1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * Copyright (c) 2021 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Ararat River 6 * Consulting, LLC under sponsorship of the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * Cryptographic Subsystem. 32 * 33 * This code is derived from the Openbsd Cryptographic Framework (OCF) 34 * that has the copyright shown below. Very little of the original 35 * code remains. 36 */ 37 38 /*- 39 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 40 * 41 * This code was written by Angelos D. Keromytis in Athens, Greece, in 42 * February 2000. Network Security Technologies Inc. (NSTI) kindly 43 * supported the development of this code. 44 * 45 * Copyright (c) 2000, 2001 Angelos D. Keromytis 46 * 47 * Permission to use, copy, and modify this software with or without fee 48 * is hereby granted, provided that this entire notice is included in 49 * all source code copies of any software which is or includes a copy or 50 * modification of this software. 51 * 52 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 53 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 54 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 55 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 56 * PURPOSE. 57 */ 58 59 #include "opt_ddb.h" 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/counter.h> 64 #include <sys/kernel.h> 65 #include <sys/kthread.h> 66 #include <sys/linker.h> 67 #include <sys/lock.h> 68 #include <sys/module.h> 69 #include <sys/mutex.h> 70 #include <sys/malloc.h> 71 #include <sys/mbuf.h> 72 #include <sys/proc.h> 73 #include <sys/refcount.h> 74 #include <sys/sdt.h> 75 #include <sys/smp.h> 76 #include <sys/sysctl.h> 77 #include <sys/taskqueue.h> 78 #include <sys/uio.h> 79 80 #include <ddb/ddb.h> 81 82 #include <machine/vmparam.h> 83 #include <vm/uma.h> 84 85 #include <crypto/intake.h> 86 #include <opencrypto/cryptodev.h> 87 #include <opencrypto/xform_auth.h> 88 #include <opencrypto/xform_enc.h> 89 90 #include <sys/kobj.h> 91 #include <sys/bus.h> 92 #include "cryptodev_if.h" 93 94 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 95 #include <machine/pcb.h> 96 #endif 97 98 SDT_PROVIDER_DEFINE(opencrypto); 99 100 /* 101 * Crypto drivers register themselves by allocating a slot in the 102 * crypto_drivers table with crypto_get_driverid(). 103 */ 104 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 108 109 /* 110 * Crypto device/driver capabilities structure. 111 * 112 * Synchronization: 113 * (d) - protected by CRYPTO_DRIVER_LOCK() 114 * (q) - protected by CRYPTO_Q_LOCK() 115 * Not tagged fields are read-only. 116 */ 117 struct cryptocap { 118 device_t cc_dev; 119 uint32_t cc_hid; 120 uint32_t cc_sessions; /* (d) # of sessions */ 121 122 int cc_flags; /* (d) flags */ 123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 124 int cc_qblocked; /* (q) symmetric q blocked */ 125 size_t cc_session_size; 126 volatile int cc_refs; 127 }; 128 129 static struct cryptocap **crypto_drivers = NULL; 130 static int crypto_drivers_size = 0; 131 132 struct crypto_session { 133 struct cryptocap *cap; 134 struct crypto_session_params csp; 135 uint64_t id; 136 /* Driver softc follows. */ 137 }; 138 139 static int crp_sleep = 0; 140 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 141 static struct mtx crypto_q_mtx; 142 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 143 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 144 145 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 146 "In-kernel cryptography"); 147 148 /* 149 * Taskqueue used to dispatch the crypto requests submitted with 150 * crypto_dispatch_async . 151 */ 152 static struct taskqueue *crypto_tq; 153 154 /* 155 * Crypto seq numbers are operated on with modular arithmetic 156 */ 157 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 158 159 struct crypto_ret_worker { 160 struct mtx crypto_ret_mtx; 161 162 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 163 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 164 165 uint32_t reorder_ops; /* total ordered sym jobs received */ 166 uint32_t reorder_cur_seq; /* current sym job dispatched */ 167 168 struct thread *td; 169 }; 170 static struct crypto_ret_worker *crypto_ret_workers = NULL; 171 172 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 173 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 174 #define FOREACH_CRYPTO_RETW(w) \ 175 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 176 177 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 178 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 179 180 static int crypto_workers_num = 0; 181 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 182 &crypto_workers_num, 0, 183 "Number of crypto workers used to dispatch crypto jobs"); 184 #ifdef COMPAT_FREEBSD12 185 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 186 &crypto_workers_num, 0, 187 "Number of crypto workers used to dispatch crypto jobs"); 188 #endif 189 190 static uma_zone_t cryptop_zone; 191 192 int crypto_devallowsoft = 0; 193 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN, 194 &crypto_devallowsoft, 0, 195 "Enable use of software crypto by /dev/crypto"); 196 #ifdef COMPAT_FREEBSD12 197 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN, 198 &crypto_devallowsoft, 0, 199 "Enable/disable use of software crypto by /dev/crypto"); 200 #endif 201 202 #ifdef DIAGNOSTIC 203 bool crypto_destroyreq_check; 204 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN, 205 &crypto_destroyreq_check, 0, 206 "Enable checks when destroying a request"); 207 #endif 208 209 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 210 211 static void crypto_dispatch_thread(void *arg); 212 static struct thread *cryptotd; 213 static void crypto_ret_thread(void *arg); 214 static void crypto_destroy(void); 215 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 216 static void crypto_task_invoke(void *ctx, int pending); 217 static void crypto_batch_enqueue(struct cryptop *crp); 218 219 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 220 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 221 cryptostats, nitems(cryptostats), 222 "Crypto system statistics"); 223 224 #define CRYPTOSTAT_INC(stat) do { \ 225 counter_u64_add( \ 226 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 227 1); \ 228 } while (0) 229 230 static void 231 cryptostats_init(void *arg __unused) 232 { 233 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 234 } 235 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 236 237 static void 238 cryptostats_fini(void *arg __unused) 239 { 240 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 241 } 242 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 243 NULL); 244 245 /* Try to avoid directly exposing the key buffer as a symbol */ 246 static struct keybuf *keybuf; 247 248 static struct keybuf empty_keybuf = { 249 .kb_nents = 0 250 }; 251 252 /* Obtain the key buffer from boot metadata */ 253 static void 254 keybuf_init(void) 255 { 256 caddr_t kmdp; 257 258 kmdp = preload_search_by_type("elf kernel"); 259 260 if (kmdp == NULL) 261 kmdp = preload_search_by_type("elf64 kernel"); 262 263 keybuf = (struct keybuf *)preload_search_info(kmdp, 264 MODINFO_METADATA | MODINFOMD_KEYBUF); 265 266 if (keybuf == NULL) 267 keybuf = &empty_keybuf; 268 } 269 270 /* It'd be nice if we could store these in some kind of secure memory... */ 271 struct keybuf * 272 get_keybuf(void) 273 { 274 275 return (keybuf); 276 } 277 278 static struct cryptocap * 279 cap_ref(struct cryptocap *cap) 280 { 281 282 refcount_acquire(&cap->cc_refs); 283 return (cap); 284 } 285 286 static void 287 cap_rele(struct cryptocap *cap) 288 { 289 290 if (refcount_release(&cap->cc_refs) == 0) 291 return; 292 293 KASSERT(cap->cc_sessions == 0, 294 ("freeing crypto driver with active sessions")); 295 296 free(cap, M_CRYPTO_DATA); 297 } 298 299 static int 300 crypto_init(void) 301 { 302 struct crypto_ret_worker *ret_worker; 303 struct proc *p; 304 int error; 305 306 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF); 307 308 TAILQ_INIT(&crp_q); 309 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF); 310 311 cryptop_zone = uma_zcreate("cryptop", 312 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 313 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 314 315 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 316 crypto_drivers = malloc(crypto_drivers_size * 317 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 318 319 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 320 crypto_workers_num = mp_ncpus; 321 322 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 323 taskqueue_thread_enqueue, &crypto_tq); 324 325 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 326 "crypto"); 327 328 p = NULL; 329 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd, 330 0, 0, "crypto", "crypto"); 331 if (error) { 332 printf("crypto_init: cannot start crypto thread; error %d", 333 error); 334 goto bad; 335 } 336 337 crypto_ret_workers = mallocarray(crypto_workers_num, 338 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 339 340 FOREACH_CRYPTO_RETW(ret_worker) { 341 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 342 TAILQ_INIT(&ret_worker->crp_ret_q); 343 344 ret_worker->reorder_ops = 0; 345 ret_worker->reorder_cur_seq = 0; 346 347 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues", 348 NULL, MTX_DEF); 349 350 error = kthread_add(crypto_ret_thread, ret_worker, p, 351 &ret_worker->td, 0, 0, "crypto returns %td", 352 CRYPTO_RETW_ID(ret_worker)); 353 if (error) { 354 printf("crypto_init: cannot start cryptoret thread; error %d", 355 error); 356 goto bad; 357 } 358 } 359 360 keybuf_init(); 361 362 return 0; 363 bad: 364 crypto_destroy(); 365 return error; 366 } 367 368 /* 369 * Signal a crypto thread to terminate. We use the driver 370 * table lock to synchronize the sleep/wakeups so that we 371 * are sure the threads have terminated before we release 372 * the data structures they use. See crypto_finis below 373 * for the other half of this song-and-dance. 374 */ 375 static void 376 crypto_terminate(struct thread **tdp, void *q) 377 { 378 struct thread *td; 379 380 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 381 td = *tdp; 382 *tdp = NULL; 383 if (td != NULL) { 384 wakeup_one(q); 385 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0); 386 } 387 } 388 389 static void 390 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 391 void *auth_ctx, uint8_t padval) 392 { 393 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 394 u_int i; 395 396 KASSERT(axf->blocksize <= sizeof(hmac_key), 397 ("Invalid HMAC block size %d", axf->blocksize)); 398 399 /* 400 * If the key is larger than the block size, use the digest of 401 * the key as the key instead. 402 */ 403 memset(hmac_key, 0, sizeof(hmac_key)); 404 if (klen > axf->blocksize) { 405 axf->Init(auth_ctx); 406 axf->Update(auth_ctx, key, klen); 407 axf->Final(hmac_key, auth_ctx); 408 klen = axf->hashsize; 409 } else 410 memcpy(hmac_key, key, klen); 411 412 for (i = 0; i < axf->blocksize; i++) 413 hmac_key[i] ^= padval; 414 415 axf->Init(auth_ctx); 416 axf->Update(auth_ctx, hmac_key, axf->blocksize); 417 explicit_bzero(hmac_key, sizeof(hmac_key)); 418 } 419 420 void 421 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 422 void *auth_ctx) 423 { 424 425 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 426 } 427 428 void 429 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 430 void *auth_ctx) 431 { 432 433 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 434 } 435 436 static void 437 crypto_destroy(void) 438 { 439 struct crypto_ret_worker *ret_worker; 440 int i; 441 442 /* 443 * Terminate any crypto threads. 444 */ 445 if (crypto_tq != NULL) 446 taskqueue_drain_all(crypto_tq); 447 CRYPTO_DRIVER_LOCK(); 448 crypto_terminate(&cryptotd, &crp_q); 449 FOREACH_CRYPTO_RETW(ret_worker) 450 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q); 451 CRYPTO_DRIVER_UNLOCK(); 452 453 /* XXX flush queues??? */ 454 455 /* 456 * Reclaim dynamically allocated resources. 457 */ 458 for (i = 0; i < crypto_drivers_size; i++) { 459 if (crypto_drivers[i] != NULL) 460 cap_rele(crypto_drivers[i]); 461 } 462 free(crypto_drivers, M_CRYPTO_DATA); 463 464 if (cryptop_zone != NULL) 465 uma_zdestroy(cryptop_zone); 466 mtx_destroy(&crypto_q_mtx); 467 FOREACH_CRYPTO_RETW(ret_worker) 468 mtx_destroy(&ret_worker->crypto_ret_mtx); 469 free(crypto_ret_workers, M_CRYPTO_DATA); 470 if (crypto_tq != NULL) 471 taskqueue_free(crypto_tq); 472 mtx_destroy(&crypto_drivers_mtx); 473 } 474 475 uint32_t 476 crypto_ses2hid(crypto_session_t crypto_session) 477 { 478 return (crypto_session->cap->cc_hid); 479 } 480 481 uint32_t 482 crypto_ses2caps(crypto_session_t crypto_session) 483 { 484 return (crypto_session->cap->cc_flags & 0xff000000); 485 } 486 487 void * 488 crypto_get_driver_session(crypto_session_t crypto_session) 489 { 490 return (crypto_session + 1); 491 } 492 493 const struct crypto_session_params * 494 crypto_get_params(crypto_session_t crypto_session) 495 { 496 return (&crypto_session->csp); 497 } 498 499 const struct auth_hash * 500 crypto_auth_hash(const struct crypto_session_params *csp) 501 { 502 503 switch (csp->csp_auth_alg) { 504 case CRYPTO_SHA1_HMAC: 505 return (&auth_hash_hmac_sha1); 506 case CRYPTO_SHA2_224_HMAC: 507 return (&auth_hash_hmac_sha2_224); 508 case CRYPTO_SHA2_256_HMAC: 509 return (&auth_hash_hmac_sha2_256); 510 case CRYPTO_SHA2_384_HMAC: 511 return (&auth_hash_hmac_sha2_384); 512 case CRYPTO_SHA2_512_HMAC: 513 return (&auth_hash_hmac_sha2_512); 514 case CRYPTO_NULL_HMAC: 515 return (&auth_hash_null); 516 case CRYPTO_RIPEMD160_HMAC: 517 return (&auth_hash_hmac_ripemd_160); 518 case CRYPTO_RIPEMD160: 519 return (&auth_hash_ripemd_160); 520 case CRYPTO_SHA1: 521 return (&auth_hash_sha1); 522 case CRYPTO_SHA2_224: 523 return (&auth_hash_sha2_224); 524 case CRYPTO_SHA2_256: 525 return (&auth_hash_sha2_256); 526 case CRYPTO_SHA2_384: 527 return (&auth_hash_sha2_384); 528 case CRYPTO_SHA2_512: 529 return (&auth_hash_sha2_512); 530 case CRYPTO_AES_NIST_GMAC: 531 switch (csp->csp_auth_klen) { 532 case 128 / 8: 533 return (&auth_hash_nist_gmac_aes_128); 534 case 192 / 8: 535 return (&auth_hash_nist_gmac_aes_192); 536 case 256 / 8: 537 return (&auth_hash_nist_gmac_aes_256); 538 default: 539 return (NULL); 540 } 541 case CRYPTO_BLAKE2B: 542 return (&auth_hash_blake2b); 543 case CRYPTO_BLAKE2S: 544 return (&auth_hash_blake2s); 545 case CRYPTO_POLY1305: 546 return (&auth_hash_poly1305); 547 case CRYPTO_AES_CCM_CBC_MAC: 548 switch (csp->csp_auth_klen) { 549 case 128 / 8: 550 return (&auth_hash_ccm_cbc_mac_128); 551 case 192 / 8: 552 return (&auth_hash_ccm_cbc_mac_192); 553 case 256 / 8: 554 return (&auth_hash_ccm_cbc_mac_256); 555 default: 556 return (NULL); 557 } 558 default: 559 return (NULL); 560 } 561 } 562 563 const struct enc_xform * 564 crypto_cipher(const struct crypto_session_params *csp) 565 { 566 567 switch (csp->csp_cipher_alg) { 568 case CRYPTO_AES_CBC: 569 return (&enc_xform_aes_cbc); 570 case CRYPTO_AES_XTS: 571 return (&enc_xform_aes_xts); 572 case CRYPTO_AES_ICM: 573 return (&enc_xform_aes_icm); 574 case CRYPTO_AES_NIST_GCM_16: 575 return (&enc_xform_aes_nist_gcm); 576 case CRYPTO_CAMELLIA_CBC: 577 return (&enc_xform_camellia); 578 case CRYPTO_NULL_CBC: 579 return (&enc_xform_null); 580 case CRYPTO_CHACHA20: 581 return (&enc_xform_chacha20); 582 case CRYPTO_AES_CCM_16: 583 return (&enc_xform_ccm); 584 case CRYPTO_CHACHA20_POLY1305: 585 return (&enc_xform_chacha20_poly1305); 586 case CRYPTO_XCHACHA20_POLY1305: 587 return (&enc_xform_xchacha20_poly1305); 588 default: 589 return (NULL); 590 } 591 } 592 593 static struct cryptocap * 594 crypto_checkdriver(uint32_t hid) 595 { 596 597 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 598 } 599 600 /* 601 * Select a driver for a new session that supports the specified 602 * algorithms and, optionally, is constrained according to the flags. 603 */ 604 static struct cryptocap * 605 crypto_select_driver(const struct crypto_session_params *csp, int flags) 606 { 607 struct cryptocap *cap, *best; 608 int best_match, error, hid; 609 610 CRYPTO_DRIVER_ASSERT(); 611 612 best = NULL; 613 for (hid = 0; hid < crypto_drivers_size; hid++) { 614 /* 615 * If there is no driver for this slot, or the driver 616 * is not appropriate (hardware or software based on 617 * match), then skip. 618 */ 619 cap = crypto_drivers[hid]; 620 if (cap == NULL || 621 (cap->cc_flags & flags) == 0) 622 continue; 623 624 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 625 if (error >= 0) 626 continue; 627 628 /* 629 * Use the driver with the highest probe value. 630 * Hardware drivers use a higher probe value than 631 * software. In case of a tie, prefer the driver with 632 * the fewest active sessions. 633 */ 634 if (best == NULL || error > best_match || 635 (error == best_match && 636 cap->cc_sessions < best->cc_sessions)) { 637 best = cap; 638 best_match = error; 639 } 640 } 641 return best; 642 } 643 644 static enum alg_type { 645 ALG_NONE = 0, 646 ALG_CIPHER, 647 ALG_DIGEST, 648 ALG_KEYED_DIGEST, 649 ALG_COMPRESSION, 650 ALG_AEAD 651 } alg_types[] = { 652 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 653 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 654 [CRYPTO_AES_CBC] = ALG_CIPHER, 655 [CRYPTO_SHA1] = ALG_DIGEST, 656 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 657 [CRYPTO_NULL_CBC] = ALG_CIPHER, 658 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 659 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 660 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 661 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 662 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 663 [CRYPTO_AES_XTS] = ALG_CIPHER, 664 [CRYPTO_AES_ICM] = ALG_CIPHER, 665 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 666 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 667 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 668 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 669 [CRYPTO_CHACHA20] = ALG_CIPHER, 670 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 671 [CRYPTO_RIPEMD160] = ALG_DIGEST, 672 [CRYPTO_SHA2_224] = ALG_DIGEST, 673 [CRYPTO_SHA2_256] = ALG_DIGEST, 674 [CRYPTO_SHA2_384] = ALG_DIGEST, 675 [CRYPTO_SHA2_512] = ALG_DIGEST, 676 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 677 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 678 [CRYPTO_AES_CCM_16] = ALG_AEAD, 679 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD, 680 [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD, 681 }; 682 683 static enum alg_type 684 alg_type(int alg) 685 { 686 687 if (alg < nitems(alg_types)) 688 return (alg_types[alg]); 689 return (ALG_NONE); 690 } 691 692 static bool 693 alg_is_compression(int alg) 694 { 695 696 return (alg_type(alg) == ALG_COMPRESSION); 697 } 698 699 static bool 700 alg_is_cipher(int alg) 701 { 702 703 return (alg_type(alg) == ALG_CIPHER); 704 } 705 706 static bool 707 alg_is_digest(int alg) 708 { 709 710 return (alg_type(alg) == ALG_DIGEST || 711 alg_type(alg) == ALG_KEYED_DIGEST); 712 } 713 714 static bool 715 alg_is_keyed_digest(int alg) 716 { 717 718 return (alg_type(alg) == ALG_KEYED_DIGEST); 719 } 720 721 static bool 722 alg_is_aead(int alg) 723 { 724 725 return (alg_type(alg) == ALG_AEAD); 726 } 727 728 static bool 729 ccm_tag_length_valid(int len) 730 { 731 /* RFC 3610 */ 732 switch (len) { 733 case 4: 734 case 6: 735 case 8: 736 case 10: 737 case 12: 738 case 14: 739 case 16: 740 return (true); 741 default: 742 return (false); 743 } 744 } 745 746 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 747 748 /* Various sanity checks on crypto session parameters. */ 749 static bool 750 check_csp(const struct crypto_session_params *csp) 751 { 752 const struct auth_hash *axf; 753 754 /* Mode-independent checks. */ 755 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 756 return (false); 757 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 758 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 759 return (false); 760 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 761 return (false); 762 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 763 return (false); 764 765 switch (csp->csp_mode) { 766 case CSP_MODE_COMPRESS: 767 if (!alg_is_compression(csp->csp_cipher_alg)) 768 return (false); 769 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 770 return (false); 771 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 772 return (false); 773 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 774 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 775 csp->csp_auth_mlen != 0) 776 return (false); 777 break; 778 case CSP_MODE_CIPHER: 779 if (!alg_is_cipher(csp->csp_cipher_alg)) 780 return (false); 781 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 782 return (false); 783 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 784 if (csp->csp_cipher_klen == 0) 785 return (false); 786 if (csp->csp_ivlen == 0) 787 return (false); 788 } 789 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 790 return (false); 791 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 792 csp->csp_auth_mlen != 0) 793 return (false); 794 break; 795 case CSP_MODE_DIGEST: 796 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 797 return (false); 798 799 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 800 return (false); 801 802 /* IV is optional for digests (e.g. GMAC). */ 803 switch (csp->csp_auth_alg) { 804 case CRYPTO_AES_CCM_CBC_MAC: 805 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 806 return (false); 807 break; 808 case CRYPTO_AES_NIST_GMAC: 809 if (csp->csp_ivlen != AES_GCM_IV_LEN) 810 return (false); 811 break; 812 default: 813 if (csp->csp_ivlen != 0) 814 return (false); 815 break; 816 } 817 818 if (!alg_is_digest(csp->csp_auth_alg)) 819 return (false); 820 821 /* Key is optional for BLAKE2 digests. */ 822 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 823 csp->csp_auth_alg == CRYPTO_BLAKE2S) 824 ; 825 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 826 if (csp->csp_auth_klen == 0) 827 return (false); 828 } else { 829 if (csp->csp_auth_klen != 0) 830 return (false); 831 } 832 if (csp->csp_auth_mlen != 0) { 833 axf = crypto_auth_hash(csp); 834 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 835 return (false); 836 837 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC && 838 !ccm_tag_length_valid(csp->csp_auth_mlen)) 839 return (false); 840 } 841 break; 842 case CSP_MODE_AEAD: 843 if (!alg_is_aead(csp->csp_cipher_alg)) 844 return (false); 845 if (csp->csp_cipher_klen == 0) 846 return (false); 847 if (csp->csp_ivlen == 0 || 848 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 849 return (false); 850 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 851 return (false); 852 853 switch (csp->csp_cipher_alg) { 854 case CRYPTO_AES_CCM_16: 855 if (csp->csp_auth_mlen != 0 && 856 !ccm_tag_length_valid(csp->csp_auth_mlen)) 857 return (false); 858 859 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 860 return (false); 861 break; 862 case CRYPTO_AES_NIST_GCM_16: 863 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN) 864 return (false); 865 866 if (csp->csp_ivlen != AES_GCM_IV_LEN) 867 return (false); 868 break; 869 case CRYPTO_CHACHA20_POLY1305: 870 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12) 871 return (false); 872 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 873 return (false); 874 break; 875 case CRYPTO_XCHACHA20_POLY1305: 876 if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN) 877 return (false); 878 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 879 return (false); 880 break; 881 } 882 break; 883 case CSP_MODE_ETA: 884 if (!alg_is_cipher(csp->csp_cipher_alg)) 885 return (false); 886 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 887 if (csp->csp_cipher_klen == 0) 888 return (false); 889 if (csp->csp_ivlen == 0) 890 return (false); 891 } 892 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 893 return (false); 894 if (!alg_is_digest(csp->csp_auth_alg)) 895 return (false); 896 897 /* Key is optional for BLAKE2 digests. */ 898 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 899 csp->csp_auth_alg == CRYPTO_BLAKE2S) 900 ; 901 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 902 if (csp->csp_auth_klen == 0) 903 return (false); 904 } else { 905 if (csp->csp_auth_klen != 0) 906 return (false); 907 } 908 if (csp->csp_auth_mlen != 0) { 909 axf = crypto_auth_hash(csp); 910 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 911 return (false); 912 } 913 break; 914 default: 915 return (false); 916 } 917 918 return (true); 919 } 920 921 /* 922 * Delete a session after it has been detached from its driver. 923 */ 924 static void 925 crypto_deletesession(crypto_session_t cses) 926 { 927 struct cryptocap *cap; 928 929 cap = cses->cap; 930 931 zfree(cses, M_CRYPTO_DATA); 932 933 CRYPTO_DRIVER_LOCK(); 934 cap->cc_sessions--; 935 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 936 wakeup(cap); 937 CRYPTO_DRIVER_UNLOCK(); 938 cap_rele(cap); 939 } 940 941 /* 942 * Create a new session. The crid argument specifies a crypto 943 * driver to use or constraints on a driver to select (hardware 944 * only, software only, either). Whatever driver is selected 945 * must be capable of the requested crypto algorithms. 946 */ 947 int 948 crypto_newsession(crypto_session_t *cses, 949 const struct crypto_session_params *csp, int crid) 950 { 951 static uint64_t sessid = 0; 952 crypto_session_t res; 953 struct cryptocap *cap; 954 int err; 955 956 if (!check_csp(csp)) 957 return (EINVAL); 958 959 res = NULL; 960 961 CRYPTO_DRIVER_LOCK(); 962 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 963 /* 964 * Use specified driver; verify it is capable. 965 */ 966 cap = crypto_checkdriver(crid); 967 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 968 cap = NULL; 969 } else { 970 /* 971 * No requested driver; select based on crid flags. 972 */ 973 cap = crypto_select_driver(csp, crid); 974 } 975 if (cap == NULL) { 976 CRYPTO_DRIVER_UNLOCK(); 977 CRYPTDEB("no driver"); 978 return (EOPNOTSUPP); 979 } 980 cap_ref(cap); 981 cap->cc_sessions++; 982 CRYPTO_DRIVER_UNLOCK(); 983 984 /* Allocate a single block for the generic session and driver softc. */ 985 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA, 986 M_WAITOK | M_ZERO); 987 res->cap = cap; 988 res->csp = *csp; 989 res->id = atomic_fetchadd_64(&sessid, 1); 990 991 /* Call the driver initialization routine. */ 992 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 993 if (err != 0) { 994 CRYPTDEB("dev newsession failed: %d", err); 995 crypto_deletesession(res); 996 return (err); 997 } 998 999 *cses = res; 1000 return (0); 1001 } 1002 1003 /* 1004 * Delete an existing session (or a reserved session on an unregistered 1005 * driver). 1006 */ 1007 void 1008 crypto_freesession(crypto_session_t cses) 1009 { 1010 struct cryptocap *cap; 1011 1012 if (cses == NULL) 1013 return; 1014 1015 cap = cses->cap; 1016 1017 /* Call the driver cleanup routine, if available. */ 1018 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1019 1020 crypto_deletesession(cses); 1021 } 1022 1023 /* 1024 * Return a new driver id. Registers a driver with the system so that 1025 * it can be probed by subsequent sessions. 1026 */ 1027 int32_t 1028 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1029 { 1030 struct cryptocap *cap, **newdrv; 1031 int i; 1032 1033 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1034 device_printf(dev, 1035 "no flags specified when registering driver\n"); 1036 return -1; 1037 } 1038 1039 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1040 cap->cc_dev = dev; 1041 cap->cc_session_size = sessionsize; 1042 cap->cc_flags = flags; 1043 refcount_init(&cap->cc_refs, 1); 1044 1045 CRYPTO_DRIVER_LOCK(); 1046 for (;;) { 1047 for (i = 0; i < crypto_drivers_size; i++) { 1048 if (crypto_drivers[i] == NULL) 1049 break; 1050 } 1051 1052 if (i < crypto_drivers_size) 1053 break; 1054 1055 /* Out of entries, allocate some more. */ 1056 1057 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1058 CRYPTO_DRIVER_UNLOCK(); 1059 printf("crypto: driver count wraparound!\n"); 1060 cap_rele(cap); 1061 return (-1); 1062 } 1063 CRYPTO_DRIVER_UNLOCK(); 1064 1065 newdrv = malloc(2 * crypto_drivers_size * 1066 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1067 1068 CRYPTO_DRIVER_LOCK(); 1069 memcpy(newdrv, crypto_drivers, 1070 crypto_drivers_size * sizeof(*crypto_drivers)); 1071 1072 crypto_drivers_size *= 2; 1073 1074 free(crypto_drivers, M_CRYPTO_DATA); 1075 crypto_drivers = newdrv; 1076 } 1077 1078 cap->cc_hid = i; 1079 crypto_drivers[i] = cap; 1080 CRYPTO_DRIVER_UNLOCK(); 1081 1082 if (bootverbose) 1083 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1084 device_get_nameunit(dev), i, flags); 1085 1086 return i; 1087 } 1088 1089 /* 1090 * Lookup a driver by name. We match against the full device 1091 * name and unit, and against just the name. The latter gives 1092 * us a simple widlcarding by device name. On success return the 1093 * driver/hardware identifier; otherwise return -1. 1094 */ 1095 int 1096 crypto_find_driver(const char *match) 1097 { 1098 struct cryptocap *cap; 1099 int i, len = strlen(match); 1100 1101 CRYPTO_DRIVER_LOCK(); 1102 for (i = 0; i < crypto_drivers_size; i++) { 1103 if (crypto_drivers[i] == NULL) 1104 continue; 1105 cap = crypto_drivers[i]; 1106 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1107 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1108 CRYPTO_DRIVER_UNLOCK(); 1109 return (i); 1110 } 1111 } 1112 CRYPTO_DRIVER_UNLOCK(); 1113 return (-1); 1114 } 1115 1116 /* 1117 * Return the device_t for the specified driver or NULL 1118 * if the driver identifier is invalid. 1119 */ 1120 device_t 1121 crypto_find_device_byhid(int hid) 1122 { 1123 struct cryptocap *cap; 1124 device_t dev; 1125 1126 dev = NULL; 1127 CRYPTO_DRIVER_LOCK(); 1128 cap = crypto_checkdriver(hid); 1129 if (cap != NULL) 1130 dev = cap->cc_dev; 1131 CRYPTO_DRIVER_UNLOCK(); 1132 return (dev); 1133 } 1134 1135 /* 1136 * Return the device/driver capabilities. 1137 */ 1138 int 1139 crypto_getcaps(int hid) 1140 { 1141 struct cryptocap *cap; 1142 int flags; 1143 1144 flags = 0; 1145 CRYPTO_DRIVER_LOCK(); 1146 cap = crypto_checkdriver(hid); 1147 if (cap != NULL) 1148 flags = cap->cc_flags; 1149 CRYPTO_DRIVER_UNLOCK(); 1150 return (flags); 1151 } 1152 1153 /* 1154 * Unregister all algorithms associated with a crypto driver. 1155 * If there are pending sessions using it, leave enough information 1156 * around so that subsequent calls using those sessions will 1157 * correctly detect the driver has been unregistered and reroute 1158 * requests. 1159 */ 1160 int 1161 crypto_unregister_all(uint32_t driverid) 1162 { 1163 struct cryptocap *cap; 1164 1165 CRYPTO_DRIVER_LOCK(); 1166 cap = crypto_checkdriver(driverid); 1167 if (cap == NULL) { 1168 CRYPTO_DRIVER_UNLOCK(); 1169 return (EINVAL); 1170 } 1171 1172 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1173 crypto_drivers[driverid] = NULL; 1174 1175 /* 1176 * XXX: This doesn't do anything to kick sessions that 1177 * have no pending operations. 1178 */ 1179 while (cap->cc_sessions != 0) 1180 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1181 CRYPTO_DRIVER_UNLOCK(); 1182 cap_rele(cap); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Clear blockage on a driver. The what parameter indicates whether 1189 * the driver is now ready for cryptop's and/or cryptokop's. 1190 */ 1191 int 1192 crypto_unblock(uint32_t driverid, int what) 1193 { 1194 struct cryptocap *cap; 1195 int err; 1196 1197 CRYPTO_Q_LOCK(); 1198 cap = crypto_checkdriver(driverid); 1199 if (cap != NULL) { 1200 if (what & CRYPTO_SYMQ) 1201 cap->cc_qblocked = 0; 1202 if (crp_sleep) 1203 wakeup_one(&crp_q); 1204 err = 0; 1205 } else 1206 err = EINVAL; 1207 CRYPTO_Q_UNLOCK(); 1208 1209 return err; 1210 } 1211 1212 size_t 1213 crypto_buffer_len(struct crypto_buffer *cb) 1214 { 1215 switch (cb->cb_type) { 1216 case CRYPTO_BUF_CONTIG: 1217 return (cb->cb_buf_len); 1218 case CRYPTO_BUF_MBUF: 1219 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1220 return (cb->cb_mbuf->m_pkthdr.len); 1221 return (m_length(cb->cb_mbuf, NULL)); 1222 case CRYPTO_BUF_SINGLE_MBUF: 1223 return (cb->cb_mbuf->m_len); 1224 case CRYPTO_BUF_VMPAGE: 1225 return (cb->cb_vm_page_len); 1226 case CRYPTO_BUF_UIO: 1227 return (cb->cb_uio->uio_resid); 1228 default: 1229 return (0); 1230 } 1231 } 1232 1233 #ifdef INVARIANTS 1234 /* Various sanity checks on crypto requests. */ 1235 static void 1236 cb_sanity(struct crypto_buffer *cb, const char *name) 1237 { 1238 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1239 ("incoming crp with invalid %s buffer type", name)); 1240 switch (cb->cb_type) { 1241 case CRYPTO_BUF_CONTIG: 1242 KASSERT(cb->cb_buf_len >= 0, 1243 ("incoming crp with -ve %s buffer length", name)); 1244 break; 1245 case CRYPTO_BUF_VMPAGE: 1246 KASSERT(CRYPTO_HAS_VMPAGE, 1247 ("incoming crp uses dmap on supported arch")); 1248 KASSERT(cb->cb_vm_page_len >= 0, 1249 ("incoming crp with -ve %s buffer length", name)); 1250 KASSERT(cb->cb_vm_page_offset >= 0, 1251 ("incoming crp with -ve %s buffer offset", name)); 1252 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1253 ("incoming crp with %s buffer offset greater than page size" 1254 , name)); 1255 break; 1256 default: 1257 break; 1258 } 1259 } 1260 1261 static void 1262 crp_sanity(struct cryptop *crp) 1263 { 1264 struct crypto_session_params *csp; 1265 struct crypto_buffer *out; 1266 size_t ilen, len, olen; 1267 1268 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1269 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1270 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1271 ("incoming crp with invalid output buffer type")); 1272 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1273 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1274 ("incoming crp already done")); 1275 1276 csp = &crp->crp_session->csp; 1277 cb_sanity(&crp->crp_buf, "input"); 1278 ilen = crypto_buffer_len(&crp->crp_buf); 1279 olen = ilen; 1280 out = NULL; 1281 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1282 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1283 cb_sanity(&crp->crp_obuf, "output"); 1284 out = &crp->crp_obuf; 1285 olen = crypto_buffer_len(out); 1286 } 1287 } else 1288 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1289 ("incoming crp with separate output buffer " 1290 "but no session support")); 1291 1292 switch (csp->csp_mode) { 1293 case CSP_MODE_COMPRESS: 1294 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1295 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1296 ("invalid compression op %x", crp->crp_op)); 1297 break; 1298 case CSP_MODE_CIPHER: 1299 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1300 crp->crp_op == CRYPTO_OP_DECRYPT, 1301 ("invalid cipher op %x", crp->crp_op)); 1302 break; 1303 case CSP_MODE_DIGEST: 1304 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1305 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1306 ("invalid digest op %x", crp->crp_op)); 1307 break; 1308 case CSP_MODE_AEAD: 1309 KASSERT(crp->crp_op == 1310 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1311 crp->crp_op == 1312 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1313 ("invalid AEAD op %x", crp->crp_op)); 1314 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1315 ("AEAD without a separate IV")); 1316 break; 1317 case CSP_MODE_ETA: 1318 KASSERT(crp->crp_op == 1319 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1320 crp->crp_op == 1321 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1322 ("invalid ETA op %x", crp->crp_op)); 1323 break; 1324 } 1325 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1326 if (crp->crp_aad == NULL) { 1327 KASSERT(crp->crp_aad_start == 0 || 1328 crp->crp_aad_start < ilen, 1329 ("invalid AAD start")); 1330 KASSERT(crp->crp_aad_length != 0 || 1331 crp->crp_aad_start == 0, 1332 ("AAD with zero length and non-zero start")); 1333 KASSERT(crp->crp_aad_length == 0 || 1334 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1335 ("AAD outside input length")); 1336 } else { 1337 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1338 ("session doesn't support separate AAD buffer")); 1339 KASSERT(crp->crp_aad_start == 0, 1340 ("separate AAD buffer with non-zero AAD start")); 1341 KASSERT(crp->crp_aad_length != 0, 1342 ("separate AAD buffer with zero length")); 1343 } 1344 } else { 1345 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1346 crp->crp_aad_length == 0, 1347 ("AAD region in request not supporting AAD")); 1348 } 1349 if (csp->csp_ivlen == 0) { 1350 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1351 ("IV_SEPARATE set when IV isn't used")); 1352 KASSERT(crp->crp_iv_start == 0, 1353 ("crp_iv_start set when IV isn't used")); 1354 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1355 KASSERT(crp->crp_iv_start == 0, 1356 ("IV_SEPARATE used with non-zero IV start")); 1357 } else { 1358 KASSERT(crp->crp_iv_start < ilen, 1359 ("invalid IV start")); 1360 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1361 ("IV outside buffer length")); 1362 } 1363 /* XXX: payload_start of 0 should always be < ilen? */ 1364 KASSERT(crp->crp_payload_start == 0 || 1365 crp->crp_payload_start < ilen, 1366 ("invalid payload start")); 1367 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1368 ilen, ("payload outside input buffer")); 1369 if (out == NULL) { 1370 KASSERT(crp->crp_payload_output_start == 0, 1371 ("payload output start non-zero without output buffer")); 1372 } else if (csp->csp_mode == CSP_MODE_DIGEST) { 1373 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST), 1374 ("digest verify with separate output buffer")); 1375 KASSERT(crp->crp_payload_output_start == 0, 1376 ("digest operation with non-zero payload output start")); 1377 } else { 1378 KASSERT(crp->crp_payload_output_start == 0 || 1379 crp->crp_payload_output_start < olen, 1380 ("invalid payload output start")); 1381 KASSERT(crp->crp_payload_output_start + 1382 crp->crp_payload_length <= olen, 1383 ("payload outside output buffer")); 1384 } 1385 if (csp->csp_mode == CSP_MODE_DIGEST || 1386 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1387 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1388 len = ilen; 1389 else 1390 len = olen; 1391 KASSERT(crp->crp_digest_start == 0 || 1392 crp->crp_digest_start < len, 1393 ("invalid digest start")); 1394 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1395 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1396 ("digest outside buffer")); 1397 } else { 1398 KASSERT(crp->crp_digest_start == 0, 1399 ("non-zero digest start for request without a digest")); 1400 } 1401 if (csp->csp_cipher_klen != 0) 1402 KASSERT(csp->csp_cipher_key != NULL || 1403 crp->crp_cipher_key != NULL, 1404 ("cipher request without a key")); 1405 if (csp->csp_auth_klen != 0) 1406 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1407 ("auth request without a key")); 1408 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1409 } 1410 #endif 1411 1412 static int 1413 crypto_dispatch_one(struct cryptop *crp, int hint) 1414 { 1415 struct cryptocap *cap; 1416 int result; 1417 1418 #ifdef INVARIANTS 1419 crp_sanity(crp); 1420 #endif 1421 CRYPTOSTAT_INC(cs_ops); 1422 1423 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1424 1425 /* 1426 * Caller marked the request to be processed immediately; dispatch it 1427 * directly to the driver unless the driver is currently blocked, in 1428 * which case it is queued for deferred dispatch. 1429 */ 1430 cap = crp->crp_session->cap; 1431 if (!atomic_load_int(&cap->cc_qblocked)) { 1432 result = crypto_invoke(cap, crp, hint); 1433 if (result != ERESTART) 1434 return (result); 1435 1436 /* 1437 * The driver ran out of resources, put the request on the 1438 * queue. 1439 */ 1440 } 1441 crypto_batch_enqueue(crp); 1442 return (0); 1443 } 1444 1445 int 1446 crypto_dispatch(struct cryptop *crp) 1447 { 1448 return (crypto_dispatch_one(crp, 0)); 1449 } 1450 1451 int 1452 crypto_dispatch_async(struct cryptop *crp, int flags) 1453 { 1454 struct crypto_ret_worker *ret_worker; 1455 1456 if (!CRYPTO_SESS_SYNC(crp->crp_session)) { 1457 /* 1458 * The driver issues completions asynchonously, don't bother 1459 * deferring dispatch to a worker thread. 1460 */ 1461 return (crypto_dispatch(crp)); 1462 } 1463 1464 #ifdef INVARIANTS 1465 crp_sanity(crp); 1466 #endif 1467 CRYPTOSTAT_INC(cs_ops); 1468 1469 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1470 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) { 1471 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED; 1472 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1473 CRYPTO_RETW_LOCK(ret_worker); 1474 crp->crp_seq = ret_worker->reorder_ops++; 1475 CRYPTO_RETW_UNLOCK(ret_worker); 1476 } 1477 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1478 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1479 return (0); 1480 } 1481 1482 void 1483 crypto_dispatch_batch(struct cryptopq *crpq, int flags) 1484 { 1485 struct cryptop *crp; 1486 int hint; 1487 1488 while ((crp = TAILQ_FIRST(crpq)) != NULL) { 1489 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0; 1490 TAILQ_REMOVE(crpq, crp, crp_next); 1491 if (crypto_dispatch_one(crp, hint) != 0) 1492 crypto_batch_enqueue(crp); 1493 } 1494 } 1495 1496 static void 1497 crypto_batch_enqueue(struct cryptop *crp) 1498 { 1499 1500 CRYPTO_Q_LOCK(); 1501 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1502 if (crp_sleep) 1503 wakeup_one(&crp_q); 1504 CRYPTO_Q_UNLOCK(); 1505 } 1506 1507 static void 1508 crypto_task_invoke(void *ctx, int pending) 1509 { 1510 struct cryptocap *cap; 1511 struct cryptop *crp; 1512 int result; 1513 1514 crp = (struct cryptop *)ctx; 1515 cap = crp->crp_session->cap; 1516 result = crypto_invoke(cap, crp, 0); 1517 if (result == ERESTART) 1518 crypto_batch_enqueue(crp); 1519 } 1520 1521 /* 1522 * Dispatch a crypto request to the appropriate crypto devices. 1523 */ 1524 static int 1525 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1526 { 1527 int error; 1528 1529 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1530 KASSERT(crp->crp_callback != NULL, 1531 ("%s: crp->crp_callback == NULL", __func__)); 1532 KASSERT(crp->crp_session != NULL, 1533 ("%s: crp->crp_session == NULL", __func__)); 1534 1535 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1536 struct crypto_session_params csp; 1537 crypto_session_t nses; 1538 1539 /* 1540 * Driver has unregistered; migrate the session and return 1541 * an error to the caller so they'll resubmit the op. 1542 * 1543 * XXX: What if there are more already queued requests for this 1544 * session? 1545 * 1546 * XXX: Real solution is to make sessions refcounted 1547 * and force callers to hold a reference when 1548 * assigning to crp_session. Could maybe change 1549 * crypto_getreq to accept a session pointer to make 1550 * that work. Alternatively, we could abandon the 1551 * notion of rewriting crp_session in requests forcing 1552 * the caller to deal with allocating a new session. 1553 * Perhaps provide a method to allow a crp's session to 1554 * be swapped that callers could use. 1555 */ 1556 csp = crp->crp_session->csp; 1557 crypto_freesession(crp->crp_session); 1558 1559 /* 1560 * XXX: Key pointers may no longer be valid. If we 1561 * really want to support this we need to define the 1562 * KPI such that 'csp' is required to be valid for the 1563 * duration of a session by the caller perhaps. 1564 * 1565 * XXX: If the keys have been changed this will reuse 1566 * the old keys. This probably suggests making 1567 * rekeying more explicit and updating the key 1568 * pointers in 'csp' when the keys change. 1569 */ 1570 if (crypto_newsession(&nses, &csp, 1571 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1572 crp->crp_session = nses; 1573 1574 crp->crp_etype = EAGAIN; 1575 crypto_done(crp); 1576 error = 0; 1577 } else { 1578 /* 1579 * Invoke the driver to process the request. Errors are 1580 * signaled by setting crp_etype before invoking the completion 1581 * callback. 1582 */ 1583 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1584 KASSERT(error == 0 || error == ERESTART, 1585 ("%s: invalid error %d from CRYPTODEV_PROCESS", 1586 __func__, error)); 1587 } 1588 return (error); 1589 } 1590 1591 void 1592 crypto_destroyreq(struct cryptop *crp) 1593 { 1594 #ifdef DIAGNOSTIC 1595 { 1596 struct cryptop *crp2; 1597 struct crypto_ret_worker *ret_worker; 1598 1599 if (!crypto_destroyreq_check) 1600 return; 1601 1602 CRYPTO_Q_LOCK(); 1603 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1604 KASSERT(crp2 != crp, 1605 ("Freeing cryptop from the crypto queue (%p).", 1606 crp)); 1607 } 1608 CRYPTO_Q_UNLOCK(); 1609 1610 FOREACH_CRYPTO_RETW(ret_worker) { 1611 CRYPTO_RETW_LOCK(ret_worker); 1612 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1613 KASSERT(crp2 != crp, 1614 ("Freeing cryptop from the return queue (%p).", 1615 crp)); 1616 } 1617 CRYPTO_RETW_UNLOCK(ret_worker); 1618 } 1619 } 1620 #endif 1621 } 1622 1623 void 1624 crypto_freereq(struct cryptop *crp) 1625 { 1626 if (crp == NULL) 1627 return; 1628 1629 crypto_destroyreq(crp); 1630 uma_zfree(cryptop_zone, crp); 1631 } 1632 1633 void 1634 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1635 { 1636 memset(crp, 0, sizeof(*crp)); 1637 crp->crp_session = cses; 1638 } 1639 1640 struct cryptop * 1641 crypto_getreq(crypto_session_t cses, int how) 1642 { 1643 struct cryptop *crp; 1644 1645 MPASS(how == M_WAITOK || how == M_NOWAIT); 1646 crp = uma_zalloc(cryptop_zone, how); 1647 if (crp != NULL) 1648 crypto_initreq(crp, cses); 1649 return (crp); 1650 } 1651 1652 /* 1653 * Clone a crypto request, but associate it with the specified session 1654 * rather than inheriting the session from the original request. The 1655 * fields describing the request buffers are copied, but not the 1656 * opaque field or callback function. 1657 */ 1658 struct cryptop * 1659 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how) 1660 { 1661 struct cryptop *new; 1662 1663 MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0); 1664 new = crypto_getreq(cses, how); 1665 if (new == NULL) 1666 return (NULL); 1667 1668 memcpy(&new->crp_startcopy, &crp->crp_startcopy, 1669 __rangeof(struct cryptop, crp_startcopy, crp_endcopy)); 1670 return (new); 1671 } 1672 1673 /* 1674 * Invoke the callback on behalf of the driver. 1675 */ 1676 void 1677 crypto_done(struct cryptop *crp) 1678 { 1679 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1680 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1681 crp->crp_flags |= CRYPTO_F_DONE; 1682 if (crp->crp_etype != 0) 1683 CRYPTOSTAT_INC(cs_errs); 1684 1685 /* 1686 * CBIMM means unconditionally do the callback immediately; 1687 * CBIFSYNC means do the callback immediately only if the 1688 * operation was done synchronously. Both are used to avoid 1689 * doing extraneous context switches; the latter is mostly 1690 * used with the software crypto driver. 1691 */ 1692 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 && 1693 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 || 1694 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 && 1695 CRYPTO_SESS_SYNC(crp->crp_session)))) { 1696 /* 1697 * Do the callback directly. This is ok when the 1698 * callback routine does very little (e.g. the 1699 * /dev/crypto callback method just does a wakeup). 1700 */ 1701 crp->crp_callback(crp); 1702 } else { 1703 struct crypto_ret_worker *ret_worker; 1704 bool wake; 1705 1706 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1707 1708 /* 1709 * Normal case; queue the callback for the thread. 1710 */ 1711 CRYPTO_RETW_LOCK(ret_worker); 1712 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) { 1713 struct cryptop *tmp; 1714 1715 TAILQ_FOREACH_REVERSE(tmp, 1716 &ret_worker->crp_ordered_ret_q, cryptop_q, 1717 crp_next) { 1718 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1719 TAILQ_INSERT_AFTER( 1720 &ret_worker->crp_ordered_ret_q, tmp, 1721 crp, crp_next); 1722 break; 1723 } 1724 } 1725 if (tmp == NULL) { 1726 TAILQ_INSERT_HEAD( 1727 &ret_worker->crp_ordered_ret_q, crp, 1728 crp_next); 1729 } 1730 1731 wake = crp->crp_seq == ret_worker->reorder_cur_seq; 1732 } else { 1733 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q); 1734 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, 1735 crp_next); 1736 } 1737 1738 if (wake) 1739 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1740 CRYPTO_RETW_UNLOCK(ret_worker); 1741 } 1742 } 1743 1744 /* 1745 * Terminate a thread at module unload. The process that 1746 * initiated this is waiting for us to signal that we're gone; 1747 * wake it up and exit. We use the driver table lock to insure 1748 * we don't do the wakeup before they're waiting. There is no 1749 * race here because the waiter sleeps on the proc lock for the 1750 * thread so it gets notified at the right time because of an 1751 * extra wakeup that's done in exit1(). 1752 */ 1753 static void 1754 crypto_finis(void *chan) 1755 { 1756 CRYPTO_DRIVER_LOCK(); 1757 wakeup_one(chan); 1758 CRYPTO_DRIVER_UNLOCK(); 1759 kthread_exit(); 1760 } 1761 1762 /* 1763 * Crypto thread, dispatches crypto requests. 1764 */ 1765 static void 1766 crypto_dispatch_thread(void *arg __unused) 1767 { 1768 struct cryptop *crp, *submit; 1769 struct cryptocap *cap; 1770 int result, hint; 1771 1772 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1773 fpu_kern_thread(FPU_KERN_NORMAL); 1774 #endif 1775 1776 CRYPTO_Q_LOCK(); 1777 for (;;) { 1778 /* 1779 * Find the first element in the queue that can be 1780 * processed and look-ahead to see if multiple ops 1781 * are ready for the same driver. 1782 */ 1783 submit = NULL; 1784 hint = 0; 1785 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1786 cap = crp->crp_session->cap; 1787 /* 1788 * Driver cannot disappeared when there is an active 1789 * session. 1790 */ 1791 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1792 __func__, __LINE__)); 1793 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1794 /* Op needs to be migrated, process it. */ 1795 if (submit == NULL) 1796 submit = crp; 1797 break; 1798 } 1799 if (!cap->cc_qblocked) { 1800 if (submit != NULL) { 1801 /* 1802 * We stop on finding another op, 1803 * regardless whether its for the same 1804 * driver or not. We could keep 1805 * searching the queue but it might be 1806 * better to just use a per-driver 1807 * queue instead. 1808 */ 1809 if (submit->crp_session->cap == cap) 1810 hint = CRYPTO_HINT_MORE; 1811 } else { 1812 submit = crp; 1813 } 1814 break; 1815 } 1816 } 1817 if (submit != NULL) { 1818 TAILQ_REMOVE(&crp_q, submit, crp_next); 1819 cap = submit->crp_session->cap; 1820 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1821 __func__, __LINE__)); 1822 CRYPTO_Q_UNLOCK(); 1823 result = crypto_invoke(cap, submit, hint); 1824 CRYPTO_Q_LOCK(); 1825 if (result == ERESTART) { 1826 /* 1827 * The driver ran out of resources, mark the 1828 * driver ``blocked'' for cryptop's and put 1829 * the request back in the queue. It would 1830 * best to put the request back where we got 1831 * it but that's hard so for now we put it 1832 * at the front. This should be ok; putting 1833 * it at the end does not work. 1834 */ 1835 cap->cc_qblocked = 1; 1836 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1837 CRYPTOSTAT_INC(cs_blocks); 1838 } 1839 } else { 1840 /* 1841 * Nothing more to be processed. Sleep until we're 1842 * woken because there are more ops to process. 1843 * This happens either by submission or by a driver 1844 * becoming unblocked and notifying us through 1845 * crypto_unblock. Note that when we wakeup we 1846 * start processing each queue again from the 1847 * front. It's not clear that it's important to 1848 * preserve this ordering since ops may finish 1849 * out of order if dispatched to different devices 1850 * and some become blocked while others do not. 1851 */ 1852 crp_sleep = 1; 1853 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1854 crp_sleep = 0; 1855 if (cryptotd == NULL) 1856 break; 1857 CRYPTOSTAT_INC(cs_intrs); 1858 } 1859 } 1860 CRYPTO_Q_UNLOCK(); 1861 1862 crypto_finis(&crp_q); 1863 } 1864 1865 /* 1866 * Crypto returns thread, does callbacks for processed crypto requests. 1867 * Callbacks are done here, rather than in the crypto drivers, because 1868 * callbacks typically are expensive and would slow interrupt handling. 1869 */ 1870 static void 1871 crypto_ret_thread(void *arg) 1872 { 1873 struct crypto_ret_worker *ret_worker = arg; 1874 struct cryptop *crpt; 1875 1876 CRYPTO_RETW_LOCK(ret_worker); 1877 for (;;) { 1878 /* Harvest return q's for completed ops */ 1879 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 1880 if (crpt != NULL) { 1881 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 1882 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 1883 ret_worker->reorder_cur_seq++; 1884 } else { 1885 crpt = NULL; 1886 } 1887 } 1888 1889 if (crpt == NULL) { 1890 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 1891 if (crpt != NULL) 1892 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 1893 } 1894 1895 if (crpt != NULL) { 1896 CRYPTO_RETW_UNLOCK(ret_worker); 1897 /* 1898 * Run callbacks unlocked. 1899 */ 1900 if (crpt != NULL) 1901 crpt->crp_callback(crpt); 1902 CRYPTO_RETW_LOCK(ret_worker); 1903 } else { 1904 /* 1905 * Nothing more to be processed. Sleep until we're 1906 * woken because there are more returns to process. 1907 */ 1908 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 1909 "crypto_ret_wait", 0); 1910 if (ret_worker->td == NULL) 1911 break; 1912 CRYPTOSTAT_INC(cs_rets); 1913 } 1914 } 1915 CRYPTO_RETW_UNLOCK(ret_worker); 1916 1917 crypto_finis(&ret_worker->crp_ret_q); 1918 } 1919 1920 #ifdef DDB 1921 static void 1922 db_show_drivers(void) 1923 { 1924 int hid; 1925 1926 db_printf("%12s %4s %8s %2s\n" 1927 , "Device" 1928 , "Ses" 1929 , "Flags" 1930 , "QB" 1931 ); 1932 for (hid = 0; hid < crypto_drivers_size; hid++) { 1933 const struct cryptocap *cap = crypto_drivers[hid]; 1934 if (cap == NULL) 1935 continue; 1936 db_printf("%-12s %4u %08x %2u\n" 1937 , device_get_nameunit(cap->cc_dev) 1938 , cap->cc_sessions 1939 , cap->cc_flags 1940 , cap->cc_qblocked 1941 ); 1942 } 1943 } 1944 1945 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE) 1946 { 1947 struct cryptop *crp; 1948 struct crypto_ret_worker *ret_worker; 1949 1950 db_show_drivers(); 1951 db_printf("\n"); 1952 1953 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1954 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1955 "Device", "Callback"); 1956 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1957 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 1958 , crp->crp_session->cap->cc_hid 1959 , (int) crypto_ses2caps(crp->crp_session) 1960 , crp->crp_olen 1961 , crp->crp_etype 1962 , crp->crp_flags 1963 , device_get_nameunit(crp->crp_session->cap->cc_dev) 1964 , crp->crp_callback 1965 ); 1966 } 1967 FOREACH_CRYPTO_RETW(ret_worker) { 1968 db_printf("\n%8s %4s %4s %4s %8s\n", 1969 "ret_worker", "HID", "Etype", "Flags", "Callback"); 1970 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1971 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 1972 db_printf("%8td %4u %4u %04x %8p\n" 1973 , CRYPTO_RETW_ID(ret_worker) 1974 , crp->crp_session->cap->cc_hid 1975 , crp->crp_etype 1976 , crp->crp_flags 1977 , crp->crp_callback 1978 ); 1979 } 1980 } 1981 } 1982 } 1983 #endif 1984 1985 int crypto_modevent(module_t mod, int type, void *unused); 1986 1987 /* 1988 * Initialization code, both for static and dynamic loading. 1989 * Note this is not invoked with the usual MODULE_DECLARE 1990 * mechanism but instead is listed as a dependency by the 1991 * cryptosoft driver. This guarantees proper ordering of 1992 * calls on module load/unload. 1993 */ 1994 int 1995 crypto_modevent(module_t mod, int type, void *unused) 1996 { 1997 int error = EINVAL; 1998 1999 switch (type) { 2000 case MOD_LOAD: 2001 error = crypto_init(); 2002 if (error == 0 && bootverbose) 2003 printf("crypto: <crypto core>\n"); 2004 break; 2005 case MOD_UNLOAD: 2006 /*XXX disallow if active sessions */ 2007 error = 0; 2008 crypto_destroy(); 2009 return 0; 2010 } 2011 return error; 2012 } 2013 MODULE_VERSION(crypto, 1); 2014 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2015