1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #include "opt_compat.h" 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/kthread.h> 65 #include <sys/linker.h> 66 #include <sys/lock.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/proc.h> 72 #include <sys/refcount.h> 73 #include <sys/sdt.h> 74 #include <sys/smp.h> 75 #include <sys/sysctl.h> 76 #include <sys/taskqueue.h> 77 #include <sys/uio.h> 78 79 #include <ddb/ddb.h> 80 81 #include <vm/uma.h> 82 #include <crypto/intake.h> 83 #include <opencrypto/cryptodev.h> 84 #include <opencrypto/xform_auth.h> 85 #include <opencrypto/xform_enc.h> 86 87 #include <sys/kobj.h> 88 #include <sys/bus.h> 89 #include "cryptodev_if.h" 90 91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 92 #include <machine/pcb.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(opencrypto); 96 97 /* 98 * Crypto drivers register themselves by allocating a slot in the 99 * crypto_drivers table with crypto_get_driverid() and then registering 100 * each asym algorithm they support with crypto_kregister(). 101 */ 102 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 103 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 104 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 105 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 106 107 /* 108 * Crypto device/driver capabilities structure. 109 * 110 * Synchronization: 111 * (d) - protected by CRYPTO_DRIVER_LOCK() 112 * (q) - protected by CRYPTO_Q_LOCK() 113 * Not tagged fields are read-only. 114 */ 115 struct cryptocap { 116 device_t cc_dev; 117 uint32_t cc_hid; 118 u_int32_t cc_sessions; /* (d) # of sessions */ 119 u_int32_t cc_koperations; /* (d) # os asym operations */ 120 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 121 122 int cc_flags; /* (d) flags */ 123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 124 int cc_qblocked; /* (q) symmetric q blocked */ 125 int cc_kqblocked; /* (q) asymmetric q blocked */ 126 size_t cc_session_size; 127 volatile int cc_refs; 128 }; 129 130 static struct cryptocap **crypto_drivers = NULL; 131 static int crypto_drivers_size = 0; 132 133 struct crypto_session { 134 struct cryptocap *cap; 135 void *softc; 136 struct crypto_session_params csp; 137 }; 138 139 /* 140 * There are two queues for crypto requests; one for symmetric (e.g. 141 * cipher) operations and one for asymmetric (e.g. MOD)operations. 142 * A single mutex is used to lock access to both queues. We could 143 * have one per-queue but having one simplifies handling of block/unblock 144 * operations. 145 */ 146 static int crp_sleep = 0; 147 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 148 static TAILQ_HEAD(,cryptkop) crp_kq; 149 static struct mtx crypto_q_mtx; 150 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 151 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 152 153 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 154 "In-kernel cryptography"); 155 156 /* 157 * Taskqueue used to dispatch the crypto requests 158 * that have the CRYPTO_F_ASYNC flag 159 */ 160 static struct taskqueue *crypto_tq; 161 162 /* 163 * Crypto seq numbers are operated on with modular arithmetic 164 */ 165 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 166 167 struct crypto_ret_worker { 168 struct mtx crypto_ret_mtx; 169 170 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 171 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 172 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 173 174 u_int32_t reorder_ops; /* total ordered sym jobs received */ 175 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 176 177 struct proc *cryptoretproc; 178 }; 179 static struct crypto_ret_worker *crypto_ret_workers = NULL; 180 181 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 182 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 183 #define FOREACH_CRYPTO_RETW(w) \ 184 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 185 186 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 187 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 188 #define CRYPTO_RETW_EMPTY(w) \ 189 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 190 191 static int crypto_workers_num = 0; 192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 193 &crypto_workers_num, 0, 194 "Number of crypto workers used to dispatch crypto jobs"); 195 #ifdef COMPAT_FREEBSD12 196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 197 &crypto_workers_num, 0, 198 "Number of crypto workers used to dispatch crypto jobs"); 199 #endif 200 201 static uma_zone_t cryptop_zone; 202 static uma_zone_t cryptoses_zone; 203 204 int crypto_userasymcrypto = 1; 205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 206 &crypto_userasymcrypto, 0, 207 "Enable user-mode access to asymmetric crypto support"); 208 #ifdef COMPAT_FREEBSD12 209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 210 &crypto_userasymcrypto, 0, 211 "Enable/disable user-mode access to asymmetric crypto support"); 212 #endif 213 214 int crypto_devallowsoft = 0; 215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 216 &crypto_devallowsoft, 0, 217 "Enable use of software crypto by /dev/crypto"); 218 #ifdef COMPAT_FREEBSD12 219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 220 &crypto_devallowsoft, 0, 221 "Enable/disable use of software crypto by /dev/crypto"); 222 #endif 223 224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 225 226 static void crypto_proc(void); 227 static struct proc *cryptoproc; 228 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 229 static void crypto_destroy(void); 230 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 231 static int crypto_kinvoke(struct cryptkop *krp); 232 static void crypto_task_invoke(void *ctx, int pending); 233 static void crypto_batch_enqueue(struct cryptop *crp); 234 235 static struct cryptostats cryptostats; 236 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats, 237 cryptostats, "Crypto system statistics"); 238 239 /* Try to avoid directly exposing the key buffer as a symbol */ 240 static struct keybuf *keybuf; 241 242 static struct keybuf empty_keybuf = { 243 .kb_nents = 0 244 }; 245 246 /* Obtain the key buffer from boot metadata */ 247 static void 248 keybuf_init(void) 249 { 250 caddr_t kmdp; 251 252 kmdp = preload_search_by_type("elf kernel"); 253 254 if (kmdp == NULL) 255 kmdp = preload_search_by_type("elf64 kernel"); 256 257 keybuf = (struct keybuf *)preload_search_info(kmdp, 258 MODINFO_METADATA | MODINFOMD_KEYBUF); 259 260 if (keybuf == NULL) 261 keybuf = &empty_keybuf; 262 } 263 264 /* It'd be nice if we could store these in some kind of secure memory... */ 265 struct keybuf * get_keybuf(void) { 266 267 return (keybuf); 268 } 269 270 static struct cryptocap * 271 cap_ref(struct cryptocap *cap) 272 { 273 274 refcount_acquire(&cap->cc_refs); 275 return (cap); 276 } 277 278 static void 279 cap_rele(struct cryptocap *cap) 280 { 281 282 if (refcount_release(&cap->cc_refs) == 0) 283 return; 284 285 KASSERT(cap->cc_sessions == 0, 286 ("freeing crypto driver with active sessions")); 287 KASSERT(cap->cc_koperations == 0, 288 ("freeing crypto driver with active key operations")); 289 290 free(cap, M_CRYPTO_DATA); 291 } 292 293 static int 294 crypto_init(void) 295 { 296 struct crypto_ret_worker *ret_worker; 297 int error; 298 299 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 300 MTX_DEF|MTX_QUIET); 301 302 TAILQ_INIT(&crp_q); 303 TAILQ_INIT(&crp_kq); 304 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 305 306 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 307 0, 0, 0, 0, 308 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 309 cryptoses_zone = uma_zcreate("crypto_session", 310 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 311 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 312 313 if (cryptop_zone == NULL || cryptoses_zone == NULL) { 314 printf("crypto_init: cannot setup crypto zones\n"); 315 error = ENOMEM; 316 goto bad; 317 } 318 319 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 320 crypto_drivers = malloc(crypto_drivers_size * 321 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 322 if (crypto_drivers == NULL) { 323 printf("crypto_init: cannot setup crypto drivers\n"); 324 error = ENOMEM; 325 goto bad; 326 } 327 328 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 329 crypto_workers_num = mp_ncpus; 330 331 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 332 taskqueue_thread_enqueue, &crypto_tq); 333 if (crypto_tq == NULL) { 334 printf("crypto init: cannot setup crypto taskqueue\n"); 335 error = ENOMEM; 336 goto bad; 337 } 338 339 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 340 "crypto"); 341 342 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 343 &cryptoproc, 0, 0, "crypto"); 344 if (error) { 345 printf("crypto_init: cannot start crypto thread; error %d", 346 error); 347 goto bad; 348 } 349 350 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 351 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 352 if (crypto_ret_workers == NULL) { 353 error = ENOMEM; 354 printf("crypto_init: cannot allocate ret workers\n"); 355 goto bad; 356 } 357 358 359 FOREACH_CRYPTO_RETW(ret_worker) { 360 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 361 TAILQ_INIT(&ret_worker->crp_ret_q); 362 TAILQ_INIT(&ret_worker->crp_ret_kq); 363 364 ret_worker->reorder_ops = 0; 365 ret_worker->reorder_cur_seq = 0; 366 367 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 368 369 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 370 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 371 if (error) { 372 printf("crypto_init: cannot start cryptoret thread; error %d", 373 error); 374 goto bad; 375 } 376 } 377 378 keybuf_init(); 379 380 return 0; 381 bad: 382 crypto_destroy(); 383 return error; 384 } 385 386 /* 387 * Signal a crypto thread to terminate. We use the driver 388 * table lock to synchronize the sleep/wakeups so that we 389 * are sure the threads have terminated before we release 390 * the data structures they use. See crypto_finis below 391 * for the other half of this song-and-dance. 392 */ 393 static void 394 crypto_terminate(struct proc **pp, void *q) 395 { 396 struct proc *p; 397 398 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 399 p = *pp; 400 *pp = NULL; 401 if (p) { 402 wakeup_one(q); 403 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 404 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 405 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 406 PROC_UNLOCK(p); 407 CRYPTO_DRIVER_LOCK(); 408 } 409 } 410 411 static void 412 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx, 413 uint8_t padval) 414 { 415 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 416 u_int i; 417 418 KASSERT(axf->blocksize <= sizeof(hmac_key), 419 ("Invalid HMAC block size %d", axf->blocksize)); 420 421 /* 422 * If the key is larger than the block size, use the digest of 423 * the key as the key instead. 424 */ 425 memset(hmac_key, 0, sizeof(hmac_key)); 426 if (klen > axf->blocksize) { 427 axf->Init(auth_ctx); 428 axf->Update(auth_ctx, key, klen); 429 axf->Final(hmac_key, auth_ctx); 430 klen = axf->hashsize; 431 } else 432 memcpy(hmac_key, key, klen); 433 434 for (i = 0; i < axf->blocksize; i++) 435 hmac_key[i] ^= padval; 436 437 axf->Init(auth_ctx); 438 axf->Update(auth_ctx, hmac_key, axf->blocksize); 439 explicit_bzero(hmac_key, sizeof(hmac_key)); 440 } 441 442 void 443 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen, 444 void *auth_ctx) 445 { 446 447 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 448 } 449 450 void 451 hmac_init_opad(struct auth_hash *axf, const char *key, int klen, 452 void *auth_ctx) 453 { 454 455 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 456 } 457 458 static void 459 crypto_destroy(void) 460 { 461 struct crypto_ret_worker *ret_worker; 462 int i; 463 464 /* 465 * Terminate any crypto threads. 466 */ 467 if (crypto_tq != NULL) 468 taskqueue_drain_all(crypto_tq); 469 CRYPTO_DRIVER_LOCK(); 470 crypto_terminate(&cryptoproc, &crp_q); 471 FOREACH_CRYPTO_RETW(ret_worker) 472 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 473 CRYPTO_DRIVER_UNLOCK(); 474 475 /* XXX flush queues??? */ 476 477 /* 478 * Reclaim dynamically allocated resources. 479 */ 480 for (i = 0; i < crypto_drivers_size; i++) { 481 if (crypto_drivers[i] != NULL) 482 cap_rele(crypto_drivers[i]); 483 } 484 free(crypto_drivers, M_CRYPTO_DATA); 485 486 if (cryptoses_zone != NULL) 487 uma_zdestroy(cryptoses_zone); 488 if (cryptop_zone != NULL) 489 uma_zdestroy(cryptop_zone); 490 mtx_destroy(&crypto_q_mtx); 491 FOREACH_CRYPTO_RETW(ret_worker) 492 mtx_destroy(&ret_worker->crypto_ret_mtx); 493 free(crypto_ret_workers, M_CRYPTO_DATA); 494 if (crypto_tq != NULL) 495 taskqueue_free(crypto_tq); 496 mtx_destroy(&crypto_drivers_mtx); 497 } 498 499 uint32_t 500 crypto_ses2hid(crypto_session_t crypto_session) 501 { 502 return (crypto_session->cap->cc_hid); 503 } 504 505 uint32_t 506 crypto_ses2caps(crypto_session_t crypto_session) 507 { 508 return (crypto_session->cap->cc_flags & 0xff000000); 509 } 510 511 void * 512 crypto_get_driver_session(crypto_session_t crypto_session) 513 { 514 return (crypto_session->softc); 515 } 516 517 const struct crypto_session_params * 518 crypto_get_params(crypto_session_t crypto_session) 519 { 520 return (&crypto_session->csp); 521 } 522 523 struct auth_hash * 524 crypto_auth_hash(const struct crypto_session_params *csp) 525 { 526 527 switch (csp->csp_auth_alg) { 528 case CRYPTO_SHA1_HMAC: 529 return (&auth_hash_hmac_sha1); 530 case CRYPTO_SHA2_224_HMAC: 531 return (&auth_hash_hmac_sha2_224); 532 case CRYPTO_SHA2_256_HMAC: 533 return (&auth_hash_hmac_sha2_256); 534 case CRYPTO_SHA2_384_HMAC: 535 return (&auth_hash_hmac_sha2_384); 536 case CRYPTO_SHA2_512_HMAC: 537 return (&auth_hash_hmac_sha2_512); 538 case CRYPTO_NULL_HMAC: 539 return (&auth_hash_null); 540 case CRYPTO_RIPEMD160_HMAC: 541 return (&auth_hash_hmac_ripemd_160); 542 case CRYPTO_SHA1: 543 return (&auth_hash_sha1); 544 case CRYPTO_SHA2_224: 545 return (&auth_hash_sha2_224); 546 case CRYPTO_SHA2_256: 547 return (&auth_hash_sha2_256); 548 case CRYPTO_SHA2_384: 549 return (&auth_hash_sha2_384); 550 case CRYPTO_SHA2_512: 551 return (&auth_hash_sha2_512); 552 case CRYPTO_AES_NIST_GMAC: 553 switch (csp->csp_auth_klen) { 554 case 128 / 8: 555 return (&auth_hash_nist_gmac_aes_128); 556 case 192 / 8: 557 return (&auth_hash_nist_gmac_aes_192); 558 case 256 / 8: 559 return (&auth_hash_nist_gmac_aes_256); 560 default: 561 return (NULL); 562 } 563 case CRYPTO_BLAKE2B: 564 return (&auth_hash_blake2b); 565 case CRYPTO_BLAKE2S: 566 return (&auth_hash_blake2s); 567 case CRYPTO_POLY1305: 568 return (&auth_hash_poly1305); 569 case CRYPTO_AES_CCM_CBC_MAC: 570 switch (csp->csp_auth_klen) { 571 case 128 / 8: 572 return (&auth_hash_ccm_cbc_mac_128); 573 case 192 / 8: 574 return (&auth_hash_ccm_cbc_mac_192); 575 case 256 / 8: 576 return (&auth_hash_ccm_cbc_mac_256); 577 default: 578 return (NULL); 579 } 580 default: 581 return (NULL); 582 } 583 } 584 585 struct enc_xform * 586 crypto_cipher(const struct crypto_session_params *csp) 587 { 588 589 switch (csp->csp_cipher_alg) { 590 case CRYPTO_RIJNDAEL128_CBC: 591 return (&enc_xform_rijndael128); 592 case CRYPTO_AES_XTS: 593 return (&enc_xform_aes_xts); 594 case CRYPTO_AES_ICM: 595 return (&enc_xform_aes_icm); 596 case CRYPTO_AES_NIST_GCM_16: 597 return (&enc_xform_aes_nist_gcm); 598 case CRYPTO_CAMELLIA_CBC: 599 return (&enc_xform_camellia); 600 case CRYPTO_NULL_CBC: 601 return (&enc_xform_null); 602 case CRYPTO_CHACHA20: 603 return (&enc_xform_chacha20); 604 case CRYPTO_AES_CCM_16: 605 return (&enc_xform_ccm); 606 default: 607 return (NULL); 608 } 609 } 610 611 static struct cryptocap * 612 crypto_checkdriver(u_int32_t hid) 613 { 614 615 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 616 } 617 618 /* 619 * Select a driver for a new session that supports the specified 620 * algorithms and, optionally, is constrained according to the flags. 621 */ 622 static struct cryptocap * 623 crypto_select_driver(const struct crypto_session_params *csp, int flags) 624 { 625 struct cryptocap *cap, *best; 626 int best_match, error, hid; 627 628 CRYPTO_DRIVER_ASSERT(); 629 630 best = NULL; 631 for (hid = 0; hid < crypto_drivers_size; hid++) { 632 /* 633 * If there is no driver for this slot, or the driver 634 * is not appropriate (hardware or software based on 635 * match), then skip. 636 */ 637 cap = crypto_drivers[hid]; 638 if (cap == NULL || 639 (cap->cc_flags & flags) == 0) 640 continue; 641 642 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 643 if (error >= 0) 644 continue; 645 646 /* 647 * Use the driver with the highest probe value. 648 * Hardware drivers use a higher probe value than 649 * software. In case of a tie, prefer the driver with 650 * the fewest active sessions. 651 */ 652 if (best == NULL || error > best_match || 653 (error == best_match && 654 cap->cc_sessions < best->cc_sessions)) { 655 best = cap; 656 best_match = error; 657 } 658 } 659 return best; 660 } 661 662 static enum alg_type { 663 ALG_NONE = 0, 664 ALG_CIPHER, 665 ALG_DIGEST, 666 ALG_KEYED_DIGEST, 667 ALG_COMPRESSION, 668 ALG_AEAD 669 } alg_types[] = { 670 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 671 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 672 [CRYPTO_AES_CBC] = ALG_CIPHER, 673 [CRYPTO_SHA1] = ALG_DIGEST, 674 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 675 [CRYPTO_NULL_CBC] = ALG_CIPHER, 676 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 677 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 678 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 679 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 680 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 681 [CRYPTO_AES_XTS] = ALG_CIPHER, 682 [CRYPTO_AES_ICM] = ALG_CIPHER, 683 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 684 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 685 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 686 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 687 [CRYPTO_CHACHA20] = ALG_CIPHER, 688 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 689 [CRYPTO_RIPEMD160] = ALG_DIGEST, 690 [CRYPTO_SHA2_224] = ALG_DIGEST, 691 [CRYPTO_SHA2_256] = ALG_DIGEST, 692 [CRYPTO_SHA2_384] = ALG_DIGEST, 693 [CRYPTO_SHA2_512] = ALG_DIGEST, 694 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 695 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 696 [CRYPTO_AES_CCM_16] = ALG_AEAD, 697 }; 698 699 static enum alg_type 700 alg_type(int alg) 701 { 702 703 if (alg < nitems(alg_types)) 704 return (alg_types[alg]); 705 return (ALG_NONE); 706 } 707 708 static bool 709 alg_is_compression(int alg) 710 { 711 712 return (alg_type(alg) == ALG_COMPRESSION); 713 } 714 715 static bool 716 alg_is_cipher(int alg) 717 { 718 719 return (alg_type(alg) == ALG_CIPHER); 720 } 721 722 static bool 723 alg_is_digest(int alg) 724 { 725 726 return (alg_type(alg) == ALG_DIGEST || 727 alg_type(alg) == ALG_KEYED_DIGEST); 728 } 729 730 static bool 731 alg_is_keyed_digest(int alg) 732 { 733 734 return (alg_type(alg) == ALG_KEYED_DIGEST); 735 } 736 737 static bool 738 alg_is_aead(int alg) 739 { 740 741 return (alg_type(alg) == ALG_AEAD); 742 } 743 744 /* Various sanity checks on crypto session parameters. */ 745 static bool 746 check_csp(const struct crypto_session_params *csp) 747 { 748 struct auth_hash *axf; 749 750 /* Mode-independent checks. */ 751 if ((csp->csp_flags & ~(CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD)) != 752 0) 753 return (false); 754 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 755 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 756 return (false); 757 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 758 return (false); 759 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 760 return (false); 761 762 switch (csp->csp_mode) { 763 case CSP_MODE_COMPRESS: 764 if (!alg_is_compression(csp->csp_cipher_alg)) 765 return (false); 766 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 767 return (false); 768 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 769 return (false); 770 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 771 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 772 csp->csp_auth_mlen != 0) 773 return (false); 774 break; 775 case CSP_MODE_CIPHER: 776 if (!alg_is_cipher(csp->csp_cipher_alg)) 777 return (false); 778 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 779 return (false); 780 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 781 if (csp->csp_cipher_klen == 0) 782 return (false); 783 if (csp->csp_ivlen == 0) 784 return (false); 785 } 786 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 787 return (false); 788 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 789 csp->csp_auth_mlen != 0) 790 return (false); 791 break; 792 case CSP_MODE_DIGEST: 793 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 794 return (false); 795 796 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 797 return (false); 798 799 /* IV is optional for digests (e.g. GMAC). */ 800 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 801 return (false); 802 if (!alg_is_digest(csp->csp_auth_alg)) 803 return (false); 804 805 /* Key is optional for BLAKE2 digests. */ 806 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 807 csp->csp_auth_alg == CRYPTO_BLAKE2S) 808 ; 809 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 810 if (csp->csp_auth_klen == 0) 811 return (false); 812 } else { 813 if (csp->csp_auth_klen != 0) 814 return (false); 815 } 816 if (csp->csp_auth_mlen != 0) { 817 axf = crypto_auth_hash(csp); 818 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 819 return (false); 820 } 821 break; 822 case CSP_MODE_AEAD: 823 if (!alg_is_aead(csp->csp_cipher_alg)) 824 return (false); 825 if (csp->csp_cipher_klen == 0) 826 return (false); 827 if (csp->csp_ivlen == 0 || 828 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 829 return (false); 830 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 831 return (false); 832 833 /* 834 * XXX: Would be nice to have a better way to get this 835 * value. 836 */ 837 switch (csp->csp_cipher_alg) { 838 case CRYPTO_AES_NIST_GCM_16: 839 case CRYPTO_AES_CCM_16: 840 if (csp->csp_auth_mlen > 16) 841 return (false); 842 break; 843 } 844 break; 845 case CSP_MODE_ETA: 846 if (!alg_is_cipher(csp->csp_cipher_alg)) 847 return (false); 848 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 849 if (csp->csp_cipher_klen == 0) 850 return (false); 851 if (csp->csp_ivlen == 0) 852 return (false); 853 } 854 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 855 return (false); 856 if (!alg_is_digest(csp->csp_auth_alg)) 857 return (false); 858 859 /* Key is optional for BLAKE2 digests. */ 860 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 861 csp->csp_auth_alg == CRYPTO_BLAKE2S) 862 ; 863 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 864 if (csp->csp_auth_klen == 0) 865 return (false); 866 } else { 867 if (csp->csp_auth_klen != 0) 868 return (false); 869 } 870 if (csp->csp_auth_mlen != 0) { 871 axf = crypto_auth_hash(csp); 872 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 873 return (false); 874 } 875 break; 876 default: 877 return (false); 878 } 879 880 return (true); 881 } 882 883 /* 884 * Delete a session after it has been detached from its driver. 885 */ 886 static void 887 crypto_deletesession(crypto_session_t cses) 888 { 889 struct cryptocap *cap; 890 891 cap = cses->cap; 892 893 zfree(cses->softc, M_CRYPTO_DATA); 894 uma_zfree(cryptoses_zone, cses); 895 896 CRYPTO_DRIVER_LOCK(); 897 cap->cc_sessions--; 898 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 899 wakeup(cap); 900 CRYPTO_DRIVER_UNLOCK(); 901 cap_rele(cap); 902 } 903 904 /* 905 * Create a new session. The crid argument specifies a crypto 906 * driver to use or constraints on a driver to select (hardware 907 * only, software only, either). Whatever driver is selected 908 * must be capable of the requested crypto algorithms. 909 */ 910 int 911 crypto_newsession(crypto_session_t *cses, 912 const struct crypto_session_params *csp, int crid) 913 { 914 crypto_session_t res; 915 struct cryptocap *cap; 916 int err; 917 918 if (!check_csp(csp)) 919 return (EINVAL); 920 921 res = NULL; 922 923 CRYPTO_DRIVER_LOCK(); 924 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 925 /* 926 * Use specified driver; verify it is capable. 927 */ 928 cap = crypto_checkdriver(crid); 929 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 930 cap = NULL; 931 } else { 932 /* 933 * No requested driver; select based on crid flags. 934 */ 935 cap = crypto_select_driver(csp, crid); 936 } 937 if (cap == NULL) { 938 CRYPTO_DRIVER_UNLOCK(); 939 CRYPTDEB("no driver"); 940 return (EOPNOTSUPP); 941 } 942 cap_ref(cap); 943 cap->cc_sessions++; 944 CRYPTO_DRIVER_UNLOCK(); 945 946 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 947 res->cap = cap; 948 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 949 M_ZERO); 950 res->csp = *csp; 951 952 /* Call the driver initialization routine. */ 953 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 954 if (err != 0) { 955 CRYPTDEB("dev newsession failed: %d", err); 956 crypto_deletesession(res); 957 return (err); 958 } 959 960 *cses = res; 961 return (0); 962 } 963 964 /* 965 * Delete an existing session (or a reserved session on an unregistered 966 * driver). 967 */ 968 void 969 crypto_freesession(crypto_session_t cses) 970 { 971 struct cryptocap *cap; 972 973 if (cses == NULL) 974 return; 975 976 cap = cses->cap; 977 978 /* Call the driver cleanup routine, if available. */ 979 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 980 981 crypto_deletesession(cses); 982 } 983 984 /* 985 * Return a new driver id. Registers a driver with the system so that 986 * it can be probed by subsequent sessions. 987 */ 988 int32_t 989 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 990 { 991 struct cryptocap *cap, **newdrv; 992 int i; 993 994 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 995 device_printf(dev, 996 "no flags specified when registering driver\n"); 997 return -1; 998 } 999 1000 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1001 cap->cc_dev = dev; 1002 cap->cc_session_size = sessionsize; 1003 cap->cc_flags = flags; 1004 refcount_init(&cap->cc_refs, 1); 1005 1006 CRYPTO_DRIVER_LOCK(); 1007 for (;;) { 1008 for (i = 0; i < crypto_drivers_size; i++) { 1009 if (crypto_drivers[i] == NULL) 1010 break; 1011 } 1012 1013 if (i < crypto_drivers_size) 1014 break; 1015 1016 /* Out of entries, allocate some more. */ 1017 1018 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1019 CRYPTO_DRIVER_UNLOCK(); 1020 printf("crypto: driver count wraparound!\n"); 1021 cap_rele(cap); 1022 return (-1); 1023 } 1024 CRYPTO_DRIVER_UNLOCK(); 1025 1026 newdrv = malloc(2 * crypto_drivers_size * 1027 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1028 1029 CRYPTO_DRIVER_LOCK(); 1030 memcpy(newdrv, crypto_drivers, 1031 crypto_drivers_size * sizeof(*crypto_drivers)); 1032 1033 crypto_drivers_size *= 2; 1034 1035 free(crypto_drivers, M_CRYPTO_DATA); 1036 crypto_drivers = newdrv; 1037 } 1038 1039 cap->cc_hid = i; 1040 crypto_drivers[i] = cap; 1041 CRYPTO_DRIVER_UNLOCK(); 1042 1043 if (bootverbose) 1044 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1045 device_get_nameunit(dev), i, flags); 1046 1047 return i; 1048 } 1049 1050 /* 1051 * Lookup a driver by name. We match against the full device 1052 * name and unit, and against just the name. The latter gives 1053 * us a simple widlcarding by device name. On success return the 1054 * driver/hardware identifier; otherwise return -1. 1055 */ 1056 int 1057 crypto_find_driver(const char *match) 1058 { 1059 struct cryptocap *cap; 1060 int i, len = strlen(match); 1061 1062 CRYPTO_DRIVER_LOCK(); 1063 for (i = 0; i < crypto_drivers_size; i++) { 1064 if (crypto_drivers[i] == NULL) 1065 continue; 1066 cap = crypto_drivers[i]; 1067 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1068 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1069 CRYPTO_DRIVER_UNLOCK(); 1070 return (i); 1071 } 1072 } 1073 CRYPTO_DRIVER_UNLOCK(); 1074 return (-1); 1075 } 1076 1077 /* 1078 * Return the device_t for the specified driver or NULL 1079 * if the driver identifier is invalid. 1080 */ 1081 device_t 1082 crypto_find_device_byhid(int hid) 1083 { 1084 struct cryptocap *cap; 1085 device_t dev; 1086 1087 dev = NULL; 1088 CRYPTO_DRIVER_LOCK(); 1089 cap = crypto_checkdriver(hid); 1090 if (cap != NULL) 1091 dev = cap->cc_dev; 1092 CRYPTO_DRIVER_UNLOCK(); 1093 return (dev); 1094 } 1095 1096 /* 1097 * Return the device/driver capabilities. 1098 */ 1099 int 1100 crypto_getcaps(int hid) 1101 { 1102 struct cryptocap *cap; 1103 int flags; 1104 1105 flags = 0; 1106 CRYPTO_DRIVER_LOCK(); 1107 cap = crypto_checkdriver(hid); 1108 if (cap != NULL) 1109 flags = cap->cc_flags; 1110 CRYPTO_DRIVER_UNLOCK(); 1111 return (flags); 1112 } 1113 1114 /* 1115 * Register support for a key-related algorithm. This routine 1116 * is called once for each algorithm supported a driver. 1117 */ 1118 int 1119 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 1120 { 1121 struct cryptocap *cap; 1122 int err; 1123 1124 CRYPTO_DRIVER_LOCK(); 1125 1126 cap = crypto_checkdriver(driverid); 1127 if (cap != NULL && 1128 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1129 /* 1130 * XXX Do some performance testing to determine placing. 1131 * XXX We probably need an auxiliary data structure that 1132 * XXX describes relative performances. 1133 */ 1134 1135 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1136 if (bootverbose) 1137 printf("crypto: %s registers key alg %u flags %u\n" 1138 , device_get_nameunit(cap->cc_dev) 1139 , kalg 1140 , flags 1141 ); 1142 err = 0; 1143 } else 1144 err = EINVAL; 1145 1146 CRYPTO_DRIVER_UNLOCK(); 1147 return err; 1148 } 1149 1150 /* 1151 * Unregister all algorithms associated with a crypto driver. 1152 * If there are pending sessions using it, leave enough information 1153 * around so that subsequent calls using those sessions will 1154 * correctly detect the driver has been unregistered and reroute 1155 * requests. 1156 */ 1157 int 1158 crypto_unregister_all(u_int32_t driverid) 1159 { 1160 struct cryptocap *cap; 1161 1162 CRYPTO_DRIVER_LOCK(); 1163 cap = crypto_checkdriver(driverid); 1164 if (cap == NULL) { 1165 CRYPTO_DRIVER_UNLOCK(); 1166 return (EINVAL); 1167 } 1168 1169 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1170 crypto_drivers[driverid] = NULL; 1171 1172 /* 1173 * XXX: This doesn't do anything to kick sessions that 1174 * have no pending operations. 1175 */ 1176 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1177 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1178 CRYPTO_DRIVER_UNLOCK(); 1179 cap_rele(cap); 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Clear blockage on a driver. The what parameter indicates whether 1186 * the driver is now ready for cryptop's and/or cryptokop's. 1187 */ 1188 int 1189 crypto_unblock(u_int32_t driverid, int what) 1190 { 1191 struct cryptocap *cap; 1192 int err; 1193 1194 CRYPTO_Q_LOCK(); 1195 cap = crypto_checkdriver(driverid); 1196 if (cap != NULL) { 1197 if (what & CRYPTO_SYMQ) 1198 cap->cc_qblocked = 0; 1199 if (what & CRYPTO_ASYMQ) 1200 cap->cc_kqblocked = 0; 1201 if (crp_sleep) 1202 wakeup_one(&crp_q); 1203 err = 0; 1204 } else 1205 err = EINVAL; 1206 CRYPTO_Q_UNLOCK(); 1207 1208 return err; 1209 } 1210 1211 size_t 1212 crypto_buffer_len(struct crypto_buffer *cb) 1213 { 1214 switch (cb->cb_type) { 1215 case CRYPTO_BUF_CONTIG: 1216 return (cb->cb_buf_len); 1217 case CRYPTO_BUF_MBUF: 1218 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1219 return (cb->cb_mbuf->m_pkthdr.len); 1220 return (m_length(cb->cb_mbuf, NULL)); 1221 case CRYPTO_BUF_UIO: 1222 return (cb->cb_uio->uio_resid); 1223 default: 1224 return (0); 1225 } 1226 } 1227 1228 #ifdef INVARIANTS 1229 /* Various sanity checks on crypto requests. */ 1230 static void 1231 cb_sanity(struct crypto_buffer *cb, const char *name) 1232 { 1233 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1234 ("incoming crp with invalid %s buffer type", name)); 1235 if (cb->cb_type == CRYPTO_BUF_CONTIG) 1236 KASSERT(cb->cb_buf_len >= 0, 1237 ("incoming crp with -ve %s buffer length", name)); 1238 } 1239 1240 static void 1241 crp_sanity(struct cryptop *crp) 1242 { 1243 struct crypto_session_params *csp; 1244 struct crypto_buffer *out; 1245 size_t ilen, len, olen; 1246 1247 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1248 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1249 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1250 ("incoming crp with invalid output buffer type")); 1251 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1252 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1253 ("incoming crp already done")); 1254 1255 csp = &crp->crp_session->csp; 1256 cb_sanity(&crp->crp_buf, "input"); 1257 ilen = crypto_buffer_len(&crp->crp_buf); 1258 olen = ilen; 1259 out = NULL; 1260 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1261 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1262 cb_sanity(&crp->crp_obuf, "output"); 1263 out = &crp->crp_obuf; 1264 olen = crypto_buffer_len(out); 1265 } 1266 } else 1267 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1268 ("incoming crp with separate output buffer " 1269 "but no session support")); 1270 1271 switch (csp->csp_mode) { 1272 case CSP_MODE_COMPRESS: 1273 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1274 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1275 ("invalid compression op %x", crp->crp_op)); 1276 break; 1277 case CSP_MODE_CIPHER: 1278 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1279 crp->crp_op == CRYPTO_OP_DECRYPT, 1280 ("invalid cipher op %x", crp->crp_op)); 1281 break; 1282 case CSP_MODE_DIGEST: 1283 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1284 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1285 ("invalid digest op %x", crp->crp_op)); 1286 break; 1287 case CSP_MODE_AEAD: 1288 KASSERT(crp->crp_op == 1289 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1290 crp->crp_op == 1291 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1292 ("invalid AEAD op %x", crp->crp_op)); 1293 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1294 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1295 ("GCM without a separate IV")); 1296 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1297 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1298 ("CCM without a separate IV")); 1299 break; 1300 case CSP_MODE_ETA: 1301 KASSERT(crp->crp_op == 1302 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1303 crp->crp_op == 1304 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1305 ("invalid ETA op %x", crp->crp_op)); 1306 break; 1307 } 1308 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1309 if (crp->crp_aad == NULL) { 1310 KASSERT(crp->crp_aad_start == 0 || 1311 crp->crp_aad_start < ilen, 1312 ("invalid AAD start")); 1313 KASSERT(crp->crp_aad_length != 0 || 1314 crp->crp_aad_start == 0, 1315 ("AAD with zero length and non-zero start")); 1316 KASSERT(crp->crp_aad_length == 0 || 1317 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1318 ("AAD outside input length")); 1319 } else { 1320 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1321 ("session doesn't support separate AAD buffer")); 1322 KASSERT(crp->crp_aad_start == 0, 1323 ("separate AAD buffer with non-zero AAD start")); 1324 KASSERT(crp->crp_aad_length != 0, 1325 ("separate AAD buffer with zero length")); 1326 } 1327 } else { 1328 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1329 crp->crp_aad_length == 0, 1330 ("AAD region in request not supporting AAD")); 1331 } 1332 if (csp->csp_ivlen == 0) { 1333 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1334 ("IV_SEPARATE set when IV isn't used")); 1335 KASSERT(crp->crp_iv_start == 0, 1336 ("crp_iv_start set when IV isn't used")); 1337 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1338 KASSERT(crp->crp_iv_start == 0, 1339 ("IV_SEPARATE used with non-zero IV start")); 1340 } else { 1341 KASSERT(crp->crp_iv_start < ilen, 1342 ("invalid IV start")); 1343 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1344 ("IV outside buffer length")); 1345 } 1346 /* XXX: payload_start of 0 should always be < ilen? */ 1347 KASSERT(crp->crp_payload_start == 0 || 1348 crp->crp_payload_start < ilen, 1349 ("invalid payload start")); 1350 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1351 ilen, ("payload outside input buffer")); 1352 if (out == NULL) { 1353 KASSERT(crp->crp_payload_output_start == 0, 1354 ("payload output start non-zero without output buffer")); 1355 } else { 1356 KASSERT(crp->crp_payload_output_start < olen, 1357 ("invalid payload output start")); 1358 KASSERT(crp->crp_payload_output_start + 1359 crp->crp_payload_length <= olen, 1360 ("payload outside output buffer")); 1361 } 1362 if (csp->csp_mode == CSP_MODE_DIGEST || 1363 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1364 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1365 len = ilen; 1366 else 1367 len = olen; 1368 KASSERT(crp->crp_digest_start == 0 || 1369 crp->crp_digest_start < len, 1370 ("invalid digest start")); 1371 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1372 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1373 ("digest outside buffer")); 1374 } else { 1375 KASSERT(crp->crp_digest_start == 0, 1376 ("non-zero digest start for request without a digest")); 1377 } 1378 if (csp->csp_cipher_klen != 0) 1379 KASSERT(csp->csp_cipher_key != NULL || 1380 crp->crp_cipher_key != NULL, 1381 ("cipher request without a key")); 1382 if (csp->csp_auth_klen != 0) 1383 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1384 ("auth request without a key")); 1385 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1386 } 1387 #endif 1388 1389 /* 1390 * Add a crypto request to a queue, to be processed by the kernel thread. 1391 */ 1392 int 1393 crypto_dispatch(struct cryptop *crp) 1394 { 1395 struct cryptocap *cap; 1396 int result; 1397 1398 #ifdef INVARIANTS 1399 crp_sanity(crp); 1400 #endif 1401 1402 cryptostats.cs_ops++; 1403 1404 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1405 1406 if (CRYPTOP_ASYNC(crp)) { 1407 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1408 struct crypto_ret_worker *ret_worker; 1409 1410 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1411 1412 CRYPTO_RETW_LOCK(ret_worker); 1413 crp->crp_seq = ret_worker->reorder_ops++; 1414 CRYPTO_RETW_UNLOCK(ret_worker); 1415 } 1416 1417 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1418 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1419 return (0); 1420 } 1421 1422 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1423 /* 1424 * Caller marked the request to be processed 1425 * immediately; dispatch it directly to the 1426 * driver unless the driver is currently blocked. 1427 */ 1428 cap = crp->crp_session->cap; 1429 if (!cap->cc_qblocked) { 1430 result = crypto_invoke(cap, crp, 0); 1431 if (result != ERESTART) 1432 return (result); 1433 /* 1434 * The driver ran out of resources, put the request on 1435 * the queue. 1436 */ 1437 } 1438 } 1439 crypto_batch_enqueue(crp); 1440 return 0; 1441 } 1442 1443 void 1444 crypto_batch_enqueue(struct cryptop *crp) 1445 { 1446 1447 CRYPTO_Q_LOCK(); 1448 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1449 if (crp_sleep) 1450 wakeup_one(&crp_q); 1451 CRYPTO_Q_UNLOCK(); 1452 } 1453 1454 /* 1455 * Add an asymetric crypto request to a queue, 1456 * to be processed by the kernel thread. 1457 */ 1458 int 1459 crypto_kdispatch(struct cryptkop *krp) 1460 { 1461 int error; 1462 1463 cryptostats.cs_kops++; 1464 1465 krp->krp_cap = NULL; 1466 error = crypto_kinvoke(krp); 1467 if (error == ERESTART) { 1468 CRYPTO_Q_LOCK(); 1469 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1470 if (crp_sleep) 1471 wakeup_one(&crp_q); 1472 CRYPTO_Q_UNLOCK(); 1473 error = 0; 1474 } 1475 return error; 1476 } 1477 1478 /* 1479 * Verify a driver is suitable for the specified operation. 1480 */ 1481 static __inline int 1482 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1483 { 1484 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1485 } 1486 1487 /* 1488 * Select a driver for an asym operation. The driver must 1489 * support the necessary algorithm. The caller can constrain 1490 * which device is selected with the flags parameter. The 1491 * algorithm we use here is pretty stupid; just use the first 1492 * driver that supports the algorithms we need. If there are 1493 * multiple suitable drivers we choose the driver with the 1494 * fewest active operations. We prefer hardware-backed 1495 * drivers to software ones when either may be used. 1496 */ 1497 static struct cryptocap * 1498 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1499 { 1500 struct cryptocap *cap, *best; 1501 int match, hid; 1502 1503 CRYPTO_DRIVER_ASSERT(); 1504 1505 /* 1506 * Look first for hardware crypto devices if permitted. 1507 */ 1508 if (flags & CRYPTOCAP_F_HARDWARE) 1509 match = CRYPTOCAP_F_HARDWARE; 1510 else 1511 match = CRYPTOCAP_F_SOFTWARE; 1512 best = NULL; 1513 again: 1514 for (hid = 0; hid < crypto_drivers_size; hid++) { 1515 /* 1516 * If there is no driver for this slot, or the driver 1517 * is not appropriate (hardware or software based on 1518 * match), then skip. 1519 */ 1520 cap = crypto_drivers[hid]; 1521 if (cap->cc_dev == NULL || 1522 (cap->cc_flags & match) == 0) 1523 continue; 1524 1525 /* verify all the algorithms are supported. */ 1526 if (kdriver_suitable(cap, krp)) { 1527 if (best == NULL || 1528 cap->cc_koperations < best->cc_koperations) 1529 best = cap; 1530 } 1531 } 1532 if (best != NULL) 1533 return best; 1534 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1535 /* sort of an Algol 68-style for loop */ 1536 match = CRYPTOCAP_F_SOFTWARE; 1537 goto again; 1538 } 1539 return best; 1540 } 1541 1542 /* 1543 * Choose a driver for an asymmetric crypto request. 1544 */ 1545 static struct cryptocap * 1546 crypto_lookup_kdriver(struct cryptkop *krp) 1547 { 1548 struct cryptocap *cap; 1549 uint32_t crid; 1550 1551 /* If this request is requeued, it might already have a driver. */ 1552 cap = krp->krp_cap; 1553 if (cap != NULL) 1554 return (cap); 1555 1556 /* Use krp_crid to choose a driver. */ 1557 crid = krp->krp_crid; 1558 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1559 cap = crypto_checkdriver(crid); 1560 if (cap != NULL) { 1561 /* 1562 * Driver present, it must support the 1563 * necessary algorithm and, if s/w drivers are 1564 * excluded, it must be registered as 1565 * hardware-backed. 1566 */ 1567 if (!kdriver_suitable(cap, krp) || 1568 (!crypto_devallowsoft && 1569 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1570 cap = NULL; 1571 } 1572 } else { 1573 /* 1574 * No requested driver; select based on crid flags. 1575 */ 1576 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1577 crid &= ~CRYPTOCAP_F_SOFTWARE; 1578 cap = crypto_select_kdriver(krp, crid); 1579 } 1580 1581 if (cap != NULL) { 1582 krp->krp_cap = cap_ref(cap); 1583 krp->krp_hid = cap->cc_hid; 1584 } 1585 return (cap); 1586 } 1587 1588 /* 1589 * Dispatch an asymmetric crypto request. 1590 */ 1591 static int 1592 crypto_kinvoke(struct cryptkop *krp) 1593 { 1594 struct cryptocap *cap = NULL; 1595 int error; 1596 1597 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1598 KASSERT(krp->krp_callback != NULL, 1599 ("%s: krp->crp_callback == NULL", __func__)); 1600 1601 CRYPTO_DRIVER_LOCK(); 1602 cap = crypto_lookup_kdriver(krp); 1603 if (cap == NULL) { 1604 CRYPTO_DRIVER_UNLOCK(); 1605 krp->krp_status = ENODEV; 1606 crypto_kdone(krp); 1607 return (0); 1608 } 1609 1610 /* 1611 * If the device is blocked, return ERESTART to requeue it. 1612 */ 1613 if (cap->cc_kqblocked) { 1614 /* 1615 * XXX: Previously this set krp_status to ERESTART and 1616 * invoked crypto_kdone but the caller would still 1617 * requeue it. 1618 */ 1619 CRYPTO_DRIVER_UNLOCK(); 1620 return (ERESTART); 1621 } 1622 1623 cap->cc_koperations++; 1624 CRYPTO_DRIVER_UNLOCK(); 1625 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1626 if (error == ERESTART) { 1627 CRYPTO_DRIVER_LOCK(); 1628 cap->cc_koperations--; 1629 CRYPTO_DRIVER_UNLOCK(); 1630 return (error); 1631 } 1632 1633 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1634 return (0); 1635 } 1636 1637 static void 1638 crypto_task_invoke(void *ctx, int pending) 1639 { 1640 struct cryptocap *cap; 1641 struct cryptop *crp; 1642 int result; 1643 1644 crp = (struct cryptop *)ctx; 1645 cap = crp->crp_session->cap; 1646 result = crypto_invoke(cap, crp, 0); 1647 if (result == ERESTART) 1648 crypto_batch_enqueue(crp); 1649 } 1650 1651 /* 1652 * Dispatch a crypto request to the appropriate crypto devices. 1653 */ 1654 static int 1655 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1656 { 1657 1658 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1659 KASSERT(crp->crp_callback != NULL, 1660 ("%s: crp->crp_callback == NULL", __func__)); 1661 KASSERT(crp->crp_session != NULL, 1662 ("%s: crp->crp_session == NULL", __func__)); 1663 1664 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1665 struct crypto_session_params csp; 1666 crypto_session_t nses; 1667 1668 /* 1669 * Driver has unregistered; migrate the session and return 1670 * an error to the caller so they'll resubmit the op. 1671 * 1672 * XXX: What if there are more already queued requests for this 1673 * session? 1674 * 1675 * XXX: Real solution is to make sessions refcounted 1676 * and force callers to hold a reference when 1677 * assigning to crp_session. Could maybe change 1678 * crypto_getreq to accept a session pointer to make 1679 * that work. Alternatively, we could abandon the 1680 * notion of rewriting crp_session in requests forcing 1681 * the caller to deal with allocating a new session. 1682 * Perhaps provide a method to allow a crp's session to 1683 * be swapped that callers could use. 1684 */ 1685 csp = crp->crp_session->csp; 1686 crypto_freesession(crp->crp_session); 1687 1688 /* 1689 * XXX: Key pointers may no longer be valid. If we 1690 * really want to support this we need to define the 1691 * KPI such that 'csp' is required to be valid for the 1692 * duration of a session by the caller perhaps. 1693 * 1694 * XXX: If the keys have been changed this will reuse 1695 * the old keys. This probably suggests making 1696 * rekeying more explicit and updating the key 1697 * pointers in 'csp' when the keys change. 1698 */ 1699 if (crypto_newsession(&nses, &csp, 1700 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1701 crp->crp_session = nses; 1702 1703 crp->crp_etype = EAGAIN; 1704 crypto_done(crp); 1705 return 0; 1706 } else { 1707 /* 1708 * Invoke the driver to process the request. 1709 */ 1710 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1711 } 1712 } 1713 1714 void 1715 crypto_freereq(struct cryptop *crp) 1716 { 1717 1718 if (crp == NULL) 1719 return; 1720 1721 #ifdef DIAGNOSTIC 1722 { 1723 struct cryptop *crp2; 1724 struct crypto_ret_worker *ret_worker; 1725 1726 CRYPTO_Q_LOCK(); 1727 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1728 KASSERT(crp2 != crp, 1729 ("Freeing cryptop from the crypto queue (%p).", 1730 crp)); 1731 } 1732 CRYPTO_Q_UNLOCK(); 1733 1734 FOREACH_CRYPTO_RETW(ret_worker) { 1735 CRYPTO_RETW_LOCK(ret_worker); 1736 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1737 KASSERT(crp2 != crp, 1738 ("Freeing cryptop from the return queue (%p).", 1739 crp)); 1740 } 1741 CRYPTO_RETW_UNLOCK(ret_worker); 1742 } 1743 } 1744 #endif 1745 1746 uma_zfree(cryptop_zone, crp); 1747 } 1748 1749 struct cryptop * 1750 crypto_getreq(crypto_session_t cses, int how) 1751 { 1752 struct cryptop *crp; 1753 1754 MPASS(how == M_WAITOK || how == M_NOWAIT); 1755 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1756 crp->crp_session = cses; 1757 return (crp); 1758 } 1759 1760 /* 1761 * Invoke the callback on behalf of the driver. 1762 */ 1763 void 1764 crypto_done(struct cryptop *crp) 1765 { 1766 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1767 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1768 crp->crp_flags |= CRYPTO_F_DONE; 1769 if (crp->crp_etype != 0) 1770 cryptostats.cs_errs++; 1771 1772 /* 1773 * CBIMM means unconditionally do the callback immediately; 1774 * CBIFSYNC means do the callback immediately only if the 1775 * operation was done synchronously. Both are used to avoid 1776 * doing extraneous context switches; the latter is mostly 1777 * used with the software crypto driver. 1778 */ 1779 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1780 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1781 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1782 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1783 /* 1784 * Do the callback directly. This is ok when the 1785 * callback routine does very little (e.g. the 1786 * /dev/crypto callback method just does a wakeup). 1787 */ 1788 crp->crp_callback(crp); 1789 } else { 1790 struct crypto_ret_worker *ret_worker; 1791 bool wake; 1792 1793 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1794 wake = false; 1795 1796 /* 1797 * Normal case; queue the callback for the thread. 1798 */ 1799 CRYPTO_RETW_LOCK(ret_worker); 1800 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1801 struct cryptop *tmp; 1802 1803 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1804 cryptop_q, crp_next) { 1805 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1806 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1807 tmp, crp, crp_next); 1808 break; 1809 } 1810 } 1811 if (tmp == NULL) { 1812 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1813 crp, crp_next); 1814 } 1815 1816 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1817 wake = true; 1818 } 1819 else { 1820 if (CRYPTO_RETW_EMPTY(ret_worker)) 1821 wake = true; 1822 1823 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1824 } 1825 1826 if (wake) 1827 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1828 CRYPTO_RETW_UNLOCK(ret_worker); 1829 } 1830 } 1831 1832 /* 1833 * Invoke the callback on behalf of the driver. 1834 */ 1835 void 1836 crypto_kdone(struct cryptkop *krp) 1837 { 1838 struct crypto_ret_worker *ret_worker; 1839 struct cryptocap *cap; 1840 1841 if (krp->krp_status != 0) 1842 cryptostats.cs_kerrs++; 1843 CRYPTO_DRIVER_LOCK(); 1844 cap = krp->krp_cap; 1845 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1846 cap->cc_koperations--; 1847 if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1848 wakeup(cap); 1849 CRYPTO_DRIVER_UNLOCK(); 1850 krp->krp_cap = NULL; 1851 cap_rele(cap); 1852 1853 ret_worker = CRYPTO_RETW(0); 1854 1855 CRYPTO_RETW_LOCK(ret_worker); 1856 if (CRYPTO_RETW_EMPTY(ret_worker)) 1857 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1858 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1859 CRYPTO_RETW_UNLOCK(ret_worker); 1860 } 1861 1862 int 1863 crypto_getfeat(int *featp) 1864 { 1865 int hid, kalg, feat = 0; 1866 1867 CRYPTO_DRIVER_LOCK(); 1868 for (hid = 0; hid < crypto_drivers_size; hid++) { 1869 const struct cryptocap *cap = crypto_drivers[hid]; 1870 1871 if (cap == NULL || 1872 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1873 !crypto_devallowsoft)) { 1874 continue; 1875 } 1876 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1877 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1878 feat |= 1 << kalg; 1879 } 1880 CRYPTO_DRIVER_UNLOCK(); 1881 *featp = feat; 1882 return (0); 1883 } 1884 1885 /* 1886 * Terminate a thread at module unload. The process that 1887 * initiated this is waiting for us to signal that we're gone; 1888 * wake it up and exit. We use the driver table lock to insure 1889 * we don't do the wakeup before they're waiting. There is no 1890 * race here because the waiter sleeps on the proc lock for the 1891 * thread so it gets notified at the right time because of an 1892 * extra wakeup that's done in exit1(). 1893 */ 1894 static void 1895 crypto_finis(void *chan) 1896 { 1897 CRYPTO_DRIVER_LOCK(); 1898 wakeup_one(chan); 1899 CRYPTO_DRIVER_UNLOCK(); 1900 kproc_exit(0); 1901 } 1902 1903 /* 1904 * Crypto thread, dispatches crypto requests. 1905 */ 1906 static void 1907 crypto_proc(void) 1908 { 1909 struct cryptop *crp, *submit; 1910 struct cryptkop *krp; 1911 struct cryptocap *cap; 1912 int result, hint; 1913 1914 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1915 fpu_kern_thread(FPU_KERN_NORMAL); 1916 #endif 1917 1918 CRYPTO_Q_LOCK(); 1919 for (;;) { 1920 /* 1921 * Find the first element in the queue that can be 1922 * processed and look-ahead to see if multiple ops 1923 * are ready for the same driver. 1924 */ 1925 submit = NULL; 1926 hint = 0; 1927 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1928 cap = crp->crp_session->cap; 1929 /* 1930 * Driver cannot disappeared when there is an active 1931 * session. 1932 */ 1933 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1934 __func__, __LINE__)); 1935 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1936 /* Op needs to be migrated, process it. */ 1937 if (submit == NULL) 1938 submit = crp; 1939 break; 1940 } 1941 if (!cap->cc_qblocked) { 1942 if (submit != NULL) { 1943 /* 1944 * We stop on finding another op, 1945 * regardless whether its for the same 1946 * driver or not. We could keep 1947 * searching the queue but it might be 1948 * better to just use a per-driver 1949 * queue instead. 1950 */ 1951 if (submit->crp_session->cap == cap) 1952 hint = CRYPTO_HINT_MORE; 1953 break; 1954 } else { 1955 submit = crp; 1956 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1957 break; 1958 /* keep scanning for more are q'd */ 1959 } 1960 } 1961 } 1962 if (submit != NULL) { 1963 TAILQ_REMOVE(&crp_q, submit, crp_next); 1964 cap = submit->crp_session->cap; 1965 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1966 __func__, __LINE__)); 1967 CRYPTO_Q_UNLOCK(); 1968 result = crypto_invoke(cap, submit, hint); 1969 CRYPTO_Q_LOCK(); 1970 if (result == ERESTART) { 1971 /* 1972 * The driver ran out of resources, mark the 1973 * driver ``blocked'' for cryptop's and put 1974 * the request back in the queue. It would 1975 * best to put the request back where we got 1976 * it but that's hard so for now we put it 1977 * at the front. This should be ok; putting 1978 * it at the end does not work. 1979 */ 1980 cap->cc_qblocked = 1; 1981 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1982 cryptostats.cs_blocks++; 1983 } 1984 } 1985 1986 /* As above, but for key ops */ 1987 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1988 cap = krp->krp_cap; 1989 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1990 /* 1991 * Operation needs to be migrated, 1992 * clear krp_cap so a new driver is 1993 * selected. 1994 */ 1995 krp->krp_cap = NULL; 1996 cap_rele(cap); 1997 break; 1998 } 1999 if (!cap->cc_kqblocked) 2000 break; 2001 } 2002 if (krp != NULL) { 2003 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2004 CRYPTO_Q_UNLOCK(); 2005 result = crypto_kinvoke(krp); 2006 CRYPTO_Q_LOCK(); 2007 if (result == ERESTART) { 2008 /* 2009 * The driver ran out of resources, mark the 2010 * driver ``blocked'' for cryptkop's and put 2011 * the request back in the queue. It would 2012 * best to put the request back where we got 2013 * it but that's hard so for now we put it 2014 * at the front. This should be ok; putting 2015 * it at the end does not work. 2016 */ 2017 krp->krp_cap->cc_kqblocked = 1; 2018 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2019 cryptostats.cs_kblocks++; 2020 } 2021 } 2022 2023 if (submit == NULL && krp == NULL) { 2024 /* 2025 * Nothing more to be processed. Sleep until we're 2026 * woken because there are more ops to process. 2027 * This happens either by submission or by a driver 2028 * becoming unblocked and notifying us through 2029 * crypto_unblock. Note that when we wakeup we 2030 * start processing each queue again from the 2031 * front. It's not clear that it's important to 2032 * preserve this ordering since ops may finish 2033 * out of order if dispatched to different devices 2034 * and some become blocked while others do not. 2035 */ 2036 crp_sleep = 1; 2037 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2038 crp_sleep = 0; 2039 if (cryptoproc == NULL) 2040 break; 2041 cryptostats.cs_intrs++; 2042 } 2043 } 2044 CRYPTO_Q_UNLOCK(); 2045 2046 crypto_finis(&crp_q); 2047 } 2048 2049 /* 2050 * Crypto returns thread, does callbacks for processed crypto requests. 2051 * Callbacks are done here, rather than in the crypto drivers, because 2052 * callbacks typically are expensive and would slow interrupt handling. 2053 */ 2054 static void 2055 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2056 { 2057 struct cryptop *crpt; 2058 struct cryptkop *krpt; 2059 2060 CRYPTO_RETW_LOCK(ret_worker); 2061 for (;;) { 2062 /* Harvest return q's for completed ops */ 2063 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2064 if (crpt != NULL) { 2065 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2066 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2067 ret_worker->reorder_cur_seq++; 2068 } else { 2069 crpt = NULL; 2070 } 2071 } 2072 2073 if (crpt == NULL) { 2074 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2075 if (crpt != NULL) 2076 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2077 } 2078 2079 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2080 if (krpt != NULL) 2081 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2082 2083 if (crpt != NULL || krpt != NULL) { 2084 CRYPTO_RETW_UNLOCK(ret_worker); 2085 /* 2086 * Run callbacks unlocked. 2087 */ 2088 if (crpt != NULL) 2089 crpt->crp_callback(crpt); 2090 if (krpt != NULL) 2091 krpt->krp_callback(krpt); 2092 CRYPTO_RETW_LOCK(ret_worker); 2093 } else { 2094 /* 2095 * Nothing more to be processed. Sleep until we're 2096 * woken because there are more returns to process. 2097 */ 2098 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2099 "crypto_ret_wait", 0); 2100 if (ret_worker->cryptoretproc == NULL) 2101 break; 2102 cryptostats.cs_rets++; 2103 } 2104 } 2105 CRYPTO_RETW_UNLOCK(ret_worker); 2106 2107 crypto_finis(&ret_worker->crp_ret_q); 2108 } 2109 2110 #ifdef DDB 2111 static void 2112 db_show_drivers(void) 2113 { 2114 int hid; 2115 2116 db_printf("%12s %4s %4s %8s %2s %2s\n" 2117 , "Device" 2118 , "Ses" 2119 , "Kops" 2120 , "Flags" 2121 , "QB" 2122 , "KB" 2123 ); 2124 for (hid = 0; hid < crypto_drivers_size; hid++) { 2125 const struct cryptocap *cap = crypto_drivers[hid]; 2126 if (cap == NULL) 2127 continue; 2128 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2129 , device_get_nameunit(cap->cc_dev) 2130 , cap->cc_sessions 2131 , cap->cc_koperations 2132 , cap->cc_flags 2133 , cap->cc_qblocked 2134 , cap->cc_kqblocked 2135 ); 2136 } 2137 } 2138 2139 DB_SHOW_COMMAND(crypto, db_show_crypto) 2140 { 2141 struct cryptop *crp; 2142 struct crypto_ret_worker *ret_worker; 2143 2144 db_show_drivers(); 2145 db_printf("\n"); 2146 2147 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2148 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2149 "Device", "Callback"); 2150 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2151 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2152 , crp->crp_session->cap->cc_hid 2153 , (int) crypto_ses2caps(crp->crp_session) 2154 , crp->crp_olen 2155 , crp->crp_etype 2156 , crp->crp_flags 2157 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2158 , crp->crp_callback 2159 ); 2160 } 2161 FOREACH_CRYPTO_RETW(ret_worker) { 2162 db_printf("\n%8s %4s %4s %4s %8s\n", 2163 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2164 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2165 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2166 db_printf("%8td %4u %4u %04x %8p\n" 2167 , CRYPTO_RETW_ID(ret_worker) 2168 , crp->crp_session->cap->cc_hid 2169 , crp->crp_etype 2170 , crp->crp_flags 2171 , crp->crp_callback 2172 ); 2173 } 2174 } 2175 } 2176 } 2177 2178 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2179 { 2180 struct cryptkop *krp; 2181 struct crypto_ret_worker *ret_worker; 2182 2183 db_show_drivers(); 2184 db_printf("\n"); 2185 2186 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2187 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2188 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2189 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2190 , krp->krp_op 2191 , krp->krp_status 2192 , krp->krp_iparams, krp->krp_oparams 2193 , krp->krp_crid, krp->krp_hid 2194 , krp->krp_callback 2195 ); 2196 } 2197 2198 ret_worker = CRYPTO_RETW(0); 2199 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2200 db_printf("%4s %5s %8s %4s %8s\n", 2201 "Op", "Status", "CRID", "HID", "Callback"); 2202 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2203 db_printf("%4u %5u %08x %4u %8p\n" 2204 , krp->krp_op 2205 , krp->krp_status 2206 , krp->krp_crid, krp->krp_hid 2207 , krp->krp_callback 2208 ); 2209 } 2210 } 2211 } 2212 #endif 2213 2214 int crypto_modevent(module_t mod, int type, void *unused); 2215 2216 /* 2217 * Initialization code, both for static and dynamic loading. 2218 * Note this is not invoked with the usual MODULE_DECLARE 2219 * mechanism but instead is listed as a dependency by the 2220 * cryptosoft driver. This guarantees proper ordering of 2221 * calls on module load/unload. 2222 */ 2223 int 2224 crypto_modevent(module_t mod, int type, void *unused) 2225 { 2226 int error = EINVAL; 2227 2228 switch (type) { 2229 case MOD_LOAD: 2230 error = crypto_init(); 2231 if (error == 0 && bootverbose) 2232 printf("crypto: <crypto core>\n"); 2233 break; 2234 case MOD_UNLOAD: 2235 /*XXX disallow if active sessions */ 2236 error = 0; 2237 crypto_destroy(); 2238 return 0; 2239 } 2240 return error; 2241 } 2242 MODULE_VERSION(crypto, 1); 2243 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2244