTOCAP_F_SOFTWARE)) { 477 /* sort of an Algol 68-style for loop */ 478 match = CRYPTOCAP_F_SOFTWARE; 479 goto again; 480 } 481 return best; 482 } 483 484 /* 485 * Create a new session. The crid argument specifies a crypto 486 * driver to use or constraints on a driver to select (hardware 487 * only, software only, either). Whatever driver is selected 488 * must be capable of the requested crypto algorithms. 489 */ 490 int 491 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) 492 { 493 struct cryptocap *cap; 494 u_int32_t hid, lid; 495 int err; 496 497 CRYPTO_DRIVER_LOCK(); 498 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 499 /* 500 * Use specified driver; verify it is capable. 501 */ 502 cap = crypto_checkdriver(crid); 503 if (cap != NULL && !driver_suitable(cap, cri)) 504 cap = NULL; 505 } else { 506 /* 507 * No requested driver; select based on crid flags. 508 */ 509 cap = crypto_select_driver(cri, crid); 510 /* 511 * if NULL then can't do everything in one session. 512 * XXX Fix this. We need to inject a "virtual" session 513 * XXX layer right about here. 514 */ 515 } 516 if (cap != NULL) { 517 /* Call the driver initialization routine. */ 518 hid = cap - crypto_drivers; 519 lid = hid; /* Pass the driver ID. */ 520 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); 521 if (err == 0) { 522 (*sid) = (cap->cc_flags & 0xff000000) 523 | (hid & 0x00ffffff); 524 (*sid) <<= 32; 525 (*sid) |= (lid & 0xffffffff); 526 cap->cc_sessions++; 527 } else 528 CRYPTDEB("dev newsession failed"); 529 } else { 530 CRYPTDEB("no driver"); 531 err = EOPNOTSUPP; 532 } 533 CRYPTO_DRIVER_UNLOCK(); 534 return err; 535 } 536 537 static void 538 crypto_remove(struct cryptocap *cap) 539 { 540 541 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 542 if (cap->cc_sessions == 0 && cap->cc_koperations == 0) 543 bzero(cap, sizeof(*cap)); 544 } 545 546 /* 547 * Delete an existing session (or a reserved session on an unregistered 548 * driver). 549 */ 550 int 551 crypto_freesession(u_int64_t sid) 552 { 553 struct cryptocap *cap; 554 u_int32_t hid; 555 int err; 556 557 CRYPTO_DRIVER_LOCK(); 558 559 if (crypto_drivers == NULL) { 560 err = EINVAL; 561 goto done; 562 } 563 564 /* Determine two IDs. */ 565 hid = CRYPTO_SESID2HID(sid); 566 567 if (hid >= crypto_drivers_num) { 568 err = ENOENT; 569 goto done; 570 } 571 cap = &crypto_drivers[hid]; 572 573 if (cap->cc_sessions) 574 cap->cc_sessions--; 575 576 /* Call the driver cleanup routine, if available. */ 577 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); 578 579 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) 580 crypto_remove(cap); 581 582 done: 583 CRYPTO_DRIVER_UNLOCK(); 584 return err; 585 } 586 587 /* 588 * Return an unused driver id. Used by drivers prior to registering 589 * support for the algorithms they handle. 590 */ 591 int32_t 592 crypto_get_driverid(device_t dev, int flags) 593 { 594 struct cryptocap *newdrv; 595 int i; 596 597 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 598 printf("%s: no flags specified when registering driver\n", 599 device_get_nameunit(dev)); 600 return -1; 601 } 602 603 CRYPTO_DRIVER_LOCK(); 604 605 for (i = 0; i < crypto_drivers_num; i++) { 606 if (crypto_drivers[i].cc_dev == NULL && 607 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { 608 break; 609 } 610 } 611 612 /* Out of entries, allocate some more. */ 613 if (i == crypto_drivers_num) { 614 /* Be careful about wrap-around. */ 615 if (2 * crypto_drivers_num <= crypto_drivers_num) { 616 CRYPTO_DRIVER_UNLOCK(); 617 printf("crypto: driver count wraparound!\n"); 618 return -1; 619 } 620 621 newdrv = malloc(2 * crypto_drivers_num * 622 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 623 if (newdrv == NULL) { 624 CRYPTO_DRIVER_UNLOCK(); 625 printf("crypto: no space to expand driver table!\n"); 626 return -1; 627 } 628 629 bcopy(crypto_drivers, newdrv, 630 crypto_drivers_num * sizeof(struct cryptocap)); 631 632 crypto_drivers_num *= 2; 633 634 free(crypto_drivers, M_CRYPTO_DATA); 635 crypto_drivers = newdrv; 636 } 637 638 /* NB: state is zero'd on free */ 639 crypto_drivers[i].cc_sessions = 1; /* Mark */ 640 crypto_drivers[i].cc_dev = dev; 641 crypto_drivers[i].cc_flags = flags; 642 if (bootverbose) 643 printf("crypto: assign %s driver id %u, flags 0x%x\n", 644 device_get_nameunit(dev), i, flags); 645 646 CRYPTO_DRIVER_UNLOCK(); 647 648 return i; 649 } 650 651 /* 652 * Lookup a driver by name. We match against the full device 653 * name and unit, and against just the name. The latter gives 654 * us a simple widlcarding by device name. On success return the 655 * driver/hardware identifier; otherwise return -1. 656 */ 657 int 658 crypto_find_driver(const char *match) 659 { 660 int i, len = strlen(match); 661 662 CRYPTO_DRIVER_LOCK(); 663 for (i = 0; i < crypto_drivers_num; i++) { 664 device_t dev = crypto_drivers[i].cc_dev; 665 if (dev == NULL || 666 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) 667 continue; 668 if (strncmp(match, device_get_nameunit(dev), len) == 0 || 669 strncmp(match, device_get_name(dev), len) == 0) 670 break; 671 } 672 CRYPTO_DRIVER_UNLOCK(); 673 return i < crypto_drivers_num ? i : -1; 674 } 675 676 /* 677 * Return the device_t for the specified driver or NULL 678 * if the driver identifier is invalid. 679 */ 680 device_t 681 crypto_find_device_byhid(int hid) 682 { 683 struct cryptocap *cap = crypto_checkdriver(hid); 684 return cap != NULL ? cap->cc_dev : NULL; 685 } 686 687 /* 688 * Return the device/driver capabilities. 689 */ 690 int 691 crypto_getcaps(int hid) 692 { 693 struct cryptocap *cap = crypto_checkdriver(hid); 694 return cap != NULL ? cap->cc_flags : 0; 695 } 696 697 /* 698 * Register support for a key-related algorithm. This routine 699 * is called once for each algorithm supported a driver. 700 */ 701 int 702 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 703 { 704 struct cryptocap *cap; 705 int err; 706 707 CRYPTO_DRIVER_LOCK(); 708 709 cap = crypto_checkdriver(driverid); 710 if (cap != NULL && 711 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 712 /* 713 * XXX Do some performance testing to determine placing. 714 * XXX We probably need an auxiliary data structure that 715 * XXX describes relative performances. 716 */ 717 718 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 719 if (bootverbose) 720 printf("crypto: %s registers key alg %u flags %u\n" 721 , device_get_nameunit(cap->cc_dev) 722 , kalg 723 , flags 724 ); 725 err = 0; 726 } else 727 err = EINVAL; 728 729 CRYPTO_DRIVER_UNLOCK(); 730 return err; 731 } 732 733 /* 734 * Register support for a non-key-related algorithm. This routine 735 * is called once for each such algorithm supported by a driver. 736 */ 737 int 738 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 739 u_int32_t flags) 740 { 741 struct cryptocap *cap; 742 int err; 743 744 CRYPTO_DRIVER_LOCK(); 745 746 cap = crypto_checkdriver(driverid); 747 /* NB: algorithms are in the range [1..max] */ 748 if (cap != NULL && 749 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 750 /* 751 * XXX Do some performance testing to determine placing. 752 * XXX We probably need an auxiliary data structure that 753 * XXX describes relative performances. 754 */ 755 756 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 757 cap->cc_max_op_len[alg] = maxoplen; 758 if (bootverbose) 759 printf("crypto: %s registers alg %u flags %u maxoplen %u\n" 760 , device_get_nameunit(cap->cc_dev) 761 , alg 762 , flags 763 , maxoplen 764 ); 765 cap->cc_sessions = 0; /* Unmark */ 766 err = 0; 767 } else 768 err = EINVAL; 769 770 CRYPTO_DRIVER_UNLOCK(); 771 return err; 772 } 773 774 static void 775 driver_finis(struct cryptocap *cap) 776 { 777 u_int32_t ses, kops; 778 779 CRYPTO_DRIVER_ASSERT(); 780 781 ses = cap->cc_sessions; 782 kops = cap->cc_koperations; 783 bzero(cap, sizeof(*cap)); 784 if (ses != 0 || kops != 0) { 785 /* 786 * If there are pending sessions, 787 * just mark as invalid. 788 */ 789 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 790 cap->cc_sessions = ses; 791 cap->cc_koperations = kops; 792 } 793 } 794 795 /* 796 * Unregister a crypto driver. If there are pending sessions using it, 797 * leave enough information around so that subsequent calls using those 798 * sessions will correctly detect the driver has been unregistered and 799 * reroute requests. 800 */ 801 int 802 crypto_unregister(u_int32_t driverid, int alg) 803 { 804 struct cryptocap *cap; 805 int i, err; 806 807 CRYPTO_DRIVER_LOCK(); 808 cap = crypto_checkdriver(driverid); 809 if (cap != NULL && 810 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 811 cap->cc_alg[alg] != 0) { 812 cap->cc_alg[alg] = 0; 813 cap->cc_max_op_len[alg] = 0; 814 815 /* Was this the last algorithm ? */ 816 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 817 if (cap->cc_alg[i] != 0) 818 break; 819 820 if (i == CRYPTO_ALGORITHM_MAX + 1) 821 driver_finis(cap); 822 err = 0; 823 } else 824 err = EINVAL; 825 CRYPTO_DRIVER_UNLOCK(); 826 827 return err; 828 } 829 830 /* 831 * Unregister all algorithms associated with a crypto driver. 832 * If there are pending sessions using it, leave enough information 833 * around so that subsequent calls using those sessions will 834 * correctly detect the driver has been unregistered and reroute 835 * requests. 836 */ 837 int 838 crypto_unregister_all(u_int32_t driverid) 839 { 840 struct cryptocap *cap; 841 int err; 842 843 CRYPTO_DRIVER_LOCK(); 844 cap = crypto_checkdriver(driverid); 845 if (cap != NULL) { 846 driver_finis(cap); 847 err = 0; 848 } else 849 err = EINVAL; 850 CRYPTO_DRIVER_UNLOCK(); 851 852 return err; 853 } 854 855 /* 856 * Clear blockage on a driver. The what parameter indicates whether 857 * the driver is now ready for cryptop's and/or cryptokop's. 858 */ 859 int 860 crypto_unblock(u_int32_t driverid, int what) 861 { 862 struct cryptocap *cap; 863 int err; 864 865 CRYPTO_Q_LOCK(); 866 cap = crypto_checkdriver(driverid); 867 if (cap != NULL) { 868 if (what & CRYPTO_SYMQ) 869 cap->cc_qblocked = 0; 870 if (what & CRYPTO_ASYMQ) 871 cap->cc_kqblocked = 0; 872 if (crp_sleep) 873 wakeup_one(&crp_q); 874 err = 0; 875 } else 876 err = EINVAL; 877 CRYPTO_Q_UNLOCK(); 878 879 return err; 880 } 881 882 /* 883 * Add a crypto request to a queue, to be processed by the kernel thread. 884 */ 885 int 886 crypto_dispatch(struct cryptop *crp) 887 { 888 struct cryptocap *cap; 889 u_int32_t hid; 890 int result; 891 892 cryptostats.cs_ops++; 893 894 #ifdef CRYPTO_TIMING 895 if (crypto_timing) 896 binuptime(&crp->crp_tstamp); 897 #endif 898 899 crp->crp_retw_id = crp->crp_sid % crypto_workers_num; 900 901 if (CRYPTOP_ASYNC(crp)) { 902 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 903 struct crypto_ret_worker *ret_worker; 904 905 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 906 907 CRYPTO_RETW_LOCK(ret_worker); 908 crp->crp_seq = ret_worker->reorder_ops++; 909 CRYPTO_RETW_UNLOCK(ret_worker); 910 } 911 912 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 913 taskqueue_enqueue(crypto_tq, &crp->crp_task); 914 return (0); 915 } 916 917 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 918 hid = CRYPTO_SESID2HID(crp->crp_sid); 919 920 /* 921 * Caller marked the request to be processed 922 * immediately; dispatch it directly to the 923 * driver unless the driver is currently blocked. 924 */ 925 cap = crypto_checkdriver(hid); 926 /* Driver cannot disappeared when there is an active session. */ 927 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); 928 if (!cap->cc_qblocked) { 929 result = crypto_invoke(cap, crp, 0); 930 if (result != ERESTART) 931 return (result); 932 /* 933 * The driver ran out of resources, put the request on 934 * the queue. 935 */ 936 } 937 } 938 crypto_batch_enqueue(crp); 939 return 0; 940 } 941 942 void 943 crypto_batch_enqueue(struct cryptop *crp) 944 { 945 946 CRYPTO_Q_LOCK(); 947 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 948 if (crp_sleep) 949 wakeup_one(&crp_q); 950 CRYPTO_Q_UNLOCK(); 951 } 952 953 /* 954 * Add an asymetric crypto request to a queue, 955 * to be processed by the kernel thread. 956 */ 957 int 958 crypto_kdispatch(struct cryptkop *krp) 959 { 960 int error; 961 962 cryptostats.cs_kops++; 963 964 error = crypto_kinvoke(krp, krp->krp_crid); 965 if (error == ERESTART) { 966 CRYPTO_Q_LOCK(); 967 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 968 if (crp_sleep) 969 wakeup_one(&crp_q); 970 CRYPTO_Q_UNLOCK(); 971 error = 0; 972 } 973 return error; 974 } 975 976 /* 977 * Verify a driver is suitable for the specified operation. 978 */ 979 static __inline int 980 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 981 { 982 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 983 } 984 985 /* 986 * Select a driver for an asym operation. The driver must 987 * support the necessary algorithm. The caller can constrain 988 * which device is selected with the flags parameter. The 989 * algorithm we use here is pretty stupid; just use the first 990 * driver that supports the algorithms we need. If there are 991 * multiple suitable drivers we choose the driver with the 992 * fewest active operations. We prefer hardware-backed 993 * drivers to software ones when either may be used. 994 */ 995 static struct cryptocap * 996 crypto_select_kdriver(const struct cryptkop *krp, int flags) 997 { 998 struct cryptocap *cap, *best; 999 int match, hid; 1000 1001 CRYPTO_DRIVER_ASSERT(); 1002 1003 /* 1004 * Look first for hardware crypto devices if permitted. 1005 */ 1006 if (flags & CRYPTOCAP_F_HARDWARE) 1007 match = CRYPTOCAP_F_HARDWARE; 1008 else 1009 match = CRYPTOCAP_F_SOFTWARE; 1010 best = NULL; 1011 again: 1012 for (hid = 0; hid < crypto_drivers_num; hid++) { 1013 cap = &crypto_drivers[hid]; 1014 /* 1015 * If it's not initialized, is in the process of 1016 * going away, or is not appropriate (hardware 1017 * or software based on match), then skip. 1018 */ 1019 if (cap->cc_dev == NULL || 1020 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || 1021 (cap->cc_flags & match) == 0) 1022 continue; 1023 1024 /* verify all the algorithms are supported. */ 1025 if (kdriver_suitable(cap, krp)) { 1026 if (best == NULL || 1027 cap->cc_koperations < best->cc_koperations) 1028 best = cap; 1029 } 1030 } 1031 if (best != NULL) 1032 return best; 1033 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1034 /* sort of an Algol 68-style for loop */ 1035 match = CRYPTOCAP_F_SOFTWARE; 1036 goto again; 1037 } 1038 return best; 1039 } 1040 1041 /* 1042 * Dispatch an asymmetric crypto request. 1043 */ 1044 static int 1045 crypto_kinvoke(struct cryptkop *krp, int crid) 1046 { 1047 struct cryptocap *cap = NULL; 1048 int error; 1049 1050 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1051 KASSERT(krp->krp_callback != NULL, 1052 ("%s: krp->crp_callback == NULL", __func__)); 1053 1054 CRYPTO_DRIVER_LOCK(); 1055 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1056 cap = crypto_checkdriver(crid); 1057 if (cap != NULL) { 1058 /* 1059 * Driver present, it must support the necessary 1060 * algorithm and, if s/w drivers are excluded, 1061 * it must be registered as hardware-backed. 1062 */ 1063 if (!kdriver_suitable(cap, krp) || 1064 (!crypto_devallowsoft && 1065 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1066 cap = NULL; 1067 } 1068 } else { 1069 /* 1070 * No requested driver; select based on crid flags. 1071 */ 1072 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1073 crid &= ~CRYPTOCAP_F_SOFTWARE; 1074 cap = crypto_select_kdriver(krp, crid); 1075 } 1076 if (cap != NULL && !cap->cc_kqblocked) { 1077 krp->krp_hid = cap - crypto_drivers; 1078 cap->cc_koperations++; 1079 CRYPTO_DRIVER_UNLOCK(); 1080 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1081 CRYPTO_DRIVER_LOCK(); 1082 if (error == ERESTART) { 1083 cap->cc_koperations--; 1084 CRYPTO_DRIVER_UNLOCK(); 1085 return (error); 1086 } 1087 } else { 1088 /* 1089 * NB: cap is !NULL if device is blocked; in 1090 * that case return ERESTART so the operation 1091 * is resubmitted if possible. 1092 */ 1093 error = (cap == NULL) ? ENODEV : ERESTART; 1094 } 1095 CRYPTO_DRIVER_UNLOCK(); 1096 1097 if (error) { 1098 krp->krp_status = error; 1099 crypto_kdone(krp); 1100 } 1101 return 0; 1102 } 1103 1104 #ifdef CRYPTO_TIMING 1105 static void 1106 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 1107 { 1108 struct bintime now, delta; 1109 struct timespec t; 1110 uint64_t u; 1111 1112 binuptime(&now); 1113 u = now.frac; 1114 delta.frac = now.frac - bt->frac; 1115 delta.sec = now.sec - bt->sec; 1116 if (u < delta.frac) 1117 delta.sec--; 1118 bintime2timespec(&delta, &t); 1119 timespecadd(&ts->acc, &t); 1120 if (timespeccmp(&t, &ts->min, <)) 1121 ts->min = t; 1122 if (timespeccmp(&t, &ts->max, >)) 1123 ts->max = t; 1124 ts->count++; 1125 1126 *bt = now; 1127 } 1128 #endif 1129 1130 static void 1131 crypto_task_invoke(void *ctx, int pending) 1132 { 1133 struct cryptocap *cap; 1134 struct cryptop *crp; 1135 int hid, result; 1136 1137 crp = (struct cryptop *)ctx; 1138 1139 hid = CRYPTO_SESID2HID(crp->crp_sid); 1140 cap = crypto_checkdriver(hid); 1141 1142 result = crypto_invoke(cap, crp, 0); 1143 if (result == ERESTART) 1144 crypto_batch_enqueue(crp); 1145 } 1146 1147 /* 1148 * Dispatch a crypto request to the appropriate crypto devices. 1149 */ 1150 static int 1151 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1152 { 1153 1154 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1155 KASSERT(crp->crp_callback != NULL, 1156 ("%s: crp->crp_callback == NULL", __func__)); 1157 KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); 1158 1159 #ifdef CRYPTO_TIMING 1160 if (crypto_timing) 1161 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1162 #endif 1163 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1164 struct cryptodesc *crd; 1165 u_int64_t nid; 1166 1167 /* 1168 * Driver has unregistered; migrate the session and return 1169 * an error to the caller so they'll resubmit the op. 1170 * 1171 * XXX: What if there are more already queued requests for this 1172 * session? 1173 */ 1174 crypto_freesession(crp->crp_sid); 1175 1176 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 1177 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 1178 1179 /* XXX propagate flags from initial session? */ 1180 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 1181 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1182 crp->crp_sid = nid; 1183 1184 crp->crp_etype = EAGAIN; 1185 crypto_done(crp); 1186 return 0; 1187 } else { 1188 /* 1189 * Invoke the driver to process the request. 1190 */ 1191 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1192 } 1193 } 1194 1195 /* 1196 * Release a set of crypto descriptors. 1197 */ 1198 void 1199 crypto_freereq(struct cryptop *crp) 1200 { 1201 struct cryptodesc *crd; 1202 1203 if (crp == NULL) 1204 return; 1205 1206 #ifdef DIAGNOSTIC 1207 { 1208 struct cryptop *crp2; 1209 struct crypto_ret_worker *ret_worker; 1210 1211 CRYPTO_Q_LOCK(); 1212 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1213 KASSERT(crp2 != crp, 1214 ("Freeing cryptop from the crypto queue (%p).", 1215 crp)); 1216 } 1217 CRYPTO_Q_UNLOCK(); 1218 1219 FOREACH_CRYPTO_RETW(ret_worker) { 1220 CRYPTO_RETW_LOCK(ret_worker); 1221 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1222 KASSERT(crp2 != crp, 1223 ("Freeing cryptop from the return queue (%p).", 1224 crp)); 1225 } 1226 CRYPTO_RETW_UNLOCK(ret_worker); 1227 } 1228 } 1229 #endif 1230 1231 while ((crd = crp->crp_desc) != NULL) { 1232 crp->crp_desc = crd->crd_next; 1233 uma_zfree(cryptodesc_zone, crd); 1234 } 1235 uma_zfree(cryptop_zone, crp); 1236 } 1237 1238 /* 1239 * Acquire a set of crypto descriptors. 1240 */ 1241 struct cryptop * 1242 crypto_getreq(int num) 1243 { 1244 struct cryptodesc *crd; 1245 struct cryptop *crp; 1246 1247 crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO); 1248 if (crp != NULL) { 1249 while (num--) { 1250 crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO); 1251 if (crd == NULL) { 1252 crypto_freereq(crp); 1253 return NULL; 1254 } 1255 1256 crd->crd_next = crp->crp_desc; 1257 crp->crp_desc = crd; 1258 } 1259 } 1260 return crp; 1261 } 1262 1263 /* 1264 * Invoke the callback on behalf of the driver. 1265 */ 1266 void 1267 crypto_done(struct cryptop *crp) 1268 { 1269 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1270 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1271 crp->crp_flags |= CRYPTO_F_DONE; 1272 if (crp->crp_etype != 0) 1273 cryptostats.cs_errs++; 1274 #ifdef CRYPTO_TIMING 1275 if (crypto_timing) 1276 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1277 #endif 1278 /* 1279 * CBIMM means unconditionally do the callback immediately; 1280 * CBIFSYNC means do the callback immediately only if the 1281 * operation was done synchronously. Both are used to avoid 1282 * doing extraneous context switches; the latter is mostly 1283 * used with the software crypto driver. 1284 */ 1285 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1286 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1287 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1288 (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC)))) { 1289 /* 1290 * Do the callback directly. This is ok when the 1291 * callback routine does very little (e.g. the 1292 * /dev/crypto callback method just does a wakeup). 1293 */ 1294 #ifdef CRYPTO_TIMING 1295 if (crypto_timing) { 1296 /* 1297 * NB: We must copy the timestamp before 1298 * doing the callback as the cryptop is 1299 * likely to be reclaimed. 1300 */ 1301 struct bintime t = crp->crp_tstamp; 1302 crypto_tstat(&cryptostats.cs_cb, &t); 1303 crp->crp_callback(crp); 1304 crypto_tstat(&cryptostats.cs_finis, &t); 1305 } else 1306 #endif 1307 crp->crp_callback(crp); 1308 } else { 1309 struct crypto_ret_worker *ret_worker; 1310 bool wake; 1311 1312 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1313 wake = false; 1314 1315 /* 1316 * Normal case; queue the callback for the thread. 1317 */ 1318 CRYPTO_RETW_LOCK(ret_worker); 1319 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1320 struct cryptop *tmp; 1321 1322 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1323 cryptop_q, crp_next) { 1324 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1325 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1326 tmp, crp, crp_next); 1327 break; 1328 } 1329 } 1330 if (tmp == NULL) { 1331 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1332 crp, crp_next); 1333 } 1334 1335 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1336 wake = true; 1337 } 1338 else { 1339 if (CRYPTO_RETW_EMPTY(ret_worker)) 1340 wake = true; 1341 1342 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1343 } 1344 1345 if (wake) 1346 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1347 CRYPTO_RETW_UNLOCK(ret_worker); 1348 } 1349 } 1350 1351 /* 1352 * Invoke the callback on behalf of the driver. 1353 */ 1354 void 1355 crypto_kdone(struct cryptkop *krp) 1356 { 1357 struct crypto_ret_worker *ret_worker; 1358 struct cryptocap *cap; 1359 1360 if (krp->krp_status != 0) 1361 cryptostats.cs_kerrs++; 1362 CRYPTO_DRIVER_LOCK(); 1363 /* XXX: What if driver is loaded in the meantime? */ 1364 if (krp->krp_hid < crypto_drivers_num) { 1365 cap = &crypto_drivers[krp->krp_hid]; 1366 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1367 cap->cc_koperations--; 1368 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1369 crypto_remove(cap); 1370 } 1371 CRYPTO_DRIVER_UNLOCK(); 1372 1373 ret_worker = CRYPTO_RETW(0); 1374 1375 CRYPTO_RETW_LOCK(ret_worker); 1376 if (CRYPTO_RETW_EMPTY(ret_worker)) 1377 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1378 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1379 CRYPTO_RETW_UNLOCK(ret_worker); 1380 } 1381 1382 int 1383 crypto_getfeat(int *featp) 1384 { 1385 int hid, kalg, feat = 0; 1386 1387 CRYPTO_DRIVER_LOCK(); 1388 for (hid = 0; hid < crypto_drivers_num; hid++) { 1389 const struct cryptocap *cap = &crypto_drivers[hid]; 1390 1391 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1392 !crypto_devallowsoft) { 1393 continue; 1394 } 1395 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1396 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1397 feat |= 1 << kalg; 1398 } 1399 CRYPTO_DRIVER_UNLOCK(); 1400 *featp = feat; 1401 return (0); 1402 } 1403 1404 /* 1405 * Terminate a thread at module unload. The process that 1406 * initiated this is waiting for us to signal that we're gone; 1407 * wake it up and exit. We use the driver table lock to insure 1408 * we don't do the wakeup before they're waiting. There is no 1409 * race here because the waiter sleeps on the proc lock for the 1410 * thread so it gets notified at the right time because of an 1411 * extra wakeup that's done in exit1(). 1412 */ 1413 static void 1414 crypto_finis(void *chan) 1415 { 1416 CRYPTO_DRIVER_LOCK(); 1417 wakeup_one(chan); 1418 CRYPTO_DRIVER_UNLOCK(); 1419 kproc_exit(0); 1420 } 1421 1422 /* 1423 * Crypto thread, dispatches crypto requests. 1424 */ 1425 static void 1426 crypto_proc(void) 1427 { 1428 struct cryptop *crp, *submit; 1429 struct cryptkop *krp; 1430 struct cryptocap *cap; 1431 u_int32_t hid; 1432 int result, hint; 1433 1434 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1435 fpu_kern_thread(FPU_KERN_NORMAL); 1436 #endif 1437 1438 CRYPTO_Q_LOCK(); 1439 for (;;) { 1440 /* 1441 * Find the first element in the queue that can be 1442 * processed and look-ahead to see if multiple ops 1443 * are ready for the same driver. 1444 */ 1445 submit = NULL; 1446 hint = 0; 1447 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1448 hid = CRYPTO_SESID2HID(crp->crp_sid); 1449 cap = crypto_checkdriver(hid); 1450 /* 1451 * Driver cannot disappeared when there is an active 1452 * session. 1453 */ 1454 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1455 __func__, __LINE__)); 1456 if (cap == NULL || cap->cc_dev == NULL) { 1457 /* Op needs to be migrated, process it. */ 1458 if (submit == NULL) 1459 submit = crp; 1460 break; 1461 } 1462 if (!cap->cc_qblocked) { 1463 if (submit != NULL) { 1464 /* 1465 * We stop on finding another op, 1466 * regardless whether its for the same 1467 * driver or not. We could keep 1468 * searching the queue but it might be 1469 * better to just use a per-driver 1470 * queue instead. 1471 */ 1472 if (CRYPTO_SESID2HID(submit->crp_sid) == hid) 1473 hint = CRYPTO_HINT_MORE; 1474 break; 1475 } else { 1476 submit = crp; 1477 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1478 break; 1479 /* keep scanning for more are q'd */ 1480 } 1481 } 1482 } 1483 if (submit != NULL) { 1484 TAILQ_REMOVE(&crp_q, submit, crp_next); 1485 hid = CRYPTO_SESID2HID(submit->crp_sid); 1486 cap = crypto_checkdriver(hid); 1487 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1488 __func__, __LINE__)); 1489 result = crypto_invoke(cap, submit, hint); 1490 if (result == ERESTART) { 1491 /* 1492 * The driver ran out of resources, mark the 1493 * driver ``blocked'' for cryptop's and put 1494 * the request back in the queue. It would 1495 * best to put the request back where we got 1496 * it but that's hard so for now we put it 1497 * at the front. This should be ok; putting 1498 * it at the end does not work. 1499 */ 1500 /* XXX validate sid again? */ 1501 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1502 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1503 cryptostats.cs_blocks++; 1504 } 1505 } 1506 1507 /* As above, but for key ops */ 1508 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1509 cap = crypto_checkdriver(krp->krp_hid); 1510 if (cap == NULL || cap->cc_dev == NULL) { 1511 /* 1512 * Operation needs to be migrated, invalidate 1513 * the assigned device so it will reselect a 1514 * new one below. Propagate the original 1515 * crid selection flags if supplied. 1516 */ 1517 krp->krp_hid = krp->krp_crid & 1518 (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); 1519 if (krp->krp_hid == 0) 1520 krp->krp_hid = 1521 CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; 1522 break; 1523 } 1524 if (!cap->cc_kqblocked) 1525 break; 1526 } 1527 if (krp != NULL) { 1528 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1529 result = crypto_kinvoke(krp, krp->krp_hid); 1530 if (result == ERESTART) { 1531 /* 1532 * The driver ran out of resources, mark the 1533 * driver ``blocked'' for cryptkop's and put 1534 * the request back in the queue. It would 1535 * best to put the request back where we got 1536 * it but that's hard so for now we put it 1537 * at the front. This should be ok; putting 1538 * it at the end does not work. 1539 */ 1540 /* XXX validate sid again? */ 1541 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1542 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1543 cryptostats.cs_kblocks++; 1544 } 1545 } 1546 1547 if (submit == NULL && krp == NULL) { 1548 /* 1549 * Nothing more to be processed. Sleep until we're 1550 * woken because there are more ops to process. 1551 * This happens either by submission or by a driver 1552 * becoming unblocked and notifying us through 1553 * crypto_unblock. Note that when we wakeup we 1554 * start processing each queue again from the 1555 * front. It's not clear that it's important to 1556 * preserve this ordering since ops may finish 1557 * out of order if dispatched to different devices 1558 * and some become blocked while others do not. 1559 */ 1560 crp_sleep = 1; 1561 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1562 crp_sleep = 0; 1563 if (cryptoproc == NULL) 1564 break; 1565 cryptostats.cs_intrs++; 1566 } 1567 } 1568 CRYPTO_Q_UNLOCK(); 1569 1570 crypto_finis(&crp_q); 1571 } 1572 1573 /* 1574 * Crypto returns thread, does callbacks for processed crypto requests. 1575 * Callbacks are done here, rather than in the crypto drivers, because 1576 * callbacks typically are expensive and would slow interrupt handling. 1577 */ 1578 static void 1579 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 1580 { 1581 struct cryptop *crpt; 1582 struct cryptkop *krpt; 1583 1584 CRYPTO_RETW_LOCK(ret_worker); 1585 for (;;) { 1586 /* Harvest return q's for completed ops */ 1587 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 1588 if (crpt != NULL) { 1589 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 1590 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 1591 ret_worker->reorder_cur_seq++; 1592 } else { 1593 crpt = NULL; 1594 } 1595 } 1596 1597 if (crpt == NULL) { 1598 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 1599 if (crpt != NULL) 1600 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 1601 } 1602 1603 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 1604 if (krpt != NULL) 1605 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 1606 1607 if (crpt != NULL || krpt != NULL) { 1608 CRYPTO_RETW_UNLOCK(ret_worker); 1609 /* 1610 * Run callbacks unlocked. 1611 */ 1612 if (crpt != NULL) { 1613 #ifdef CRYPTO_TIMING 1614 if (crypto_timing) { 1615 /* 1616 * NB: We must copy the timestamp before 1617 * doing the callback as the cryptop is 1618 * likely to be reclaimed. 1619 */ 1620 struct bintime t = crpt->crp_tstamp; 1621 crypto_tstat(&cryptostats.cs_cb, &t); 1622 crpt->crp_callback(crpt); 1623 crypto_tstat(&cryptostats.cs_finis, &t); 1624 } else 1625 #endif 1626 crpt->crp_callback(crpt); 1627 } 1628 if (krpt != NULL) 1629 krpt->krp_callback(krpt); 1630 CRYPTO_RETW_LOCK(ret_worker); 1631 } else { 1632 /* 1633 * Nothing more to be processed. Sleep until we're 1634 * woken because there are more returns to process. 1635 */ 1636 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 1637 "crypto_ret_wait", 0); 1638 if (ret_worker->cryptoretproc == NULL) 1639 break; 1640 cryptostats.cs_rets++; 1641 } 1642 } 1643 CRYPTO_RETW_UNLOCK(ret_worker); 1644 1645 crypto_finis(&ret_worker->crp_ret_q); 1646 } 1647 1648 #ifdef DDB 1649 static void 1650 db_show_drivers(void) 1651 { 1652 int hid; 1653 1654 db_printf("%12s %4s %4s %8s %2s %2s\n" 1655 , "Device" 1656 , "Ses" 1657 , "Kops" 1658 , "Flags" 1659 , "QB" 1660 , "KB" 1661 ); 1662 for (hid = 0; hid < crypto_drivers_num; hid++) { 1663 const struct cryptocap *cap = &crypto_drivers[hid]; 1664 if (cap->cc_dev == NULL) 1665 continue; 1666 db_printf("%-12s %4u %4u %08x %2u %2u\n" 1667 , device_get_nameunit(cap->cc_dev) 1668 , cap->cc_sessions 1669 , cap->cc_koperations 1670 , cap->cc_flags 1671 , cap->cc_qblocked 1672 , cap->cc_kqblocked 1673 ); 1674 } 1675 } 1676 1677 DB_SHOW_COMMAND(crypto, db_show_crypto) 1678 { 1679 struct cryptop *crp; 1680 struct crypto_ret_worker *ret_worker; 1681 1682 db_show_drivers(); 1683 db_printf("\n"); 1684 1685 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1686 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1687 "Desc", "Callback"); 1688 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1689 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" 1690 , (int) CRYPTO_SESID2HID(crp->crp_sid) 1691 , (int) CRYPTO_SESID2CAPS(crp->crp_sid) 1692 , crp->crp_ilen, crp->crp_olen 1693 , crp->crp_etype 1694 , crp->crp_flags 1695 , crp->crp_desc 1696 , crp->crp_callback 1697 ); 1698 } 1699 FOREACH_CRYPTO_RETW(ret_worker) { 1700 db_printf("\n%8s %4s %4s %4s %8s\n", 1701 "ret_worker", "HID", "Etype", "Flags", "Callback"); 1702 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1703 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 1704 db_printf("%8td %4u %4u %04x %8p\n" 1705 , CRYPTO_RETW_ID(ret_worker) 1706 , (int) CRYPTO_SESID2HID(crp->crp_sid) 1707 , crp->crp_etype 1708 , crp->crp_flags 1709 , crp->crp_callback 1710 ); 1711 } 1712 } 1713 } 1714 } 1715 1716 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 1717 { 1718 struct cryptkop *krp; 1719 struct crypto_ret_worker *ret_worker; 1720 1721 db_show_drivers(); 1722 db_printf("\n"); 1723 1724 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 1725 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 1726 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1727 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 1728 , krp->krp_op 1729 , krp->krp_status 1730 , krp->krp_iparams, krp->krp_oparams 1731 , krp->krp_crid, krp->krp_hid 1732 , krp->krp_callback 1733 ); 1734 } 1735 1736 ret_worker = CRYPTO_RETW(0); 1737 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1738 db_printf("%4s %5s %8s %4s %8s\n", 1739 "Op", "Status", "CRID", "HID", "Callback"); 1740 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 1741 db_printf("%4u %5u %08x %4u %8p\n" 1742 , krp->krp_op 1743 , krp->krp_status 1744 , krp->krp_crid, krp->krp_hid 1745 , krp->krp_callback 1746 ); 1747 } 1748 } 1749 } 1750 #endif 1751 1752 int crypto_modevent(module_t mod, int type, void *unused); 1753 1754 /* 1755 * Initialization code, both for static and dynamic loading. 1756 * Note this is not invoked with the usual MODULE_DECLARE 1757 * mechanism but instead is listed as a dependency by the 1758 * cryptosoft driver. This guarantees proper ordering of 1759 * calls on module load/unload. 1760 */ 1761 int 1762 crypto_modevent(module_t mod, int type, void *unused) 1763 { 1764 int error = EINVAL; 1765 1766 switch (type) { 1767 case MOD_LOAD: 1768 error = crypto_init(); 1769 if (error == 0 && bootverbose) 1770 printf("crypto: <crypto core>\n"); 1771 break; 1772 case MOD_UNLOAD: 1773 /*XXX disallow if active sessions */ 1774 error = 0; 1775 crypto_destroy(); 1776 return 0; 1777 } 1778 return error; 1779 } 1780 MODULE_VERSION(crypto, 1); 1781 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 1782