1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_compat.h" 60 #include "opt_ddb.h" 61 62 #include <sys/param.h> 63 #include <sys/systm.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/linker.h> 68 #include <sys/lock.h> 69 #include <sys/module.h> 70 #include <sys/mutex.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/proc.h> 74 #include <sys/refcount.h> 75 #include <sys/sdt.h> 76 #include <sys/smp.h> 77 #include <sys/sysctl.h> 78 #include <sys/taskqueue.h> 79 #include <sys/uio.h> 80 81 #include <ddb/ddb.h> 82 83 #include <vm/uma.h> 84 #include <crypto/intake.h> 85 #include <opencrypto/cryptodev.h> 86 #include <opencrypto/xform_auth.h> 87 #include <opencrypto/xform_enc.h> 88 89 #include <sys/kobj.h> 90 #include <sys/bus.h> 91 #include "cryptodev_if.h" 92 93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 94 #include <machine/pcb.h> 95 #endif 96 97 SDT_PROVIDER_DEFINE(opencrypto); 98 99 /* 100 * Crypto drivers register themselves by allocating a slot in the 101 * crypto_drivers table with crypto_get_driverid() and then registering 102 * each asym algorithm they support with crypto_kregister(). 103 */ 104 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 108 109 /* 110 * Crypto device/driver capabilities structure. 111 * 112 * Synchronization: 113 * (d) - protected by CRYPTO_DRIVER_LOCK() 114 * (q) - protected by CRYPTO_Q_LOCK() 115 * Not tagged fields are read-only. 116 */ 117 struct cryptocap { 118 device_t cc_dev; 119 uint32_t cc_hid; 120 u_int32_t cc_sessions; /* (d) # of sessions */ 121 u_int32_t cc_koperations; /* (d) # os asym operations */ 122 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 123 124 int cc_flags; /* (d) flags */ 125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 126 int cc_qblocked; /* (q) symmetric q blocked */ 127 int cc_kqblocked; /* (q) asymmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 void *softc; 138 struct crypto_session_params csp; 139 }; 140 141 /* 142 * There are two queues for crypto requests; one for symmetric (e.g. 143 * cipher) operations and one for asymmetric (e.g. MOD)operations. 144 * A single mutex is used to lock access to both queues. We could 145 * have one per-queue but having one simplifies handling of block/unblock 146 * operations. 147 */ 148 static int crp_sleep = 0; 149 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 150 static TAILQ_HEAD(,cryptkop) crp_kq; 151 static struct mtx crypto_q_mtx; 152 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 153 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 154 155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 156 "In-kernel cryptography"); 157 158 /* 159 * Taskqueue used to dispatch the crypto requests 160 * that have the CRYPTO_F_ASYNC flag 161 */ 162 static struct taskqueue *crypto_tq; 163 164 /* 165 * Crypto seq numbers are operated on with modular arithmetic 166 */ 167 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 168 169 struct crypto_ret_worker { 170 struct mtx crypto_ret_mtx; 171 172 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 173 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 174 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 175 176 u_int32_t reorder_ops; /* total ordered sym jobs received */ 177 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 178 179 struct proc *cryptoretproc; 180 }; 181 static struct crypto_ret_worker *crypto_ret_workers = NULL; 182 183 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 184 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 185 #define FOREACH_CRYPTO_RETW(w) \ 186 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 187 188 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 189 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 190 #define CRYPTO_RETW_EMPTY(w) \ 191 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 192 193 static int crypto_workers_num = 0; 194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 195 &crypto_workers_num, 0, 196 "Number of crypto workers used to dispatch crypto jobs"); 197 #ifdef COMPAT_FREEBSD12 198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 199 &crypto_workers_num, 0, 200 "Number of crypto workers used to dispatch crypto jobs"); 201 #endif 202 203 static uma_zone_t cryptop_zone; 204 static uma_zone_t cryptoses_zone; 205 206 int crypto_userasymcrypto = 1; 207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 208 &crypto_userasymcrypto, 0, 209 "Enable user-mode access to asymmetric crypto support"); 210 #ifdef COMPAT_FREEBSD12 211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 212 &crypto_userasymcrypto, 0, 213 "Enable/disable user-mode access to asymmetric crypto support"); 214 #endif 215 216 int crypto_devallowsoft = 0; 217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 218 &crypto_devallowsoft, 0, 219 "Enable use of software crypto by /dev/crypto"); 220 #ifdef COMPAT_FREEBSD12 221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 222 &crypto_devallowsoft, 0, 223 "Enable/disable use of software crypto by /dev/crypto"); 224 #endif 225 226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 227 228 static void crypto_proc(void); 229 static struct proc *cryptoproc; 230 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 231 static void crypto_destroy(void); 232 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 233 static int crypto_kinvoke(struct cryptkop *krp); 234 static void crypto_task_invoke(void *ctx, int pending); 235 static void crypto_batch_enqueue(struct cryptop *crp); 236 237 static struct cryptostats cryptostats; 238 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats, 239 cryptostats, "Crypto system statistics"); 240 241 #ifdef CRYPTO_TIMING 242 static int crypto_timing = 0; 243 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 244 &crypto_timing, 0, "Enable/disable crypto timing support"); 245 #endif 246 247 /* Try to avoid directly exposing the key buffer as a symbol */ 248 static struct keybuf *keybuf; 249 250 static struct keybuf empty_keybuf = { 251 .kb_nents = 0 252 }; 253 254 /* Obtain the key buffer from boot metadata */ 255 static void 256 keybuf_init(void) 257 { 258 caddr_t kmdp; 259 260 kmdp = preload_search_by_type("elf kernel"); 261 262 if (kmdp == NULL) 263 kmdp = preload_search_by_type("elf64 kernel"); 264 265 keybuf = (struct keybuf *)preload_search_info(kmdp, 266 MODINFO_METADATA | MODINFOMD_KEYBUF); 267 268 if (keybuf == NULL) 269 keybuf = &empty_keybuf; 270 } 271 272 /* It'd be nice if we could store these in some kind of secure memory... */ 273 struct keybuf * get_keybuf(void) { 274 275 return (keybuf); 276 } 277 278 static struct cryptocap * 279 cap_ref(struct cryptocap *cap) 280 { 281 282 refcount_acquire(&cap->cc_refs); 283 return (cap); 284 } 285 286 static void 287 cap_rele(struct cryptocap *cap) 288 { 289 290 if (refcount_release(&cap->cc_refs) == 0) 291 return; 292 293 KASSERT(cap->cc_sessions == 0, 294 ("freeing crypto driver with active sessions")); 295 KASSERT(cap->cc_koperations == 0, 296 ("freeing crypto driver with active key operations")); 297 298 free(cap, M_CRYPTO_DATA); 299 } 300 301 static int 302 crypto_init(void) 303 { 304 struct crypto_ret_worker *ret_worker; 305 int error; 306 307 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 308 MTX_DEF|MTX_QUIET); 309 310 TAILQ_INIT(&crp_q); 311 TAILQ_INIT(&crp_kq); 312 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 313 314 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 315 0, 0, 0, 0, 316 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 317 cryptoses_zone = uma_zcreate("crypto_session", 318 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 319 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 320 321 if (cryptop_zone == NULL || cryptoses_zone == NULL) { 322 printf("crypto_init: cannot setup crypto zones\n"); 323 error = ENOMEM; 324 goto bad; 325 } 326 327 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 328 crypto_drivers = malloc(crypto_drivers_size * 329 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 330 if (crypto_drivers == NULL) { 331 printf("crypto_init: cannot setup crypto drivers\n"); 332 error = ENOMEM; 333 goto bad; 334 } 335 336 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 337 crypto_workers_num = mp_ncpus; 338 339 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 340 taskqueue_thread_enqueue, &crypto_tq); 341 if (crypto_tq == NULL) { 342 printf("crypto init: cannot setup crypto taskqueue\n"); 343 error = ENOMEM; 344 goto bad; 345 } 346 347 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 348 "crypto"); 349 350 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 351 &cryptoproc, 0, 0, "crypto"); 352 if (error) { 353 printf("crypto_init: cannot start crypto thread; error %d", 354 error); 355 goto bad; 356 } 357 358 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 359 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 360 if (crypto_ret_workers == NULL) { 361 error = ENOMEM; 362 printf("crypto_init: cannot allocate ret workers\n"); 363 goto bad; 364 } 365 366 367 FOREACH_CRYPTO_RETW(ret_worker) { 368 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 369 TAILQ_INIT(&ret_worker->crp_ret_q); 370 TAILQ_INIT(&ret_worker->crp_ret_kq); 371 372 ret_worker->reorder_ops = 0; 373 ret_worker->reorder_cur_seq = 0; 374 375 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 376 377 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 378 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 379 if (error) { 380 printf("crypto_init: cannot start cryptoret thread; error %d", 381 error); 382 goto bad; 383 } 384 } 385 386 keybuf_init(); 387 388 return 0; 389 bad: 390 crypto_destroy(); 391 return error; 392 } 393 394 /* 395 * Signal a crypto thread to terminate. We use the driver 396 * table lock to synchronize the sleep/wakeups so that we 397 * are sure the threads have terminated before we release 398 * the data structures they use. See crypto_finis below 399 * for the other half of this song-and-dance. 400 */ 401 static void 402 crypto_terminate(struct proc **pp, void *q) 403 { 404 struct proc *p; 405 406 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 407 p = *pp; 408 *pp = NULL; 409 if (p) { 410 wakeup_one(q); 411 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 412 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 413 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 414 PROC_UNLOCK(p); 415 CRYPTO_DRIVER_LOCK(); 416 } 417 } 418 419 static void 420 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx, 421 uint8_t padval) 422 { 423 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 424 u_int i; 425 426 KASSERT(axf->blocksize <= sizeof(hmac_key), 427 ("Invalid HMAC block size %d", axf->blocksize)); 428 429 /* 430 * If the key is larger than the block size, use the digest of 431 * the key as the key instead. 432 */ 433 memset(hmac_key, 0, sizeof(hmac_key)); 434 if (klen > axf->blocksize) { 435 axf->Init(auth_ctx); 436 axf->Update(auth_ctx, key, klen); 437 axf->Final(hmac_key, auth_ctx); 438 klen = axf->hashsize; 439 } else 440 memcpy(hmac_key, key, klen); 441 442 for (i = 0; i < axf->blocksize; i++) 443 hmac_key[i] ^= padval; 444 445 axf->Init(auth_ctx); 446 axf->Update(auth_ctx, hmac_key, axf->blocksize); 447 } 448 449 void 450 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen, 451 void *auth_ctx) 452 { 453 454 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 455 } 456 457 void 458 hmac_init_opad(struct auth_hash *axf, const char *key, int klen, 459 void *auth_ctx) 460 { 461 462 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 463 } 464 465 static void 466 crypto_destroy(void) 467 { 468 struct crypto_ret_worker *ret_worker; 469 int i; 470 471 /* 472 * Terminate any crypto threads. 473 */ 474 if (crypto_tq != NULL) 475 taskqueue_drain_all(crypto_tq); 476 CRYPTO_DRIVER_LOCK(); 477 crypto_terminate(&cryptoproc, &crp_q); 478 FOREACH_CRYPTO_RETW(ret_worker) 479 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 480 CRYPTO_DRIVER_UNLOCK(); 481 482 /* XXX flush queues??? */ 483 484 /* 485 * Reclaim dynamically allocated resources. 486 */ 487 for (i = 0; i < crypto_drivers_size; i++) { 488 if (crypto_drivers[i] != NULL) 489 cap_rele(crypto_drivers[i]); 490 } 491 free(crypto_drivers, M_CRYPTO_DATA); 492 493 if (cryptoses_zone != NULL) 494 uma_zdestroy(cryptoses_zone); 495 if (cryptop_zone != NULL) 496 uma_zdestroy(cryptop_zone); 497 mtx_destroy(&crypto_q_mtx); 498 FOREACH_CRYPTO_RETW(ret_worker) 499 mtx_destroy(&ret_worker->crypto_ret_mtx); 500 free(crypto_ret_workers, M_CRYPTO_DATA); 501 if (crypto_tq != NULL) 502 taskqueue_free(crypto_tq); 503 mtx_destroy(&crypto_drivers_mtx); 504 } 505 506 uint32_t 507 crypto_ses2hid(crypto_session_t crypto_session) 508 { 509 return (crypto_session->cap->cc_hid); 510 } 511 512 uint32_t 513 crypto_ses2caps(crypto_session_t crypto_session) 514 { 515 return (crypto_session->cap->cc_flags & 0xff000000); 516 } 517 518 void * 519 crypto_get_driver_session(crypto_session_t crypto_session) 520 { 521 return (crypto_session->softc); 522 } 523 524 const struct crypto_session_params * 525 crypto_get_params(crypto_session_t crypto_session) 526 { 527 return (&crypto_session->csp); 528 } 529 530 struct auth_hash * 531 crypto_auth_hash(const struct crypto_session_params *csp) 532 { 533 534 switch (csp->csp_auth_alg) { 535 case CRYPTO_SHA1_HMAC: 536 return (&auth_hash_hmac_sha1); 537 case CRYPTO_SHA2_224_HMAC: 538 return (&auth_hash_hmac_sha2_224); 539 case CRYPTO_SHA2_256_HMAC: 540 return (&auth_hash_hmac_sha2_256); 541 case CRYPTO_SHA2_384_HMAC: 542 return (&auth_hash_hmac_sha2_384); 543 case CRYPTO_SHA2_512_HMAC: 544 return (&auth_hash_hmac_sha2_512); 545 case CRYPTO_NULL_HMAC: 546 return (&auth_hash_null); 547 case CRYPTO_RIPEMD160_HMAC: 548 return (&auth_hash_hmac_ripemd_160); 549 case CRYPTO_SHA1: 550 return (&auth_hash_sha1); 551 case CRYPTO_SHA2_224: 552 return (&auth_hash_sha2_224); 553 case CRYPTO_SHA2_256: 554 return (&auth_hash_sha2_256); 555 case CRYPTO_SHA2_384: 556 return (&auth_hash_sha2_384); 557 case CRYPTO_SHA2_512: 558 return (&auth_hash_sha2_512); 559 case CRYPTO_AES_NIST_GMAC: 560 switch (csp->csp_auth_klen) { 561 case 128 / 8: 562 return (&auth_hash_nist_gmac_aes_128); 563 case 192 / 8: 564 return (&auth_hash_nist_gmac_aes_192); 565 case 256 / 8: 566 return (&auth_hash_nist_gmac_aes_256); 567 default: 568 return (NULL); 569 } 570 case CRYPTO_BLAKE2B: 571 return (&auth_hash_blake2b); 572 case CRYPTO_BLAKE2S: 573 return (&auth_hash_blake2s); 574 case CRYPTO_POLY1305: 575 return (&auth_hash_poly1305); 576 case CRYPTO_AES_CCM_CBC_MAC: 577 switch (csp->csp_auth_klen) { 578 case 128 / 8: 579 return (&auth_hash_ccm_cbc_mac_128); 580 case 192 / 8: 581 return (&auth_hash_ccm_cbc_mac_192); 582 case 256 / 8: 583 return (&auth_hash_ccm_cbc_mac_256); 584 default: 585 return (NULL); 586 } 587 default: 588 return (NULL); 589 } 590 } 591 592 struct enc_xform * 593 crypto_cipher(const struct crypto_session_params *csp) 594 { 595 596 switch (csp->csp_cipher_alg) { 597 case CRYPTO_RIJNDAEL128_CBC: 598 return (&enc_xform_rijndael128); 599 case CRYPTO_AES_XTS: 600 return (&enc_xform_aes_xts); 601 case CRYPTO_AES_ICM: 602 return (&enc_xform_aes_icm); 603 case CRYPTO_AES_NIST_GCM_16: 604 return (&enc_xform_aes_nist_gcm); 605 case CRYPTO_CAMELLIA_CBC: 606 return (&enc_xform_camellia); 607 case CRYPTO_NULL_CBC: 608 return (&enc_xform_null); 609 case CRYPTO_CHACHA20: 610 return (&enc_xform_chacha20); 611 case CRYPTO_AES_CCM_16: 612 return (&enc_xform_ccm); 613 default: 614 return (NULL); 615 } 616 } 617 618 static struct cryptocap * 619 crypto_checkdriver(u_int32_t hid) 620 { 621 622 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 623 } 624 625 /* 626 * Select a driver for a new session that supports the specified 627 * algorithms and, optionally, is constrained according to the flags. 628 */ 629 static struct cryptocap * 630 crypto_select_driver(const struct crypto_session_params *csp, int flags) 631 { 632 struct cryptocap *cap, *best; 633 int best_match, error, hid; 634 635 CRYPTO_DRIVER_ASSERT(); 636 637 best = NULL; 638 for (hid = 0; hid < crypto_drivers_size; hid++) { 639 /* 640 * If there is no driver for this slot, or the driver 641 * is not appropriate (hardware or software based on 642 * match), then skip. 643 */ 644 cap = crypto_drivers[hid]; 645 if (cap == NULL || 646 (cap->cc_flags & flags) == 0) 647 continue; 648 649 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 650 if (error >= 0) 651 continue; 652 653 /* 654 * Use the driver with the highest probe value. 655 * Hardware drivers use a higher probe value than 656 * software. In case of a tie, prefer the driver with 657 * the fewest active sessions. 658 */ 659 if (best == NULL || error > best_match || 660 (error == best_match && 661 cap->cc_sessions < best->cc_sessions)) { 662 best = cap; 663 best_match = error; 664 } 665 } 666 return best; 667 } 668 669 static enum alg_type { 670 ALG_NONE = 0, 671 ALG_CIPHER, 672 ALG_DIGEST, 673 ALG_KEYED_DIGEST, 674 ALG_COMPRESSION, 675 ALG_AEAD 676 } alg_types[] = { 677 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 678 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 679 [CRYPTO_AES_CBC] = ALG_CIPHER, 680 [CRYPTO_SHA1] = ALG_DIGEST, 681 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 682 [CRYPTO_NULL_CBC] = ALG_CIPHER, 683 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 684 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 685 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 686 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 687 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 688 [CRYPTO_AES_XTS] = ALG_CIPHER, 689 [CRYPTO_AES_ICM] = ALG_CIPHER, 690 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 691 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 692 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 693 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 694 [CRYPTO_CHACHA20] = ALG_CIPHER, 695 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 696 [CRYPTO_RIPEMD160] = ALG_DIGEST, 697 [CRYPTO_SHA2_224] = ALG_DIGEST, 698 [CRYPTO_SHA2_256] = ALG_DIGEST, 699 [CRYPTO_SHA2_384] = ALG_DIGEST, 700 [CRYPTO_SHA2_512] = ALG_DIGEST, 701 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 702 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 703 [CRYPTO_AES_CCM_16] = ALG_AEAD, 704 }; 705 706 static enum alg_type 707 alg_type(int alg) 708 { 709 710 if (alg < nitems(alg_types)) 711 return (alg_types[alg]); 712 return (ALG_NONE); 713 } 714 715 static bool 716 alg_is_compression(int alg) 717 { 718 719 return (alg_type(alg) == ALG_COMPRESSION); 720 } 721 722 static bool 723 alg_is_cipher(int alg) 724 { 725 726 return (alg_type(alg) == ALG_CIPHER); 727 } 728 729 static bool 730 alg_is_digest(int alg) 731 { 732 733 return (alg_type(alg) == ALG_DIGEST || 734 alg_type(alg) == ALG_KEYED_DIGEST); 735 } 736 737 static bool 738 alg_is_keyed_digest(int alg) 739 { 740 741 return (alg_type(alg) == ALG_KEYED_DIGEST); 742 } 743 744 static bool 745 alg_is_aead(int alg) 746 { 747 748 return (alg_type(alg) == ALG_AEAD); 749 } 750 751 /* Various sanity checks on crypto session parameters. */ 752 static bool 753 check_csp(const struct crypto_session_params *csp) 754 { 755 struct auth_hash *axf; 756 757 /* Mode-independent checks. */ 758 if ((csp->csp_flags & ~(CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD)) != 759 0) 760 return (false); 761 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 762 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 763 return (false); 764 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 765 return (false); 766 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 767 return (false); 768 769 switch (csp->csp_mode) { 770 case CSP_MODE_COMPRESS: 771 if (!alg_is_compression(csp->csp_cipher_alg)) 772 return (false); 773 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 774 return (false); 775 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 776 return (false); 777 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 778 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 779 csp->csp_auth_mlen != 0) 780 return (false); 781 break; 782 case CSP_MODE_CIPHER: 783 if (!alg_is_cipher(csp->csp_cipher_alg)) 784 return (false); 785 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 786 return (false); 787 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 788 if (csp->csp_cipher_klen == 0) 789 return (false); 790 if (csp->csp_ivlen == 0) 791 return (false); 792 } 793 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 794 return (false); 795 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 796 csp->csp_auth_mlen != 0) 797 return (false); 798 break; 799 case CSP_MODE_DIGEST: 800 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 801 return (false); 802 803 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 804 return (false); 805 806 /* IV is optional for digests (e.g. GMAC). */ 807 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 808 return (false); 809 if (!alg_is_digest(csp->csp_auth_alg)) 810 return (false); 811 812 /* Key is optional for BLAKE2 digests. */ 813 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 814 csp->csp_auth_alg == CRYPTO_BLAKE2S) 815 ; 816 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 817 if (csp->csp_auth_klen == 0) 818 return (false); 819 } else { 820 if (csp->csp_auth_klen != 0) 821 return (false); 822 } 823 if (csp->csp_auth_mlen != 0) { 824 axf = crypto_auth_hash(csp); 825 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 826 return (false); 827 } 828 break; 829 case CSP_MODE_AEAD: 830 if (!alg_is_aead(csp->csp_cipher_alg)) 831 return (false); 832 if (csp->csp_cipher_klen == 0) 833 return (false); 834 if (csp->csp_ivlen == 0 || 835 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 836 return (false); 837 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 838 return (false); 839 840 /* 841 * XXX: Would be nice to have a better way to get this 842 * value. 843 */ 844 switch (csp->csp_cipher_alg) { 845 case CRYPTO_AES_NIST_GCM_16: 846 case CRYPTO_AES_CCM_16: 847 if (csp->csp_auth_mlen > 16) 848 return (false); 849 break; 850 } 851 break; 852 case CSP_MODE_ETA: 853 if (!alg_is_cipher(csp->csp_cipher_alg)) 854 return (false); 855 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 856 if (csp->csp_cipher_klen == 0) 857 return (false); 858 if (csp->csp_ivlen == 0) 859 return (false); 860 } 861 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 862 return (false); 863 if (!alg_is_digest(csp->csp_auth_alg)) 864 return (false); 865 866 /* Key is optional for BLAKE2 digests. */ 867 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 868 csp->csp_auth_alg == CRYPTO_BLAKE2S) 869 ; 870 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 871 if (csp->csp_auth_klen == 0) 872 return (false); 873 } else { 874 if (csp->csp_auth_klen != 0) 875 return (false); 876 } 877 if (csp->csp_auth_mlen != 0) { 878 axf = crypto_auth_hash(csp); 879 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 880 return (false); 881 } 882 break; 883 default: 884 return (false); 885 } 886 887 return (true); 888 } 889 890 /* 891 * Delete a session after it has been detached from its driver. 892 */ 893 static void 894 crypto_deletesession(crypto_session_t cses) 895 { 896 struct cryptocap *cap; 897 898 cap = cses->cap; 899 900 explicit_bzero(cses->softc, cap->cc_session_size); 901 free(cses->softc, M_CRYPTO_DATA); 902 uma_zfree(cryptoses_zone, cses); 903 904 CRYPTO_DRIVER_LOCK(); 905 cap->cc_sessions--; 906 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 907 wakeup(cap); 908 CRYPTO_DRIVER_UNLOCK(); 909 cap_rele(cap); 910 } 911 912 /* 913 * Create a new session. The crid argument specifies a crypto 914 * driver to use or constraints on a driver to select (hardware 915 * only, software only, either). Whatever driver is selected 916 * must be capable of the requested crypto algorithms. 917 */ 918 int 919 crypto_newsession(crypto_session_t *cses, 920 const struct crypto_session_params *csp, int crid) 921 { 922 crypto_session_t res; 923 struct cryptocap *cap; 924 int err; 925 926 if (!check_csp(csp)) 927 return (EINVAL); 928 929 res = NULL; 930 931 CRYPTO_DRIVER_LOCK(); 932 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 933 /* 934 * Use specified driver; verify it is capable. 935 */ 936 cap = crypto_checkdriver(crid); 937 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 938 cap = NULL; 939 } else { 940 /* 941 * No requested driver; select based on crid flags. 942 */ 943 cap = crypto_select_driver(csp, crid); 944 } 945 if (cap == NULL) { 946 CRYPTO_DRIVER_UNLOCK(); 947 CRYPTDEB("no driver"); 948 return (EOPNOTSUPP); 949 } 950 cap_ref(cap); 951 cap->cc_sessions++; 952 CRYPTO_DRIVER_UNLOCK(); 953 954 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 955 res->cap = cap; 956 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 957 M_ZERO); 958 res->csp = *csp; 959 960 /* Call the driver initialization routine. */ 961 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 962 if (err != 0) { 963 CRYPTDEB("dev newsession failed: %d", err); 964 crypto_deletesession(res); 965 return (err); 966 } 967 968 *cses = res; 969 return (0); 970 } 971 972 /* 973 * Delete an existing session (or a reserved session on an unregistered 974 * driver). 975 */ 976 void 977 crypto_freesession(crypto_session_t cses) 978 { 979 struct cryptocap *cap; 980 981 if (cses == NULL) 982 return; 983 984 cap = cses->cap; 985 986 /* Call the driver cleanup routine, if available. */ 987 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 988 989 crypto_deletesession(cses); 990 } 991 992 /* 993 * Return a new driver id. Registers a driver with the system so that 994 * it can be probed by subsequent sessions. 995 */ 996 int32_t 997 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 998 { 999 struct cryptocap *cap, **newdrv; 1000 int i; 1001 1002 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1003 device_printf(dev, 1004 "no flags specified when registering driver\n"); 1005 return -1; 1006 } 1007 1008 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1009 cap->cc_dev = dev; 1010 cap->cc_session_size = sessionsize; 1011 cap->cc_flags = flags; 1012 refcount_init(&cap->cc_refs, 1); 1013 1014 CRYPTO_DRIVER_LOCK(); 1015 for (;;) { 1016 for (i = 0; i < crypto_drivers_size; i++) { 1017 if (crypto_drivers[i] == NULL) 1018 break; 1019 } 1020 1021 if (i < crypto_drivers_size) 1022 break; 1023 1024 /* Out of entries, allocate some more. */ 1025 1026 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1027 CRYPTO_DRIVER_UNLOCK(); 1028 printf("crypto: driver count wraparound!\n"); 1029 cap_rele(cap); 1030 return (-1); 1031 } 1032 CRYPTO_DRIVER_UNLOCK(); 1033 1034 newdrv = malloc(2 * crypto_drivers_size * 1035 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1036 1037 CRYPTO_DRIVER_LOCK(); 1038 memcpy(newdrv, crypto_drivers, 1039 crypto_drivers_size * sizeof(*crypto_drivers)); 1040 1041 crypto_drivers_size *= 2; 1042 1043 free(crypto_drivers, M_CRYPTO_DATA); 1044 crypto_drivers = newdrv; 1045 } 1046 1047 cap->cc_hid = i; 1048 crypto_drivers[i] = cap; 1049 CRYPTO_DRIVER_UNLOCK(); 1050 1051 if (bootverbose) 1052 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1053 device_get_nameunit(dev), i, flags); 1054 1055 return i; 1056 } 1057 1058 /* 1059 * Lookup a driver by name. We match against the full device 1060 * name and unit, and against just the name. The latter gives 1061 * us a simple widlcarding by device name. On success return the 1062 * driver/hardware identifier; otherwise return -1. 1063 */ 1064 int 1065 crypto_find_driver(const char *match) 1066 { 1067 struct cryptocap *cap; 1068 int i, len = strlen(match); 1069 1070 CRYPTO_DRIVER_LOCK(); 1071 for (i = 0; i < crypto_drivers_size; i++) { 1072 if (crypto_drivers[i] == NULL) 1073 continue; 1074 cap = crypto_drivers[i]; 1075 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1076 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1077 CRYPTO_DRIVER_UNLOCK(); 1078 return (i); 1079 } 1080 } 1081 CRYPTO_DRIVER_UNLOCK(); 1082 return (-1); 1083 } 1084 1085 /* 1086 * Return the device_t for the specified driver or NULL 1087 * if the driver identifier is invalid. 1088 */ 1089 device_t 1090 crypto_find_device_byhid(int hid) 1091 { 1092 struct cryptocap *cap; 1093 device_t dev; 1094 1095 dev = NULL; 1096 CRYPTO_DRIVER_LOCK(); 1097 cap = crypto_checkdriver(hid); 1098 if (cap != NULL) 1099 dev = cap->cc_dev; 1100 CRYPTO_DRIVER_UNLOCK(); 1101 return (dev); 1102 } 1103 1104 /* 1105 * Return the device/driver capabilities. 1106 */ 1107 int 1108 crypto_getcaps(int hid) 1109 { 1110 struct cryptocap *cap; 1111 int flags; 1112 1113 flags = 0; 1114 CRYPTO_DRIVER_LOCK(); 1115 cap = crypto_checkdriver(hid); 1116 if (cap != NULL) 1117 flags = cap->cc_flags; 1118 CRYPTO_DRIVER_UNLOCK(); 1119 return (flags); 1120 } 1121 1122 /* 1123 * Register support for a key-related algorithm. This routine 1124 * is called once for each algorithm supported a driver. 1125 */ 1126 int 1127 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 1128 { 1129 struct cryptocap *cap; 1130 int err; 1131 1132 CRYPTO_DRIVER_LOCK(); 1133 1134 cap = crypto_checkdriver(driverid); 1135 if (cap != NULL && 1136 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1137 /* 1138 * XXX Do some performance testing to determine placing. 1139 * XXX We probably need an auxiliary data structure that 1140 * XXX describes relative performances. 1141 */ 1142 1143 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1144 if (bootverbose) 1145 printf("crypto: %s registers key alg %u flags %u\n" 1146 , device_get_nameunit(cap->cc_dev) 1147 , kalg 1148 , flags 1149 ); 1150 err = 0; 1151 } else 1152 err = EINVAL; 1153 1154 CRYPTO_DRIVER_UNLOCK(); 1155 return err; 1156 } 1157 1158 /* 1159 * Unregister all algorithms associated with a crypto driver. 1160 * If there are pending sessions using it, leave enough information 1161 * around so that subsequent calls using those sessions will 1162 * correctly detect the driver has been unregistered and reroute 1163 * requests. 1164 */ 1165 int 1166 crypto_unregister_all(u_int32_t driverid) 1167 { 1168 struct cryptocap *cap; 1169 1170 CRYPTO_DRIVER_LOCK(); 1171 cap = crypto_checkdriver(driverid); 1172 if (cap == NULL) { 1173 CRYPTO_DRIVER_UNLOCK(); 1174 return (EINVAL); 1175 } 1176 1177 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1178 crypto_drivers[driverid] = NULL; 1179 1180 /* 1181 * XXX: This doesn't do anything to kick sessions that 1182 * have no pending operations. 1183 */ 1184 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1185 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1186 CRYPTO_DRIVER_UNLOCK(); 1187 cap_rele(cap); 1188 1189 return (0); 1190 } 1191 1192 /* 1193 * Clear blockage on a driver. The what parameter indicates whether 1194 * the driver is now ready for cryptop's and/or cryptokop's. 1195 */ 1196 int 1197 crypto_unblock(u_int32_t driverid, int what) 1198 { 1199 struct cryptocap *cap; 1200 int err; 1201 1202 CRYPTO_Q_LOCK(); 1203 cap = crypto_checkdriver(driverid); 1204 if (cap != NULL) { 1205 if (what & CRYPTO_SYMQ) 1206 cap->cc_qblocked = 0; 1207 if (what & CRYPTO_ASYMQ) 1208 cap->cc_kqblocked = 0; 1209 if (crp_sleep) 1210 wakeup_one(&crp_q); 1211 err = 0; 1212 } else 1213 err = EINVAL; 1214 CRYPTO_Q_UNLOCK(); 1215 1216 return err; 1217 } 1218 1219 size_t 1220 crypto_buffer_len(struct crypto_buffer *cb) 1221 { 1222 switch (cb->cb_type) { 1223 case CRYPTO_BUF_CONTIG: 1224 return (cb->cb_buf_len); 1225 case CRYPTO_BUF_MBUF: 1226 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1227 return (cb->cb_mbuf->m_pkthdr.len); 1228 return (m_length(cb->cb_mbuf, NULL)); 1229 case CRYPTO_BUF_UIO: 1230 return (cb->cb_uio->uio_resid); 1231 default: 1232 return (0); 1233 } 1234 } 1235 1236 #ifdef INVARIANTS 1237 /* Various sanity checks on crypto requests. */ 1238 static void 1239 cb_sanity(struct crypto_buffer *cb, const char *name) 1240 { 1241 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1242 ("incoming crp with invalid %s buffer type", name)); 1243 if (cb->cb_type == CRYPTO_BUF_CONTIG) 1244 KASSERT(cb->cb_buf_len >= 0, 1245 ("incoming crp with -ve %s buffer length", name)); 1246 } 1247 1248 static void 1249 crp_sanity(struct cryptop *crp) 1250 { 1251 struct crypto_session_params *csp; 1252 struct crypto_buffer *out; 1253 size_t ilen, len, olen; 1254 1255 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1256 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1257 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1258 ("incoming crp with invalid output buffer type")); 1259 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1260 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1261 ("incoming crp already done")); 1262 1263 csp = &crp->crp_session->csp; 1264 cb_sanity(&crp->crp_buf, "input"); 1265 ilen = crypto_buffer_len(&crp->crp_buf); 1266 olen = ilen; 1267 out = NULL; 1268 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1269 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1270 cb_sanity(&crp->crp_obuf, "output"); 1271 out = &crp->crp_obuf; 1272 olen = crypto_buffer_len(out); 1273 } 1274 } else 1275 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1276 ("incoming crp with separate output buffer " 1277 "but no session support")); 1278 1279 switch (csp->csp_mode) { 1280 case CSP_MODE_COMPRESS: 1281 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1282 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1283 ("invalid compression op %x", crp->crp_op)); 1284 break; 1285 case CSP_MODE_CIPHER: 1286 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1287 crp->crp_op == CRYPTO_OP_DECRYPT, 1288 ("invalid cipher op %x", crp->crp_op)); 1289 break; 1290 case CSP_MODE_DIGEST: 1291 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1292 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1293 ("invalid digest op %x", crp->crp_op)); 1294 break; 1295 case CSP_MODE_AEAD: 1296 KASSERT(crp->crp_op == 1297 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1298 crp->crp_op == 1299 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1300 ("invalid AEAD op %x", crp->crp_op)); 1301 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1302 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1303 ("GCM without a separate IV")); 1304 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1305 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1306 ("CCM without a separate IV")); 1307 break; 1308 case CSP_MODE_ETA: 1309 KASSERT(crp->crp_op == 1310 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1311 crp->crp_op == 1312 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1313 ("invalid ETA op %x", crp->crp_op)); 1314 break; 1315 } 1316 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1317 if (crp->crp_aad == NULL) { 1318 KASSERT(crp->crp_aad_start == 0 || 1319 crp->crp_aad_start < ilen, 1320 ("invalid AAD start")); 1321 KASSERT(crp->crp_aad_length != 0 || 1322 crp->crp_aad_start == 0, 1323 ("AAD with zero length and non-zero start")); 1324 KASSERT(crp->crp_aad_length == 0 || 1325 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1326 ("AAD outside input length")); 1327 } else { 1328 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1329 ("session doesn't support separate AAD buffer")); 1330 KASSERT(crp->crp_aad_start == 0, 1331 ("separate AAD buffer with non-zero AAD start")); 1332 KASSERT(crp->crp_aad_length != 0, 1333 ("separate AAD buffer with zero length")); 1334 } 1335 } else { 1336 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1337 crp->crp_aad_length == 0, 1338 ("AAD region in request not supporting AAD")); 1339 } 1340 if (csp->csp_ivlen == 0) { 1341 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1342 ("IV_SEPARATE set when IV isn't used")); 1343 KASSERT(crp->crp_iv_start == 0, 1344 ("crp_iv_start set when IV isn't used")); 1345 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1346 KASSERT(crp->crp_iv_start == 0, 1347 ("IV_SEPARATE used with non-zero IV start")); 1348 } else { 1349 KASSERT(crp->crp_iv_start < ilen, 1350 ("invalid IV start")); 1351 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1352 ("IV outside buffer length")); 1353 } 1354 /* XXX: payload_start of 0 should always be < ilen? */ 1355 KASSERT(crp->crp_payload_start == 0 || 1356 crp->crp_payload_start < ilen, 1357 ("invalid payload start")); 1358 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1359 ilen, ("payload outside input buffer")); 1360 if (out == NULL) { 1361 KASSERT(crp->crp_payload_output_start == 0, 1362 ("payload output start non-zero without output buffer")); 1363 } else { 1364 KASSERT(crp->crp_payload_output_start < olen, 1365 ("invalid payload output start")); 1366 KASSERT(crp->crp_payload_output_start + 1367 crp->crp_payload_length <= olen, 1368 ("payload outside output buffer")); 1369 } 1370 if (csp->csp_mode == CSP_MODE_DIGEST || 1371 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1372 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1373 len = ilen; 1374 else 1375 len = olen; 1376 KASSERT(crp->crp_digest_start == 0 || 1377 crp->crp_digest_start < len, 1378 ("invalid digest start")); 1379 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1380 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1381 ("digest outside buffer")); 1382 } else { 1383 KASSERT(crp->crp_digest_start == 0, 1384 ("non-zero digest start for request without a digest")); 1385 } 1386 if (csp->csp_cipher_klen != 0) 1387 KASSERT(csp->csp_cipher_key != NULL || 1388 crp->crp_cipher_key != NULL, 1389 ("cipher request without a key")); 1390 if (csp->csp_auth_klen != 0) 1391 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1392 ("auth request without a key")); 1393 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1394 } 1395 #endif 1396 1397 /* 1398 * Add a crypto request to a queue, to be processed by the kernel thread. 1399 */ 1400 int 1401 crypto_dispatch(struct cryptop *crp) 1402 { 1403 struct cryptocap *cap; 1404 int result; 1405 1406 #ifdef INVARIANTS 1407 crp_sanity(crp); 1408 #endif 1409 1410 cryptostats.cs_ops++; 1411 1412 #ifdef CRYPTO_TIMING 1413 if (crypto_timing) 1414 binuptime(&crp->crp_tstamp); 1415 #endif 1416 1417 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1418 1419 if (CRYPTOP_ASYNC(crp)) { 1420 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1421 struct crypto_ret_worker *ret_worker; 1422 1423 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1424 1425 CRYPTO_RETW_LOCK(ret_worker); 1426 crp->crp_seq = ret_worker->reorder_ops++; 1427 CRYPTO_RETW_UNLOCK(ret_worker); 1428 } 1429 1430 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1431 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1432 return (0); 1433 } 1434 1435 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1436 /* 1437 * Caller marked the request to be processed 1438 * immediately; dispatch it directly to the 1439 * driver unless the driver is currently blocked. 1440 */ 1441 cap = crp->crp_session->cap; 1442 if (!cap->cc_qblocked) { 1443 result = crypto_invoke(cap, crp, 0); 1444 if (result != ERESTART) 1445 return (result); 1446 /* 1447 * The driver ran out of resources, put the request on 1448 * the queue. 1449 */ 1450 } 1451 } 1452 crypto_batch_enqueue(crp); 1453 return 0; 1454 } 1455 1456 void 1457 crypto_batch_enqueue(struct cryptop *crp) 1458 { 1459 1460 CRYPTO_Q_LOCK(); 1461 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1462 if (crp_sleep) 1463 wakeup_one(&crp_q); 1464 CRYPTO_Q_UNLOCK(); 1465 } 1466 1467 /* 1468 * Add an asymetric crypto request to a queue, 1469 * to be processed by the kernel thread. 1470 */ 1471 int 1472 crypto_kdispatch(struct cryptkop *krp) 1473 { 1474 int error; 1475 1476 cryptostats.cs_kops++; 1477 1478 krp->krp_cap = NULL; 1479 error = crypto_kinvoke(krp); 1480 if (error == ERESTART) { 1481 CRYPTO_Q_LOCK(); 1482 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1483 if (crp_sleep) 1484 wakeup_one(&crp_q); 1485 CRYPTO_Q_UNLOCK(); 1486 error = 0; 1487 } 1488 return error; 1489 } 1490 1491 /* 1492 * Verify a driver is suitable for the specified operation. 1493 */ 1494 static __inline int 1495 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1496 { 1497 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1498 } 1499 1500 /* 1501 * Select a driver for an asym operation. The driver must 1502 * support the necessary algorithm. The caller can constrain 1503 * which device is selected with the flags parameter. The 1504 * algorithm we use here is pretty stupid; just use the first 1505 * driver that supports the algorithms we need. If there are 1506 * multiple suitable drivers we choose the driver with the 1507 * fewest active operations. We prefer hardware-backed 1508 * drivers to software ones when either may be used. 1509 */ 1510 static struct cryptocap * 1511 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1512 { 1513 struct cryptocap *cap, *best; 1514 int match, hid; 1515 1516 CRYPTO_DRIVER_ASSERT(); 1517 1518 /* 1519 * Look first for hardware crypto devices if permitted. 1520 */ 1521 if (flags & CRYPTOCAP_F_HARDWARE) 1522 match = CRYPTOCAP_F_HARDWARE; 1523 else 1524 match = CRYPTOCAP_F_SOFTWARE; 1525 best = NULL; 1526 again: 1527 for (hid = 0; hid < crypto_drivers_size; hid++) { 1528 /* 1529 * If there is no driver for this slot, or the driver 1530 * is not appropriate (hardware or software based on 1531 * match), then skip. 1532 */ 1533 cap = crypto_drivers[hid]; 1534 if (cap->cc_dev == NULL || 1535 (cap->cc_flags & match) == 0) 1536 continue; 1537 1538 /* verify all the algorithms are supported. */ 1539 if (kdriver_suitable(cap, krp)) { 1540 if (best == NULL || 1541 cap->cc_koperations < best->cc_koperations) 1542 best = cap; 1543 } 1544 } 1545 if (best != NULL) 1546 return best; 1547 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1548 /* sort of an Algol 68-style for loop */ 1549 match = CRYPTOCAP_F_SOFTWARE; 1550 goto again; 1551 } 1552 return best; 1553 } 1554 1555 /* 1556 * Choose a driver for an asymmetric crypto request. 1557 */ 1558 static struct cryptocap * 1559 crypto_lookup_kdriver(struct cryptkop *krp) 1560 { 1561 struct cryptocap *cap; 1562 uint32_t crid; 1563 1564 /* If this request is requeued, it might already have a driver. */ 1565 cap = krp->krp_cap; 1566 if (cap != NULL) 1567 return (cap); 1568 1569 /* Use krp_crid to choose a driver. */ 1570 crid = krp->krp_crid; 1571 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1572 cap = crypto_checkdriver(crid); 1573 if (cap != NULL) { 1574 /* 1575 * Driver present, it must support the 1576 * necessary algorithm and, if s/w drivers are 1577 * excluded, it must be registered as 1578 * hardware-backed. 1579 */ 1580 if (!kdriver_suitable(cap, krp) || 1581 (!crypto_devallowsoft && 1582 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1583 cap = NULL; 1584 } 1585 } else { 1586 /* 1587 * No requested driver; select based on crid flags. 1588 */ 1589 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1590 crid &= ~CRYPTOCAP_F_SOFTWARE; 1591 cap = crypto_select_kdriver(krp, crid); 1592 } 1593 1594 if (cap != NULL) { 1595 krp->krp_cap = cap_ref(cap); 1596 krp->krp_hid = cap->cc_hid; 1597 } 1598 return (cap); 1599 } 1600 1601 /* 1602 * Dispatch an asymmetric crypto request. 1603 */ 1604 static int 1605 crypto_kinvoke(struct cryptkop *krp) 1606 { 1607 struct cryptocap *cap = NULL; 1608 int error; 1609 1610 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1611 KASSERT(krp->krp_callback != NULL, 1612 ("%s: krp->crp_callback == NULL", __func__)); 1613 1614 CRYPTO_DRIVER_LOCK(); 1615 cap = crypto_lookup_kdriver(krp); 1616 if (cap == NULL) { 1617 CRYPTO_DRIVER_UNLOCK(); 1618 krp->krp_status = ENODEV; 1619 crypto_kdone(krp); 1620 return (0); 1621 } 1622 1623 /* 1624 * If the device is blocked, return ERESTART to requeue it. 1625 */ 1626 if (cap->cc_kqblocked) { 1627 /* 1628 * XXX: Previously this set krp_status to ERESTART and 1629 * invoked crypto_kdone but the caller would still 1630 * requeue it. 1631 */ 1632 CRYPTO_DRIVER_UNLOCK(); 1633 return (ERESTART); 1634 } 1635 1636 cap->cc_koperations++; 1637 CRYPTO_DRIVER_UNLOCK(); 1638 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1639 if (error == ERESTART) { 1640 CRYPTO_DRIVER_LOCK(); 1641 cap->cc_koperations--; 1642 CRYPTO_DRIVER_UNLOCK(); 1643 return (error); 1644 } 1645 1646 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1647 return (0); 1648 } 1649 1650 #ifdef CRYPTO_TIMING 1651 static void 1652 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 1653 { 1654 struct bintime now, delta; 1655 struct timespec t; 1656 uint64_t u; 1657 1658 binuptime(&now); 1659 u = now.frac; 1660 delta.frac = now.frac - bt->frac; 1661 delta.sec = now.sec - bt->sec; 1662 if (u < delta.frac) 1663 delta.sec--; 1664 bintime2timespec(&delta, &t); 1665 timespecadd(&ts->acc, &t, &ts->acc); 1666 if (timespeccmp(&t, &ts->min, <)) 1667 ts->min = t; 1668 if (timespeccmp(&t, &ts->max, >)) 1669 ts->max = t; 1670 ts->count++; 1671 1672 *bt = now; 1673 } 1674 #endif 1675 1676 static void 1677 crypto_task_invoke(void *ctx, int pending) 1678 { 1679 struct cryptocap *cap; 1680 struct cryptop *crp; 1681 int result; 1682 1683 crp = (struct cryptop *)ctx; 1684 cap = crp->crp_session->cap; 1685 result = crypto_invoke(cap, crp, 0); 1686 if (result == ERESTART) 1687 crypto_batch_enqueue(crp); 1688 } 1689 1690 /* 1691 * Dispatch a crypto request to the appropriate crypto devices. 1692 */ 1693 static int 1694 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1695 { 1696 1697 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1698 KASSERT(crp->crp_callback != NULL, 1699 ("%s: crp->crp_callback == NULL", __func__)); 1700 KASSERT(crp->crp_session != NULL, 1701 ("%s: crp->crp_session == NULL", __func__)); 1702 1703 #ifdef CRYPTO_TIMING 1704 if (crypto_timing) 1705 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1706 #endif 1707 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1708 struct crypto_session_params csp; 1709 crypto_session_t nses; 1710 1711 /* 1712 * Driver has unregistered; migrate the session and return 1713 * an error to the caller so they'll resubmit the op. 1714 * 1715 * XXX: What if there are more already queued requests for this 1716 * session? 1717 * 1718 * XXX: Real solution is to make sessions refcounted 1719 * and force callers to hold a reference when 1720 * assigning to crp_session. Could maybe change 1721 * crypto_getreq to accept a session pointer to make 1722 * that work. Alternatively, we could abandon the 1723 * notion of rewriting crp_session in requests forcing 1724 * the caller to deal with allocating a new session. 1725 * Perhaps provide a method to allow a crp's session to 1726 * be swapped that callers could use. 1727 */ 1728 csp = crp->crp_session->csp; 1729 crypto_freesession(crp->crp_session); 1730 1731 /* 1732 * XXX: Key pointers may no longer be valid. If we 1733 * really want to support this we need to define the 1734 * KPI such that 'csp' is required to be valid for the 1735 * duration of a session by the caller perhaps. 1736 * 1737 * XXX: If the keys have been changed this will reuse 1738 * the old keys. This probably suggests making 1739 * rekeying more explicit and updating the key 1740 * pointers in 'csp' when the keys change. 1741 */ 1742 if (crypto_newsession(&nses, &csp, 1743 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1744 crp->crp_session = nses; 1745 1746 crp->crp_etype = EAGAIN; 1747 crypto_done(crp); 1748 return 0; 1749 } else { 1750 /* 1751 * Invoke the driver to process the request. 1752 */ 1753 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1754 } 1755 } 1756 1757 void 1758 crypto_freereq(struct cryptop *crp) 1759 { 1760 1761 if (crp == NULL) 1762 return; 1763 1764 #ifdef DIAGNOSTIC 1765 { 1766 struct cryptop *crp2; 1767 struct crypto_ret_worker *ret_worker; 1768 1769 CRYPTO_Q_LOCK(); 1770 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1771 KASSERT(crp2 != crp, 1772 ("Freeing cryptop from the crypto queue (%p).", 1773 crp)); 1774 } 1775 CRYPTO_Q_UNLOCK(); 1776 1777 FOREACH_CRYPTO_RETW(ret_worker) { 1778 CRYPTO_RETW_LOCK(ret_worker); 1779 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1780 KASSERT(crp2 != crp, 1781 ("Freeing cryptop from the return queue (%p).", 1782 crp)); 1783 } 1784 CRYPTO_RETW_UNLOCK(ret_worker); 1785 } 1786 } 1787 #endif 1788 1789 uma_zfree(cryptop_zone, crp); 1790 } 1791 1792 struct cryptop * 1793 crypto_getreq(crypto_session_t cses, int how) 1794 { 1795 struct cryptop *crp; 1796 1797 MPASS(how == M_WAITOK || how == M_NOWAIT); 1798 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1799 crp->crp_session = cses; 1800 return (crp); 1801 } 1802 1803 /* 1804 * Invoke the callback on behalf of the driver. 1805 */ 1806 void 1807 crypto_done(struct cryptop *crp) 1808 { 1809 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1810 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1811 crp->crp_flags |= CRYPTO_F_DONE; 1812 if (crp->crp_etype != 0) 1813 cryptostats.cs_errs++; 1814 #ifdef CRYPTO_TIMING 1815 if (crypto_timing) 1816 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1817 #endif 1818 /* 1819 * CBIMM means unconditionally do the callback immediately; 1820 * CBIFSYNC means do the callback immediately only if the 1821 * operation was done synchronously. Both are used to avoid 1822 * doing extraneous context switches; the latter is mostly 1823 * used with the software crypto driver. 1824 */ 1825 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1826 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1827 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1828 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1829 /* 1830 * Do the callback directly. This is ok when the 1831 * callback routine does very little (e.g. the 1832 * /dev/crypto callback method just does a wakeup). 1833 */ 1834 #ifdef CRYPTO_TIMING 1835 if (crypto_timing) { 1836 /* 1837 * NB: We must copy the timestamp before 1838 * doing the callback as the cryptop is 1839 * likely to be reclaimed. 1840 */ 1841 struct bintime t = crp->crp_tstamp; 1842 crypto_tstat(&cryptostats.cs_cb, &t); 1843 crp->crp_callback(crp); 1844 crypto_tstat(&cryptostats.cs_finis, &t); 1845 } else 1846 #endif 1847 crp->crp_callback(crp); 1848 } else { 1849 struct crypto_ret_worker *ret_worker; 1850 bool wake; 1851 1852 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1853 wake = false; 1854 1855 /* 1856 * Normal case; queue the callback for the thread. 1857 */ 1858 CRYPTO_RETW_LOCK(ret_worker); 1859 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1860 struct cryptop *tmp; 1861 1862 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1863 cryptop_q, crp_next) { 1864 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1865 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1866 tmp, crp, crp_next); 1867 break; 1868 } 1869 } 1870 if (tmp == NULL) { 1871 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1872 crp, crp_next); 1873 } 1874 1875 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1876 wake = true; 1877 } 1878 else { 1879 if (CRYPTO_RETW_EMPTY(ret_worker)) 1880 wake = true; 1881 1882 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1883 } 1884 1885 if (wake) 1886 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1887 CRYPTO_RETW_UNLOCK(ret_worker); 1888 } 1889 } 1890 1891 /* 1892 * Invoke the callback on behalf of the driver. 1893 */ 1894 void 1895 crypto_kdone(struct cryptkop *krp) 1896 { 1897 struct crypto_ret_worker *ret_worker; 1898 struct cryptocap *cap; 1899 1900 if (krp->krp_status != 0) 1901 cryptostats.cs_kerrs++; 1902 CRYPTO_DRIVER_LOCK(); 1903 cap = krp->krp_cap; 1904 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1905 cap->cc_koperations--; 1906 if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1907 wakeup(cap); 1908 CRYPTO_DRIVER_UNLOCK(); 1909 krp->krp_cap = NULL; 1910 cap_rele(cap); 1911 1912 ret_worker = CRYPTO_RETW(0); 1913 1914 CRYPTO_RETW_LOCK(ret_worker); 1915 if (CRYPTO_RETW_EMPTY(ret_worker)) 1916 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1917 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1918 CRYPTO_RETW_UNLOCK(ret_worker); 1919 } 1920 1921 int 1922 crypto_getfeat(int *featp) 1923 { 1924 int hid, kalg, feat = 0; 1925 1926 CRYPTO_DRIVER_LOCK(); 1927 for (hid = 0; hid < crypto_drivers_size; hid++) { 1928 const struct cryptocap *cap = crypto_drivers[hid]; 1929 1930 if (cap == NULL || 1931 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1932 !crypto_devallowsoft)) { 1933 continue; 1934 } 1935 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1936 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1937 feat |= 1 << kalg; 1938 } 1939 CRYPTO_DRIVER_UNLOCK(); 1940 *featp = feat; 1941 return (0); 1942 } 1943 1944 /* 1945 * Terminate a thread at module unload. The process that 1946 * initiated this is waiting for us to signal that we're gone; 1947 * wake it up and exit. We use the driver table lock to insure 1948 * we don't do the wakeup before they're waiting. There is no 1949 * race here because the waiter sleeps on the proc lock for the 1950 * thread so it gets notified at the right time because of an 1951 * extra wakeup that's done in exit1(). 1952 */ 1953 static void 1954 crypto_finis(void *chan) 1955 { 1956 CRYPTO_DRIVER_LOCK(); 1957 wakeup_one(chan); 1958 CRYPTO_DRIVER_UNLOCK(); 1959 kproc_exit(0); 1960 } 1961 1962 /* 1963 * Crypto thread, dispatches crypto requests. 1964 */ 1965 static void 1966 crypto_proc(void) 1967 { 1968 struct cryptop *crp, *submit; 1969 struct cryptkop *krp; 1970 struct cryptocap *cap; 1971 int result, hint; 1972 1973 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1974 fpu_kern_thread(FPU_KERN_NORMAL); 1975 #endif 1976 1977 CRYPTO_Q_LOCK(); 1978 for (;;) { 1979 /* 1980 * Find the first element in the queue that can be 1981 * processed and look-ahead to see if multiple ops 1982 * are ready for the same driver. 1983 */ 1984 submit = NULL; 1985 hint = 0; 1986 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1987 cap = crp->crp_session->cap; 1988 /* 1989 * Driver cannot disappeared when there is an active 1990 * session. 1991 */ 1992 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1993 __func__, __LINE__)); 1994 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1995 /* Op needs to be migrated, process it. */ 1996 if (submit == NULL) 1997 submit = crp; 1998 break; 1999 } 2000 if (!cap->cc_qblocked) { 2001 if (submit != NULL) { 2002 /* 2003 * We stop on finding another op, 2004 * regardless whether its for the same 2005 * driver or not. We could keep 2006 * searching the queue but it might be 2007 * better to just use a per-driver 2008 * queue instead. 2009 */ 2010 if (submit->crp_session->cap == cap) 2011 hint = CRYPTO_HINT_MORE; 2012 break; 2013 } else { 2014 submit = crp; 2015 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 2016 break; 2017 /* keep scanning for more are q'd */ 2018 } 2019 } 2020 } 2021 if (submit != NULL) { 2022 TAILQ_REMOVE(&crp_q, submit, crp_next); 2023 cap = submit->crp_session->cap; 2024 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 2025 __func__, __LINE__)); 2026 CRYPTO_Q_UNLOCK(); 2027 result = crypto_invoke(cap, submit, hint); 2028 CRYPTO_Q_LOCK(); 2029 if (result == ERESTART) { 2030 /* 2031 * The driver ran out of resources, mark the 2032 * driver ``blocked'' for cryptop's and put 2033 * the request back in the queue. It would 2034 * best to put the request back where we got 2035 * it but that's hard so for now we put it 2036 * at the front. This should be ok; putting 2037 * it at the end does not work. 2038 */ 2039 cap->cc_qblocked = 1; 2040 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 2041 cryptostats.cs_blocks++; 2042 } 2043 } 2044 2045 /* As above, but for key ops */ 2046 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2047 cap = krp->krp_cap; 2048 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2049 /* 2050 * Operation needs to be migrated, 2051 * clear krp_cap so a new driver is 2052 * selected. 2053 */ 2054 krp->krp_cap = NULL; 2055 cap_rele(cap); 2056 break; 2057 } 2058 if (!cap->cc_kqblocked) 2059 break; 2060 } 2061 if (krp != NULL) { 2062 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2063 CRYPTO_Q_UNLOCK(); 2064 result = crypto_kinvoke(krp); 2065 CRYPTO_Q_LOCK(); 2066 if (result == ERESTART) { 2067 /* 2068 * The driver ran out of resources, mark the 2069 * driver ``blocked'' for cryptkop's and put 2070 * the request back in the queue. It would 2071 * best to put the request back where we got 2072 * it but that's hard so for now we put it 2073 * at the front. This should be ok; putting 2074 * it at the end does not work. 2075 */ 2076 krp->krp_cap->cc_kqblocked = 1; 2077 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2078 cryptostats.cs_kblocks++; 2079 } 2080 } 2081 2082 if (submit == NULL && krp == NULL) { 2083 /* 2084 * Nothing more to be processed. Sleep until we're 2085 * woken because there are more ops to process. 2086 * This happens either by submission or by a driver 2087 * becoming unblocked and notifying us through 2088 * crypto_unblock. Note that when we wakeup we 2089 * start processing each queue again from the 2090 * front. It's not clear that it's important to 2091 * preserve this ordering since ops may finish 2092 * out of order if dispatched to different devices 2093 * and some become blocked while others do not. 2094 */ 2095 crp_sleep = 1; 2096 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2097 crp_sleep = 0; 2098 if (cryptoproc == NULL) 2099 break; 2100 cryptostats.cs_intrs++; 2101 } 2102 } 2103 CRYPTO_Q_UNLOCK(); 2104 2105 crypto_finis(&crp_q); 2106 } 2107 2108 /* 2109 * Crypto returns thread, does callbacks for processed crypto requests. 2110 * Callbacks are done here, rather than in the crypto drivers, because 2111 * callbacks typically are expensive and would slow interrupt handling. 2112 */ 2113 static void 2114 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2115 { 2116 struct cryptop *crpt; 2117 struct cryptkop *krpt; 2118 2119 CRYPTO_RETW_LOCK(ret_worker); 2120 for (;;) { 2121 /* Harvest return q's for completed ops */ 2122 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2123 if (crpt != NULL) { 2124 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2125 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2126 ret_worker->reorder_cur_seq++; 2127 } else { 2128 crpt = NULL; 2129 } 2130 } 2131 2132 if (crpt == NULL) { 2133 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2134 if (crpt != NULL) 2135 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2136 } 2137 2138 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2139 if (krpt != NULL) 2140 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2141 2142 if (crpt != NULL || krpt != NULL) { 2143 CRYPTO_RETW_UNLOCK(ret_worker); 2144 /* 2145 * Run callbacks unlocked. 2146 */ 2147 if (crpt != NULL) { 2148 #ifdef CRYPTO_TIMING 2149 if (crypto_timing) { 2150 /* 2151 * NB: We must copy the timestamp before 2152 * doing the callback as the cryptop is 2153 * likely to be reclaimed. 2154 */ 2155 struct bintime t = crpt->crp_tstamp; 2156 crypto_tstat(&cryptostats.cs_cb, &t); 2157 crpt->crp_callback(crpt); 2158 crypto_tstat(&cryptostats.cs_finis, &t); 2159 } else 2160 #endif 2161 crpt->crp_callback(crpt); 2162 } 2163 if (krpt != NULL) 2164 krpt->krp_callback(krpt); 2165 CRYPTO_RETW_LOCK(ret_worker); 2166 } else { 2167 /* 2168 * Nothing more to be processed. Sleep until we're 2169 * woken because there are more returns to process. 2170 */ 2171 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2172 "crypto_ret_wait", 0); 2173 if (ret_worker->cryptoretproc == NULL) 2174 break; 2175 cryptostats.cs_rets++; 2176 } 2177 } 2178 CRYPTO_RETW_UNLOCK(ret_worker); 2179 2180 crypto_finis(&ret_worker->crp_ret_q); 2181 } 2182 2183 #ifdef DDB 2184 static void 2185 db_show_drivers(void) 2186 { 2187 int hid; 2188 2189 db_printf("%12s %4s %4s %8s %2s %2s\n" 2190 , "Device" 2191 , "Ses" 2192 , "Kops" 2193 , "Flags" 2194 , "QB" 2195 , "KB" 2196 ); 2197 for (hid = 0; hid < crypto_drivers_size; hid++) { 2198 const struct cryptocap *cap = crypto_drivers[hid]; 2199 if (cap == NULL) 2200 continue; 2201 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2202 , device_get_nameunit(cap->cc_dev) 2203 , cap->cc_sessions 2204 , cap->cc_koperations 2205 , cap->cc_flags 2206 , cap->cc_qblocked 2207 , cap->cc_kqblocked 2208 ); 2209 } 2210 } 2211 2212 DB_SHOW_COMMAND(crypto, db_show_crypto) 2213 { 2214 struct cryptop *crp; 2215 struct crypto_ret_worker *ret_worker; 2216 2217 db_show_drivers(); 2218 db_printf("\n"); 2219 2220 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2221 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2222 "Device", "Callback"); 2223 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2224 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2225 , crp->crp_session->cap->cc_hid 2226 , (int) crypto_ses2caps(crp->crp_session) 2227 , crp->crp_olen 2228 , crp->crp_etype 2229 , crp->crp_flags 2230 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2231 , crp->crp_callback 2232 ); 2233 } 2234 FOREACH_CRYPTO_RETW(ret_worker) { 2235 db_printf("\n%8s %4s %4s %4s %8s\n", 2236 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2237 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2238 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2239 db_printf("%8td %4u %4u %04x %8p\n" 2240 , CRYPTO_RETW_ID(ret_worker) 2241 , crp->crp_session->cap->cc_hid 2242 , crp->crp_etype 2243 , crp->crp_flags 2244 , crp->crp_callback 2245 ); 2246 } 2247 } 2248 } 2249 } 2250 2251 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2252 { 2253 struct cryptkop *krp; 2254 struct crypto_ret_worker *ret_worker; 2255 2256 db_show_drivers(); 2257 db_printf("\n"); 2258 2259 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2260 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2261 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2262 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2263 , krp->krp_op 2264 , krp->krp_status 2265 , krp->krp_iparams, krp->krp_oparams 2266 , krp->krp_crid, krp->krp_hid 2267 , krp->krp_callback 2268 ); 2269 } 2270 2271 ret_worker = CRYPTO_RETW(0); 2272 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2273 db_printf("%4s %5s %8s %4s %8s\n", 2274 "Op", "Status", "CRID", "HID", "Callback"); 2275 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2276 db_printf("%4u %5u %08x %4u %8p\n" 2277 , krp->krp_op 2278 , krp->krp_status 2279 , krp->krp_crid, krp->krp_hid 2280 , krp->krp_callback 2281 ); 2282 } 2283 } 2284 } 2285 #endif 2286 2287 int crypto_modevent(module_t mod, int type, void *unused); 2288 2289 /* 2290 * Initialization code, both for static and dynamic loading. 2291 * Note this is not invoked with the usual MODULE_DECLARE 2292 * mechanism but instead is listed as a dependency by the 2293 * cryptosoft driver. This guarantees proper ordering of 2294 * calls on module load/unload. 2295 */ 2296 int 2297 crypto_modevent(module_t mod, int type, void *unused) 2298 { 2299 int error = EINVAL; 2300 2301 switch (type) { 2302 case MOD_LOAD: 2303 error = crypto_init(); 2304 if (error == 0 && bootverbose) 2305 printf("crypto: <crypto core>\n"); 2306 break; 2307 case MOD_UNLOAD: 2308 /*XXX disallow if active sessions */ 2309 error = 0; 2310 crypto_destroy(); 2311 return 0; 2312 } 2313 return error; 2314 } 2315 MODULE_VERSION(crypto, 1); 2316 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2317