xref: /freebsd/sys/opencrypto/cbc_mac.c (revision 2938ecc85c29202824e83d65af5c3a4fb7b3e5fb)
1 /*
2  * Copyright (c) 2018-2019 iXsystems Inc.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <opencrypto/cbc_mac.h>
33 #include <opencrypto/xform_auth.h>
34 
35 /*
36  * Given two CCM_CBC_BLOCK_LEN blocks, xor
37  * them into dst, and then encrypt dst.
38  */
39 static void
40 xor_and_encrypt(struct aes_cbc_mac_ctx *ctx,
41 		const uint8_t *src, uint8_t *dst)
42 {
43 	const uint64_t *b1;
44 	uint64_t *b2;
45 	uint64_t temp_block[CCM_CBC_BLOCK_LEN/sizeof(uint64_t)];
46 
47 	b1 = (const uint64_t*)src;
48 	b2 = (uint64_t*)dst;
49 
50 	for (size_t count = 0;
51 	     count < CCM_CBC_BLOCK_LEN/sizeof(uint64_t);
52 	     count++) {
53 		temp_block[count] = b1[count] ^ b2[count];
54 	}
55 	rijndaelEncrypt(ctx->keysched, ctx->rounds, (void*)temp_block, dst);
56 }
57 
58 void
59 AES_CBC_MAC_Init(void *vctx)
60 {
61 	struct aes_cbc_mac_ctx *ctx;
62 
63 	ctx = vctx;
64 	bzero(ctx, sizeof(*ctx));
65 }
66 
67 void
68 AES_CBC_MAC_Setkey(void *vctx, const uint8_t *key, u_int klen)
69 {
70 	struct aes_cbc_mac_ctx *ctx;
71 
72 	ctx = vctx;
73 	ctx->rounds = rijndaelKeySetupEnc(ctx->keysched, key, klen * 8);
74 }
75 
76 /*
77  * This is called to set the nonce, aka IV.
78  * Before this call, the authDataLength and cryptDataLength fields
79  * MUST have been set.  Sadly, there's no way to return an error.
80  *
81  * The CBC-MAC algorithm requires that the first block contain the
82  * nonce, as well as information about the sizes and lengths involved.
83  */
84 void
85 AES_CBC_MAC_Reinit(void *vctx, const uint8_t *nonce, u_int nonceLen)
86 {
87 	struct aes_cbc_mac_ctx *ctx = vctx;
88 	uint8_t b0[CCM_CBC_BLOCK_LEN];
89 	uint8_t *bp = b0, flags = 0;
90 	uint8_t L = 0;
91 	uint64_t dataLength = ctx->cryptDataLength;
92 
93 	KASSERT(nonceLen >= 7 && nonceLen <= 13,
94 	    ("nonceLen must be between 7 and 13 bytes"));
95 
96 	ctx->nonce = nonce;
97 	ctx->nonceLength = nonceLen;
98 
99 	ctx->authDataCount = 0;
100 	ctx->blockIndex = 0;
101 	explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
102 
103 	/*
104 	 * Need to determine the L field value.  This is the number of
105 	 * bytes needed to specify the length of the message; the length
106 	 * is whatever is left in the 16 bytes after specifying flags and
107 	 * the nonce.
108 	 */
109 	L = 15 - nonceLen;
110 
111 	flags = ((ctx->authDataLength > 0) << 6) +
112 	    (((AES_CBC_MAC_HASH_LEN - 2) / 2) << 3) +
113 	    L - 1;
114 	/*
115 	 * Now we need to set up the first block, which has flags, nonce,
116 	 * and the message length.
117 	 */
118 	b0[0] = flags;
119 	bcopy(nonce, b0 + 1, nonceLen);
120 	bp = b0 + 1 + nonceLen;
121 
122 	/* Need to copy L' [aka L-1] bytes of cryptDataLength */
123 	for (uint8_t *dst = b0 + sizeof(b0) - 1; dst >= bp; dst--) {
124 		*dst = dataLength;
125 		dataLength >>= 8;
126 	}
127 	/* Now need to encrypt b0 */
128 	rijndaelEncrypt(ctx->keysched, ctx->rounds, b0, ctx->block);
129 	/* If there is auth data, we need to set up the staging block */
130 	if (ctx->authDataLength) {
131 		size_t addLength;
132 		if (ctx->authDataLength < ((1<<16) - (1<<8))) {
133 			uint16_t sizeVal = htobe16(ctx->authDataLength);
134 			bcopy(&sizeVal, ctx->staging_block, sizeof(sizeVal));
135 			addLength = sizeof(sizeVal);
136 		} else if (ctx->authDataLength < (1ULL<<32)) {
137 			uint32_t sizeVal = htobe32(ctx->authDataLength);
138 			ctx->staging_block[0] = 0xff;
139 			ctx->staging_block[1] = 0xfe;
140 			bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
141 			addLength = 2 + sizeof(sizeVal);
142 		} else {
143 			uint64_t sizeVal = htobe64(ctx->authDataLength);
144 			ctx->staging_block[0] = 0xff;
145 			ctx->staging_block[1] = 0xff;
146 			bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
147 			addLength = 2 + sizeof(sizeVal);
148 		}
149 		ctx->blockIndex = addLength;
150 		/*
151 		 * The length descriptor goes into the AAD buffer, so we
152 		 * need to account for it.
153 		 */
154 		ctx->authDataLength += addLength;
155 		ctx->authDataCount = addLength;
156 	}
157 }
158 
159 int
160 AES_CBC_MAC_Update(void *vctx, const void *vdata, u_int length)
161 {
162 	struct aes_cbc_mac_ctx *ctx;
163 	const uint8_t *data;
164 	size_t copy_amt;
165 
166 	ctx = vctx;
167 	data = vdata;
168 
169 	/*
170 	 * This will be called in one of two phases:
171 	 * (1)  Applying authentication data, or
172 	 * (2)  Applying the payload data.
173 	 *
174 	 * Because CBC-MAC puts the authentication data size before the
175 	 * data, subsequent calls won't be block-size-aligned.  Which
176 	 * complicates things a fair bit.
177 	 *
178 	 * The payload data doesn't have that problem.
179 	 */
180 
181 	if (ctx->authDataCount < ctx->authDataLength) {
182 		/*
183 		 * We need to process data as authentication data.
184 		 * Since we may be out of sync, we may also need
185 		 * to pad out the staging block.
186 		 */
187 		const uint8_t *ptr = data;
188 		while (length > 0) {
189 
190 			copy_amt = MIN(length,
191 			    sizeof(ctx->staging_block) - ctx->blockIndex);
192 
193 			bcopy(ptr, ctx->staging_block + ctx->blockIndex,
194 			    copy_amt);
195 			ptr += copy_amt;
196 			length -= copy_amt;
197 			ctx->authDataCount += copy_amt;
198 			ctx->blockIndex += copy_amt;
199 			ctx->blockIndex %= sizeof(ctx->staging_block);
200 
201 			if (ctx->blockIndex == 0 ||
202 			    ctx->authDataCount == ctx->authDataLength) {
203 				/*
204 				 * We're done with this block, so we
205 				 * xor staging_block with block, and then
206 				 * encrypt it.
207 				 */
208 				xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
209 				bzero(ctx->staging_block, sizeof(ctx->staging_block));
210 				ctx->blockIndex = 0;
211 				if (ctx->authDataCount >= ctx->authDataLength)
212 					break;
213 			}
214 		}
215 		/*
216 		 * We'd like to be able to check length == 0 and return
217 		 * here, but the way OCF calls us, length is always
218 		 * blksize (16, in this case).  So we have to count on
219 		 * the fact that OCF calls us separately for the AAD and
220 		 * for the real data.
221 		 */
222 		return (0);
223 	}
224 	/*
225 	 * If we're here, then we're encoding payload data.
226 	 * This is marginally easier, except that _Update can
227 	 * be called with non-aligned update lengths. As a result,
228 	 * we still need to use the staging block.
229 	 */
230 	KASSERT((length + ctx->cryptDataCount) <= ctx->cryptDataLength,
231 	    ("More encryption data than allowed"));
232 
233 	while (length) {
234 		uint8_t *ptr;
235 
236 		copy_amt = MIN(sizeof(ctx->staging_block) - ctx->blockIndex,
237 		    length);
238 		ptr = ctx->staging_block + ctx->blockIndex;
239 		bcopy(data, ptr, copy_amt);
240 		data += copy_amt;
241 		ctx->blockIndex += copy_amt;
242 		ctx->cryptDataCount += copy_amt;
243 		length -= copy_amt;
244 		if (ctx->blockIndex == sizeof(ctx->staging_block)) {
245 			/* We've got a full block */
246 			xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
247 			ctx->blockIndex = 0;
248 			bzero(ctx->staging_block, sizeof(ctx->staging_block));
249 		}
250 	}
251 	return (0);
252 }
253 
254 void
255 AES_CBC_MAC_Final(uint8_t *buf, void *vctx)
256 {
257 	struct aes_cbc_mac_ctx *ctx;
258 	uint8_t s0[CCM_CBC_BLOCK_LEN];
259 
260 	ctx = vctx;
261 
262 	/*
263 	 * We first need to check to see if we've got any data
264 	 * left over to encrypt.
265 	 */
266 	if (ctx->blockIndex != 0) {
267 		xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
268 		ctx->cryptDataCount += ctx->blockIndex;
269 		ctx->blockIndex = 0;
270 		explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
271 	}
272 	bzero(s0, sizeof(s0));
273 	s0[0] = (15 - ctx->nonceLength) - 1;
274 	bcopy(ctx->nonce, s0 + 1, ctx->nonceLength);
275 	rijndaelEncrypt(ctx->keysched, ctx->rounds, s0, s0);
276 	for (size_t indx = 0; indx < AES_CBC_MAC_HASH_LEN; indx++)
277 		buf[indx] = ctx->block[indx] ^ s0[indx];
278 	explicit_bzero(s0, sizeof(s0));
279 }
280