1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #include "opt_compat.h" 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/counter.h> 63 #include <sys/kernel.h> 64 #include <sys/kthread.h> 65 #include <sys/linker.h> 66 #include <sys/lock.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/proc.h> 72 #include <sys/refcount.h> 73 #include <sys/sdt.h> 74 #include <sys/smp.h> 75 #include <sys/sysctl.h> 76 #include <sys/taskqueue.h> 77 #include <sys/uio.h> 78 79 #include <ddb/ddb.h> 80 81 #include <machine/vmparam.h> 82 #include <vm/uma.h> 83 84 #include <crypto/intake.h> 85 #include <opencrypto/cryptodev.h> 86 #include <opencrypto/xform_auth.h> 87 #include <opencrypto/xform_enc.h> 88 89 #include <sys/kobj.h> 90 #include <sys/bus.h> 91 #include "cryptodev_if.h" 92 93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 94 #include <machine/pcb.h> 95 #endif 96 97 SDT_PROVIDER_DEFINE(opencrypto); 98 99 /* 100 * Crypto drivers register themselves by allocating a slot in the 101 * crypto_drivers table with crypto_get_driverid() and then registering 102 * each asym algorithm they support with crypto_kregister(). 103 */ 104 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 108 109 /* 110 * Crypto device/driver capabilities structure. 111 * 112 * Synchronization: 113 * (d) - protected by CRYPTO_DRIVER_LOCK() 114 * (q) - protected by CRYPTO_Q_LOCK() 115 * Not tagged fields are read-only. 116 */ 117 struct cryptocap { 118 device_t cc_dev; 119 uint32_t cc_hid; 120 uint32_t cc_sessions; /* (d) # of sessions */ 121 uint32_t cc_koperations; /* (d) # os asym operations */ 122 uint8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 123 124 int cc_flags; /* (d) flags */ 125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 126 int cc_qblocked; /* (q) symmetric q blocked */ 127 int cc_kqblocked; /* (q) asymmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 void *softc; 138 struct crypto_session_params csp; 139 }; 140 141 /* 142 * There are two queues for crypto requests; one for symmetric (e.g. 143 * cipher) operations and one for asymmetric (e.g. MOD)operations. 144 * A single mutex is used to lock access to both queues. We could 145 * have one per-queue but having one simplifies handling of block/unblock 146 * operations. 147 */ 148 static int crp_sleep = 0; 149 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 150 static TAILQ_HEAD(,cryptkop) crp_kq; 151 static struct mtx crypto_q_mtx; 152 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 153 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 154 155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 156 "In-kernel cryptography"); 157 158 /* 159 * Taskqueue used to dispatch the crypto requests 160 * that have the CRYPTO_F_ASYNC flag 161 */ 162 static struct taskqueue *crypto_tq; 163 164 /* 165 * Crypto seq numbers are operated on with modular arithmetic 166 */ 167 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 168 169 struct crypto_ret_worker { 170 struct mtx crypto_ret_mtx; 171 172 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 173 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 174 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 175 176 uint32_t reorder_ops; /* total ordered sym jobs received */ 177 uint32_t reorder_cur_seq; /* current sym job dispatched */ 178 179 struct proc *cryptoretproc; 180 }; 181 static struct crypto_ret_worker *crypto_ret_workers = NULL; 182 183 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 184 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 185 #define FOREACH_CRYPTO_RETW(w) \ 186 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 187 188 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 189 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 190 #define CRYPTO_RETW_EMPTY(w) \ 191 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 192 193 static int crypto_workers_num = 0; 194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 195 &crypto_workers_num, 0, 196 "Number of crypto workers used to dispatch crypto jobs"); 197 #ifdef COMPAT_FREEBSD12 198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 199 &crypto_workers_num, 0, 200 "Number of crypto workers used to dispatch crypto jobs"); 201 #endif 202 203 static uma_zone_t cryptop_zone; 204 static uma_zone_t cryptoses_zone; 205 206 int crypto_userasymcrypto = 1; 207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 208 &crypto_userasymcrypto, 0, 209 "Enable user-mode access to asymmetric crypto support"); 210 #ifdef COMPAT_FREEBSD12 211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 212 &crypto_userasymcrypto, 0, 213 "Enable/disable user-mode access to asymmetric crypto support"); 214 #endif 215 216 int crypto_devallowsoft = 0; 217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 218 &crypto_devallowsoft, 0, 219 "Enable use of software crypto by /dev/crypto"); 220 #ifdef COMPAT_FREEBSD12 221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 222 &crypto_devallowsoft, 0, 223 "Enable/disable use of software crypto by /dev/crypto"); 224 #endif 225 226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 227 228 static void crypto_proc(void); 229 static struct proc *cryptoproc; 230 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 231 static void crypto_destroy(void); 232 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 233 static int crypto_kinvoke(struct cryptkop *krp); 234 static void crypto_task_invoke(void *ctx, int pending); 235 static void crypto_batch_enqueue(struct cryptop *crp); 236 237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 239 cryptostats, nitems(cryptostats), 240 "Crypto system statistics"); 241 242 #define CRYPTOSTAT_INC(stat) do { \ 243 counter_u64_add( \ 244 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 245 1); \ 246 } while (0) 247 248 static void 249 cryptostats_init(void *arg __unused) 250 { 251 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 252 } 253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 254 255 static void 256 cryptostats_fini(void *arg __unused) 257 { 258 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 259 } 260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 261 NULL); 262 263 /* Try to avoid directly exposing the key buffer as a symbol */ 264 static struct keybuf *keybuf; 265 266 static struct keybuf empty_keybuf = { 267 .kb_nents = 0 268 }; 269 270 /* Obtain the key buffer from boot metadata */ 271 static void 272 keybuf_init(void) 273 { 274 caddr_t kmdp; 275 276 kmdp = preload_search_by_type("elf kernel"); 277 278 if (kmdp == NULL) 279 kmdp = preload_search_by_type("elf64 kernel"); 280 281 keybuf = (struct keybuf *)preload_search_info(kmdp, 282 MODINFO_METADATA | MODINFOMD_KEYBUF); 283 284 if (keybuf == NULL) 285 keybuf = &empty_keybuf; 286 } 287 288 /* It'd be nice if we could store these in some kind of secure memory... */ 289 struct keybuf * 290 get_keybuf(void) 291 { 292 293 return (keybuf); 294 } 295 296 static struct cryptocap * 297 cap_ref(struct cryptocap *cap) 298 { 299 300 refcount_acquire(&cap->cc_refs); 301 return (cap); 302 } 303 304 static void 305 cap_rele(struct cryptocap *cap) 306 { 307 308 if (refcount_release(&cap->cc_refs) == 0) 309 return; 310 311 KASSERT(cap->cc_sessions == 0, 312 ("freeing crypto driver with active sessions")); 313 KASSERT(cap->cc_koperations == 0, 314 ("freeing crypto driver with active key operations")); 315 316 free(cap, M_CRYPTO_DATA); 317 } 318 319 static int 320 crypto_init(void) 321 { 322 struct crypto_ret_worker *ret_worker; 323 int error; 324 325 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 326 MTX_DEF|MTX_QUIET); 327 328 TAILQ_INIT(&crp_q); 329 TAILQ_INIT(&crp_kq); 330 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 331 332 cryptop_zone = uma_zcreate("cryptop", 333 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 334 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 335 cryptoses_zone = uma_zcreate("crypto_session", 336 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 337 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 338 339 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 340 crypto_drivers = malloc(crypto_drivers_size * 341 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 342 343 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 344 crypto_workers_num = mp_ncpus; 345 346 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 347 taskqueue_thread_enqueue, &crypto_tq); 348 349 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 350 "crypto"); 351 352 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 353 &cryptoproc, 0, 0, "crypto"); 354 if (error) { 355 printf("crypto_init: cannot start crypto thread; error %d", 356 error); 357 goto bad; 358 } 359 360 crypto_ret_workers = mallocarray(crypto_workers_num, 361 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 362 363 FOREACH_CRYPTO_RETW(ret_worker) { 364 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 365 TAILQ_INIT(&ret_worker->crp_ret_q); 366 TAILQ_INIT(&ret_worker->crp_ret_kq); 367 368 ret_worker->reorder_ops = 0; 369 ret_worker->reorder_cur_seq = 0; 370 371 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 372 373 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 374 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 375 if (error) { 376 printf("crypto_init: cannot start cryptoret thread; error %d", 377 error); 378 goto bad; 379 } 380 } 381 382 keybuf_init(); 383 384 return 0; 385 bad: 386 crypto_destroy(); 387 return error; 388 } 389 390 /* 391 * Signal a crypto thread to terminate. We use the driver 392 * table lock to synchronize the sleep/wakeups so that we 393 * are sure the threads have terminated before we release 394 * the data structures they use. See crypto_finis below 395 * for the other half of this song-and-dance. 396 */ 397 static void 398 crypto_terminate(struct proc **pp, void *q) 399 { 400 struct proc *p; 401 402 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 403 p = *pp; 404 *pp = NULL; 405 if (p) { 406 wakeup_one(q); 407 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 408 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 409 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 410 PROC_UNLOCK(p); 411 CRYPTO_DRIVER_LOCK(); 412 } 413 } 414 415 static void 416 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 417 void *auth_ctx, uint8_t padval) 418 { 419 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 420 u_int i; 421 422 KASSERT(axf->blocksize <= sizeof(hmac_key), 423 ("Invalid HMAC block size %d", axf->blocksize)); 424 425 /* 426 * If the key is larger than the block size, use the digest of 427 * the key as the key instead. 428 */ 429 memset(hmac_key, 0, sizeof(hmac_key)); 430 if (klen > axf->blocksize) { 431 axf->Init(auth_ctx); 432 axf->Update(auth_ctx, key, klen); 433 axf->Final(hmac_key, auth_ctx); 434 klen = axf->hashsize; 435 } else 436 memcpy(hmac_key, key, klen); 437 438 for (i = 0; i < axf->blocksize; i++) 439 hmac_key[i] ^= padval; 440 441 axf->Init(auth_ctx); 442 axf->Update(auth_ctx, hmac_key, axf->blocksize); 443 explicit_bzero(hmac_key, sizeof(hmac_key)); 444 } 445 446 void 447 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 448 void *auth_ctx) 449 { 450 451 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 452 } 453 454 void 455 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 456 void *auth_ctx) 457 { 458 459 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 460 } 461 462 static void 463 crypto_destroy(void) 464 { 465 struct crypto_ret_worker *ret_worker; 466 int i; 467 468 /* 469 * Terminate any crypto threads. 470 */ 471 if (crypto_tq != NULL) 472 taskqueue_drain_all(crypto_tq); 473 CRYPTO_DRIVER_LOCK(); 474 crypto_terminate(&cryptoproc, &crp_q); 475 FOREACH_CRYPTO_RETW(ret_worker) 476 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 477 CRYPTO_DRIVER_UNLOCK(); 478 479 /* XXX flush queues??? */ 480 481 /* 482 * Reclaim dynamically allocated resources. 483 */ 484 for (i = 0; i < crypto_drivers_size; i++) { 485 if (crypto_drivers[i] != NULL) 486 cap_rele(crypto_drivers[i]); 487 } 488 free(crypto_drivers, M_CRYPTO_DATA); 489 490 if (cryptoses_zone != NULL) 491 uma_zdestroy(cryptoses_zone); 492 if (cryptop_zone != NULL) 493 uma_zdestroy(cryptop_zone); 494 mtx_destroy(&crypto_q_mtx); 495 FOREACH_CRYPTO_RETW(ret_worker) 496 mtx_destroy(&ret_worker->crypto_ret_mtx); 497 free(crypto_ret_workers, M_CRYPTO_DATA); 498 if (crypto_tq != NULL) 499 taskqueue_free(crypto_tq); 500 mtx_destroy(&crypto_drivers_mtx); 501 } 502 503 uint32_t 504 crypto_ses2hid(crypto_session_t crypto_session) 505 { 506 return (crypto_session->cap->cc_hid); 507 } 508 509 uint32_t 510 crypto_ses2caps(crypto_session_t crypto_session) 511 { 512 return (crypto_session->cap->cc_flags & 0xff000000); 513 } 514 515 void * 516 crypto_get_driver_session(crypto_session_t crypto_session) 517 { 518 return (crypto_session->softc); 519 } 520 521 const struct crypto_session_params * 522 crypto_get_params(crypto_session_t crypto_session) 523 { 524 return (&crypto_session->csp); 525 } 526 527 struct auth_hash * 528 crypto_auth_hash(const struct crypto_session_params *csp) 529 { 530 531 switch (csp->csp_auth_alg) { 532 case CRYPTO_SHA1_HMAC: 533 return (&auth_hash_hmac_sha1); 534 case CRYPTO_SHA2_224_HMAC: 535 return (&auth_hash_hmac_sha2_224); 536 case CRYPTO_SHA2_256_HMAC: 537 return (&auth_hash_hmac_sha2_256); 538 case CRYPTO_SHA2_384_HMAC: 539 return (&auth_hash_hmac_sha2_384); 540 case CRYPTO_SHA2_512_HMAC: 541 return (&auth_hash_hmac_sha2_512); 542 case CRYPTO_NULL_HMAC: 543 return (&auth_hash_null); 544 case CRYPTO_RIPEMD160_HMAC: 545 return (&auth_hash_hmac_ripemd_160); 546 case CRYPTO_SHA1: 547 return (&auth_hash_sha1); 548 case CRYPTO_SHA2_224: 549 return (&auth_hash_sha2_224); 550 case CRYPTO_SHA2_256: 551 return (&auth_hash_sha2_256); 552 case CRYPTO_SHA2_384: 553 return (&auth_hash_sha2_384); 554 case CRYPTO_SHA2_512: 555 return (&auth_hash_sha2_512); 556 case CRYPTO_AES_NIST_GMAC: 557 switch (csp->csp_auth_klen) { 558 case 128 / 8: 559 return (&auth_hash_nist_gmac_aes_128); 560 case 192 / 8: 561 return (&auth_hash_nist_gmac_aes_192); 562 case 256 / 8: 563 return (&auth_hash_nist_gmac_aes_256); 564 default: 565 return (NULL); 566 } 567 case CRYPTO_BLAKE2B: 568 return (&auth_hash_blake2b); 569 case CRYPTO_BLAKE2S: 570 return (&auth_hash_blake2s); 571 case CRYPTO_POLY1305: 572 return (&auth_hash_poly1305); 573 case CRYPTO_AES_CCM_CBC_MAC: 574 switch (csp->csp_auth_klen) { 575 case 128 / 8: 576 return (&auth_hash_ccm_cbc_mac_128); 577 case 192 / 8: 578 return (&auth_hash_ccm_cbc_mac_192); 579 case 256 / 8: 580 return (&auth_hash_ccm_cbc_mac_256); 581 default: 582 return (NULL); 583 } 584 default: 585 return (NULL); 586 } 587 } 588 589 struct enc_xform * 590 crypto_cipher(const struct crypto_session_params *csp) 591 { 592 593 switch (csp->csp_cipher_alg) { 594 case CRYPTO_RIJNDAEL128_CBC: 595 return (&enc_xform_rijndael128); 596 case CRYPTO_AES_XTS: 597 return (&enc_xform_aes_xts); 598 case CRYPTO_AES_ICM: 599 return (&enc_xform_aes_icm); 600 case CRYPTO_AES_NIST_GCM_16: 601 return (&enc_xform_aes_nist_gcm); 602 case CRYPTO_CAMELLIA_CBC: 603 return (&enc_xform_camellia); 604 case CRYPTO_NULL_CBC: 605 return (&enc_xform_null); 606 case CRYPTO_CHACHA20: 607 return (&enc_xform_chacha20); 608 case CRYPTO_AES_CCM_16: 609 return (&enc_xform_ccm); 610 default: 611 return (NULL); 612 } 613 } 614 615 static struct cryptocap * 616 crypto_checkdriver(uint32_t hid) 617 { 618 619 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 620 } 621 622 /* 623 * Select a driver for a new session that supports the specified 624 * algorithms and, optionally, is constrained according to the flags. 625 */ 626 static struct cryptocap * 627 crypto_select_driver(const struct crypto_session_params *csp, int flags) 628 { 629 struct cryptocap *cap, *best; 630 int best_match, error, hid; 631 632 CRYPTO_DRIVER_ASSERT(); 633 634 best = NULL; 635 for (hid = 0; hid < crypto_drivers_size; hid++) { 636 /* 637 * If there is no driver for this slot, or the driver 638 * is not appropriate (hardware or software based on 639 * match), then skip. 640 */ 641 cap = crypto_drivers[hid]; 642 if (cap == NULL || 643 (cap->cc_flags & flags) == 0) 644 continue; 645 646 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 647 if (error >= 0) 648 continue; 649 650 /* 651 * Use the driver with the highest probe value. 652 * Hardware drivers use a higher probe value than 653 * software. In case of a tie, prefer the driver with 654 * the fewest active sessions. 655 */ 656 if (best == NULL || error > best_match || 657 (error == best_match && 658 cap->cc_sessions < best->cc_sessions)) { 659 best = cap; 660 best_match = error; 661 } 662 } 663 return best; 664 } 665 666 static enum alg_type { 667 ALG_NONE = 0, 668 ALG_CIPHER, 669 ALG_DIGEST, 670 ALG_KEYED_DIGEST, 671 ALG_COMPRESSION, 672 ALG_AEAD 673 } alg_types[] = { 674 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 675 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 676 [CRYPTO_AES_CBC] = ALG_CIPHER, 677 [CRYPTO_SHA1] = ALG_DIGEST, 678 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 679 [CRYPTO_NULL_CBC] = ALG_CIPHER, 680 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 681 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 682 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 683 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 684 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 685 [CRYPTO_AES_XTS] = ALG_CIPHER, 686 [CRYPTO_AES_ICM] = ALG_CIPHER, 687 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 688 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 689 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 690 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 691 [CRYPTO_CHACHA20] = ALG_CIPHER, 692 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 693 [CRYPTO_RIPEMD160] = ALG_DIGEST, 694 [CRYPTO_SHA2_224] = ALG_DIGEST, 695 [CRYPTO_SHA2_256] = ALG_DIGEST, 696 [CRYPTO_SHA2_384] = ALG_DIGEST, 697 [CRYPTO_SHA2_512] = ALG_DIGEST, 698 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 699 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 700 [CRYPTO_AES_CCM_16] = ALG_AEAD, 701 }; 702 703 static enum alg_type 704 alg_type(int alg) 705 { 706 707 if (alg < nitems(alg_types)) 708 return (alg_types[alg]); 709 return (ALG_NONE); 710 } 711 712 static bool 713 alg_is_compression(int alg) 714 { 715 716 return (alg_type(alg) == ALG_COMPRESSION); 717 } 718 719 static bool 720 alg_is_cipher(int alg) 721 { 722 723 return (alg_type(alg) == ALG_CIPHER); 724 } 725 726 static bool 727 alg_is_digest(int alg) 728 { 729 730 return (alg_type(alg) == ALG_DIGEST || 731 alg_type(alg) == ALG_KEYED_DIGEST); 732 } 733 734 static bool 735 alg_is_keyed_digest(int alg) 736 { 737 738 return (alg_type(alg) == ALG_KEYED_DIGEST); 739 } 740 741 static bool 742 alg_is_aead(int alg) 743 { 744 745 return (alg_type(alg) == ALG_AEAD); 746 } 747 748 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 749 750 /* Various sanity checks on crypto session parameters. */ 751 static bool 752 check_csp(const struct crypto_session_params *csp) 753 { 754 struct auth_hash *axf; 755 756 /* Mode-independent checks. */ 757 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 758 return (false); 759 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 760 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 761 return (false); 762 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 763 return (false); 764 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 765 return (false); 766 767 switch (csp->csp_mode) { 768 case CSP_MODE_COMPRESS: 769 if (!alg_is_compression(csp->csp_cipher_alg)) 770 return (false); 771 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 772 return (false); 773 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 774 return (false); 775 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 776 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 777 csp->csp_auth_mlen != 0) 778 return (false); 779 break; 780 case CSP_MODE_CIPHER: 781 if (!alg_is_cipher(csp->csp_cipher_alg)) 782 return (false); 783 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 784 return (false); 785 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 786 if (csp->csp_cipher_klen == 0) 787 return (false); 788 if (csp->csp_ivlen == 0) 789 return (false); 790 } 791 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 792 return (false); 793 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 794 csp->csp_auth_mlen != 0) 795 return (false); 796 break; 797 case CSP_MODE_DIGEST: 798 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 799 return (false); 800 801 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 802 return (false); 803 804 /* IV is optional for digests (e.g. GMAC). */ 805 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 806 return (false); 807 if (!alg_is_digest(csp->csp_auth_alg)) 808 return (false); 809 810 /* Key is optional for BLAKE2 digests. */ 811 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 812 csp->csp_auth_alg == CRYPTO_BLAKE2S) 813 ; 814 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 815 if (csp->csp_auth_klen == 0) 816 return (false); 817 } else { 818 if (csp->csp_auth_klen != 0) 819 return (false); 820 } 821 if (csp->csp_auth_mlen != 0) { 822 axf = crypto_auth_hash(csp); 823 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 824 return (false); 825 } 826 break; 827 case CSP_MODE_AEAD: 828 if (!alg_is_aead(csp->csp_cipher_alg)) 829 return (false); 830 if (csp->csp_cipher_klen == 0) 831 return (false); 832 if (csp->csp_ivlen == 0 || 833 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 834 return (false); 835 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 836 return (false); 837 838 /* 839 * XXX: Would be nice to have a better way to get this 840 * value. 841 */ 842 switch (csp->csp_cipher_alg) { 843 case CRYPTO_AES_NIST_GCM_16: 844 case CRYPTO_AES_CCM_16: 845 if (csp->csp_auth_mlen > 16) 846 return (false); 847 break; 848 } 849 break; 850 case CSP_MODE_ETA: 851 if (!alg_is_cipher(csp->csp_cipher_alg)) 852 return (false); 853 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 854 if (csp->csp_cipher_klen == 0) 855 return (false); 856 if (csp->csp_ivlen == 0) 857 return (false); 858 } 859 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 860 return (false); 861 if (!alg_is_digest(csp->csp_auth_alg)) 862 return (false); 863 864 /* Key is optional for BLAKE2 digests. */ 865 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 866 csp->csp_auth_alg == CRYPTO_BLAKE2S) 867 ; 868 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 869 if (csp->csp_auth_klen == 0) 870 return (false); 871 } else { 872 if (csp->csp_auth_klen != 0) 873 return (false); 874 } 875 if (csp->csp_auth_mlen != 0) { 876 axf = crypto_auth_hash(csp); 877 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 878 return (false); 879 } 880 break; 881 default: 882 return (false); 883 } 884 885 return (true); 886 } 887 888 /* 889 * Delete a session after it has been detached from its driver. 890 */ 891 static void 892 crypto_deletesession(crypto_session_t cses) 893 { 894 struct cryptocap *cap; 895 896 cap = cses->cap; 897 898 zfree(cses->softc, M_CRYPTO_DATA); 899 uma_zfree(cryptoses_zone, cses); 900 901 CRYPTO_DRIVER_LOCK(); 902 cap->cc_sessions--; 903 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 904 wakeup(cap); 905 CRYPTO_DRIVER_UNLOCK(); 906 cap_rele(cap); 907 } 908 909 /* 910 * Create a new session. The crid argument specifies a crypto 911 * driver to use or constraints on a driver to select (hardware 912 * only, software only, either). Whatever driver is selected 913 * must be capable of the requested crypto algorithms. 914 */ 915 int 916 crypto_newsession(crypto_session_t *cses, 917 const struct crypto_session_params *csp, int crid) 918 { 919 crypto_session_t res; 920 struct cryptocap *cap; 921 int err; 922 923 if (!check_csp(csp)) 924 return (EINVAL); 925 926 res = NULL; 927 928 CRYPTO_DRIVER_LOCK(); 929 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 930 /* 931 * Use specified driver; verify it is capable. 932 */ 933 cap = crypto_checkdriver(crid); 934 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 935 cap = NULL; 936 } else { 937 /* 938 * No requested driver; select based on crid flags. 939 */ 940 cap = crypto_select_driver(csp, crid); 941 } 942 if (cap == NULL) { 943 CRYPTO_DRIVER_UNLOCK(); 944 CRYPTDEB("no driver"); 945 return (EOPNOTSUPP); 946 } 947 cap_ref(cap); 948 cap->cc_sessions++; 949 CRYPTO_DRIVER_UNLOCK(); 950 951 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 952 res->cap = cap; 953 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 954 M_ZERO); 955 res->csp = *csp; 956 957 /* Call the driver initialization routine. */ 958 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 959 if (err != 0) { 960 CRYPTDEB("dev newsession failed: %d", err); 961 crypto_deletesession(res); 962 return (err); 963 } 964 965 *cses = res; 966 return (0); 967 } 968 969 /* 970 * Delete an existing session (or a reserved session on an unregistered 971 * driver). 972 */ 973 void 974 crypto_freesession(crypto_session_t cses) 975 { 976 struct cryptocap *cap; 977 978 if (cses == NULL) 979 return; 980 981 cap = cses->cap; 982 983 /* Call the driver cleanup routine, if available. */ 984 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 985 986 crypto_deletesession(cses); 987 } 988 989 /* 990 * Return a new driver id. Registers a driver with the system so that 991 * it can be probed by subsequent sessions. 992 */ 993 int32_t 994 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 995 { 996 struct cryptocap *cap, **newdrv; 997 int i; 998 999 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1000 device_printf(dev, 1001 "no flags specified when registering driver\n"); 1002 return -1; 1003 } 1004 1005 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1006 cap->cc_dev = dev; 1007 cap->cc_session_size = sessionsize; 1008 cap->cc_flags = flags; 1009 refcount_init(&cap->cc_refs, 1); 1010 1011 CRYPTO_DRIVER_LOCK(); 1012 for (;;) { 1013 for (i = 0; i < crypto_drivers_size; i++) { 1014 if (crypto_drivers[i] == NULL) 1015 break; 1016 } 1017 1018 if (i < crypto_drivers_size) 1019 break; 1020 1021 /* Out of entries, allocate some more. */ 1022 1023 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1024 CRYPTO_DRIVER_UNLOCK(); 1025 printf("crypto: driver count wraparound!\n"); 1026 cap_rele(cap); 1027 return (-1); 1028 } 1029 CRYPTO_DRIVER_UNLOCK(); 1030 1031 newdrv = malloc(2 * crypto_drivers_size * 1032 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1033 1034 CRYPTO_DRIVER_LOCK(); 1035 memcpy(newdrv, crypto_drivers, 1036 crypto_drivers_size * sizeof(*crypto_drivers)); 1037 1038 crypto_drivers_size *= 2; 1039 1040 free(crypto_drivers, M_CRYPTO_DATA); 1041 crypto_drivers = newdrv; 1042 } 1043 1044 cap->cc_hid = i; 1045 crypto_drivers[i] = cap; 1046 CRYPTO_DRIVER_UNLOCK(); 1047 1048 if (bootverbose) 1049 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1050 device_get_nameunit(dev), i, flags); 1051 1052 return i; 1053 } 1054 1055 /* 1056 * Lookup a driver by name. We match against the full device 1057 * name and unit, and against just the name. The latter gives 1058 * us a simple widlcarding by device name. On success return the 1059 * driver/hardware identifier; otherwise return -1. 1060 */ 1061 int 1062 crypto_find_driver(const char *match) 1063 { 1064 struct cryptocap *cap; 1065 int i, len = strlen(match); 1066 1067 CRYPTO_DRIVER_LOCK(); 1068 for (i = 0; i < crypto_drivers_size; i++) { 1069 if (crypto_drivers[i] == NULL) 1070 continue; 1071 cap = crypto_drivers[i]; 1072 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1073 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1074 CRYPTO_DRIVER_UNLOCK(); 1075 return (i); 1076 } 1077 } 1078 CRYPTO_DRIVER_UNLOCK(); 1079 return (-1); 1080 } 1081 1082 /* 1083 * Return the device_t for the specified driver or NULL 1084 * if the driver identifier is invalid. 1085 */ 1086 device_t 1087 crypto_find_device_byhid(int hid) 1088 { 1089 struct cryptocap *cap; 1090 device_t dev; 1091 1092 dev = NULL; 1093 CRYPTO_DRIVER_LOCK(); 1094 cap = crypto_checkdriver(hid); 1095 if (cap != NULL) 1096 dev = cap->cc_dev; 1097 CRYPTO_DRIVER_UNLOCK(); 1098 return (dev); 1099 } 1100 1101 /* 1102 * Return the device/driver capabilities. 1103 */ 1104 int 1105 crypto_getcaps(int hid) 1106 { 1107 struct cryptocap *cap; 1108 int flags; 1109 1110 flags = 0; 1111 CRYPTO_DRIVER_LOCK(); 1112 cap = crypto_checkdriver(hid); 1113 if (cap != NULL) 1114 flags = cap->cc_flags; 1115 CRYPTO_DRIVER_UNLOCK(); 1116 return (flags); 1117 } 1118 1119 /* 1120 * Register support for a key-related algorithm. This routine 1121 * is called once for each algorithm supported a driver. 1122 */ 1123 int 1124 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags) 1125 { 1126 struct cryptocap *cap; 1127 int err; 1128 1129 CRYPTO_DRIVER_LOCK(); 1130 1131 cap = crypto_checkdriver(driverid); 1132 if (cap != NULL && 1133 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1134 /* 1135 * XXX Do some performance testing to determine placing. 1136 * XXX We probably need an auxiliary data structure that 1137 * XXX describes relative performances. 1138 */ 1139 1140 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1141 if (bootverbose) 1142 printf("crypto: %s registers key alg %u flags %u\n" 1143 , device_get_nameunit(cap->cc_dev) 1144 , kalg 1145 , flags 1146 ); 1147 gone_in_dev(cap->cc_dev, 14, "asymmetric crypto"); 1148 err = 0; 1149 } else 1150 err = EINVAL; 1151 1152 CRYPTO_DRIVER_UNLOCK(); 1153 return err; 1154 } 1155 1156 /* 1157 * Unregister all algorithms associated with a crypto driver. 1158 * If there are pending sessions using it, leave enough information 1159 * around so that subsequent calls using those sessions will 1160 * correctly detect the driver has been unregistered and reroute 1161 * requests. 1162 */ 1163 int 1164 crypto_unregister_all(uint32_t driverid) 1165 { 1166 struct cryptocap *cap; 1167 1168 CRYPTO_DRIVER_LOCK(); 1169 cap = crypto_checkdriver(driverid); 1170 if (cap == NULL) { 1171 CRYPTO_DRIVER_UNLOCK(); 1172 return (EINVAL); 1173 } 1174 1175 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1176 crypto_drivers[driverid] = NULL; 1177 1178 /* 1179 * XXX: This doesn't do anything to kick sessions that 1180 * have no pending operations. 1181 */ 1182 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1183 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1184 CRYPTO_DRIVER_UNLOCK(); 1185 cap_rele(cap); 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Clear blockage on a driver. The what parameter indicates whether 1192 * the driver is now ready for cryptop's and/or cryptokop's. 1193 */ 1194 int 1195 crypto_unblock(uint32_t driverid, int what) 1196 { 1197 struct cryptocap *cap; 1198 int err; 1199 1200 CRYPTO_Q_LOCK(); 1201 cap = crypto_checkdriver(driverid); 1202 if (cap != NULL) { 1203 if (what & CRYPTO_SYMQ) 1204 cap->cc_qblocked = 0; 1205 if (what & CRYPTO_ASYMQ) 1206 cap->cc_kqblocked = 0; 1207 if (crp_sleep) 1208 wakeup_one(&crp_q); 1209 err = 0; 1210 } else 1211 err = EINVAL; 1212 CRYPTO_Q_UNLOCK(); 1213 1214 return err; 1215 } 1216 1217 size_t 1218 crypto_buffer_len(struct crypto_buffer *cb) 1219 { 1220 switch (cb->cb_type) { 1221 case CRYPTO_BUF_CONTIG: 1222 return (cb->cb_buf_len); 1223 case CRYPTO_BUF_MBUF: 1224 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1225 return (cb->cb_mbuf->m_pkthdr.len); 1226 return (m_length(cb->cb_mbuf, NULL)); 1227 case CRYPTO_BUF_VMPAGE: 1228 return (cb->cb_vm_page_len); 1229 case CRYPTO_BUF_UIO: 1230 return (cb->cb_uio->uio_resid); 1231 default: 1232 return (0); 1233 } 1234 } 1235 1236 #ifdef INVARIANTS 1237 /* Various sanity checks on crypto requests. */ 1238 static void 1239 cb_sanity(struct crypto_buffer *cb, const char *name) 1240 { 1241 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1242 ("incoming crp with invalid %s buffer type", name)); 1243 switch (cb->cb_type) { 1244 case CRYPTO_BUF_CONTIG: 1245 KASSERT(cb->cb_buf_len >= 0, 1246 ("incoming crp with -ve %s buffer length", name)); 1247 break; 1248 case CRYPTO_BUF_VMPAGE: 1249 KASSERT(CRYPTO_HAS_VMPAGE, 1250 ("incoming crp uses dmap on supported arch")); 1251 KASSERT(cb->cb_vm_page_len >= 0, 1252 ("incoming crp with -ve %s buffer length", name)); 1253 KASSERT(cb->cb_vm_page_offset >= 0, 1254 ("incoming crp with -ve %s buffer offset", name)); 1255 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1256 ("incoming crp with %s buffer offset greater than page size" 1257 , name)); 1258 break; 1259 default: 1260 break; 1261 } 1262 } 1263 1264 static void 1265 crp_sanity(struct cryptop *crp) 1266 { 1267 struct crypto_session_params *csp; 1268 struct crypto_buffer *out; 1269 size_t ilen, len, olen; 1270 1271 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1272 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1273 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1274 ("incoming crp with invalid output buffer type")); 1275 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1276 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1277 ("incoming crp already done")); 1278 1279 csp = &crp->crp_session->csp; 1280 cb_sanity(&crp->crp_buf, "input"); 1281 ilen = crypto_buffer_len(&crp->crp_buf); 1282 olen = ilen; 1283 out = NULL; 1284 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1285 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1286 cb_sanity(&crp->crp_obuf, "output"); 1287 out = &crp->crp_obuf; 1288 olen = crypto_buffer_len(out); 1289 } 1290 } else 1291 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1292 ("incoming crp with separate output buffer " 1293 "but no session support")); 1294 1295 switch (csp->csp_mode) { 1296 case CSP_MODE_COMPRESS: 1297 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1298 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1299 ("invalid compression op %x", crp->crp_op)); 1300 break; 1301 case CSP_MODE_CIPHER: 1302 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1303 crp->crp_op == CRYPTO_OP_DECRYPT, 1304 ("invalid cipher op %x", crp->crp_op)); 1305 break; 1306 case CSP_MODE_DIGEST: 1307 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1308 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1309 ("invalid digest op %x", crp->crp_op)); 1310 break; 1311 case CSP_MODE_AEAD: 1312 KASSERT(crp->crp_op == 1313 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1314 crp->crp_op == 1315 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1316 ("invalid AEAD op %x", crp->crp_op)); 1317 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1318 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1319 ("GCM without a separate IV")); 1320 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1321 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1322 ("CCM without a separate IV")); 1323 break; 1324 case CSP_MODE_ETA: 1325 KASSERT(crp->crp_op == 1326 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1327 crp->crp_op == 1328 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1329 ("invalid ETA op %x", crp->crp_op)); 1330 break; 1331 } 1332 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1333 if (crp->crp_aad == NULL) { 1334 KASSERT(crp->crp_aad_start == 0 || 1335 crp->crp_aad_start < ilen, 1336 ("invalid AAD start")); 1337 KASSERT(crp->crp_aad_length != 0 || 1338 crp->crp_aad_start == 0, 1339 ("AAD with zero length and non-zero start")); 1340 KASSERT(crp->crp_aad_length == 0 || 1341 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1342 ("AAD outside input length")); 1343 } else { 1344 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1345 ("session doesn't support separate AAD buffer")); 1346 KASSERT(crp->crp_aad_start == 0, 1347 ("separate AAD buffer with non-zero AAD start")); 1348 KASSERT(crp->crp_aad_length != 0, 1349 ("separate AAD buffer with zero length")); 1350 } 1351 } else { 1352 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1353 crp->crp_aad_length == 0, 1354 ("AAD region in request not supporting AAD")); 1355 } 1356 if (csp->csp_ivlen == 0) { 1357 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1358 ("IV_SEPARATE set when IV isn't used")); 1359 KASSERT(crp->crp_iv_start == 0, 1360 ("crp_iv_start set when IV isn't used")); 1361 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1362 KASSERT(crp->crp_iv_start == 0, 1363 ("IV_SEPARATE used with non-zero IV start")); 1364 } else { 1365 KASSERT(crp->crp_iv_start < ilen, 1366 ("invalid IV start")); 1367 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1368 ("IV outside buffer length")); 1369 } 1370 /* XXX: payload_start of 0 should always be < ilen? */ 1371 KASSERT(crp->crp_payload_start == 0 || 1372 crp->crp_payload_start < ilen, 1373 ("invalid payload start")); 1374 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1375 ilen, ("payload outside input buffer")); 1376 if (out == NULL) { 1377 KASSERT(crp->crp_payload_output_start == 0, 1378 ("payload output start non-zero without output buffer")); 1379 } else { 1380 KASSERT(crp->crp_payload_output_start < olen, 1381 ("invalid payload output start")); 1382 KASSERT(crp->crp_payload_output_start + 1383 crp->crp_payload_length <= olen, 1384 ("payload outside output buffer")); 1385 } 1386 if (csp->csp_mode == CSP_MODE_DIGEST || 1387 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1388 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1389 len = ilen; 1390 else 1391 len = olen; 1392 KASSERT(crp->crp_digest_start == 0 || 1393 crp->crp_digest_start < len, 1394 ("invalid digest start")); 1395 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1396 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1397 ("digest outside buffer")); 1398 } else { 1399 KASSERT(crp->crp_digest_start == 0, 1400 ("non-zero digest start for request without a digest")); 1401 } 1402 if (csp->csp_cipher_klen != 0) 1403 KASSERT(csp->csp_cipher_key != NULL || 1404 crp->crp_cipher_key != NULL, 1405 ("cipher request without a key")); 1406 if (csp->csp_auth_klen != 0) 1407 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1408 ("auth request without a key")); 1409 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1410 } 1411 #endif 1412 1413 /* 1414 * Add a crypto request to a queue, to be processed by the kernel thread. 1415 */ 1416 int 1417 crypto_dispatch(struct cryptop *crp) 1418 { 1419 struct cryptocap *cap; 1420 int result; 1421 1422 #ifdef INVARIANTS 1423 crp_sanity(crp); 1424 #endif 1425 1426 CRYPTOSTAT_INC(cs_ops); 1427 1428 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1429 1430 if (CRYPTOP_ASYNC(crp)) { 1431 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1432 struct crypto_ret_worker *ret_worker; 1433 1434 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1435 1436 CRYPTO_RETW_LOCK(ret_worker); 1437 crp->crp_seq = ret_worker->reorder_ops++; 1438 CRYPTO_RETW_UNLOCK(ret_worker); 1439 } 1440 1441 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1442 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1443 return (0); 1444 } 1445 1446 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1447 /* 1448 * Caller marked the request to be processed 1449 * immediately; dispatch it directly to the 1450 * driver unless the driver is currently blocked. 1451 */ 1452 cap = crp->crp_session->cap; 1453 if (!cap->cc_qblocked) { 1454 result = crypto_invoke(cap, crp, 0); 1455 if (result != ERESTART) 1456 return (result); 1457 /* 1458 * The driver ran out of resources, put the request on 1459 * the queue. 1460 */ 1461 } 1462 } 1463 crypto_batch_enqueue(crp); 1464 return 0; 1465 } 1466 1467 void 1468 crypto_batch_enqueue(struct cryptop *crp) 1469 { 1470 1471 CRYPTO_Q_LOCK(); 1472 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1473 if (crp_sleep) 1474 wakeup_one(&crp_q); 1475 CRYPTO_Q_UNLOCK(); 1476 } 1477 1478 /* 1479 * Add an asymetric crypto request to a queue, 1480 * to be processed by the kernel thread. 1481 */ 1482 int 1483 crypto_kdispatch(struct cryptkop *krp) 1484 { 1485 int error; 1486 1487 CRYPTOSTAT_INC(cs_kops); 1488 1489 krp->krp_cap = NULL; 1490 error = crypto_kinvoke(krp); 1491 if (error == ERESTART) { 1492 CRYPTO_Q_LOCK(); 1493 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1494 if (crp_sleep) 1495 wakeup_one(&crp_q); 1496 CRYPTO_Q_UNLOCK(); 1497 error = 0; 1498 } 1499 return error; 1500 } 1501 1502 /* 1503 * Verify a driver is suitable for the specified operation. 1504 */ 1505 static __inline int 1506 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1507 { 1508 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1509 } 1510 1511 /* 1512 * Select a driver for an asym operation. The driver must 1513 * support the necessary algorithm. The caller can constrain 1514 * which device is selected with the flags parameter. The 1515 * algorithm we use here is pretty stupid; just use the first 1516 * driver that supports the algorithms we need. If there are 1517 * multiple suitable drivers we choose the driver with the 1518 * fewest active operations. We prefer hardware-backed 1519 * drivers to software ones when either may be used. 1520 */ 1521 static struct cryptocap * 1522 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1523 { 1524 struct cryptocap *cap, *best; 1525 int match, hid; 1526 1527 CRYPTO_DRIVER_ASSERT(); 1528 1529 /* 1530 * Look first for hardware crypto devices if permitted. 1531 */ 1532 if (flags & CRYPTOCAP_F_HARDWARE) 1533 match = CRYPTOCAP_F_HARDWARE; 1534 else 1535 match = CRYPTOCAP_F_SOFTWARE; 1536 best = NULL; 1537 again: 1538 for (hid = 0; hid < crypto_drivers_size; hid++) { 1539 /* 1540 * If there is no driver for this slot, or the driver 1541 * is not appropriate (hardware or software based on 1542 * match), then skip. 1543 */ 1544 cap = crypto_drivers[hid]; 1545 if (cap == NULL || 1546 (cap->cc_flags & match) == 0) 1547 continue; 1548 1549 /* verify all the algorithms are supported. */ 1550 if (kdriver_suitable(cap, krp)) { 1551 if (best == NULL || 1552 cap->cc_koperations < best->cc_koperations) 1553 best = cap; 1554 } 1555 } 1556 if (best != NULL) 1557 return best; 1558 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1559 /* sort of an Algol 68-style for loop */ 1560 match = CRYPTOCAP_F_SOFTWARE; 1561 goto again; 1562 } 1563 return best; 1564 } 1565 1566 /* 1567 * Choose a driver for an asymmetric crypto request. 1568 */ 1569 static struct cryptocap * 1570 crypto_lookup_kdriver(struct cryptkop *krp) 1571 { 1572 struct cryptocap *cap; 1573 uint32_t crid; 1574 1575 /* If this request is requeued, it might already have a driver. */ 1576 cap = krp->krp_cap; 1577 if (cap != NULL) 1578 return (cap); 1579 1580 /* Use krp_crid to choose a driver. */ 1581 crid = krp->krp_crid; 1582 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1583 cap = crypto_checkdriver(crid); 1584 if (cap != NULL) { 1585 /* 1586 * Driver present, it must support the 1587 * necessary algorithm and, if s/w drivers are 1588 * excluded, it must be registered as 1589 * hardware-backed. 1590 */ 1591 if (!kdriver_suitable(cap, krp) || 1592 (!crypto_devallowsoft && 1593 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1594 cap = NULL; 1595 } 1596 } else { 1597 /* 1598 * No requested driver; select based on crid flags. 1599 */ 1600 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1601 crid &= ~CRYPTOCAP_F_SOFTWARE; 1602 cap = crypto_select_kdriver(krp, crid); 1603 } 1604 1605 if (cap != NULL) { 1606 krp->krp_cap = cap_ref(cap); 1607 krp->krp_hid = cap->cc_hid; 1608 } 1609 return (cap); 1610 } 1611 1612 /* 1613 * Dispatch an asymmetric crypto request. 1614 */ 1615 static int 1616 crypto_kinvoke(struct cryptkop *krp) 1617 { 1618 struct cryptocap *cap = NULL; 1619 int error; 1620 1621 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1622 KASSERT(krp->krp_callback != NULL, 1623 ("%s: krp->crp_callback == NULL", __func__)); 1624 1625 CRYPTO_DRIVER_LOCK(); 1626 cap = crypto_lookup_kdriver(krp); 1627 if (cap == NULL) { 1628 CRYPTO_DRIVER_UNLOCK(); 1629 krp->krp_status = ENODEV; 1630 crypto_kdone(krp); 1631 return (0); 1632 } 1633 1634 /* 1635 * If the device is blocked, return ERESTART to requeue it. 1636 */ 1637 if (cap->cc_kqblocked) { 1638 /* 1639 * XXX: Previously this set krp_status to ERESTART and 1640 * invoked crypto_kdone but the caller would still 1641 * requeue it. 1642 */ 1643 CRYPTO_DRIVER_UNLOCK(); 1644 return (ERESTART); 1645 } 1646 1647 cap->cc_koperations++; 1648 CRYPTO_DRIVER_UNLOCK(); 1649 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1650 if (error == ERESTART) { 1651 CRYPTO_DRIVER_LOCK(); 1652 cap->cc_koperations--; 1653 CRYPTO_DRIVER_UNLOCK(); 1654 return (error); 1655 } 1656 1657 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1658 return (0); 1659 } 1660 1661 static void 1662 crypto_task_invoke(void *ctx, int pending) 1663 { 1664 struct cryptocap *cap; 1665 struct cryptop *crp; 1666 int result; 1667 1668 crp = (struct cryptop *)ctx; 1669 cap = crp->crp_session->cap; 1670 result = crypto_invoke(cap, crp, 0); 1671 if (result == ERESTART) 1672 crypto_batch_enqueue(crp); 1673 } 1674 1675 /* 1676 * Dispatch a crypto request to the appropriate crypto devices. 1677 */ 1678 static int 1679 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1680 { 1681 1682 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1683 KASSERT(crp->crp_callback != NULL, 1684 ("%s: crp->crp_callback == NULL", __func__)); 1685 KASSERT(crp->crp_session != NULL, 1686 ("%s: crp->crp_session == NULL", __func__)); 1687 1688 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1689 struct crypto_session_params csp; 1690 crypto_session_t nses; 1691 1692 /* 1693 * Driver has unregistered; migrate the session and return 1694 * an error to the caller so they'll resubmit the op. 1695 * 1696 * XXX: What if there are more already queued requests for this 1697 * session? 1698 * 1699 * XXX: Real solution is to make sessions refcounted 1700 * and force callers to hold a reference when 1701 * assigning to crp_session. Could maybe change 1702 * crypto_getreq to accept a session pointer to make 1703 * that work. Alternatively, we could abandon the 1704 * notion of rewriting crp_session in requests forcing 1705 * the caller to deal with allocating a new session. 1706 * Perhaps provide a method to allow a crp's session to 1707 * be swapped that callers could use. 1708 */ 1709 csp = crp->crp_session->csp; 1710 crypto_freesession(crp->crp_session); 1711 1712 /* 1713 * XXX: Key pointers may no longer be valid. If we 1714 * really want to support this we need to define the 1715 * KPI such that 'csp' is required to be valid for the 1716 * duration of a session by the caller perhaps. 1717 * 1718 * XXX: If the keys have been changed this will reuse 1719 * the old keys. This probably suggests making 1720 * rekeying more explicit and updating the key 1721 * pointers in 'csp' when the keys change. 1722 */ 1723 if (crypto_newsession(&nses, &csp, 1724 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1725 crp->crp_session = nses; 1726 1727 crp->crp_etype = EAGAIN; 1728 crypto_done(crp); 1729 return 0; 1730 } else { 1731 /* 1732 * Invoke the driver to process the request. 1733 */ 1734 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1735 } 1736 } 1737 1738 void 1739 crypto_destroyreq(struct cryptop *crp) 1740 { 1741 #ifdef DIAGNOSTIC 1742 { 1743 struct cryptop *crp2; 1744 struct crypto_ret_worker *ret_worker; 1745 1746 CRYPTO_Q_LOCK(); 1747 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1748 KASSERT(crp2 != crp, 1749 ("Freeing cryptop from the crypto queue (%p).", 1750 crp)); 1751 } 1752 CRYPTO_Q_UNLOCK(); 1753 1754 FOREACH_CRYPTO_RETW(ret_worker) { 1755 CRYPTO_RETW_LOCK(ret_worker); 1756 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1757 KASSERT(crp2 != crp, 1758 ("Freeing cryptop from the return queue (%p).", 1759 crp)); 1760 } 1761 CRYPTO_RETW_UNLOCK(ret_worker); 1762 } 1763 } 1764 #endif 1765 } 1766 1767 void 1768 crypto_freereq(struct cryptop *crp) 1769 { 1770 if (crp == NULL) 1771 return; 1772 1773 crypto_destroyreq(crp); 1774 uma_zfree(cryptop_zone, crp); 1775 } 1776 1777 static void 1778 _crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1779 { 1780 crp->crp_session = cses; 1781 } 1782 1783 void 1784 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1785 { 1786 memset(crp, 0, sizeof(*crp)); 1787 _crypto_initreq(crp, cses); 1788 } 1789 1790 struct cryptop * 1791 crypto_getreq(crypto_session_t cses, int how) 1792 { 1793 struct cryptop *crp; 1794 1795 MPASS(how == M_WAITOK || how == M_NOWAIT); 1796 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1797 if (crp != NULL) 1798 _crypto_initreq(crp, cses); 1799 return (crp); 1800 } 1801 1802 /* 1803 * Invoke the callback on behalf of the driver. 1804 */ 1805 void 1806 crypto_done(struct cryptop *crp) 1807 { 1808 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1809 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1810 crp->crp_flags |= CRYPTO_F_DONE; 1811 if (crp->crp_etype != 0) 1812 CRYPTOSTAT_INC(cs_errs); 1813 1814 /* 1815 * CBIMM means unconditionally do the callback immediately; 1816 * CBIFSYNC means do the callback immediately only if the 1817 * operation was done synchronously. Both are used to avoid 1818 * doing extraneous context switches; the latter is mostly 1819 * used with the software crypto driver. 1820 */ 1821 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1822 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1823 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1824 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1825 /* 1826 * Do the callback directly. This is ok when the 1827 * callback routine does very little (e.g. the 1828 * /dev/crypto callback method just does a wakeup). 1829 */ 1830 crp->crp_callback(crp); 1831 } else { 1832 struct crypto_ret_worker *ret_worker; 1833 bool wake; 1834 1835 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1836 wake = false; 1837 1838 /* 1839 * Normal case; queue the callback for the thread. 1840 */ 1841 CRYPTO_RETW_LOCK(ret_worker); 1842 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1843 struct cryptop *tmp; 1844 1845 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1846 cryptop_q, crp_next) { 1847 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1848 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1849 tmp, crp, crp_next); 1850 break; 1851 } 1852 } 1853 if (tmp == NULL) { 1854 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1855 crp, crp_next); 1856 } 1857 1858 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1859 wake = true; 1860 } 1861 else { 1862 if (CRYPTO_RETW_EMPTY(ret_worker)) 1863 wake = true; 1864 1865 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1866 } 1867 1868 if (wake) 1869 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1870 CRYPTO_RETW_UNLOCK(ret_worker); 1871 } 1872 } 1873 1874 /* 1875 * Invoke the callback on behalf of the driver. 1876 */ 1877 void 1878 crypto_kdone(struct cryptkop *krp) 1879 { 1880 struct crypto_ret_worker *ret_worker; 1881 struct cryptocap *cap; 1882 1883 if (krp->krp_status != 0) 1884 CRYPTOSTAT_INC(cs_kerrs); 1885 cap = krp->krp_cap; 1886 if (cap != NULL) { 1887 CRYPTO_DRIVER_LOCK(); 1888 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1889 cap->cc_koperations--; 1890 if (cap->cc_koperations == 0 && 1891 cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1892 wakeup(cap); 1893 CRYPTO_DRIVER_UNLOCK(); 1894 krp->krp_cap = NULL; 1895 cap_rele(cap); 1896 } 1897 1898 ret_worker = CRYPTO_RETW(0); 1899 1900 CRYPTO_RETW_LOCK(ret_worker); 1901 if (CRYPTO_RETW_EMPTY(ret_worker)) 1902 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1903 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1904 CRYPTO_RETW_UNLOCK(ret_worker); 1905 } 1906 1907 int 1908 crypto_getfeat(int *featp) 1909 { 1910 int hid, kalg, feat = 0; 1911 1912 CRYPTO_DRIVER_LOCK(); 1913 for (hid = 0; hid < crypto_drivers_size; hid++) { 1914 const struct cryptocap *cap = crypto_drivers[hid]; 1915 1916 if (cap == NULL || 1917 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1918 !crypto_devallowsoft)) { 1919 continue; 1920 } 1921 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1922 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1923 feat |= 1 << kalg; 1924 } 1925 CRYPTO_DRIVER_UNLOCK(); 1926 *featp = feat; 1927 return (0); 1928 } 1929 1930 /* 1931 * Terminate a thread at module unload. The process that 1932 * initiated this is waiting for us to signal that we're gone; 1933 * wake it up and exit. We use the driver table lock to insure 1934 * we don't do the wakeup before they're waiting. There is no 1935 * race here because the waiter sleeps on the proc lock for the 1936 * thread so it gets notified at the right time because of an 1937 * extra wakeup that's done in exit1(). 1938 */ 1939 static void 1940 crypto_finis(void *chan) 1941 { 1942 CRYPTO_DRIVER_LOCK(); 1943 wakeup_one(chan); 1944 CRYPTO_DRIVER_UNLOCK(); 1945 kproc_exit(0); 1946 } 1947 1948 /* 1949 * Crypto thread, dispatches crypto requests. 1950 */ 1951 static void 1952 crypto_proc(void) 1953 { 1954 struct cryptop *crp, *submit; 1955 struct cryptkop *krp; 1956 struct cryptocap *cap; 1957 int result, hint; 1958 1959 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1960 fpu_kern_thread(FPU_KERN_NORMAL); 1961 #endif 1962 1963 CRYPTO_Q_LOCK(); 1964 for (;;) { 1965 /* 1966 * Find the first element in the queue that can be 1967 * processed and look-ahead to see if multiple ops 1968 * are ready for the same driver. 1969 */ 1970 submit = NULL; 1971 hint = 0; 1972 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1973 cap = crp->crp_session->cap; 1974 /* 1975 * Driver cannot disappeared when there is an active 1976 * session. 1977 */ 1978 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1979 __func__, __LINE__)); 1980 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1981 /* Op needs to be migrated, process it. */ 1982 if (submit == NULL) 1983 submit = crp; 1984 break; 1985 } 1986 if (!cap->cc_qblocked) { 1987 if (submit != NULL) { 1988 /* 1989 * We stop on finding another op, 1990 * regardless whether its for the same 1991 * driver or not. We could keep 1992 * searching the queue but it might be 1993 * better to just use a per-driver 1994 * queue instead. 1995 */ 1996 if (submit->crp_session->cap == cap) 1997 hint = CRYPTO_HINT_MORE; 1998 break; 1999 } else { 2000 submit = crp; 2001 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 2002 break; 2003 /* keep scanning for more are q'd */ 2004 } 2005 } 2006 } 2007 if (submit != NULL) { 2008 TAILQ_REMOVE(&crp_q, submit, crp_next); 2009 cap = submit->crp_session->cap; 2010 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 2011 __func__, __LINE__)); 2012 CRYPTO_Q_UNLOCK(); 2013 result = crypto_invoke(cap, submit, hint); 2014 CRYPTO_Q_LOCK(); 2015 if (result == ERESTART) { 2016 /* 2017 * The driver ran out of resources, mark the 2018 * driver ``blocked'' for cryptop's and put 2019 * the request back in the queue. It would 2020 * best to put the request back where we got 2021 * it but that's hard so for now we put it 2022 * at the front. This should be ok; putting 2023 * it at the end does not work. 2024 */ 2025 cap->cc_qblocked = 1; 2026 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 2027 CRYPTOSTAT_INC(cs_blocks); 2028 } 2029 } 2030 2031 /* As above, but for key ops */ 2032 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2033 cap = krp->krp_cap; 2034 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2035 /* 2036 * Operation needs to be migrated, 2037 * clear krp_cap so a new driver is 2038 * selected. 2039 */ 2040 krp->krp_cap = NULL; 2041 cap_rele(cap); 2042 break; 2043 } 2044 if (!cap->cc_kqblocked) 2045 break; 2046 } 2047 if (krp != NULL) { 2048 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2049 CRYPTO_Q_UNLOCK(); 2050 result = crypto_kinvoke(krp); 2051 CRYPTO_Q_LOCK(); 2052 if (result == ERESTART) { 2053 /* 2054 * The driver ran out of resources, mark the 2055 * driver ``blocked'' for cryptkop's and put 2056 * the request back in the queue. It would 2057 * best to put the request back where we got 2058 * it but that's hard so for now we put it 2059 * at the front. This should be ok; putting 2060 * it at the end does not work. 2061 */ 2062 krp->krp_cap->cc_kqblocked = 1; 2063 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2064 CRYPTOSTAT_INC(cs_kblocks); 2065 } 2066 } 2067 2068 if (submit == NULL && krp == NULL) { 2069 /* 2070 * Nothing more to be processed. Sleep until we're 2071 * woken because there are more ops to process. 2072 * This happens either by submission or by a driver 2073 * becoming unblocked and notifying us through 2074 * crypto_unblock. Note that when we wakeup we 2075 * start processing each queue again from the 2076 * front. It's not clear that it's important to 2077 * preserve this ordering since ops may finish 2078 * out of order if dispatched to different devices 2079 * and some become blocked while others do not. 2080 */ 2081 crp_sleep = 1; 2082 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2083 crp_sleep = 0; 2084 if (cryptoproc == NULL) 2085 break; 2086 CRYPTOSTAT_INC(cs_intrs); 2087 } 2088 } 2089 CRYPTO_Q_UNLOCK(); 2090 2091 crypto_finis(&crp_q); 2092 } 2093 2094 /* 2095 * Crypto returns thread, does callbacks for processed crypto requests. 2096 * Callbacks are done here, rather than in the crypto drivers, because 2097 * callbacks typically are expensive and would slow interrupt handling. 2098 */ 2099 static void 2100 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2101 { 2102 struct cryptop *crpt; 2103 struct cryptkop *krpt; 2104 2105 CRYPTO_RETW_LOCK(ret_worker); 2106 for (;;) { 2107 /* Harvest return q's for completed ops */ 2108 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2109 if (crpt != NULL) { 2110 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2111 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2112 ret_worker->reorder_cur_seq++; 2113 } else { 2114 crpt = NULL; 2115 } 2116 } 2117 2118 if (crpt == NULL) { 2119 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2120 if (crpt != NULL) 2121 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2122 } 2123 2124 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2125 if (krpt != NULL) 2126 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2127 2128 if (crpt != NULL || krpt != NULL) { 2129 CRYPTO_RETW_UNLOCK(ret_worker); 2130 /* 2131 * Run callbacks unlocked. 2132 */ 2133 if (crpt != NULL) 2134 crpt->crp_callback(crpt); 2135 if (krpt != NULL) 2136 krpt->krp_callback(krpt); 2137 CRYPTO_RETW_LOCK(ret_worker); 2138 } else { 2139 /* 2140 * Nothing more to be processed. Sleep until we're 2141 * woken because there are more returns to process. 2142 */ 2143 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2144 "crypto_ret_wait", 0); 2145 if (ret_worker->cryptoretproc == NULL) 2146 break; 2147 CRYPTOSTAT_INC(cs_rets); 2148 } 2149 } 2150 CRYPTO_RETW_UNLOCK(ret_worker); 2151 2152 crypto_finis(&ret_worker->crp_ret_q); 2153 } 2154 2155 #ifdef DDB 2156 static void 2157 db_show_drivers(void) 2158 { 2159 int hid; 2160 2161 db_printf("%12s %4s %4s %8s %2s %2s\n" 2162 , "Device" 2163 , "Ses" 2164 , "Kops" 2165 , "Flags" 2166 , "QB" 2167 , "KB" 2168 ); 2169 for (hid = 0; hid < crypto_drivers_size; hid++) { 2170 const struct cryptocap *cap = crypto_drivers[hid]; 2171 if (cap == NULL) 2172 continue; 2173 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2174 , device_get_nameunit(cap->cc_dev) 2175 , cap->cc_sessions 2176 , cap->cc_koperations 2177 , cap->cc_flags 2178 , cap->cc_qblocked 2179 , cap->cc_kqblocked 2180 ); 2181 } 2182 } 2183 2184 DB_SHOW_COMMAND(crypto, db_show_crypto) 2185 { 2186 struct cryptop *crp; 2187 struct crypto_ret_worker *ret_worker; 2188 2189 db_show_drivers(); 2190 db_printf("\n"); 2191 2192 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2193 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2194 "Device", "Callback"); 2195 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2196 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2197 , crp->crp_session->cap->cc_hid 2198 , (int) crypto_ses2caps(crp->crp_session) 2199 , crp->crp_olen 2200 , crp->crp_etype 2201 , crp->crp_flags 2202 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2203 , crp->crp_callback 2204 ); 2205 } 2206 FOREACH_CRYPTO_RETW(ret_worker) { 2207 db_printf("\n%8s %4s %4s %4s %8s\n", 2208 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2209 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2210 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2211 db_printf("%8td %4u %4u %04x %8p\n" 2212 , CRYPTO_RETW_ID(ret_worker) 2213 , crp->crp_session->cap->cc_hid 2214 , crp->crp_etype 2215 , crp->crp_flags 2216 , crp->crp_callback 2217 ); 2218 } 2219 } 2220 } 2221 } 2222 2223 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2224 { 2225 struct cryptkop *krp; 2226 struct crypto_ret_worker *ret_worker; 2227 2228 db_show_drivers(); 2229 db_printf("\n"); 2230 2231 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2232 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2233 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2234 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2235 , krp->krp_op 2236 , krp->krp_status 2237 , krp->krp_iparams, krp->krp_oparams 2238 , krp->krp_crid, krp->krp_hid 2239 , krp->krp_callback 2240 ); 2241 } 2242 2243 ret_worker = CRYPTO_RETW(0); 2244 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2245 db_printf("%4s %5s %8s %4s %8s\n", 2246 "Op", "Status", "CRID", "HID", "Callback"); 2247 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2248 db_printf("%4u %5u %08x %4u %8p\n" 2249 , krp->krp_op 2250 , krp->krp_status 2251 , krp->krp_crid, krp->krp_hid 2252 , krp->krp_callback 2253 ); 2254 } 2255 } 2256 } 2257 #endif 2258 2259 int crypto_modevent(module_t mod, int type, void *unused); 2260 2261 /* 2262 * Initialization code, both for static and dynamic loading. 2263 * Note this is not invoked with the usual MODULE_DECLARE 2264 * mechanism but instead is listed as a dependency by the 2265 * cryptosoft driver. This guarantees proper ordering of 2266 * calls on module load/unload. 2267 */ 2268 int 2269 crypto_modevent(module_t mod, int type, void *unused) 2270 { 2271 int error = EINVAL; 2272 2273 switch (type) { 2274 case MOD_LOAD: 2275 error = crypto_init(); 2276 if (error == 0 && bootverbose) 2277 printf("crypto: <crypto core>\n"); 2278 break; 2279 case MOD_UNLOAD: 2280 /*XXX disallow if active sessions */ 2281 error = 0; 2282 crypto_destroy(); 2283 return 0; 2284 } 2285 return error; 2286 } 2287 MODULE_VERSION(crypto, 1); 2288 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2289