1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_ddb.h" 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/kthread.h> 66 #include <sys/linker.h> 67 #include <sys/lock.h> 68 #include <sys/module.h> 69 #include <sys/mutex.h> 70 #include <sys/malloc.h> 71 #include <sys/proc.h> 72 #include <sys/sdt.h> 73 #include <sys/sysctl.h> 74 75 #include <ddb/ddb.h> 76 77 #include <vm/uma.h> 78 #include <crypto/intake.h> 79 #include <opencrypto/cryptodev.h> 80 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 81 82 #include <sys/kobj.h> 83 #include <sys/bus.h> 84 #include "cryptodev_if.h" 85 86 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 87 #include <machine/pcb.h> 88 #endif 89 90 SDT_PROVIDER_DEFINE(opencrypto); 91 92 /* 93 * Crypto drivers register themselves by allocating a slot in the 94 * crypto_drivers table with crypto_get_driverid() and then registering 95 * each algorithm they support with crypto_register() and crypto_kregister(). 96 */ 97 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 98 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 99 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 100 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 101 102 /* 103 * Crypto device/driver capabilities structure. 104 * 105 * Synchronization: 106 * (d) - protected by CRYPTO_DRIVER_LOCK() 107 * (q) - protected by CRYPTO_Q_LOCK() 108 * Not tagged fields are read-only. 109 */ 110 struct cryptocap { 111 device_t cc_dev; /* (d) device/driver */ 112 u_int32_t cc_sessions; /* (d) # of sessions */ 113 u_int32_t cc_koperations; /* (d) # os asym operations */ 114 /* 115 * Largest possible operator length (in bits) for each type of 116 * encryption algorithm. XXX not used 117 */ 118 u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; 119 u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; 120 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 121 122 int cc_flags; /* (d) flags */ 123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 124 int cc_qblocked; /* (q) symmetric q blocked */ 125 int cc_kqblocked; /* (q) asymmetric q blocked */ 126 }; 127 static struct cryptocap *crypto_drivers = NULL; 128 static int crypto_drivers_num = 0; 129 130 /* 131 * There are two queues for crypto requests; one for symmetric (e.g. 132 * cipher) operations and one for asymmetric (e.g. MOD)operations. 133 * A single mutex is used to lock access to both queues. We could 134 * have one per-queue but having one simplifies handling of block/unblock 135 * operations. 136 */ 137 static int crp_sleep = 0; 138 static TAILQ_HEAD(,cryptop) crp_q; /* request queues */ 139 static TAILQ_HEAD(,cryptkop) crp_kq; 140 static struct mtx crypto_q_mtx; 141 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 142 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 143 144 /* 145 * There are two queues for processing completed crypto requests; one 146 * for the symmetric and one for the asymmetric ops. We only need one 147 * but have two to avoid type futzing (cryptop vs. cryptkop). A single 148 * mutex is used to lock access to both queues. Note that this lock 149 * must be separate from the lock on request queues to insure driver 150 * callbacks don't generate lock order reversals. 151 */ 152 static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */ 153 static TAILQ_HEAD(,cryptkop) crp_ret_kq; 154 static struct mtx crypto_ret_q_mtx; 155 #define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx) 156 #define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx) 157 #define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq)) 158 159 static uma_zone_t cryptop_zone; 160 static uma_zone_t cryptodesc_zone; 161 162 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 163 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 164 &crypto_userasymcrypto, 0, 165 "Enable/disable user-mode access to asymmetric crypto support"); 166 int crypto_devallowsoft = 0; /* only use hardware crypto */ 167 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 168 &crypto_devallowsoft, 0, 169 "Enable/disable use of software crypto by /dev/crypto"); 170 171 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 172 173 static void crypto_proc(void); 174 static struct proc *cryptoproc; 175 static void crypto_ret_proc(void); 176 static struct proc *cryptoretproc; 177 static void crypto_destroy(void); 178 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 179 static int crypto_kinvoke(struct cryptkop *krp, int flags); 180 181 static struct cryptostats cryptostats; 182 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats, 183 cryptostats, "Crypto system statistics"); 184 185 #ifdef CRYPTO_TIMING 186 static int crypto_timing = 0; 187 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 188 &crypto_timing, 0, "Enable/disable crypto timing support"); 189 #endif 190 191 /* Try to avoid directly exposing the key buffer as a symbol */ 192 static struct keybuf *keybuf; 193 194 static struct keybuf empty_keybuf = { 195 .kb_nents = 0 196 }; 197 198 /* Obtain the key buffer from boot metadata */ 199 static void 200 keybuf_init(void) 201 { 202 caddr_t kmdp; 203 204 kmdp = preload_search_by_type("elf kernel"); 205 206 if (kmdp == NULL) 207 kmdp = preload_search_by_type("elf64 kernel"); 208 209 keybuf = (struct keybuf *)preload_search_info(kmdp, 210 MODINFO_METADATA | MODINFOMD_KEYBUF); 211 212 if (keybuf == NULL) 213 keybuf = &empty_keybuf; 214 } 215 216 /* It'd be nice if we could store these in some kind of secure memory... */ 217 struct keybuf * get_keybuf(void) { 218 219 return (keybuf); 220 } 221 222 static int 223 crypto_init(void) 224 { 225 int error; 226 227 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 228 MTX_DEF|MTX_QUIET); 229 230 TAILQ_INIT(&crp_q); 231 TAILQ_INIT(&crp_kq); 232 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 233 234 TAILQ_INIT(&crp_ret_q); 235 TAILQ_INIT(&crp_ret_kq); 236 mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF); 237 238 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 239 0, 0, 0, 0, 240 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 241 cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc), 242 0, 0, 0, 0, 243 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 244 if (cryptodesc_zone == NULL || cryptop_zone == NULL) { 245 printf("crypto_init: cannot setup crypto zones\n"); 246 error = ENOMEM; 247 goto bad; 248 } 249 250 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 251 crypto_drivers = malloc(crypto_drivers_num * 252 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 253 if (crypto_drivers == NULL) { 254 printf("crypto_init: cannot setup crypto drivers\n"); 255 error = ENOMEM; 256 goto bad; 257 } 258 259 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 260 &cryptoproc, 0, 0, "crypto"); 261 if (error) { 262 printf("crypto_init: cannot start crypto thread; error %d", 263 error); 264 goto bad; 265 } 266 267 error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL, 268 &cryptoretproc, 0, 0, "crypto returns"); 269 if (error) { 270 printf("crypto_init: cannot start cryptoret thread; error %d", 271 error); 272 goto bad; 273 } 274 275 keybuf_init(); 276 277 return 0; 278 bad: 279 crypto_destroy(); 280 return error; 281 } 282 283 /* 284 * Signal a crypto thread to terminate. We use the driver 285 * table lock to synchronize the sleep/wakeups so that we 286 * are sure the threads have terminated before we release 287 * the data structures they use. See crypto_finis below 288 * for the other half of this song-and-dance. 289 */ 290 static void 291 crypto_terminate(struct proc **pp, void *q) 292 { 293 struct proc *p; 294 295 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 296 p = *pp; 297 *pp = NULL; 298 if (p) { 299 wakeup_one(q); 300 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 301 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 302 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 303 PROC_UNLOCK(p); 304 CRYPTO_DRIVER_LOCK(); 305 } 306 } 307 308 static void 309 crypto_destroy(void) 310 { 311 /* 312 * Terminate any crypto threads. 313 */ 314 CRYPTO_DRIVER_LOCK(); 315 crypto_terminate(&cryptoproc, &crp_q); 316 crypto_terminate(&cryptoretproc, &crp_ret_q); 317 CRYPTO_DRIVER_UNLOCK(); 318 319 /* XXX flush queues??? */ 320 321 /* 322 * Reclaim dynamically allocated resources. 323 */ 324 if (crypto_drivers != NULL) 325 free(crypto_drivers, M_CRYPTO_DATA); 326 327 if (cryptodesc_zone != NULL) 328 uma_zdestroy(cryptodesc_zone); 329 if (cryptop_zone != NULL) 330 uma_zdestroy(cryptop_zone); 331 mtx_destroy(&crypto_q_mtx); 332 mtx_destroy(&crypto_ret_q_mtx); 333 mtx_destroy(&crypto_drivers_mtx); 334 } 335 336 static struct cryptocap * 337 crypto_checkdriver(u_int32_t hid) 338 { 339 if (crypto_drivers == NULL) 340 return NULL; 341 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 342 } 343 344 /* 345 * Compare a driver's list of supported algorithms against another 346 * list; return non-zero if all algorithms are supported. 347 */ 348 static int 349 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) 350 { 351 const struct cryptoini *cr; 352 353 /* See if all the algorithms are supported. */ 354 for (cr = cri; cr; cr = cr->cri_next) 355 if (cap->cc_alg[cr->cri_alg] == 0) 356 return 0; 357 return 1; 358 } 359 360 /* 361 * Select a driver for a new session that supports the specified 362 * algorithms and, optionally, is constrained according to the flags. 363 * The algorithm we use here is pretty stupid; just use the 364 * first driver that supports all the algorithms we need. If there 365 * are multiple drivers we choose the driver with the fewest active 366 * sessions. We prefer hardware-backed drivers to software ones. 367 * 368 * XXX We need more smarts here (in real life too, but that's 369 * XXX another story altogether). 370 */ 371 static struct cryptocap * 372 crypto_select_driver(const struct cryptoini *cri, int flags) 373 { 374 struct cryptocap *cap, *best; 375 int match, hid; 376 377 CRYPTO_DRIVER_ASSERT(); 378 379 /* 380 * Look first for hardware crypto devices if permitted. 381 */ 382 if (flags & CRYPTOCAP_F_HARDWARE) 383 match = CRYPTOCAP_F_HARDWARE; 384 else 385 match = CRYPTOCAP_F_SOFTWARE; 386 best = NULL; 387 again: 388 for (hid = 0; hid < crypto_drivers_num; hid++) { 389 cap = &crypto_drivers[hid]; 390 /* 391 * If it's not initialized, is in the process of 392 * going away, or is not appropriate (hardware 393 * or software based on match), then skip. 394 */ 395 if (cap->cc_dev == NULL || 396 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || 397 (cap->cc_flags & match) == 0) 398 continue; 399 400 /* verify all the algorithms are supported. */ 401 if (driver_suitable(cap, cri)) { 402 if (best == NULL || 403 cap->cc_sessions < best->cc_sessions) 404 best = cap; 405 } 406 } 407 if (best == NULL && match == CRYPTOCAP_F_HARDWARE && 408 (flags & CRYPTOCAP_F_SOFTWARE)) { 409 /* sort of an Algol 68-style for loop */ 410 match = CRYPTOCAP_F_SOFTWARE; 411 goto again; 412 } 413 return best; 414 } 415 416 /* 417 * Create a new session. The crid argument specifies a crypto 418 * driver to use or constraints on a driver to select (hardware 419 * only, software only, either). Whatever driver is selected 420 * must be capable of the requested crypto algorithms. 421 */ 422 int 423 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) 424 { 425 struct cryptocap *cap; 426 u_int32_t hid, lid; 427 int err; 428 429 CRYPTO_DRIVER_LOCK(); 430 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 431 /* 432 * Use specified driver; verify it is capable. 433 */ 434 cap = crypto_checkdriver(crid); 435 if (cap != NULL && !driver_suitable(cap, cri)) 436 cap = NULL; 437 } else { 438 /* 439 * No requested driver; select based on crid flags. 440 */ 441 cap = crypto_select_driver(cri, crid); 442 /* 443 * if NULL then can't do everything in one session. 444 * XXX Fix this. We need to inject a "virtual" session 445 * XXX layer right about here. 446 */ 447 } 448 if (cap != NULL) { 449 /* Call the driver initialization routine. */ 450 hid = cap - crypto_drivers; 451 lid = hid; /* Pass the driver ID. */ 452 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); 453 if (err == 0) { 454 (*sid) = (cap->cc_flags & 0xff000000) 455 | (hid & 0x00ffffff); 456 (*sid) <<= 32; 457 (*sid) |= (lid & 0xffffffff); 458 cap->cc_sessions++; 459 } else 460 CRYPTDEB("dev newsession failed"); 461 } else { 462 CRYPTDEB("no driver"); 463 err = EINVAL; 464 } 465 CRYPTO_DRIVER_UNLOCK(); 466 return err; 467 } 468 469 static void 470 crypto_remove(struct cryptocap *cap) 471 { 472 473 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 474 if (cap->cc_sessions == 0 && cap->cc_koperations == 0) 475 bzero(cap, sizeof(*cap)); 476 } 477 478 /* 479 * Delete an existing session (or a reserved session on an unregistered 480 * driver). 481 */ 482 int 483 crypto_freesession(u_int64_t sid) 484 { 485 struct cryptocap *cap; 486 u_int32_t hid; 487 int err; 488 489 CRYPTO_DRIVER_LOCK(); 490 491 if (crypto_drivers == NULL) { 492 err = EINVAL; 493 goto done; 494 } 495 496 /* Determine two IDs. */ 497 hid = CRYPTO_SESID2HID(sid); 498 499 if (hid >= crypto_drivers_num) { 500 err = ENOENT; 501 goto done; 502 } 503 cap = &crypto_drivers[hid]; 504 505 if (cap->cc_sessions) 506 cap->cc_sessions--; 507 508 /* Call the driver cleanup routine, if available. */ 509 err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); 510 511 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) 512 crypto_remove(cap); 513 514 done: 515 CRYPTO_DRIVER_UNLOCK(); 516 return err; 517 } 518 519 /* 520 * Return an unused driver id. Used by drivers prior to registering 521 * support for the algorithms they handle. 522 */ 523 int32_t 524 crypto_get_driverid(device_t dev, int flags) 525 { 526 struct cryptocap *newdrv; 527 int i; 528 529 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 530 printf("%s: no flags specified when registering driver\n", 531 device_get_nameunit(dev)); 532 return -1; 533 } 534 535 CRYPTO_DRIVER_LOCK(); 536 537 for (i = 0; i < crypto_drivers_num; i++) { 538 if (crypto_drivers[i].cc_dev == NULL && 539 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { 540 break; 541 } 542 } 543 544 /* Out of entries, allocate some more. */ 545 if (i == crypto_drivers_num) { 546 /* Be careful about wrap-around. */ 547 if (2 * crypto_drivers_num <= crypto_drivers_num) { 548 CRYPTO_DRIVER_UNLOCK(); 549 printf("crypto: driver count wraparound!\n"); 550 return -1; 551 } 552 553 newdrv = malloc(2 * crypto_drivers_num * 554 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 555 if (newdrv == NULL) { 556 CRYPTO_DRIVER_UNLOCK(); 557 printf("crypto: no space to expand driver table!\n"); 558 return -1; 559 } 560 561 bcopy(crypto_drivers, newdrv, 562 crypto_drivers_num * sizeof(struct cryptocap)); 563 564 crypto_drivers_num *= 2; 565 566 free(crypto_drivers, M_CRYPTO_DATA); 567 crypto_drivers = newdrv; 568 } 569 570 /* NB: state is zero'd on free */ 571 crypto_drivers[i].cc_sessions = 1; /* Mark */ 572 crypto_drivers[i].cc_dev = dev; 573 crypto_drivers[i].cc_flags = flags; 574 if (bootverbose) 575 printf("crypto: assign %s driver id %u, flags %u\n", 576 device_get_nameunit(dev), i, flags); 577 578 CRYPTO_DRIVER_UNLOCK(); 579 580 return i; 581 } 582 583 /* 584 * Lookup a driver by name. We match against the full device 585 * name and unit, and against just the name. The latter gives 586 * us a simple widlcarding by device name. On success return the 587 * driver/hardware identifier; otherwise return -1. 588 */ 589 int 590 crypto_find_driver(const char *match) 591 { 592 int i, len = strlen(match); 593 594 CRYPTO_DRIVER_LOCK(); 595 for (i = 0; i < crypto_drivers_num; i++) { 596 device_t dev = crypto_drivers[i].cc_dev; 597 if (dev == NULL || 598 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) 599 continue; 600 if (strncmp(match, device_get_nameunit(dev), len) == 0 || 601 strncmp(match, device_get_name(dev), len) == 0) 602 break; 603 } 604 CRYPTO_DRIVER_UNLOCK(); 605 return i < crypto_drivers_num ? i : -1; 606 } 607 608 /* 609 * Return the device_t for the specified driver or NULL 610 * if the driver identifier is invalid. 611 */ 612 device_t 613 crypto_find_device_byhid(int hid) 614 { 615 struct cryptocap *cap = crypto_checkdriver(hid); 616 return cap != NULL ? cap->cc_dev : NULL; 617 } 618 619 /* 620 * Return the device/driver capabilities. 621 */ 622 int 623 crypto_getcaps(int hid) 624 { 625 struct cryptocap *cap = crypto_checkdriver(hid); 626 return cap != NULL ? cap->cc_flags : 0; 627 } 628 629 /* 630 * Register support for a key-related algorithm. This routine 631 * is called once for each algorithm supported a driver. 632 */ 633 int 634 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 635 { 636 struct cryptocap *cap; 637 int err; 638 639 CRYPTO_DRIVER_LOCK(); 640 641 cap = crypto_checkdriver(driverid); 642 if (cap != NULL && 643 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 644 /* 645 * XXX Do some performance testing to determine placing. 646 * XXX We probably need an auxiliary data structure that 647 * XXX describes relative performances. 648 */ 649 650 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 651 if (bootverbose) 652 printf("crypto: %s registers key alg %u flags %u\n" 653 , device_get_nameunit(cap->cc_dev) 654 , kalg 655 , flags 656 ); 657 err = 0; 658 } else 659 err = EINVAL; 660 661 CRYPTO_DRIVER_UNLOCK(); 662 return err; 663 } 664 665 /* 666 * Register support for a non-key-related algorithm. This routine 667 * is called once for each such algorithm supported by a driver. 668 */ 669 int 670 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 671 u_int32_t flags) 672 { 673 struct cryptocap *cap; 674 int err; 675 676 CRYPTO_DRIVER_LOCK(); 677 678 cap = crypto_checkdriver(driverid); 679 /* NB: algorithms are in the range [1..max] */ 680 if (cap != NULL && 681 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 682 /* 683 * XXX Do some performance testing to determine placing. 684 * XXX We probably need an auxiliary data structure that 685 * XXX describes relative performances. 686 */ 687 688 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 689 cap->cc_max_op_len[alg] = maxoplen; 690 if (bootverbose) 691 printf("crypto: %s registers alg %u flags %u maxoplen %u\n" 692 , device_get_nameunit(cap->cc_dev) 693 , alg 694 , flags 695 , maxoplen 696 ); 697 cap->cc_sessions = 0; /* Unmark */ 698 err = 0; 699 } else 700 err = EINVAL; 701 702 CRYPTO_DRIVER_UNLOCK(); 703 return err; 704 } 705 706 static void 707 driver_finis(struct cryptocap *cap) 708 { 709 u_int32_t ses, kops; 710 711 CRYPTO_DRIVER_ASSERT(); 712 713 ses = cap->cc_sessions; 714 kops = cap->cc_koperations; 715 bzero(cap, sizeof(*cap)); 716 if (ses != 0 || kops != 0) { 717 /* 718 * If there are pending sessions, 719 * just mark as invalid. 720 */ 721 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 722 cap->cc_sessions = ses; 723 cap->cc_koperations = kops; 724 } 725 } 726 727 /* 728 * Unregister a crypto driver. If there are pending sessions using it, 729 * leave enough information around so that subsequent calls using those 730 * sessions will correctly detect the driver has been unregistered and 731 * reroute requests. 732 */ 733 int 734 crypto_unregister(u_int32_t driverid, int alg) 735 { 736 struct cryptocap *cap; 737 int i, err; 738 739 CRYPTO_DRIVER_LOCK(); 740 cap = crypto_checkdriver(driverid); 741 if (cap != NULL && 742 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 743 cap->cc_alg[alg] != 0) { 744 cap->cc_alg[alg] = 0; 745 cap->cc_max_op_len[alg] = 0; 746 747 /* Was this the last algorithm ? */ 748 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 749 if (cap->cc_alg[i] != 0) 750 break; 751 752 if (i == CRYPTO_ALGORITHM_MAX + 1) 753 driver_finis(cap); 754 err = 0; 755 } else 756 err = EINVAL; 757 CRYPTO_DRIVER_UNLOCK(); 758 759 return err; 760 } 761 762 /* 763 * Unregister all algorithms associated with a crypto driver. 764 * If there are pending sessions using it, leave enough information 765 * around so that subsequent calls using those sessions will 766 * correctly detect the driver has been unregistered and reroute 767 * requests. 768 */ 769 int 770 crypto_unregister_all(u_int32_t driverid) 771 { 772 struct cryptocap *cap; 773 int err; 774 775 CRYPTO_DRIVER_LOCK(); 776 cap = crypto_checkdriver(driverid); 777 if (cap != NULL) { 778 driver_finis(cap); 779 err = 0; 780 } else 781 err = EINVAL; 782 CRYPTO_DRIVER_UNLOCK(); 783 784 return err; 785 } 786 787 /* 788 * Clear blockage on a driver. The what parameter indicates whether 789 * the driver is now ready for cryptop's and/or cryptokop's. 790 */ 791 int 792 crypto_unblock(u_int32_t driverid, int what) 793 { 794 struct cryptocap *cap; 795 int err; 796 797 CRYPTO_Q_LOCK(); 798 cap = crypto_checkdriver(driverid); 799 if (cap != NULL) { 800 if (what & CRYPTO_SYMQ) 801 cap->cc_qblocked = 0; 802 if (what & CRYPTO_ASYMQ) 803 cap->cc_kqblocked = 0; 804 if (crp_sleep) 805 wakeup_one(&crp_q); 806 err = 0; 807 } else 808 err = EINVAL; 809 CRYPTO_Q_UNLOCK(); 810 811 return err; 812 } 813 814 /* 815 * Add a crypto request to a queue, to be processed by the kernel thread. 816 */ 817 int 818 crypto_dispatch(struct cryptop *crp) 819 { 820 struct cryptocap *cap; 821 u_int32_t hid; 822 int result; 823 824 cryptostats.cs_ops++; 825 826 #ifdef CRYPTO_TIMING 827 if (crypto_timing) 828 binuptime(&crp->crp_tstamp); 829 #endif 830 831 hid = CRYPTO_SESID2HID(crp->crp_sid); 832 833 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 834 /* 835 * Caller marked the request to be processed 836 * immediately; dispatch it directly to the 837 * driver unless the driver is currently blocked. 838 */ 839 cap = crypto_checkdriver(hid); 840 /* Driver cannot disappeared when there is an active session. */ 841 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); 842 if (!cap->cc_qblocked) { 843 result = crypto_invoke(cap, crp, 0); 844 if (result != ERESTART) 845 return (result); 846 /* 847 * The driver ran out of resources, put the request on 848 * the queue. 849 */ 850 } 851 } 852 CRYPTO_Q_LOCK(); 853 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 854 if (crp_sleep) 855 wakeup_one(&crp_q); 856 CRYPTO_Q_UNLOCK(); 857 return 0; 858 } 859 860 /* 861 * Add an asymetric crypto request to a queue, 862 * to be processed by the kernel thread. 863 */ 864 int 865 crypto_kdispatch(struct cryptkop *krp) 866 { 867 int error; 868 869 cryptostats.cs_kops++; 870 871 error = crypto_kinvoke(krp, krp->krp_crid); 872 if (error == ERESTART) { 873 CRYPTO_Q_LOCK(); 874 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 875 if (crp_sleep) 876 wakeup_one(&crp_q); 877 CRYPTO_Q_UNLOCK(); 878 error = 0; 879 } 880 return error; 881 } 882 883 /* 884 * Verify a driver is suitable for the specified operation. 885 */ 886 static __inline int 887 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 888 { 889 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 890 } 891 892 /* 893 * Select a driver for an asym operation. The driver must 894 * support the necessary algorithm. The caller can constrain 895 * which device is selected with the flags parameter. The 896 * algorithm we use here is pretty stupid; just use the first 897 * driver that supports the algorithms we need. If there are 898 * multiple suitable drivers we choose the driver with the 899 * fewest active operations. We prefer hardware-backed 900 * drivers to software ones when either may be used. 901 */ 902 static struct cryptocap * 903 crypto_select_kdriver(const struct cryptkop *krp, int flags) 904 { 905 struct cryptocap *cap, *best, *blocked; 906 int match, hid; 907 908 CRYPTO_DRIVER_ASSERT(); 909 910 /* 911 * Look first for hardware crypto devices if permitted. 912 */ 913 if (flags & CRYPTOCAP_F_HARDWARE) 914 match = CRYPTOCAP_F_HARDWARE; 915 else 916 match = CRYPTOCAP_F_SOFTWARE; 917 best = NULL; 918 blocked = NULL; 919 again: 920 for (hid = 0; hid < crypto_drivers_num; hid++) { 921 cap = &crypto_drivers[hid]; 922 /* 923 * If it's not initialized, is in the process of 924 * going away, or is not appropriate (hardware 925 * or software based on match), then skip. 926 */ 927 if (cap->cc_dev == NULL || 928 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || 929 (cap->cc_flags & match) == 0) 930 continue; 931 932 /* verify all the algorithms are supported. */ 933 if (kdriver_suitable(cap, krp)) { 934 if (best == NULL || 935 cap->cc_koperations < best->cc_koperations) 936 best = cap; 937 } 938 } 939 if (best != NULL) 940 return best; 941 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 942 /* sort of an Algol 68-style for loop */ 943 match = CRYPTOCAP_F_SOFTWARE; 944 goto again; 945 } 946 return best; 947 } 948 949 /* 950 * Dispatch an asymmetric crypto request. 951 */ 952 static int 953 crypto_kinvoke(struct cryptkop *krp, int crid) 954 { 955 struct cryptocap *cap = NULL; 956 int error; 957 958 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 959 KASSERT(krp->krp_callback != NULL, 960 ("%s: krp->crp_callback == NULL", __func__)); 961 962 CRYPTO_DRIVER_LOCK(); 963 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 964 cap = crypto_checkdriver(crid); 965 if (cap != NULL) { 966 /* 967 * Driver present, it must support the necessary 968 * algorithm and, if s/w drivers are excluded, 969 * it must be registered as hardware-backed. 970 */ 971 if (!kdriver_suitable(cap, krp) || 972 (!crypto_devallowsoft && 973 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 974 cap = NULL; 975 } 976 } else { 977 /* 978 * No requested driver; select based on crid flags. 979 */ 980 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 981 crid &= ~CRYPTOCAP_F_SOFTWARE; 982 cap = crypto_select_kdriver(krp, crid); 983 } 984 if (cap != NULL && !cap->cc_kqblocked) { 985 krp->krp_hid = cap - crypto_drivers; 986 cap->cc_koperations++; 987 CRYPTO_DRIVER_UNLOCK(); 988 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 989 CRYPTO_DRIVER_LOCK(); 990 if (error == ERESTART) { 991 cap->cc_koperations--; 992 CRYPTO_DRIVER_UNLOCK(); 993 return (error); 994 } 995 } else { 996 /* 997 * NB: cap is !NULL if device is blocked; in 998 * that case return ERESTART so the operation 999 * is resubmitted if possible. 1000 */ 1001 error = (cap == NULL) ? ENODEV : ERESTART; 1002 } 1003 CRYPTO_DRIVER_UNLOCK(); 1004 1005 if (error) { 1006 krp->krp_status = error; 1007 crypto_kdone(krp); 1008 } 1009 return 0; 1010 } 1011 1012 #ifdef CRYPTO_TIMING 1013 static void 1014 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 1015 { 1016 struct bintime now, delta; 1017 struct timespec t; 1018 uint64_t u; 1019 1020 binuptime(&now); 1021 u = now.frac; 1022 delta.frac = now.frac - bt->frac; 1023 delta.sec = now.sec - bt->sec; 1024 if (u < delta.frac) 1025 delta.sec--; 1026 bintime2timespec(&delta, &t); 1027 timespecadd(&ts->acc, &t); 1028 if (timespeccmp(&t, &ts->min, <)) 1029 ts->min = t; 1030 if (timespeccmp(&t, &ts->max, >)) 1031 ts->max = t; 1032 ts->count++; 1033 1034 *bt = now; 1035 } 1036 #endif 1037 1038 /* 1039 * Dispatch a crypto request to the appropriate crypto devices. 1040 */ 1041 static int 1042 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1043 { 1044 1045 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1046 KASSERT(crp->crp_callback != NULL, 1047 ("%s: crp->crp_callback == NULL", __func__)); 1048 KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); 1049 1050 #ifdef CRYPTO_TIMING 1051 if (crypto_timing) 1052 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1053 #endif 1054 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1055 struct cryptodesc *crd; 1056 u_int64_t nid; 1057 1058 /* 1059 * Driver has unregistered; migrate the session and return 1060 * an error to the caller so they'll resubmit the op. 1061 * 1062 * XXX: What if there are more already queued requests for this 1063 * session? 1064 */ 1065 crypto_freesession(crp->crp_sid); 1066 1067 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 1068 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 1069 1070 /* XXX propagate flags from initial session? */ 1071 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 1072 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1073 crp->crp_sid = nid; 1074 1075 crp->crp_etype = EAGAIN; 1076 crypto_done(crp); 1077 return 0; 1078 } else { 1079 /* 1080 * Invoke the driver to process the request. 1081 */ 1082 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1083 } 1084 } 1085 1086 /* 1087 * Release a set of crypto descriptors. 1088 */ 1089 void 1090 crypto_freereq(struct cryptop *crp) 1091 { 1092 struct cryptodesc *crd; 1093 1094 if (crp == NULL) 1095 return; 1096 1097 #ifdef DIAGNOSTIC 1098 { 1099 struct cryptop *crp2; 1100 1101 CRYPTO_Q_LOCK(); 1102 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1103 KASSERT(crp2 != crp, 1104 ("Freeing cryptop from the crypto queue (%p).", 1105 crp)); 1106 } 1107 CRYPTO_Q_UNLOCK(); 1108 CRYPTO_RETQ_LOCK(); 1109 TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { 1110 KASSERT(crp2 != crp, 1111 ("Freeing cryptop from the return queue (%p).", 1112 crp)); 1113 } 1114 CRYPTO_RETQ_UNLOCK(); 1115 } 1116 #endif 1117 1118 while ((crd = crp->crp_desc) != NULL) { 1119 crp->crp_desc = crd->crd_next; 1120 uma_zfree(cryptodesc_zone, crd); 1121 } 1122 uma_zfree(cryptop_zone, crp); 1123 } 1124 1125 /* 1126 * Acquire a set of crypto descriptors. 1127 */ 1128 struct cryptop * 1129 crypto_getreq(int num) 1130 { 1131 struct cryptodesc *crd; 1132 struct cryptop *crp; 1133 1134 crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO); 1135 if (crp != NULL) { 1136 while (num--) { 1137 crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO); 1138 if (crd == NULL) { 1139 crypto_freereq(crp); 1140 return NULL; 1141 } 1142 1143 crd->crd_next = crp->crp_desc; 1144 crp->crp_desc = crd; 1145 } 1146 } 1147 return crp; 1148 } 1149 1150 /* 1151 * Invoke the callback on behalf of the driver. 1152 */ 1153 void 1154 crypto_done(struct cryptop *crp) 1155 { 1156 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1157 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1158 crp->crp_flags |= CRYPTO_F_DONE; 1159 if (crp->crp_etype != 0) 1160 cryptostats.cs_errs++; 1161 #ifdef CRYPTO_TIMING 1162 if (crypto_timing) 1163 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1164 #endif 1165 /* 1166 * CBIMM means unconditionally do the callback immediately; 1167 * CBIFSYNC means do the callback immediately only if the 1168 * operation was done synchronously. Both are used to avoid 1169 * doing extraneous context switches; the latter is mostly 1170 * used with the software crypto driver. 1171 */ 1172 if ((crp->crp_flags & CRYPTO_F_CBIMM) || 1173 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1174 (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { 1175 /* 1176 * Do the callback directly. This is ok when the 1177 * callback routine does very little (e.g. the 1178 * /dev/crypto callback method just does a wakeup). 1179 */ 1180 #ifdef CRYPTO_TIMING 1181 if (crypto_timing) { 1182 /* 1183 * NB: We must copy the timestamp before 1184 * doing the callback as the cryptop is 1185 * likely to be reclaimed. 1186 */ 1187 struct bintime t = crp->crp_tstamp; 1188 crypto_tstat(&cryptostats.cs_cb, &t); 1189 crp->crp_callback(crp); 1190 crypto_tstat(&cryptostats.cs_finis, &t); 1191 } else 1192 #endif 1193 crp->crp_callback(crp); 1194 } else { 1195 /* 1196 * Normal case; queue the callback for the thread. 1197 */ 1198 CRYPTO_RETQ_LOCK(); 1199 if (CRYPTO_RETQ_EMPTY()) 1200 wakeup_one(&crp_ret_q); /* shared wait channel */ 1201 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1202 CRYPTO_RETQ_UNLOCK(); 1203 } 1204 } 1205 1206 /* 1207 * Invoke the callback on behalf of the driver. 1208 */ 1209 void 1210 crypto_kdone(struct cryptkop *krp) 1211 { 1212 struct cryptocap *cap; 1213 1214 if (krp->krp_status != 0) 1215 cryptostats.cs_kerrs++; 1216 CRYPTO_DRIVER_LOCK(); 1217 /* XXX: What if driver is loaded in the meantime? */ 1218 if (krp->krp_hid < crypto_drivers_num) { 1219 cap = &crypto_drivers[krp->krp_hid]; 1220 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1221 cap->cc_koperations--; 1222 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1223 crypto_remove(cap); 1224 } 1225 CRYPTO_DRIVER_UNLOCK(); 1226 CRYPTO_RETQ_LOCK(); 1227 if (CRYPTO_RETQ_EMPTY()) 1228 wakeup_one(&crp_ret_q); /* shared wait channel */ 1229 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1230 CRYPTO_RETQ_UNLOCK(); 1231 } 1232 1233 int 1234 crypto_getfeat(int *featp) 1235 { 1236 int hid, kalg, feat = 0; 1237 1238 CRYPTO_DRIVER_LOCK(); 1239 for (hid = 0; hid < crypto_drivers_num; hid++) { 1240 const struct cryptocap *cap = &crypto_drivers[hid]; 1241 1242 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1243 !crypto_devallowsoft) { 1244 continue; 1245 } 1246 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1247 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1248 feat |= 1 << kalg; 1249 } 1250 CRYPTO_DRIVER_UNLOCK(); 1251 *featp = feat; 1252 return (0); 1253 } 1254 1255 /* 1256 * Terminate a thread at module unload. The process that 1257 * initiated this is waiting for us to signal that we're gone; 1258 * wake it up and exit. We use the driver table lock to insure 1259 * we don't do the wakeup before they're waiting. There is no 1260 * race here because the waiter sleeps on the proc lock for the 1261 * thread so it gets notified at the right time because of an 1262 * extra wakeup that's done in exit1(). 1263 */ 1264 static void 1265 crypto_finis(void *chan) 1266 { 1267 CRYPTO_DRIVER_LOCK(); 1268 wakeup_one(chan); 1269 CRYPTO_DRIVER_UNLOCK(); 1270 kproc_exit(0); 1271 } 1272 1273 /* 1274 * Crypto thread, dispatches crypto requests. 1275 */ 1276 static void 1277 crypto_proc(void) 1278 { 1279 struct cryptop *crp, *submit; 1280 struct cryptkop *krp; 1281 struct cryptocap *cap; 1282 u_int32_t hid; 1283 int result, hint; 1284 1285 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1286 fpu_kern_thread(FPU_KERN_NORMAL); 1287 #endif 1288 1289 CRYPTO_Q_LOCK(); 1290 for (;;) { 1291 /* 1292 * Find the first element in the queue that can be 1293 * processed and look-ahead to see if multiple ops 1294 * are ready for the same driver. 1295 */ 1296 submit = NULL; 1297 hint = 0; 1298 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1299 hid = CRYPTO_SESID2HID(crp->crp_sid); 1300 cap = crypto_checkdriver(hid); 1301 /* 1302 * Driver cannot disappeared when there is an active 1303 * session. 1304 */ 1305 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1306 __func__, __LINE__)); 1307 if (cap == NULL || cap->cc_dev == NULL) { 1308 /* Op needs to be migrated, process it. */ 1309 if (submit == NULL) 1310 submit = crp; 1311 break; 1312 } 1313 if (!cap->cc_qblocked) { 1314 if (submit != NULL) { 1315 /* 1316 * We stop on finding another op, 1317 * regardless whether its for the same 1318 * driver or not. We could keep 1319 * searching the queue but it might be 1320 * better to just use a per-driver 1321 * queue instead. 1322 */ 1323 if (CRYPTO_SESID2HID(submit->crp_sid) == hid) 1324 hint = CRYPTO_HINT_MORE; 1325 break; 1326 } else { 1327 submit = crp; 1328 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1329 break; 1330 /* keep scanning for more are q'd */ 1331 } 1332 } 1333 } 1334 if (submit != NULL) { 1335 TAILQ_REMOVE(&crp_q, submit, crp_next); 1336 hid = CRYPTO_SESID2HID(submit->crp_sid); 1337 cap = crypto_checkdriver(hid); 1338 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1339 __func__, __LINE__)); 1340 result = crypto_invoke(cap, submit, hint); 1341 if (result == ERESTART) { 1342 /* 1343 * The driver ran out of resources, mark the 1344 * driver ``blocked'' for cryptop's and put 1345 * the request back in the queue. It would 1346 * best to put the request back where we got 1347 * it but that's hard so for now we put it 1348 * at the front. This should be ok; putting 1349 * it at the end does not work. 1350 */ 1351 /* XXX validate sid again? */ 1352 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1353 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1354 cryptostats.cs_blocks++; 1355 } 1356 } 1357 1358 /* As above, but for key ops */ 1359 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1360 cap = crypto_checkdriver(krp->krp_hid); 1361 if (cap == NULL || cap->cc_dev == NULL) { 1362 /* 1363 * Operation needs to be migrated, invalidate 1364 * the assigned device so it will reselect a 1365 * new one below. Propagate the original 1366 * crid selection flags if supplied. 1367 */ 1368 krp->krp_hid = krp->krp_crid & 1369 (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); 1370 if (krp->krp_hid == 0) 1371 krp->krp_hid = 1372 CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; 1373 break; 1374 } 1375 if (!cap->cc_kqblocked) 1376 break; 1377 } 1378 if (krp != NULL) { 1379 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1380 result = crypto_kinvoke(krp, krp->krp_hid); 1381 if (result == ERESTART) { 1382 /* 1383 * The driver ran out of resources, mark the 1384 * driver ``blocked'' for cryptkop's and put 1385 * the request back in the queue. It would 1386 * best to put the request back where we got 1387 * it but that's hard so for now we put it 1388 * at the front. This should be ok; putting 1389 * it at the end does not work. 1390 */ 1391 /* XXX validate sid again? */ 1392 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1393 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1394 cryptostats.cs_kblocks++; 1395 } 1396 } 1397 1398 if (submit == NULL && krp == NULL) { 1399 /* 1400 * Nothing more to be processed. Sleep until we're 1401 * woken because there are more ops to process. 1402 * This happens either by submission or by a driver 1403 * becoming unblocked and notifying us through 1404 * crypto_unblock. Note that when we wakeup we 1405 * start processing each queue again from the 1406 * front. It's not clear that it's important to 1407 * preserve this ordering since ops may finish 1408 * out of order if dispatched to different devices 1409 * and some become blocked while others do not. 1410 */ 1411 crp_sleep = 1; 1412 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1413 crp_sleep = 0; 1414 if (cryptoproc == NULL) 1415 break; 1416 cryptostats.cs_intrs++; 1417 } 1418 } 1419 CRYPTO_Q_UNLOCK(); 1420 1421 crypto_finis(&crp_q); 1422 } 1423 1424 /* 1425 * Crypto returns thread, does callbacks for processed crypto requests. 1426 * Callbacks are done here, rather than in the crypto drivers, because 1427 * callbacks typically are expensive and would slow interrupt handling. 1428 */ 1429 static void 1430 crypto_ret_proc(void) 1431 { 1432 struct cryptop *crpt; 1433 struct cryptkop *krpt; 1434 1435 CRYPTO_RETQ_LOCK(); 1436 for (;;) { 1437 /* Harvest return q's for completed ops */ 1438 crpt = TAILQ_FIRST(&crp_ret_q); 1439 if (crpt != NULL) 1440 TAILQ_REMOVE(&crp_ret_q, crpt, crp_next); 1441 1442 krpt = TAILQ_FIRST(&crp_ret_kq); 1443 if (krpt != NULL) 1444 TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next); 1445 1446 if (crpt != NULL || krpt != NULL) { 1447 CRYPTO_RETQ_UNLOCK(); 1448 /* 1449 * Run callbacks unlocked. 1450 */ 1451 if (crpt != NULL) { 1452 #ifdef CRYPTO_TIMING 1453 if (crypto_timing) { 1454 /* 1455 * NB: We must copy the timestamp before 1456 * doing the callback as the cryptop is 1457 * likely to be reclaimed. 1458 */ 1459 struct bintime t = crpt->crp_tstamp; 1460 crypto_tstat(&cryptostats.cs_cb, &t); 1461 crpt->crp_callback(crpt); 1462 crypto_tstat(&cryptostats.cs_finis, &t); 1463 } else 1464 #endif 1465 crpt->crp_callback(crpt); 1466 } 1467 if (krpt != NULL) 1468 krpt->krp_callback(krpt); 1469 CRYPTO_RETQ_LOCK(); 1470 } else { 1471 /* 1472 * Nothing more to be processed. Sleep until we're 1473 * woken because there are more returns to process. 1474 */ 1475 msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT, 1476 "crypto_ret_wait", 0); 1477 if (cryptoretproc == NULL) 1478 break; 1479 cryptostats.cs_rets++; 1480 } 1481 } 1482 CRYPTO_RETQ_UNLOCK(); 1483 1484 crypto_finis(&crp_ret_q); 1485 } 1486 1487 #ifdef DDB 1488 static void 1489 db_show_drivers(void) 1490 { 1491 int hid; 1492 1493 db_printf("%12s %4s %4s %8s %2s %2s\n" 1494 , "Device" 1495 , "Ses" 1496 , "Kops" 1497 , "Flags" 1498 , "QB" 1499 , "KB" 1500 ); 1501 for (hid = 0; hid < crypto_drivers_num; hid++) { 1502 const struct cryptocap *cap = &crypto_drivers[hid]; 1503 if (cap->cc_dev == NULL) 1504 continue; 1505 db_printf("%-12s %4u %4u %08x %2u %2u\n" 1506 , device_get_nameunit(cap->cc_dev) 1507 , cap->cc_sessions 1508 , cap->cc_koperations 1509 , cap->cc_flags 1510 , cap->cc_qblocked 1511 , cap->cc_kqblocked 1512 ); 1513 } 1514 } 1515 1516 DB_SHOW_COMMAND(crypto, db_show_crypto) 1517 { 1518 struct cryptop *crp; 1519 1520 db_show_drivers(); 1521 db_printf("\n"); 1522 1523 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1524 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1525 "Desc", "Callback"); 1526 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1527 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" 1528 , (int) CRYPTO_SESID2HID(crp->crp_sid) 1529 , (int) CRYPTO_SESID2CAPS(crp->crp_sid) 1530 , crp->crp_ilen, crp->crp_olen 1531 , crp->crp_etype 1532 , crp->crp_flags 1533 , crp->crp_desc 1534 , crp->crp_callback 1535 ); 1536 } 1537 if (!TAILQ_EMPTY(&crp_ret_q)) { 1538 db_printf("\n%4s %4s %4s %8s\n", 1539 "HID", "Etype", "Flags", "Callback"); 1540 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { 1541 db_printf("%4u %4u %04x %8p\n" 1542 , (int) CRYPTO_SESID2HID(crp->crp_sid) 1543 , crp->crp_etype 1544 , crp->crp_flags 1545 , crp->crp_callback 1546 ); 1547 } 1548 } 1549 } 1550 1551 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 1552 { 1553 struct cryptkop *krp; 1554 1555 db_show_drivers(); 1556 db_printf("\n"); 1557 1558 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 1559 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 1560 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1561 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 1562 , krp->krp_op 1563 , krp->krp_status 1564 , krp->krp_iparams, krp->krp_oparams 1565 , krp->krp_crid, krp->krp_hid 1566 , krp->krp_callback 1567 ); 1568 } 1569 if (!TAILQ_EMPTY(&crp_ret_q)) { 1570 db_printf("%4s %5s %8s %4s %8s\n", 1571 "Op", "Status", "CRID", "HID", "Callback"); 1572 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { 1573 db_printf("%4u %5u %08x %4u %8p\n" 1574 , krp->krp_op 1575 , krp->krp_status 1576 , krp->krp_crid, krp->krp_hid 1577 , krp->krp_callback 1578 ); 1579 } 1580 } 1581 } 1582 #endif 1583 1584 int crypto_modevent(module_t mod, int type, void *unused); 1585 1586 /* 1587 * Initialization code, both for static and dynamic loading. 1588 * Note this is not invoked with the usual MODULE_DECLARE 1589 * mechanism but instead is listed as a dependency by the 1590 * cryptosoft driver. This guarantees proper ordering of 1591 * calls on module load/unload. 1592 */ 1593 int 1594 crypto_modevent(module_t mod, int type, void *unused) 1595 { 1596 int error = EINVAL; 1597 1598 switch (type) { 1599 case MOD_LOAD: 1600 error = crypto_init(); 1601 if (error == 0 && bootverbose) 1602 printf("crypto: <crypto core>\n"); 1603 break; 1604 case MOD_UNLOAD: 1605 /*XXX disallow if active sessions */ 1606 error = 0; 1607 crypto_destroy(); 1608 return 0; 1609 } 1610 return error; 1611 } 1612 MODULE_VERSION(crypto, 1); 1613 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 1614