xref: /freebsd/sys/opencrypto/cbc_mac.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*
2  * Copyright (c) 2018-2019 iXsystems Inc.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <opencrypto/cbc_mac.h>
33 #include <opencrypto/xform_auth.h>
34 
35 /*
36  * Given two CCM_CBC_BLOCK_LEN blocks, xor
37  * them into dst, and then encrypt dst.
38  */
39 static void
40 xor_and_encrypt(struct aes_cbc_mac_ctx *ctx,
41 		const uint8_t *src, uint8_t *dst)
42 {
43 	const uint64_t *b1;
44 	uint64_t *b2;
45 	uint64_t temp_block[CCM_CBC_BLOCK_LEN/sizeof(uint64_t)];
46 
47 	b1 = (const uint64_t*)src;
48 	b2 = (uint64_t*)dst;
49 
50 	for (size_t count = 0;
51 	     count < CCM_CBC_BLOCK_LEN/sizeof(uint64_t);
52 	     count++) {
53 		temp_block[count] = b1[count] ^ b2[count];
54 	}
55 	rijndaelEncrypt(ctx->keysched, ctx->rounds, (void*)temp_block, dst);
56 }
57 
58 void
59 AES_CBC_MAC_Init(struct aes_cbc_mac_ctx *ctx)
60 {
61 	bzero(ctx, sizeof(*ctx));
62 }
63 
64 void
65 AES_CBC_MAC_Setkey(struct aes_cbc_mac_ctx *ctx, const uint8_t *key, uint16_t klen)
66 {
67 	ctx->rounds = rijndaelKeySetupEnc(ctx->keysched, key, klen * 8);
68 }
69 
70 /*
71  * This is called to set the nonce, aka IV.
72  * Before this call, the authDataLength and cryptDataLength fields
73  * MUST have been set.  Sadly, there's no way to return an error.
74  *
75  * The CBC-MAC algorithm requires that the first block contain the
76  * nonce, as well as information about the sizes and lengths involved.
77  */
78 void
79 AES_CBC_MAC_Reinit(struct aes_cbc_mac_ctx *ctx, const uint8_t *nonce, uint16_t nonceLen)
80 {
81 	uint8_t b0[CCM_CBC_BLOCK_LEN];
82 	uint8_t *bp = b0, flags = 0;
83 	uint8_t L = 0;
84 	uint64_t dataLength = ctx->cryptDataLength;
85 
86 	KASSERT(nonceLen >= 7 && nonceLen <= 13,
87 	    ("nonceLen must be between 7 and 13 bytes"));
88 
89 	ctx->nonce = nonce;
90 	ctx->nonceLength = nonceLen;
91 
92 	ctx->authDataCount = 0;
93 	ctx->blockIndex = 0;
94 	explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
95 
96 	/*
97 	 * Need to determine the L field value.  This is the number of
98 	 * bytes needed to specify the length of the message; the length
99 	 * is whatever is left in the 16 bytes after specifying flags and
100 	 * the nonce.
101 	 */
102 	L = 15 - nonceLen;
103 
104 	flags = ((ctx->authDataLength > 0) << 6) +
105 	    (((AES_CBC_MAC_HASH_LEN - 2) / 2) << 3) +
106 	    L - 1;
107 	/*
108 	 * Now we need to set up the first block, which has flags, nonce,
109 	 * and the message length.
110 	 */
111 	b0[0] = flags;
112 	bcopy(nonce, b0 + 1, nonceLen);
113 	bp = b0 + 1 + nonceLen;
114 
115 	/* Need to copy L' [aka L-1] bytes of cryptDataLength */
116 	for (uint8_t *dst = b0 + sizeof(b0) - 1; dst >= bp; dst--) {
117 		*dst = dataLength;
118 		dataLength >>= 8;
119 	}
120 	/* Now need to encrypt b0 */
121 	rijndaelEncrypt(ctx->keysched, ctx->rounds, b0, ctx->block);
122 	/* If there is auth data, we need to set up the staging block */
123 	if (ctx->authDataLength) {
124 		size_t addLength;
125 		if (ctx->authDataLength < ((1<<16) - (1<<8))) {
126 			uint16_t sizeVal = htobe16(ctx->authDataLength);
127 			bcopy(&sizeVal, ctx->staging_block, sizeof(sizeVal));
128 			addLength = sizeof(sizeVal);
129 		} else if (ctx->authDataLength < (1ULL<<32)) {
130 			uint32_t sizeVal = htobe32(ctx->authDataLength);
131 			ctx->staging_block[0] = 0xff;
132 			ctx->staging_block[1] = 0xfe;
133 			bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
134 			addLength = 2 + sizeof(sizeVal);
135 		} else {
136 			uint64_t sizeVal = htobe64(ctx->authDataLength);
137 			ctx->staging_block[0] = 0xff;
138 			ctx->staging_block[1] = 0xff;
139 			bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
140 			addLength = 2 + sizeof(sizeVal);
141 		}
142 		ctx->blockIndex = addLength;
143 		/*
144 		 * The length descriptor goes into the AAD buffer, so we
145 		 * need to account for it.
146 		 */
147 		ctx->authDataLength += addLength;
148 		ctx->authDataCount = addLength;
149 	}
150 }
151 
152 int
153 AES_CBC_MAC_Update(struct aes_cbc_mac_ctx *ctx, const uint8_t *data,
154     uint16_t length)
155 {
156 	size_t copy_amt;
157 
158 	/*
159 	 * This will be called in one of two phases:
160 	 * (1)  Applying authentication data, or
161 	 * (2)  Applying the payload data.
162 	 *
163 	 * Because CBC-MAC puts the authentication data size before the
164 	 * data, subsequent calls won't be block-size-aligned.  Which
165 	 * complicates things a fair bit.
166 	 *
167 	 * The payload data doesn't have that problem.
168 	 */
169 
170 	if (ctx->authDataCount < ctx->authDataLength) {
171 		/*
172 		 * We need to process data as authentication data.
173 		 * Since we may be out of sync, we may also need
174 		 * to pad out the staging block.
175 		 */
176 		const uint8_t *ptr = data;
177 		while (length > 0) {
178 
179 			copy_amt = MIN(length,
180 			    sizeof(ctx->staging_block) - ctx->blockIndex);
181 
182 			bcopy(ptr, ctx->staging_block + ctx->blockIndex,
183 			    copy_amt);
184 			ptr += copy_amt;
185 			length -= copy_amt;
186 			ctx->authDataCount += copy_amt;
187 			ctx->blockIndex += copy_amt;
188 			ctx->blockIndex %= sizeof(ctx->staging_block);
189 
190 			if (ctx->blockIndex == 0 ||
191 			    ctx->authDataCount == ctx->authDataLength) {
192 				/*
193 				 * We're done with this block, so we
194 				 * xor staging_block with block, and then
195 				 * encrypt it.
196 				 */
197 				xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
198 				bzero(ctx->staging_block, sizeof(ctx->staging_block));
199 				ctx->blockIndex = 0;
200 				if (ctx->authDataCount >= ctx->authDataLength)
201 					break;
202 			}
203 		}
204 		/*
205 		 * We'd like to be able to check length == 0 and return
206 		 * here, but the way OCF calls us, length is always
207 		 * blksize (16, in this case).  So we have to count on
208 		 * the fact that OCF calls us separately for the AAD and
209 		 * for the real data.
210 		 */
211 		return (0);
212 	}
213 	/*
214 	 * If we're here, then we're encoding payload data.
215 	 * This is marginally easier, except that _Update can
216 	 * be called with non-aligned update lengths. As a result,
217 	 * we still need to use the staging block.
218 	 */
219 	KASSERT((length + ctx->cryptDataCount) <= ctx->cryptDataLength,
220 	    ("More encryption data than allowed"));
221 
222 	while (length) {
223 		uint8_t *ptr;
224 
225 		copy_amt = MIN(sizeof(ctx->staging_block) - ctx->blockIndex,
226 		    length);
227 		ptr = ctx->staging_block + ctx->blockIndex;
228 		bcopy(data, ptr, copy_amt);
229 		data += copy_amt;
230 		ctx->blockIndex += copy_amt;
231 		ctx->cryptDataCount += copy_amt;
232 		length -= copy_amt;
233 		if (ctx->blockIndex == sizeof(ctx->staging_block)) {
234 			/* We've got a full block */
235 			xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
236 			ctx->blockIndex = 0;
237 			bzero(ctx->staging_block, sizeof(ctx->staging_block));
238 		}
239 	}
240 	return (0);
241 }
242 
243 void
244 AES_CBC_MAC_Final(uint8_t *buf, struct aes_cbc_mac_ctx *ctx)
245 {
246 	uint8_t s0[CCM_CBC_BLOCK_LEN];
247 
248 	/*
249 	 * We first need to check to see if we've got any data
250 	 * left over to encrypt.
251 	 */
252 	if (ctx->blockIndex != 0) {
253 		xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
254 		ctx->cryptDataCount += ctx->blockIndex;
255 		ctx->blockIndex = 0;
256 		explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
257 	}
258 	bzero(s0, sizeof(s0));
259 	s0[0] = (15 - ctx->nonceLength) - 1;
260 	bcopy(ctx->nonce, s0 + 1, ctx->nonceLength);
261 	rijndaelEncrypt(ctx->keysched, ctx->rounds, s0, s0);
262 	for (size_t indx = 0; indx < AES_CBC_MAC_HASH_LEN; indx++)
263 		buf[indx] = ctx->block[indx] ^ s0[indx];
264 	explicit_bzero(s0, sizeof(s0));
265 }
266