xref: /freebsd/sys/opencrypto/crypto.c (revision 2726a7014867ad7224d09b66836c5d385f0350f4)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35 
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56 
57 #define	CRYPTO_TIMING				/* enable timing support */
58 
59 #include "opt_compat.h"
60 #include "opt_ddb.h"
61 
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/linker.h>
68 #include <sys/lock.h>
69 #include <sys/module.h>
70 #include <sys/mutex.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/proc.h>
74 #include <sys/refcount.h>
75 #include <sys/sdt.h>
76 #include <sys/smp.h>
77 #include <sys/sysctl.h>
78 #include <sys/taskqueue.h>
79 #include <sys/uio.h>
80 
81 #include <ddb/ddb.h>
82 
83 #include <vm/uma.h>
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88 
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92 
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96 
97 SDT_PROVIDER_DEFINE(opencrypto);
98 
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid() and then registering
102  * each asym algorithm they support with crypto_kregister().
103  */
104 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
105 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
106 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
107 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108 
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118 	device_t	cc_dev;
119 	uint32_t	cc_hid;
120 	u_int32_t	cc_sessions;		/* (d) # of sessions */
121 	u_int32_t	cc_koperations;		/* (d) # os asym operations */
122 	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
123 
124 	int		cc_flags;		/* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
126 	int		cc_qblocked;		/* (q) symmetric q blocked */
127 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
128 	size_t		cc_session_size;
129 	volatile int	cc_refs;
130 };
131 
132 static	struct cryptocap **crypto_drivers = NULL;
133 static	int crypto_drivers_size = 0;
134 
135 struct crypto_session {
136 	struct cryptocap *cap;
137 	void *softc;
138 	struct crypto_session_params csp;
139 };
140 
141 /*
142  * There are two queues for crypto requests; one for symmetric (e.g.
143  * cipher) operations and one for asymmetric (e.g. MOD)operations.
144  * A single mutex is used to lock access to both queues.  We could
145  * have one per-queue but having one simplifies handling of block/unblock
146  * operations.
147  */
148 static	int crp_sleep = 0;
149 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
150 static	TAILQ_HEAD(,cryptkop) crp_kq;
151 static	struct mtx crypto_q_mtx;
152 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
153 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
154 
155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
156     "In-kernel cryptography");
157 
158 /*
159  * Taskqueue used to dispatch the crypto requests
160  * that have the CRYPTO_F_ASYNC flag
161  */
162 static struct taskqueue *crypto_tq;
163 
164 /*
165  * Crypto seq numbers are operated on with modular arithmetic
166  */
167 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
168 
169 struct crypto_ret_worker {
170 	struct mtx crypto_ret_mtx;
171 
172 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
173 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
174 	TAILQ_HEAD(,cryptkop) crp_ret_kq;	/* callback queue for asym jobs */
175 
176 	u_int32_t reorder_ops;		/* total ordered sym jobs received */
177 	u_int32_t reorder_cur_seq;	/* current sym job dispatched */
178 
179 	struct proc *cryptoretproc;
180 };
181 static struct crypto_ret_worker *crypto_ret_workers = NULL;
182 
183 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
184 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
185 #define FOREACH_CRYPTO_RETW(w) \
186 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
187 
188 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
189 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
190 #define	CRYPTO_RETW_EMPTY(w) \
191 	(TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
192 
193 static int crypto_workers_num = 0;
194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
195 	   &crypto_workers_num, 0,
196 	   "Number of crypto workers used to dispatch crypto jobs");
197 #ifdef COMPAT_FREEBSD12
198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
199 	   &crypto_workers_num, 0,
200 	   "Number of crypto workers used to dispatch crypto jobs");
201 #endif
202 
203 static	uma_zone_t cryptop_zone;
204 static	uma_zone_t cryptoses_zone;
205 
206 int	crypto_userasymcrypto = 1;
207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
208 	   &crypto_userasymcrypto, 0,
209 	   "Enable user-mode access to asymmetric crypto support");
210 #ifdef COMPAT_FREEBSD12
211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
212 	   &crypto_userasymcrypto, 0,
213 	   "Enable/disable user-mode access to asymmetric crypto support");
214 #endif
215 
216 int	crypto_devallowsoft = 0;
217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
218 	   &crypto_devallowsoft, 0,
219 	   "Enable use of software crypto by /dev/crypto");
220 #ifdef COMPAT_FREEBSD12
221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
222 	   &crypto_devallowsoft, 0,
223 	   "Enable/disable use of software crypto by /dev/crypto");
224 #endif
225 
226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
227 
228 static	void crypto_proc(void);
229 static	struct proc *cryptoproc;
230 static	void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
231 static	void crypto_destroy(void);
232 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
233 static	int crypto_kinvoke(struct cryptkop *krp);
234 static	void crypto_task_invoke(void *ctx, int pending);
235 static void crypto_batch_enqueue(struct cryptop *crp);
236 
237 static	struct cryptostats cryptostats;
238 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats,
239 	    cryptostats, "Crypto system statistics");
240 
241 #ifdef CRYPTO_TIMING
242 static	int crypto_timing = 0;
243 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
244 	   &crypto_timing, 0, "Enable/disable crypto timing support");
245 #endif
246 
247 /* Try to avoid directly exposing the key buffer as a symbol */
248 static struct keybuf *keybuf;
249 
250 static struct keybuf empty_keybuf = {
251         .kb_nents = 0
252 };
253 
254 /* Obtain the key buffer from boot metadata */
255 static void
256 keybuf_init(void)
257 {
258 	caddr_t kmdp;
259 
260 	kmdp = preload_search_by_type("elf kernel");
261 
262 	if (kmdp == NULL)
263 		kmdp = preload_search_by_type("elf64 kernel");
264 
265 	keybuf = (struct keybuf *)preload_search_info(kmdp,
266 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
267 
268         if (keybuf == NULL)
269                 keybuf = &empty_keybuf;
270 }
271 
272 /* It'd be nice if we could store these in some kind of secure memory... */
273 struct keybuf * get_keybuf(void) {
274 
275         return (keybuf);
276 }
277 
278 static struct cryptocap *
279 cap_ref(struct cryptocap *cap)
280 {
281 
282 	refcount_acquire(&cap->cc_refs);
283 	return (cap);
284 }
285 
286 static void
287 cap_rele(struct cryptocap *cap)
288 {
289 
290 	if (refcount_release(&cap->cc_refs) == 0)
291 		return;
292 
293 	KASSERT(cap->cc_sessions == 0,
294 	    ("freeing crypto driver with active sessions"));
295 	KASSERT(cap->cc_koperations == 0,
296 	    ("freeing crypto driver with active key operations"));
297 
298 	free(cap, M_CRYPTO_DATA);
299 }
300 
301 static int
302 crypto_init(void)
303 {
304 	struct crypto_ret_worker *ret_worker;
305 	int error;
306 
307 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
308 		MTX_DEF|MTX_QUIET);
309 
310 	TAILQ_INIT(&crp_q);
311 	TAILQ_INIT(&crp_kq);
312 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
313 
314 	cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
315 				    0, 0, 0, 0,
316 				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
317 	cryptoses_zone = uma_zcreate("crypto_session",
318 	    sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
319 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
320 
321 	if (cryptop_zone == NULL || cryptoses_zone == NULL) {
322 		printf("crypto_init: cannot setup crypto zones\n");
323 		error = ENOMEM;
324 		goto bad;
325 	}
326 
327 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
328 	crypto_drivers = malloc(crypto_drivers_size *
329 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
330 	if (crypto_drivers == NULL) {
331 		printf("crypto_init: cannot setup crypto drivers\n");
332 		error = ENOMEM;
333 		goto bad;
334 	}
335 
336 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
337 		crypto_workers_num = mp_ncpus;
338 
339 	crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO,
340 				taskqueue_thread_enqueue, &crypto_tq);
341 	if (crypto_tq == NULL) {
342 		printf("crypto init: cannot setup crypto taskqueue\n");
343 		error = ENOMEM;
344 		goto bad;
345 	}
346 
347 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
348 		"crypto");
349 
350 	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
351 		    &cryptoproc, 0, 0, "crypto");
352 	if (error) {
353 		printf("crypto_init: cannot start crypto thread; error %d",
354 			error);
355 		goto bad;
356 	}
357 
358 	crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker),
359 			M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
360 	if (crypto_ret_workers == NULL) {
361 		error = ENOMEM;
362 		printf("crypto_init: cannot allocate ret workers\n");
363 		goto bad;
364 	}
365 
366 
367 	FOREACH_CRYPTO_RETW(ret_worker) {
368 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
369 		TAILQ_INIT(&ret_worker->crp_ret_q);
370 		TAILQ_INIT(&ret_worker->crp_ret_kq);
371 
372 		ret_worker->reorder_ops = 0;
373 		ret_worker->reorder_cur_seq = 0;
374 
375 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
376 
377 		error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
378 				&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
379 		if (error) {
380 			printf("crypto_init: cannot start cryptoret thread; error %d",
381 				error);
382 			goto bad;
383 		}
384 	}
385 
386 	keybuf_init();
387 
388 	return 0;
389 bad:
390 	crypto_destroy();
391 	return error;
392 }
393 
394 /*
395  * Signal a crypto thread to terminate.  We use the driver
396  * table lock to synchronize the sleep/wakeups so that we
397  * are sure the threads have terminated before we release
398  * the data structures they use.  See crypto_finis below
399  * for the other half of this song-and-dance.
400  */
401 static void
402 crypto_terminate(struct proc **pp, void *q)
403 {
404 	struct proc *p;
405 
406 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
407 	p = *pp;
408 	*pp = NULL;
409 	if (p) {
410 		wakeup_one(q);
411 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
412 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
413 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
414 		PROC_UNLOCK(p);
415 		CRYPTO_DRIVER_LOCK();
416 	}
417 }
418 
419 static void
420 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
421     uint8_t padval)
422 {
423 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
424 	u_int i;
425 
426 	KASSERT(axf->blocksize <= sizeof(hmac_key),
427 	    ("Invalid HMAC block size %d", axf->blocksize));
428 
429 	/*
430 	 * If the key is larger than the block size, use the digest of
431 	 * the key as the key instead.
432 	 */
433 	memset(hmac_key, 0, sizeof(hmac_key));
434 	if (klen > axf->blocksize) {
435 		axf->Init(auth_ctx);
436 		axf->Update(auth_ctx, key, klen);
437 		axf->Final(hmac_key, auth_ctx);
438 		klen = axf->hashsize;
439 	} else
440 		memcpy(hmac_key, key, klen);
441 
442 	for (i = 0; i < axf->blocksize; i++)
443 		hmac_key[i] ^= padval;
444 
445 	axf->Init(auth_ctx);
446 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
447 }
448 
449 void
450 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
451     void *auth_ctx)
452 {
453 
454 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
455 }
456 
457 void
458 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
459     void *auth_ctx)
460 {
461 
462 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
463 }
464 
465 static void
466 crypto_destroy(void)
467 {
468 	struct crypto_ret_worker *ret_worker;
469 	int i;
470 
471 	/*
472 	 * Terminate any crypto threads.
473 	 */
474 	if (crypto_tq != NULL)
475 		taskqueue_drain_all(crypto_tq);
476 	CRYPTO_DRIVER_LOCK();
477 	crypto_terminate(&cryptoproc, &crp_q);
478 	FOREACH_CRYPTO_RETW(ret_worker)
479 		crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
480 	CRYPTO_DRIVER_UNLOCK();
481 
482 	/* XXX flush queues??? */
483 
484 	/*
485 	 * Reclaim dynamically allocated resources.
486 	 */
487 	for (i = 0; i < crypto_drivers_size; i++) {
488 		if (crypto_drivers[i] != NULL)
489 			cap_rele(crypto_drivers[i]);
490 	}
491 	free(crypto_drivers, M_CRYPTO_DATA);
492 
493 	if (cryptoses_zone != NULL)
494 		uma_zdestroy(cryptoses_zone);
495 	if (cryptop_zone != NULL)
496 		uma_zdestroy(cryptop_zone);
497 	mtx_destroy(&crypto_q_mtx);
498 	FOREACH_CRYPTO_RETW(ret_worker)
499 		mtx_destroy(&ret_worker->crypto_ret_mtx);
500 	free(crypto_ret_workers, M_CRYPTO_DATA);
501 	if (crypto_tq != NULL)
502 		taskqueue_free(crypto_tq);
503 	mtx_destroy(&crypto_drivers_mtx);
504 }
505 
506 uint32_t
507 crypto_ses2hid(crypto_session_t crypto_session)
508 {
509 	return (crypto_session->cap->cc_hid);
510 }
511 
512 uint32_t
513 crypto_ses2caps(crypto_session_t crypto_session)
514 {
515 	return (crypto_session->cap->cc_flags & 0xff000000);
516 }
517 
518 void *
519 crypto_get_driver_session(crypto_session_t crypto_session)
520 {
521 	return (crypto_session->softc);
522 }
523 
524 const struct crypto_session_params *
525 crypto_get_params(crypto_session_t crypto_session)
526 {
527 	return (&crypto_session->csp);
528 }
529 
530 struct auth_hash *
531 crypto_auth_hash(const struct crypto_session_params *csp)
532 {
533 
534 	switch (csp->csp_auth_alg) {
535 	case CRYPTO_SHA1_HMAC:
536 		return (&auth_hash_hmac_sha1);
537 	case CRYPTO_SHA2_224_HMAC:
538 		return (&auth_hash_hmac_sha2_224);
539 	case CRYPTO_SHA2_256_HMAC:
540 		return (&auth_hash_hmac_sha2_256);
541 	case CRYPTO_SHA2_384_HMAC:
542 		return (&auth_hash_hmac_sha2_384);
543 	case CRYPTO_SHA2_512_HMAC:
544 		return (&auth_hash_hmac_sha2_512);
545 	case CRYPTO_NULL_HMAC:
546 		return (&auth_hash_null);
547 	case CRYPTO_RIPEMD160_HMAC:
548 		return (&auth_hash_hmac_ripemd_160);
549 	case CRYPTO_SHA1:
550 		return (&auth_hash_sha1);
551 	case CRYPTO_SHA2_224:
552 		return (&auth_hash_sha2_224);
553 	case CRYPTO_SHA2_256:
554 		return (&auth_hash_sha2_256);
555 	case CRYPTO_SHA2_384:
556 		return (&auth_hash_sha2_384);
557 	case CRYPTO_SHA2_512:
558 		return (&auth_hash_sha2_512);
559 	case CRYPTO_AES_NIST_GMAC:
560 		switch (csp->csp_auth_klen) {
561 		case 128 / 8:
562 			return (&auth_hash_nist_gmac_aes_128);
563 		case 192 / 8:
564 			return (&auth_hash_nist_gmac_aes_192);
565 		case 256 / 8:
566 			return (&auth_hash_nist_gmac_aes_256);
567 		default:
568 			return (NULL);
569 		}
570 	case CRYPTO_BLAKE2B:
571 		return (&auth_hash_blake2b);
572 	case CRYPTO_BLAKE2S:
573 		return (&auth_hash_blake2s);
574 	case CRYPTO_POLY1305:
575 		return (&auth_hash_poly1305);
576 	case CRYPTO_AES_CCM_CBC_MAC:
577 		switch (csp->csp_auth_klen) {
578 		case 128 / 8:
579 			return (&auth_hash_ccm_cbc_mac_128);
580 		case 192 / 8:
581 			return (&auth_hash_ccm_cbc_mac_192);
582 		case 256 / 8:
583 			return (&auth_hash_ccm_cbc_mac_256);
584 		default:
585 			return (NULL);
586 		}
587 	default:
588 		return (NULL);
589 	}
590 }
591 
592 struct enc_xform *
593 crypto_cipher(const struct crypto_session_params *csp)
594 {
595 
596 	switch (csp->csp_cipher_alg) {
597 	case CRYPTO_RIJNDAEL128_CBC:
598 		return (&enc_xform_rijndael128);
599 	case CRYPTO_AES_XTS:
600 		return (&enc_xform_aes_xts);
601 	case CRYPTO_AES_ICM:
602 		return (&enc_xform_aes_icm);
603 	case CRYPTO_AES_NIST_GCM_16:
604 		return (&enc_xform_aes_nist_gcm);
605 	case CRYPTO_CAMELLIA_CBC:
606 		return (&enc_xform_camellia);
607 	case CRYPTO_NULL_CBC:
608 		return (&enc_xform_null);
609 	case CRYPTO_CHACHA20:
610 		return (&enc_xform_chacha20);
611 	case CRYPTO_AES_CCM_16:
612 		return (&enc_xform_ccm);
613 	default:
614 		return (NULL);
615 	}
616 }
617 
618 static struct cryptocap *
619 crypto_checkdriver(u_int32_t hid)
620 {
621 
622 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
623 }
624 
625 /*
626  * Select a driver for a new session that supports the specified
627  * algorithms and, optionally, is constrained according to the flags.
628  */
629 static struct cryptocap *
630 crypto_select_driver(const struct crypto_session_params *csp, int flags)
631 {
632 	struct cryptocap *cap, *best;
633 	int best_match, error, hid;
634 
635 	CRYPTO_DRIVER_ASSERT();
636 
637 	best = NULL;
638 	for (hid = 0; hid < crypto_drivers_size; hid++) {
639 		/*
640 		 * If there is no driver for this slot, or the driver
641 		 * is not appropriate (hardware or software based on
642 		 * match), then skip.
643 		 */
644 		cap = crypto_drivers[hid];
645 		if (cap == NULL ||
646 		    (cap->cc_flags & flags) == 0)
647 			continue;
648 
649 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
650 		if (error >= 0)
651 			continue;
652 
653 		/*
654 		 * Use the driver with the highest probe value.
655 		 * Hardware drivers use a higher probe value than
656 		 * software.  In case of a tie, prefer the driver with
657 		 * the fewest active sessions.
658 		 */
659 		if (best == NULL || error > best_match ||
660 		    (error == best_match &&
661 		    cap->cc_sessions < best->cc_sessions)) {
662 			best = cap;
663 			best_match = error;
664 		}
665 	}
666 	return best;
667 }
668 
669 static enum alg_type {
670 	ALG_NONE = 0,
671 	ALG_CIPHER,
672 	ALG_DIGEST,
673 	ALG_KEYED_DIGEST,
674 	ALG_COMPRESSION,
675 	ALG_AEAD
676 } alg_types[] = {
677 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
678 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
679 	[CRYPTO_AES_CBC] = ALG_CIPHER,
680 	[CRYPTO_SHA1] = ALG_DIGEST,
681 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
682 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
683 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
684 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
685 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
686 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
687 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
688 	[CRYPTO_AES_XTS] = ALG_CIPHER,
689 	[CRYPTO_AES_ICM] = ALG_CIPHER,
690 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
691 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
692 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
693 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
694 	[CRYPTO_CHACHA20] = ALG_CIPHER,
695 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
696 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
697 	[CRYPTO_SHA2_224] = ALG_DIGEST,
698 	[CRYPTO_SHA2_256] = ALG_DIGEST,
699 	[CRYPTO_SHA2_384] = ALG_DIGEST,
700 	[CRYPTO_SHA2_512] = ALG_DIGEST,
701 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
702 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
703 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
704 };
705 
706 static enum alg_type
707 alg_type(int alg)
708 {
709 
710 	if (alg < nitems(alg_types))
711 		return (alg_types[alg]);
712 	return (ALG_NONE);
713 }
714 
715 static bool
716 alg_is_compression(int alg)
717 {
718 
719 	return (alg_type(alg) == ALG_COMPRESSION);
720 }
721 
722 static bool
723 alg_is_cipher(int alg)
724 {
725 
726 	return (alg_type(alg) == ALG_CIPHER);
727 }
728 
729 static bool
730 alg_is_digest(int alg)
731 {
732 
733 	return (alg_type(alg) == ALG_DIGEST ||
734 	    alg_type(alg) == ALG_KEYED_DIGEST);
735 }
736 
737 static bool
738 alg_is_keyed_digest(int alg)
739 {
740 
741 	return (alg_type(alg) == ALG_KEYED_DIGEST);
742 }
743 
744 static bool
745 alg_is_aead(int alg)
746 {
747 
748 	return (alg_type(alg) == ALG_AEAD);
749 }
750 
751 /* Various sanity checks on crypto session parameters. */
752 static bool
753 check_csp(const struct crypto_session_params *csp)
754 {
755 	struct auth_hash *axf;
756 
757 	/* Mode-independent checks. */
758 	if ((csp->csp_flags & ~CSP_F_SEPARATE_OUTPUT) != 0)
759 		return (false);
760 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
761 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
762 		return (false);
763 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
764 		return (false);
765 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
766 		return (false);
767 
768 	switch (csp->csp_mode) {
769 	case CSP_MODE_COMPRESS:
770 		if (!alg_is_compression(csp->csp_cipher_alg))
771 			return (false);
772 		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
773 			return (false);
774 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
775 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
776 		    csp->csp_auth_mlen != 0)
777 			return (false);
778 		break;
779 	case CSP_MODE_CIPHER:
780 		if (!alg_is_cipher(csp->csp_cipher_alg))
781 			return (false);
782 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
783 			if (csp->csp_cipher_klen == 0)
784 				return (false);
785 			if (csp->csp_ivlen == 0)
786 				return (false);
787 		}
788 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
789 			return (false);
790 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
791 		    csp->csp_auth_mlen != 0)
792 			return (false);
793 		break;
794 	case CSP_MODE_DIGEST:
795 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
796 			return (false);
797 
798 		/* IV is optional for digests (e.g. GMAC). */
799 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
800 			return (false);
801 		if (!alg_is_digest(csp->csp_auth_alg))
802 			return (false);
803 
804 		/* Key is optional for BLAKE2 digests. */
805 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
806 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
807 			;
808 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
809 			if (csp->csp_auth_klen == 0)
810 				return (false);
811 		} else {
812 			if (csp->csp_auth_klen != 0)
813 				return (false);
814 		}
815 		if (csp->csp_auth_mlen != 0) {
816 			axf = crypto_auth_hash(csp);
817 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
818 				return (false);
819 		}
820 		break;
821 	case CSP_MODE_AEAD:
822 		if (!alg_is_aead(csp->csp_cipher_alg))
823 			return (false);
824 		if (csp->csp_cipher_klen == 0)
825 			return (false);
826 		if (csp->csp_ivlen == 0 ||
827 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
828 			return (false);
829 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
830 			return (false);
831 
832 		/*
833 		 * XXX: Would be nice to have a better way to get this
834 		 * value.
835 		 */
836 		switch (csp->csp_cipher_alg) {
837 		case CRYPTO_AES_NIST_GCM_16:
838 		case CRYPTO_AES_CCM_16:
839 			if (csp->csp_auth_mlen > 16)
840 				return (false);
841 			break;
842 		}
843 		break;
844 	case CSP_MODE_ETA:
845 		if (!alg_is_cipher(csp->csp_cipher_alg))
846 			return (false);
847 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
848 			if (csp->csp_cipher_klen == 0)
849 				return (false);
850 			if (csp->csp_ivlen == 0)
851 				return (false);
852 		}
853 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
854 			return (false);
855 		if (!alg_is_digest(csp->csp_auth_alg))
856 			return (false);
857 
858 		/* Key is optional for BLAKE2 digests. */
859 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
860 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
861 			;
862 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
863 			if (csp->csp_auth_klen == 0)
864 				return (false);
865 		} else {
866 			if (csp->csp_auth_klen != 0)
867 				return (false);
868 		}
869 		if (csp->csp_auth_mlen != 0) {
870 			axf = crypto_auth_hash(csp);
871 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
872 				return (false);
873 		}
874 		break;
875 	default:
876 		return (false);
877 	}
878 
879 	return (true);
880 }
881 
882 /*
883  * Delete a session after it has been detached from its driver.
884  */
885 static void
886 crypto_deletesession(crypto_session_t cses)
887 {
888 	struct cryptocap *cap;
889 
890 	cap = cses->cap;
891 
892 	explicit_bzero(cses->softc, cap->cc_session_size);
893 	free(cses->softc, M_CRYPTO_DATA);
894 	uma_zfree(cryptoses_zone, cses);
895 
896 	CRYPTO_DRIVER_LOCK();
897 	cap->cc_sessions--;
898 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
899 		wakeup(cap);
900 	CRYPTO_DRIVER_UNLOCK();
901 	cap_rele(cap);
902 }
903 
904 /*
905  * Create a new session.  The crid argument specifies a crypto
906  * driver to use or constraints on a driver to select (hardware
907  * only, software only, either).  Whatever driver is selected
908  * must be capable of the requested crypto algorithms.
909  */
910 int
911 crypto_newsession(crypto_session_t *cses,
912     const struct crypto_session_params *csp, int crid)
913 {
914 	crypto_session_t res;
915 	struct cryptocap *cap;
916 	int err;
917 
918 	if (!check_csp(csp))
919 		return (EINVAL);
920 
921 	res = NULL;
922 
923 	CRYPTO_DRIVER_LOCK();
924 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
925 		/*
926 		 * Use specified driver; verify it is capable.
927 		 */
928 		cap = crypto_checkdriver(crid);
929 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
930 			cap = NULL;
931 	} else {
932 		/*
933 		 * No requested driver; select based on crid flags.
934 		 */
935 		cap = crypto_select_driver(csp, crid);
936 	}
937 	if (cap == NULL) {
938 		CRYPTO_DRIVER_UNLOCK();
939 		CRYPTDEB("no driver");
940 		return (EOPNOTSUPP);
941 	}
942 	cap_ref(cap);
943 	cap->cc_sessions++;
944 	CRYPTO_DRIVER_UNLOCK();
945 
946 	res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
947 	res->cap = cap;
948 	res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
949 	    M_ZERO);
950 	res->csp = *csp;
951 
952 	/* Call the driver initialization routine. */
953 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
954 	if (err != 0) {
955 		CRYPTDEB("dev newsession failed: %d", err);
956 		crypto_deletesession(res);
957 		return (err);
958 	}
959 
960 	*cses = res;
961 	return (0);
962 }
963 
964 /*
965  * Delete an existing session (or a reserved session on an unregistered
966  * driver).
967  */
968 void
969 crypto_freesession(crypto_session_t cses)
970 {
971 	struct cryptocap *cap;
972 
973 	if (cses == NULL)
974 		return;
975 
976 	cap = cses->cap;
977 
978 	/* Call the driver cleanup routine, if available. */
979 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
980 
981 	crypto_deletesession(cses);
982 }
983 
984 /*
985  * Return a new driver id.  Registers a driver with the system so that
986  * it can be probed by subsequent sessions.
987  */
988 int32_t
989 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
990 {
991 	struct cryptocap *cap, **newdrv;
992 	int i;
993 
994 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
995 		device_printf(dev,
996 		    "no flags specified when registering driver\n");
997 		return -1;
998 	}
999 
1000 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1001 	cap->cc_dev = dev;
1002 	cap->cc_session_size = sessionsize;
1003 	cap->cc_flags = flags;
1004 	refcount_init(&cap->cc_refs, 1);
1005 
1006 	CRYPTO_DRIVER_LOCK();
1007 	for (;;) {
1008 		for (i = 0; i < crypto_drivers_size; i++) {
1009 			if (crypto_drivers[i] == NULL)
1010 				break;
1011 		}
1012 
1013 		if (i < crypto_drivers_size)
1014 			break;
1015 
1016 		/* Out of entries, allocate some more. */
1017 
1018 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1019 			CRYPTO_DRIVER_UNLOCK();
1020 			printf("crypto: driver count wraparound!\n");
1021 			cap_rele(cap);
1022 			return (-1);
1023 		}
1024 		CRYPTO_DRIVER_UNLOCK();
1025 
1026 		newdrv = malloc(2 * crypto_drivers_size *
1027 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1028 
1029 		CRYPTO_DRIVER_LOCK();
1030 		memcpy(newdrv, crypto_drivers,
1031 		    crypto_drivers_size * sizeof(*crypto_drivers));
1032 
1033 		crypto_drivers_size *= 2;
1034 
1035 		free(crypto_drivers, M_CRYPTO_DATA);
1036 		crypto_drivers = newdrv;
1037 	}
1038 
1039 	cap->cc_hid = i;
1040 	crypto_drivers[i] = cap;
1041 	CRYPTO_DRIVER_UNLOCK();
1042 
1043 	if (bootverbose)
1044 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1045 		    device_get_nameunit(dev), i, flags);
1046 
1047 	return i;
1048 }
1049 
1050 /*
1051  * Lookup a driver by name.  We match against the full device
1052  * name and unit, and against just the name.  The latter gives
1053  * us a simple widlcarding by device name.  On success return the
1054  * driver/hardware identifier; otherwise return -1.
1055  */
1056 int
1057 crypto_find_driver(const char *match)
1058 {
1059 	struct cryptocap *cap;
1060 	int i, len = strlen(match);
1061 
1062 	CRYPTO_DRIVER_LOCK();
1063 	for (i = 0; i < crypto_drivers_size; i++) {
1064 		if (crypto_drivers[i] == NULL)
1065 			continue;
1066 		cap = crypto_drivers[i];
1067 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1068 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1069 			CRYPTO_DRIVER_UNLOCK();
1070 			return (i);
1071 		}
1072 	}
1073 	CRYPTO_DRIVER_UNLOCK();
1074 	return (-1);
1075 }
1076 
1077 /*
1078  * Return the device_t for the specified driver or NULL
1079  * if the driver identifier is invalid.
1080  */
1081 device_t
1082 crypto_find_device_byhid(int hid)
1083 {
1084 	struct cryptocap *cap;
1085 	device_t dev;
1086 
1087 	dev = NULL;
1088 	CRYPTO_DRIVER_LOCK();
1089 	cap = crypto_checkdriver(hid);
1090 	if (cap != NULL)
1091 		dev = cap->cc_dev;
1092 	CRYPTO_DRIVER_UNLOCK();
1093 	return (dev);
1094 }
1095 
1096 /*
1097  * Return the device/driver capabilities.
1098  */
1099 int
1100 crypto_getcaps(int hid)
1101 {
1102 	struct cryptocap *cap;
1103 	int flags;
1104 
1105 	flags = 0;
1106 	CRYPTO_DRIVER_LOCK();
1107 	cap = crypto_checkdriver(hid);
1108 	if (cap != NULL)
1109 		flags = cap->cc_flags;
1110 	CRYPTO_DRIVER_UNLOCK();
1111 	return (flags);
1112 }
1113 
1114 /*
1115  * Register support for a key-related algorithm.  This routine
1116  * is called once for each algorithm supported a driver.
1117  */
1118 int
1119 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1120 {
1121 	struct cryptocap *cap;
1122 	int err;
1123 
1124 	CRYPTO_DRIVER_LOCK();
1125 
1126 	cap = crypto_checkdriver(driverid);
1127 	if (cap != NULL &&
1128 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1129 		/*
1130 		 * XXX Do some performance testing to determine placing.
1131 		 * XXX We probably need an auxiliary data structure that
1132 		 * XXX describes relative performances.
1133 		 */
1134 
1135 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1136 		if (bootverbose)
1137 			printf("crypto: %s registers key alg %u flags %u\n"
1138 				, device_get_nameunit(cap->cc_dev)
1139 				, kalg
1140 				, flags
1141 			);
1142 		err = 0;
1143 	} else
1144 		err = EINVAL;
1145 
1146 	CRYPTO_DRIVER_UNLOCK();
1147 	return err;
1148 }
1149 
1150 /*
1151  * Unregister all algorithms associated with a crypto driver.
1152  * If there are pending sessions using it, leave enough information
1153  * around so that subsequent calls using those sessions will
1154  * correctly detect the driver has been unregistered and reroute
1155  * requests.
1156  */
1157 int
1158 crypto_unregister_all(u_int32_t driverid)
1159 {
1160 	struct cryptocap *cap;
1161 
1162 	CRYPTO_DRIVER_LOCK();
1163 	cap = crypto_checkdriver(driverid);
1164 	if (cap == NULL) {
1165 		CRYPTO_DRIVER_UNLOCK();
1166 		return (EINVAL);
1167 	}
1168 
1169 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1170 	crypto_drivers[driverid] = NULL;
1171 
1172 	/*
1173 	 * XXX: This doesn't do anything to kick sessions that
1174 	 * have no pending operations.
1175 	 */
1176 	while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1177 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1178 	CRYPTO_DRIVER_UNLOCK();
1179 	cap_rele(cap);
1180 
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Clear blockage on a driver.  The what parameter indicates whether
1186  * the driver is now ready for cryptop's and/or cryptokop's.
1187  */
1188 int
1189 crypto_unblock(u_int32_t driverid, int what)
1190 {
1191 	struct cryptocap *cap;
1192 	int err;
1193 
1194 	CRYPTO_Q_LOCK();
1195 	cap = crypto_checkdriver(driverid);
1196 	if (cap != NULL) {
1197 		if (what & CRYPTO_SYMQ)
1198 			cap->cc_qblocked = 0;
1199 		if (what & CRYPTO_ASYMQ)
1200 			cap->cc_kqblocked = 0;
1201 		if (crp_sleep)
1202 			wakeup_one(&crp_q);
1203 		err = 0;
1204 	} else
1205 		err = EINVAL;
1206 	CRYPTO_Q_UNLOCK();
1207 
1208 	return err;
1209 }
1210 
1211 size_t
1212 crypto_buffer_len(struct crypto_buffer *cb)
1213 {
1214 	switch (cb->cb_type) {
1215 	case CRYPTO_BUF_CONTIG:
1216 		return (cb->cb_buf_len);
1217 	case CRYPTO_BUF_MBUF:
1218 		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1219 			return (cb->cb_mbuf->m_pkthdr.len);
1220 		return (m_length(cb->cb_mbuf, NULL));
1221 	case CRYPTO_BUF_UIO:
1222 		return (cb->cb_uio->uio_resid);
1223 	default:
1224 		return (0);
1225 	}
1226 }
1227 
1228 #ifdef INVARIANTS
1229 /* Various sanity checks on crypto requests. */
1230 static void
1231 cb_sanity(struct crypto_buffer *cb, const char *name)
1232 {
1233 	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1234 	    ("incoming crp with invalid %s buffer type", name));
1235 	if (cb->cb_type == CRYPTO_BUF_CONTIG)
1236 		KASSERT(cb->cb_buf_len >= 0,
1237 		    ("incoming crp with -ve %s buffer length", name));
1238 }
1239 
1240 static void
1241 crp_sanity(struct cryptop *crp)
1242 {
1243 	struct crypto_session_params *csp;
1244 	struct crypto_buffer *out;
1245 	size_t ilen, len, olen;
1246 
1247 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1248 	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1249 	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1250 	    ("incoming crp with invalid output buffer type"));
1251 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1252 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1253 	    ("incoming crp already done"));
1254 
1255 	csp = &crp->crp_session->csp;
1256 	cb_sanity(&crp->crp_buf, "input");
1257 	ilen = crypto_buffer_len(&crp->crp_buf);
1258 	olen = ilen;
1259 	out = NULL;
1260 	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1261 		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1262 			cb_sanity(&crp->crp_obuf, "output");
1263 			out = &crp->crp_obuf;
1264 			olen = crypto_buffer_len(out);
1265 		}
1266 	} else
1267 		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1268 		    ("incoming crp with separate output buffer "
1269 		    "but no session support"));
1270 
1271 	switch (csp->csp_mode) {
1272 	case CSP_MODE_COMPRESS:
1273 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1274 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1275 		    ("invalid compression op %x", crp->crp_op));
1276 		break;
1277 	case CSP_MODE_CIPHER:
1278 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1279 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1280 		    ("invalid cipher op %x", crp->crp_op));
1281 		break;
1282 	case CSP_MODE_DIGEST:
1283 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1284 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1285 		    ("invalid digest op %x", crp->crp_op));
1286 		break;
1287 	case CSP_MODE_AEAD:
1288 		KASSERT(crp->crp_op ==
1289 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1290 		    crp->crp_op ==
1291 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1292 		    ("invalid AEAD op %x", crp->crp_op));
1293 		if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1294 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1295 			    ("GCM without a separate IV"));
1296 		if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1297 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1298 			    ("CCM without a separate IV"));
1299 		break;
1300 	case CSP_MODE_ETA:
1301 		KASSERT(crp->crp_op ==
1302 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1303 		    crp->crp_op ==
1304 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1305 		    ("invalid ETA op %x", crp->crp_op));
1306 		break;
1307 	}
1308 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1309 		KASSERT(crp->crp_aad_start == 0 ||
1310 		    crp->crp_aad_start < ilen,
1311 		    ("invalid AAD start"));
1312 		KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0,
1313 		    ("AAD with zero length and non-zero start"));
1314 		KASSERT(crp->crp_aad_length == 0 ||
1315 		    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1316 		    ("AAD outside input length"));
1317 	} else {
1318 		KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0,
1319 		    ("AAD region in request not supporting AAD"));
1320 	}
1321 	if (csp->csp_ivlen == 0) {
1322 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1323 		    ("IV_SEPARATE set when IV isn't used"));
1324 		KASSERT(crp->crp_iv_start == 0,
1325 		    ("crp_iv_start set when IV isn't used"));
1326 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1327 		KASSERT(crp->crp_iv_start == 0,
1328 		    ("IV_SEPARATE used with non-zero IV start"));
1329 	} else {
1330 		KASSERT(crp->crp_iv_start < ilen,
1331 		    ("invalid IV start"));
1332 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1333 		    ("IV outside buffer length"));
1334 	}
1335 	/* XXX: payload_start of 0 should always be < ilen? */
1336 	KASSERT(crp->crp_payload_start == 0 ||
1337 	    crp->crp_payload_start < ilen,
1338 	    ("invalid payload start"));
1339 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1340 	    ilen, ("payload outside input buffer"));
1341 	if (out == NULL) {
1342 		KASSERT(crp->crp_payload_output_start == 0,
1343 		    ("payload output start non-zero without output buffer"));
1344 	} else {
1345 		KASSERT(crp->crp_payload_output_start < olen,
1346 		    ("invalid payload output start"));
1347 		KASSERT(crp->crp_payload_output_start +
1348 		    crp->crp_payload_length <= olen,
1349 		    ("payload outside output buffer"));
1350 	}
1351 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1352 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1353 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1354 			len = ilen;
1355 		else
1356 			len = olen;
1357 		KASSERT(crp->crp_digest_start == 0 ||
1358 		    crp->crp_digest_start < len,
1359 		    ("invalid digest start"));
1360 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1361 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1362 		    ("digest outside buffer"));
1363 	} else {
1364 		KASSERT(crp->crp_digest_start == 0,
1365 		    ("non-zero digest start for request without a digest"));
1366 	}
1367 	if (csp->csp_cipher_klen != 0)
1368 		KASSERT(csp->csp_cipher_key != NULL ||
1369 		    crp->crp_cipher_key != NULL,
1370 		    ("cipher request without a key"));
1371 	if (csp->csp_auth_klen != 0)
1372 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1373 		    ("auth request without a key"));
1374 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1375 }
1376 #endif
1377 
1378 /*
1379  * Add a crypto request to a queue, to be processed by the kernel thread.
1380  */
1381 int
1382 crypto_dispatch(struct cryptop *crp)
1383 {
1384 	struct cryptocap *cap;
1385 	int result;
1386 
1387 #ifdef INVARIANTS
1388 	crp_sanity(crp);
1389 #endif
1390 
1391 	cryptostats.cs_ops++;
1392 
1393 #ifdef CRYPTO_TIMING
1394 	if (crypto_timing)
1395 		binuptime(&crp->crp_tstamp);
1396 #endif
1397 
1398 	crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1399 
1400 	if (CRYPTOP_ASYNC(crp)) {
1401 		if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1402 			struct crypto_ret_worker *ret_worker;
1403 
1404 			ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1405 
1406 			CRYPTO_RETW_LOCK(ret_worker);
1407 			crp->crp_seq = ret_worker->reorder_ops++;
1408 			CRYPTO_RETW_UNLOCK(ret_worker);
1409 		}
1410 
1411 		TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1412 		taskqueue_enqueue(crypto_tq, &crp->crp_task);
1413 		return (0);
1414 	}
1415 
1416 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1417 		/*
1418 		 * Caller marked the request to be processed
1419 		 * immediately; dispatch it directly to the
1420 		 * driver unless the driver is currently blocked.
1421 		 */
1422 		cap = crp->crp_session->cap;
1423 		if (!cap->cc_qblocked) {
1424 			result = crypto_invoke(cap, crp, 0);
1425 			if (result != ERESTART)
1426 				return (result);
1427 			/*
1428 			 * The driver ran out of resources, put the request on
1429 			 * the queue.
1430 			 */
1431 		}
1432 	}
1433 	crypto_batch_enqueue(crp);
1434 	return 0;
1435 }
1436 
1437 void
1438 crypto_batch_enqueue(struct cryptop *crp)
1439 {
1440 
1441 	CRYPTO_Q_LOCK();
1442 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1443 	if (crp_sleep)
1444 		wakeup_one(&crp_q);
1445 	CRYPTO_Q_UNLOCK();
1446 }
1447 
1448 /*
1449  * Add an asymetric crypto request to a queue,
1450  * to be processed by the kernel thread.
1451  */
1452 int
1453 crypto_kdispatch(struct cryptkop *krp)
1454 {
1455 	int error;
1456 
1457 	cryptostats.cs_kops++;
1458 
1459 	krp->krp_cap = NULL;
1460 	error = crypto_kinvoke(krp);
1461 	if (error == ERESTART) {
1462 		CRYPTO_Q_LOCK();
1463 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1464 		if (crp_sleep)
1465 			wakeup_one(&crp_q);
1466 		CRYPTO_Q_UNLOCK();
1467 		error = 0;
1468 	}
1469 	return error;
1470 }
1471 
1472 /*
1473  * Verify a driver is suitable for the specified operation.
1474  */
1475 static __inline int
1476 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1477 {
1478 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1479 }
1480 
1481 /*
1482  * Select a driver for an asym operation.  The driver must
1483  * support the necessary algorithm.  The caller can constrain
1484  * which device is selected with the flags parameter.  The
1485  * algorithm we use here is pretty stupid; just use the first
1486  * driver that supports the algorithms we need. If there are
1487  * multiple suitable drivers we choose the driver with the
1488  * fewest active operations.  We prefer hardware-backed
1489  * drivers to software ones when either may be used.
1490  */
1491 static struct cryptocap *
1492 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1493 {
1494 	struct cryptocap *cap, *best;
1495 	int match, hid;
1496 
1497 	CRYPTO_DRIVER_ASSERT();
1498 
1499 	/*
1500 	 * Look first for hardware crypto devices if permitted.
1501 	 */
1502 	if (flags & CRYPTOCAP_F_HARDWARE)
1503 		match = CRYPTOCAP_F_HARDWARE;
1504 	else
1505 		match = CRYPTOCAP_F_SOFTWARE;
1506 	best = NULL;
1507 again:
1508 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1509 		/*
1510 		 * If there is no driver for this slot, or the driver
1511 		 * is not appropriate (hardware or software based on
1512 		 * match), then skip.
1513 		 */
1514 		cap = crypto_drivers[hid];
1515 		if (cap->cc_dev == NULL ||
1516 		    (cap->cc_flags & match) == 0)
1517 			continue;
1518 
1519 		/* verify all the algorithms are supported. */
1520 		if (kdriver_suitable(cap, krp)) {
1521 			if (best == NULL ||
1522 			    cap->cc_koperations < best->cc_koperations)
1523 				best = cap;
1524 		}
1525 	}
1526 	if (best != NULL)
1527 		return best;
1528 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1529 		/* sort of an Algol 68-style for loop */
1530 		match = CRYPTOCAP_F_SOFTWARE;
1531 		goto again;
1532 	}
1533 	return best;
1534 }
1535 
1536 /*
1537  * Choose a driver for an asymmetric crypto request.
1538  */
1539 static struct cryptocap *
1540 crypto_lookup_kdriver(struct cryptkop *krp)
1541 {
1542 	struct cryptocap *cap;
1543 	uint32_t crid;
1544 
1545 	/* If this request is requeued, it might already have a driver. */
1546 	cap = krp->krp_cap;
1547 	if (cap != NULL)
1548 		return (cap);
1549 
1550 	/* Use krp_crid to choose a driver. */
1551 	crid = krp->krp_crid;
1552 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1553 		cap = crypto_checkdriver(crid);
1554 		if (cap != NULL) {
1555 			/*
1556 			 * Driver present, it must support the
1557 			 * necessary algorithm and, if s/w drivers are
1558 			 * excluded, it must be registered as
1559 			 * hardware-backed.
1560 			 */
1561 			if (!kdriver_suitable(cap, krp) ||
1562 			    (!crypto_devallowsoft &&
1563 			    (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1564 				cap = NULL;
1565 		}
1566 	} else {
1567 		/*
1568 		 * No requested driver; select based on crid flags.
1569 		 */
1570 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
1571 			crid &= ~CRYPTOCAP_F_SOFTWARE;
1572 		cap = crypto_select_kdriver(krp, crid);
1573 	}
1574 
1575 	if (cap != NULL) {
1576 		krp->krp_cap = cap_ref(cap);
1577 		krp->krp_hid = cap->cc_hid;
1578 	}
1579 	return (cap);
1580 }
1581 
1582 /*
1583  * Dispatch an asymmetric crypto request.
1584  */
1585 static int
1586 crypto_kinvoke(struct cryptkop *krp)
1587 {
1588 	struct cryptocap *cap = NULL;
1589 	int error;
1590 
1591 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1592 	KASSERT(krp->krp_callback != NULL,
1593 	    ("%s: krp->crp_callback == NULL", __func__));
1594 
1595 	CRYPTO_DRIVER_LOCK();
1596 	cap = crypto_lookup_kdriver(krp);
1597 	if (cap == NULL) {
1598 		CRYPTO_DRIVER_UNLOCK();
1599 		krp->krp_status = ENODEV;
1600 		crypto_kdone(krp);
1601 		return (0);
1602 	}
1603 
1604 	/*
1605 	 * If the device is blocked, return ERESTART to requeue it.
1606 	 */
1607 	if (cap->cc_kqblocked) {
1608 		/*
1609 		 * XXX: Previously this set krp_status to ERESTART and
1610 		 * invoked crypto_kdone but the caller would still
1611 		 * requeue it.
1612 		 */
1613 		CRYPTO_DRIVER_UNLOCK();
1614 		return (ERESTART);
1615 	}
1616 
1617 	cap->cc_koperations++;
1618 	CRYPTO_DRIVER_UNLOCK();
1619 	error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1620 	if (error == ERESTART) {
1621 		CRYPTO_DRIVER_LOCK();
1622 		cap->cc_koperations--;
1623 		CRYPTO_DRIVER_UNLOCK();
1624 		return (error);
1625 	}
1626 
1627 	KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1628 	return (0);
1629 }
1630 
1631 #ifdef CRYPTO_TIMING
1632 static void
1633 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
1634 {
1635 	struct bintime now, delta;
1636 	struct timespec t;
1637 	uint64_t u;
1638 
1639 	binuptime(&now);
1640 	u = now.frac;
1641 	delta.frac = now.frac - bt->frac;
1642 	delta.sec = now.sec - bt->sec;
1643 	if (u < delta.frac)
1644 		delta.sec--;
1645 	bintime2timespec(&delta, &t);
1646 	timespecadd(&ts->acc, &t, &ts->acc);
1647 	if (timespeccmp(&t, &ts->min, <))
1648 		ts->min = t;
1649 	if (timespeccmp(&t, &ts->max, >))
1650 		ts->max = t;
1651 	ts->count++;
1652 
1653 	*bt = now;
1654 }
1655 #endif
1656 
1657 static void
1658 crypto_task_invoke(void *ctx, int pending)
1659 {
1660 	struct cryptocap *cap;
1661 	struct cryptop *crp;
1662 	int result;
1663 
1664 	crp = (struct cryptop *)ctx;
1665 	cap = crp->crp_session->cap;
1666 	result = crypto_invoke(cap, crp, 0);
1667 	if (result == ERESTART)
1668 		crypto_batch_enqueue(crp);
1669 }
1670 
1671 /*
1672  * Dispatch a crypto request to the appropriate crypto devices.
1673  */
1674 static int
1675 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1676 {
1677 
1678 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1679 	KASSERT(crp->crp_callback != NULL,
1680 	    ("%s: crp->crp_callback == NULL", __func__));
1681 	KASSERT(crp->crp_session != NULL,
1682 	    ("%s: crp->crp_session == NULL", __func__));
1683 
1684 #ifdef CRYPTO_TIMING
1685 	if (crypto_timing)
1686 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1687 #endif
1688 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1689 		struct crypto_session_params csp;
1690 		crypto_session_t nses;
1691 
1692 		/*
1693 		 * Driver has unregistered; migrate the session and return
1694 		 * an error to the caller so they'll resubmit the op.
1695 		 *
1696 		 * XXX: What if there are more already queued requests for this
1697 		 *      session?
1698 		 *
1699 		 * XXX: Real solution is to make sessions refcounted
1700 		 * and force callers to hold a reference when
1701 		 * assigning to crp_session.  Could maybe change
1702 		 * crypto_getreq to accept a session pointer to make
1703 		 * that work.  Alternatively, we could abandon the
1704 		 * notion of rewriting crp_session in requests forcing
1705 		 * the caller to deal with allocating a new session.
1706 		 * Perhaps provide a method to allow a crp's session to
1707 		 * be swapped that callers could use.
1708 		 */
1709 		csp = crp->crp_session->csp;
1710 		crypto_freesession(crp->crp_session);
1711 
1712 		/*
1713 		 * XXX: Key pointers may no longer be valid.  If we
1714 		 * really want to support this we need to define the
1715 		 * KPI such that 'csp' is required to be valid for the
1716 		 * duration of a session by the caller perhaps.
1717 		 *
1718 		 * XXX: If the keys have been changed this will reuse
1719 		 * the old keys.  This probably suggests making
1720 		 * rekeying more explicit and updating the key
1721 		 * pointers in 'csp' when the keys change.
1722 		 */
1723 		if (crypto_newsession(&nses, &csp,
1724 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1725 			crp->crp_session = nses;
1726 
1727 		crp->crp_etype = EAGAIN;
1728 		crypto_done(crp);
1729 		return 0;
1730 	} else {
1731 		/*
1732 		 * Invoke the driver to process the request.
1733 		 */
1734 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1735 	}
1736 }
1737 
1738 void
1739 crypto_freereq(struct cryptop *crp)
1740 {
1741 
1742 	if (crp == NULL)
1743 		return;
1744 
1745 #ifdef DIAGNOSTIC
1746 	{
1747 		struct cryptop *crp2;
1748 		struct crypto_ret_worker *ret_worker;
1749 
1750 		CRYPTO_Q_LOCK();
1751 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1752 			KASSERT(crp2 != crp,
1753 			    ("Freeing cryptop from the crypto queue (%p).",
1754 			    crp));
1755 		}
1756 		CRYPTO_Q_UNLOCK();
1757 
1758 		FOREACH_CRYPTO_RETW(ret_worker) {
1759 			CRYPTO_RETW_LOCK(ret_worker);
1760 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1761 				KASSERT(crp2 != crp,
1762 				    ("Freeing cryptop from the return queue (%p).",
1763 				    crp));
1764 			}
1765 			CRYPTO_RETW_UNLOCK(ret_worker);
1766 		}
1767 	}
1768 #endif
1769 
1770 	uma_zfree(cryptop_zone, crp);
1771 }
1772 
1773 struct cryptop *
1774 crypto_getreq(crypto_session_t cses, int how)
1775 {
1776 	struct cryptop *crp;
1777 
1778 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1779 	crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1780 	crp->crp_session = cses;
1781 	return (crp);
1782 }
1783 
1784 /*
1785  * Invoke the callback on behalf of the driver.
1786  */
1787 void
1788 crypto_done(struct cryptop *crp)
1789 {
1790 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1791 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1792 	crp->crp_flags |= CRYPTO_F_DONE;
1793 	if (crp->crp_etype != 0)
1794 		cryptostats.cs_errs++;
1795 #ifdef CRYPTO_TIMING
1796 	if (crypto_timing)
1797 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1798 #endif
1799 	/*
1800 	 * CBIMM means unconditionally do the callback immediately;
1801 	 * CBIFSYNC means do the callback immediately only if the
1802 	 * operation was done synchronously.  Both are used to avoid
1803 	 * doing extraneous context switches; the latter is mostly
1804 	 * used with the software crypto driver.
1805 	 */
1806 	if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1807 	    ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1808 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1809 	     (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1810 		/*
1811 		 * Do the callback directly.  This is ok when the
1812 		 * callback routine does very little (e.g. the
1813 		 * /dev/crypto callback method just does a wakeup).
1814 		 */
1815 #ifdef CRYPTO_TIMING
1816 		if (crypto_timing) {
1817 			/*
1818 			 * NB: We must copy the timestamp before
1819 			 * doing the callback as the cryptop is
1820 			 * likely to be reclaimed.
1821 			 */
1822 			struct bintime t = crp->crp_tstamp;
1823 			crypto_tstat(&cryptostats.cs_cb, &t);
1824 			crp->crp_callback(crp);
1825 			crypto_tstat(&cryptostats.cs_finis, &t);
1826 		} else
1827 #endif
1828 			crp->crp_callback(crp);
1829 	} else {
1830 		struct crypto_ret_worker *ret_worker;
1831 		bool wake;
1832 
1833 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1834 		wake = false;
1835 
1836 		/*
1837 		 * Normal case; queue the callback for the thread.
1838 		 */
1839 		CRYPTO_RETW_LOCK(ret_worker);
1840 		if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1841 			struct cryptop *tmp;
1842 
1843 			TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1844 					cryptop_q, crp_next) {
1845 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1846 					TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1847 							tmp, crp, crp_next);
1848 					break;
1849 				}
1850 			}
1851 			if (tmp == NULL) {
1852 				TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1853 						crp, crp_next);
1854 			}
1855 
1856 			if (crp->crp_seq == ret_worker->reorder_cur_seq)
1857 				wake = true;
1858 		}
1859 		else {
1860 			if (CRYPTO_RETW_EMPTY(ret_worker))
1861 				wake = true;
1862 
1863 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1864 		}
1865 
1866 		if (wake)
1867 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1868 		CRYPTO_RETW_UNLOCK(ret_worker);
1869 	}
1870 }
1871 
1872 /*
1873  * Invoke the callback on behalf of the driver.
1874  */
1875 void
1876 crypto_kdone(struct cryptkop *krp)
1877 {
1878 	struct crypto_ret_worker *ret_worker;
1879 	struct cryptocap *cap;
1880 
1881 	if (krp->krp_status != 0)
1882 		cryptostats.cs_kerrs++;
1883 	CRYPTO_DRIVER_LOCK();
1884 	cap = krp->krp_cap;
1885 	KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1886 	cap->cc_koperations--;
1887 	if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1888 		wakeup(cap);
1889 	CRYPTO_DRIVER_UNLOCK();
1890 	krp->krp_cap = NULL;
1891 	cap_rele(cap);
1892 
1893 	ret_worker = CRYPTO_RETW(0);
1894 
1895 	CRYPTO_RETW_LOCK(ret_worker);
1896 	if (CRYPTO_RETW_EMPTY(ret_worker))
1897 		wakeup_one(&ret_worker->crp_ret_q);		/* shared wait channel */
1898 	TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1899 	CRYPTO_RETW_UNLOCK(ret_worker);
1900 }
1901 
1902 int
1903 crypto_getfeat(int *featp)
1904 {
1905 	int hid, kalg, feat = 0;
1906 
1907 	CRYPTO_DRIVER_LOCK();
1908 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1909 		const struct cryptocap *cap = crypto_drivers[hid];
1910 
1911 		if (cap == NULL ||
1912 		    ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1913 		    !crypto_devallowsoft)) {
1914 			continue;
1915 		}
1916 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1917 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1918 				feat |=  1 << kalg;
1919 	}
1920 	CRYPTO_DRIVER_UNLOCK();
1921 	*featp = feat;
1922 	return (0);
1923 }
1924 
1925 /*
1926  * Terminate a thread at module unload.  The process that
1927  * initiated this is waiting for us to signal that we're gone;
1928  * wake it up and exit.  We use the driver table lock to insure
1929  * we don't do the wakeup before they're waiting.  There is no
1930  * race here because the waiter sleeps on the proc lock for the
1931  * thread so it gets notified at the right time because of an
1932  * extra wakeup that's done in exit1().
1933  */
1934 static void
1935 crypto_finis(void *chan)
1936 {
1937 	CRYPTO_DRIVER_LOCK();
1938 	wakeup_one(chan);
1939 	CRYPTO_DRIVER_UNLOCK();
1940 	kproc_exit(0);
1941 }
1942 
1943 /*
1944  * Crypto thread, dispatches crypto requests.
1945  */
1946 static void
1947 crypto_proc(void)
1948 {
1949 	struct cryptop *crp, *submit;
1950 	struct cryptkop *krp;
1951 	struct cryptocap *cap;
1952 	int result, hint;
1953 
1954 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1955 	fpu_kern_thread(FPU_KERN_NORMAL);
1956 #endif
1957 
1958 	CRYPTO_Q_LOCK();
1959 	for (;;) {
1960 		/*
1961 		 * Find the first element in the queue that can be
1962 		 * processed and look-ahead to see if multiple ops
1963 		 * are ready for the same driver.
1964 		 */
1965 		submit = NULL;
1966 		hint = 0;
1967 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1968 			cap = crp->crp_session->cap;
1969 			/*
1970 			 * Driver cannot disappeared when there is an active
1971 			 * session.
1972 			 */
1973 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1974 			    __func__, __LINE__));
1975 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1976 				/* Op needs to be migrated, process it. */
1977 				if (submit == NULL)
1978 					submit = crp;
1979 				break;
1980 			}
1981 			if (!cap->cc_qblocked) {
1982 				if (submit != NULL) {
1983 					/*
1984 					 * We stop on finding another op,
1985 					 * regardless whether its for the same
1986 					 * driver or not.  We could keep
1987 					 * searching the queue but it might be
1988 					 * better to just use a per-driver
1989 					 * queue instead.
1990 					 */
1991 					if (submit->crp_session->cap == cap)
1992 						hint = CRYPTO_HINT_MORE;
1993 					break;
1994 				} else {
1995 					submit = crp;
1996 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1997 						break;
1998 					/* keep scanning for more are q'd */
1999 				}
2000 			}
2001 		}
2002 		if (submit != NULL) {
2003 			TAILQ_REMOVE(&crp_q, submit, crp_next);
2004 			cap = submit->crp_session->cap;
2005 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2006 			    __func__, __LINE__));
2007 			CRYPTO_Q_UNLOCK();
2008 			result = crypto_invoke(cap, submit, hint);
2009 			CRYPTO_Q_LOCK();
2010 			if (result == ERESTART) {
2011 				/*
2012 				 * The driver ran out of resources, mark the
2013 				 * driver ``blocked'' for cryptop's and put
2014 				 * the request back in the queue.  It would
2015 				 * best to put the request back where we got
2016 				 * it but that's hard so for now we put it
2017 				 * at the front.  This should be ok; putting
2018 				 * it at the end does not work.
2019 				 */
2020 				cap->cc_qblocked = 1;
2021 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2022 				cryptostats.cs_blocks++;
2023 			}
2024 		}
2025 
2026 		/* As above, but for key ops */
2027 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2028 			cap = krp->krp_cap;
2029 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2030 				/*
2031 				 * Operation needs to be migrated,
2032 				 * clear krp_cap so a new driver is
2033 				 * selected.
2034 				 */
2035 				krp->krp_cap = NULL;
2036 				cap_rele(cap);
2037 				break;
2038 			}
2039 			if (!cap->cc_kqblocked)
2040 				break;
2041 		}
2042 		if (krp != NULL) {
2043 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
2044 			CRYPTO_Q_UNLOCK();
2045 			result = crypto_kinvoke(krp);
2046 			CRYPTO_Q_LOCK();
2047 			if (result == ERESTART) {
2048 				/*
2049 				 * The driver ran out of resources, mark the
2050 				 * driver ``blocked'' for cryptkop's and put
2051 				 * the request back in the queue.  It would
2052 				 * best to put the request back where we got
2053 				 * it but that's hard so for now we put it
2054 				 * at the front.  This should be ok; putting
2055 				 * it at the end does not work.
2056 				 */
2057 				krp->krp_cap->cc_kqblocked = 1;
2058 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2059 				cryptostats.cs_kblocks++;
2060 			}
2061 		}
2062 
2063 		if (submit == NULL && krp == NULL) {
2064 			/*
2065 			 * Nothing more to be processed.  Sleep until we're
2066 			 * woken because there are more ops to process.
2067 			 * This happens either by submission or by a driver
2068 			 * becoming unblocked and notifying us through
2069 			 * crypto_unblock.  Note that when we wakeup we
2070 			 * start processing each queue again from the
2071 			 * front. It's not clear that it's important to
2072 			 * preserve this ordering since ops may finish
2073 			 * out of order if dispatched to different devices
2074 			 * and some become blocked while others do not.
2075 			 */
2076 			crp_sleep = 1;
2077 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2078 			crp_sleep = 0;
2079 			if (cryptoproc == NULL)
2080 				break;
2081 			cryptostats.cs_intrs++;
2082 		}
2083 	}
2084 	CRYPTO_Q_UNLOCK();
2085 
2086 	crypto_finis(&crp_q);
2087 }
2088 
2089 /*
2090  * Crypto returns thread, does callbacks for processed crypto requests.
2091  * Callbacks are done here, rather than in the crypto drivers, because
2092  * callbacks typically are expensive and would slow interrupt handling.
2093  */
2094 static void
2095 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2096 {
2097 	struct cryptop *crpt;
2098 	struct cryptkop *krpt;
2099 
2100 	CRYPTO_RETW_LOCK(ret_worker);
2101 	for (;;) {
2102 		/* Harvest return q's for completed ops */
2103 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2104 		if (crpt != NULL) {
2105 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2106 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2107 				ret_worker->reorder_cur_seq++;
2108 			} else {
2109 				crpt = NULL;
2110 			}
2111 		}
2112 
2113 		if (crpt == NULL) {
2114 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2115 			if (crpt != NULL)
2116 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2117 		}
2118 
2119 		krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2120 		if (krpt != NULL)
2121 			TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2122 
2123 		if (crpt != NULL || krpt != NULL) {
2124 			CRYPTO_RETW_UNLOCK(ret_worker);
2125 			/*
2126 			 * Run callbacks unlocked.
2127 			 */
2128 			if (crpt != NULL) {
2129 #ifdef CRYPTO_TIMING
2130 				if (crypto_timing) {
2131 					/*
2132 					 * NB: We must copy the timestamp before
2133 					 * doing the callback as the cryptop is
2134 					 * likely to be reclaimed.
2135 					 */
2136 					struct bintime t = crpt->crp_tstamp;
2137 					crypto_tstat(&cryptostats.cs_cb, &t);
2138 					crpt->crp_callback(crpt);
2139 					crypto_tstat(&cryptostats.cs_finis, &t);
2140 				} else
2141 #endif
2142 					crpt->crp_callback(crpt);
2143 			}
2144 			if (krpt != NULL)
2145 				krpt->krp_callback(krpt);
2146 			CRYPTO_RETW_LOCK(ret_worker);
2147 		} else {
2148 			/*
2149 			 * Nothing more to be processed.  Sleep until we're
2150 			 * woken because there are more returns to process.
2151 			 */
2152 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2153 				"crypto_ret_wait", 0);
2154 			if (ret_worker->cryptoretproc == NULL)
2155 				break;
2156 			cryptostats.cs_rets++;
2157 		}
2158 	}
2159 	CRYPTO_RETW_UNLOCK(ret_worker);
2160 
2161 	crypto_finis(&ret_worker->crp_ret_q);
2162 }
2163 
2164 #ifdef DDB
2165 static void
2166 db_show_drivers(void)
2167 {
2168 	int hid;
2169 
2170 	db_printf("%12s %4s %4s %8s %2s %2s\n"
2171 		, "Device"
2172 		, "Ses"
2173 		, "Kops"
2174 		, "Flags"
2175 		, "QB"
2176 		, "KB"
2177 	);
2178 	for (hid = 0; hid < crypto_drivers_size; hid++) {
2179 		const struct cryptocap *cap = crypto_drivers[hid];
2180 		if (cap == NULL)
2181 			continue;
2182 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
2183 		    , device_get_nameunit(cap->cc_dev)
2184 		    , cap->cc_sessions
2185 		    , cap->cc_koperations
2186 		    , cap->cc_flags
2187 		    , cap->cc_qblocked
2188 		    , cap->cc_kqblocked
2189 		);
2190 	}
2191 }
2192 
2193 DB_SHOW_COMMAND(crypto, db_show_crypto)
2194 {
2195 	struct cryptop *crp;
2196 	struct crypto_ret_worker *ret_worker;
2197 
2198 	db_show_drivers();
2199 	db_printf("\n");
2200 
2201 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2202 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2203 	    "Device", "Callback");
2204 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
2205 		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2206 		    , crp->crp_session->cap->cc_hid
2207 		    , (int) crypto_ses2caps(crp->crp_session)
2208 		    , crp->crp_olen
2209 		    , crp->crp_etype
2210 		    , crp->crp_flags
2211 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
2212 		    , crp->crp_callback
2213 		);
2214 	}
2215 	FOREACH_CRYPTO_RETW(ret_worker) {
2216 		db_printf("\n%8s %4s %4s %4s %8s\n",
2217 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
2218 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2219 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2220 				db_printf("%8td %4u %4u %04x %8p\n"
2221 				    , CRYPTO_RETW_ID(ret_worker)
2222 				    , crp->crp_session->cap->cc_hid
2223 				    , crp->crp_etype
2224 				    , crp->crp_flags
2225 				    , crp->crp_callback
2226 				);
2227 			}
2228 		}
2229 	}
2230 }
2231 
2232 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2233 {
2234 	struct cryptkop *krp;
2235 	struct crypto_ret_worker *ret_worker;
2236 
2237 	db_show_drivers();
2238 	db_printf("\n");
2239 
2240 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2241 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2242 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2243 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2244 		    , krp->krp_op
2245 		    , krp->krp_status
2246 		    , krp->krp_iparams, krp->krp_oparams
2247 		    , krp->krp_crid, krp->krp_hid
2248 		    , krp->krp_callback
2249 		);
2250 	}
2251 
2252 	ret_worker = CRYPTO_RETW(0);
2253 	if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2254 		db_printf("%4s %5s %8s %4s %8s\n",
2255 		    "Op", "Status", "CRID", "HID", "Callback");
2256 		TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2257 			db_printf("%4u %5u %08x %4u %8p\n"
2258 			    , krp->krp_op
2259 			    , krp->krp_status
2260 			    , krp->krp_crid, krp->krp_hid
2261 			    , krp->krp_callback
2262 			);
2263 		}
2264 	}
2265 }
2266 #endif
2267 
2268 int crypto_modevent(module_t mod, int type, void *unused);
2269 
2270 /*
2271  * Initialization code, both for static and dynamic loading.
2272  * Note this is not invoked with the usual MODULE_DECLARE
2273  * mechanism but instead is listed as a dependency by the
2274  * cryptosoft driver.  This guarantees proper ordering of
2275  * calls on module load/unload.
2276  */
2277 int
2278 crypto_modevent(module_t mod, int type, void *unused)
2279 {
2280 	int error = EINVAL;
2281 
2282 	switch (type) {
2283 	case MOD_LOAD:
2284 		error = crypto_init();
2285 		if (error == 0 && bootverbose)
2286 			printf("crypto: <crypto core>\n");
2287 		break;
2288 	case MOD_UNLOAD:
2289 		/*XXX disallow if active sessions */
2290 		error = 0;
2291 		crypto_destroy();
2292 		return 0;
2293 	}
2294 	return error;
2295 }
2296 MODULE_VERSION(crypto, 1);
2297 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2298