1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_compat.h" 60 #include "opt_ddb.h" 61 62 #include <sys/param.h> 63 #include <sys/systm.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/linker.h> 68 #include <sys/lock.h> 69 #include <sys/module.h> 70 #include <sys/mutex.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/proc.h> 74 #include <sys/refcount.h> 75 #include <sys/sdt.h> 76 #include <sys/smp.h> 77 #include <sys/sysctl.h> 78 #include <sys/taskqueue.h> 79 #include <sys/uio.h> 80 81 #include <ddb/ddb.h> 82 83 #include <vm/uma.h> 84 #include <crypto/intake.h> 85 #include <opencrypto/cryptodev.h> 86 #include <opencrypto/xform_auth.h> 87 #include <opencrypto/xform_enc.h> 88 89 #include <sys/kobj.h> 90 #include <sys/bus.h> 91 #include "cryptodev_if.h" 92 93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 94 #include <machine/pcb.h> 95 #endif 96 97 SDT_PROVIDER_DEFINE(opencrypto); 98 99 /* 100 * Crypto drivers register themselves by allocating a slot in the 101 * crypto_drivers table with crypto_get_driverid() and then registering 102 * each asym algorithm they support with crypto_kregister(). 103 */ 104 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 108 109 /* 110 * Crypto device/driver capabilities structure. 111 * 112 * Synchronization: 113 * (d) - protected by CRYPTO_DRIVER_LOCK() 114 * (q) - protected by CRYPTO_Q_LOCK() 115 * Not tagged fields are read-only. 116 */ 117 struct cryptocap { 118 device_t cc_dev; 119 uint32_t cc_hid; 120 u_int32_t cc_sessions; /* (d) # of sessions */ 121 u_int32_t cc_koperations; /* (d) # os asym operations */ 122 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 123 124 int cc_flags; /* (d) flags */ 125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 126 int cc_qblocked; /* (q) symmetric q blocked */ 127 int cc_kqblocked; /* (q) asymmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 void *softc; 138 struct crypto_session_params csp; 139 }; 140 141 /* 142 * There are two queues for crypto requests; one for symmetric (e.g. 143 * cipher) operations and one for asymmetric (e.g. MOD)operations. 144 * A single mutex is used to lock access to both queues. We could 145 * have one per-queue but having one simplifies handling of block/unblock 146 * operations. 147 */ 148 static int crp_sleep = 0; 149 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 150 static TAILQ_HEAD(,cryptkop) crp_kq; 151 static struct mtx crypto_q_mtx; 152 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 153 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 154 155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 156 "In-kernel cryptography"); 157 158 /* 159 * Taskqueue used to dispatch the crypto requests 160 * that have the CRYPTO_F_ASYNC flag 161 */ 162 static struct taskqueue *crypto_tq; 163 164 /* 165 * Crypto seq numbers are operated on with modular arithmetic 166 */ 167 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 168 169 struct crypto_ret_worker { 170 struct mtx crypto_ret_mtx; 171 172 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 173 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 174 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 175 176 u_int32_t reorder_ops; /* total ordered sym jobs received */ 177 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 178 179 struct proc *cryptoretproc; 180 }; 181 static struct crypto_ret_worker *crypto_ret_workers = NULL; 182 183 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 184 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 185 #define FOREACH_CRYPTO_RETW(w) \ 186 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 187 188 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 189 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 190 #define CRYPTO_RETW_EMPTY(w) \ 191 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 192 193 static int crypto_workers_num = 0; 194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 195 &crypto_workers_num, 0, 196 "Number of crypto workers used to dispatch crypto jobs"); 197 #ifdef COMPAT_FREEBSD12 198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 199 &crypto_workers_num, 0, 200 "Number of crypto workers used to dispatch crypto jobs"); 201 #endif 202 203 static uma_zone_t cryptop_zone; 204 static uma_zone_t cryptoses_zone; 205 206 int crypto_userasymcrypto = 1; 207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 208 &crypto_userasymcrypto, 0, 209 "Enable user-mode access to asymmetric crypto support"); 210 #ifdef COMPAT_FREEBSD12 211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 212 &crypto_userasymcrypto, 0, 213 "Enable/disable user-mode access to asymmetric crypto support"); 214 #endif 215 216 int crypto_devallowsoft = 0; 217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 218 &crypto_devallowsoft, 0, 219 "Enable use of software crypto by /dev/crypto"); 220 #ifdef COMPAT_FREEBSD12 221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 222 &crypto_devallowsoft, 0, 223 "Enable/disable use of software crypto by /dev/crypto"); 224 #endif 225 226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 227 228 static void crypto_proc(void); 229 static struct proc *cryptoproc; 230 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 231 static void crypto_destroy(void); 232 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 233 static int crypto_kinvoke(struct cryptkop *krp); 234 static void crypto_task_invoke(void *ctx, int pending); 235 static void crypto_batch_enqueue(struct cryptop *crp); 236 237 static struct cryptostats cryptostats; 238 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats, 239 cryptostats, "Crypto system statistics"); 240 241 #ifdef CRYPTO_TIMING 242 static int crypto_timing = 0; 243 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 244 &crypto_timing, 0, "Enable/disable crypto timing support"); 245 #endif 246 247 /* Try to avoid directly exposing the key buffer as a symbol */ 248 static struct keybuf *keybuf; 249 250 static struct keybuf empty_keybuf = { 251 .kb_nents = 0 252 }; 253 254 /* Obtain the key buffer from boot metadata */ 255 static void 256 keybuf_init(void) 257 { 258 caddr_t kmdp; 259 260 kmdp = preload_search_by_type("elf kernel"); 261 262 if (kmdp == NULL) 263 kmdp = preload_search_by_type("elf64 kernel"); 264 265 keybuf = (struct keybuf *)preload_search_info(kmdp, 266 MODINFO_METADATA | MODINFOMD_KEYBUF); 267 268 if (keybuf == NULL) 269 keybuf = &empty_keybuf; 270 } 271 272 /* It'd be nice if we could store these in some kind of secure memory... */ 273 struct keybuf * get_keybuf(void) { 274 275 return (keybuf); 276 } 277 278 static struct cryptocap * 279 cap_ref(struct cryptocap *cap) 280 { 281 282 refcount_acquire(&cap->cc_refs); 283 return (cap); 284 } 285 286 static void 287 cap_rele(struct cryptocap *cap) 288 { 289 290 if (refcount_release(&cap->cc_refs) == 0) 291 return; 292 293 KASSERT(cap->cc_sessions == 0, 294 ("freeing crypto driver with active sessions")); 295 KASSERT(cap->cc_koperations == 0, 296 ("freeing crypto driver with active key operations")); 297 298 free(cap, M_CRYPTO_DATA); 299 } 300 301 static int 302 crypto_init(void) 303 { 304 struct crypto_ret_worker *ret_worker; 305 int error; 306 307 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 308 MTX_DEF|MTX_QUIET); 309 310 TAILQ_INIT(&crp_q); 311 TAILQ_INIT(&crp_kq); 312 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 313 314 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 315 0, 0, 0, 0, 316 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 317 cryptoses_zone = uma_zcreate("crypto_session", 318 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 319 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 320 321 if (cryptop_zone == NULL || cryptoses_zone == NULL) { 322 printf("crypto_init: cannot setup crypto zones\n"); 323 error = ENOMEM; 324 goto bad; 325 } 326 327 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 328 crypto_drivers = malloc(crypto_drivers_size * 329 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 330 if (crypto_drivers == NULL) { 331 printf("crypto_init: cannot setup crypto drivers\n"); 332 error = ENOMEM; 333 goto bad; 334 } 335 336 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 337 crypto_workers_num = mp_ncpus; 338 339 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 340 taskqueue_thread_enqueue, &crypto_tq); 341 if (crypto_tq == NULL) { 342 printf("crypto init: cannot setup crypto taskqueue\n"); 343 error = ENOMEM; 344 goto bad; 345 } 346 347 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 348 "crypto"); 349 350 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 351 &cryptoproc, 0, 0, "crypto"); 352 if (error) { 353 printf("crypto_init: cannot start crypto thread; error %d", 354 error); 355 goto bad; 356 } 357 358 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 359 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 360 if (crypto_ret_workers == NULL) { 361 error = ENOMEM; 362 printf("crypto_init: cannot allocate ret workers\n"); 363 goto bad; 364 } 365 366 367 FOREACH_CRYPTO_RETW(ret_worker) { 368 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 369 TAILQ_INIT(&ret_worker->crp_ret_q); 370 TAILQ_INIT(&ret_worker->crp_ret_kq); 371 372 ret_worker->reorder_ops = 0; 373 ret_worker->reorder_cur_seq = 0; 374 375 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 376 377 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 378 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 379 if (error) { 380 printf("crypto_init: cannot start cryptoret thread; error %d", 381 error); 382 goto bad; 383 } 384 } 385 386 keybuf_init(); 387 388 return 0; 389 bad: 390 crypto_destroy(); 391 return error; 392 } 393 394 /* 395 * Signal a crypto thread to terminate. We use the driver 396 * table lock to synchronize the sleep/wakeups so that we 397 * are sure the threads have terminated before we release 398 * the data structures they use. See crypto_finis below 399 * for the other half of this song-and-dance. 400 */ 401 static void 402 crypto_terminate(struct proc **pp, void *q) 403 { 404 struct proc *p; 405 406 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 407 p = *pp; 408 *pp = NULL; 409 if (p) { 410 wakeup_one(q); 411 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 412 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 413 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 414 PROC_UNLOCK(p); 415 CRYPTO_DRIVER_LOCK(); 416 } 417 } 418 419 static void 420 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx, 421 uint8_t padval) 422 { 423 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 424 u_int i; 425 426 KASSERT(axf->blocksize <= sizeof(hmac_key), 427 ("Invalid HMAC block size %d", axf->blocksize)); 428 429 /* 430 * If the key is larger than the block size, use the digest of 431 * the key as the key instead. 432 */ 433 memset(hmac_key, 0, sizeof(hmac_key)); 434 if (klen > axf->blocksize) { 435 axf->Init(auth_ctx); 436 axf->Update(auth_ctx, key, klen); 437 axf->Final(hmac_key, auth_ctx); 438 klen = axf->hashsize; 439 } else 440 memcpy(hmac_key, key, klen); 441 442 for (i = 0; i < axf->blocksize; i++) 443 hmac_key[i] ^= padval; 444 445 axf->Init(auth_ctx); 446 axf->Update(auth_ctx, hmac_key, axf->blocksize); 447 } 448 449 void 450 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen, 451 void *auth_ctx) 452 { 453 454 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 455 } 456 457 void 458 hmac_init_opad(struct auth_hash *axf, const char *key, int klen, 459 void *auth_ctx) 460 { 461 462 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 463 } 464 465 static void 466 crypto_destroy(void) 467 { 468 struct crypto_ret_worker *ret_worker; 469 int i; 470 471 /* 472 * Terminate any crypto threads. 473 */ 474 if (crypto_tq != NULL) 475 taskqueue_drain_all(crypto_tq); 476 CRYPTO_DRIVER_LOCK(); 477 crypto_terminate(&cryptoproc, &crp_q); 478 FOREACH_CRYPTO_RETW(ret_worker) 479 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 480 CRYPTO_DRIVER_UNLOCK(); 481 482 /* XXX flush queues??? */ 483 484 /* 485 * Reclaim dynamically allocated resources. 486 */ 487 for (i = 0; i < crypto_drivers_size; i++) { 488 if (crypto_drivers[i] != NULL) 489 cap_rele(crypto_drivers[i]); 490 } 491 free(crypto_drivers, M_CRYPTO_DATA); 492 493 if (cryptoses_zone != NULL) 494 uma_zdestroy(cryptoses_zone); 495 if (cryptop_zone != NULL) 496 uma_zdestroy(cryptop_zone); 497 mtx_destroy(&crypto_q_mtx); 498 FOREACH_CRYPTO_RETW(ret_worker) 499 mtx_destroy(&ret_worker->crypto_ret_mtx); 500 free(crypto_ret_workers, M_CRYPTO_DATA); 501 if (crypto_tq != NULL) 502 taskqueue_free(crypto_tq); 503 mtx_destroy(&crypto_drivers_mtx); 504 } 505 506 uint32_t 507 crypto_ses2hid(crypto_session_t crypto_session) 508 { 509 return (crypto_session->cap->cc_hid); 510 } 511 512 uint32_t 513 crypto_ses2caps(crypto_session_t crypto_session) 514 { 515 return (crypto_session->cap->cc_flags & 0xff000000); 516 } 517 518 void * 519 crypto_get_driver_session(crypto_session_t crypto_session) 520 { 521 return (crypto_session->softc); 522 } 523 524 const struct crypto_session_params * 525 crypto_get_params(crypto_session_t crypto_session) 526 { 527 return (&crypto_session->csp); 528 } 529 530 struct auth_hash * 531 crypto_auth_hash(const struct crypto_session_params *csp) 532 { 533 534 switch (csp->csp_auth_alg) { 535 case CRYPTO_SHA1_HMAC: 536 return (&auth_hash_hmac_sha1); 537 case CRYPTO_SHA2_224_HMAC: 538 return (&auth_hash_hmac_sha2_224); 539 case CRYPTO_SHA2_256_HMAC: 540 return (&auth_hash_hmac_sha2_256); 541 case CRYPTO_SHA2_384_HMAC: 542 return (&auth_hash_hmac_sha2_384); 543 case CRYPTO_SHA2_512_HMAC: 544 return (&auth_hash_hmac_sha2_512); 545 case CRYPTO_NULL_HMAC: 546 return (&auth_hash_null); 547 case CRYPTO_RIPEMD160_HMAC: 548 return (&auth_hash_hmac_ripemd_160); 549 case CRYPTO_SHA1: 550 return (&auth_hash_sha1); 551 case CRYPTO_SHA2_224: 552 return (&auth_hash_sha2_224); 553 case CRYPTO_SHA2_256: 554 return (&auth_hash_sha2_256); 555 case CRYPTO_SHA2_384: 556 return (&auth_hash_sha2_384); 557 case CRYPTO_SHA2_512: 558 return (&auth_hash_sha2_512); 559 case CRYPTO_AES_NIST_GMAC: 560 switch (csp->csp_auth_klen) { 561 case 128 / 8: 562 return (&auth_hash_nist_gmac_aes_128); 563 case 192 / 8: 564 return (&auth_hash_nist_gmac_aes_192); 565 case 256 / 8: 566 return (&auth_hash_nist_gmac_aes_256); 567 default: 568 return (NULL); 569 } 570 case CRYPTO_BLAKE2B: 571 return (&auth_hash_blake2b); 572 case CRYPTO_BLAKE2S: 573 return (&auth_hash_blake2s); 574 case CRYPTO_POLY1305: 575 return (&auth_hash_poly1305); 576 case CRYPTO_AES_CCM_CBC_MAC: 577 switch (csp->csp_auth_klen) { 578 case 128 / 8: 579 return (&auth_hash_ccm_cbc_mac_128); 580 case 192 / 8: 581 return (&auth_hash_ccm_cbc_mac_192); 582 case 256 / 8: 583 return (&auth_hash_ccm_cbc_mac_256); 584 default: 585 return (NULL); 586 } 587 default: 588 return (NULL); 589 } 590 } 591 592 struct enc_xform * 593 crypto_cipher(const struct crypto_session_params *csp) 594 { 595 596 switch (csp->csp_cipher_alg) { 597 case CRYPTO_RIJNDAEL128_CBC: 598 return (&enc_xform_rijndael128); 599 case CRYPTO_AES_XTS: 600 return (&enc_xform_aes_xts); 601 case CRYPTO_AES_ICM: 602 return (&enc_xform_aes_icm); 603 case CRYPTO_AES_NIST_GCM_16: 604 return (&enc_xform_aes_nist_gcm); 605 case CRYPTO_CAMELLIA_CBC: 606 return (&enc_xform_camellia); 607 case CRYPTO_NULL_CBC: 608 return (&enc_xform_null); 609 case CRYPTO_CHACHA20: 610 return (&enc_xform_chacha20); 611 case CRYPTO_AES_CCM_16: 612 return (&enc_xform_ccm); 613 default: 614 return (NULL); 615 } 616 } 617 618 static struct cryptocap * 619 crypto_checkdriver(u_int32_t hid) 620 { 621 622 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 623 } 624 625 /* 626 * Select a driver for a new session that supports the specified 627 * algorithms and, optionally, is constrained according to the flags. 628 */ 629 static struct cryptocap * 630 crypto_select_driver(const struct crypto_session_params *csp, int flags) 631 { 632 struct cryptocap *cap, *best; 633 int best_match, error, hid; 634 635 CRYPTO_DRIVER_ASSERT(); 636 637 best = NULL; 638 for (hid = 0; hid < crypto_drivers_size; hid++) { 639 /* 640 * If there is no driver for this slot, or the driver 641 * is not appropriate (hardware or software based on 642 * match), then skip. 643 */ 644 cap = crypto_drivers[hid]; 645 if (cap == NULL || 646 (cap->cc_flags & flags) == 0) 647 continue; 648 649 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 650 if (error >= 0) 651 continue; 652 653 /* 654 * Use the driver with the highest probe value. 655 * Hardware drivers use a higher probe value than 656 * software. In case of a tie, prefer the driver with 657 * the fewest active sessions. 658 */ 659 if (best == NULL || error > best_match || 660 (error == best_match && 661 cap->cc_sessions < best->cc_sessions)) { 662 best = cap; 663 best_match = error; 664 } 665 } 666 return best; 667 } 668 669 static enum alg_type { 670 ALG_NONE = 0, 671 ALG_CIPHER, 672 ALG_DIGEST, 673 ALG_KEYED_DIGEST, 674 ALG_COMPRESSION, 675 ALG_AEAD 676 } alg_types[] = { 677 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 678 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 679 [CRYPTO_AES_CBC] = ALG_CIPHER, 680 [CRYPTO_SHA1] = ALG_DIGEST, 681 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 682 [CRYPTO_NULL_CBC] = ALG_CIPHER, 683 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 684 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 685 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 686 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 687 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 688 [CRYPTO_AES_XTS] = ALG_CIPHER, 689 [CRYPTO_AES_ICM] = ALG_CIPHER, 690 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 691 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 692 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 693 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 694 [CRYPTO_CHACHA20] = ALG_CIPHER, 695 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 696 [CRYPTO_RIPEMD160] = ALG_DIGEST, 697 [CRYPTO_SHA2_224] = ALG_DIGEST, 698 [CRYPTO_SHA2_256] = ALG_DIGEST, 699 [CRYPTO_SHA2_384] = ALG_DIGEST, 700 [CRYPTO_SHA2_512] = ALG_DIGEST, 701 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 702 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 703 [CRYPTO_AES_CCM_16] = ALG_AEAD, 704 }; 705 706 static enum alg_type 707 alg_type(int alg) 708 { 709 710 if (alg < nitems(alg_types)) 711 return (alg_types[alg]); 712 return (ALG_NONE); 713 } 714 715 static bool 716 alg_is_compression(int alg) 717 { 718 719 return (alg_type(alg) == ALG_COMPRESSION); 720 } 721 722 static bool 723 alg_is_cipher(int alg) 724 { 725 726 return (alg_type(alg) == ALG_CIPHER); 727 } 728 729 static bool 730 alg_is_digest(int alg) 731 { 732 733 return (alg_type(alg) == ALG_DIGEST || 734 alg_type(alg) == ALG_KEYED_DIGEST); 735 } 736 737 static bool 738 alg_is_keyed_digest(int alg) 739 { 740 741 return (alg_type(alg) == ALG_KEYED_DIGEST); 742 } 743 744 static bool 745 alg_is_aead(int alg) 746 { 747 748 return (alg_type(alg) == ALG_AEAD); 749 } 750 751 /* Various sanity checks on crypto session parameters. */ 752 static bool 753 check_csp(const struct crypto_session_params *csp) 754 { 755 struct auth_hash *axf; 756 757 /* Mode-independent checks. */ 758 if ((csp->csp_flags & ~CSP_F_SEPARATE_OUTPUT) != 0) 759 return (false); 760 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 761 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 762 return (false); 763 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 764 return (false); 765 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 766 return (false); 767 768 switch (csp->csp_mode) { 769 case CSP_MODE_COMPRESS: 770 if (!alg_is_compression(csp->csp_cipher_alg)) 771 return (false); 772 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 773 return (false); 774 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 775 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 776 csp->csp_auth_mlen != 0) 777 return (false); 778 break; 779 case CSP_MODE_CIPHER: 780 if (!alg_is_cipher(csp->csp_cipher_alg)) 781 return (false); 782 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 783 if (csp->csp_cipher_klen == 0) 784 return (false); 785 if (csp->csp_ivlen == 0) 786 return (false); 787 } 788 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 789 return (false); 790 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 791 csp->csp_auth_mlen != 0) 792 return (false); 793 break; 794 case CSP_MODE_DIGEST: 795 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 796 return (false); 797 798 /* IV is optional for digests (e.g. GMAC). */ 799 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 800 return (false); 801 if (!alg_is_digest(csp->csp_auth_alg)) 802 return (false); 803 804 /* Key is optional for BLAKE2 digests. */ 805 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 806 csp->csp_auth_alg == CRYPTO_BLAKE2S) 807 ; 808 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 809 if (csp->csp_auth_klen == 0) 810 return (false); 811 } else { 812 if (csp->csp_auth_klen != 0) 813 return (false); 814 } 815 if (csp->csp_auth_mlen != 0) { 816 axf = crypto_auth_hash(csp); 817 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 818 return (false); 819 } 820 break; 821 case CSP_MODE_AEAD: 822 if (!alg_is_aead(csp->csp_cipher_alg)) 823 return (false); 824 if (csp->csp_cipher_klen == 0) 825 return (false); 826 if (csp->csp_ivlen == 0 || 827 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 828 return (false); 829 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 830 return (false); 831 832 /* 833 * XXX: Would be nice to have a better way to get this 834 * value. 835 */ 836 switch (csp->csp_cipher_alg) { 837 case CRYPTO_AES_NIST_GCM_16: 838 case CRYPTO_AES_CCM_16: 839 if (csp->csp_auth_mlen > 16) 840 return (false); 841 break; 842 } 843 break; 844 case CSP_MODE_ETA: 845 if (!alg_is_cipher(csp->csp_cipher_alg)) 846 return (false); 847 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 848 if (csp->csp_cipher_klen == 0) 849 return (false); 850 if (csp->csp_ivlen == 0) 851 return (false); 852 } 853 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 854 return (false); 855 if (!alg_is_digest(csp->csp_auth_alg)) 856 return (false); 857 858 /* Key is optional for BLAKE2 digests. */ 859 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 860 csp->csp_auth_alg == CRYPTO_BLAKE2S) 861 ; 862 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 863 if (csp->csp_auth_klen == 0) 864 return (false); 865 } else { 866 if (csp->csp_auth_klen != 0) 867 return (false); 868 } 869 if (csp->csp_auth_mlen != 0) { 870 axf = crypto_auth_hash(csp); 871 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 872 return (false); 873 } 874 break; 875 default: 876 return (false); 877 } 878 879 return (true); 880 } 881 882 /* 883 * Delete a session after it has been detached from its driver. 884 */ 885 static void 886 crypto_deletesession(crypto_session_t cses) 887 { 888 struct cryptocap *cap; 889 890 cap = cses->cap; 891 892 explicit_bzero(cses->softc, cap->cc_session_size); 893 free(cses->softc, M_CRYPTO_DATA); 894 uma_zfree(cryptoses_zone, cses); 895 896 CRYPTO_DRIVER_LOCK(); 897 cap->cc_sessions--; 898 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 899 wakeup(cap); 900 CRYPTO_DRIVER_UNLOCK(); 901 cap_rele(cap); 902 } 903 904 /* 905 * Create a new session. The crid argument specifies a crypto 906 * driver to use or constraints on a driver to select (hardware 907 * only, software only, either). Whatever driver is selected 908 * must be capable of the requested crypto algorithms. 909 */ 910 int 911 crypto_newsession(crypto_session_t *cses, 912 const struct crypto_session_params *csp, int crid) 913 { 914 crypto_session_t res; 915 struct cryptocap *cap; 916 int err; 917 918 if (!check_csp(csp)) 919 return (EINVAL); 920 921 res = NULL; 922 923 CRYPTO_DRIVER_LOCK(); 924 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 925 /* 926 * Use specified driver; verify it is capable. 927 */ 928 cap = crypto_checkdriver(crid); 929 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 930 cap = NULL; 931 } else { 932 /* 933 * No requested driver; select based on crid flags. 934 */ 935 cap = crypto_select_driver(csp, crid); 936 } 937 if (cap == NULL) { 938 CRYPTO_DRIVER_UNLOCK(); 939 CRYPTDEB("no driver"); 940 return (EOPNOTSUPP); 941 } 942 cap_ref(cap); 943 cap->cc_sessions++; 944 CRYPTO_DRIVER_UNLOCK(); 945 946 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 947 res->cap = cap; 948 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 949 M_ZERO); 950 res->csp = *csp; 951 952 /* Call the driver initialization routine. */ 953 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 954 if (err != 0) { 955 CRYPTDEB("dev newsession failed: %d", err); 956 crypto_deletesession(res); 957 return (err); 958 } 959 960 *cses = res; 961 return (0); 962 } 963 964 /* 965 * Delete an existing session (or a reserved session on an unregistered 966 * driver). 967 */ 968 void 969 crypto_freesession(crypto_session_t cses) 970 { 971 struct cryptocap *cap; 972 973 if (cses == NULL) 974 return; 975 976 cap = cses->cap; 977 978 /* Call the driver cleanup routine, if available. */ 979 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 980 981 crypto_deletesession(cses); 982 } 983 984 /* 985 * Return a new driver id. Registers a driver with the system so that 986 * it can be probed by subsequent sessions. 987 */ 988 int32_t 989 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 990 { 991 struct cryptocap *cap, **newdrv; 992 int i; 993 994 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 995 device_printf(dev, 996 "no flags specified when registering driver\n"); 997 return -1; 998 } 999 1000 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1001 cap->cc_dev = dev; 1002 cap->cc_session_size = sessionsize; 1003 cap->cc_flags = flags; 1004 refcount_init(&cap->cc_refs, 1); 1005 1006 CRYPTO_DRIVER_LOCK(); 1007 for (;;) { 1008 for (i = 0; i < crypto_drivers_size; i++) { 1009 if (crypto_drivers[i] == NULL) 1010 break; 1011 } 1012 1013 if (i < crypto_drivers_size) 1014 break; 1015 1016 /* Out of entries, allocate some more. */ 1017 1018 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1019 CRYPTO_DRIVER_UNLOCK(); 1020 printf("crypto: driver count wraparound!\n"); 1021 cap_rele(cap); 1022 return (-1); 1023 } 1024 CRYPTO_DRIVER_UNLOCK(); 1025 1026 newdrv = malloc(2 * crypto_drivers_size * 1027 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1028 1029 CRYPTO_DRIVER_LOCK(); 1030 memcpy(newdrv, crypto_drivers, 1031 crypto_drivers_size * sizeof(*crypto_drivers)); 1032 1033 crypto_drivers_size *= 2; 1034 1035 free(crypto_drivers, M_CRYPTO_DATA); 1036 crypto_drivers = newdrv; 1037 } 1038 1039 cap->cc_hid = i; 1040 crypto_drivers[i] = cap; 1041 CRYPTO_DRIVER_UNLOCK(); 1042 1043 if (bootverbose) 1044 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1045 device_get_nameunit(dev), i, flags); 1046 1047 return i; 1048 } 1049 1050 /* 1051 * Lookup a driver by name. We match against the full device 1052 * name and unit, and against just the name. The latter gives 1053 * us a simple widlcarding by device name. On success return the 1054 * driver/hardware identifier; otherwise return -1. 1055 */ 1056 int 1057 crypto_find_driver(const char *match) 1058 { 1059 struct cryptocap *cap; 1060 int i, len = strlen(match); 1061 1062 CRYPTO_DRIVER_LOCK(); 1063 for (i = 0; i < crypto_drivers_size; i++) { 1064 if (crypto_drivers[i] == NULL) 1065 continue; 1066 cap = crypto_drivers[i]; 1067 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1068 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1069 CRYPTO_DRIVER_UNLOCK(); 1070 return (i); 1071 } 1072 } 1073 CRYPTO_DRIVER_UNLOCK(); 1074 return (-1); 1075 } 1076 1077 /* 1078 * Return the device_t for the specified driver or NULL 1079 * if the driver identifier is invalid. 1080 */ 1081 device_t 1082 crypto_find_device_byhid(int hid) 1083 { 1084 struct cryptocap *cap; 1085 device_t dev; 1086 1087 dev = NULL; 1088 CRYPTO_DRIVER_LOCK(); 1089 cap = crypto_checkdriver(hid); 1090 if (cap != NULL) 1091 dev = cap->cc_dev; 1092 CRYPTO_DRIVER_UNLOCK(); 1093 return (dev); 1094 } 1095 1096 /* 1097 * Return the device/driver capabilities. 1098 */ 1099 int 1100 crypto_getcaps(int hid) 1101 { 1102 struct cryptocap *cap; 1103 int flags; 1104 1105 flags = 0; 1106 CRYPTO_DRIVER_LOCK(); 1107 cap = crypto_checkdriver(hid); 1108 if (cap != NULL) 1109 flags = cap->cc_flags; 1110 CRYPTO_DRIVER_UNLOCK(); 1111 return (flags); 1112 } 1113 1114 /* 1115 * Register support for a key-related algorithm. This routine 1116 * is called once for each algorithm supported a driver. 1117 */ 1118 int 1119 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 1120 { 1121 struct cryptocap *cap; 1122 int err; 1123 1124 CRYPTO_DRIVER_LOCK(); 1125 1126 cap = crypto_checkdriver(driverid); 1127 if (cap != NULL && 1128 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1129 /* 1130 * XXX Do some performance testing to determine placing. 1131 * XXX We probably need an auxiliary data structure that 1132 * XXX describes relative performances. 1133 */ 1134 1135 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1136 if (bootverbose) 1137 printf("crypto: %s registers key alg %u flags %u\n" 1138 , device_get_nameunit(cap->cc_dev) 1139 , kalg 1140 , flags 1141 ); 1142 err = 0; 1143 } else 1144 err = EINVAL; 1145 1146 CRYPTO_DRIVER_UNLOCK(); 1147 return err; 1148 } 1149 1150 /* 1151 * Unregister all algorithms associated with a crypto driver. 1152 * If there are pending sessions using it, leave enough information 1153 * around so that subsequent calls using those sessions will 1154 * correctly detect the driver has been unregistered and reroute 1155 * requests. 1156 */ 1157 int 1158 crypto_unregister_all(u_int32_t driverid) 1159 { 1160 struct cryptocap *cap; 1161 1162 CRYPTO_DRIVER_LOCK(); 1163 cap = crypto_checkdriver(driverid); 1164 if (cap == NULL) { 1165 CRYPTO_DRIVER_UNLOCK(); 1166 return (EINVAL); 1167 } 1168 1169 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1170 crypto_drivers[driverid] = NULL; 1171 1172 /* 1173 * XXX: This doesn't do anything to kick sessions that 1174 * have no pending operations. 1175 */ 1176 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1177 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1178 CRYPTO_DRIVER_UNLOCK(); 1179 cap_rele(cap); 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Clear blockage on a driver. The what parameter indicates whether 1186 * the driver is now ready for cryptop's and/or cryptokop's. 1187 */ 1188 int 1189 crypto_unblock(u_int32_t driverid, int what) 1190 { 1191 struct cryptocap *cap; 1192 int err; 1193 1194 CRYPTO_Q_LOCK(); 1195 cap = crypto_checkdriver(driverid); 1196 if (cap != NULL) { 1197 if (what & CRYPTO_SYMQ) 1198 cap->cc_qblocked = 0; 1199 if (what & CRYPTO_ASYMQ) 1200 cap->cc_kqblocked = 0; 1201 if (crp_sleep) 1202 wakeup_one(&crp_q); 1203 err = 0; 1204 } else 1205 err = EINVAL; 1206 CRYPTO_Q_UNLOCK(); 1207 1208 return err; 1209 } 1210 1211 size_t 1212 crypto_buffer_len(struct crypto_buffer *cb) 1213 { 1214 switch (cb->cb_type) { 1215 case CRYPTO_BUF_CONTIG: 1216 return (cb->cb_buf_len); 1217 case CRYPTO_BUF_MBUF: 1218 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1219 return (cb->cb_mbuf->m_pkthdr.len); 1220 return (m_length(cb->cb_mbuf, NULL)); 1221 case CRYPTO_BUF_UIO: 1222 return (cb->cb_uio->uio_resid); 1223 default: 1224 return (0); 1225 } 1226 } 1227 1228 #ifdef INVARIANTS 1229 /* Various sanity checks on crypto requests. */ 1230 static void 1231 cb_sanity(struct crypto_buffer *cb, const char *name) 1232 { 1233 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1234 ("incoming crp with invalid %s buffer type", name)); 1235 if (cb->cb_type == CRYPTO_BUF_CONTIG) 1236 KASSERT(cb->cb_buf_len >= 0, 1237 ("incoming crp with -ve %s buffer length", name)); 1238 } 1239 1240 static void 1241 crp_sanity(struct cryptop *crp) 1242 { 1243 struct crypto_session_params *csp; 1244 struct crypto_buffer *out; 1245 size_t ilen, len, olen; 1246 1247 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1248 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1249 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1250 ("incoming crp with invalid output buffer type")); 1251 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1252 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1253 ("incoming crp already done")); 1254 1255 csp = &crp->crp_session->csp; 1256 cb_sanity(&crp->crp_buf, "input"); 1257 ilen = crypto_buffer_len(&crp->crp_buf); 1258 olen = ilen; 1259 out = NULL; 1260 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1261 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1262 cb_sanity(&crp->crp_obuf, "output"); 1263 out = &crp->crp_obuf; 1264 olen = crypto_buffer_len(out); 1265 } 1266 } else 1267 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1268 ("incoming crp with separate output buffer " 1269 "but no session support")); 1270 1271 switch (csp->csp_mode) { 1272 case CSP_MODE_COMPRESS: 1273 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1274 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1275 ("invalid compression op %x", crp->crp_op)); 1276 break; 1277 case CSP_MODE_CIPHER: 1278 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1279 crp->crp_op == CRYPTO_OP_DECRYPT, 1280 ("invalid cipher op %x", crp->crp_op)); 1281 break; 1282 case CSP_MODE_DIGEST: 1283 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1284 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1285 ("invalid digest op %x", crp->crp_op)); 1286 break; 1287 case CSP_MODE_AEAD: 1288 KASSERT(crp->crp_op == 1289 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1290 crp->crp_op == 1291 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1292 ("invalid AEAD op %x", crp->crp_op)); 1293 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1294 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1295 ("GCM without a separate IV")); 1296 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1297 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1298 ("CCM without a separate IV")); 1299 break; 1300 case CSP_MODE_ETA: 1301 KASSERT(crp->crp_op == 1302 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1303 crp->crp_op == 1304 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1305 ("invalid ETA op %x", crp->crp_op)); 1306 break; 1307 } 1308 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1309 KASSERT(crp->crp_aad_start == 0 || 1310 crp->crp_aad_start < ilen, 1311 ("invalid AAD start")); 1312 KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0, 1313 ("AAD with zero length and non-zero start")); 1314 KASSERT(crp->crp_aad_length == 0 || 1315 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1316 ("AAD outside input length")); 1317 } else { 1318 KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0, 1319 ("AAD region in request not supporting AAD")); 1320 } 1321 if (csp->csp_ivlen == 0) { 1322 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1323 ("IV_SEPARATE set when IV isn't used")); 1324 KASSERT(crp->crp_iv_start == 0, 1325 ("crp_iv_start set when IV isn't used")); 1326 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1327 KASSERT(crp->crp_iv_start == 0, 1328 ("IV_SEPARATE used with non-zero IV start")); 1329 } else { 1330 KASSERT(crp->crp_iv_start < ilen, 1331 ("invalid IV start")); 1332 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1333 ("IV outside buffer length")); 1334 } 1335 /* XXX: payload_start of 0 should always be < ilen? */ 1336 KASSERT(crp->crp_payload_start == 0 || 1337 crp->crp_payload_start < ilen, 1338 ("invalid payload start")); 1339 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1340 ilen, ("payload outside input buffer")); 1341 if (out == NULL) { 1342 KASSERT(crp->crp_payload_output_start == 0, 1343 ("payload output start non-zero without output buffer")); 1344 } else { 1345 KASSERT(crp->crp_payload_output_start < olen, 1346 ("invalid payload output start")); 1347 KASSERT(crp->crp_payload_output_start + 1348 crp->crp_payload_length <= olen, 1349 ("payload outside output buffer")); 1350 } 1351 if (csp->csp_mode == CSP_MODE_DIGEST || 1352 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1353 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1354 len = ilen; 1355 else 1356 len = olen; 1357 KASSERT(crp->crp_digest_start == 0 || 1358 crp->crp_digest_start < len, 1359 ("invalid digest start")); 1360 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1361 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1362 ("digest outside buffer")); 1363 } else { 1364 KASSERT(crp->crp_digest_start == 0, 1365 ("non-zero digest start for request without a digest")); 1366 } 1367 if (csp->csp_cipher_klen != 0) 1368 KASSERT(csp->csp_cipher_key != NULL || 1369 crp->crp_cipher_key != NULL, 1370 ("cipher request without a key")); 1371 if (csp->csp_auth_klen != 0) 1372 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1373 ("auth request without a key")); 1374 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1375 } 1376 #endif 1377 1378 /* 1379 * Add a crypto request to a queue, to be processed by the kernel thread. 1380 */ 1381 int 1382 crypto_dispatch(struct cryptop *crp) 1383 { 1384 struct cryptocap *cap; 1385 int result; 1386 1387 #ifdef INVARIANTS 1388 crp_sanity(crp); 1389 #endif 1390 1391 cryptostats.cs_ops++; 1392 1393 #ifdef CRYPTO_TIMING 1394 if (crypto_timing) 1395 binuptime(&crp->crp_tstamp); 1396 #endif 1397 1398 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1399 1400 if (CRYPTOP_ASYNC(crp)) { 1401 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1402 struct crypto_ret_worker *ret_worker; 1403 1404 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1405 1406 CRYPTO_RETW_LOCK(ret_worker); 1407 crp->crp_seq = ret_worker->reorder_ops++; 1408 CRYPTO_RETW_UNLOCK(ret_worker); 1409 } 1410 1411 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1412 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1413 return (0); 1414 } 1415 1416 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1417 /* 1418 * Caller marked the request to be processed 1419 * immediately; dispatch it directly to the 1420 * driver unless the driver is currently blocked. 1421 */ 1422 cap = crp->crp_session->cap; 1423 if (!cap->cc_qblocked) { 1424 result = crypto_invoke(cap, crp, 0); 1425 if (result != ERESTART) 1426 return (result); 1427 /* 1428 * The driver ran out of resources, put the request on 1429 * the queue. 1430 */ 1431 } 1432 } 1433 crypto_batch_enqueue(crp); 1434 return 0; 1435 } 1436 1437 void 1438 crypto_batch_enqueue(struct cryptop *crp) 1439 { 1440 1441 CRYPTO_Q_LOCK(); 1442 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1443 if (crp_sleep) 1444 wakeup_one(&crp_q); 1445 CRYPTO_Q_UNLOCK(); 1446 } 1447 1448 /* 1449 * Add an asymetric crypto request to a queue, 1450 * to be processed by the kernel thread. 1451 */ 1452 int 1453 crypto_kdispatch(struct cryptkop *krp) 1454 { 1455 int error; 1456 1457 cryptostats.cs_kops++; 1458 1459 krp->krp_cap = NULL; 1460 error = crypto_kinvoke(krp); 1461 if (error == ERESTART) { 1462 CRYPTO_Q_LOCK(); 1463 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1464 if (crp_sleep) 1465 wakeup_one(&crp_q); 1466 CRYPTO_Q_UNLOCK(); 1467 error = 0; 1468 } 1469 return error; 1470 } 1471 1472 /* 1473 * Verify a driver is suitable for the specified operation. 1474 */ 1475 static __inline int 1476 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1477 { 1478 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1479 } 1480 1481 /* 1482 * Select a driver for an asym operation. The driver must 1483 * support the necessary algorithm. The caller can constrain 1484 * which device is selected with the flags parameter. The 1485 * algorithm we use here is pretty stupid; just use the first 1486 * driver that supports the algorithms we need. If there are 1487 * multiple suitable drivers we choose the driver with the 1488 * fewest active operations. We prefer hardware-backed 1489 * drivers to software ones when either may be used. 1490 */ 1491 static struct cryptocap * 1492 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1493 { 1494 struct cryptocap *cap, *best; 1495 int match, hid; 1496 1497 CRYPTO_DRIVER_ASSERT(); 1498 1499 /* 1500 * Look first for hardware crypto devices if permitted. 1501 */ 1502 if (flags & CRYPTOCAP_F_HARDWARE) 1503 match = CRYPTOCAP_F_HARDWARE; 1504 else 1505 match = CRYPTOCAP_F_SOFTWARE; 1506 best = NULL; 1507 again: 1508 for (hid = 0; hid < crypto_drivers_size; hid++) { 1509 /* 1510 * If there is no driver for this slot, or the driver 1511 * is not appropriate (hardware or software based on 1512 * match), then skip. 1513 */ 1514 cap = crypto_drivers[hid]; 1515 if (cap->cc_dev == NULL || 1516 (cap->cc_flags & match) == 0) 1517 continue; 1518 1519 /* verify all the algorithms are supported. */ 1520 if (kdriver_suitable(cap, krp)) { 1521 if (best == NULL || 1522 cap->cc_koperations < best->cc_koperations) 1523 best = cap; 1524 } 1525 } 1526 if (best != NULL) 1527 return best; 1528 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1529 /* sort of an Algol 68-style for loop */ 1530 match = CRYPTOCAP_F_SOFTWARE; 1531 goto again; 1532 } 1533 return best; 1534 } 1535 1536 /* 1537 * Choose a driver for an asymmetric crypto request. 1538 */ 1539 static struct cryptocap * 1540 crypto_lookup_kdriver(struct cryptkop *krp) 1541 { 1542 struct cryptocap *cap; 1543 uint32_t crid; 1544 1545 /* If this request is requeued, it might already have a driver. */ 1546 cap = krp->krp_cap; 1547 if (cap != NULL) 1548 return (cap); 1549 1550 /* Use krp_crid to choose a driver. */ 1551 crid = krp->krp_crid; 1552 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1553 cap = crypto_checkdriver(crid); 1554 if (cap != NULL) { 1555 /* 1556 * Driver present, it must support the 1557 * necessary algorithm and, if s/w drivers are 1558 * excluded, it must be registered as 1559 * hardware-backed. 1560 */ 1561 if (!kdriver_suitable(cap, krp) || 1562 (!crypto_devallowsoft && 1563 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1564 cap = NULL; 1565 } 1566 } else { 1567 /* 1568 * No requested driver; select based on crid flags. 1569 */ 1570 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1571 crid &= ~CRYPTOCAP_F_SOFTWARE; 1572 cap = crypto_select_kdriver(krp, crid); 1573 } 1574 1575 if (cap != NULL) { 1576 krp->krp_cap = cap_ref(cap); 1577 krp->krp_hid = cap->cc_hid; 1578 } 1579 return (cap); 1580 } 1581 1582 /* 1583 * Dispatch an asymmetric crypto request. 1584 */ 1585 static int 1586 crypto_kinvoke(struct cryptkop *krp) 1587 { 1588 struct cryptocap *cap = NULL; 1589 int error; 1590 1591 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1592 KASSERT(krp->krp_callback != NULL, 1593 ("%s: krp->crp_callback == NULL", __func__)); 1594 1595 CRYPTO_DRIVER_LOCK(); 1596 cap = crypto_lookup_kdriver(krp); 1597 if (cap == NULL) { 1598 CRYPTO_DRIVER_UNLOCK(); 1599 krp->krp_status = ENODEV; 1600 crypto_kdone(krp); 1601 return (0); 1602 } 1603 1604 /* 1605 * If the device is blocked, return ERESTART to requeue it. 1606 */ 1607 if (cap->cc_kqblocked) { 1608 /* 1609 * XXX: Previously this set krp_status to ERESTART and 1610 * invoked crypto_kdone but the caller would still 1611 * requeue it. 1612 */ 1613 CRYPTO_DRIVER_UNLOCK(); 1614 return (ERESTART); 1615 } 1616 1617 cap->cc_koperations++; 1618 CRYPTO_DRIVER_UNLOCK(); 1619 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1620 if (error == ERESTART) { 1621 CRYPTO_DRIVER_LOCK(); 1622 cap->cc_koperations--; 1623 CRYPTO_DRIVER_UNLOCK(); 1624 return (error); 1625 } 1626 1627 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1628 return (0); 1629 } 1630 1631 #ifdef CRYPTO_TIMING 1632 static void 1633 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 1634 { 1635 struct bintime now, delta; 1636 struct timespec t; 1637 uint64_t u; 1638 1639 binuptime(&now); 1640 u = now.frac; 1641 delta.frac = now.frac - bt->frac; 1642 delta.sec = now.sec - bt->sec; 1643 if (u < delta.frac) 1644 delta.sec--; 1645 bintime2timespec(&delta, &t); 1646 timespecadd(&ts->acc, &t, &ts->acc); 1647 if (timespeccmp(&t, &ts->min, <)) 1648 ts->min = t; 1649 if (timespeccmp(&t, &ts->max, >)) 1650 ts->max = t; 1651 ts->count++; 1652 1653 *bt = now; 1654 } 1655 #endif 1656 1657 static void 1658 crypto_task_invoke(void *ctx, int pending) 1659 { 1660 struct cryptocap *cap; 1661 struct cryptop *crp; 1662 int result; 1663 1664 crp = (struct cryptop *)ctx; 1665 cap = crp->crp_session->cap; 1666 result = crypto_invoke(cap, crp, 0); 1667 if (result == ERESTART) 1668 crypto_batch_enqueue(crp); 1669 } 1670 1671 /* 1672 * Dispatch a crypto request to the appropriate crypto devices. 1673 */ 1674 static int 1675 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1676 { 1677 1678 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1679 KASSERT(crp->crp_callback != NULL, 1680 ("%s: crp->crp_callback == NULL", __func__)); 1681 KASSERT(crp->crp_session != NULL, 1682 ("%s: crp->crp_session == NULL", __func__)); 1683 1684 #ifdef CRYPTO_TIMING 1685 if (crypto_timing) 1686 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1687 #endif 1688 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1689 struct crypto_session_params csp; 1690 crypto_session_t nses; 1691 1692 /* 1693 * Driver has unregistered; migrate the session and return 1694 * an error to the caller so they'll resubmit the op. 1695 * 1696 * XXX: What if there are more already queued requests for this 1697 * session? 1698 * 1699 * XXX: Real solution is to make sessions refcounted 1700 * and force callers to hold a reference when 1701 * assigning to crp_session. Could maybe change 1702 * crypto_getreq to accept a session pointer to make 1703 * that work. Alternatively, we could abandon the 1704 * notion of rewriting crp_session in requests forcing 1705 * the caller to deal with allocating a new session. 1706 * Perhaps provide a method to allow a crp's session to 1707 * be swapped that callers could use. 1708 */ 1709 csp = crp->crp_session->csp; 1710 crypto_freesession(crp->crp_session); 1711 1712 /* 1713 * XXX: Key pointers may no longer be valid. If we 1714 * really want to support this we need to define the 1715 * KPI such that 'csp' is required to be valid for the 1716 * duration of a session by the caller perhaps. 1717 * 1718 * XXX: If the keys have been changed this will reuse 1719 * the old keys. This probably suggests making 1720 * rekeying more explicit and updating the key 1721 * pointers in 'csp' when the keys change. 1722 */ 1723 if (crypto_newsession(&nses, &csp, 1724 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1725 crp->crp_session = nses; 1726 1727 crp->crp_etype = EAGAIN; 1728 crypto_done(crp); 1729 return 0; 1730 } else { 1731 /* 1732 * Invoke the driver to process the request. 1733 */ 1734 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1735 } 1736 } 1737 1738 void 1739 crypto_freereq(struct cryptop *crp) 1740 { 1741 1742 if (crp == NULL) 1743 return; 1744 1745 #ifdef DIAGNOSTIC 1746 { 1747 struct cryptop *crp2; 1748 struct crypto_ret_worker *ret_worker; 1749 1750 CRYPTO_Q_LOCK(); 1751 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1752 KASSERT(crp2 != crp, 1753 ("Freeing cryptop from the crypto queue (%p).", 1754 crp)); 1755 } 1756 CRYPTO_Q_UNLOCK(); 1757 1758 FOREACH_CRYPTO_RETW(ret_worker) { 1759 CRYPTO_RETW_LOCK(ret_worker); 1760 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1761 KASSERT(crp2 != crp, 1762 ("Freeing cryptop from the return queue (%p).", 1763 crp)); 1764 } 1765 CRYPTO_RETW_UNLOCK(ret_worker); 1766 } 1767 } 1768 #endif 1769 1770 uma_zfree(cryptop_zone, crp); 1771 } 1772 1773 struct cryptop * 1774 crypto_getreq(crypto_session_t cses, int how) 1775 { 1776 struct cryptop *crp; 1777 1778 MPASS(how == M_WAITOK || how == M_NOWAIT); 1779 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1780 crp->crp_session = cses; 1781 return (crp); 1782 } 1783 1784 /* 1785 * Invoke the callback on behalf of the driver. 1786 */ 1787 void 1788 crypto_done(struct cryptop *crp) 1789 { 1790 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1791 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1792 crp->crp_flags |= CRYPTO_F_DONE; 1793 if (crp->crp_etype != 0) 1794 cryptostats.cs_errs++; 1795 #ifdef CRYPTO_TIMING 1796 if (crypto_timing) 1797 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1798 #endif 1799 /* 1800 * CBIMM means unconditionally do the callback immediately; 1801 * CBIFSYNC means do the callback immediately only if the 1802 * operation was done synchronously. Both are used to avoid 1803 * doing extraneous context switches; the latter is mostly 1804 * used with the software crypto driver. 1805 */ 1806 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1807 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1808 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1809 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1810 /* 1811 * Do the callback directly. This is ok when the 1812 * callback routine does very little (e.g. the 1813 * /dev/crypto callback method just does a wakeup). 1814 */ 1815 #ifdef CRYPTO_TIMING 1816 if (crypto_timing) { 1817 /* 1818 * NB: We must copy the timestamp before 1819 * doing the callback as the cryptop is 1820 * likely to be reclaimed. 1821 */ 1822 struct bintime t = crp->crp_tstamp; 1823 crypto_tstat(&cryptostats.cs_cb, &t); 1824 crp->crp_callback(crp); 1825 crypto_tstat(&cryptostats.cs_finis, &t); 1826 } else 1827 #endif 1828 crp->crp_callback(crp); 1829 } else { 1830 struct crypto_ret_worker *ret_worker; 1831 bool wake; 1832 1833 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1834 wake = false; 1835 1836 /* 1837 * Normal case; queue the callback for the thread. 1838 */ 1839 CRYPTO_RETW_LOCK(ret_worker); 1840 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1841 struct cryptop *tmp; 1842 1843 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1844 cryptop_q, crp_next) { 1845 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1846 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1847 tmp, crp, crp_next); 1848 break; 1849 } 1850 } 1851 if (tmp == NULL) { 1852 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1853 crp, crp_next); 1854 } 1855 1856 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1857 wake = true; 1858 } 1859 else { 1860 if (CRYPTO_RETW_EMPTY(ret_worker)) 1861 wake = true; 1862 1863 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1864 } 1865 1866 if (wake) 1867 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1868 CRYPTO_RETW_UNLOCK(ret_worker); 1869 } 1870 } 1871 1872 /* 1873 * Invoke the callback on behalf of the driver. 1874 */ 1875 void 1876 crypto_kdone(struct cryptkop *krp) 1877 { 1878 struct crypto_ret_worker *ret_worker; 1879 struct cryptocap *cap; 1880 1881 if (krp->krp_status != 0) 1882 cryptostats.cs_kerrs++; 1883 CRYPTO_DRIVER_LOCK(); 1884 cap = krp->krp_cap; 1885 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1886 cap->cc_koperations--; 1887 if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1888 wakeup(cap); 1889 CRYPTO_DRIVER_UNLOCK(); 1890 krp->krp_cap = NULL; 1891 cap_rele(cap); 1892 1893 ret_worker = CRYPTO_RETW(0); 1894 1895 CRYPTO_RETW_LOCK(ret_worker); 1896 if (CRYPTO_RETW_EMPTY(ret_worker)) 1897 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1898 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1899 CRYPTO_RETW_UNLOCK(ret_worker); 1900 } 1901 1902 int 1903 crypto_getfeat(int *featp) 1904 { 1905 int hid, kalg, feat = 0; 1906 1907 CRYPTO_DRIVER_LOCK(); 1908 for (hid = 0; hid < crypto_drivers_size; hid++) { 1909 const struct cryptocap *cap = crypto_drivers[hid]; 1910 1911 if (cap == NULL || 1912 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1913 !crypto_devallowsoft)) { 1914 continue; 1915 } 1916 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1917 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1918 feat |= 1 << kalg; 1919 } 1920 CRYPTO_DRIVER_UNLOCK(); 1921 *featp = feat; 1922 return (0); 1923 } 1924 1925 /* 1926 * Terminate a thread at module unload. The process that 1927 * initiated this is waiting for us to signal that we're gone; 1928 * wake it up and exit. We use the driver table lock to insure 1929 * we don't do the wakeup before they're waiting. There is no 1930 * race here because the waiter sleeps on the proc lock for the 1931 * thread so it gets notified at the right time because of an 1932 * extra wakeup that's done in exit1(). 1933 */ 1934 static void 1935 crypto_finis(void *chan) 1936 { 1937 CRYPTO_DRIVER_LOCK(); 1938 wakeup_one(chan); 1939 CRYPTO_DRIVER_UNLOCK(); 1940 kproc_exit(0); 1941 } 1942 1943 /* 1944 * Crypto thread, dispatches crypto requests. 1945 */ 1946 static void 1947 crypto_proc(void) 1948 { 1949 struct cryptop *crp, *submit; 1950 struct cryptkop *krp; 1951 struct cryptocap *cap; 1952 int result, hint; 1953 1954 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1955 fpu_kern_thread(FPU_KERN_NORMAL); 1956 #endif 1957 1958 CRYPTO_Q_LOCK(); 1959 for (;;) { 1960 /* 1961 * Find the first element in the queue that can be 1962 * processed and look-ahead to see if multiple ops 1963 * are ready for the same driver. 1964 */ 1965 submit = NULL; 1966 hint = 0; 1967 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1968 cap = crp->crp_session->cap; 1969 /* 1970 * Driver cannot disappeared when there is an active 1971 * session. 1972 */ 1973 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1974 __func__, __LINE__)); 1975 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1976 /* Op needs to be migrated, process it. */ 1977 if (submit == NULL) 1978 submit = crp; 1979 break; 1980 } 1981 if (!cap->cc_qblocked) { 1982 if (submit != NULL) { 1983 /* 1984 * We stop on finding another op, 1985 * regardless whether its for the same 1986 * driver or not. We could keep 1987 * searching the queue but it might be 1988 * better to just use a per-driver 1989 * queue instead. 1990 */ 1991 if (submit->crp_session->cap == cap) 1992 hint = CRYPTO_HINT_MORE; 1993 break; 1994 } else { 1995 submit = crp; 1996 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1997 break; 1998 /* keep scanning for more are q'd */ 1999 } 2000 } 2001 } 2002 if (submit != NULL) { 2003 TAILQ_REMOVE(&crp_q, submit, crp_next); 2004 cap = submit->crp_session->cap; 2005 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 2006 __func__, __LINE__)); 2007 CRYPTO_Q_UNLOCK(); 2008 result = crypto_invoke(cap, submit, hint); 2009 CRYPTO_Q_LOCK(); 2010 if (result == ERESTART) { 2011 /* 2012 * The driver ran out of resources, mark the 2013 * driver ``blocked'' for cryptop's and put 2014 * the request back in the queue. It would 2015 * best to put the request back where we got 2016 * it but that's hard so for now we put it 2017 * at the front. This should be ok; putting 2018 * it at the end does not work. 2019 */ 2020 cap->cc_qblocked = 1; 2021 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 2022 cryptostats.cs_blocks++; 2023 } 2024 } 2025 2026 /* As above, but for key ops */ 2027 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2028 cap = krp->krp_cap; 2029 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2030 /* 2031 * Operation needs to be migrated, 2032 * clear krp_cap so a new driver is 2033 * selected. 2034 */ 2035 krp->krp_cap = NULL; 2036 cap_rele(cap); 2037 break; 2038 } 2039 if (!cap->cc_kqblocked) 2040 break; 2041 } 2042 if (krp != NULL) { 2043 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2044 CRYPTO_Q_UNLOCK(); 2045 result = crypto_kinvoke(krp); 2046 CRYPTO_Q_LOCK(); 2047 if (result == ERESTART) { 2048 /* 2049 * The driver ran out of resources, mark the 2050 * driver ``blocked'' for cryptkop's and put 2051 * the request back in the queue. It would 2052 * best to put the request back where we got 2053 * it but that's hard so for now we put it 2054 * at the front. This should be ok; putting 2055 * it at the end does not work. 2056 */ 2057 krp->krp_cap->cc_kqblocked = 1; 2058 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2059 cryptostats.cs_kblocks++; 2060 } 2061 } 2062 2063 if (submit == NULL && krp == NULL) { 2064 /* 2065 * Nothing more to be processed. Sleep until we're 2066 * woken because there are more ops to process. 2067 * This happens either by submission or by a driver 2068 * becoming unblocked and notifying us through 2069 * crypto_unblock. Note that when we wakeup we 2070 * start processing each queue again from the 2071 * front. It's not clear that it's important to 2072 * preserve this ordering since ops may finish 2073 * out of order if dispatched to different devices 2074 * and some become blocked while others do not. 2075 */ 2076 crp_sleep = 1; 2077 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2078 crp_sleep = 0; 2079 if (cryptoproc == NULL) 2080 break; 2081 cryptostats.cs_intrs++; 2082 } 2083 } 2084 CRYPTO_Q_UNLOCK(); 2085 2086 crypto_finis(&crp_q); 2087 } 2088 2089 /* 2090 * Crypto returns thread, does callbacks for processed crypto requests. 2091 * Callbacks are done here, rather than in the crypto drivers, because 2092 * callbacks typically are expensive and would slow interrupt handling. 2093 */ 2094 static void 2095 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2096 { 2097 struct cryptop *crpt; 2098 struct cryptkop *krpt; 2099 2100 CRYPTO_RETW_LOCK(ret_worker); 2101 for (;;) { 2102 /* Harvest return q's for completed ops */ 2103 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2104 if (crpt != NULL) { 2105 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2106 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2107 ret_worker->reorder_cur_seq++; 2108 } else { 2109 crpt = NULL; 2110 } 2111 } 2112 2113 if (crpt == NULL) { 2114 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2115 if (crpt != NULL) 2116 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2117 } 2118 2119 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2120 if (krpt != NULL) 2121 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2122 2123 if (crpt != NULL || krpt != NULL) { 2124 CRYPTO_RETW_UNLOCK(ret_worker); 2125 /* 2126 * Run callbacks unlocked. 2127 */ 2128 if (crpt != NULL) { 2129 #ifdef CRYPTO_TIMING 2130 if (crypto_timing) { 2131 /* 2132 * NB: We must copy the timestamp before 2133 * doing the callback as the cryptop is 2134 * likely to be reclaimed. 2135 */ 2136 struct bintime t = crpt->crp_tstamp; 2137 crypto_tstat(&cryptostats.cs_cb, &t); 2138 crpt->crp_callback(crpt); 2139 crypto_tstat(&cryptostats.cs_finis, &t); 2140 } else 2141 #endif 2142 crpt->crp_callback(crpt); 2143 } 2144 if (krpt != NULL) 2145 krpt->krp_callback(krpt); 2146 CRYPTO_RETW_LOCK(ret_worker); 2147 } else { 2148 /* 2149 * Nothing more to be processed. Sleep until we're 2150 * woken because there are more returns to process. 2151 */ 2152 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2153 "crypto_ret_wait", 0); 2154 if (ret_worker->cryptoretproc == NULL) 2155 break; 2156 cryptostats.cs_rets++; 2157 } 2158 } 2159 CRYPTO_RETW_UNLOCK(ret_worker); 2160 2161 crypto_finis(&ret_worker->crp_ret_q); 2162 } 2163 2164 #ifdef DDB 2165 static void 2166 db_show_drivers(void) 2167 { 2168 int hid; 2169 2170 db_printf("%12s %4s %4s %8s %2s %2s\n" 2171 , "Device" 2172 , "Ses" 2173 , "Kops" 2174 , "Flags" 2175 , "QB" 2176 , "KB" 2177 ); 2178 for (hid = 0; hid < crypto_drivers_size; hid++) { 2179 const struct cryptocap *cap = crypto_drivers[hid]; 2180 if (cap == NULL) 2181 continue; 2182 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2183 , device_get_nameunit(cap->cc_dev) 2184 , cap->cc_sessions 2185 , cap->cc_koperations 2186 , cap->cc_flags 2187 , cap->cc_qblocked 2188 , cap->cc_kqblocked 2189 ); 2190 } 2191 } 2192 2193 DB_SHOW_COMMAND(crypto, db_show_crypto) 2194 { 2195 struct cryptop *crp; 2196 struct crypto_ret_worker *ret_worker; 2197 2198 db_show_drivers(); 2199 db_printf("\n"); 2200 2201 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2202 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2203 "Device", "Callback"); 2204 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2205 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2206 , crp->crp_session->cap->cc_hid 2207 , (int) crypto_ses2caps(crp->crp_session) 2208 , crp->crp_olen 2209 , crp->crp_etype 2210 , crp->crp_flags 2211 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2212 , crp->crp_callback 2213 ); 2214 } 2215 FOREACH_CRYPTO_RETW(ret_worker) { 2216 db_printf("\n%8s %4s %4s %4s %8s\n", 2217 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2218 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2219 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2220 db_printf("%8td %4u %4u %04x %8p\n" 2221 , CRYPTO_RETW_ID(ret_worker) 2222 , crp->crp_session->cap->cc_hid 2223 , crp->crp_etype 2224 , crp->crp_flags 2225 , crp->crp_callback 2226 ); 2227 } 2228 } 2229 } 2230 } 2231 2232 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2233 { 2234 struct cryptkop *krp; 2235 struct crypto_ret_worker *ret_worker; 2236 2237 db_show_drivers(); 2238 db_printf("\n"); 2239 2240 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2241 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2242 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2243 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2244 , krp->krp_op 2245 , krp->krp_status 2246 , krp->krp_iparams, krp->krp_oparams 2247 , krp->krp_crid, krp->krp_hid 2248 , krp->krp_callback 2249 ); 2250 } 2251 2252 ret_worker = CRYPTO_RETW(0); 2253 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2254 db_printf("%4s %5s %8s %4s %8s\n", 2255 "Op", "Status", "CRID", "HID", "Callback"); 2256 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2257 db_printf("%4u %5u %08x %4u %8p\n" 2258 , krp->krp_op 2259 , krp->krp_status 2260 , krp->krp_crid, krp->krp_hid 2261 , krp->krp_callback 2262 ); 2263 } 2264 } 2265 } 2266 #endif 2267 2268 int crypto_modevent(module_t mod, int type, void *unused); 2269 2270 /* 2271 * Initialization code, both for static and dynamic loading. 2272 * Note this is not invoked with the usual MODULE_DECLARE 2273 * mechanism but instead is listed as a dependency by the 2274 * cryptosoft driver. This guarantees proper ordering of 2275 * calls on module load/unload. 2276 */ 2277 int 2278 crypto_modevent(module_t mod, int type, void *unused) 2279 { 2280 int error = EINVAL; 2281 2282 switch (type) { 2283 case MOD_LOAD: 2284 error = crypto_init(); 2285 if (error == 0 && bootverbose) 2286 printf("crypto: <crypto core>\n"); 2287 break; 2288 case MOD_UNLOAD: 2289 /*XXX disallow if active sessions */ 2290 error = 0; 2291 crypto_destroy(); 2292 return 0; 2293 } 2294 return error; 2295 } 2296 MODULE_VERSION(crypto, 1); 2297 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2298