1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_ddb.h" 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/kthread.h> 66 #include <sys/lock.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/malloc.h> 70 #include <sys/proc.h> 71 #include <sys/sdt.h> 72 #include <sys/sysctl.h> 73 74 #include <ddb/ddb.h> 75 76 #include <vm/uma.h> 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 79 80 #include <sys/kobj.h> 81 #include <sys/bus.h> 82 #include "cryptodev_if.h" 83 84 #if defined(__i386__) || defined(__amd64__) 85 #include <machine/pcb.h> 86 #endif 87 88 SDT_PROVIDER_DEFINE(opencrypto); 89 90 /* 91 * Crypto drivers register themselves by allocating a slot in the 92 * crypto_drivers table with crypto_get_driverid() and then registering 93 * each algorithm they support with crypto_register() and crypto_kregister(). 94 */ 95 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 96 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 97 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 98 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 99 100 /* 101 * Crypto device/driver capabilities structure. 102 * 103 * Synchronization: 104 * (d) - protected by CRYPTO_DRIVER_LOCK() 105 * (q) - protected by CRYPTO_Q_LOCK() 106 * Not tagged fields are read-only. 107 */ 108 struct cryptocap { 109 device_t cc_dev; /* (d) device/driver */ 110 u_int32_t cc_sessions; /* (d) # of sessions */ 111 u_int32_t cc_koperations; /* (d) # os asym operations */ 112 /* 113 * Largest possible operator length (in bits) for each type of 114 * encryption algorithm. XXX not used 115 */ 116 u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; 117 u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; 118 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 119 120 int cc_flags; /* (d) flags */ 121 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 122 int cc_qblocked; /* (q) symmetric q blocked */ 123 int cc_kqblocked; /* (q) asymmetric q blocked */ 124 }; 125 static struct cryptocap *crypto_drivers = NULL; 126 static int crypto_drivers_num = 0; 127 128 /* 129 * There are two queues for crypto requests; one for symmetric (e.g. 130 * cipher) operations and one for asymmetric (e.g. MOD)operations. 131 * A single mutex is used to lock access to both queues. We could 132 * have one per-queue but having one simplifies handling of block/unblock 133 * operations. 134 */ 135 static int crp_sleep = 0; 136 static TAILQ_HEAD(,cryptop) crp_q; /* request queues */ 137 static TAILQ_HEAD(,cryptkop) crp_kq; 138 static struct mtx crypto_q_mtx; 139 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 140 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 141 142 /* 143 * There are two queues for processing completed crypto requests; one 144 * for the symmetric and one for the asymmetric ops. We only need one 145 * but have two to avoid type futzing (cryptop vs. cryptkop). A single 146 * mutex is used to lock access to both queues. Note that this lock 147 * must be separate from the lock on request queues to insure driver 148 * callbacks don't generate lock order reversals. 149 */ 150 static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */ 151 static TAILQ_HEAD(,cryptkop) crp_ret_kq; 152 static struct mtx crypto_ret_q_mtx; 153 #define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx) 154 #define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx) 155 #define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq)) 156 157 static uma_zone_t cryptop_zone; 158 static uma_zone_t cryptodesc_zone; 159 160 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 161 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 162 &crypto_userasymcrypto, 0, 163 "Enable/disable user-mode access to asymmetric crypto support"); 164 int crypto_devallowsoft = 0; /* only use hardware crypto for asym */ 165 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 166 &crypto_devallowsoft, 0, 167 "Enable/disable use of software asym crypto support"); 168 169 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 170 171 static void crypto_proc(void); 172 static struct proc *cryptoproc; 173 static void crypto_ret_proc(void); 174 static struct proc *cryptoretproc; 175 static void crypto_destroy(void); 176 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 177 static int crypto_kinvoke(struct cryptkop *krp, int flags); 178 179 static struct cryptostats cryptostats; 180 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats, 181 cryptostats, "Crypto system statistics"); 182 183 #ifdef CRYPTO_TIMING 184 static int crypto_timing = 0; 185 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 186 &crypto_timing, 0, "Enable/disable crypto timing support"); 187 #endif 188 189 static int 190 crypto_init(void) 191 { 192 int error; 193 194 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 195 MTX_DEF|MTX_QUIET); 196 197 TAILQ_INIT(&crp_q); 198 TAILQ_INIT(&crp_kq); 199 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 200 201 TAILQ_INIT(&crp_ret_q); 202 TAILQ_INIT(&crp_ret_kq); 203 mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF); 204 205 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 206 0, 0, 0, 0, 207 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 208 cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc), 209 0, 0, 0, 0, 210 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 211 if (cryptodesc_zone == NULL || cryptop_zone == NULL) { 212 printf("crypto_init: cannot setup crypto zones\n"); 213 error = ENOMEM; 214 goto bad; 215 } 216 217 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 218 crypto_drivers = malloc(crypto_drivers_num * 219 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 220 if (crypto_drivers == NULL) { 221 printf("crypto_init: cannot setup crypto drivers\n"); 222 error = ENOMEM; 223 goto bad; 224 } 225 226 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 227 &cryptoproc, 0, 0, "crypto"); 228 if (error) { 229 printf("crypto_init: cannot start crypto thread; error %d", 230 error); 231 goto bad; 232 } 233 234 error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL, 235 &cryptoretproc, 0, 0, "crypto returns"); 236 if (error) { 237 printf("crypto_init: cannot start cryptoret thread; error %d", 238 error); 239 goto bad; 240 } 241 return 0; 242 bad: 243 crypto_destroy(); 244 return error; 245 } 246 247 /* 248 * Signal a crypto thread to terminate. We use the driver 249 * table lock to synchronize the sleep/wakeups so that we 250 * are sure the threads have terminated before we release 251 * the data structures they use. See crypto_finis below 252 * for the other half of this song-and-dance. 253 */ 254 static void 255 crypto_terminate(struct proc **pp, void *q) 256 { 257 struct proc *p; 258 259 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 260 p = *pp; 261 *pp = NULL; 262 if (p) { 263 wakeup_one(q); 264 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 265 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 266 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 267 PROC_UNLOCK(p); 268 CRYPTO_DRIVER_LOCK(); 269 } 270 } 271 272 static void 273 crypto_destroy(void) 274 { 275 /* 276 * Terminate any crypto threads. 277 */ 278 CRYPTO_DRIVER_LOCK(); 279 crypto_terminate(&cryptoproc, &crp_q); 280 crypto_terminate(&cryptoretproc, &crp_ret_q); 281 CRYPTO_DRIVER_UNLOCK(); 282 283 /* XXX flush queues??? */ 284 285 /* 286 * Reclaim dynamically allocated resources. 287 */ 288 if (crypto_drivers != NULL) 289 free(crypto_drivers, M_CRYPTO_DATA); 290 291 if (cryptodesc_zone != NULL) 292 uma_zdestroy(cryptodesc_zone); 293 if (cryptop_zone != NULL) 294 uma_zdestroy(cryptop_zone); 295 mtx_destroy(&crypto_q_mtx); 296 mtx_destroy(&crypto_ret_q_mtx); 297 mtx_destroy(&crypto_drivers_mtx); 298 } 299 300 static struct cryptocap * 301 crypto_checkdriver(u_int32_t hid) 302 { 303 if (crypto_drivers == NULL) 304 return NULL; 305 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 306 } 307 308 /* 309 * Compare a driver's list of supported algorithms against another 310 * list; return non-zero if all algorithms are supported. 311 */ 312 static int 313 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) 314 { 315 const struct cryptoini *cr; 316 317 /* See if all the algorithms are supported. */ 318 for (cr = cri; cr; cr = cr->cri_next) 319 if (cap->cc_alg[cr->cri_alg] == 0) 320 return 0; 321 return 1; 322 } 323 324 /* 325 * Select a driver for a new session that supports the specified 326 * algorithms and, optionally, is constrained according to the flags. 327 * The algorithm we use here is pretty stupid; just use the 328 * first driver that supports all the algorithms we need. If there 329 * are multiple drivers we choose the driver with the fewest active 330 * sessions. We prefer hardware-backed drivers to software ones. 331 * 332 * XXX We need more smarts here (in real life too, but that's 333 * XXX another story altogether). 334 */ 335 static struct cryptocap * 336 crypto_select_driver(const struct cryptoini *cri, int flags) 337 { 338 struct cryptocap *cap, *best; 339 int match, hid; 340 341 CRYPTO_DRIVER_ASSERT(); 342 343 /* 344 * Look first for hardware crypto devices if permitted. 345 */ 346 if (flags & CRYPTOCAP_F_HARDWARE) 347 match = CRYPTOCAP_F_HARDWARE; 348 else 349 match = CRYPTOCAP_F_SOFTWARE; 350 best = NULL; 351 again: 352 for (hid = 0; hid < crypto_drivers_num; hid++) { 353 cap = &crypto_drivers[hid]; 354 /* 355 * If it's not initialized, is in the process of 356 * going away, or is not appropriate (hardware 357 * or software based on match), then skip. 358 */ 359 if (cap->cc_dev == NULL || 360 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || 361 (cap->cc_flags & match) == 0) 362 continue; 363 364 /* verify all the algorithms are supported. */ 365 if (driver_suitable(cap, cri)) { 366 if (best == NULL || 367 cap->cc_sessions < best->cc_sessions) 368 best = cap; 369 } 370 } 371 if (best != NULL) 372 return best; 373 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 374 /* sort of an Algol 68-style for loop */ 375 match = CRYPTOCAP_F_SOFTWARE; 376 goto again; 377 } 378 return best; 379 } 380 381 /* 382 * Create a new session. The crid argument specifies a crypto 383 * driver to use or constraints on a driver to select (hardware 384 * only, software only, either). Whatever driver is selected 385 * must be capable of the requested crypto algorithms. 386 */ 387 int 388 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) 389 { 390 struct cryptocap *cap; 391 u_int32_t hid, lid; 392 int err; 393 394 CRYPTO_DRIVER_LOCK(); 395 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 396 /* 397 * Use specified driver; verify it is capable. 398 */ 399 cap = crypto_checkdriver(crid); 400 if (cap != NULL && !driver_suitable(cap, cri)) 401 cap = NULL; 402 } else { 403 /* 404 * No requested driver; select based on crid flags. 405 */ 406 cap = crypto_select_driver(cri, crid); 407 /* 408 * if NULL then can't do everything in one session. 409 * XXX Fix this. We need to inject a "virtual" session 410 * XXX layer right about here. 411 */ 412 } 413 if (cap != NULL) { 414 /* Call the driver initialization routine. */ 415 hid = cap - crypto_drivers; 416 lid = hid; /* Pass the driver ID. */ 417 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); 418 if (err == 0) { 419 (*sid) = (cap->cc_flags & 0xff000000) 420 | (hid & 0x00ffffff); 421 (*sid) <<= 32; 422 (*sid) |= (lid & 0xffffffff); 423 cap->cc_sessions++; 424 } 425 } else 426 err = EINVAL; 427 CRYPTO_DRIVER_UNLOCK(); 428 return err; 429 } 430 431 static void 432 crypto_remove(struct cryptocap *cap) 433 { 434 435 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 436 if (cap->cc_sessions == 0 && cap->cc_koperations == 0) 437 bzero(cap, sizeof(*cap)); 438 } 439 440 /* 441 * Delete an existing session (or a reserved session on an unregistered 442 * driver). 443 */ 444 int 445 crypto_freesession(u_int64_t sid) 446 { 447 struct cryptocap *cap; 448 u_int32_t hid; 449 int err; 450 451 CRYPTO_DRIVER_LOCK(); 452 453 if (crypto_drivers == NULL) { 454 err = EINVAL; 455 goto done; 456 } 457 458 /* Determine two IDs. */ 459 hid = CRYPTO_SESID2HID(sid); 460 461 if (hid >= crypto_drivers_num) { 462 err = ENOENT; 463 goto done; 464 } 465 cap = &crypto_drivers[hid]; 466 467 if (cap->cc_sessions) 468 cap->cc_sessions--; 469 470 /* Call the driver cleanup routine, if available. */ 471 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); 472 473 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) 474 crypto_remove(cap); 475 476 done: 477 CRYPTO_DRIVER_UNLOCK(); 478 return err; 479 } 480 481 /* 482 * Return an unused driver id. Used by drivers prior to registering 483 * support for the algorithms they handle. 484 */ 485 int32_t 486 crypto_get_driverid(device_t dev, int flags) 487 { 488 struct cryptocap *newdrv; 489 int i; 490 491 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 492 printf("%s: no flags specified when registering driver\n", 493 device_get_nameunit(dev)); 494 return -1; 495 } 496 497 CRYPTO_DRIVER_LOCK(); 498 499 for (i = 0; i < crypto_drivers_num; i++) { 500 if (crypto_drivers[i].cc_dev == NULL && 501 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { 502 break; 503 } 504 } 505 506 /* Out of entries, allocate some more. */ 507 if (i == crypto_drivers_num) { 508 /* Be careful about wrap-around. */ 509 if (2 * crypto_drivers_num <= crypto_drivers_num) { 510 CRYPTO_DRIVER_UNLOCK(); 511 printf("crypto: driver count wraparound!\n"); 512 return -1; 513 } 514 515 newdrv = malloc(2 * crypto_drivers_num * 516 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 517 if (newdrv == NULL) { 518 CRYPTO_DRIVER_UNLOCK(); 519 printf("crypto: no space to expand driver table!\n"); 520 return -1; 521 } 522 523 bcopy(crypto_drivers, newdrv, 524 crypto_drivers_num * sizeof(struct cryptocap)); 525 526 crypto_drivers_num *= 2; 527 528 free(crypto_drivers, M_CRYPTO_DATA); 529 crypto_drivers = newdrv; 530 } 531 532 /* NB: state is zero'd on free */ 533 crypto_drivers[i].cc_sessions = 1; /* Mark */ 534 crypto_drivers[i].cc_dev = dev; 535 crypto_drivers[i].cc_flags = flags; 536 if (bootverbose) 537 printf("crypto: assign %s driver id %u, flags %u\n", 538 device_get_nameunit(dev), i, flags); 539 540 CRYPTO_DRIVER_UNLOCK(); 541 542 return i; 543 } 544 545 /* 546 * Lookup a driver by name. We match against the full device 547 * name and unit, and against just the name. The latter gives 548 * us a simple widlcarding by device name. On success return the 549 * driver/hardware identifier; otherwise return -1. 550 */ 551 int 552 crypto_find_driver(const char *match) 553 { 554 int i, len = strlen(match); 555 556 CRYPTO_DRIVER_LOCK(); 557 for (i = 0; i < crypto_drivers_num; i++) { 558 device_t dev = crypto_drivers[i].cc_dev; 559 if (dev == NULL || 560 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) 561 continue; 562 if (strncmp(match, device_get_nameunit(dev), len) == 0 || 563 strncmp(match, device_get_name(dev), len) == 0) 564 break; 565 } 566 CRYPTO_DRIVER_UNLOCK(); 567 return i < crypto_drivers_num ? i : -1; 568 } 569 570 /* 571 * Return the device_t for the specified driver or NULL 572 * if the driver identifier is invalid. 573 */ 574 device_t 575 crypto_find_device_byhid(int hid) 576 { 577 struct cryptocap *cap = crypto_checkdriver(hid); 578 return cap != NULL ? cap->cc_dev : NULL; 579 } 580 581 /* 582 * Return the device/driver capabilities. 583 */ 584 int 585 crypto_getcaps(int hid) 586 { 587 struct cryptocap *cap = crypto_checkdriver(hid); 588 return cap != NULL ? cap->cc_flags : 0; 589 } 590 591 /* 592 * Register support for a key-related algorithm. This routine 593 * is called once for each algorithm supported a driver. 594 */ 595 int 596 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 597 { 598 struct cryptocap *cap; 599 int err; 600 601 CRYPTO_DRIVER_LOCK(); 602 603 cap = crypto_checkdriver(driverid); 604 if (cap != NULL && 605 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 606 /* 607 * XXX Do some performance testing to determine placing. 608 * XXX We probably need an auxiliary data structure that 609 * XXX describes relative performances. 610 */ 611 612 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 613 if (bootverbose) 614 printf("crypto: %s registers key alg %u flags %u\n" 615 , device_get_nameunit(cap->cc_dev) 616 , kalg 617 , flags 618 ); 619 err = 0; 620 } else 621 err = EINVAL; 622 623 CRYPTO_DRIVER_UNLOCK(); 624 return err; 625 } 626 627 /* 628 * Register support for a non-key-related algorithm. This routine 629 * is called once for each such algorithm supported by a driver. 630 */ 631 int 632 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 633 u_int32_t flags) 634 { 635 struct cryptocap *cap; 636 int err; 637 638 CRYPTO_DRIVER_LOCK(); 639 640 cap = crypto_checkdriver(driverid); 641 /* NB: algorithms are in the range [1..max] */ 642 if (cap != NULL && 643 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 644 /* 645 * XXX Do some performance testing to determine placing. 646 * XXX We probably need an auxiliary data structure that 647 * XXX describes relative performances. 648 */ 649 650 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 651 cap->cc_max_op_len[alg] = maxoplen; 652 if (bootverbose) 653 printf("crypto: %s registers alg %u flags %u maxoplen %u\n" 654 , device_get_nameunit(cap->cc_dev) 655 , alg 656 , flags 657 , maxoplen 658 ); 659 cap->cc_sessions = 0; /* Unmark */ 660 err = 0; 661 } else 662 err = EINVAL; 663 664 CRYPTO_DRIVER_UNLOCK(); 665 return err; 666 } 667 668 static void 669 driver_finis(struct cryptocap *cap) 670 { 671 u_int32_t ses, kops; 672 673 CRYPTO_DRIVER_ASSERT(); 674 675 ses = cap->cc_sessions; 676 kops = cap->cc_koperations; 677 bzero(cap, sizeof(*cap)); 678 if (ses != 0 || kops != 0) { 679 /* 680 * If there are pending sessions, 681 * just mark as invalid. 682 */ 683 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 684 cap->cc_sessions = ses; 685 cap->cc_koperations = kops; 686 } 687 } 688 689 /* 690 * Unregister a crypto driver. If there are pending sessions using it, 691 * leave enough information around so that subsequent calls using those 692 * sessions will correctly detect the driver has been unregistered and 693 * reroute requests. 694 */ 695 int 696 crypto_unregister(u_int32_t driverid, int alg) 697 { 698 struct cryptocap *cap; 699 int i, err; 700 701 CRYPTO_DRIVER_LOCK(); 702 cap = crypto_checkdriver(driverid); 703 if (cap != NULL && 704 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 705 cap->cc_alg[alg] != 0) { 706 cap->cc_alg[alg] = 0; 707 cap->cc_max_op_len[alg] = 0; 708 709 /* Was this the last algorithm ? */ 710 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 711 if (cap->cc_alg[i] != 0) 712 break; 713 714 if (i == CRYPTO_ALGORITHM_MAX + 1) 715 driver_finis(cap); 716 err = 0; 717 } else 718 err = EINVAL; 719 CRYPTO_DRIVER_UNLOCK(); 720 721 return err; 722 } 723 724 /* 725 * Unregister all algorithms associated with a crypto driver. 726 * If there are pending sessions using it, leave enough information 727 * around so that subsequent calls using those sessions will 728 * correctly detect the driver has been unregistered and reroute 729 * requests. 730 */ 731 int 732 crypto_unregister_all(u_int32_t driverid) 733 { 734 struct cryptocap *cap; 735 int err; 736 737 CRYPTO_DRIVER_LOCK(); 738 cap = crypto_checkdriver(driverid); 739 if (cap != NULL) { 740 driver_finis(cap); 741 err = 0; 742 } else 743 err = EINVAL; 744 CRYPTO_DRIVER_UNLOCK(); 745 746 return err; 747 } 748 749 /* 750 * Clear blockage on a driver. The what parameter indicates whether 751 * the driver is now ready for cryptop's and/or cryptokop's. 752 */ 753 int 754 crypto_unblock(u_int32_t driverid, int what) 755 { 756 struct cryptocap *cap; 757 int err; 758 759 CRYPTO_Q_LOCK(); 760 cap = crypto_checkdriver(driverid); 761 if (cap != NULL) { 762 if (what & CRYPTO_SYMQ) 763 cap->cc_qblocked = 0; 764 if (what & CRYPTO_ASYMQ) 765 cap->cc_kqblocked = 0; 766 if (crp_sleep) 767 wakeup_one(&crp_q); 768 err = 0; 769 } else 770 err = EINVAL; 771 CRYPTO_Q_UNLOCK(); 772 773 return err; 774 } 775 776 /* 777 * Add a crypto request to a queue, to be processed by the kernel thread. 778 */ 779 int 780 crypto_dispatch(struct cryptop *crp) 781 { 782 struct cryptocap *cap; 783 u_int32_t hid; 784 int result; 785 786 cryptostats.cs_ops++; 787 788 #ifdef CRYPTO_TIMING 789 if (crypto_timing) 790 binuptime(&crp->crp_tstamp); 791 #endif 792 793 hid = CRYPTO_SESID2HID(crp->crp_sid); 794 795 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 796 /* 797 * Caller marked the request to be processed 798 * immediately; dispatch it directly to the 799 * driver unless the driver is currently blocked. 800 */ 801 cap = crypto_checkdriver(hid); 802 /* Driver cannot disappeared when there is an active session. */ 803 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); 804 if (!cap->cc_qblocked) { 805 result = crypto_invoke(cap, crp, 0); 806 if (result != ERESTART) 807 return (result); 808 /* 809 * The driver ran out of resources, put the request on 810 * the queue. 811 */ 812 } 813 } 814 CRYPTO_Q_LOCK(); 815 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 816 if (crp_sleep) 817 wakeup_one(&crp_q); 818 CRYPTO_Q_UNLOCK(); 819 return 0; 820 } 821 822 /* 823 * Add an asymetric crypto request to a queue, 824 * to be processed by the kernel thread. 825 */ 826 int 827 crypto_kdispatch(struct cryptkop *krp) 828 { 829 int error; 830 831 cryptostats.cs_kops++; 832 833 error = crypto_kinvoke(krp, krp->krp_crid); 834 if (error == ERESTART) { 835 CRYPTO_Q_LOCK(); 836 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 837 if (crp_sleep) 838 wakeup_one(&crp_q); 839 CRYPTO_Q_UNLOCK(); 840 error = 0; 841 } 842 return error; 843 } 844 845 /* 846 * Verify a driver is suitable for the specified operation. 847 */ 848 static __inline int 849 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 850 { 851 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 852 } 853 854 /* 855 * Select a driver for an asym operation. The driver must 856 * support the necessary algorithm. The caller can constrain 857 * which device is selected with the flags parameter. The 858 * algorithm we use here is pretty stupid; just use the first 859 * driver that supports the algorithms we need. If there are 860 * multiple suitable drivers we choose the driver with the 861 * fewest active operations. We prefer hardware-backed 862 * drivers to software ones when either may be used. 863 */ 864 static struct cryptocap * 865 crypto_select_kdriver(const struct cryptkop *krp, int flags) 866 { 867 struct cryptocap *cap, *best, *blocked; 868 int match, hid; 869 870 CRYPTO_DRIVER_ASSERT(); 871 872 /* 873 * Look first for hardware crypto devices if permitted. 874 */ 875 if (flags & CRYPTOCAP_F_HARDWARE) 876 match = CRYPTOCAP_F_HARDWARE; 877 else 878 match = CRYPTOCAP_F_SOFTWARE; 879 best = NULL; 880 blocked = NULL; 881 again: 882 for (hid = 0; hid < crypto_drivers_num; hid++) { 883 cap = &crypto_drivers[hid]; 884 /* 885 * If it's not initialized, is in the process of 886 * going away, or is not appropriate (hardware 887 * or software based on match), then skip. 888 */ 889 if (cap->cc_dev == NULL || 890 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || 891 (cap->cc_flags & match) == 0) 892 continue; 893 894 /* verify all the algorithms are supported. */ 895 if (kdriver_suitable(cap, krp)) { 896 if (best == NULL || 897 cap->cc_koperations < best->cc_koperations) 898 best = cap; 899 } 900 } 901 if (best != NULL) 902 return best; 903 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 904 /* sort of an Algol 68-style for loop */ 905 match = CRYPTOCAP_F_SOFTWARE; 906 goto again; 907 } 908 return best; 909 } 910 911 /* 912 * Dispatch an assymetric crypto request. 913 */ 914 static int 915 crypto_kinvoke(struct cryptkop *krp, int crid) 916 { 917 struct cryptocap *cap = NULL; 918 int error; 919 920 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 921 KASSERT(krp->krp_callback != NULL, 922 ("%s: krp->crp_callback == NULL", __func__)); 923 924 CRYPTO_DRIVER_LOCK(); 925 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 926 cap = crypto_checkdriver(crid); 927 if (cap != NULL) { 928 /* 929 * Driver present, it must support the necessary 930 * algorithm and, if s/w drivers are excluded, 931 * it must be registered as hardware-backed. 932 */ 933 if (!kdriver_suitable(cap, krp) || 934 (!crypto_devallowsoft && 935 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 936 cap = NULL; 937 } 938 } else { 939 /* 940 * No requested driver; select based on crid flags. 941 */ 942 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 943 crid &= ~CRYPTOCAP_F_SOFTWARE; 944 cap = crypto_select_kdriver(krp, crid); 945 } 946 if (cap != NULL && !cap->cc_kqblocked) { 947 krp->krp_hid = cap - crypto_drivers; 948 cap->cc_koperations++; 949 CRYPTO_DRIVER_UNLOCK(); 950 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 951 CRYPTO_DRIVER_LOCK(); 952 if (error == ERESTART) { 953 cap->cc_koperations--; 954 CRYPTO_DRIVER_UNLOCK(); 955 return (error); 956 } 957 } else { 958 /* 959 * NB: cap is !NULL if device is blocked; in 960 * that case return ERESTART so the operation 961 * is resubmitted if possible. 962 */ 963 error = (cap == NULL) ? ENODEV : ERESTART; 964 } 965 CRYPTO_DRIVER_UNLOCK(); 966 967 if (error) { 968 krp->krp_status = error; 969 crypto_kdone(krp); 970 } 971 return 0; 972 } 973 974 #ifdef CRYPTO_TIMING 975 static void 976 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 977 { 978 struct bintime now, delta; 979 struct timespec t; 980 uint64_t u; 981 982 binuptime(&now); 983 u = now.frac; 984 delta.frac = now.frac - bt->frac; 985 delta.sec = now.sec - bt->sec; 986 if (u < delta.frac) 987 delta.sec--; 988 bintime2timespec(&delta, &t); 989 timespecadd(&ts->acc, &t); 990 if (timespeccmp(&t, &ts->min, <)) 991 ts->min = t; 992 if (timespeccmp(&t, &ts->max, >)) 993 ts->max = t; 994 ts->count++; 995 996 *bt = now; 997 } 998 #endif 999 1000 /* 1001 * Dispatch a crypto request to the appropriate crypto devices. 1002 */ 1003 static int 1004 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1005 { 1006 1007 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1008 KASSERT(crp->crp_callback != NULL, 1009 ("%s: crp->crp_callback == NULL", __func__)); 1010 KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); 1011 1012 #ifdef CRYPTO_TIMING 1013 if (crypto_timing) 1014 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1015 #endif 1016 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1017 struct cryptodesc *crd; 1018 u_int64_t nid; 1019 1020 /* 1021 * Driver has unregistered; migrate the session and return 1022 * an error to the caller so they'll resubmit the op. 1023 * 1024 * XXX: What if there are more already queued requests for this 1025 * session? 1026 */ 1027 crypto_freesession(crp->crp_sid); 1028 1029 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 1030 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 1031 1032 /* XXX propagate flags from initial session? */ 1033 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 1034 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1035 crp->crp_sid = nid; 1036 1037 crp->crp_etype = EAGAIN; 1038 crypto_done(crp); 1039 return 0; 1040 } else { 1041 /* 1042 * Invoke the driver to process the request. 1043 */ 1044 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1045 } 1046 } 1047 1048 /* 1049 * Release a set of crypto descriptors. 1050 */ 1051 void 1052 crypto_freereq(struct cryptop *crp) 1053 { 1054 struct cryptodesc *crd; 1055 1056 if (crp == NULL) 1057 return; 1058 1059 #ifdef DIAGNOSTIC 1060 { 1061 struct cryptop *crp2; 1062 1063 CRYPTO_Q_LOCK(); 1064 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1065 KASSERT(crp2 != crp, 1066 ("Freeing cryptop from the crypto queue (%p).", 1067 crp)); 1068 } 1069 CRYPTO_Q_UNLOCK(); 1070 CRYPTO_RETQ_LOCK(); 1071 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { 1072 KASSERT(crp2 != crp, 1073 ("Freeing cryptop from the return queue (%p).", 1074 crp)); 1075 } 1076 CRYPTO_RETQ_UNLOCK(); 1077 } 1078 #endif 1079 1080 while ((crd = crp->crp_desc) != NULL) { 1081 crp->crp_desc = crd->crd_next; 1082 uma_zfree(cryptodesc_zone, crd); 1083 } 1084 uma_zfree(cryptop_zone, crp); 1085 } 1086 1087 /* 1088 * Acquire a set of crypto descriptors. 1089 */ 1090 struct cryptop * 1091 crypto_getreq(int num) 1092 { 1093 struct cryptodesc *crd; 1094 struct cryptop *crp; 1095 1096 crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO); 1097 if (crp != NULL) { 1098 while (num--) { 1099 crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO); 1100 if (crd == NULL) { 1101 crypto_freereq(crp); 1102 return NULL; 1103 } 1104 1105 crd->crd_next = crp->crp_desc; 1106 crp->crp_desc = crd; 1107 } 1108 } 1109 return crp; 1110 } 1111 1112 /* 1113 * Invoke the callback on behalf of the driver. 1114 */ 1115 void 1116 crypto_done(struct cryptop *crp) 1117 { 1118 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1119 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1120 crp->crp_flags |= CRYPTO_F_DONE; 1121 if (crp->crp_etype != 0) 1122 cryptostats.cs_errs++; 1123 #ifdef CRYPTO_TIMING 1124 if (crypto_timing) 1125 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1126 #endif 1127 /* 1128 * CBIMM means unconditionally do the callback immediately; 1129 * CBIFSYNC means do the callback immediately only if the 1130 * operation was done synchronously. Both are used to avoid 1131 * doing extraneous context switches; the latter is mostly 1132 * used with the software crypto driver. 1133 */ 1134 if ((crp->crp_flags & CRYPTO_F_CBIMM) || 1135 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1136 (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { 1137 /* 1138 * Do the callback directly. This is ok when the 1139 * callback routine does very little (e.g. the 1140 * /dev/crypto callback method just does a wakeup). 1141 */ 1142 #ifdef CRYPTO_TIMING 1143 if (crypto_timing) { 1144 /* 1145 * NB: We must copy the timestamp before 1146 * doing the callback as the cryptop is 1147 * likely to be reclaimed. 1148 */ 1149 struct bintime t = crp->crp_tstamp; 1150 crypto_tstat(&cryptostats.cs_cb, &t); 1151 crp->crp_callback(crp); 1152 crypto_tstat(&cryptostats.cs_finis, &t); 1153 } else 1154 #endif 1155 crp->crp_callback(crp); 1156 } else { 1157 /* 1158 * Normal case; queue the callback for the thread. 1159 */ 1160 CRYPTO_RETQ_LOCK(); 1161 if (CRYPTO_RETQ_EMPTY()) 1162 wakeup_one(&crp_ret_q); /* shared wait channel */ 1163 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1164 CRYPTO_RETQ_UNLOCK(); 1165 } 1166 } 1167 1168 /* 1169 * Invoke the callback on behalf of the driver. 1170 */ 1171 void 1172 crypto_kdone(struct cryptkop *krp) 1173 { 1174 struct cryptocap *cap; 1175 1176 if (krp->krp_status != 0) 1177 cryptostats.cs_kerrs++; 1178 CRYPTO_DRIVER_LOCK(); 1179 /* XXX: What if driver is loaded in the meantime? */ 1180 if (krp->krp_hid < crypto_drivers_num) { 1181 cap = &crypto_drivers[krp->krp_hid]; 1182 cap->cc_koperations--; 1183 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0")); 1184 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1185 crypto_remove(cap); 1186 } 1187 CRYPTO_DRIVER_UNLOCK(); 1188 CRYPTO_RETQ_LOCK(); 1189 if (CRYPTO_RETQ_EMPTY()) 1190 wakeup_one(&crp_ret_q); /* shared wait channel */ 1191 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1192 CRYPTO_RETQ_UNLOCK(); 1193 } 1194 1195 int 1196 crypto_getfeat(int *featp) 1197 { 1198 int hid, kalg, feat = 0; 1199 1200 CRYPTO_DRIVER_LOCK(); 1201 for (hid = 0; hid < crypto_drivers_num; hid++) { 1202 const struct cryptocap *cap = &crypto_drivers[hid]; 1203 1204 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1205 !crypto_devallowsoft) { 1206 continue; 1207 } 1208 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1209 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1210 feat |= 1 << kalg; 1211 } 1212 CRYPTO_DRIVER_UNLOCK(); 1213 *featp = feat; 1214 return (0); 1215 } 1216 1217 /* 1218 * Terminate a thread at module unload. The process that 1219 * initiated this is waiting for us to signal that we're gone; 1220 * wake it up and exit. We use the driver table lock to insure 1221 * we don't do the wakeup before they're waiting. There is no 1222 * race here because the waiter sleeps on the proc lock for the 1223 * thread so it gets notified at the right time because of an 1224 * extra wakeup that's done in exit1(). 1225 */ 1226 static void 1227 crypto_finis(void *chan) 1228 { 1229 CRYPTO_DRIVER_LOCK(); 1230 wakeup_one(chan); 1231 CRYPTO_DRIVER_UNLOCK(); 1232 kproc_exit(0); 1233 } 1234 1235 /* 1236 * Crypto thread, dispatches crypto requests. 1237 */ 1238 static void 1239 crypto_proc(void) 1240 { 1241 struct cryptop *crp, *submit; 1242 struct cryptkop *krp; 1243 struct cryptocap *cap; 1244 u_int32_t hid; 1245 int result, hint; 1246 1247 #if defined(__i386__) || defined(__amd64__) 1248 fpu_kern_thread(FPU_KERN_NORMAL); 1249 #endif 1250 1251 CRYPTO_Q_LOCK(); 1252 for (;;) { 1253 /* 1254 * Find the first element in the queue that can be 1255 * processed and look-ahead to see if multiple ops 1256 * are ready for the same driver. 1257 */ 1258 submit = NULL; 1259 hint = 0; 1260 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1261 hid = CRYPTO_SESID2HID(crp->crp_sid); 1262 cap = crypto_checkdriver(hid); 1263 /* 1264 * Driver cannot disappeared when there is an active 1265 * session. 1266 */ 1267 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1268 __func__, __LINE__)); 1269 if (cap == NULL || cap->cc_dev == NULL) { 1270 /* Op needs to be migrated, process it. */ 1271 if (submit == NULL) 1272 submit = crp; 1273 break; 1274 } 1275 if (!cap->cc_qblocked) { 1276 if (submit != NULL) { 1277 /* 1278 * We stop on finding another op, 1279 * regardless whether its for the same 1280 * driver or not. We could keep 1281 * searching the queue but it might be 1282 * better to just use a per-driver 1283 * queue instead. 1284 */ 1285 if (CRYPTO_SESID2HID(submit->crp_sid) == hid) 1286 hint = CRYPTO_HINT_MORE; 1287 break; 1288 } else { 1289 submit = crp; 1290 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1291 break; 1292 /* keep scanning for more are q'd */ 1293 } 1294 } 1295 } 1296 if (submit != NULL) { 1297 TAILQ_REMOVE(&crp_q, submit, crp_next); 1298 hid = CRYPTO_SESID2HID(submit->crp_sid); 1299 cap = crypto_checkdriver(hid); 1300 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1301 __func__, __LINE__)); 1302 result = crypto_invoke(cap, submit, hint); 1303 if (result == ERESTART) { 1304 /* 1305 * The driver ran out of resources, mark the 1306 * driver ``blocked'' for cryptop's and put 1307 * the request back in the queue. It would 1308 * best to put the request back where we got 1309 * it but that's hard so for now we put it 1310 * at the front. This should be ok; putting 1311 * it at the end does not work. 1312 */ 1313 /* XXX validate sid again? */ 1314 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1315 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1316 cryptostats.cs_blocks++; 1317 } 1318 } 1319 1320 /* As above, but for key ops */ 1321 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1322 cap = crypto_checkdriver(krp->krp_hid); 1323 if (cap == NULL || cap->cc_dev == NULL) { 1324 /* 1325 * Operation needs to be migrated, invalidate 1326 * the assigned device so it will reselect a 1327 * new one below. Propagate the original 1328 * crid selection flags if supplied. 1329 */ 1330 krp->krp_hid = krp->krp_crid & 1331 (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); 1332 if (krp->krp_hid == 0) 1333 krp->krp_hid = 1334 CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; 1335 break; 1336 } 1337 if (!cap->cc_kqblocked) 1338 break; 1339 } 1340 if (krp != NULL) { 1341 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1342 result = crypto_kinvoke(krp, krp->krp_hid); 1343 if (result == ERESTART) { 1344 /* 1345 * The driver ran out of resources, mark the 1346 * driver ``blocked'' for cryptkop's and put 1347 * the request back in the queue. It would 1348 * best to put the request back where we got 1349 * it but that's hard so for now we put it 1350 * at the front. This should be ok; putting 1351 * it at the end does not work. 1352 */ 1353 /* XXX validate sid again? */ 1354 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1355 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1356 cryptostats.cs_kblocks++; 1357 } 1358 } 1359 1360 if (submit == NULL && krp == NULL) { 1361 /* 1362 * Nothing more to be processed. Sleep until we're 1363 * woken because there are more ops to process. 1364 * This happens either by submission or by a driver 1365 * becoming unblocked and notifying us through 1366 * crypto_unblock. Note that when we wakeup we 1367 * start processing each queue again from the 1368 * front. It's not clear that it's important to 1369 * preserve this ordering since ops may finish 1370 * out of order if dispatched to different devices 1371 * and some become blocked while others do not. 1372 */ 1373 crp_sleep = 1; 1374 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1375 crp_sleep = 0; 1376 if (cryptoproc == NULL) 1377 break; 1378 cryptostats.cs_intrs++; 1379 } 1380 } 1381 CRYPTO_Q_UNLOCK(); 1382 1383 crypto_finis(&crp_q); 1384 } 1385 1386 /* 1387 * Crypto returns thread, does callbacks for processed crypto requests. 1388 * Callbacks are done here, rather than in the crypto drivers, because 1389 * callbacks typically are expensive and would slow interrupt handling. 1390 */ 1391 static void 1392 crypto_ret_proc(void) 1393 { 1394 struct cryptop *crpt; 1395 struct cryptkop *krpt; 1396 1397 CRYPTO_RETQ_LOCK(); 1398 for (;;) { 1399 /* Harvest return q's for completed ops */ 1400 crpt = TAILQ_FIRST(&crp_ret_q); 1401 if (crpt != NULL) 1402 TAILQ_REMOVE(&crp_ret_q, crpt, crp_next); 1403 1404 krpt = TAILQ_FIRST(&crp_ret_kq); 1405 if (krpt != NULL) 1406 TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next); 1407 1408 if (crpt != NULL || krpt != NULL) { 1409 CRYPTO_RETQ_UNLOCK(); 1410 /* 1411 * Run callbacks unlocked. 1412 */ 1413 if (crpt != NULL) { 1414 #ifdef CRYPTO_TIMING 1415 if (crypto_timing) { 1416 /* 1417 * NB: We must copy the timestamp before 1418 * doing the callback as the cryptop is 1419 * likely to be reclaimed. 1420 */ 1421 struct bintime t = crpt->crp_tstamp; 1422 crypto_tstat(&cryptostats.cs_cb, &t); 1423 crpt->crp_callback(crpt); 1424 crypto_tstat(&cryptostats.cs_finis, &t); 1425 } else 1426 #endif 1427 crpt->crp_callback(crpt); 1428 } 1429 if (krpt != NULL) 1430 krpt->krp_callback(krpt); 1431 CRYPTO_RETQ_LOCK(); 1432 } else { 1433 /* 1434 * Nothing more to be processed. Sleep until we're 1435 * woken because there are more returns to process. 1436 */ 1437 msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT, 1438 "crypto_ret_wait", 0); 1439 if (cryptoretproc == NULL) 1440 break; 1441 cryptostats.cs_rets++; 1442 } 1443 } 1444 CRYPTO_RETQ_UNLOCK(); 1445 1446 crypto_finis(&crp_ret_q); 1447 } 1448 1449 #ifdef DDB 1450 static void 1451 db_show_drivers(void) 1452 { 1453 int hid; 1454 1455 db_printf("%12s %4s %4s %8s %2s %2s\n" 1456 , "Device" 1457 , "Ses" 1458 , "Kops" 1459 , "Flags" 1460 , "QB" 1461 , "KB" 1462 ); 1463 for (hid = 0; hid < crypto_drivers_num; hid++) { 1464 const struct cryptocap *cap = &crypto_drivers[hid]; 1465 if (cap->cc_dev == NULL) 1466 continue; 1467 db_printf("%-12s %4u %4u %08x %2u %2u\n" 1468 , device_get_nameunit(cap->cc_dev) 1469 , cap->cc_sessions 1470 , cap->cc_koperations 1471 , cap->cc_flags 1472 , cap->cc_qblocked 1473 , cap->cc_kqblocked 1474 ); 1475 } 1476 } 1477 1478 DB_SHOW_COMMAND(crypto, db_show_crypto) 1479 { 1480 struct cryptop *crp; 1481 1482 db_show_drivers(); 1483 db_printf("\n"); 1484 1485 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1486 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1487 "Desc", "Callback"); 1488 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1489 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" 1490 , (int) CRYPTO_SESID2HID(crp->crp_sid) 1491 , (int) CRYPTO_SESID2CAPS(crp->crp_sid) 1492 , crp->crp_ilen, crp->crp_olen 1493 , crp->crp_etype 1494 , crp->crp_flags 1495 , crp->crp_desc 1496 , crp->crp_callback 1497 ); 1498 } 1499 if (!TAILQ_EMPTY(&crp_ret_q)) { 1500 db_printf("\n%4s %4s %4s %8s\n", 1501 "HID", "Etype", "Flags", "Callback"); 1502 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { 1503 db_printf("%4u %4u %04x %8p\n" 1504 , (int) CRYPTO_SESID2HID(crp->crp_sid) 1505 , crp->crp_etype 1506 , crp->crp_flags 1507 , crp->crp_callback 1508 ); 1509 } 1510 } 1511 } 1512 1513 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 1514 { 1515 struct cryptkop *krp; 1516 1517 db_show_drivers(); 1518 db_printf("\n"); 1519 1520 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 1521 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 1522 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1523 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 1524 , krp->krp_op 1525 , krp->krp_status 1526 , krp->krp_iparams, krp->krp_oparams 1527 , krp->krp_crid, krp->krp_hid 1528 , krp->krp_callback 1529 ); 1530 } 1531 if (!TAILQ_EMPTY(&crp_ret_q)) { 1532 db_printf("%4s %5s %8s %4s %8s\n", 1533 "Op", "Status", "CRID", "HID", "Callback"); 1534 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { 1535 db_printf("%4u %5u %08x %4u %8p\n" 1536 , krp->krp_op 1537 , krp->krp_status 1538 , krp->krp_crid, krp->krp_hid 1539 , krp->krp_callback 1540 ); 1541 } 1542 } 1543 } 1544 #endif 1545 1546 int crypto_modevent(module_t mod, int type, void *unused); 1547 1548 /* 1549 * Initialization code, both for static and dynamic loading. 1550 * Note this is not invoked with the usual MODULE_DECLARE 1551 * mechanism but instead is listed as a dependency by the 1552 * cryptosoft driver. This guarantees proper ordering of 1553 * calls on module load/unload. 1554 */ 1555 int 1556 crypto_modevent(module_t mod, int type, void *unused) 1557 { 1558 int error = EINVAL; 1559 1560 switch (type) { 1561 case MOD_LOAD: 1562 error = crypto_init(); 1563 if (error == 0 && bootverbose) 1564 printf("crypto: <crypto core>\n"); 1565 break; 1566 case MOD_UNLOAD: 1567 /*XXX disallow if active sessions */ 1568 error = 0; 1569 crypto_destroy(); 1570 return 0; 1571 } 1572 return error; 1573 } 1574 MODULE_VERSION(crypto, 1); 1575 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 1576