xref: /freebsd/sys/opencrypto/crypto.c (revision 3110d4ebd6c0848cf5e25890d01791bb407e2a9b)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35 
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56 
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78 
79 #include <ddb/ddb.h>
80 
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83 
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88 
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92 
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96 
97 SDT_PROVIDER_DEFINE(opencrypto);
98 
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid() and then registering
102  * each asym algorithm they support with crypto_kregister().
103  */
104 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
105 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
106 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
107 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108 
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118 	device_t	cc_dev;
119 	uint32_t	cc_hid;
120 	uint32_t	cc_sessions;		/* (d) # of sessions */
121 	uint32_t	cc_koperations;		/* (d) # os asym operations */
122 	uint8_t		cc_kalg[CRK_ALGORITHM_MAX + 1];
123 
124 	int		cc_flags;		/* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
126 	int		cc_qblocked;		/* (q) symmetric q blocked */
127 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
128 	size_t		cc_session_size;
129 	volatile int	cc_refs;
130 };
131 
132 static	struct cryptocap **crypto_drivers = NULL;
133 static	int crypto_drivers_size = 0;
134 
135 struct crypto_session {
136 	struct cryptocap *cap;
137 	struct crypto_session_params csp;
138 	uint64_t id;
139 	/* Driver softc follows. */
140 };
141 
142 /*
143  * There are two queues for crypto requests; one for symmetric (e.g.
144  * cipher) operations and one for asymmetric (e.g. MOD)operations.
145  * A single mutex is used to lock access to both queues.  We could
146  * have one per-queue but having one simplifies handling of block/unblock
147  * operations.
148  */
149 static	int crp_sleep = 0;
150 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
151 static	TAILQ_HEAD(,cryptkop) crp_kq;
152 static	struct mtx crypto_q_mtx;
153 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
154 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
155 
156 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
157     "In-kernel cryptography");
158 
159 /*
160  * Taskqueue used to dispatch the crypto requests
161  * that have the CRYPTO_F_ASYNC flag
162  */
163 static struct taskqueue *crypto_tq;
164 
165 /*
166  * Crypto seq numbers are operated on with modular arithmetic
167  */
168 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
169 
170 struct crypto_ret_worker {
171 	struct mtx crypto_ret_mtx;
172 
173 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
174 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
175 	TAILQ_HEAD(,cryptkop) crp_ret_kq;	/* callback queue for asym jobs */
176 
177 	uint32_t reorder_ops;		/* total ordered sym jobs received */
178 	uint32_t reorder_cur_seq;	/* current sym job dispatched */
179 
180 	struct proc *cryptoretproc;
181 };
182 static struct crypto_ret_worker *crypto_ret_workers = NULL;
183 
184 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
185 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
186 #define FOREACH_CRYPTO_RETW(w) \
187 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
188 
189 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
190 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
191 #define	CRYPTO_RETW_EMPTY(w) \
192 	(TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
193 
194 static int crypto_workers_num = 0;
195 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
196 	   &crypto_workers_num, 0,
197 	   "Number of crypto workers used to dispatch crypto jobs");
198 #ifdef COMPAT_FREEBSD12
199 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
200 	   &crypto_workers_num, 0,
201 	   "Number of crypto workers used to dispatch crypto jobs");
202 #endif
203 
204 static	uma_zone_t cryptop_zone;
205 
206 int	crypto_userasymcrypto = 1;
207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
208 	   &crypto_userasymcrypto, 0,
209 	   "Enable user-mode access to asymmetric crypto support");
210 #ifdef COMPAT_FREEBSD12
211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
212 	   &crypto_userasymcrypto, 0,
213 	   "Enable/disable user-mode access to asymmetric crypto support");
214 #endif
215 
216 int	crypto_devallowsoft = 0;
217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
218 	   &crypto_devallowsoft, 0,
219 	   "Enable use of software crypto by /dev/crypto");
220 #ifdef COMPAT_FREEBSD12
221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
222 	   &crypto_devallowsoft, 0,
223 	   "Enable/disable use of software crypto by /dev/crypto");
224 #endif
225 
226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
227 
228 static	void crypto_proc(void);
229 static	struct proc *cryptoproc;
230 static	void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
231 static	void crypto_destroy(void);
232 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
233 static	int crypto_kinvoke(struct cryptkop *krp);
234 static	void crypto_task_invoke(void *ctx, int pending);
235 static void crypto_batch_enqueue(struct cryptop *crp);
236 
237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
239     cryptostats, nitems(cryptostats),
240     "Crypto system statistics");
241 
242 #define	CRYPTOSTAT_INC(stat) do {					\
243 	counter_u64_add(						\
244 	    cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
245 	    1);								\
246 } while (0)
247 
248 static void
249 cryptostats_init(void *arg __unused)
250 {
251 	COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
252 }
253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
254 
255 static void
256 cryptostats_fini(void *arg __unused)
257 {
258 	COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
259 }
260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
261     NULL);
262 
263 /* Try to avoid directly exposing the key buffer as a symbol */
264 static struct keybuf *keybuf;
265 
266 static struct keybuf empty_keybuf = {
267         .kb_nents = 0
268 };
269 
270 /* Obtain the key buffer from boot metadata */
271 static void
272 keybuf_init(void)
273 {
274 	caddr_t kmdp;
275 
276 	kmdp = preload_search_by_type("elf kernel");
277 
278 	if (kmdp == NULL)
279 		kmdp = preload_search_by_type("elf64 kernel");
280 
281 	keybuf = (struct keybuf *)preload_search_info(kmdp,
282 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
283 
284         if (keybuf == NULL)
285                 keybuf = &empty_keybuf;
286 }
287 
288 /* It'd be nice if we could store these in some kind of secure memory... */
289 struct keybuf *
290 get_keybuf(void)
291 {
292 
293         return (keybuf);
294 }
295 
296 static struct cryptocap *
297 cap_ref(struct cryptocap *cap)
298 {
299 
300 	refcount_acquire(&cap->cc_refs);
301 	return (cap);
302 }
303 
304 static void
305 cap_rele(struct cryptocap *cap)
306 {
307 
308 	if (refcount_release(&cap->cc_refs) == 0)
309 		return;
310 
311 	KASSERT(cap->cc_sessions == 0,
312 	    ("freeing crypto driver with active sessions"));
313 	KASSERT(cap->cc_koperations == 0,
314 	    ("freeing crypto driver with active key operations"));
315 
316 	free(cap, M_CRYPTO_DATA);
317 }
318 
319 static int
320 crypto_init(void)
321 {
322 	struct crypto_ret_worker *ret_worker;
323 	int error;
324 
325 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
326 		MTX_DEF|MTX_QUIET);
327 
328 	TAILQ_INIT(&crp_q);
329 	TAILQ_INIT(&crp_kq);
330 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
331 
332 	cryptop_zone = uma_zcreate("cryptop",
333 	    sizeof(struct cryptop), NULL, NULL, NULL, NULL,
334 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
335 
336 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
337 	crypto_drivers = malloc(crypto_drivers_size *
338 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
339 
340 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
341 		crypto_workers_num = mp_ncpus;
342 
343 	crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
344 	    taskqueue_thread_enqueue, &crypto_tq);
345 
346 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
347 	    "crypto");
348 
349 	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
350 		    &cryptoproc, 0, 0, "crypto");
351 	if (error) {
352 		printf("crypto_init: cannot start crypto thread; error %d",
353 			error);
354 		goto bad;
355 	}
356 
357 	crypto_ret_workers = mallocarray(crypto_workers_num,
358 	    sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
359 
360 	FOREACH_CRYPTO_RETW(ret_worker) {
361 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
362 		TAILQ_INIT(&ret_worker->crp_ret_q);
363 		TAILQ_INIT(&ret_worker->crp_ret_kq);
364 
365 		ret_worker->reorder_ops = 0;
366 		ret_worker->reorder_cur_seq = 0;
367 
368 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
369 
370 		error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
371 				&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
372 		if (error) {
373 			printf("crypto_init: cannot start cryptoret thread; error %d",
374 				error);
375 			goto bad;
376 		}
377 	}
378 
379 	keybuf_init();
380 
381 	return 0;
382 bad:
383 	crypto_destroy();
384 	return error;
385 }
386 
387 /*
388  * Signal a crypto thread to terminate.  We use the driver
389  * table lock to synchronize the sleep/wakeups so that we
390  * are sure the threads have terminated before we release
391  * the data structures they use.  See crypto_finis below
392  * for the other half of this song-and-dance.
393  */
394 static void
395 crypto_terminate(struct proc **pp, void *q)
396 {
397 	struct proc *p;
398 
399 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
400 	p = *pp;
401 	*pp = NULL;
402 	if (p) {
403 		wakeup_one(q);
404 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
405 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
406 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
407 		PROC_UNLOCK(p);
408 		CRYPTO_DRIVER_LOCK();
409 	}
410 }
411 
412 static void
413 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
414     void *auth_ctx, uint8_t padval)
415 {
416 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
417 	u_int i;
418 
419 	KASSERT(axf->blocksize <= sizeof(hmac_key),
420 	    ("Invalid HMAC block size %d", axf->blocksize));
421 
422 	/*
423 	 * If the key is larger than the block size, use the digest of
424 	 * the key as the key instead.
425 	 */
426 	memset(hmac_key, 0, sizeof(hmac_key));
427 	if (klen > axf->blocksize) {
428 		axf->Init(auth_ctx);
429 		axf->Update(auth_ctx, key, klen);
430 		axf->Final(hmac_key, auth_ctx);
431 		klen = axf->hashsize;
432 	} else
433 		memcpy(hmac_key, key, klen);
434 
435 	for (i = 0; i < axf->blocksize; i++)
436 		hmac_key[i] ^= padval;
437 
438 	axf->Init(auth_ctx);
439 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
440 	explicit_bzero(hmac_key, sizeof(hmac_key));
441 }
442 
443 void
444 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
445     void *auth_ctx)
446 {
447 
448 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
449 }
450 
451 void
452 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
453     void *auth_ctx)
454 {
455 
456 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
457 }
458 
459 static void
460 crypto_destroy(void)
461 {
462 	struct crypto_ret_worker *ret_worker;
463 	int i;
464 
465 	/*
466 	 * Terminate any crypto threads.
467 	 */
468 	if (crypto_tq != NULL)
469 		taskqueue_drain_all(crypto_tq);
470 	CRYPTO_DRIVER_LOCK();
471 	crypto_terminate(&cryptoproc, &crp_q);
472 	FOREACH_CRYPTO_RETW(ret_worker)
473 		crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
474 	CRYPTO_DRIVER_UNLOCK();
475 
476 	/* XXX flush queues??? */
477 
478 	/*
479 	 * Reclaim dynamically allocated resources.
480 	 */
481 	for (i = 0; i < crypto_drivers_size; i++) {
482 		if (crypto_drivers[i] != NULL)
483 			cap_rele(crypto_drivers[i]);
484 	}
485 	free(crypto_drivers, M_CRYPTO_DATA);
486 
487 	if (cryptop_zone != NULL)
488 		uma_zdestroy(cryptop_zone);
489 	mtx_destroy(&crypto_q_mtx);
490 	FOREACH_CRYPTO_RETW(ret_worker)
491 		mtx_destroy(&ret_worker->crypto_ret_mtx);
492 	free(crypto_ret_workers, M_CRYPTO_DATA);
493 	if (crypto_tq != NULL)
494 		taskqueue_free(crypto_tq);
495 	mtx_destroy(&crypto_drivers_mtx);
496 }
497 
498 uint32_t
499 crypto_ses2hid(crypto_session_t crypto_session)
500 {
501 	return (crypto_session->cap->cc_hid);
502 }
503 
504 uint32_t
505 crypto_ses2caps(crypto_session_t crypto_session)
506 {
507 	return (crypto_session->cap->cc_flags & 0xff000000);
508 }
509 
510 void *
511 crypto_get_driver_session(crypto_session_t crypto_session)
512 {
513 	return (crypto_session + 1);
514 }
515 
516 const struct crypto_session_params *
517 crypto_get_params(crypto_session_t crypto_session)
518 {
519 	return (&crypto_session->csp);
520 }
521 
522 struct auth_hash *
523 crypto_auth_hash(const struct crypto_session_params *csp)
524 {
525 
526 	switch (csp->csp_auth_alg) {
527 	case CRYPTO_SHA1_HMAC:
528 		return (&auth_hash_hmac_sha1);
529 	case CRYPTO_SHA2_224_HMAC:
530 		return (&auth_hash_hmac_sha2_224);
531 	case CRYPTO_SHA2_256_HMAC:
532 		return (&auth_hash_hmac_sha2_256);
533 	case CRYPTO_SHA2_384_HMAC:
534 		return (&auth_hash_hmac_sha2_384);
535 	case CRYPTO_SHA2_512_HMAC:
536 		return (&auth_hash_hmac_sha2_512);
537 	case CRYPTO_NULL_HMAC:
538 		return (&auth_hash_null);
539 	case CRYPTO_RIPEMD160_HMAC:
540 		return (&auth_hash_hmac_ripemd_160);
541 	case CRYPTO_SHA1:
542 		return (&auth_hash_sha1);
543 	case CRYPTO_SHA2_224:
544 		return (&auth_hash_sha2_224);
545 	case CRYPTO_SHA2_256:
546 		return (&auth_hash_sha2_256);
547 	case CRYPTO_SHA2_384:
548 		return (&auth_hash_sha2_384);
549 	case CRYPTO_SHA2_512:
550 		return (&auth_hash_sha2_512);
551 	case CRYPTO_AES_NIST_GMAC:
552 		switch (csp->csp_auth_klen) {
553 		case 128 / 8:
554 			return (&auth_hash_nist_gmac_aes_128);
555 		case 192 / 8:
556 			return (&auth_hash_nist_gmac_aes_192);
557 		case 256 / 8:
558 			return (&auth_hash_nist_gmac_aes_256);
559 		default:
560 			return (NULL);
561 		}
562 	case CRYPTO_BLAKE2B:
563 		return (&auth_hash_blake2b);
564 	case CRYPTO_BLAKE2S:
565 		return (&auth_hash_blake2s);
566 	case CRYPTO_POLY1305:
567 		return (&auth_hash_poly1305);
568 	case CRYPTO_AES_CCM_CBC_MAC:
569 		switch (csp->csp_auth_klen) {
570 		case 128 / 8:
571 			return (&auth_hash_ccm_cbc_mac_128);
572 		case 192 / 8:
573 			return (&auth_hash_ccm_cbc_mac_192);
574 		case 256 / 8:
575 			return (&auth_hash_ccm_cbc_mac_256);
576 		default:
577 			return (NULL);
578 		}
579 	default:
580 		return (NULL);
581 	}
582 }
583 
584 struct enc_xform *
585 crypto_cipher(const struct crypto_session_params *csp)
586 {
587 
588 	switch (csp->csp_cipher_alg) {
589 	case CRYPTO_RIJNDAEL128_CBC:
590 		return (&enc_xform_rijndael128);
591 	case CRYPTO_AES_XTS:
592 		return (&enc_xform_aes_xts);
593 	case CRYPTO_AES_ICM:
594 		return (&enc_xform_aes_icm);
595 	case CRYPTO_AES_NIST_GCM_16:
596 		return (&enc_xform_aes_nist_gcm);
597 	case CRYPTO_CAMELLIA_CBC:
598 		return (&enc_xform_camellia);
599 	case CRYPTO_NULL_CBC:
600 		return (&enc_xform_null);
601 	case CRYPTO_CHACHA20:
602 		return (&enc_xform_chacha20);
603 	case CRYPTO_AES_CCM_16:
604 		return (&enc_xform_ccm);
605 	default:
606 		return (NULL);
607 	}
608 }
609 
610 static struct cryptocap *
611 crypto_checkdriver(uint32_t hid)
612 {
613 
614 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
615 }
616 
617 /*
618  * Select a driver for a new session that supports the specified
619  * algorithms and, optionally, is constrained according to the flags.
620  */
621 static struct cryptocap *
622 crypto_select_driver(const struct crypto_session_params *csp, int flags)
623 {
624 	struct cryptocap *cap, *best;
625 	int best_match, error, hid;
626 
627 	CRYPTO_DRIVER_ASSERT();
628 
629 	best = NULL;
630 	for (hid = 0; hid < crypto_drivers_size; hid++) {
631 		/*
632 		 * If there is no driver for this slot, or the driver
633 		 * is not appropriate (hardware or software based on
634 		 * match), then skip.
635 		 */
636 		cap = crypto_drivers[hid];
637 		if (cap == NULL ||
638 		    (cap->cc_flags & flags) == 0)
639 			continue;
640 
641 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
642 		if (error >= 0)
643 			continue;
644 
645 		/*
646 		 * Use the driver with the highest probe value.
647 		 * Hardware drivers use a higher probe value than
648 		 * software.  In case of a tie, prefer the driver with
649 		 * the fewest active sessions.
650 		 */
651 		if (best == NULL || error > best_match ||
652 		    (error == best_match &&
653 		    cap->cc_sessions < best->cc_sessions)) {
654 			best = cap;
655 			best_match = error;
656 		}
657 	}
658 	return best;
659 }
660 
661 static enum alg_type {
662 	ALG_NONE = 0,
663 	ALG_CIPHER,
664 	ALG_DIGEST,
665 	ALG_KEYED_DIGEST,
666 	ALG_COMPRESSION,
667 	ALG_AEAD
668 } alg_types[] = {
669 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
670 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
671 	[CRYPTO_AES_CBC] = ALG_CIPHER,
672 	[CRYPTO_SHA1] = ALG_DIGEST,
673 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
674 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
675 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
676 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
677 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
678 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
679 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
680 	[CRYPTO_AES_XTS] = ALG_CIPHER,
681 	[CRYPTO_AES_ICM] = ALG_CIPHER,
682 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
683 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
684 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
685 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
686 	[CRYPTO_CHACHA20] = ALG_CIPHER,
687 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
688 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
689 	[CRYPTO_SHA2_224] = ALG_DIGEST,
690 	[CRYPTO_SHA2_256] = ALG_DIGEST,
691 	[CRYPTO_SHA2_384] = ALG_DIGEST,
692 	[CRYPTO_SHA2_512] = ALG_DIGEST,
693 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
694 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
695 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
696 };
697 
698 static enum alg_type
699 alg_type(int alg)
700 {
701 
702 	if (alg < nitems(alg_types))
703 		return (alg_types[alg]);
704 	return (ALG_NONE);
705 }
706 
707 static bool
708 alg_is_compression(int alg)
709 {
710 
711 	return (alg_type(alg) == ALG_COMPRESSION);
712 }
713 
714 static bool
715 alg_is_cipher(int alg)
716 {
717 
718 	return (alg_type(alg) == ALG_CIPHER);
719 }
720 
721 static bool
722 alg_is_digest(int alg)
723 {
724 
725 	return (alg_type(alg) == ALG_DIGEST ||
726 	    alg_type(alg) == ALG_KEYED_DIGEST);
727 }
728 
729 static bool
730 alg_is_keyed_digest(int alg)
731 {
732 
733 	return (alg_type(alg) == ALG_KEYED_DIGEST);
734 }
735 
736 static bool
737 alg_is_aead(int alg)
738 {
739 
740 	return (alg_type(alg) == ALG_AEAD);
741 }
742 
743 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
744 
745 /* Various sanity checks on crypto session parameters. */
746 static bool
747 check_csp(const struct crypto_session_params *csp)
748 {
749 	struct auth_hash *axf;
750 
751 	/* Mode-independent checks. */
752 	if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
753 		return (false);
754 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
755 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
756 		return (false);
757 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
758 		return (false);
759 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
760 		return (false);
761 
762 	switch (csp->csp_mode) {
763 	case CSP_MODE_COMPRESS:
764 		if (!alg_is_compression(csp->csp_cipher_alg))
765 			return (false);
766 		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
767 			return (false);
768 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
769 			return (false);
770 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
771 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
772 		    csp->csp_auth_mlen != 0)
773 			return (false);
774 		break;
775 	case CSP_MODE_CIPHER:
776 		if (!alg_is_cipher(csp->csp_cipher_alg))
777 			return (false);
778 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
779 			return (false);
780 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
781 			if (csp->csp_cipher_klen == 0)
782 				return (false);
783 			if (csp->csp_ivlen == 0)
784 				return (false);
785 		}
786 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
787 			return (false);
788 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
789 		    csp->csp_auth_mlen != 0)
790 			return (false);
791 		break;
792 	case CSP_MODE_DIGEST:
793 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
794 			return (false);
795 
796 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
797 			return (false);
798 
799 		/* IV is optional for digests (e.g. GMAC). */
800 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
801 			return (false);
802 		if (!alg_is_digest(csp->csp_auth_alg))
803 			return (false);
804 
805 		/* Key is optional for BLAKE2 digests. */
806 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
807 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
808 			;
809 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
810 			if (csp->csp_auth_klen == 0)
811 				return (false);
812 		} else {
813 			if (csp->csp_auth_klen != 0)
814 				return (false);
815 		}
816 		if (csp->csp_auth_mlen != 0) {
817 			axf = crypto_auth_hash(csp);
818 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
819 				return (false);
820 		}
821 		break;
822 	case CSP_MODE_AEAD:
823 		if (!alg_is_aead(csp->csp_cipher_alg))
824 			return (false);
825 		if (csp->csp_cipher_klen == 0)
826 			return (false);
827 		if (csp->csp_ivlen == 0 ||
828 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
829 			return (false);
830 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
831 			return (false);
832 
833 		/*
834 		 * XXX: Would be nice to have a better way to get this
835 		 * value.
836 		 */
837 		switch (csp->csp_cipher_alg) {
838 		case CRYPTO_AES_NIST_GCM_16:
839 		case CRYPTO_AES_CCM_16:
840 			if (csp->csp_auth_mlen > 16)
841 				return (false);
842 			break;
843 		}
844 		break;
845 	case CSP_MODE_ETA:
846 		if (!alg_is_cipher(csp->csp_cipher_alg))
847 			return (false);
848 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
849 			if (csp->csp_cipher_klen == 0)
850 				return (false);
851 			if (csp->csp_ivlen == 0)
852 				return (false);
853 		}
854 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
855 			return (false);
856 		if (!alg_is_digest(csp->csp_auth_alg))
857 			return (false);
858 
859 		/* Key is optional for BLAKE2 digests. */
860 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
861 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
862 			;
863 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
864 			if (csp->csp_auth_klen == 0)
865 				return (false);
866 		} else {
867 			if (csp->csp_auth_klen != 0)
868 				return (false);
869 		}
870 		if (csp->csp_auth_mlen != 0) {
871 			axf = crypto_auth_hash(csp);
872 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
873 				return (false);
874 		}
875 		break;
876 	default:
877 		return (false);
878 	}
879 
880 	return (true);
881 }
882 
883 /*
884  * Delete a session after it has been detached from its driver.
885  */
886 static void
887 crypto_deletesession(crypto_session_t cses)
888 {
889 	struct cryptocap *cap;
890 
891 	cap = cses->cap;
892 
893 	zfree(cses, M_CRYPTO_DATA);
894 
895 	CRYPTO_DRIVER_LOCK();
896 	cap->cc_sessions--;
897 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
898 		wakeup(cap);
899 	CRYPTO_DRIVER_UNLOCK();
900 	cap_rele(cap);
901 }
902 
903 /*
904  * Create a new session.  The crid argument specifies a crypto
905  * driver to use or constraints on a driver to select (hardware
906  * only, software only, either).  Whatever driver is selected
907  * must be capable of the requested crypto algorithms.
908  */
909 int
910 crypto_newsession(crypto_session_t *cses,
911     const struct crypto_session_params *csp, int crid)
912 {
913 	static uint64_t sessid = 0;
914 	crypto_session_t res;
915 	struct cryptocap *cap;
916 	int err;
917 
918 	if (!check_csp(csp))
919 		return (EINVAL);
920 
921 	res = NULL;
922 
923 	CRYPTO_DRIVER_LOCK();
924 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
925 		/*
926 		 * Use specified driver; verify it is capable.
927 		 */
928 		cap = crypto_checkdriver(crid);
929 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
930 			cap = NULL;
931 	} else {
932 		/*
933 		 * No requested driver; select based on crid flags.
934 		 */
935 		cap = crypto_select_driver(csp, crid);
936 	}
937 	if (cap == NULL) {
938 		CRYPTO_DRIVER_UNLOCK();
939 		CRYPTDEB("no driver");
940 		return (EOPNOTSUPP);
941 	}
942 	cap_ref(cap);
943 	cap->cc_sessions++;
944 	CRYPTO_DRIVER_UNLOCK();
945 
946 	/* Allocate a single block for the generic session and driver softc. */
947 	res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
948 	    M_WAITOK | M_ZERO);
949 	res->cap = cap;
950 	res->csp = *csp;
951 	res->id = atomic_fetchadd_64(&sessid, 1);
952 
953 	/* Call the driver initialization routine. */
954 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
955 	if (err != 0) {
956 		CRYPTDEB("dev newsession failed: %d", err);
957 		crypto_deletesession(res);
958 		return (err);
959 	}
960 
961 	*cses = res;
962 	return (0);
963 }
964 
965 /*
966  * Delete an existing session (or a reserved session on an unregistered
967  * driver).
968  */
969 void
970 crypto_freesession(crypto_session_t cses)
971 {
972 	struct cryptocap *cap;
973 
974 	if (cses == NULL)
975 		return;
976 
977 	cap = cses->cap;
978 
979 	/* Call the driver cleanup routine, if available. */
980 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
981 
982 	crypto_deletesession(cses);
983 }
984 
985 /*
986  * Return a new driver id.  Registers a driver with the system so that
987  * it can be probed by subsequent sessions.
988  */
989 int32_t
990 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
991 {
992 	struct cryptocap *cap, **newdrv;
993 	int i;
994 
995 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
996 		device_printf(dev,
997 		    "no flags specified when registering driver\n");
998 		return -1;
999 	}
1000 
1001 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1002 	cap->cc_dev = dev;
1003 	cap->cc_session_size = sessionsize;
1004 	cap->cc_flags = flags;
1005 	refcount_init(&cap->cc_refs, 1);
1006 
1007 	CRYPTO_DRIVER_LOCK();
1008 	for (;;) {
1009 		for (i = 0; i < crypto_drivers_size; i++) {
1010 			if (crypto_drivers[i] == NULL)
1011 				break;
1012 		}
1013 
1014 		if (i < crypto_drivers_size)
1015 			break;
1016 
1017 		/* Out of entries, allocate some more. */
1018 
1019 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1020 			CRYPTO_DRIVER_UNLOCK();
1021 			printf("crypto: driver count wraparound!\n");
1022 			cap_rele(cap);
1023 			return (-1);
1024 		}
1025 		CRYPTO_DRIVER_UNLOCK();
1026 
1027 		newdrv = malloc(2 * crypto_drivers_size *
1028 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1029 
1030 		CRYPTO_DRIVER_LOCK();
1031 		memcpy(newdrv, crypto_drivers,
1032 		    crypto_drivers_size * sizeof(*crypto_drivers));
1033 
1034 		crypto_drivers_size *= 2;
1035 
1036 		free(crypto_drivers, M_CRYPTO_DATA);
1037 		crypto_drivers = newdrv;
1038 	}
1039 
1040 	cap->cc_hid = i;
1041 	crypto_drivers[i] = cap;
1042 	CRYPTO_DRIVER_UNLOCK();
1043 
1044 	if (bootverbose)
1045 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1046 		    device_get_nameunit(dev), i, flags);
1047 
1048 	return i;
1049 }
1050 
1051 /*
1052  * Lookup a driver by name.  We match against the full device
1053  * name and unit, and against just the name.  The latter gives
1054  * us a simple widlcarding by device name.  On success return the
1055  * driver/hardware identifier; otherwise return -1.
1056  */
1057 int
1058 crypto_find_driver(const char *match)
1059 {
1060 	struct cryptocap *cap;
1061 	int i, len = strlen(match);
1062 
1063 	CRYPTO_DRIVER_LOCK();
1064 	for (i = 0; i < crypto_drivers_size; i++) {
1065 		if (crypto_drivers[i] == NULL)
1066 			continue;
1067 		cap = crypto_drivers[i];
1068 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1069 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1070 			CRYPTO_DRIVER_UNLOCK();
1071 			return (i);
1072 		}
1073 	}
1074 	CRYPTO_DRIVER_UNLOCK();
1075 	return (-1);
1076 }
1077 
1078 /*
1079  * Return the device_t for the specified driver or NULL
1080  * if the driver identifier is invalid.
1081  */
1082 device_t
1083 crypto_find_device_byhid(int hid)
1084 {
1085 	struct cryptocap *cap;
1086 	device_t dev;
1087 
1088 	dev = NULL;
1089 	CRYPTO_DRIVER_LOCK();
1090 	cap = crypto_checkdriver(hid);
1091 	if (cap != NULL)
1092 		dev = cap->cc_dev;
1093 	CRYPTO_DRIVER_UNLOCK();
1094 	return (dev);
1095 }
1096 
1097 /*
1098  * Return the device/driver capabilities.
1099  */
1100 int
1101 crypto_getcaps(int hid)
1102 {
1103 	struct cryptocap *cap;
1104 	int flags;
1105 
1106 	flags = 0;
1107 	CRYPTO_DRIVER_LOCK();
1108 	cap = crypto_checkdriver(hid);
1109 	if (cap != NULL)
1110 		flags = cap->cc_flags;
1111 	CRYPTO_DRIVER_UNLOCK();
1112 	return (flags);
1113 }
1114 
1115 /*
1116  * Register support for a key-related algorithm.  This routine
1117  * is called once for each algorithm supported a driver.
1118  */
1119 int
1120 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags)
1121 {
1122 	struct cryptocap *cap;
1123 	int err;
1124 
1125 	CRYPTO_DRIVER_LOCK();
1126 
1127 	cap = crypto_checkdriver(driverid);
1128 	if (cap != NULL &&
1129 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1130 		/*
1131 		 * XXX Do some performance testing to determine placing.
1132 		 * XXX We probably need an auxiliary data structure that
1133 		 * XXX describes relative performances.
1134 		 */
1135 
1136 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1137 		if (bootverbose)
1138 			printf("crypto: %s registers key alg %u flags %u\n"
1139 				, device_get_nameunit(cap->cc_dev)
1140 				, kalg
1141 				, flags
1142 			);
1143 		gone_in_dev(cap->cc_dev, 14, "asymmetric crypto");
1144 		err = 0;
1145 	} else
1146 		err = EINVAL;
1147 
1148 	CRYPTO_DRIVER_UNLOCK();
1149 	return err;
1150 }
1151 
1152 /*
1153  * Unregister all algorithms associated with a crypto driver.
1154  * If there are pending sessions using it, leave enough information
1155  * around so that subsequent calls using those sessions will
1156  * correctly detect the driver has been unregistered and reroute
1157  * requests.
1158  */
1159 int
1160 crypto_unregister_all(uint32_t driverid)
1161 {
1162 	struct cryptocap *cap;
1163 
1164 	CRYPTO_DRIVER_LOCK();
1165 	cap = crypto_checkdriver(driverid);
1166 	if (cap == NULL) {
1167 		CRYPTO_DRIVER_UNLOCK();
1168 		return (EINVAL);
1169 	}
1170 
1171 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1172 	crypto_drivers[driverid] = NULL;
1173 
1174 	/*
1175 	 * XXX: This doesn't do anything to kick sessions that
1176 	 * have no pending operations.
1177 	 */
1178 	while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1179 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1180 	CRYPTO_DRIVER_UNLOCK();
1181 	cap_rele(cap);
1182 
1183 	return (0);
1184 }
1185 
1186 /*
1187  * Clear blockage on a driver.  The what parameter indicates whether
1188  * the driver is now ready for cryptop's and/or cryptokop's.
1189  */
1190 int
1191 crypto_unblock(uint32_t driverid, int what)
1192 {
1193 	struct cryptocap *cap;
1194 	int err;
1195 
1196 	CRYPTO_Q_LOCK();
1197 	cap = crypto_checkdriver(driverid);
1198 	if (cap != NULL) {
1199 		if (what & CRYPTO_SYMQ)
1200 			cap->cc_qblocked = 0;
1201 		if (what & CRYPTO_ASYMQ)
1202 			cap->cc_kqblocked = 0;
1203 		if (crp_sleep)
1204 			wakeup_one(&crp_q);
1205 		err = 0;
1206 	} else
1207 		err = EINVAL;
1208 	CRYPTO_Q_UNLOCK();
1209 
1210 	return err;
1211 }
1212 
1213 size_t
1214 crypto_buffer_len(struct crypto_buffer *cb)
1215 {
1216 	switch (cb->cb_type) {
1217 	case CRYPTO_BUF_CONTIG:
1218 		return (cb->cb_buf_len);
1219 	case CRYPTO_BUF_MBUF:
1220 		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1221 			return (cb->cb_mbuf->m_pkthdr.len);
1222 		return (m_length(cb->cb_mbuf, NULL));
1223 	case CRYPTO_BUF_VMPAGE:
1224 		return (cb->cb_vm_page_len);
1225 	case CRYPTO_BUF_UIO:
1226 		return (cb->cb_uio->uio_resid);
1227 	default:
1228 		return (0);
1229 	}
1230 }
1231 
1232 #ifdef INVARIANTS
1233 /* Various sanity checks on crypto requests. */
1234 static void
1235 cb_sanity(struct crypto_buffer *cb, const char *name)
1236 {
1237 	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1238 	    ("incoming crp with invalid %s buffer type", name));
1239 	switch (cb->cb_type) {
1240 	case CRYPTO_BUF_CONTIG:
1241 		KASSERT(cb->cb_buf_len >= 0,
1242 		    ("incoming crp with -ve %s buffer length", name));
1243 		break;
1244 	case CRYPTO_BUF_VMPAGE:
1245 		KASSERT(CRYPTO_HAS_VMPAGE,
1246 		    ("incoming crp uses dmap on supported arch"));
1247 		KASSERT(cb->cb_vm_page_len >= 0,
1248 		    ("incoming crp with -ve %s buffer length", name));
1249 		KASSERT(cb->cb_vm_page_offset >= 0,
1250 		    ("incoming crp with -ve %s buffer offset", name));
1251 		KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1252 		    ("incoming crp with %s buffer offset greater than page size"
1253 		     , name));
1254 		break;
1255 	default:
1256 		break;
1257 	}
1258 }
1259 
1260 static void
1261 crp_sanity(struct cryptop *crp)
1262 {
1263 	struct crypto_session_params *csp;
1264 	struct crypto_buffer *out;
1265 	size_t ilen, len, olen;
1266 
1267 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1268 	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1269 	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1270 	    ("incoming crp with invalid output buffer type"));
1271 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1272 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1273 	    ("incoming crp already done"));
1274 
1275 	csp = &crp->crp_session->csp;
1276 	cb_sanity(&crp->crp_buf, "input");
1277 	ilen = crypto_buffer_len(&crp->crp_buf);
1278 	olen = ilen;
1279 	out = NULL;
1280 	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1281 		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1282 			cb_sanity(&crp->crp_obuf, "output");
1283 			out = &crp->crp_obuf;
1284 			olen = crypto_buffer_len(out);
1285 		}
1286 	} else
1287 		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1288 		    ("incoming crp with separate output buffer "
1289 		    "but no session support"));
1290 
1291 	switch (csp->csp_mode) {
1292 	case CSP_MODE_COMPRESS:
1293 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1294 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1295 		    ("invalid compression op %x", crp->crp_op));
1296 		break;
1297 	case CSP_MODE_CIPHER:
1298 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1299 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1300 		    ("invalid cipher op %x", crp->crp_op));
1301 		break;
1302 	case CSP_MODE_DIGEST:
1303 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1304 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1305 		    ("invalid digest op %x", crp->crp_op));
1306 		break;
1307 	case CSP_MODE_AEAD:
1308 		KASSERT(crp->crp_op ==
1309 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1310 		    crp->crp_op ==
1311 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1312 		    ("invalid AEAD op %x", crp->crp_op));
1313 		if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1314 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1315 			    ("GCM without a separate IV"));
1316 		if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1317 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1318 			    ("CCM without a separate IV"));
1319 		break;
1320 	case CSP_MODE_ETA:
1321 		KASSERT(crp->crp_op ==
1322 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1323 		    crp->crp_op ==
1324 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1325 		    ("invalid ETA op %x", crp->crp_op));
1326 		break;
1327 	}
1328 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1329 		if (crp->crp_aad == NULL) {
1330 			KASSERT(crp->crp_aad_start == 0 ||
1331 			    crp->crp_aad_start < ilen,
1332 			    ("invalid AAD start"));
1333 			KASSERT(crp->crp_aad_length != 0 ||
1334 			    crp->crp_aad_start == 0,
1335 			    ("AAD with zero length and non-zero start"));
1336 			KASSERT(crp->crp_aad_length == 0 ||
1337 			    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1338 			    ("AAD outside input length"));
1339 		} else {
1340 			KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1341 			    ("session doesn't support separate AAD buffer"));
1342 			KASSERT(crp->crp_aad_start == 0,
1343 			    ("separate AAD buffer with non-zero AAD start"));
1344 			KASSERT(crp->crp_aad_length != 0,
1345 			    ("separate AAD buffer with zero length"));
1346 		}
1347 	} else {
1348 		KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1349 		    crp->crp_aad_length == 0,
1350 		    ("AAD region in request not supporting AAD"));
1351 	}
1352 	if (csp->csp_ivlen == 0) {
1353 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1354 		    ("IV_SEPARATE set when IV isn't used"));
1355 		KASSERT(crp->crp_iv_start == 0,
1356 		    ("crp_iv_start set when IV isn't used"));
1357 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1358 		KASSERT(crp->crp_iv_start == 0,
1359 		    ("IV_SEPARATE used with non-zero IV start"));
1360 	} else {
1361 		KASSERT(crp->crp_iv_start < ilen,
1362 		    ("invalid IV start"));
1363 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1364 		    ("IV outside buffer length"));
1365 	}
1366 	/* XXX: payload_start of 0 should always be < ilen? */
1367 	KASSERT(crp->crp_payload_start == 0 ||
1368 	    crp->crp_payload_start < ilen,
1369 	    ("invalid payload start"));
1370 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1371 	    ilen, ("payload outside input buffer"));
1372 	if (out == NULL) {
1373 		KASSERT(crp->crp_payload_output_start == 0,
1374 		    ("payload output start non-zero without output buffer"));
1375 	} else {
1376 		KASSERT(crp->crp_payload_output_start < olen,
1377 		    ("invalid payload output start"));
1378 		KASSERT(crp->crp_payload_output_start +
1379 		    crp->crp_payload_length <= olen,
1380 		    ("payload outside output buffer"));
1381 	}
1382 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1383 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1384 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1385 			len = ilen;
1386 		else
1387 			len = olen;
1388 		KASSERT(crp->crp_digest_start == 0 ||
1389 		    crp->crp_digest_start < len,
1390 		    ("invalid digest start"));
1391 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1392 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1393 		    ("digest outside buffer"));
1394 	} else {
1395 		KASSERT(crp->crp_digest_start == 0,
1396 		    ("non-zero digest start for request without a digest"));
1397 	}
1398 	if (csp->csp_cipher_klen != 0)
1399 		KASSERT(csp->csp_cipher_key != NULL ||
1400 		    crp->crp_cipher_key != NULL,
1401 		    ("cipher request without a key"));
1402 	if (csp->csp_auth_klen != 0)
1403 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1404 		    ("auth request without a key"));
1405 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1406 }
1407 #endif
1408 
1409 /*
1410  * Add a crypto request to a queue, to be processed by the kernel thread.
1411  */
1412 int
1413 crypto_dispatch(struct cryptop *crp)
1414 {
1415 	struct cryptocap *cap;
1416 	int result;
1417 
1418 #ifdef INVARIANTS
1419 	crp_sanity(crp);
1420 #endif
1421 
1422 	CRYPTOSTAT_INC(cs_ops);
1423 
1424 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1425 
1426 	if (CRYPTOP_ASYNC(crp)) {
1427 		if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1428 			struct crypto_ret_worker *ret_worker;
1429 
1430 			ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1431 
1432 			CRYPTO_RETW_LOCK(ret_worker);
1433 			crp->crp_seq = ret_worker->reorder_ops++;
1434 			CRYPTO_RETW_UNLOCK(ret_worker);
1435 		}
1436 
1437 		TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1438 		taskqueue_enqueue(crypto_tq, &crp->crp_task);
1439 		return (0);
1440 	}
1441 
1442 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1443 		/*
1444 		 * Caller marked the request to be processed
1445 		 * immediately; dispatch it directly to the
1446 		 * driver unless the driver is currently blocked.
1447 		 */
1448 		cap = crp->crp_session->cap;
1449 		if (!cap->cc_qblocked) {
1450 			result = crypto_invoke(cap, crp, 0);
1451 			if (result != ERESTART)
1452 				return (result);
1453 			/*
1454 			 * The driver ran out of resources, put the request on
1455 			 * the queue.
1456 			 */
1457 		}
1458 	}
1459 	crypto_batch_enqueue(crp);
1460 	return 0;
1461 }
1462 
1463 void
1464 crypto_batch_enqueue(struct cryptop *crp)
1465 {
1466 
1467 	CRYPTO_Q_LOCK();
1468 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1469 	if (crp_sleep)
1470 		wakeup_one(&crp_q);
1471 	CRYPTO_Q_UNLOCK();
1472 }
1473 
1474 /*
1475  * Add an asymetric crypto request to a queue,
1476  * to be processed by the kernel thread.
1477  */
1478 int
1479 crypto_kdispatch(struct cryptkop *krp)
1480 {
1481 	int error;
1482 
1483 	CRYPTOSTAT_INC(cs_kops);
1484 
1485 	krp->krp_cap = NULL;
1486 	error = crypto_kinvoke(krp);
1487 	if (error == ERESTART) {
1488 		CRYPTO_Q_LOCK();
1489 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1490 		if (crp_sleep)
1491 			wakeup_one(&crp_q);
1492 		CRYPTO_Q_UNLOCK();
1493 		error = 0;
1494 	}
1495 	return error;
1496 }
1497 
1498 /*
1499  * Verify a driver is suitable for the specified operation.
1500  */
1501 static __inline int
1502 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1503 {
1504 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1505 }
1506 
1507 /*
1508  * Select a driver for an asym operation.  The driver must
1509  * support the necessary algorithm.  The caller can constrain
1510  * which device is selected with the flags parameter.  The
1511  * algorithm we use here is pretty stupid; just use the first
1512  * driver that supports the algorithms we need. If there are
1513  * multiple suitable drivers we choose the driver with the
1514  * fewest active operations.  We prefer hardware-backed
1515  * drivers to software ones when either may be used.
1516  */
1517 static struct cryptocap *
1518 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1519 {
1520 	struct cryptocap *cap, *best;
1521 	int match, hid;
1522 
1523 	CRYPTO_DRIVER_ASSERT();
1524 
1525 	/*
1526 	 * Look first for hardware crypto devices if permitted.
1527 	 */
1528 	if (flags & CRYPTOCAP_F_HARDWARE)
1529 		match = CRYPTOCAP_F_HARDWARE;
1530 	else
1531 		match = CRYPTOCAP_F_SOFTWARE;
1532 	best = NULL;
1533 again:
1534 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1535 		/*
1536 		 * If there is no driver for this slot, or the driver
1537 		 * is not appropriate (hardware or software based on
1538 		 * match), then skip.
1539 		 */
1540 		cap = crypto_drivers[hid];
1541 		if (cap == NULL ||
1542 		    (cap->cc_flags & match) == 0)
1543 			continue;
1544 
1545 		/* verify all the algorithms are supported. */
1546 		if (kdriver_suitable(cap, krp)) {
1547 			if (best == NULL ||
1548 			    cap->cc_koperations < best->cc_koperations)
1549 				best = cap;
1550 		}
1551 	}
1552 	if (best != NULL)
1553 		return best;
1554 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1555 		/* sort of an Algol 68-style for loop */
1556 		match = CRYPTOCAP_F_SOFTWARE;
1557 		goto again;
1558 	}
1559 	return best;
1560 }
1561 
1562 /*
1563  * Choose a driver for an asymmetric crypto request.
1564  */
1565 static struct cryptocap *
1566 crypto_lookup_kdriver(struct cryptkop *krp)
1567 {
1568 	struct cryptocap *cap;
1569 	uint32_t crid;
1570 
1571 	/* If this request is requeued, it might already have a driver. */
1572 	cap = krp->krp_cap;
1573 	if (cap != NULL)
1574 		return (cap);
1575 
1576 	/* Use krp_crid to choose a driver. */
1577 	crid = krp->krp_crid;
1578 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1579 		cap = crypto_checkdriver(crid);
1580 		if (cap != NULL) {
1581 			/*
1582 			 * Driver present, it must support the
1583 			 * necessary algorithm and, if s/w drivers are
1584 			 * excluded, it must be registered as
1585 			 * hardware-backed.
1586 			 */
1587 			if (!kdriver_suitable(cap, krp) ||
1588 			    (!crypto_devallowsoft &&
1589 			    (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1590 				cap = NULL;
1591 		}
1592 	} else {
1593 		/*
1594 		 * No requested driver; select based on crid flags.
1595 		 */
1596 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
1597 			crid &= ~CRYPTOCAP_F_SOFTWARE;
1598 		cap = crypto_select_kdriver(krp, crid);
1599 	}
1600 
1601 	if (cap != NULL) {
1602 		krp->krp_cap = cap_ref(cap);
1603 		krp->krp_hid = cap->cc_hid;
1604 	}
1605 	return (cap);
1606 }
1607 
1608 /*
1609  * Dispatch an asymmetric crypto request.
1610  */
1611 static int
1612 crypto_kinvoke(struct cryptkop *krp)
1613 {
1614 	struct cryptocap *cap = NULL;
1615 	int error;
1616 
1617 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1618 	KASSERT(krp->krp_callback != NULL,
1619 	    ("%s: krp->crp_callback == NULL", __func__));
1620 
1621 	CRYPTO_DRIVER_LOCK();
1622 	cap = crypto_lookup_kdriver(krp);
1623 	if (cap == NULL) {
1624 		CRYPTO_DRIVER_UNLOCK();
1625 		krp->krp_status = ENODEV;
1626 		crypto_kdone(krp);
1627 		return (0);
1628 	}
1629 
1630 	/*
1631 	 * If the device is blocked, return ERESTART to requeue it.
1632 	 */
1633 	if (cap->cc_kqblocked) {
1634 		/*
1635 		 * XXX: Previously this set krp_status to ERESTART and
1636 		 * invoked crypto_kdone but the caller would still
1637 		 * requeue it.
1638 		 */
1639 		CRYPTO_DRIVER_UNLOCK();
1640 		return (ERESTART);
1641 	}
1642 
1643 	cap->cc_koperations++;
1644 	CRYPTO_DRIVER_UNLOCK();
1645 	error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1646 	if (error == ERESTART) {
1647 		CRYPTO_DRIVER_LOCK();
1648 		cap->cc_koperations--;
1649 		CRYPTO_DRIVER_UNLOCK();
1650 		return (error);
1651 	}
1652 
1653 	KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1654 	return (0);
1655 }
1656 
1657 static void
1658 crypto_task_invoke(void *ctx, int pending)
1659 {
1660 	struct cryptocap *cap;
1661 	struct cryptop *crp;
1662 	int result;
1663 
1664 	crp = (struct cryptop *)ctx;
1665 	cap = crp->crp_session->cap;
1666 	result = crypto_invoke(cap, crp, 0);
1667 	if (result == ERESTART)
1668 		crypto_batch_enqueue(crp);
1669 }
1670 
1671 /*
1672  * Dispatch a crypto request to the appropriate crypto devices.
1673  */
1674 static int
1675 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1676 {
1677 
1678 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1679 	KASSERT(crp->crp_callback != NULL,
1680 	    ("%s: crp->crp_callback == NULL", __func__));
1681 	KASSERT(crp->crp_session != NULL,
1682 	    ("%s: crp->crp_session == NULL", __func__));
1683 
1684 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1685 		struct crypto_session_params csp;
1686 		crypto_session_t nses;
1687 
1688 		/*
1689 		 * Driver has unregistered; migrate the session and return
1690 		 * an error to the caller so they'll resubmit the op.
1691 		 *
1692 		 * XXX: What if there are more already queued requests for this
1693 		 *      session?
1694 		 *
1695 		 * XXX: Real solution is to make sessions refcounted
1696 		 * and force callers to hold a reference when
1697 		 * assigning to crp_session.  Could maybe change
1698 		 * crypto_getreq to accept a session pointer to make
1699 		 * that work.  Alternatively, we could abandon the
1700 		 * notion of rewriting crp_session in requests forcing
1701 		 * the caller to deal with allocating a new session.
1702 		 * Perhaps provide a method to allow a crp's session to
1703 		 * be swapped that callers could use.
1704 		 */
1705 		csp = crp->crp_session->csp;
1706 		crypto_freesession(crp->crp_session);
1707 
1708 		/*
1709 		 * XXX: Key pointers may no longer be valid.  If we
1710 		 * really want to support this we need to define the
1711 		 * KPI such that 'csp' is required to be valid for the
1712 		 * duration of a session by the caller perhaps.
1713 		 *
1714 		 * XXX: If the keys have been changed this will reuse
1715 		 * the old keys.  This probably suggests making
1716 		 * rekeying more explicit and updating the key
1717 		 * pointers in 'csp' when the keys change.
1718 		 */
1719 		if (crypto_newsession(&nses, &csp,
1720 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1721 			crp->crp_session = nses;
1722 
1723 		crp->crp_etype = EAGAIN;
1724 		crypto_done(crp);
1725 		return 0;
1726 	} else {
1727 		/*
1728 		 * Invoke the driver to process the request.
1729 		 */
1730 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1731 	}
1732 }
1733 
1734 void
1735 crypto_destroyreq(struct cryptop *crp)
1736 {
1737 #ifdef DIAGNOSTIC
1738 	{
1739 		struct cryptop *crp2;
1740 		struct crypto_ret_worker *ret_worker;
1741 
1742 		CRYPTO_Q_LOCK();
1743 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1744 			KASSERT(crp2 != crp,
1745 			    ("Freeing cryptop from the crypto queue (%p).",
1746 			    crp));
1747 		}
1748 		CRYPTO_Q_UNLOCK();
1749 
1750 		FOREACH_CRYPTO_RETW(ret_worker) {
1751 			CRYPTO_RETW_LOCK(ret_worker);
1752 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1753 				KASSERT(crp2 != crp,
1754 				    ("Freeing cryptop from the return queue (%p).",
1755 				    crp));
1756 			}
1757 			CRYPTO_RETW_UNLOCK(ret_worker);
1758 		}
1759 	}
1760 #endif
1761 }
1762 
1763 void
1764 crypto_freereq(struct cryptop *crp)
1765 {
1766 	if (crp == NULL)
1767 		return;
1768 
1769 	crypto_destroyreq(crp);
1770 	uma_zfree(cryptop_zone, crp);
1771 }
1772 
1773 static void
1774 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1775 {
1776 	crp->crp_session = cses;
1777 }
1778 
1779 void
1780 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1781 {
1782 	memset(crp, 0, sizeof(*crp));
1783 	_crypto_initreq(crp, cses);
1784 }
1785 
1786 struct cryptop *
1787 crypto_getreq(crypto_session_t cses, int how)
1788 {
1789 	struct cryptop *crp;
1790 
1791 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1792 	crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1793 	if (crp != NULL)
1794 		_crypto_initreq(crp, cses);
1795 	return (crp);
1796 }
1797 
1798 /*
1799  * Invoke the callback on behalf of the driver.
1800  */
1801 void
1802 crypto_done(struct cryptop *crp)
1803 {
1804 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1805 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1806 	crp->crp_flags |= CRYPTO_F_DONE;
1807 	if (crp->crp_etype != 0)
1808 		CRYPTOSTAT_INC(cs_errs);
1809 
1810 	/*
1811 	 * CBIMM means unconditionally do the callback immediately;
1812 	 * CBIFSYNC means do the callback immediately only if the
1813 	 * operation was done synchronously.  Both are used to avoid
1814 	 * doing extraneous context switches; the latter is mostly
1815 	 * used with the software crypto driver.
1816 	 */
1817 	if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1818 	    ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1819 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1820 	     (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1821 		/*
1822 		 * Do the callback directly.  This is ok when the
1823 		 * callback routine does very little (e.g. the
1824 		 * /dev/crypto callback method just does a wakeup).
1825 		 */
1826 		crp->crp_callback(crp);
1827 	} else {
1828 		struct crypto_ret_worker *ret_worker;
1829 		bool wake;
1830 
1831 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1832 		wake = false;
1833 
1834 		/*
1835 		 * Normal case; queue the callback for the thread.
1836 		 */
1837 		CRYPTO_RETW_LOCK(ret_worker);
1838 		if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1839 			struct cryptop *tmp;
1840 
1841 			TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1842 					cryptop_q, crp_next) {
1843 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1844 					TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1845 							tmp, crp, crp_next);
1846 					break;
1847 				}
1848 			}
1849 			if (tmp == NULL) {
1850 				TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1851 						crp, crp_next);
1852 			}
1853 
1854 			if (crp->crp_seq == ret_worker->reorder_cur_seq)
1855 				wake = true;
1856 		}
1857 		else {
1858 			if (CRYPTO_RETW_EMPTY(ret_worker))
1859 				wake = true;
1860 
1861 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1862 		}
1863 
1864 		if (wake)
1865 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1866 		CRYPTO_RETW_UNLOCK(ret_worker);
1867 	}
1868 }
1869 
1870 /*
1871  * Invoke the callback on behalf of the driver.
1872  */
1873 void
1874 crypto_kdone(struct cryptkop *krp)
1875 {
1876 	struct crypto_ret_worker *ret_worker;
1877 	struct cryptocap *cap;
1878 
1879 	if (krp->krp_status != 0)
1880 		CRYPTOSTAT_INC(cs_kerrs);
1881 	cap = krp->krp_cap;
1882 	if (cap != NULL) {
1883 		CRYPTO_DRIVER_LOCK();
1884 		KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1885 		cap->cc_koperations--;
1886 		if (cap->cc_koperations == 0 &&
1887 		    cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1888 			wakeup(cap);
1889 		CRYPTO_DRIVER_UNLOCK();
1890 		krp->krp_cap = NULL;
1891 		cap_rele(cap);
1892 	}
1893 
1894 	ret_worker = CRYPTO_RETW(0);
1895 
1896 	CRYPTO_RETW_LOCK(ret_worker);
1897 	if (CRYPTO_RETW_EMPTY(ret_worker))
1898 		wakeup_one(&ret_worker->crp_ret_q);		/* shared wait channel */
1899 	TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1900 	CRYPTO_RETW_UNLOCK(ret_worker);
1901 }
1902 
1903 int
1904 crypto_getfeat(int *featp)
1905 {
1906 	int hid, kalg, feat = 0;
1907 
1908 	CRYPTO_DRIVER_LOCK();
1909 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1910 		const struct cryptocap *cap = crypto_drivers[hid];
1911 
1912 		if (cap == NULL ||
1913 		    ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1914 		    !crypto_devallowsoft)) {
1915 			continue;
1916 		}
1917 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1918 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1919 				feat |=  1 << kalg;
1920 	}
1921 	CRYPTO_DRIVER_UNLOCK();
1922 	*featp = feat;
1923 	return (0);
1924 }
1925 
1926 /*
1927  * Terminate a thread at module unload.  The process that
1928  * initiated this is waiting for us to signal that we're gone;
1929  * wake it up and exit.  We use the driver table lock to insure
1930  * we don't do the wakeup before they're waiting.  There is no
1931  * race here because the waiter sleeps on the proc lock for the
1932  * thread so it gets notified at the right time because of an
1933  * extra wakeup that's done in exit1().
1934  */
1935 static void
1936 crypto_finis(void *chan)
1937 {
1938 	CRYPTO_DRIVER_LOCK();
1939 	wakeup_one(chan);
1940 	CRYPTO_DRIVER_UNLOCK();
1941 	kproc_exit(0);
1942 }
1943 
1944 /*
1945  * Crypto thread, dispatches crypto requests.
1946  */
1947 static void
1948 crypto_proc(void)
1949 {
1950 	struct cryptop *crp, *submit;
1951 	struct cryptkop *krp;
1952 	struct cryptocap *cap;
1953 	int result, hint;
1954 
1955 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1956 	fpu_kern_thread(FPU_KERN_NORMAL);
1957 #endif
1958 
1959 	CRYPTO_Q_LOCK();
1960 	for (;;) {
1961 		/*
1962 		 * Find the first element in the queue that can be
1963 		 * processed and look-ahead to see if multiple ops
1964 		 * are ready for the same driver.
1965 		 */
1966 		submit = NULL;
1967 		hint = 0;
1968 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1969 			cap = crp->crp_session->cap;
1970 			/*
1971 			 * Driver cannot disappeared when there is an active
1972 			 * session.
1973 			 */
1974 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1975 			    __func__, __LINE__));
1976 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1977 				/* Op needs to be migrated, process it. */
1978 				if (submit == NULL)
1979 					submit = crp;
1980 				break;
1981 			}
1982 			if (!cap->cc_qblocked) {
1983 				if (submit != NULL) {
1984 					/*
1985 					 * We stop on finding another op,
1986 					 * regardless whether its for the same
1987 					 * driver or not.  We could keep
1988 					 * searching the queue but it might be
1989 					 * better to just use a per-driver
1990 					 * queue instead.
1991 					 */
1992 					if (submit->crp_session->cap == cap)
1993 						hint = CRYPTO_HINT_MORE;
1994 					break;
1995 				} else {
1996 					submit = crp;
1997 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1998 						break;
1999 					/* keep scanning for more are q'd */
2000 				}
2001 			}
2002 		}
2003 		if (submit != NULL) {
2004 			TAILQ_REMOVE(&crp_q, submit, crp_next);
2005 			cap = submit->crp_session->cap;
2006 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2007 			    __func__, __LINE__));
2008 			CRYPTO_Q_UNLOCK();
2009 			result = crypto_invoke(cap, submit, hint);
2010 			CRYPTO_Q_LOCK();
2011 			if (result == ERESTART) {
2012 				/*
2013 				 * The driver ran out of resources, mark the
2014 				 * driver ``blocked'' for cryptop's and put
2015 				 * the request back in the queue.  It would
2016 				 * best to put the request back where we got
2017 				 * it but that's hard so for now we put it
2018 				 * at the front.  This should be ok; putting
2019 				 * it at the end does not work.
2020 				 */
2021 				cap->cc_qblocked = 1;
2022 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2023 				CRYPTOSTAT_INC(cs_blocks);
2024 			}
2025 		}
2026 
2027 		/* As above, but for key ops */
2028 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2029 			cap = krp->krp_cap;
2030 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2031 				/*
2032 				 * Operation needs to be migrated,
2033 				 * clear krp_cap so a new driver is
2034 				 * selected.
2035 				 */
2036 				krp->krp_cap = NULL;
2037 				cap_rele(cap);
2038 				break;
2039 			}
2040 			if (!cap->cc_kqblocked)
2041 				break;
2042 		}
2043 		if (krp != NULL) {
2044 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
2045 			CRYPTO_Q_UNLOCK();
2046 			result = crypto_kinvoke(krp);
2047 			CRYPTO_Q_LOCK();
2048 			if (result == ERESTART) {
2049 				/*
2050 				 * The driver ran out of resources, mark the
2051 				 * driver ``blocked'' for cryptkop's and put
2052 				 * the request back in the queue.  It would
2053 				 * best to put the request back where we got
2054 				 * it but that's hard so for now we put it
2055 				 * at the front.  This should be ok; putting
2056 				 * it at the end does not work.
2057 				 */
2058 				krp->krp_cap->cc_kqblocked = 1;
2059 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2060 				CRYPTOSTAT_INC(cs_kblocks);
2061 			}
2062 		}
2063 
2064 		if (submit == NULL && krp == NULL) {
2065 			/*
2066 			 * Nothing more to be processed.  Sleep until we're
2067 			 * woken because there are more ops to process.
2068 			 * This happens either by submission or by a driver
2069 			 * becoming unblocked and notifying us through
2070 			 * crypto_unblock.  Note that when we wakeup we
2071 			 * start processing each queue again from the
2072 			 * front. It's not clear that it's important to
2073 			 * preserve this ordering since ops may finish
2074 			 * out of order if dispatched to different devices
2075 			 * and some become blocked while others do not.
2076 			 */
2077 			crp_sleep = 1;
2078 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2079 			crp_sleep = 0;
2080 			if (cryptoproc == NULL)
2081 				break;
2082 			CRYPTOSTAT_INC(cs_intrs);
2083 		}
2084 	}
2085 	CRYPTO_Q_UNLOCK();
2086 
2087 	crypto_finis(&crp_q);
2088 }
2089 
2090 /*
2091  * Crypto returns thread, does callbacks for processed crypto requests.
2092  * Callbacks are done here, rather than in the crypto drivers, because
2093  * callbacks typically are expensive and would slow interrupt handling.
2094  */
2095 static void
2096 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2097 {
2098 	struct cryptop *crpt;
2099 	struct cryptkop *krpt;
2100 
2101 	CRYPTO_RETW_LOCK(ret_worker);
2102 	for (;;) {
2103 		/* Harvest return q's for completed ops */
2104 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2105 		if (crpt != NULL) {
2106 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2107 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2108 				ret_worker->reorder_cur_seq++;
2109 			} else {
2110 				crpt = NULL;
2111 			}
2112 		}
2113 
2114 		if (crpt == NULL) {
2115 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2116 			if (crpt != NULL)
2117 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2118 		}
2119 
2120 		krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2121 		if (krpt != NULL)
2122 			TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2123 
2124 		if (crpt != NULL || krpt != NULL) {
2125 			CRYPTO_RETW_UNLOCK(ret_worker);
2126 			/*
2127 			 * Run callbacks unlocked.
2128 			 */
2129 			if (crpt != NULL)
2130 				crpt->crp_callback(crpt);
2131 			if (krpt != NULL)
2132 				krpt->krp_callback(krpt);
2133 			CRYPTO_RETW_LOCK(ret_worker);
2134 		} else {
2135 			/*
2136 			 * Nothing more to be processed.  Sleep until we're
2137 			 * woken because there are more returns to process.
2138 			 */
2139 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2140 				"crypto_ret_wait", 0);
2141 			if (ret_worker->cryptoretproc == NULL)
2142 				break;
2143 			CRYPTOSTAT_INC(cs_rets);
2144 		}
2145 	}
2146 	CRYPTO_RETW_UNLOCK(ret_worker);
2147 
2148 	crypto_finis(&ret_worker->crp_ret_q);
2149 }
2150 
2151 #ifdef DDB
2152 static void
2153 db_show_drivers(void)
2154 {
2155 	int hid;
2156 
2157 	db_printf("%12s %4s %4s %8s %2s %2s\n"
2158 		, "Device"
2159 		, "Ses"
2160 		, "Kops"
2161 		, "Flags"
2162 		, "QB"
2163 		, "KB"
2164 	);
2165 	for (hid = 0; hid < crypto_drivers_size; hid++) {
2166 		const struct cryptocap *cap = crypto_drivers[hid];
2167 		if (cap == NULL)
2168 			continue;
2169 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
2170 		    , device_get_nameunit(cap->cc_dev)
2171 		    , cap->cc_sessions
2172 		    , cap->cc_koperations
2173 		    , cap->cc_flags
2174 		    , cap->cc_qblocked
2175 		    , cap->cc_kqblocked
2176 		);
2177 	}
2178 }
2179 
2180 DB_SHOW_COMMAND(crypto, db_show_crypto)
2181 {
2182 	struct cryptop *crp;
2183 	struct crypto_ret_worker *ret_worker;
2184 
2185 	db_show_drivers();
2186 	db_printf("\n");
2187 
2188 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2189 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2190 	    "Device", "Callback");
2191 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
2192 		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2193 		    , crp->crp_session->cap->cc_hid
2194 		    , (int) crypto_ses2caps(crp->crp_session)
2195 		    , crp->crp_olen
2196 		    , crp->crp_etype
2197 		    , crp->crp_flags
2198 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
2199 		    , crp->crp_callback
2200 		);
2201 	}
2202 	FOREACH_CRYPTO_RETW(ret_worker) {
2203 		db_printf("\n%8s %4s %4s %4s %8s\n",
2204 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
2205 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2206 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2207 				db_printf("%8td %4u %4u %04x %8p\n"
2208 				    , CRYPTO_RETW_ID(ret_worker)
2209 				    , crp->crp_session->cap->cc_hid
2210 				    , crp->crp_etype
2211 				    , crp->crp_flags
2212 				    , crp->crp_callback
2213 				);
2214 			}
2215 		}
2216 	}
2217 }
2218 
2219 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2220 {
2221 	struct cryptkop *krp;
2222 	struct crypto_ret_worker *ret_worker;
2223 
2224 	db_show_drivers();
2225 	db_printf("\n");
2226 
2227 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2228 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2229 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2230 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2231 		    , krp->krp_op
2232 		    , krp->krp_status
2233 		    , krp->krp_iparams, krp->krp_oparams
2234 		    , krp->krp_crid, krp->krp_hid
2235 		    , krp->krp_callback
2236 		);
2237 	}
2238 
2239 	ret_worker = CRYPTO_RETW(0);
2240 	if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2241 		db_printf("%4s %5s %8s %4s %8s\n",
2242 		    "Op", "Status", "CRID", "HID", "Callback");
2243 		TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2244 			db_printf("%4u %5u %08x %4u %8p\n"
2245 			    , krp->krp_op
2246 			    , krp->krp_status
2247 			    , krp->krp_crid, krp->krp_hid
2248 			    , krp->krp_callback
2249 			);
2250 		}
2251 	}
2252 }
2253 #endif
2254 
2255 int crypto_modevent(module_t mod, int type, void *unused);
2256 
2257 /*
2258  * Initialization code, both for static and dynamic loading.
2259  * Note this is not invoked with the usual MODULE_DECLARE
2260  * mechanism but instead is listed as a dependency by the
2261  * cryptosoft driver.  This guarantees proper ordering of
2262  * calls on module load/unload.
2263  */
2264 int
2265 crypto_modevent(module_t mod, int type, void *unused)
2266 {
2267 	int error = EINVAL;
2268 
2269 	switch (type) {
2270 	case MOD_LOAD:
2271 		error = crypto_init();
2272 		if (error == 0 && bootverbose)
2273 			printf("crypto: <crypto core>\n");
2274 		break;
2275 	case MOD_UNLOAD:
2276 		/*XXX disallow if active sessions */
2277 		error = 0;
2278 		crypto_destroy();
2279 		return 0;
2280 	}
2281 	return error;
2282 }
2283 MODULE_VERSION(crypto, 1);
2284 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2285