1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * Copyright (c) 2021 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Ararat River 6 * Consulting, LLC under sponsorship of the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * Cryptographic Subsystem. 34 * 35 * This code is derived from the Openbsd Cryptographic Framework (OCF) 36 * that has the copyright shown below. Very little of the original 37 * code remains. 38 */ 39 40 /*- 41 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 42 * 43 * This code was written by Angelos D. Keromytis in Athens, Greece, in 44 * February 2000. Network Security Technologies Inc. (NSTI) kindly 45 * supported the development of this code. 46 * 47 * Copyright (c) 2000, 2001 Angelos D. Keromytis 48 * 49 * Permission to use, copy, and modify this software with or without fee 50 * is hereby granted, provided that this entire notice is included in 51 * all source code copies of any software which is or includes a copy or 52 * modification of this software. 53 * 54 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 55 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 56 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 57 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 58 * PURPOSE. 59 */ 60 61 #include "opt_compat.h" 62 #include "opt_ddb.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/counter.h> 67 #include <sys/kernel.h> 68 #include <sys/kthread.h> 69 #include <sys/linker.h> 70 #include <sys/lock.h> 71 #include <sys/module.h> 72 #include <sys/mutex.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/proc.h> 76 #include <sys/refcount.h> 77 #include <sys/sdt.h> 78 #include <sys/smp.h> 79 #include <sys/sysctl.h> 80 #include <sys/taskqueue.h> 81 #include <sys/uio.h> 82 83 #include <ddb/ddb.h> 84 85 #include <machine/vmparam.h> 86 #include <vm/uma.h> 87 88 #include <crypto/intake.h> 89 #include <opencrypto/cryptodev.h> 90 #include <opencrypto/xform_auth.h> 91 #include <opencrypto/xform_enc.h> 92 93 #include <sys/kobj.h> 94 #include <sys/bus.h> 95 #include "cryptodev_if.h" 96 97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 98 #include <machine/pcb.h> 99 #endif 100 101 SDT_PROVIDER_DEFINE(opencrypto); 102 103 /* 104 * Crypto drivers register themselves by allocating a slot in the 105 * crypto_drivers table with crypto_get_driverid(). 106 */ 107 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 108 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 109 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 110 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 111 112 /* 113 * Crypto device/driver capabilities structure. 114 * 115 * Synchronization: 116 * (d) - protected by CRYPTO_DRIVER_LOCK() 117 * (q) - protected by CRYPTO_Q_LOCK() 118 * Not tagged fields are read-only. 119 */ 120 struct cryptocap { 121 device_t cc_dev; 122 uint32_t cc_hid; 123 uint32_t cc_sessions; /* (d) # of sessions */ 124 125 int cc_flags; /* (d) flags */ 126 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 127 int cc_qblocked; /* (q) symmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 struct crypto_session_params csp; 138 uint64_t id; 139 /* Driver softc follows. */ 140 }; 141 142 static int crp_sleep = 0; 143 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 144 static struct mtx crypto_q_mtx; 145 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 146 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 147 148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 149 "In-kernel cryptography"); 150 151 /* 152 * Taskqueue used to dispatch the crypto requests 153 * that have the CRYPTO_F_ASYNC flag 154 */ 155 static struct taskqueue *crypto_tq; 156 157 /* 158 * Crypto seq numbers are operated on with modular arithmetic 159 */ 160 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 161 162 struct crypto_ret_worker { 163 struct mtx crypto_ret_mtx; 164 165 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 166 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 167 168 uint32_t reorder_ops; /* total ordered sym jobs received */ 169 uint32_t reorder_cur_seq; /* current sym job dispatched */ 170 171 struct thread *td; 172 }; 173 static struct crypto_ret_worker *crypto_ret_workers = NULL; 174 175 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 176 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 177 #define FOREACH_CRYPTO_RETW(w) \ 178 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 179 180 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 181 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 182 183 static int crypto_workers_num = 0; 184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 185 &crypto_workers_num, 0, 186 "Number of crypto workers used to dispatch crypto jobs"); 187 #ifdef COMPAT_FREEBSD12 188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 189 &crypto_workers_num, 0, 190 "Number of crypto workers used to dispatch crypto jobs"); 191 #endif 192 193 static uma_zone_t cryptop_zone; 194 195 int crypto_devallowsoft = 0; 196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN, 197 &crypto_devallowsoft, 0, 198 "Enable use of software crypto by /dev/crypto"); 199 #ifdef COMPAT_FREEBSD12 200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN, 201 &crypto_devallowsoft, 0, 202 "Enable/disable use of software crypto by /dev/crypto"); 203 #endif 204 205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 206 207 static void crypto_dispatch_thread(void *arg); 208 static struct thread *cryptotd; 209 static void crypto_ret_thread(void *arg); 210 static void crypto_destroy(void); 211 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 212 static void crypto_task_invoke(void *ctx, int pending); 213 static void crypto_batch_enqueue(struct cryptop *crp); 214 215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 217 cryptostats, nitems(cryptostats), 218 "Crypto system statistics"); 219 220 #define CRYPTOSTAT_INC(stat) do { \ 221 counter_u64_add( \ 222 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 223 1); \ 224 } while (0) 225 226 static void 227 cryptostats_init(void *arg __unused) 228 { 229 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 230 } 231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 232 233 static void 234 cryptostats_fini(void *arg __unused) 235 { 236 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 237 } 238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 239 NULL); 240 241 /* Try to avoid directly exposing the key buffer as a symbol */ 242 static struct keybuf *keybuf; 243 244 static struct keybuf empty_keybuf = { 245 .kb_nents = 0 246 }; 247 248 /* Obtain the key buffer from boot metadata */ 249 static void 250 keybuf_init(void) 251 { 252 caddr_t kmdp; 253 254 kmdp = preload_search_by_type("elf kernel"); 255 256 if (kmdp == NULL) 257 kmdp = preload_search_by_type("elf64 kernel"); 258 259 keybuf = (struct keybuf *)preload_search_info(kmdp, 260 MODINFO_METADATA | MODINFOMD_KEYBUF); 261 262 if (keybuf == NULL) 263 keybuf = &empty_keybuf; 264 } 265 266 /* It'd be nice if we could store these in some kind of secure memory... */ 267 struct keybuf * 268 get_keybuf(void) 269 { 270 271 return (keybuf); 272 } 273 274 static struct cryptocap * 275 cap_ref(struct cryptocap *cap) 276 { 277 278 refcount_acquire(&cap->cc_refs); 279 return (cap); 280 } 281 282 static void 283 cap_rele(struct cryptocap *cap) 284 { 285 286 if (refcount_release(&cap->cc_refs) == 0) 287 return; 288 289 KASSERT(cap->cc_sessions == 0, 290 ("freeing crypto driver with active sessions")); 291 292 free(cap, M_CRYPTO_DATA); 293 } 294 295 static int 296 crypto_init(void) 297 { 298 struct crypto_ret_worker *ret_worker; 299 struct proc *p; 300 int error; 301 302 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF); 303 304 TAILQ_INIT(&crp_q); 305 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF); 306 307 cryptop_zone = uma_zcreate("cryptop", 308 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 309 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 310 311 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 312 crypto_drivers = malloc(crypto_drivers_size * 313 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 314 315 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 316 crypto_workers_num = mp_ncpus; 317 318 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 319 taskqueue_thread_enqueue, &crypto_tq); 320 321 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 322 "crypto"); 323 324 p = NULL; 325 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd, 326 0, 0, "crypto", "crypto"); 327 if (error) { 328 printf("crypto_init: cannot start crypto thread; error %d", 329 error); 330 goto bad; 331 } 332 333 crypto_ret_workers = mallocarray(crypto_workers_num, 334 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 335 336 FOREACH_CRYPTO_RETW(ret_worker) { 337 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 338 TAILQ_INIT(&ret_worker->crp_ret_q); 339 340 ret_worker->reorder_ops = 0; 341 ret_worker->reorder_cur_seq = 0; 342 343 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues", 344 NULL, MTX_DEF); 345 346 error = kthread_add(crypto_ret_thread, ret_worker, p, 347 &ret_worker->td, 0, 0, "crypto returns %td", 348 CRYPTO_RETW_ID(ret_worker)); 349 if (error) { 350 printf("crypto_init: cannot start cryptoret thread; error %d", 351 error); 352 goto bad; 353 } 354 } 355 356 keybuf_init(); 357 358 return 0; 359 bad: 360 crypto_destroy(); 361 return error; 362 } 363 364 /* 365 * Signal a crypto thread to terminate. We use the driver 366 * table lock to synchronize the sleep/wakeups so that we 367 * are sure the threads have terminated before we release 368 * the data structures they use. See crypto_finis below 369 * for the other half of this song-and-dance. 370 */ 371 static void 372 crypto_terminate(struct thread **tdp, void *q) 373 { 374 struct thread *td; 375 376 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 377 td = *tdp; 378 *tdp = NULL; 379 if (td != NULL) { 380 wakeup_one(q); 381 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0); 382 } 383 } 384 385 static void 386 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 387 void *auth_ctx, uint8_t padval) 388 { 389 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 390 u_int i; 391 392 KASSERT(axf->blocksize <= sizeof(hmac_key), 393 ("Invalid HMAC block size %d", axf->blocksize)); 394 395 /* 396 * If the key is larger than the block size, use the digest of 397 * the key as the key instead. 398 */ 399 memset(hmac_key, 0, sizeof(hmac_key)); 400 if (klen > axf->blocksize) { 401 axf->Init(auth_ctx); 402 axf->Update(auth_ctx, key, klen); 403 axf->Final(hmac_key, auth_ctx); 404 klen = axf->hashsize; 405 } else 406 memcpy(hmac_key, key, klen); 407 408 for (i = 0; i < axf->blocksize; i++) 409 hmac_key[i] ^= padval; 410 411 axf->Init(auth_ctx); 412 axf->Update(auth_ctx, hmac_key, axf->blocksize); 413 explicit_bzero(hmac_key, sizeof(hmac_key)); 414 } 415 416 void 417 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 418 void *auth_ctx) 419 { 420 421 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 422 } 423 424 void 425 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 426 void *auth_ctx) 427 { 428 429 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 430 } 431 432 static void 433 crypto_destroy(void) 434 { 435 struct crypto_ret_worker *ret_worker; 436 int i; 437 438 /* 439 * Terminate any crypto threads. 440 */ 441 if (crypto_tq != NULL) 442 taskqueue_drain_all(crypto_tq); 443 CRYPTO_DRIVER_LOCK(); 444 crypto_terminate(&cryptotd, &crp_q); 445 FOREACH_CRYPTO_RETW(ret_worker) 446 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q); 447 CRYPTO_DRIVER_UNLOCK(); 448 449 /* XXX flush queues??? */ 450 451 /* 452 * Reclaim dynamically allocated resources. 453 */ 454 for (i = 0; i < crypto_drivers_size; i++) { 455 if (crypto_drivers[i] != NULL) 456 cap_rele(crypto_drivers[i]); 457 } 458 free(crypto_drivers, M_CRYPTO_DATA); 459 460 if (cryptop_zone != NULL) 461 uma_zdestroy(cryptop_zone); 462 mtx_destroy(&crypto_q_mtx); 463 FOREACH_CRYPTO_RETW(ret_worker) 464 mtx_destroy(&ret_worker->crypto_ret_mtx); 465 free(crypto_ret_workers, M_CRYPTO_DATA); 466 if (crypto_tq != NULL) 467 taskqueue_free(crypto_tq); 468 mtx_destroy(&crypto_drivers_mtx); 469 } 470 471 uint32_t 472 crypto_ses2hid(crypto_session_t crypto_session) 473 { 474 return (crypto_session->cap->cc_hid); 475 } 476 477 uint32_t 478 crypto_ses2caps(crypto_session_t crypto_session) 479 { 480 return (crypto_session->cap->cc_flags & 0xff000000); 481 } 482 483 void * 484 crypto_get_driver_session(crypto_session_t crypto_session) 485 { 486 return (crypto_session + 1); 487 } 488 489 const struct crypto_session_params * 490 crypto_get_params(crypto_session_t crypto_session) 491 { 492 return (&crypto_session->csp); 493 } 494 495 const struct auth_hash * 496 crypto_auth_hash(const struct crypto_session_params *csp) 497 { 498 499 switch (csp->csp_auth_alg) { 500 case CRYPTO_SHA1_HMAC: 501 return (&auth_hash_hmac_sha1); 502 case CRYPTO_SHA2_224_HMAC: 503 return (&auth_hash_hmac_sha2_224); 504 case CRYPTO_SHA2_256_HMAC: 505 return (&auth_hash_hmac_sha2_256); 506 case CRYPTO_SHA2_384_HMAC: 507 return (&auth_hash_hmac_sha2_384); 508 case CRYPTO_SHA2_512_HMAC: 509 return (&auth_hash_hmac_sha2_512); 510 case CRYPTO_NULL_HMAC: 511 return (&auth_hash_null); 512 case CRYPTO_RIPEMD160_HMAC: 513 return (&auth_hash_hmac_ripemd_160); 514 case CRYPTO_RIPEMD160: 515 return (&auth_hash_ripemd_160); 516 case CRYPTO_SHA1: 517 return (&auth_hash_sha1); 518 case CRYPTO_SHA2_224: 519 return (&auth_hash_sha2_224); 520 case CRYPTO_SHA2_256: 521 return (&auth_hash_sha2_256); 522 case CRYPTO_SHA2_384: 523 return (&auth_hash_sha2_384); 524 case CRYPTO_SHA2_512: 525 return (&auth_hash_sha2_512); 526 case CRYPTO_AES_NIST_GMAC: 527 switch (csp->csp_auth_klen) { 528 case 128 / 8: 529 return (&auth_hash_nist_gmac_aes_128); 530 case 192 / 8: 531 return (&auth_hash_nist_gmac_aes_192); 532 case 256 / 8: 533 return (&auth_hash_nist_gmac_aes_256); 534 default: 535 return (NULL); 536 } 537 case CRYPTO_BLAKE2B: 538 return (&auth_hash_blake2b); 539 case CRYPTO_BLAKE2S: 540 return (&auth_hash_blake2s); 541 case CRYPTO_POLY1305: 542 return (&auth_hash_poly1305); 543 case CRYPTO_AES_CCM_CBC_MAC: 544 switch (csp->csp_auth_klen) { 545 case 128 / 8: 546 return (&auth_hash_ccm_cbc_mac_128); 547 case 192 / 8: 548 return (&auth_hash_ccm_cbc_mac_192); 549 case 256 / 8: 550 return (&auth_hash_ccm_cbc_mac_256); 551 default: 552 return (NULL); 553 } 554 default: 555 return (NULL); 556 } 557 } 558 559 const struct enc_xform * 560 crypto_cipher(const struct crypto_session_params *csp) 561 { 562 563 switch (csp->csp_cipher_alg) { 564 case CRYPTO_AES_CBC: 565 return (&enc_xform_aes_cbc); 566 case CRYPTO_AES_XTS: 567 return (&enc_xform_aes_xts); 568 case CRYPTO_AES_ICM: 569 return (&enc_xform_aes_icm); 570 case CRYPTO_AES_NIST_GCM_16: 571 return (&enc_xform_aes_nist_gcm); 572 case CRYPTO_CAMELLIA_CBC: 573 return (&enc_xform_camellia); 574 case CRYPTO_NULL_CBC: 575 return (&enc_xform_null); 576 case CRYPTO_CHACHA20: 577 return (&enc_xform_chacha20); 578 case CRYPTO_AES_CCM_16: 579 return (&enc_xform_ccm); 580 case CRYPTO_CHACHA20_POLY1305: 581 return (&enc_xform_chacha20_poly1305); 582 case CRYPTO_XCHACHA20_POLY1305: 583 return (&enc_xform_xchacha20_poly1305); 584 default: 585 return (NULL); 586 } 587 } 588 589 static struct cryptocap * 590 crypto_checkdriver(uint32_t hid) 591 { 592 593 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 594 } 595 596 /* 597 * Select a driver for a new session that supports the specified 598 * algorithms and, optionally, is constrained according to the flags. 599 */ 600 static struct cryptocap * 601 crypto_select_driver(const struct crypto_session_params *csp, int flags) 602 { 603 struct cryptocap *cap, *best; 604 int best_match, error, hid; 605 606 CRYPTO_DRIVER_ASSERT(); 607 608 best = NULL; 609 for (hid = 0; hid < crypto_drivers_size; hid++) { 610 /* 611 * If there is no driver for this slot, or the driver 612 * is not appropriate (hardware or software based on 613 * match), then skip. 614 */ 615 cap = crypto_drivers[hid]; 616 if (cap == NULL || 617 (cap->cc_flags & flags) == 0) 618 continue; 619 620 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 621 if (error >= 0) 622 continue; 623 624 /* 625 * Use the driver with the highest probe value. 626 * Hardware drivers use a higher probe value than 627 * software. In case of a tie, prefer the driver with 628 * the fewest active sessions. 629 */ 630 if (best == NULL || error > best_match || 631 (error == best_match && 632 cap->cc_sessions < best->cc_sessions)) { 633 best = cap; 634 best_match = error; 635 } 636 } 637 return best; 638 } 639 640 static enum alg_type { 641 ALG_NONE = 0, 642 ALG_CIPHER, 643 ALG_DIGEST, 644 ALG_KEYED_DIGEST, 645 ALG_COMPRESSION, 646 ALG_AEAD 647 } alg_types[] = { 648 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 649 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 650 [CRYPTO_AES_CBC] = ALG_CIPHER, 651 [CRYPTO_SHA1] = ALG_DIGEST, 652 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 653 [CRYPTO_NULL_CBC] = ALG_CIPHER, 654 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 655 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 656 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 657 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 658 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 659 [CRYPTO_AES_XTS] = ALG_CIPHER, 660 [CRYPTO_AES_ICM] = ALG_CIPHER, 661 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 662 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 663 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 664 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 665 [CRYPTO_CHACHA20] = ALG_CIPHER, 666 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 667 [CRYPTO_RIPEMD160] = ALG_DIGEST, 668 [CRYPTO_SHA2_224] = ALG_DIGEST, 669 [CRYPTO_SHA2_256] = ALG_DIGEST, 670 [CRYPTO_SHA2_384] = ALG_DIGEST, 671 [CRYPTO_SHA2_512] = ALG_DIGEST, 672 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 673 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 674 [CRYPTO_AES_CCM_16] = ALG_AEAD, 675 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD, 676 [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD, 677 }; 678 679 static enum alg_type 680 alg_type(int alg) 681 { 682 683 if (alg < nitems(alg_types)) 684 return (alg_types[alg]); 685 return (ALG_NONE); 686 } 687 688 static bool 689 alg_is_compression(int alg) 690 { 691 692 return (alg_type(alg) == ALG_COMPRESSION); 693 } 694 695 static bool 696 alg_is_cipher(int alg) 697 { 698 699 return (alg_type(alg) == ALG_CIPHER); 700 } 701 702 static bool 703 alg_is_digest(int alg) 704 { 705 706 return (alg_type(alg) == ALG_DIGEST || 707 alg_type(alg) == ALG_KEYED_DIGEST); 708 } 709 710 static bool 711 alg_is_keyed_digest(int alg) 712 { 713 714 return (alg_type(alg) == ALG_KEYED_DIGEST); 715 } 716 717 static bool 718 alg_is_aead(int alg) 719 { 720 721 return (alg_type(alg) == ALG_AEAD); 722 } 723 724 static bool 725 ccm_tag_length_valid(int len) 726 { 727 /* RFC 3610 */ 728 switch (len) { 729 case 4: 730 case 6: 731 case 8: 732 case 10: 733 case 12: 734 case 14: 735 case 16: 736 return (true); 737 default: 738 return (false); 739 } 740 } 741 742 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 743 744 /* Various sanity checks on crypto session parameters. */ 745 static bool 746 check_csp(const struct crypto_session_params *csp) 747 { 748 const struct auth_hash *axf; 749 750 /* Mode-independent checks. */ 751 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 752 return (false); 753 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 754 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 755 return (false); 756 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 757 return (false); 758 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 759 return (false); 760 761 switch (csp->csp_mode) { 762 case CSP_MODE_COMPRESS: 763 if (!alg_is_compression(csp->csp_cipher_alg)) 764 return (false); 765 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 766 return (false); 767 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 768 return (false); 769 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 770 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 771 csp->csp_auth_mlen != 0) 772 return (false); 773 break; 774 case CSP_MODE_CIPHER: 775 if (!alg_is_cipher(csp->csp_cipher_alg)) 776 return (false); 777 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 778 return (false); 779 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 780 if (csp->csp_cipher_klen == 0) 781 return (false); 782 if (csp->csp_ivlen == 0) 783 return (false); 784 } 785 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 786 return (false); 787 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 788 csp->csp_auth_mlen != 0) 789 return (false); 790 break; 791 case CSP_MODE_DIGEST: 792 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 793 return (false); 794 795 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 796 return (false); 797 798 /* IV is optional for digests (e.g. GMAC). */ 799 switch (csp->csp_auth_alg) { 800 case CRYPTO_AES_CCM_CBC_MAC: 801 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 802 return (false); 803 break; 804 case CRYPTO_AES_NIST_GMAC: 805 if (csp->csp_ivlen != AES_GCM_IV_LEN) 806 return (false); 807 break; 808 default: 809 if (csp->csp_ivlen != 0) 810 return (false); 811 break; 812 } 813 814 if (!alg_is_digest(csp->csp_auth_alg)) 815 return (false); 816 817 /* Key is optional for BLAKE2 digests. */ 818 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 819 csp->csp_auth_alg == CRYPTO_BLAKE2S) 820 ; 821 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 822 if (csp->csp_auth_klen == 0) 823 return (false); 824 } else { 825 if (csp->csp_auth_klen != 0) 826 return (false); 827 } 828 if (csp->csp_auth_mlen != 0) { 829 axf = crypto_auth_hash(csp); 830 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 831 return (false); 832 833 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC && 834 !ccm_tag_length_valid(csp->csp_auth_mlen)) 835 return (false); 836 } 837 break; 838 case CSP_MODE_AEAD: 839 if (!alg_is_aead(csp->csp_cipher_alg)) 840 return (false); 841 if (csp->csp_cipher_klen == 0) 842 return (false); 843 if (csp->csp_ivlen == 0 || 844 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 845 return (false); 846 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 847 return (false); 848 849 switch (csp->csp_cipher_alg) { 850 case CRYPTO_AES_CCM_16: 851 if (csp->csp_auth_mlen != 0 && 852 !ccm_tag_length_valid(csp->csp_auth_mlen)) 853 return (false); 854 855 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 856 return (false); 857 break; 858 case CRYPTO_AES_NIST_GCM_16: 859 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN) 860 return (false); 861 862 if (csp->csp_ivlen != AES_GCM_IV_LEN) 863 return (false); 864 break; 865 case CRYPTO_CHACHA20_POLY1305: 866 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12) 867 return (false); 868 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 869 return (false); 870 break; 871 case CRYPTO_XCHACHA20_POLY1305: 872 if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN) 873 return (false); 874 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 875 return (false); 876 break; 877 } 878 break; 879 case CSP_MODE_ETA: 880 if (!alg_is_cipher(csp->csp_cipher_alg)) 881 return (false); 882 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 883 if (csp->csp_cipher_klen == 0) 884 return (false); 885 if (csp->csp_ivlen == 0) 886 return (false); 887 } 888 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 889 return (false); 890 if (!alg_is_digest(csp->csp_auth_alg)) 891 return (false); 892 893 /* Key is optional for BLAKE2 digests. */ 894 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 895 csp->csp_auth_alg == CRYPTO_BLAKE2S) 896 ; 897 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 898 if (csp->csp_auth_klen == 0) 899 return (false); 900 } else { 901 if (csp->csp_auth_klen != 0) 902 return (false); 903 } 904 if (csp->csp_auth_mlen != 0) { 905 axf = crypto_auth_hash(csp); 906 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 907 return (false); 908 } 909 break; 910 default: 911 return (false); 912 } 913 914 return (true); 915 } 916 917 /* 918 * Delete a session after it has been detached from its driver. 919 */ 920 static void 921 crypto_deletesession(crypto_session_t cses) 922 { 923 struct cryptocap *cap; 924 925 cap = cses->cap; 926 927 zfree(cses, M_CRYPTO_DATA); 928 929 CRYPTO_DRIVER_LOCK(); 930 cap->cc_sessions--; 931 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 932 wakeup(cap); 933 CRYPTO_DRIVER_UNLOCK(); 934 cap_rele(cap); 935 } 936 937 /* 938 * Create a new session. The crid argument specifies a crypto 939 * driver to use or constraints on a driver to select (hardware 940 * only, software only, either). Whatever driver is selected 941 * must be capable of the requested crypto algorithms. 942 */ 943 int 944 crypto_newsession(crypto_session_t *cses, 945 const struct crypto_session_params *csp, int crid) 946 { 947 static uint64_t sessid = 0; 948 crypto_session_t res; 949 struct cryptocap *cap; 950 int err; 951 952 if (!check_csp(csp)) 953 return (EINVAL); 954 955 res = NULL; 956 957 CRYPTO_DRIVER_LOCK(); 958 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 959 /* 960 * Use specified driver; verify it is capable. 961 */ 962 cap = crypto_checkdriver(crid); 963 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 964 cap = NULL; 965 } else { 966 /* 967 * No requested driver; select based on crid flags. 968 */ 969 cap = crypto_select_driver(csp, crid); 970 } 971 if (cap == NULL) { 972 CRYPTO_DRIVER_UNLOCK(); 973 CRYPTDEB("no driver"); 974 return (EOPNOTSUPP); 975 } 976 cap_ref(cap); 977 cap->cc_sessions++; 978 CRYPTO_DRIVER_UNLOCK(); 979 980 /* Allocate a single block for the generic session and driver softc. */ 981 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA, 982 M_WAITOK | M_ZERO); 983 res->cap = cap; 984 res->csp = *csp; 985 res->id = atomic_fetchadd_64(&sessid, 1); 986 987 /* Call the driver initialization routine. */ 988 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 989 if (err != 0) { 990 CRYPTDEB("dev newsession failed: %d", err); 991 crypto_deletesession(res); 992 return (err); 993 } 994 995 *cses = res; 996 return (0); 997 } 998 999 /* 1000 * Delete an existing session (or a reserved session on an unregistered 1001 * driver). 1002 */ 1003 void 1004 crypto_freesession(crypto_session_t cses) 1005 { 1006 struct cryptocap *cap; 1007 1008 if (cses == NULL) 1009 return; 1010 1011 cap = cses->cap; 1012 1013 /* Call the driver cleanup routine, if available. */ 1014 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1015 1016 crypto_deletesession(cses); 1017 } 1018 1019 /* 1020 * Return a new driver id. Registers a driver with the system so that 1021 * it can be probed by subsequent sessions. 1022 */ 1023 int32_t 1024 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1025 { 1026 struct cryptocap *cap, **newdrv; 1027 int i; 1028 1029 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1030 device_printf(dev, 1031 "no flags specified when registering driver\n"); 1032 return -1; 1033 } 1034 1035 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1036 cap->cc_dev = dev; 1037 cap->cc_session_size = sessionsize; 1038 cap->cc_flags = flags; 1039 refcount_init(&cap->cc_refs, 1); 1040 1041 CRYPTO_DRIVER_LOCK(); 1042 for (;;) { 1043 for (i = 0; i < crypto_drivers_size; i++) { 1044 if (crypto_drivers[i] == NULL) 1045 break; 1046 } 1047 1048 if (i < crypto_drivers_size) 1049 break; 1050 1051 /* Out of entries, allocate some more. */ 1052 1053 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1054 CRYPTO_DRIVER_UNLOCK(); 1055 printf("crypto: driver count wraparound!\n"); 1056 cap_rele(cap); 1057 return (-1); 1058 } 1059 CRYPTO_DRIVER_UNLOCK(); 1060 1061 newdrv = malloc(2 * crypto_drivers_size * 1062 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1063 1064 CRYPTO_DRIVER_LOCK(); 1065 memcpy(newdrv, crypto_drivers, 1066 crypto_drivers_size * sizeof(*crypto_drivers)); 1067 1068 crypto_drivers_size *= 2; 1069 1070 free(crypto_drivers, M_CRYPTO_DATA); 1071 crypto_drivers = newdrv; 1072 } 1073 1074 cap->cc_hid = i; 1075 crypto_drivers[i] = cap; 1076 CRYPTO_DRIVER_UNLOCK(); 1077 1078 if (bootverbose) 1079 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1080 device_get_nameunit(dev), i, flags); 1081 1082 return i; 1083 } 1084 1085 /* 1086 * Lookup a driver by name. We match against the full device 1087 * name and unit, and against just the name. The latter gives 1088 * us a simple widlcarding by device name. On success return the 1089 * driver/hardware identifier; otherwise return -1. 1090 */ 1091 int 1092 crypto_find_driver(const char *match) 1093 { 1094 struct cryptocap *cap; 1095 int i, len = strlen(match); 1096 1097 CRYPTO_DRIVER_LOCK(); 1098 for (i = 0; i < crypto_drivers_size; i++) { 1099 if (crypto_drivers[i] == NULL) 1100 continue; 1101 cap = crypto_drivers[i]; 1102 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1103 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1104 CRYPTO_DRIVER_UNLOCK(); 1105 return (i); 1106 } 1107 } 1108 CRYPTO_DRIVER_UNLOCK(); 1109 return (-1); 1110 } 1111 1112 /* 1113 * Return the device_t for the specified driver or NULL 1114 * if the driver identifier is invalid. 1115 */ 1116 device_t 1117 crypto_find_device_byhid(int hid) 1118 { 1119 struct cryptocap *cap; 1120 device_t dev; 1121 1122 dev = NULL; 1123 CRYPTO_DRIVER_LOCK(); 1124 cap = crypto_checkdriver(hid); 1125 if (cap != NULL) 1126 dev = cap->cc_dev; 1127 CRYPTO_DRIVER_UNLOCK(); 1128 return (dev); 1129 } 1130 1131 /* 1132 * Return the device/driver capabilities. 1133 */ 1134 int 1135 crypto_getcaps(int hid) 1136 { 1137 struct cryptocap *cap; 1138 int flags; 1139 1140 flags = 0; 1141 CRYPTO_DRIVER_LOCK(); 1142 cap = crypto_checkdriver(hid); 1143 if (cap != NULL) 1144 flags = cap->cc_flags; 1145 CRYPTO_DRIVER_UNLOCK(); 1146 return (flags); 1147 } 1148 1149 /* 1150 * Unregister all algorithms associated with a crypto driver. 1151 * If there are pending sessions using it, leave enough information 1152 * around so that subsequent calls using those sessions will 1153 * correctly detect the driver has been unregistered and reroute 1154 * requests. 1155 */ 1156 int 1157 crypto_unregister_all(uint32_t driverid) 1158 { 1159 struct cryptocap *cap; 1160 1161 CRYPTO_DRIVER_LOCK(); 1162 cap = crypto_checkdriver(driverid); 1163 if (cap == NULL) { 1164 CRYPTO_DRIVER_UNLOCK(); 1165 return (EINVAL); 1166 } 1167 1168 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1169 crypto_drivers[driverid] = NULL; 1170 1171 /* 1172 * XXX: This doesn't do anything to kick sessions that 1173 * have no pending operations. 1174 */ 1175 while (cap->cc_sessions != 0) 1176 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1177 CRYPTO_DRIVER_UNLOCK(); 1178 cap_rele(cap); 1179 1180 return (0); 1181 } 1182 1183 /* 1184 * Clear blockage on a driver. The what parameter indicates whether 1185 * the driver is now ready for cryptop's and/or cryptokop's. 1186 */ 1187 int 1188 crypto_unblock(uint32_t driverid, int what) 1189 { 1190 struct cryptocap *cap; 1191 int err; 1192 1193 CRYPTO_Q_LOCK(); 1194 cap = crypto_checkdriver(driverid); 1195 if (cap != NULL) { 1196 if (what & CRYPTO_SYMQ) 1197 cap->cc_qblocked = 0; 1198 if (crp_sleep) 1199 wakeup_one(&crp_q); 1200 err = 0; 1201 } else 1202 err = EINVAL; 1203 CRYPTO_Q_UNLOCK(); 1204 1205 return err; 1206 } 1207 1208 size_t 1209 crypto_buffer_len(struct crypto_buffer *cb) 1210 { 1211 switch (cb->cb_type) { 1212 case CRYPTO_BUF_CONTIG: 1213 return (cb->cb_buf_len); 1214 case CRYPTO_BUF_MBUF: 1215 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1216 return (cb->cb_mbuf->m_pkthdr.len); 1217 return (m_length(cb->cb_mbuf, NULL)); 1218 case CRYPTO_BUF_SINGLE_MBUF: 1219 return (cb->cb_mbuf->m_len); 1220 case CRYPTO_BUF_VMPAGE: 1221 return (cb->cb_vm_page_len); 1222 case CRYPTO_BUF_UIO: 1223 return (cb->cb_uio->uio_resid); 1224 default: 1225 return (0); 1226 } 1227 } 1228 1229 #ifdef INVARIANTS 1230 /* Various sanity checks on crypto requests. */ 1231 static void 1232 cb_sanity(struct crypto_buffer *cb, const char *name) 1233 { 1234 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1235 ("incoming crp with invalid %s buffer type", name)); 1236 switch (cb->cb_type) { 1237 case CRYPTO_BUF_CONTIG: 1238 KASSERT(cb->cb_buf_len >= 0, 1239 ("incoming crp with -ve %s buffer length", name)); 1240 break; 1241 case CRYPTO_BUF_VMPAGE: 1242 KASSERT(CRYPTO_HAS_VMPAGE, 1243 ("incoming crp uses dmap on supported arch")); 1244 KASSERT(cb->cb_vm_page_len >= 0, 1245 ("incoming crp with -ve %s buffer length", name)); 1246 KASSERT(cb->cb_vm_page_offset >= 0, 1247 ("incoming crp with -ve %s buffer offset", name)); 1248 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1249 ("incoming crp with %s buffer offset greater than page size" 1250 , name)); 1251 break; 1252 default: 1253 break; 1254 } 1255 } 1256 1257 static void 1258 crp_sanity(struct cryptop *crp) 1259 { 1260 struct crypto_session_params *csp; 1261 struct crypto_buffer *out; 1262 size_t ilen, len, olen; 1263 1264 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1265 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1266 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1267 ("incoming crp with invalid output buffer type")); 1268 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1269 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1270 ("incoming crp already done")); 1271 1272 csp = &crp->crp_session->csp; 1273 cb_sanity(&crp->crp_buf, "input"); 1274 ilen = crypto_buffer_len(&crp->crp_buf); 1275 olen = ilen; 1276 out = NULL; 1277 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1278 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1279 cb_sanity(&crp->crp_obuf, "output"); 1280 out = &crp->crp_obuf; 1281 olen = crypto_buffer_len(out); 1282 } 1283 } else 1284 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1285 ("incoming crp with separate output buffer " 1286 "but no session support")); 1287 1288 switch (csp->csp_mode) { 1289 case CSP_MODE_COMPRESS: 1290 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1291 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1292 ("invalid compression op %x", crp->crp_op)); 1293 break; 1294 case CSP_MODE_CIPHER: 1295 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1296 crp->crp_op == CRYPTO_OP_DECRYPT, 1297 ("invalid cipher op %x", crp->crp_op)); 1298 break; 1299 case CSP_MODE_DIGEST: 1300 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1301 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1302 ("invalid digest op %x", crp->crp_op)); 1303 break; 1304 case CSP_MODE_AEAD: 1305 KASSERT(crp->crp_op == 1306 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1307 crp->crp_op == 1308 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1309 ("invalid AEAD op %x", crp->crp_op)); 1310 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1311 ("AEAD without a separate IV")); 1312 break; 1313 case CSP_MODE_ETA: 1314 KASSERT(crp->crp_op == 1315 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1316 crp->crp_op == 1317 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1318 ("invalid ETA op %x", crp->crp_op)); 1319 break; 1320 } 1321 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1322 if (crp->crp_aad == NULL) { 1323 KASSERT(crp->crp_aad_start == 0 || 1324 crp->crp_aad_start < ilen, 1325 ("invalid AAD start")); 1326 KASSERT(crp->crp_aad_length != 0 || 1327 crp->crp_aad_start == 0, 1328 ("AAD with zero length and non-zero start")); 1329 KASSERT(crp->crp_aad_length == 0 || 1330 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1331 ("AAD outside input length")); 1332 } else { 1333 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1334 ("session doesn't support separate AAD buffer")); 1335 KASSERT(crp->crp_aad_start == 0, 1336 ("separate AAD buffer with non-zero AAD start")); 1337 KASSERT(crp->crp_aad_length != 0, 1338 ("separate AAD buffer with zero length")); 1339 } 1340 } else { 1341 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1342 crp->crp_aad_length == 0, 1343 ("AAD region in request not supporting AAD")); 1344 } 1345 if (csp->csp_ivlen == 0) { 1346 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1347 ("IV_SEPARATE set when IV isn't used")); 1348 KASSERT(crp->crp_iv_start == 0, 1349 ("crp_iv_start set when IV isn't used")); 1350 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1351 KASSERT(crp->crp_iv_start == 0, 1352 ("IV_SEPARATE used with non-zero IV start")); 1353 } else { 1354 KASSERT(crp->crp_iv_start < ilen, 1355 ("invalid IV start")); 1356 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1357 ("IV outside buffer length")); 1358 } 1359 /* XXX: payload_start of 0 should always be < ilen? */ 1360 KASSERT(crp->crp_payload_start == 0 || 1361 crp->crp_payload_start < ilen, 1362 ("invalid payload start")); 1363 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1364 ilen, ("payload outside input buffer")); 1365 if (out == NULL) { 1366 KASSERT(crp->crp_payload_output_start == 0, 1367 ("payload output start non-zero without output buffer")); 1368 } else { 1369 KASSERT(crp->crp_payload_output_start == 0 || 1370 crp->crp_payload_output_start < olen, 1371 ("invalid payload output start")); 1372 KASSERT(crp->crp_payload_output_start + 1373 crp->crp_payload_length <= olen, 1374 ("payload outside output buffer")); 1375 } 1376 if (csp->csp_mode == CSP_MODE_DIGEST || 1377 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1378 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1379 len = ilen; 1380 else 1381 len = olen; 1382 KASSERT(crp->crp_digest_start == 0 || 1383 crp->crp_digest_start < len, 1384 ("invalid digest start")); 1385 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1386 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1387 ("digest outside buffer")); 1388 } else { 1389 KASSERT(crp->crp_digest_start == 0, 1390 ("non-zero digest start for request without a digest")); 1391 } 1392 if (csp->csp_cipher_klen != 0) 1393 KASSERT(csp->csp_cipher_key != NULL || 1394 crp->crp_cipher_key != NULL, 1395 ("cipher request without a key")); 1396 if (csp->csp_auth_klen != 0) 1397 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1398 ("auth request without a key")); 1399 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1400 } 1401 #endif 1402 1403 static int 1404 crypto_dispatch_one(struct cryptop *crp, int hint) 1405 { 1406 struct cryptocap *cap; 1407 int result; 1408 1409 #ifdef INVARIANTS 1410 crp_sanity(crp); 1411 #endif 1412 CRYPTOSTAT_INC(cs_ops); 1413 1414 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1415 1416 /* 1417 * Caller marked the request to be processed immediately; dispatch it 1418 * directly to the driver unless the driver is currently blocked, in 1419 * which case it is queued for deferred dispatch. 1420 */ 1421 cap = crp->crp_session->cap; 1422 if (!atomic_load_int(&cap->cc_qblocked)) { 1423 result = crypto_invoke(cap, crp, hint); 1424 if (result != ERESTART) 1425 return (result); 1426 1427 /* 1428 * The driver ran out of resources, put the request on the 1429 * queue. 1430 */ 1431 } 1432 crypto_batch_enqueue(crp); 1433 return (0); 1434 } 1435 1436 int 1437 crypto_dispatch(struct cryptop *crp) 1438 { 1439 return (crypto_dispatch_one(crp, 0)); 1440 } 1441 1442 int 1443 crypto_dispatch_async(struct cryptop *crp, int flags) 1444 { 1445 struct crypto_ret_worker *ret_worker; 1446 1447 if (!CRYPTO_SESS_SYNC(crp->crp_session)) { 1448 /* 1449 * The driver issues completions asynchonously, don't bother 1450 * deferring dispatch to a worker thread. 1451 */ 1452 return (crypto_dispatch(crp)); 1453 } 1454 1455 #ifdef INVARIANTS 1456 crp_sanity(crp); 1457 #endif 1458 CRYPTOSTAT_INC(cs_ops); 1459 1460 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1461 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) { 1462 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED; 1463 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1464 CRYPTO_RETW_LOCK(ret_worker); 1465 crp->crp_seq = ret_worker->reorder_ops++; 1466 CRYPTO_RETW_UNLOCK(ret_worker); 1467 } 1468 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1469 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1470 return (0); 1471 } 1472 1473 void 1474 crypto_dispatch_batch(struct cryptopq *crpq, int flags) 1475 { 1476 struct cryptop *crp; 1477 int hint; 1478 1479 while ((crp = TAILQ_FIRST(crpq)) != NULL) { 1480 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0; 1481 TAILQ_REMOVE(crpq, crp, crp_next); 1482 if (crypto_dispatch_one(crp, hint) != 0) 1483 crypto_batch_enqueue(crp); 1484 } 1485 } 1486 1487 static void 1488 crypto_batch_enqueue(struct cryptop *crp) 1489 { 1490 1491 CRYPTO_Q_LOCK(); 1492 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1493 if (crp_sleep) 1494 wakeup_one(&crp_q); 1495 CRYPTO_Q_UNLOCK(); 1496 } 1497 1498 static void 1499 crypto_task_invoke(void *ctx, int pending) 1500 { 1501 struct cryptocap *cap; 1502 struct cryptop *crp; 1503 int result; 1504 1505 crp = (struct cryptop *)ctx; 1506 cap = crp->crp_session->cap; 1507 result = crypto_invoke(cap, crp, 0); 1508 if (result == ERESTART) 1509 crypto_batch_enqueue(crp); 1510 } 1511 1512 /* 1513 * Dispatch a crypto request to the appropriate crypto devices. 1514 */ 1515 static int 1516 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1517 { 1518 1519 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1520 KASSERT(crp->crp_callback != NULL, 1521 ("%s: crp->crp_callback == NULL", __func__)); 1522 KASSERT(crp->crp_session != NULL, 1523 ("%s: crp->crp_session == NULL", __func__)); 1524 1525 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1526 struct crypto_session_params csp; 1527 crypto_session_t nses; 1528 1529 /* 1530 * Driver has unregistered; migrate the session and return 1531 * an error to the caller so they'll resubmit the op. 1532 * 1533 * XXX: What if there are more already queued requests for this 1534 * session? 1535 * 1536 * XXX: Real solution is to make sessions refcounted 1537 * and force callers to hold a reference when 1538 * assigning to crp_session. Could maybe change 1539 * crypto_getreq to accept a session pointer to make 1540 * that work. Alternatively, we could abandon the 1541 * notion of rewriting crp_session in requests forcing 1542 * the caller to deal with allocating a new session. 1543 * Perhaps provide a method to allow a crp's session to 1544 * be swapped that callers could use. 1545 */ 1546 csp = crp->crp_session->csp; 1547 crypto_freesession(crp->crp_session); 1548 1549 /* 1550 * XXX: Key pointers may no longer be valid. If we 1551 * really want to support this we need to define the 1552 * KPI such that 'csp' is required to be valid for the 1553 * duration of a session by the caller perhaps. 1554 * 1555 * XXX: If the keys have been changed this will reuse 1556 * the old keys. This probably suggests making 1557 * rekeying more explicit and updating the key 1558 * pointers in 'csp' when the keys change. 1559 */ 1560 if (crypto_newsession(&nses, &csp, 1561 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1562 crp->crp_session = nses; 1563 1564 crp->crp_etype = EAGAIN; 1565 crypto_done(crp); 1566 return 0; 1567 } else { 1568 /* 1569 * Invoke the driver to process the request. 1570 */ 1571 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1572 } 1573 } 1574 1575 void 1576 crypto_destroyreq(struct cryptop *crp) 1577 { 1578 #ifdef DIAGNOSTIC 1579 { 1580 struct cryptop *crp2; 1581 struct crypto_ret_worker *ret_worker; 1582 1583 CRYPTO_Q_LOCK(); 1584 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1585 KASSERT(crp2 != crp, 1586 ("Freeing cryptop from the crypto queue (%p).", 1587 crp)); 1588 } 1589 CRYPTO_Q_UNLOCK(); 1590 1591 FOREACH_CRYPTO_RETW(ret_worker) { 1592 CRYPTO_RETW_LOCK(ret_worker); 1593 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1594 KASSERT(crp2 != crp, 1595 ("Freeing cryptop from the return queue (%p).", 1596 crp)); 1597 } 1598 CRYPTO_RETW_UNLOCK(ret_worker); 1599 } 1600 } 1601 #endif 1602 } 1603 1604 void 1605 crypto_freereq(struct cryptop *crp) 1606 { 1607 if (crp == NULL) 1608 return; 1609 1610 crypto_destroyreq(crp); 1611 uma_zfree(cryptop_zone, crp); 1612 } 1613 1614 static void 1615 _crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1616 { 1617 crp->crp_session = cses; 1618 } 1619 1620 void 1621 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1622 { 1623 memset(crp, 0, sizeof(*crp)); 1624 _crypto_initreq(crp, cses); 1625 } 1626 1627 struct cryptop * 1628 crypto_getreq(crypto_session_t cses, int how) 1629 { 1630 struct cryptop *crp; 1631 1632 MPASS(how == M_WAITOK || how == M_NOWAIT); 1633 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1634 if (crp != NULL) 1635 _crypto_initreq(crp, cses); 1636 return (crp); 1637 } 1638 1639 /* 1640 * Clone a crypto request, but associate it with the specified session 1641 * rather than inheriting the session from the original request. The 1642 * fields describing the request buffers are copied, but not the 1643 * opaque field or callback function. 1644 */ 1645 struct cryptop * 1646 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how) 1647 { 1648 struct cryptop *new; 1649 1650 MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0); 1651 new = crypto_getreq(cses, how); 1652 if (new == NULL) 1653 return (NULL); 1654 1655 memcpy(&new->crp_startcopy, &crp->crp_startcopy, 1656 __rangeof(struct cryptop, crp_startcopy, crp_endcopy)); 1657 return (new); 1658 } 1659 1660 /* 1661 * Invoke the callback on behalf of the driver. 1662 */ 1663 void 1664 crypto_done(struct cryptop *crp) 1665 { 1666 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1667 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1668 crp->crp_flags |= CRYPTO_F_DONE; 1669 if (crp->crp_etype != 0) 1670 CRYPTOSTAT_INC(cs_errs); 1671 1672 /* 1673 * CBIMM means unconditionally do the callback immediately; 1674 * CBIFSYNC means do the callback immediately only if the 1675 * operation was done synchronously. Both are used to avoid 1676 * doing extraneous context switches; the latter is mostly 1677 * used with the software crypto driver. 1678 */ 1679 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 && 1680 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 || 1681 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 && 1682 CRYPTO_SESS_SYNC(crp->crp_session)))) { 1683 /* 1684 * Do the callback directly. This is ok when the 1685 * callback routine does very little (e.g. the 1686 * /dev/crypto callback method just does a wakeup). 1687 */ 1688 crp->crp_callback(crp); 1689 } else { 1690 struct crypto_ret_worker *ret_worker; 1691 bool wake; 1692 1693 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1694 1695 /* 1696 * Normal case; queue the callback for the thread. 1697 */ 1698 CRYPTO_RETW_LOCK(ret_worker); 1699 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) { 1700 struct cryptop *tmp; 1701 1702 TAILQ_FOREACH_REVERSE(tmp, 1703 &ret_worker->crp_ordered_ret_q, cryptop_q, 1704 crp_next) { 1705 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1706 TAILQ_INSERT_AFTER( 1707 &ret_worker->crp_ordered_ret_q, tmp, 1708 crp, crp_next); 1709 break; 1710 } 1711 } 1712 if (tmp == NULL) { 1713 TAILQ_INSERT_HEAD( 1714 &ret_worker->crp_ordered_ret_q, crp, 1715 crp_next); 1716 } 1717 1718 wake = crp->crp_seq == ret_worker->reorder_cur_seq; 1719 } else { 1720 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q); 1721 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, 1722 crp_next); 1723 } 1724 1725 if (wake) 1726 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1727 CRYPTO_RETW_UNLOCK(ret_worker); 1728 } 1729 } 1730 1731 /* 1732 * Terminate a thread at module unload. The process that 1733 * initiated this is waiting for us to signal that we're gone; 1734 * wake it up and exit. We use the driver table lock to insure 1735 * we don't do the wakeup before they're waiting. There is no 1736 * race here because the waiter sleeps on the proc lock for the 1737 * thread so it gets notified at the right time because of an 1738 * extra wakeup that's done in exit1(). 1739 */ 1740 static void 1741 crypto_finis(void *chan) 1742 { 1743 CRYPTO_DRIVER_LOCK(); 1744 wakeup_one(chan); 1745 CRYPTO_DRIVER_UNLOCK(); 1746 kthread_exit(); 1747 } 1748 1749 /* 1750 * Crypto thread, dispatches crypto requests. 1751 */ 1752 static void 1753 crypto_dispatch_thread(void *arg __unused) 1754 { 1755 struct cryptop *crp, *submit; 1756 struct cryptocap *cap; 1757 int result, hint; 1758 1759 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1760 fpu_kern_thread(FPU_KERN_NORMAL); 1761 #endif 1762 1763 CRYPTO_Q_LOCK(); 1764 for (;;) { 1765 /* 1766 * Find the first element in the queue that can be 1767 * processed and look-ahead to see if multiple ops 1768 * are ready for the same driver. 1769 */ 1770 submit = NULL; 1771 hint = 0; 1772 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1773 cap = crp->crp_session->cap; 1774 /* 1775 * Driver cannot disappeared when there is an active 1776 * session. 1777 */ 1778 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1779 __func__, __LINE__)); 1780 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1781 /* Op needs to be migrated, process it. */ 1782 if (submit == NULL) 1783 submit = crp; 1784 break; 1785 } 1786 if (!cap->cc_qblocked) { 1787 if (submit != NULL) { 1788 /* 1789 * We stop on finding another op, 1790 * regardless whether its for the same 1791 * driver or not. We could keep 1792 * searching the queue but it might be 1793 * better to just use a per-driver 1794 * queue instead. 1795 */ 1796 if (submit->crp_session->cap == cap) 1797 hint = CRYPTO_HINT_MORE; 1798 } else { 1799 submit = crp; 1800 } 1801 break; 1802 } 1803 } 1804 if (submit != NULL) { 1805 TAILQ_REMOVE(&crp_q, submit, crp_next); 1806 cap = submit->crp_session->cap; 1807 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1808 __func__, __LINE__)); 1809 CRYPTO_Q_UNLOCK(); 1810 result = crypto_invoke(cap, submit, hint); 1811 CRYPTO_Q_LOCK(); 1812 if (result == ERESTART) { 1813 /* 1814 * The driver ran out of resources, mark the 1815 * driver ``blocked'' for cryptop's and put 1816 * the request back in the queue. It would 1817 * best to put the request back where we got 1818 * it but that's hard so for now we put it 1819 * at the front. This should be ok; putting 1820 * it at the end does not work. 1821 */ 1822 cap->cc_qblocked = 1; 1823 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1824 CRYPTOSTAT_INC(cs_blocks); 1825 } 1826 } else { 1827 /* 1828 * Nothing more to be processed. Sleep until we're 1829 * woken because there are more ops to process. 1830 * This happens either by submission or by a driver 1831 * becoming unblocked and notifying us through 1832 * crypto_unblock. Note that when we wakeup we 1833 * start processing each queue again from the 1834 * front. It's not clear that it's important to 1835 * preserve this ordering since ops may finish 1836 * out of order if dispatched to different devices 1837 * and some become blocked while others do not. 1838 */ 1839 crp_sleep = 1; 1840 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1841 crp_sleep = 0; 1842 if (cryptotd == NULL) 1843 break; 1844 CRYPTOSTAT_INC(cs_intrs); 1845 } 1846 } 1847 CRYPTO_Q_UNLOCK(); 1848 1849 crypto_finis(&crp_q); 1850 } 1851 1852 /* 1853 * Crypto returns thread, does callbacks for processed crypto requests. 1854 * Callbacks are done here, rather than in the crypto drivers, because 1855 * callbacks typically are expensive and would slow interrupt handling. 1856 */ 1857 static void 1858 crypto_ret_thread(void *arg) 1859 { 1860 struct crypto_ret_worker *ret_worker = arg; 1861 struct cryptop *crpt; 1862 1863 CRYPTO_RETW_LOCK(ret_worker); 1864 for (;;) { 1865 /* Harvest return q's for completed ops */ 1866 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 1867 if (crpt != NULL) { 1868 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 1869 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 1870 ret_worker->reorder_cur_seq++; 1871 } else { 1872 crpt = NULL; 1873 } 1874 } 1875 1876 if (crpt == NULL) { 1877 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 1878 if (crpt != NULL) 1879 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 1880 } 1881 1882 if (crpt != NULL) { 1883 CRYPTO_RETW_UNLOCK(ret_worker); 1884 /* 1885 * Run callbacks unlocked. 1886 */ 1887 if (crpt != NULL) 1888 crpt->crp_callback(crpt); 1889 CRYPTO_RETW_LOCK(ret_worker); 1890 } else { 1891 /* 1892 * Nothing more to be processed. Sleep until we're 1893 * woken because there are more returns to process. 1894 */ 1895 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 1896 "crypto_ret_wait", 0); 1897 if (ret_worker->td == NULL) 1898 break; 1899 CRYPTOSTAT_INC(cs_rets); 1900 } 1901 } 1902 CRYPTO_RETW_UNLOCK(ret_worker); 1903 1904 crypto_finis(&ret_worker->crp_ret_q); 1905 } 1906 1907 #ifdef DDB 1908 static void 1909 db_show_drivers(void) 1910 { 1911 int hid; 1912 1913 db_printf("%12s %4s %8s %2s\n" 1914 , "Device" 1915 , "Ses" 1916 , "Flags" 1917 , "QB" 1918 ); 1919 for (hid = 0; hid < crypto_drivers_size; hid++) { 1920 const struct cryptocap *cap = crypto_drivers[hid]; 1921 if (cap == NULL) 1922 continue; 1923 db_printf("%-12s %4u %08x %2u\n" 1924 , device_get_nameunit(cap->cc_dev) 1925 , cap->cc_sessions 1926 , cap->cc_flags 1927 , cap->cc_qblocked 1928 ); 1929 } 1930 } 1931 1932 DB_SHOW_COMMAND(crypto, db_show_crypto) 1933 { 1934 struct cryptop *crp; 1935 struct crypto_ret_worker *ret_worker; 1936 1937 db_show_drivers(); 1938 db_printf("\n"); 1939 1940 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1941 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1942 "Device", "Callback"); 1943 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1944 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 1945 , crp->crp_session->cap->cc_hid 1946 , (int) crypto_ses2caps(crp->crp_session) 1947 , crp->crp_olen 1948 , crp->crp_etype 1949 , crp->crp_flags 1950 , device_get_nameunit(crp->crp_session->cap->cc_dev) 1951 , crp->crp_callback 1952 ); 1953 } 1954 FOREACH_CRYPTO_RETW(ret_worker) { 1955 db_printf("\n%8s %4s %4s %4s %8s\n", 1956 "ret_worker", "HID", "Etype", "Flags", "Callback"); 1957 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1958 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 1959 db_printf("%8td %4u %4u %04x %8p\n" 1960 , CRYPTO_RETW_ID(ret_worker) 1961 , crp->crp_session->cap->cc_hid 1962 , crp->crp_etype 1963 , crp->crp_flags 1964 , crp->crp_callback 1965 ); 1966 } 1967 } 1968 } 1969 } 1970 #endif 1971 1972 int crypto_modevent(module_t mod, int type, void *unused); 1973 1974 /* 1975 * Initialization code, both for static and dynamic loading. 1976 * Note this is not invoked with the usual MODULE_DECLARE 1977 * mechanism but instead is listed as a dependency by the 1978 * cryptosoft driver. This guarantees proper ordering of 1979 * calls on module load/unload. 1980 */ 1981 int 1982 crypto_modevent(module_t mod, int type, void *unused) 1983 { 1984 int error = EINVAL; 1985 1986 switch (type) { 1987 case MOD_LOAD: 1988 error = crypto_init(); 1989 if (error == 0 && bootverbose) 1990 printf("crypto: <crypto core>\n"); 1991 break; 1992 case MOD_UNLOAD: 1993 /*XXX disallow if active sessions */ 1994 error = 0; 1995 crypto_destroy(); 1996 return 0; 1997 } 1998 return error; 1999 } 2000 MODULE_VERSION(crypto, 1); 2001 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2002