1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 3 * 4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 6 * Copyright (c) 2004 Intel Corporation. All rights reserved. 7 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 11 * 12 * This software is available to you under a choice of one of two 13 * licenses. You may choose to be licensed under the terms of the GNU 14 * General Public License (GPL) Version 2, available from the file 15 * COPYING in the main directory of this source tree, or the 16 * OpenIB.org BSD license below: 17 * 18 * Redistribution and use in source and binary forms, with or 19 * without modification, are permitted provided that the following 20 * conditions are met: 21 * 22 * - Redistributions of source code must retain the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer. 25 * 26 * - Redistributions in binary form must reproduce the above 27 * copyright notice, this list of conditions and the following 28 * disclaimer in the documentation and/or other materials 29 * provided with the distribution. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 * SOFTWARE. 39 * 40 * $FreeBSD$ 41 */ 42 43 #if !defined(IB_VERBS_H) 44 #define IB_VERBS_H 45 46 #include <linux/types.h> 47 #include <linux/device.h> 48 #include <linux/mm.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/kref.h> 51 #include <linux/list.h> 52 #include <linux/rwsem.h> 53 #include <linux/scatterlist.h> 54 #include <linux/workqueue.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <net/ipv6.h> 58 #include <net/ip.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/xarray.h> 64 #include <netinet/ip.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/signature.h> 67 #include <uapi/rdma/rdma_user_ioctl.h> 68 #include <uapi/rdma/ib_user_ioctl_verbs.h> 69 70 #include <asm/atomic.h> 71 #include <asm/uaccess.h> 72 73 struct ib_uqp_object; 74 struct ib_usrq_object; 75 struct ib_uwq_object; 76 struct ifla_vf_info; 77 struct ifla_vf_stats; 78 struct ib_uverbs_file; 79 struct uverbs_attr_bundle; 80 81 enum ib_uverbs_advise_mr_advice; 82 83 extern struct workqueue_struct *ib_wq; 84 extern struct workqueue_struct *ib_comp_wq; 85 86 struct ib_ucq_object; 87 88 union ib_gid { 89 u8 raw[16]; 90 struct { 91 __be64 subnet_prefix; 92 __be64 interface_id; 93 } global; 94 }; 95 96 extern union ib_gid zgid; 97 98 enum ib_gid_type { 99 /* If link layer is Ethernet, this is RoCE V1 */ 100 IB_GID_TYPE_IB = 0, 101 IB_GID_TYPE_ROCE = 0, 102 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 103 IB_GID_TYPE_SIZE 104 }; 105 106 #define ROCE_V2_UDP_DPORT 4791 107 struct ib_gid_attr { 108 enum ib_gid_type gid_type; 109 if_t ndev; 110 }; 111 112 enum rdma_node_type { 113 /* IB values map to NodeInfo:NodeType. */ 114 RDMA_NODE_IB_CA = 1, 115 RDMA_NODE_IB_SWITCH, 116 RDMA_NODE_IB_ROUTER, 117 RDMA_NODE_RNIC, 118 RDMA_NODE_USNIC, 119 RDMA_NODE_USNIC_UDP, 120 }; 121 122 enum { 123 /* set the local administered indication */ 124 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 125 }; 126 127 enum rdma_transport_type { 128 RDMA_TRANSPORT_IB, 129 RDMA_TRANSPORT_IWARP, 130 RDMA_TRANSPORT_USNIC, 131 RDMA_TRANSPORT_USNIC_UDP 132 }; 133 134 enum rdma_protocol_type { 135 RDMA_PROTOCOL_IB, 136 RDMA_PROTOCOL_IBOE, 137 RDMA_PROTOCOL_IWARP, 138 RDMA_PROTOCOL_USNIC_UDP 139 }; 140 141 __attribute_const__ enum rdma_transport_type 142 rdma_node_get_transport(enum rdma_node_type node_type); 143 144 enum rdma_network_type { 145 RDMA_NETWORK_IB, 146 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 147 RDMA_NETWORK_IPV4, 148 RDMA_NETWORK_IPV6 149 }; 150 151 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 152 { 153 if (network_type == RDMA_NETWORK_IPV4 || 154 network_type == RDMA_NETWORK_IPV6) 155 return IB_GID_TYPE_ROCE_UDP_ENCAP; 156 157 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 158 return IB_GID_TYPE_IB; 159 } 160 161 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 162 union ib_gid *gid) 163 { 164 if (gid_type == IB_GID_TYPE_IB) 165 return RDMA_NETWORK_IB; 166 167 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 168 return RDMA_NETWORK_IPV4; 169 else 170 return RDMA_NETWORK_IPV6; 171 } 172 173 enum rdma_link_layer { 174 IB_LINK_LAYER_UNSPECIFIED, 175 IB_LINK_LAYER_INFINIBAND, 176 IB_LINK_LAYER_ETHERNET, 177 }; 178 179 enum ib_device_cap_flags { 180 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 181 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 182 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 183 IB_DEVICE_RAW_MULTI = (1 << 3), 184 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 185 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 186 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 187 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 188 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 189 IB_DEVICE_INIT_TYPE = (1 << 9), 190 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 191 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 192 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 193 IB_DEVICE_SRQ_RESIZE = (1 << 13), 194 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 195 196 /* 197 * This device supports a per-device lkey or stag that can be 198 * used without performing a memory registration for the local 199 * memory. Note that ULPs should never check this flag, but 200 * instead of use the local_dma_lkey flag in the ib_pd structure, 201 * which will always contain a usable lkey. 202 */ 203 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 204 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 205 IB_DEVICE_MEM_WINDOW = (1 << 17), 206 /* 207 * Devices should set IB_DEVICE_UD_IP_SUM if they support 208 * insertion of UDP and TCP checksum on outgoing UD IPoIB 209 * messages and can verify the validity of checksum for 210 * incoming messages. Setting this flag implies that the 211 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 212 */ 213 IB_DEVICE_UD_IP_CSUM = (1 << 18), 214 IB_DEVICE_UD_TSO = (1 << 19), 215 IB_DEVICE_XRC = (1 << 20), 216 217 /* 218 * This device supports the IB "base memory management extension", 219 * which includes support for fast registrations (IB_WR_REG_MR, 220 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 221 * also be set by any iWarp device which must support FRs to comply 222 * to the iWarp verbs spec. iWarp devices also support the 223 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 224 * stag. 225 */ 226 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 227 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 228 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 229 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 230 IB_DEVICE_RC_IP_CSUM = (1 << 25), 231 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 232 /* 233 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 234 * support execution of WQEs that involve synchronization 235 * of I/O operations with single completion queue managed 236 * by hardware. 237 */ 238 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 239 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 240 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 241 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 242 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 243 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 244 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 245 IB_DEVICE_KNOWSEPOCH = (1ULL << 35), 246 }; 247 248 enum ib_atomic_cap { 249 IB_ATOMIC_NONE, 250 IB_ATOMIC_HCA, 251 IB_ATOMIC_GLOB 252 }; 253 254 enum ib_odp_general_cap_bits { 255 IB_ODP_SUPPORT = 1 << 0, 256 }; 257 258 enum ib_odp_transport_cap_bits { 259 IB_ODP_SUPPORT_SEND = 1 << 0, 260 IB_ODP_SUPPORT_RECV = 1 << 1, 261 IB_ODP_SUPPORT_WRITE = 1 << 2, 262 IB_ODP_SUPPORT_READ = 1 << 3, 263 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 264 }; 265 266 struct ib_odp_caps { 267 uint64_t general_caps; 268 struct { 269 uint32_t rc_odp_caps; 270 uint32_t uc_odp_caps; 271 uint32_t ud_odp_caps; 272 uint32_t xrc_odp_caps; 273 } per_transport_caps; 274 }; 275 276 struct ib_rss_caps { 277 /* Corresponding bit will be set if qp type from 278 * 'enum ib_qp_type' is supported, e.g. 279 * supported_qpts |= 1 << IB_QPT_UD 280 */ 281 u32 supported_qpts; 282 u32 max_rwq_indirection_tables; 283 u32 max_rwq_indirection_table_size; 284 }; 285 286 enum ib_tm_cap_flags { 287 /* Support tag matching with rendezvous offload for RC transport */ 288 IB_TM_CAP_RNDV_RC = 1 << 0, 289 }; 290 291 struct ib_tm_caps { 292 /* Max size of RNDV header */ 293 u32 max_rndv_hdr_size; 294 /* Max number of entries in tag matching list */ 295 u32 max_num_tags; 296 /* From enum ib_tm_cap_flags */ 297 u32 flags; 298 /* Max number of outstanding list operations */ 299 u32 max_ops; 300 /* Max number of SGE in tag matching entry */ 301 u32 max_sge; 302 }; 303 304 enum ib_cq_creation_flags { 305 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 306 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 307 }; 308 309 struct ib_cq_init_attr { 310 unsigned int cqe; 311 u32 comp_vector; 312 u32 flags; 313 }; 314 315 enum ib_cq_attr_mask { 316 IB_CQ_MODERATE = 1 << 0, 317 }; 318 319 struct ib_cq_caps { 320 u16 max_cq_moderation_count; 321 u16 max_cq_moderation_period; 322 }; 323 324 struct ib_dm_mr_attr { 325 u64 length; 326 u64 offset; 327 u32 access_flags; 328 }; 329 330 struct ib_dm_alloc_attr { 331 u64 length; 332 u32 alignment; 333 u32 flags; 334 }; 335 336 struct ib_device_attr { 337 u64 fw_ver; 338 __be64 sys_image_guid; 339 u64 max_mr_size; 340 u64 page_size_cap; 341 u32 vendor_id; 342 u32 vendor_part_id; 343 u32 hw_ver; 344 int max_qp; 345 int max_qp_wr; 346 u64 device_cap_flags; 347 int max_sge; 348 int max_sge_rd; 349 int max_cq; 350 int max_cqe; 351 int max_mr; 352 int max_pd; 353 int max_qp_rd_atom; 354 int max_ee_rd_atom; 355 int max_res_rd_atom; 356 int max_qp_init_rd_atom; 357 int max_ee_init_rd_atom; 358 enum ib_atomic_cap atomic_cap; 359 enum ib_atomic_cap masked_atomic_cap; 360 int max_ee; 361 int max_rdd; 362 int max_mw; 363 int max_raw_ipv6_qp; 364 int max_raw_ethy_qp; 365 int max_mcast_grp; 366 int max_mcast_qp_attach; 367 int max_total_mcast_qp_attach; 368 int max_ah; 369 int max_fmr; 370 int max_map_per_fmr; 371 int max_srq; 372 int max_srq_wr; 373 union { 374 int max_srq_sge; 375 int max_send_sge; 376 int max_recv_sge; 377 }; 378 unsigned int max_fast_reg_page_list_len; 379 u16 max_pkeys; 380 u8 local_ca_ack_delay; 381 int sig_prot_cap; 382 int sig_guard_cap; 383 struct ib_odp_caps odp_caps; 384 uint64_t timestamp_mask; 385 uint64_t hca_core_clock; /* in KHZ */ 386 struct ib_rss_caps rss_caps; 387 u32 max_wq_type_rq; 388 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 389 struct ib_tm_caps tm_caps; 390 struct ib_cq_caps cq_caps; 391 u64 max_dm_size; 392 /* Max entries for sgl for optimized performance per READ */ 393 u32 max_sgl_rd; 394 }; 395 396 enum ib_mtu { 397 IB_MTU_256 = 1, 398 IB_MTU_512 = 2, 399 IB_MTU_1024 = 3, 400 IB_MTU_2048 = 4, 401 IB_MTU_4096 = 5 402 }; 403 404 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 405 { 406 switch (mtu) { 407 case IB_MTU_256: return 256; 408 case IB_MTU_512: return 512; 409 case IB_MTU_1024: return 1024; 410 case IB_MTU_2048: return 2048; 411 case IB_MTU_4096: return 4096; 412 default: return -1; 413 } 414 } 415 416 enum ib_port_state { 417 IB_PORT_NOP = 0, 418 IB_PORT_DOWN = 1, 419 IB_PORT_INIT = 2, 420 IB_PORT_ARMED = 3, 421 IB_PORT_ACTIVE = 4, 422 IB_PORT_ACTIVE_DEFER = 5, 423 IB_PORT_DUMMY = -1, /* force enum signed */ 424 }; 425 426 enum ib_port_cap_flags { 427 IB_PORT_SM = 1 << 1, 428 IB_PORT_NOTICE_SUP = 1 << 2, 429 IB_PORT_TRAP_SUP = 1 << 3, 430 IB_PORT_OPT_IPD_SUP = 1 << 4, 431 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 432 IB_PORT_SL_MAP_SUP = 1 << 6, 433 IB_PORT_MKEY_NVRAM = 1 << 7, 434 IB_PORT_PKEY_NVRAM = 1 << 8, 435 IB_PORT_LED_INFO_SUP = 1 << 9, 436 IB_PORT_SM_DISABLED = 1 << 10, 437 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 438 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 439 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 440 IB_PORT_CM_SUP = 1 << 16, 441 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 442 IB_PORT_REINIT_SUP = 1 << 18, 443 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 444 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 445 IB_PORT_DR_NOTICE_SUP = 1 << 21, 446 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 447 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 448 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 449 IB_PORT_CLIENT_REG_SUP = 1 << 25, 450 IB_PORT_IP_BASED_GIDS = 1 << 26, 451 }; 452 453 enum ib_port_phys_state { 454 IB_PORT_PHYS_STATE_SLEEP = 1, 455 IB_PORT_PHYS_STATE_POLLING = 2, 456 IB_PORT_PHYS_STATE_DISABLED = 3, 457 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 458 IB_PORT_PHYS_STATE_LINK_UP = 5, 459 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 460 IB_PORT_PHYS_STATE_PHY_TEST = 7, 461 }; 462 463 enum ib_port_width { 464 IB_WIDTH_1X = 1, 465 IB_WIDTH_2X = 16, 466 IB_WIDTH_4X = 2, 467 IB_WIDTH_8X = 4, 468 IB_WIDTH_12X = 8 469 }; 470 471 static inline int ib_width_enum_to_int(enum ib_port_width width) 472 { 473 switch (width) { 474 case IB_WIDTH_1X: return 1; 475 case IB_WIDTH_2X: return 2; 476 case IB_WIDTH_4X: return 4; 477 case IB_WIDTH_8X: return 8; 478 case IB_WIDTH_12X: return 12; 479 default: return -1; 480 } 481 } 482 483 enum ib_port_speed { 484 IB_SPEED_SDR = 1, 485 IB_SPEED_DDR = 2, 486 IB_SPEED_QDR = 4, 487 IB_SPEED_FDR10 = 8, 488 IB_SPEED_FDR = 16, 489 IB_SPEED_EDR = 32, 490 IB_SPEED_HDR = 64, 491 IB_SPEED_NDR = 128 492 }; 493 494 /** 495 * struct rdma_hw_stats 496 * @lock - Mutex to protect parallel write access to lifespan and values 497 * of counters, which are 64bits and not guaranteeed to be written 498 * atomicaly on 32bits systems. 499 * @timestamp - Used by the core code to track when the last update was 500 * @lifespan - Used by the core code to determine how old the counters 501 * should be before being updated again. Stored in jiffies, defaults 502 * to 10 milliseconds, drivers can override the default be specifying 503 * their own value during their allocation routine. 504 * @name - Array of pointers to static names used for the counters in 505 * directory. 506 * @num_counters - How many hardware counters there are. If name is 507 * shorter than this number, a kernel oops will result. Driver authors 508 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 509 * in their code to prevent this. 510 * @value - Array of u64 counters that are accessed by the sysfs code and 511 * filled in by the drivers get_stats routine 512 */ 513 struct rdma_hw_stats { 514 struct mutex lock; /* Protect lifespan and values[] */ 515 unsigned long timestamp; 516 unsigned long lifespan; 517 const char * const *names; 518 int num_counters; 519 u64 value[]; 520 }; 521 522 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 523 /** 524 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 525 * for drivers. 526 * @names - Array of static const char * 527 * @num_counters - How many elements in array 528 * @lifespan - How many milliseconds between updates 529 */ 530 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 531 const char * const *names, int num_counters, 532 unsigned long lifespan) 533 { 534 struct rdma_hw_stats *stats; 535 536 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 537 GFP_KERNEL); 538 if (!stats) 539 return NULL; 540 stats->names = names; 541 stats->num_counters = num_counters; 542 stats->lifespan = msecs_to_jiffies(lifespan); 543 544 return stats; 545 } 546 547 548 /* Define bits for the various functionality this port needs to be supported by 549 * the core. 550 */ 551 /* Management 0x00000FFF */ 552 #define RDMA_CORE_CAP_IB_MAD 0x00000001 553 #define RDMA_CORE_CAP_IB_SMI 0x00000002 554 #define RDMA_CORE_CAP_IB_CM 0x00000004 555 #define RDMA_CORE_CAP_IW_CM 0x00000008 556 #define RDMA_CORE_CAP_IB_SA 0x00000010 557 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 558 559 /* Address format 0x000FF000 */ 560 #define RDMA_CORE_CAP_AF_IB 0x00001000 561 #define RDMA_CORE_CAP_ETH_AH 0x00002000 562 563 /* Protocol 0xFFF00000 */ 564 #define RDMA_CORE_CAP_PROT_IB 0x00100000 565 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 566 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 567 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 568 569 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 570 | RDMA_CORE_CAP_IB_MAD \ 571 | RDMA_CORE_CAP_IB_SMI \ 572 | RDMA_CORE_CAP_IB_CM \ 573 | RDMA_CORE_CAP_IB_SA \ 574 | RDMA_CORE_CAP_AF_IB) 575 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 576 | RDMA_CORE_CAP_IB_MAD \ 577 | RDMA_CORE_CAP_IB_CM \ 578 | RDMA_CORE_CAP_AF_IB \ 579 | RDMA_CORE_CAP_ETH_AH) 580 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 581 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 582 | RDMA_CORE_CAP_IB_MAD \ 583 | RDMA_CORE_CAP_IB_CM \ 584 | RDMA_CORE_CAP_AF_IB \ 585 | RDMA_CORE_CAP_ETH_AH) 586 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 587 | RDMA_CORE_CAP_IW_CM) 588 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 589 | RDMA_CORE_CAP_OPA_MAD) 590 591 struct ib_port_attr { 592 u64 subnet_prefix; 593 enum ib_port_state state; 594 enum ib_mtu max_mtu; 595 enum ib_mtu active_mtu; 596 int gid_tbl_len; 597 unsigned int ip_gids:1; 598 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 599 u32 port_cap_flags; 600 u32 max_msg_sz; 601 u32 bad_pkey_cntr; 602 u32 qkey_viol_cntr; 603 u16 pkey_tbl_len; 604 u16 lid; 605 u16 sm_lid; 606 u8 lmc; 607 u8 max_vl_num; 608 u8 sm_sl; 609 u8 subnet_timeout; 610 u8 init_type_reply; 611 u8 active_width; 612 u8 active_speed; 613 u8 phys_state; 614 bool grh_required; 615 }; 616 617 enum ib_device_modify_flags { 618 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 619 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 620 }; 621 622 #define IB_DEVICE_NODE_DESC_MAX 64 623 624 struct ib_device_modify { 625 u64 sys_image_guid; 626 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 627 }; 628 629 enum ib_port_modify_flags { 630 IB_PORT_SHUTDOWN = 1, 631 IB_PORT_INIT_TYPE = (1<<2), 632 IB_PORT_RESET_QKEY_CNTR = (1<<3) 633 }; 634 635 struct ib_port_modify { 636 u32 set_port_cap_mask; 637 u32 clr_port_cap_mask; 638 u8 init_type; 639 }; 640 641 enum ib_event_type { 642 IB_EVENT_CQ_ERR, 643 IB_EVENT_QP_FATAL, 644 IB_EVENT_QP_REQ_ERR, 645 IB_EVENT_QP_ACCESS_ERR, 646 IB_EVENT_COMM_EST, 647 IB_EVENT_SQ_DRAINED, 648 IB_EVENT_PATH_MIG, 649 IB_EVENT_PATH_MIG_ERR, 650 IB_EVENT_DEVICE_FATAL, 651 IB_EVENT_PORT_ACTIVE, 652 IB_EVENT_PORT_ERR, 653 IB_EVENT_LID_CHANGE, 654 IB_EVENT_PKEY_CHANGE, 655 IB_EVENT_SM_CHANGE, 656 IB_EVENT_SRQ_ERR, 657 IB_EVENT_SRQ_LIMIT_REACHED, 658 IB_EVENT_QP_LAST_WQE_REACHED, 659 IB_EVENT_CLIENT_REREGISTER, 660 IB_EVENT_GID_CHANGE, 661 IB_EVENT_WQ_FATAL, 662 }; 663 664 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 665 666 struct ib_event { 667 struct ib_device *device; 668 union { 669 struct ib_cq *cq; 670 struct ib_qp *qp; 671 struct ib_srq *srq; 672 struct ib_wq *wq; 673 u8 port_num; 674 } element; 675 enum ib_event_type event; 676 }; 677 678 struct ib_event_handler { 679 struct ib_device *device; 680 void (*handler)(struct ib_event_handler *, struct ib_event *); 681 struct list_head list; 682 }; 683 684 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 685 do { \ 686 (_ptr)->device = _device; \ 687 (_ptr)->handler = _handler; \ 688 INIT_LIST_HEAD(&(_ptr)->list); \ 689 } while (0) 690 691 struct ib_global_route { 692 union ib_gid dgid; 693 u32 flow_label; 694 u8 sgid_index; 695 u8 hop_limit; 696 u8 traffic_class; 697 }; 698 699 struct ib_grh { 700 __be32 version_tclass_flow; 701 __be16 paylen; 702 u8 next_hdr; 703 u8 hop_limit; 704 union ib_gid sgid; 705 union ib_gid dgid; 706 }; 707 708 union rdma_network_hdr { 709 struct ib_grh ibgrh; 710 struct { 711 /* The IB spec states that if it's IPv4, the header 712 * is located in the last 20 bytes of the header. 713 */ 714 u8 reserved[20]; 715 struct ip roce4grh; 716 }; 717 }; 718 719 enum { 720 IB_MULTICAST_QPN = 0xffffff 721 }; 722 723 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 724 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 725 726 enum ib_ah_flags { 727 IB_AH_GRH = 1 728 }; 729 730 enum ib_rate { 731 IB_RATE_PORT_CURRENT = 0, 732 IB_RATE_2_5_GBPS = 2, 733 IB_RATE_5_GBPS = 5, 734 IB_RATE_10_GBPS = 3, 735 IB_RATE_20_GBPS = 6, 736 IB_RATE_30_GBPS = 4, 737 IB_RATE_40_GBPS = 7, 738 IB_RATE_60_GBPS = 8, 739 IB_RATE_80_GBPS = 9, 740 IB_RATE_120_GBPS = 10, 741 IB_RATE_14_GBPS = 11, 742 IB_RATE_56_GBPS = 12, 743 IB_RATE_112_GBPS = 13, 744 IB_RATE_168_GBPS = 14, 745 IB_RATE_25_GBPS = 15, 746 IB_RATE_100_GBPS = 16, 747 IB_RATE_200_GBPS = 17, 748 IB_RATE_300_GBPS = 18, 749 IB_RATE_28_GBPS = 19, 750 IB_RATE_50_GBPS = 20, 751 IB_RATE_400_GBPS = 21, 752 IB_RATE_600_GBPS = 22, 753 }; 754 755 /** 756 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 757 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 758 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 759 * @rate: rate to convert. 760 */ 761 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 762 763 /** 764 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 765 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 766 * @rate: rate to convert. 767 */ 768 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 769 770 771 /** 772 * enum ib_mr_type - memory region type 773 * @IB_MR_TYPE_MEM_REG: memory region that is used for 774 * normal registration 775 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 776 * register any arbitrary sg lists (without 777 * the normal mr constraints - see 778 * ib_map_mr_sg) 779 * @IB_MR_TYPE_DM: memory region that is used for device 780 * memory registration 781 * @IB_MR_TYPE_USER: memory region that is used for the user-space 782 * application 783 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 784 * without address translations (VA=PA) 785 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 786 * data integrity operations 787 */ 788 enum ib_mr_type { 789 IB_MR_TYPE_MEM_REG, 790 IB_MR_TYPE_SG_GAPS, 791 IB_MR_TYPE_DM, 792 IB_MR_TYPE_USER, 793 IB_MR_TYPE_DMA, 794 IB_MR_TYPE_INTEGRITY, 795 }; 796 797 enum ib_mr_status_check { 798 IB_MR_CHECK_SIG_STATUS = 1, 799 }; 800 801 /** 802 * struct ib_mr_status - Memory region status container 803 * 804 * @fail_status: Bitmask of MR checks status. For each 805 * failed check a corresponding status bit is set. 806 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 807 * failure. 808 */ 809 struct ib_mr_status { 810 u32 fail_status; 811 struct ib_sig_err sig_err; 812 }; 813 814 /** 815 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 816 * enum. 817 * @mult: multiple to convert. 818 */ 819 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 820 821 struct ib_ah_attr { 822 struct ib_global_route grh; 823 u16 dlid; 824 u8 sl; 825 u8 src_path_bits; 826 u8 static_rate; 827 u8 ah_flags; 828 u8 port_num; 829 u8 dmac[ETH_ALEN]; 830 }; 831 832 enum ib_wc_status { 833 IB_WC_SUCCESS, 834 IB_WC_LOC_LEN_ERR, 835 IB_WC_LOC_QP_OP_ERR, 836 IB_WC_LOC_EEC_OP_ERR, 837 IB_WC_LOC_PROT_ERR, 838 IB_WC_WR_FLUSH_ERR, 839 IB_WC_MW_BIND_ERR, 840 IB_WC_BAD_RESP_ERR, 841 IB_WC_LOC_ACCESS_ERR, 842 IB_WC_REM_INV_REQ_ERR, 843 IB_WC_REM_ACCESS_ERR, 844 IB_WC_REM_OP_ERR, 845 IB_WC_RETRY_EXC_ERR, 846 IB_WC_RNR_RETRY_EXC_ERR, 847 IB_WC_LOC_RDD_VIOL_ERR, 848 IB_WC_REM_INV_RD_REQ_ERR, 849 IB_WC_REM_ABORT_ERR, 850 IB_WC_INV_EECN_ERR, 851 IB_WC_INV_EEC_STATE_ERR, 852 IB_WC_FATAL_ERR, 853 IB_WC_RESP_TIMEOUT_ERR, 854 IB_WC_GENERAL_ERR 855 }; 856 857 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 858 859 enum ib_wc_opcode { 860 IB_WC_SEND, 861 IB_WC_RDMA_WRITE, 862 IB_WC_RDMA_READ, 863 IB_WC_COMP_SWAP, 864 IB_WC_FETCH_ADD, 865 IB_WC_LSO, 866 IB_WC_LOCAL_INV, 867 IB_WC_REG_MR, 868 IB_WC_MASKED_COMP_SWAP, 869 IB_WC_MASKED_FETCH_ADD, 870 /* 871 * Set value of IB_WC_RECV so consumers can test if a completion is a 872 * receive by testing (opcode & IB_WC_RECV). 873 */ 874 IB_WC_RECV = 1 << 7, 875 IB_WC_RECV_RDMA_WITH_IMM, 876 IB_WC_DUMMY = -1, /* force enum signed */ 877 }; 878 879 enum ib_wc_flags { 880 IB_WC_GRH = 1, 881 IB_WC_WITH_IMM = (1<<1), 882 IB_WC_WITH_INVALIDATE = (1<<2), 883 IB_WC_IP_CSUM_OK = (1<<3), 884 IB_WC_WITH_SMAC = (1<<4), 885 IB_WC_WITH_VLAN = (1<<5), 886 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 887 }; 888 889 struct ib_wc { 890 union { 891 u64 wr_id; 892 struct ib_cqe *wr_cqe; 893 }; 894 enum ib_wc_status status; 895 enum ib_wc_opcode opcode; 896 u32 vendor_err; 897 u32 byte_len; 898 struct ib_qp *qp; 899 union { 900 __be32 imm_data; 901 u32 invalidate_rkey; 902 } ex; 903 u32 src_qp; 904 int wc_flags; 905 u16 pkey_index; 906 u16 slid; 907 u8 sl; 908 u8 dlid_path_bits; 909 u8 port_num; /* valid only for DR SMPs on switches */ 910 u8 smac[ETH_ALEN]; 911 u16 vlan_id; 912 u8 network_hdr_type; 913 }; 914 915 enum ib_cq_notify_flags { 916 IB_CQ_SOLICITED = 1 << 0, 917 IB_CQ_NEXT_COMP = 1 << 1, 918 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 919 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 920 }; 921 922 enum ib_srq_type { 923 IB_SRQT_BASIC, 924 IB_SRQT_XRC, 925 IB_SRQT_TM, 926 }; 927 928 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 929 { 930 return srq_type == IB_SRQT_XRC || 931 srq_type == IB_SRQT_TM; 932 } 933 934 enum ib_srq_attr_mask { 935 IB_SRQ_MAX_WR = 1 << 0, 936 IB_SRQ_LIMIT = 1 << 1, 937 }; 938 939 struct ib_srq_attr { 940 u32 max_wr; 941 u32 max_sge; 942 u32 srq_limit; 943 }; 944 945 struct ib_srq_init_attr { 946 void (*event_handler)(struct ib_event *, void *); 947 void *srq_context; 948 struct ib_srq_attr attr; 949 enum ib_srq_type srq_type; 950 951 struct { 952 struct ib_cq *cq; 953 union { 954 struct { 955 struct ib_xrcd *xrcd; 956 } xrc; 957 958 struct { 959 u32 max_num_tags; 960 } tag_matching; 961 }; 962 } ext; 963 }; 964 965 struct ib_qp_cap { 966 u32 max_send_wr; 967 u32 max_recv_wr; 968 u32 max_send_sge; 969 u32 max_recv_sge; 970 u32 max_inline_data; 971 972 /* 973 * Maximum number of rdma_rw_ctx structures in flight at a time. 974 * ib_create_qp() will calculate the right amount of neededed WRs 975 * and MRs based on this. 976 */ 977 u32 max_rdma_ctxs; 978 }; 979 980 enum ib_sig_type { 981 IB_SIGNAL_ALL_WR, 982 IB_SIGNAL_REQ_WR 983 }; 984 985 enum ib_qp_type { 986 /* 987 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 988 * here (and in that order) since the MAD layer uses them as 989 * indices into a 2-entry table. 990 */ 991 IB_QPT_SMI, 992 IB_QPT_GSI, 993 994 IB_QPT_RC, 995 IB_QPT_UC, 996 IB_QPT_UD, 997 IB_QPT_RAW_IPV6, 998 IB_QPT_RAW_ETHERTYPE, 999 IB_QPT_RAW_PACKET = 8, 1000 IB_QPT_XRC_INI = 9, 1001 IB_QPT_XRC_TGT, 1002 IB_QPT_MAX, 1003 IB_QPT_DRIVER = 0xFF, 1004 /* Reserve a range for qp types internal to the low level driver. 1005 * These qp types will not be visible at the IB core layer, so the 1006 * IB_QPT_MAX usages should not be affected in the core layer 1007 */ 1008 IB_QPT_RESERVED1 = 0x1000, 1009 IB_QPT_RESERVED2, 1010 IB_QPT_RESERVED3, 1011 IB_QPT_RESERVED4, 1012 IB_QPT_RESERVED5, 1013 IB_QPT_RESERVED6, 1014 IB_QPT_RESERVED7, 1015 IB_QPT_RESERVED8, 1016 IB_QPT_RESERVED9, 1017 IB_QPT_RESERVED10, 1018 }; 1019 1020 enum ib_qp_create_flags { 1021 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1022 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1023 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1024 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1025 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1026 IB_QP_CREATE_NETIF_QP = 1 << 5, 1027 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1028 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1029 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1030 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1031 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1032 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1033 /* reserve bits 26-31 for low level drivers' internal use */ 1034 IB_QP_CREATE_RESERVED_START = 1 << 26, 1035 IB_QP_CREATE_RESERVED_END = 1 << 31, 1036 }; 1037 1038 /* 1039 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1040 * callback to destroy the passed in QP. 1041 */ 1042 1043 struct ib_qp_init_attr { 1044 void (*event_handler)(struct ib_event *, void *); 1045 void *qp_context; 1046 struct ib_cq *send_cq; 1047 struct ib_cq *recv_cq; 1048 struct ib_srq *srq; 1049 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1050 struct ib_qp_cap cap; 1051 enum ib_sig_type sq_sig_type; 1052 enum ib_qp_type qp_type; 1053 enum ib_qp_create_flags create_flags; 1054 1055 /* 1056 * Only needed for special QP types, or when using the RW API. 1057 */ 1058 u8 port_num; 1059 struct ib_rwq_ind_table *rwq_ind_tbl; 1060 u32 source_qpn; 1061 }; 1062 1063 struct ib_qp_open_attr { 1064 void (*event_handler)(struct ib_event *, void *); 1065 void *qp_context; 1066 u32 qp_num; 1067 enum ib_qp_type qp_type; 1068 }; 1069 1070 enum ib_rnr_timeout { 1071 IB_RNR_TIMER_655_36 = 0, 1072 IB_RNR_TIMER_000_01 = 1, 1073 IB_RNR_TIMER_000_02 = 2, 1074 IB_RNR_TIMER_000_03 = 3, 1075 IB_RNR_TIMER_000_04 = 4, 1076 IB_RNR_TIMER_000_06 = 5, 1077 IB_RNR_TIMER_000_08 = 6, 1078 IB_RNR_TIMER_000_12 = 7, 1079 IB_RNR_TIMER_000_16 = 8, 1080 IB_RNR_TIMER_000_24 = 9, 1081 IB_RNR_TIMER_000_32 = 10, 1082 IB_RNR_TIMER_000_48 = 11, 1083 IB_RNR_TIMER_000_64 = 12, 1084 IB_RNR_TIMER_000_96 = 13, 1085 IB_RNR_TIMER_001_28 = 14, 1086 IB_RNR_TIMER_001_92 = 15, 1087 IB_RNR_TIMER_002_56 = 16, 1088 IB_RNR_TIMER_003_84 = 17, 1089 IB_RNR_TIMER_005_12 = 18, 1090 IB_RNR_TIMER_007_68 = 19, 1091 IB_RNR_TIMER_010_24 = 20, 1092 IB_RNR_TIMER_015_36 = 21, 1093 IB_RNR_TIMER_020_48 = 22, 1094 IB_RNR_TIMER_030_72 = 23, 1095 IB_RNR_TIMER_040_96 = 24, 1096 IB_RNR_TIMER_061_44 = 25, 1097 IB_RNR_TIMER_081_92 = 26, 1098 IB_RNR_TIMER_122_88 = 27, 1099 IB_RNR_TIMER_163_84 = 28, 1100 IB_RNR_TIMER_245_76 = 29, 1101 IB_RNR_TIMER_327_68 = 30, 1102 IB_RNR_TIMER_491_52 = 31 1103 }; 1104 1105 enum ib_qp_attr_mask { 1106 IB_QP_STATE = 1, 1107 IB_QP_CUR_STATE = (1<<1), 1108 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1109 IB_QP_ACCESS_FLAGS = (1<<3), 1110 IB_QP_PKEY_INDEX = (1<<4), 1111 IB_QP_PORT = (1<<5), 1112 IB_QP_QKEY = (1<<6), 1113 IB_QP_AV = (1<<7), 1114 IB_QP_PATH_MTU = (1<<8), 1115 IB_QP_TIMEOUT = (1<<9), 1116 IB_QP_RETRY_CNT = (1<<10), 1117 IB_QP_RNR_RETRY = (1<<11), 1118 IB_QP_RQ_PSN = (1<<12), 1119 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1120 IB_QP_ALT_PATH = (1<<14), 1121 IB_QP_MIN_RNR_TIMER = (1<<15), 1122 IB_QP_SQ_PSN = (1<<16), 1123 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1124 IB_QP_PATH_MIG_STATE = (1<<18), 1125 IB_QP_CAP = (1<<19), 1126 IB_QP_DEST_QPN = (1<<20), 1127 IB_QP_RESERVED1 = (1<<21), 1128 IB_QP_RESERVED2 = (1<<22), 1129 IB_QP_RESERVED3 = (1<<23), 1130 IB_QP_RESERVED4 = (1<<24), 1131 IB_QP_RATE_LIMIT = (1<<25), 1132 }; 1133 1134 enum ib_qp_state { 1135 IB_QPS_RESET, 1136 IB_QPS_INIT, 1137 IB_QPS_RTR, 1138 IB_QPS_RTS, 1139 IB_QPS_SQD, 1140 IB_QPS_SQE, 1141 IB_QPS_ERR, 1142 IB_QPS_DUMMY = -1, /* force enum signed */ 1143 }; 1144 1145 enum ib_mig_state { 1146 IB_MIG_MIGRATED, 1147 IB_MIG_REARM, 1148 IB_MIG_ARMED 1149 }; 1150 1151 enum ib_mw_type { 1152 IB_MW_TYPE_1 = 1, 1153 IB_MW_TYPE_2 = 2 1154 }; 1155 1156 struct ib_qp_attr { 1157 enum ib_qp_state qp_state; 1158 enum ib_qp_state cur_qp_state; 1159 enum ib_mtu path_mtu; 1160 enum ib_mig_state path_mig_state; 1161 u32 qkey; 1162 u32 rq_psn; 1163 u32 sq_psn; 1164 u32 dest_qp_num; 1165 int qp_access_flags; 1166 struct ib_qp_cap cap; 1167 struct ib_ah_attr ah_attr; 1168 struct ib_ah_attr alt_ah_attr; 1169 u16 pkey_index; 1170 u16 alt_pkey_index; 1171 u8 en_sqd_async_notify; 1172 u8 sq_draining; 1173 u8 max_rd_atomic; 1174 u8 max_dest_rd_atomic; 1175 u8 min_rnr_timer; 1176 u8 port_num; 1177 u8 timeout; 1178 u8 retry_cnt; 1179 u8 rnr_retry; 1180 u8 alt_port_num; 1181 u8 alt_timeout; 1182 u32 rate_limit; 1183 }; 1184 1185 enum ib_wr_opcode { 1186 IB_WR_RDMA_WRITE, 1187 IB_WR_RDMA_WRITE_WITH_IMM, 1188 IB_WR_SEND, 1189 IB_WR_SEND_WITH_IMM, 1190 IB_WR_RDMA_READ, 1191 IB_WR_ATOMIC_CMP_AND_SWP, 1192 IB_WR_ATOMIC_FETCH_AND_ADD, 1193 IB_WR_LSO, 1194 IB_WR_SEND_WITH_INV, 1195 IB_WR_RDMA_READ_WITH_INV, 1196 IB_WR_LOCAL_INV, 1197 IB_WR_REG_MR, 1198 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1199 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1200 IB_WR_REG_SIG_MR, 1201 /* reserve values for low level drivers' internal use. 1202 * These values will not be used at all in the ib core layer. 1203 */ 1204 IB_WR_RESERVED1 = 0xf0, 1205 IB_WR_RESERVED2, 1206 IB_WR_RESERVED3, 1207 IB_WR_RESERVED4, 1208 IB_WR_RESERVED5, 1209 IB_WR_RESERVED6, 1210 IB_WR_RESERVED7, 1211 IB_WR_RESERVED8, 1212 IB_WR_RESERVED9, 1213 IB_WR_RESERVED10, 1214 IB_WR_DUMMY = -1, /* force enum signed */ 1215 }; 1216 1217 enum ib_send_flags { 1218 IB_SEND_FENCE = 1, 1219 IB_SEND_SIGNALED = (1<<1), 1220 IB_SEND_SOLICITED = (1<<2), 1221 IB_SEND_INLINE = (1<<3), 1222 IB_SEND_IP_CSUM = (1<<4), 1223 1224 /* reserve bits 26-31 for low level drivers' internal use */ 1225 IB_SEND_RESERVED_START = (1 << 26), 1226 IB_SEND_RESERVED_END = (1 << 31), 1227 }; 1228 1229 struct ib_sge { 1230 u64 addr; 1231 u32 length; 1232 u32 lkey; 1233 }; 1234 1235 struct ib_cqe { 1236 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1237 }; 1238 1239 struct ib_send_wr { 1240 struct ib_send_wr *next; 1241 union { 1242 u64 wr_id; 1243 struct ib_cqe *wr_cqe; 1244 }; 1245 struct ib_sge *sg_list; 1246 int num_sge; 1247 enum ib_wr_opcode opcode; 1248 int send_flags; 1249 union { 1250 __be32 imm_data; 1251 u32 invalidate_rkey; 1252 } ex; 1253 }; 1254 1255 struct ib_rdma_wr { 1256 struct ib_send_wr wr; 1257 u64 remote_addr; 1258 u32 rkey; 1259 }; 1260 1261 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1262 { 1263 return container_of(wr, struct ib_rdma_wr, wr); 1264 } 1265 1266 struct ib_atomic_wr { 1267 struct ib_send_wr wr; 1268 u64 remote_addr; 1269 u64 compare_add; 1270 u64 swap; 1271 u64 compare_add_mask; 1272 u64 swap_mask; 1273 u32 rkey; 1274 }; 1275 1276 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1277 { 1278 return container_of(wr, struct ib_atomic_wr, wr); 1279 } 1280 1281 struct ib_ud_wr { 1282 struct ib_send_wr wr; 1283 struct ib_ah *ah; 1284 void *header; 1285 int hlen; 1286 int mss; 1287 u32 remote_qpn; 1288 u32 remote_qkey; 1289 u16 pkey_index; /* valid for GSI only */ 1290 u8 port_num; /* valid for DR SMPs on switch only */ 1291 }; 1292 1293 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1294 { 1295 return container_of(wr, struct ib_ud_wr, wr); 1296 } 1297 1298 struct ib_reg_wr { 1299 struct ib_send_wr wr; 1300 struct ib_mr *mr; 1301 u32 key; 1302 int access; 1303 }; 1304 1305 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1306 { 1307 return container_of(wr, struct ib_reg_wr, wr); 1308 } 1309 1310 struct ib_sig_handover_wr { 1311 struct ib_send_wr wr; 1312 struct ib_sig_attrs *sig_attrs; 1313 struct ib_mr *sig_mr; 1314 int access_flags; 1315 struct ib_sge *prot; 1316 }; 1317 1318 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr) 1319 { 1320 return container_of(wr, struct ib_sig_handover_wr, wr); 1321 } 1322 1323 struct ib_recv_wr { 1324 struct ib_recv_wr *next; 1325 union { 1326 u64 wr_id; 1327 struct ib_cqe *wr_cqe; 1328 }; 1329 struct ib_sge *sg_list; 1330 int num_sge; 1331 }; 1332 1333 enum ib_access_flags { 1334 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1335 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1336 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1337 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1338 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1339 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1340 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1341 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1342 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1343 1344 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1345 IB_ACCESS_SUPPORTED = 1346 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1347 }; 1348 1349 /* 1350 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1351 * are hidden here instead of a uapi header! 1352 */ 1353 enum ib_mr_rereg_flags { 1354 IB_MR_REREG_TRANS = 1, 1355 IB_MR_REREG_PD = (1<<1), 1356 IB_MR_REREG_ACCESS = (1<<2), 1357 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1358 }; 1359 1360 struct ib_fmr_attr { 1361 int max_pages; 1362 int max_maps; 1363 u8 page_shift; 1364 }; 1365 1366 struct ib_umem; 1367 1368 enum rdma_remove_reason { 1369 /* 1370 * Userspace requested uobject deletion or initial try 1371 * to remove uobject via cleanup. Call could fail 1372 */ 1373 RDMA_REMOVE_DESTROY, 1374 /* Context deletion. This call should delete the actual object itself */ 1375 RDMA_REMOVE_CLOSE, 1376 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1377 RDMA_REMOVE_DRIVER_REMOVE, 1378 /* uobj is being cleaned-up before being committed */ 1379 RDMA_REMOVE_ABORT, 1380 }; 1381 1382 struct ib_rdmacg_object { 1383 }; 1384 1385 struct ib_ucontext { 1386 struct ib_device *device; 1387 struct ib_uverbs_file *ufile; 1388 /* 1389 * 'closing' can be read by the driver only during a destroy callback, 1390 * it is set when we are closing the file descriptor and indicates 1391 * that mm_sem may be locked. 1392 */ 1393 bool closing; 1394 1395 bool cleanup_retryable; 1396 1397 struct ib_rdmacg_object cg_obj; 1398 /* 1399 * Implementation details of the RDMA core, don't use in drivers: 1400 */ 1401 struct xarray mmap_xa; 1402 }; 1403 1404 struct ib_uobject { 1405 u64 user_handle; /* handle given to us by userspace */ 1406 /* ufile & ucontext owning this object */ 1407 struct ib_uverbs_file *ufile; 1408 /* FIXME, save memory: ufile->context == context */ 1409 struct ib_ucontext *context; /* associated user context */ 1410 void *object; /* containing object */ 1411 struct list_head list; /* link to context's list */ 1412 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1413 int id; /* index into kernel idr */ 1414 struct kref ref; 1415 atomic_t usecnt; /* protects exclusive access */ 1416 struct rcu_head rcu; /* kfree_rcu() overhead */ 1417 1418 const struct uverbs_api_object *uapi_object; 1419 }; 1420 1421 struct ib_udata { 1422 const u8 __user *inbuf; 1423 u8 __user *outbuf; 1424 size_t inlen; 1425 size_t outlen; 1426 }; 1427 1428 struct ib_pd { 1429 u32 local_dma_lkey; 1430 u32 flags; 1431 struct ib_device *device; 1432 struct ib_uobject *uobject; 1433 atomic_t usecnt; /* count all resources */ 1434 1435 u32 unsafe_global_rkey; 1436 1437 /* 1438 * Implementation details of the RDMA core, don't use in drivers: 1439 */ 1440 struct ib_mr *__internal_mr; 1441 }; 1442 1443 struct ib_xrcd { 1444 struct ib_device *device; 1445 atomic_t usecnt; /* count all exposed resources */ 1446 struct inode *inode; 1447 1448 struct mutex tgt_qp_mutex; 1449 struct list_head tgt_qp_list; 1450 }; 1451 1452 struct ib_ah { 1453 struct ib_device *device; 1454 struct ib_pd *pd; 1455 struct ib_uobject *uobject; 1456 }; 1457 1458 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1459 1460 enum ib_poll_context { 1461 IB_POLL_DIRECT, /* caller context, no hw completions */ 1462 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1463 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1464 }; 1465 1466 struct ib_cq { 1467 struct ib_device *device; 1468 struct ib_ucq_object *uobject; 1469 ib_comp_handler comp_handler; 1470 void (*event_handler)(struct ib_event *, void *); 1471 void *cq_context; 1472 int cqe; 1473 atomic_t usecnt; /* count number of work queues */ 1474 enum ib_poll_context poll_ctx; 1475 struct work_struct work; 1476 }; 1477 1478 struct ib_srq { 1479 struct ib_device *device; 1480 struct ib_pd *pd; 1481 struct ib_usrq_object *uobject; 1482 void (*event_handler)(struct ib_event *, void *); 1483 void *srq_context; 1484 enum ib_srq_type srq_type; 1485 atomic_t usecnt; 1486 1487 struct { 1488 struct ib_cq *cq; 1489 union { 1490 struct { 1491 struct ib_xrcd *xrcd; 1492 u32 srq_num; 1493 } xrc; 1494 }; 1495 } ext; 1496 }; 1497 1498 enum ib_wq_type { 1499 IB_WQT_RQ 1500 }; 1501 1502 enum ib_wq_state { 1503 IB_WQS_RESET, 1504 IB_WQS_RDY, 1505 IB_WQS_ERR 1506 }; 1507 1508 struct ib_wq { 1509 struct ib_device *device; 1510 struct ib_uwq_object *uobject; 1511 void *wq_context; 1512 void (*event_handler)(struct ib_event *, void *); 1513 struct ib_pd *pd; 1514 struct ib_cq *cq; 1515 u32 wq_num; 1516 enum ib_wq_state state; 1517 enum ib_wq_type wq_type; 1518 atomic_t usecnt; 1519 }; 1520 1521 enum ib_wq_flags { 1522 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1523 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1524 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1525 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1526 }; 1527 1528 struct ib_wq_init_attr { 1529 void *wq_context; 1530 enum ib_wq_type wq_type; 1531 u32 max_wr; 1532 u32 max_sge; 1533 struct ib_cq *cq; 1534 void (*event_handler)(struct ib_event *, void *); 1535 u32 create_flags; /* Use enum ib_wq_flags */ 1536 }; 1537 1538 enum ib_wq_attr_mask { 1539 IB_WQ_STATE = 1 << 0, 1540 IB_WQ_CUR_STATE = 1 << 1, 1541 IB_WQ_FLAGS = 1 << 2, 1542 }; 1543 1544 struct ib_wq_attr { 1545 enum ib_wq_state wq_state; 1546 enum ib_wq_state curr_wq_state; 1547 u32 flags; /* Use enum ib_wq_flags */ 1548 u32 flags_mask; /* Use enum ib_wq_flags */ 1549 }; 1550 1551 struct ib_rwq_ind_table { 1552 struct ib_device *device; 1553 struct ib_uobject *uobject; 1554 atomic_t usecnt; 1555 u32 ind_tbl_num; 1556 u32 log_ind_tbl_size; 1557 struct ib_wq **ind_tbl; 1558 }; 1559 1560 struct ib_rwq_ind_table_init_attr { 1561 u32 log_ind_tbl_size; 1562 /* Each entry is a pointer to Receive Work Queue */ 1563 struct ib_wq **ind_tbl; 1564 }; 1565 1566 /* 1567 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1568 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1569 */ 1570 struct ib_qp { 1571 struct ib_device *device; 1572 struct ib_pd *pd; 1573 struct ib_cq *send_cq; 1574 struct ib_cq *recv_cq; 1575 spinlock_t mr_lock; 1576 struct ib_srq *srq; 1577 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1578 struct list_head xrcd_list; 1579 1580 /* count times opened, mcast attaches, flow attaches */ 1581 atomic_t usecnt; 1582 struct list_head open_list; 1583 struct ib_qp *real_qp; 1584 struct ib_uqp_object *uobject; 1585 void (*event_handler)(struct ib_event *, void *); 1586 void *qp_context; 1587 u32 qp_num; 1588 u32 max_write_sge; 1589 u32 max_read_sge; 1590 enum ib_qp_type qp_type; 1591 struct ib_rwq_ind_table *rwq_ind_tbl; 1592 u8 port; 1593 }; 1594 1595 struct ib_dm { 1596 struct ib_device *device; 1597 u32 length; 1598 u32 flags; 1599 struct ib_uobject *uobject; 1600 atomic_t usecnt; 1601 }; 1602 1603 struct ib_mr { 1604 struct ib_device *device; 1605 struct ib_pd *pd; 1606 u32 lkey; 1607 u32 rkey; 1608 u64 iova; 1609 u64 length; 1610 unsigned int page_size; 1611 enum ib_mr_type type; 1612 bool need_inval; 1613 union { 1614 struct ib_uobject *uobject; /* user */ 1615 struct list_head qp_entry; /* FR */ 1616 }; 1617 1618 struct ib_dm *dm; 1619 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1620 }; 1621 1622 struct ib_mw { 1623 struct ib_device *device; 1624 struct ib_pd *pd; 1625 struct ib_uobject *uobject; 1626 u32 rkey; 1627 enum ib_mw_type type; 1628 }; 1629 1630 struct ib_fmr { 1631 struct ib_device *device; 1632 struct ib_pd *pd; 1633 struct list_head list; 1634 u32 lkey; 1635 u32 rkey; 1636 }; 1637 1638 /* Supported steering options */ 1639 enum ib_flow_attr_type { 1640 /* steering according to rule specifications */ 1641 IB_FLOW_ATTR_NORMAL = 0x0, 1642 /* default unicast and multicast rule - 1643 * receive all Eth traffic which isn't steered to any QP 1644 */ 1645 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1646 /* default multicast rule - 1647 * receive all Eth multicast traffic which isn't steered to any QP 1648 */ 1649 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1650 /* sniffer rule - receive all port traffic */ 1651 IB_FLOW_ATTR_SNIFFER = 0x3 1652 }; 1653 1654 /* Supported steering header types */ 1655 enum ib_flow_spec_type { 1656 /* L2 headers*/ 1657 IB_FLOW_SPEC_ETH = 0x20, 1658 IB_FLOW_SPEC_IB = 0x22, 1659 /* L3 header*/ 1660 IB_FLOW_SPEC_IPV4 = 0x30, 1661 IB_FLOW_SPEC_IPV6 = 0x31, 1662 IB_FLOW_SPEC_ESP = 0x34, 1663 /* L4 headers*/ 1664 IB_FLOW_SPEC_TCP = 0x40, 1665 IB_FLOW_SPEC_UDP = 0x41, 1666 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1667 IB_FLOW_SPEC_GRE = 0x51, 1668 IB_FLOW_SPEC_MPLS = 0x60, 1669 IB_FLOW_SPEC_INNER = 0x100, 1670 /* Actions */ 1671 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1672 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1673 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1674 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1675 }; 1676 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1677 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1678 1679 /* Flow steering rule priority is set according to it's domain. 1680 * Lower domain value means higher priority. 1681 */ 1682 enum ib_flow_domain { 1683 IB_FLOW_DOMAIN_USER, 1684 IB_FLOW_DOMAIN_ETHTOOL, 1685 IB_FLOW_DOMAIN_RFS, 1686 IB_FLOW_DOMAIN_NIC, 1687 IB_FLOW_DOMAIN_NUM /* Must be last */ 1688 }; 1689 1690 enum ib_flow_flags { 1691 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1692 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1693 }; 1694 1695 struct ib_flow_eth_filter { 1696 u8 dst_mac[6]; 1697 u8 src_mac[6]; 1698 __be16 ether_type; 1699 __be16 vlan_tag; 1700 /* Must be last */ 1701 u8 real_sz[0]; 1702 }; 1703 1704 struct ib_flow_spec_eth { 1705 enum ib_flow_spec_type type; 1706 u16 size; 1707 struct ib_flow_eth_filter val; 1708 struct ib_flow_eth_filter mask; 1709 }; 1710 1711 struct ib_flow_ib_filter { 1712 __be16 dlid; 1713 __u8 sl; 1714 /* Must be last */ 1715 u8 real_sz[0]; 1716 }; 1717 1718 struct ib_flow_spec_ib { 1719 enum ib_flow_spec_type type; 1720 u16 size; 1721 struct ib_flow_ib_filter val; 1722 struct ib_flow_ib_filter mask; 1723 }; 1724 1725 /* IPv4 header flags */ 1726 enum ib_ipv4_flags { 1727 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1728 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1729 last have this flag set */ 1730 }; 1731 1732 struct ib_flow_ipv4_filter { 1733 __be32 src_ip; 1734 __be32 dst_ip; 1735 u8 proto; 1736 u8 tos; 1737 u8 ttl; 1738 u8 flags; 1739 /* Must be last */ 1740 u8 real_sz[0]; 1741 }; 1742 1743 struct ib_flow_spec_ipv4 { 1744 enum ib_flow_spec_type type; 1745 u16 size; 1746 struct ib_flow_ipv4_filter val; 1747 struct ib_flow_ipv4_filter mask; 1748 }; 1749 1750 struct ib_flow_ipv6_filter { 1751 u8 src_ip[16]; 1752 u8 dst_ip[16]; 1753 __be32 flow_label; 1754 u8 next_hdr; 1755 u8 traffic_class; 1756 u8 hop_limit; 1757 /* Must be last */ 1758 u8 real_sz[0]; 1759 }; 1760 1761 struct ib_flow_spec_ipv6 { 1762 enum ib_flow_spec_type type; 1763 u16 size; 1764 struct ib_flow_ipv6_filter val; 1765 struct ib_flow_ipv6_filter mask; 1766 }; 1767 1768 struct ib_flow_tcp_udp_filter { 1769 __be16 dst_port; 1770 __be16 src_port; 1771 /* Must be last */ 1772 u8 real_sz[0]; 1773 }; 1774 1775 struct ib_flow_spec_tcp_udp { 1776 enum ib_flow_spec_type type; 1777 u16 size; 1778 struct ib_flow_tcp_udp_filter val; 1779 struct ib_flow_tcp_udp_filter mask; 1780 }; 1781 1782 struct ib_flow_tunnel_filter { 1783 __be32 tunnel_id; 1784 u8 real_sz[0]; 1785 }; 1786 1787 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1788 * the tunnel_id from val has the vni value 1789 */ 1790 struct ib_flow_spec_tunnel { 1791 u32 type; 1792 u16 size; 1793 struct ib_flow_tunnel_filter val; 1794 struct ib_flow_tunnel_filter mask; 1795 }; 1796 1797 struct ib_flow_esp_filter { 1798 __be32 spi; 1799 __be32 seq; 1800 /* Must be last */ 1801 u8 real_sz[0]; 1802 }; 1803 1804 struct ib_flow_spec_esp { 1805 u32 type; 1806 u16 size; 1807 struct ib_flow_esp_filter val; 1808 struct ib_flow_esp_filter mask; 1809 }; 1810 1811 struct ib_flow_gre_filter { 1812 __be16 c_ks_res0_ver; 1813 __be16 protocol; 1814 __be32 key; 1815 /* Must be last */ 1816 u8 real_sz[0]; 1817 }; 1818 1819 struct ib_flow_spec_gre { 1820 u32 type; 1821 u16 size; 1822 struct ib_flow_gre_filter val; 1823 struct ib_flow_gre_filter mask; 1824 }; 1825 1826 struct ib_flow_mpls_filter { 1827 __be32 tag; 1828 /* Must be last */ 1829 u8 real_sz[0]; 1830 }; 1831 1832 struct ib_flow_spec_mpls { 1833 u32 type; 1834 u16 size; 1835 struct ib_flow_mpls_filter val; 1836 struct ib_flow_mpls_filter mask; 1837 }; 1838 1839 struct ib_flow_spec_action_tag { 1840 enum ib_flow_spec_type type; 1841 u16 size; 1842 u32 tag_id; 1843 }; 1844 1845 struct ib_flow_spec_action_drop { 1846 enum ib_flow_spec_type type; 1847 u16 size; 1848 }; 1849 1850 struct ib_flow_spec_action_handle { 1851 enum ib_flow_spec_type type; 1852 u16 size; 1853 struct ib_flow_action *act; 1854 }; 1855 1856 enum ib_counters_description { 1857 IB_COUNTER_PACKETS, 1858 IB_COUNTER_BYTES, 1859 }; 1860 1861 struct ib_flow_spec_action_count { 1862 enum ib_flow_spec_type type; 1863 u16 size; 1864 struct ib_counters *counters; 1865 }; 1866 1867 union ib_flow_spec { 1868 struct { 1869 u32 type; 1870 u16 size; 1871 }; 1872 struct ib_flow_spec_eth eth; 1873 struct ib_flow_spec_ib ib; 1874 struct ib_flow_spec_ipv4 ipv4; 1875 struct ib_flow_spec_tcp_udp tcp_udp; 1876 struct ib_flow_spec_ipv6 ipv6; 1877 struct ib_flow_spec_tunnel tunnel; 1878 struct ib_flow_spec_esp esp; 1879 struct ib_flow_spec_gre gre; 1880 struct ib_flow_spec_mpls mpls; 1881 struct ib_flow_spec_action_tag flow_tag; 1882 struct ib_flow_spec_action_drop drop; 1883 struct ib_flow_spec_action_handle action; 1884 struct ib_flow_spec_action_count flow_count; 1885 }; 1886 1887 struct ib_flow_attr { 1888 enum ib_flow_attr_type type; 1889 u16 size; 1890 u16 priority; 1891 u32 flags; 1892 u8 num_of_specs; 1893 u8 port; 1894 union ib_flow_spec flows[0]; 1895 }; 1896 1897 struct ib_flow { 1898 struct ib_qp *qp; 1899 struct ib_device *device; 1900 struct ib_uobject *uobject; 1901 }; 1902 1903 enum ib_flow_action_type { 1904 IB_FLOW_ACTION_UNSPECIFIED, 1905 IB_FLOW_ACTION_ESP = 1, 1906 }; 1907 1908 struct ib_flow_action_attrs_esp_keymats { 1909 enum ib_uverbs_flow_action_esp_keymat protocol; 1910 union { 1911 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 1912 } keymat; 1913 }; 1914 1915 struct ib_flow_action_attrs_esp_replays { 1916 enum ib_uverbs_flow_action_esp_replay protocol; 1917 union { 1918 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 1919 } replay; 1920 }; 1921 1922 enum ib_flow_action_attrs_esp_flags { 1923 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 1924 * This is done in order to share the same flags between user-space and 1925 * kernel and spare an unnecessary translation. 1926 */ 1927 1928 /* Kernel flags */ 1929 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 1930 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 1931 }; 1932 1933 struct ib_flow_spec_list { 1934 struct ib_flow_spec_list *next; 1935 union ib_flow_spec spec; 1936 }; 1937 1938 struct ib_flow_action_attrs_esp { 1939 struct ib_flow_action_attrs_esp_keymats *keymat; 1940 struct ib_flow_action_attrs_esp_replays *replay; 1941 struct ib_flow_spec_list *encap; 1942 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 1943 * Value of 0 is a valid value. 1944 */ 1945 u32 esn; 1946 u32 spi; 1947 u32 seq; 1948 u32 tfc_pad; 1949 /* Use enum ib_flow_action_attrs_esp_flags */ 1950 u64 flags; 1951 u64 hard_limit_pkts; 1952 }; 1953 1954 struct ib_flow_action { 1955 struct ib_device *device; 1956 struct ib_uobject *uobject; 1957 enum ib_flow_action_type type; 1958 atomic_t usecnt; 1959 }; 1960 1961 1962 struct ib_mad_hdr; 1963 struct ib_grh; 1964 1965 enum ib_process_mad_flags { 1966 IB_MAD_IGNORE_MKEY = 1, 1967 IB_MAD_IGNORE_BKEY = 2, 1968 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1969 }; 1970 1971 enum ib_mad_result { 1972 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1973 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1974 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1975 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1976 }; 1977 1978 #define IB_DEVICE_NAME_MAX 64 1979 1980 struct ib_cache { 1981 rwlock_t lock; 1982 struct ib_event_handler event_handler; 1983 struct ib_pkey_cache **pkey_cache; 1984 struct ib_gid_table **gid_cache; 1985 u8 *lmc_cache; 1986 }; 1987 1988 struct ib_dma_mapping_ops { 1989 int (*mapping_error)(struct ib_device *dev, 1990 u64 dma_addr); 1991 u64 (*map_single)(struct ib_device *dev, 1992 void *ptr, size_t size, 1993 enum dma_data_direction direction); 1994 void (*unmap_single)(struct ib_device *dev, 1995 u64 addr, size_t size, 1996 enum dma_data_direction direction); 1997 u64 (*map_page)(struct ib_device *dev, 1998 struct page *page, unsigned long offset, 1999 size_t size, 2000 enum dma_data_direction direction); 2001 void (*unmap_page)(struct ib_device *dev, 2002 u64 addr, size_t size, 2003 enum dma_data_direction direction); 2004 int (*map_sg)(struct ib_device *dev, 2005 struct scatterlist *sg, int nents, 2006 enum dma_data_direction direction); 2007 void (*unmap_sg)(struct ib_device *dev, 2008 struct scatterlist *sg, int nents, 2009 enum dma_data_direction direction); 2010 int (*map_sg_attrs)(struct ib_device *dev, 2011 struct scatterlist *sg, int nents, 2012 enum dma_data_direction direction, 2013 struct dma_attrs *attrs); 2014 void (*unmap_sg_attrs)(struct ib_device *dev, 2015 struct scatterlist *sg, int nents, 2016 enum dma_data_direction direction, 2017 struct dma_attrs *attrs); 2018 void (*sync_single_for_cpu)(struct ib_device *dev, 2019 u64 dma_handle, 2020 size_t size, 2021 enum dma_data_direction dir); 2022 void (*sync_single_for_device)(struct ib_device *dev, 2023 u64 dma_handle, 2024 size_t size, 2025 enum dma_data_direction dir); 2026 void *(*alloc_coherent)(struct ib_device *dev, 2027 size_t size, 2028 u64 *dma_handle, 2029 gfp_t flag); 2030 void (*free_coherent)(struct ib_device *dev, 2031 size_t size, void *cpu_addr, 2032 u64 dma_handle); 2033 }; 2034 2035 struct iw_cm_verbs; 2036 2037 struct ib_port_immutable { 2038 int pkey_tbl_len; 2039 int gid_tbl_len; 2040 u32 core_cap_flags; 2041 u32 max_mad_size; 2042 }; 2043 2044 struct ib_counters { 2045 struct ib_device *device; 2046 struct ib_uobject *uobject; 2047 /* num of objects attached */ 2048 atomic_t usecnt; 2049 }; 2050 2051 struct ib_counters_read_attr { 2052 u64 *counters_buff; 2053 u32 ncounters; 2054 u32 flags; /* use enum ib_read_counters_flags */ 2055 }; 2056 2057 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2058 .size_##ib_struct = \ 2059 (sizeof(struct drv_struct) + \ 2060 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2061 BUILD_BUG_ON_ZERO( \ 2062 !__same_type(((struct drv_struct *)NULL)->member, \ 2063 struct ib_struct))) 2064 2065 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2066 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2067 2068 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2069 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2070 2071 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2072 2073 struct rdma_user_mmap_entry { 2074 struct kref ref; 2075 struct ib_ucontext *ucontext; 2076 unsigned long start_pgoff; 2077 size_t npages; 2078 bool driver_removed; 2079 }; 2080 2081 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2082 static inline u64 2083 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2084 { 2085 return (u64)entry->start_pgoff << PAGE_SHIFT; 2086 } 2087 2088 struct ib_device_ops { 2089 enum rdma_driver_id driver_id; 2090 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2091 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2092 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2093 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2094 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2095 }; 2096 2097 #define INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do { \ 2098 (pop)[0] .driver_id = RDMA_DRIVER_##DRIVER; \ 2099 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah); \ 2100 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq); \ 2101 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd); \ 2102 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq); \ 2103 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \ 2104 } while (0) 2105 2106 struct ib_device { 2107 struct device *dma_device; 2108 struct ib_device_ops ops; 2109 2110 char name[IB_DEVICE_NAME_MAX]; 2111 2112 struct list_head event_handler_list; 2113 spinlock_t event_handler_lock; 2114 2115 spinlock_t client_data_lock; 2116 struct list_head core_list; 2117 /* Access to the client_data_list is protected by the client_data_lock 2118 * spinlock and the lists_rwsem read-write semaphore */ 2119 struct list_head client_data_list; 2120 2121 struct ib_cache cache; 2122 /** 2123 * port_immutable is indexed by port number 2124 */ 2125 struct ib_port_immutable *port_immutable; 2126 2127 int num_comp_vectors; 2128 2129 struct iw_cm_verbs *iwcm; 2130 2131 /** 2132 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2133 * driver initialized data. The struct is kfree()'ed by the sysfs 2134 * core when the device is removed. A lifespan of -1 in the return 2135 * struct tells the core to set a default lifespan. 2136 */ 2137 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2138 u8 port_num); 2139 /** 2140 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2141 * @index - The index in the value array we wish to have updated, or 2142 * num_counters if we want all stats updated 2143 * Return codes - 2144 * < 0 - Error, no counters updated 2145 * index - Updated the single counter pointed to by index 2146 * num_counters - Updated all counters (will reset the timestamp 2147 * and prevent further calls for lifespan milliseconds) 2148 * Drivers are allowed to update all counters in leiu of just the 2149 * one given in index at their option 2150 */ 2151 int (*get_hw_stats)(struct ib_device *device, 2152 struct rdma_hw_stats *stats, 2153 u8 port, int index); 2154 int (*query_device)(struct ib_device *device, 2155 struct ib_device_attr *device_attr, 2156 struct ib_udata *udata); 2157 int (*query_port)(struct ib_device *device, 2158 u8 port_num, 2159 struct ib_port_attr *port_attr); 2160 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2161 u8 port_num); 2162 /* When calling get_netdev, the HW vendor's driver should return the 2163 * net device of device @device at port @port_num or NULL if such 2164 * a net device doesn't exist. The vendor driver should call dev_hold 2165 * on this net device. The HW vendor's device driver must guarantee 2166 * that this function returns NULL before the net device reaches 2167 * NETDEV_UNREGISTER_FINAL state. 2168 */ 2169 if_t (*get_netdev)(struct ib_device *device, 2170 u8 port_num); 2171 int (*query_gid)(struct ib_device *device, 2172 u8 port_num, int index, 2173 union ib_gid *gid); 2174 /* When calling add_gid, the HW vendor's driver should 2175 * add the gid of device @device at gid index @index of 2176 * port @port_num to be @gid. Meta-info of that gid (for example, 2177 * the network device related to this gid is available 2178 * at @attr. @context allows the HW vendor driver to store extra 2179 * information together with a GID entry. The HW vendor may allocate 2180 * memory to contain this information and store it in @context when a 2181 * new GID entry is written to. Params are consistent until the next 2182 * call of add_gid or delete_gid. The function should return 0 on 2183 * success or error otherwise. The function could be called 2184 * concurrently for different ports. This function is only called 2185 * when roce_gid_table is used. 2186 */ 2187 int (*add_gid)(struct ib_device *device, 2188 u8 port_num, 2189 unsigned int index, 2190 const union ib_gid *gid, 2191 const struct ib_gid_attr *attr, 2192 void **context); 2193 /* When calling del_gid, the HW vendor's driver should delete the 2194 * gid of device @device at gid index @index of port @port_num. 2195 * Upon the deletion of a GID entry, the HW vendor must free any 2196 * allocated memory. The caller will clear @context afterwards. 2197 * This function is only called when roce_gid_table is used. 2198 */ 2199 int (*del_gid)(struct ib_device *device, 2200 u8 port_num, 2201 unsigned int index, 2202 void **context); 2203 int (*query_pkey)(struct ib_device *device, 2204 u8 port_num, u16 index, u16 *pkey); 2205 int (*modify_device)(struct ib_device *device, 2206 int device_modify_mask, 2207 struct ib_device_modify *device_modify); 2208 int (*modify_port)(struct ib_device *device, 2209 u8 port_num, int port_modify_mask, 2210 struct ib_port_modify *port_modify); 2211 int (*alloc_ucontext)(struct ib_ucontext *uctx, 2212 struct ib_udata *udata); 2213 void (*dealloc_ucontext)(struct ib_ucontext *context); 2214 int (*mmap)(struct ib_ucontext *context, 2215 struct vm_area_struct *vma); 2216 int (*alloc_pd)(struct ib_pd *pd, 2217 struct ib_udata *udata); 2218 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2219 int (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr, 2220 u32 flags, struct ib_udata *udata); 2221 int (*modify_ah)(struct ib_ah *ah, 2222 struct ib_ah_attr *ah_attr); 2223 int (*query_ah)(struct ib_ah *ah, 2224 struct ib_ah_attr *ah_attr); 2225 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2226 int (*create_srq)(struct ib_srq *srq, 2227 struct ib_srq_init_attr *srq_init_attr, 2228 struct ib_udata *udata); 2229 int (*modify_srq)(struct ib_srq *srq, 2230 struct ib_srq_attr *srq_attr, 2231 enum ib_srq_attr_mask srq_attr_mask, 2232 struct ib_udata *udata); 2233 int (*query_srq)(struct ib_srq *srq, 2234 struct ib_srq_attr *srq_attr); 2235 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2236 int (*post_srq_recv)(struct ib_srq *srq, 2237 const struct ib_recv_wr *recv_wr, 2238 const struct ib_recv_wr **bad_recv_wr); 2239 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2240 struct ib_qp_init_attr *qp_init_attr, 2241 struct ib_udata *udata); 2242 int (*modify_qp)(struct ib_qp *qp, 2243 struct ib_qp_attr *qp_attr, 2244 int qp_attr_mask, 2245 struct ib_udata *udata); 2246 int (*query_qp)(struct ib_qp *qp, 2247 struct ib_qp_attr *qp_attr, 2248 int qp_attr_mask, 2249 struct ib_qp_init_attr *qp_init_attr); 2250 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2251 int (*post_send)(struct ib_qp *qp, 2252 const struct ib_send_wr *send_wr, 2253 const struct ib_send_wr **bad_send_wr); 2254 int (*post_recv)(struct ib_qp *qp, 2255 const struct ib_recv_wr *recv_wr, 2256 const struct ib_recv_wr **bad_recv_wr); 2257 int (*create_cq)(struct ib_cq *, 2258 const struct ib_cq_init_attr *attr, 2259 struct ib_udata *udata); 2260 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2261 u16 cq_period); 2262 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2263 int (*resize_cq)(struct ib_cq *cq, int cqe, 2264 struct ib_udata *udata); 2265 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2266 struct ib_wc *wc); 2267 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2268 int (*req_notify_cq)(struct ib_cq *cq, 2269 enum ib_cq_notify_flags flags); 2270 int (*req_ncomp_notif)(struct ib_cq *cq, 2271 int wc_cnt); 2272 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2273 int mr_access_flags); 2274 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2275 u64 start, u64 length, 2276 u64 virt_addr, 2277 int mr_access_flags, 2278 struct ib_udata *udata); 2279 int (*rereg_user_mr)(struct ib_mr *mr, 2280 int flags, 2281 u64 start, u64 length, 2282 u64 virt_addr, 2283 int mr_access_flags, 2284 struct ib_pd *pd, 2285 struct ib_udata *udata); 2286 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2287 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2288 u32 max_num_sg, struct ib_udata *udata); 2289 int (*advise_mr)(struct ib_pd *pd, 2290 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2291 const struct ib_sge *sg_list, u32 num_sge, 2292 struct uverbs_attr_bundle *attrs); 2293 int (*map_mr_sg)(struct ib_mr *mr, 2294 struct scatterlist *sg, 2295 int sg_nents, 2296 unsigned int *sg_offset); 2297 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2298 enum ib_mw_type type, 2299 struct ib_udata *udata); 2300 int (*dealloc_mw)(struct ib_mw *mw); 2301 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2302 int mr_access_flags, 2303 struct ib_fmr_attr *fmr_attr); 2304 int (*map_phys_fmr)(struct ib_fmr *fmr, 2305 u64 *page_list, int list_len, 2306 u64 iova); 2307 int (*unmap_fmr)(struct list_head *fmr_list); 2308 int (*dealloc_fmr)(struct ib_fmr *fmr); 2309 int (*attach_mcast)(struct ib_qp *qp, 2310 union ib_gid *gid, 2311 u16 lid); 2312 int (*detach_mcast)(struct ib_qp *qp, 2313 union ib_gid *gid, 2314 u16 lid); 2315 int (*process_mad)(struct ib_device *device, 2316 int process_mad_flags, 2317 u8 port_num, 2318 const struct ib_wc *in_wc, 2319 const struct ib_grh *in_grh, 2320 const struct ib_mad_hdr *in_mad, 2321 size_t in_mad_size, 2322 struct ib_mad_hdr *out_mad, 2323 size_t *out_mad_size, 2324 u16 *out_mad_pkey_index); 2325 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2326 struct ib_udata *udata); 2327 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2328 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2329 struct ib_flow_attr 2330 *flow_attr, 2331 int domain, struct ib_udata *udata); 2332 int (*destroy_flow)(struct ib_flow *flow_id); 2333 struct ib_flow_action *(*create_flow_action_esp)( 2334 struct ib_device *device, 2335 const struct ib_flow_action_attrs_esp *attr, 2336 struct uverbs_attr_bundle *attrs); 2337 int (*destroy_flow_action)(struct ib_flow_action *action); 2338 int (*modify_flow_action_esp)( 2339 struct ib_flow_action *action, 2340 const struct ib_flow_action_attrs_esp *attr, 2341 struct uverbs_attr_bundle *attrs); 2342 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2343 struct ib_mr_status *mr_status); 2344 /** 2345 * This will be called once refcount of an entry in mmap_xa reaches 2346 * zero. The type of the memory that was mapped may differ between 2347 * entries and is opaque to the rdma_user_mmap interface. 2348 * Therefore needs to be implemented by the driver in mmap_free. 2349 */ 2350 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2351 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2352 void (*drain_rq)(struct ib_qp *qp); 2353 void (*drain_sq)(struct ib_qp *qp); 2354 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2355 int state); 2356 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2357 struct ifla_vf_info *ivf); 2358 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2359 struct ifla_vf_stats *stats); 2360 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2361 int type); 2362 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2363 struct ib_wq_init_attr *init_attr, 2364 struct ib_udata *udata); 2365 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2366 int (*modify_wq)(struct ib_wq *wq, 2367 struct ib_wq_attr *attr, 2368 u32 wq_attr_mask, 2369 struct ib_udata *udata); 2370 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2371 struct ib_rwq_ind_table_init_attr *init_attr, 2372 struct ib_udata *udata); 2373 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2374 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2375 struct ib_ucontext *context, 2376 struct ib_dm_alloc_attr *attr, 2377 struct uverbs_attr_bundle *attrs); 2378 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2379 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2380 struct ib_dm_mr_attr *attr, 2381 struct uverbs_attr_bundle *attrs); 2382 struct ib_counters *(*create_counters)( 2383 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2384 int (*destroy_counters)(struct ib_counters *counters); 2385 int (*read_counters)(struct ib_counters *counters, 2386 struct ib_counters_read_attr *counters_read_attr, 2387 struct uverbs_attr_bundle *attrs); 2388 struct ib_dma_mapping_ops *dma_ops; 2389 2390 struct module *owner; 2391 struct device dev; 2392 struct kobject *ports_parent; 2393 struct list_head port_list; 2394 2395 enum { 2396 IB_DEV_UNINITIALIZED, 2397 IB_DEV_REGISTERED, 2398 IB_DEV_UNREGISTERED 2399 } reg_state; 2400 2401 int uverbs_abi_ver; 2402 u64 uverbs_cmd_mask; 2403 u64 uverbs_ex_cmd_mask; 2404 2405 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2406 __be64 node_guid; 2407 u32 local_dma_lkey; 2408 u16 is_switch:1; 2409 u8 node_type; 2410 u8 phys_port_cnt; 2411 struct ib_device_attr attrs; 2412 struct attribute_group *hw_stats_ag; 2413 struct rdma_hw_stats *hw_stats; 2414 2415 const struct uapi_definition *driver_def; 2416 2417 /** 2418 * The following mandatory functions are used only at device 2419 * registration. Keep functions such as these at the end of this 2420 * structure to avoid cache line misses when accessing struct ib_device 2421 * in fast paths. 2422 */ 2423 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2424 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2425 }; 2426 2427 struct ib_client { 2428 char *name; 2429 void (*add) (struct ib_device *); 2430 void (*remove)(struct ib_device *, void *client_data); 2431 2432 /* Returns the net_dev belonging to this ib_client and matching the 2433 * given parameters. 2434 * @dev: An RDMA device that the net_dev use for communication. 2435 * @port: A physical port number on the RDMA device. 2436 * @pkey: P_Key that the net_dev uses if applicable. 2437 * @gid: A GID that the net_dev uses to communicate. 2438 * @addr: An IP address the net_dev is configured with. 2439 * @client_data: The device's client data set by ib_set_client_data(). 2440 * 2441 * An ib_client that implements a net_dev on top of RDMA devices 2442 * (such as IP over IB) should implement this callback, allowing the 2443 * rdma_cm module to find the right net_dev for a given request. 2444 * 2445 * The caller is responsible for calling dev_put on the returned 2446 * netdev. */ 2447 if_t (*get_net_dev_by_params)( 2448 struct ib_device *dev, 2449 u8 port, 2450 u16 pkey, 2451 const union ib_gid *gid, 2452 const struct sockaddr *addr, 2453 void *client_data); 2454 struct list_head list; 2455 }; 2456 2457 struct ib_device *ib_alloc_device(size_t size); 2458 void ib_dealloc_device(struct ib_device *device); 2459 2460 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2461 2462 int ib_register_device(struct ib_device *device, 2463 int (*port_callback)(struct ib_device *, 2464 u8, struct kobject *)); 2465 void ib_unregister_device(struct ib_device *device); 2466 2467 int ib_register_client (struct ib_client *client); 2468 void ib_unregister_client(struct ib_client *client); 2469 2470 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2471 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2472 void *data); 2473 2474 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2475 unsigned long pfn, unsigned long size, pgprot_t prot, 2476 struct rdma_user_mmap_entry *entry); 2477 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2478 struct rdma_user_mmap_entry *entry, 2479 size_t length); 2480 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2481 struct rdma_user_mmap_entry *entry, 2482 size_t length, u32 min_pgoff, 2483 u32 max_pgoff); 2484 2485 struct rdma_user_mmap_entry * 2486 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2487 unsigned long pgoff); 2488 struct rdma_user_mmap_entry * 2489 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2490 struct vm_area_struct *vma); 2491 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2492 2493 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2494 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2495 { 2496 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2497 } 2498 2499 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2500 { 2501 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2502 } 2503 2504 static inline bool ib_is_buffer_cleared(const void __user *p, 2505 size_t len) 2506 { 2507 bool ret; 2508 u8 *buf; 2509 2510 if (len > USHRT_MAX) 2511 return false; 2512 2513 buf = memdup_user(p, len); 2514 if (IS_ERR(buf)) 2515 return false; 2516 2517 ret = !memchr_inv(buf, 0, len); 2518 kfree(buf); 2519 return ret; 2520 } 2521 2522 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2523 size_t offset, 2524 size_t len) 2525 { 2526 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2527 } 2528 2529 /** 2530 * ib_is_destroy_retryable - Check whether the uobject destruction 2531 * is retryable. 2532 * @ret: The initial destruction return code 2533 * @why: remove reason 2534 * @uobj: The uobject that is destroyed 2535 * 2536 * This function is a helper function that IB layer and low-level drivers 2537 * can use to consider whether the destruction of the given uobject is 2538 * retry-able. 2539 * It checks the original return code, if it wasn't success the destruction 2540 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2541 * the remove reason. (i.e. why). 2542 * Must be called with the object locked for destroy. 2543 */ 2544 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2545 struct ib_uobject *uobj) 2546 { 2547 return ret && (why == RDMA_REMOVE_DESTROY || 2548 uobj->context->cleanup_retryable); 2549 } 2550 2551 /** 2552 * ib_destroy_usecnt - Called during destruction to check the usecnt 2553 * @usecnt: The usecnt atomic 2554 * @why: remove reason 2555 * @uobj: The uobject that is destroyed 2556 * 2557 * Non-zero usecnts will block destruction unless destruction was triggered by 2558 * a ucontext cleanup. 2559 */ 2560 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2561 enum rdma_remove_reason why, 2562 struct ib_uobject *uobj) 2563 { 2564 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2565 return -EBUSY; 2566 return 0; 2567 } 2568 2569 /** 2570 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2571 * contains all required attributes and no attributes not allowed for 2572 * the given QP state transition. 2573 * @cur_state: Current QP state 2574 * @next_state: Next QP state 2575 * @type: QP type 2576 * @mask: Mask of supplied QP attributes 2577 * 2578 * This function is a helper function that a low-level driver's 2579 * modify_qp method can use to validate the consumer's input. It 2580 * checks that cur_state and next_state are valid QP states, that a 2581 * transition from cur_state to next_state is allowed by the IB spec, 2582 * and that the attribute mask supplied is allowed for the transition. 2583 */ 2584 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2585 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2586 2587 int ib_register_event_handler (struct ib_event_handler *event_handler); 2588 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2589 void ib_dispatch_event(struct ib_event *event); 2590 2591 int ib_query_port(struct ib_device *device, 2592 u8 port_num, struct ib_port_attr *port_attr); 2593 2594 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2595 u8 port_num); 2596 2597 /** 2598 * rdma_cap_ib_switch - Check if the device is IB switch 2599 * @device: Device to check 2600 * 2601 * Device driver is responsible for setting is_switch bit on 2602 * in ib_device structure at init time. 2603 * 2604 * Return: true if the device is IB switch. 2605 */ 2606 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2607 { 2608 return device->is_switch; 2609 } 2610 2611 /** 2612 * rdma_start_port - Return the first valid port number for the device 2613 * specified 2614 * 2615 * @device: Device to be checked 2616 * 2617 * Return start port number 2618 */ 2619 static inline u8 rdma_start_port(const struct ib_device *device) 2620 { 2621 return rdma_cap_ib_switch(device) ? 0 : 1; 2622 } 2623 2624 /** 2625 * rdma_end_port - Return the last valid port number for the device 2626 * specified 2627 * 2628 * @device: Device to be checked 2629 * 2630 * Return last port number 2631 */ 2632 static inline u8 rdma_end_port(const struct ib_device *device) 2633 { 2634 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2635 } 2636 2637 static inline int rdma_is_port_valid(const struct ib_device *device, 2638 unsigned int port) 2639 { 2640 return (port >= rdma_start_port(device) && 2641 port <= rdma_end_port(device)); 2642 } 2643 2644 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2645 { 2646 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2647 } 2648 2649 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2650 { 2651 return device->port_immutable[port_num].core_cap_flags & 2652 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2653 } 2654 2655 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2656 { 2657 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2658 } 2659 2660 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2661 { 2662 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2663 } 2664 2665 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2666 { 2667 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2668 } 2669 2670 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2671 { 2672 return rdma_protocol_ib(device, port_num) || 2673 rdma_protocol_roce(device, port_num); 2674 } 2675 2676 /** 2677 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2678 * Management Datagrams. 2679 * @device: Device to check 2680 * @port_num: Port number to check 2681 * 2682 * Management Datagrams (MAD) are a required part of the InfiniBand 2683 * specification and are supported on all InfiniBand devices. A slightly 2684 * extended version are also supported on OPA interfaces. 2685 * 2686 * Return: true if the port supports sending/receiving of MAD packets. 2687 */ 2688 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2689 { 2690 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2691 } 2692 2693 /** 2694 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2695 * Management Datagrams. 2696 * @device: Device to check 2697 * @port_num: Port number to check 2698 * 2699 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2700 * datagrams with their own versions. These OPA MADs share many but not all of 2701 * the characteristics of InfiniBand MADs. 2702 * 2703 * OPA MADs differ in the following ways: 2704 * 2705 * 1) MADs are variable size up to 2K 2706 * IBTA defined MADs remain fixed at 256 bytes 2707 * 2) OPA SMPs must carry valid PKeys 2708 * 3) OPA SMP packets are a different format 2709 * 2710 * Return: true if the port supports OPA MAD packet formats. 2711 */ 2712 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2713 { 2714 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2715 == RDMA_CORE_CAP_OPA_MAD; 2716 } 2717 2718 /** 2719 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2720 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2721 * @device: Device to check 2722 * @port_num: Port number to check 2723 * 2724 * Each InfiniBand node is required to provide a Subnet Management Agent 2725 * that the subnet manager can access. Prior to the fabric being fully 2726 * configured by the subnet manager, the SMA is accessed via a well known 2727 * interface called the Subnet Management Interface (SMI). This interface 2728 * uses directed route packets to communicate with the SM to get around the 2729 * chicken and egg problem of the SM needing to know what's on the fabric 2730 * in order to configure the fabric, and needing to configure the fabric in 2731 * order to send packets to the devices on the fabric. These directed 2732 * route packets do not need the fabric fully configured in order to reach 2733 * their destination. The SMI is the only method allowed to send 2734 * directed route packets on an InfiniBand fabric. 2735 * 2736 * Return: true if the port provides an SMI. 2737 */ 2738 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2739 { 2740 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2741 } 2742 2743 /** 2744 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2745 * Communication Manager. 2746 * @device: Device to check 2747 * @port_num: Port number to check 2748 * 2749 * The InfiniBand Communication Manager is one of many pre-defined General 2750 * Service Agents (GSA) that are accessed via the General Service 2751 * Interface (GSI). It's role is to facilitate establishment of connections 2752 * between nodes as well as other management related tasks for established 2753 * connections. 2754 * 2755 * Return: true if the port supports an IB CM (this does not guarantee that 2756 * a CM is actually running however). 2757 */ 2758 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2759 { 2760 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2761 } 2762 2763 /** 2764 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2765 * Communication Manager. 2766 * @device: Device to check 2767 * @port_num: Port number to check 2768 * 2769 * Similar to above, but specific to iWARP connections which have a different 2770 * managment protocol than InfiniBand. 2771 * 2772 * Return: true if the port supports an iWARP CM (this does not guarantee that 2773 * a CM is actually running however). 2774 */ 2775 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2776 { 2777 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2778 } 2779 2780 /** 2781 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2782 * Subnet Administration. 2783 * @device: Device to check 2784 * @port_num: Port number to check 2785 * 2786 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2787 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2788 * fabrics, devices should resolve routes to other hosts by contacting the 2789 * SA to query the proper route. 2790 * 2791 * Return: true if the port should act as a client to the fabric Subnet 2792 * Administration interface. This does not imply that the SA service is 2793 * running locally. 2794 */ 2795 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2796 { 2797 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2798 } 2799 2800 /** 2801 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2802 * Multicast. 2803 * @device: Device to check 2804 * @port_num: Port number to check 2805 * 2806 * InfiniBand multicast registration is more complex than normal IPv4 or 2807 * IPv6 multicast registration. Each Host Channel Adapter must register 2808 * with the Subnet Manager when it wishes to join a multicast group. It 2809 * should do so only once regardless of how many queue pairs it subscribes 2810 * to this group. And it should leave the group only after all queue pairs 2811 * attached to the group have been detached. 2812 * 2813 * Return: true if the port must undertake the additional adminstrative 2814 * overhead of registering/unregistering with the SM and tracking of the 2815 * total number of queue pairs attached to the multicast group. 2816 */ 2817 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2818 { 2819 return rdma_cap_ib_sa(device, port_num); 2820 } 2821 2822 /** 2823 * rdma_cap_af_ib - Check if the port of device has the capability 2824 * Native Infiniband Address. 2825 * @device: Device to check 2826 * @port_num: Port number to check 2827 * 2828 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2829 * GID. RoCE uses a different mechanism, but still generates a GID via 2830 * a prescribed mechanism and port specific data. 2831 * 2832 * Return: true if the port uses a GID address to identify devices on the 2833 * network. 2834 */ 2835 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2836 { 2837 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2838 } 2839 2840 /** 2841 * rdma_cap_eth_ah - Check if the port of device has the capability 2842 * Ethernet Address Handle. 2843 * @device: Device to check 2844 * @port_num: Port number to check 2845 * 2846 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2847 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2848 * port. Normally, packet headers are generated by the sending host 2849 * adapter, but when sending connectionless datagrams, we must manually 2850 * inject the proper headers for the fabric we are communicating over. 2851 * 2852 * Return: true if we are running as a RoCE port and must force the 2853 * addition of a Global Route Header built from our Ethernet Address 2854 * Handle into our header list for connectionless packets. 2855 */ 2856 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2857 { 2858 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2859 } 2860 2861 /** 2862 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2863 * 2864 * @device: Device 2865 * @port_num: Port number 2866 * 2867 * This MAD size includes the MAD headers and MAD payload. No other headers 2868 * are included. 2869 * 2870 * Return the max MAD size required by the Port. Will return 0 if the port 2871 * does not support MADs 2872 */ 2873 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2874 { 2875 return device->port_immutable[port_num].max_mad_size; 2876 } 2877 2878 /** 2879 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2880 * @device: Device to check 2881 * @port_num: Port number to check 2882 * 2883 * RoCE GID table mechanism manages the various GIDs for a device. 2884 * 2885 * NOTE: if allocating the port's GID table has failed, this call will still 2886 * return true, but any RoCE GID table API will fail. 2887 * 2888 * Return: true if the port uses RoCE GID table mechanism in order to manage 2889 * its GIDs. 2890 */ 2891 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2892 u8 port_num) 2893 { 2894 return rdma_protocol_roce(device, port_num) && 2895 device->add_gid && device->del_gid; 2896 } 2897 2898 /* 2899 * Check if the device supports READ W/ INVALIDATE. 2900 */ 2901 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2902 { 2903 /* 2904 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2905 * has support for it yet. 2906 */ 2907 return rdma_protocol_iwarp(dev, port_num); 2908 } 2909 2910 int ib_query_gid(struct ib_device *device, 2911 u8 port_num, int index, union ib_gid *gid, 2912 struct ib_gid_attr *attr); 2913 2914 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2915 int state); 2916 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2917 struct ifla_vf_info *info); 2918 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2919 struct ifla_vf_stats *stats); 2920 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2921 int type); 2922 2923 int ib_query_pkey(struct ib_device *device, 2924 u8 port_num, u16 index, u16 *pkey); 2925 2926 int ib_modify_device(struct ib_device *device, 2927 int device_modify_mask, 2928 struct ib_device_modify *device_modify); 2929 2930 int ib_modify_port(struct ib_device *device, 2931 u8 port_num, int port_modify_mask, 2932 struct ib_port_modify *port_modify); 2933 2934 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2935 enum ib_gid_type gid_type, if_t ndev, 2936 u8 *port_num, u16 *index); 2937 2938 int ib_find_pkey(struct ib_device *device, 2939 u8 port_num, u16 pkey, u16 *index); 2940 2941 enum ib_pd_flags { 2942 /* 2943 * Create a memory registration for all memory in the system and place 2944 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2945 * ULPs to avoid the overhead of dynamic MRs. 2946 * 2947 * This flag is generally considered unsafe and must only be used in 2948 * extremly trusted environments. Every use of it will log a warning 2949 * in the kernel log. 2950 */ 2951 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2952 }; 2953 2954 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2955 const char *caller); 2956 #define ib_alloc_pd(device, flags) \ 2957 __ib_alloc_pd((device), (flags), __func__) 2958 2959 /** 2960 * ib_dealloc_pd_user - Deallocate kernel/user PD 2961 * @pd: The protection domain 2962 * @udata: Valid user data or NULL for kernel objects 2963 */ 2964 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 2965 2966 /** 2967 * ib_dealloc_pd - Deallocate kernel PD 2968 * @pd: The protection domain 2969 * 2970 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 2971 */ 2972 static inline void ib_dealloc_pd(struct ib_pd *pd) 2973 { 2974 ib_dealloc_pd_user(pd, NULL); 2975 } 2976 2977 enum rdma_create_ah_flags { 2978 /* In a sleepable context */ 2979 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 2980 }; 2981 2982 /** 2983 * ib_create_ah - Creates an address handle for the given address vector. 2984 * @pd: The protection domain associated with the address handle. 2985 * @ah_attr: The attributes of the address vector. 2986 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 2987 * 2988 * The address handle is used to reference a local or global destination 2989 * in all UD QP post sends. 2990 */ 2991 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr, 2992 u32 flags); 2993 2994 /** 2995 * ib_create_user_ah - Creates an address handle for the given address vector. 2996 * It resolves destination mac address for ah attribute of RoCE type. 2997 * @pd: The protection domain associated with the address handle. 2998 * @ah_attr: The attributes of the address vector. 2999 * @udata: pointer to user's input output buffer information need by 3000 * provider driver. 3001 * 3002 * It returns 0 on success and returns appropriate error code on error. 3003 * The address handle is used to reference a local or global destination 3004 * in all UD QP post sends. 3005 */ 3006 struct ib_ah *ib_create_user_ah(struct ib_pd *pd, 3007 struct ib_ah_attr *ah_attr, 3008 struct ib_udata *udata); 3009 3010 /** 3011 * ib_init_ah_from_wc - Initializes address handle attributes from a 3012 * work completion. 3013 * @device: Device on which the received message arrived. 3014 * @port_num: Port on which the received message arrived. 3015 * @wc: Work completion associated with the received message. 3016 * @grh: References the received global route header. This parameter is 3017 * ignored unless the work completion indicates that the GRH is valid. 3018 * @ah_attr: Returned attributes that can be used when creating an address 3019 * handle for replying to the message. 3020 */ 3021 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 3022 const struct ib_wc *wc, const struct ib_grh *grh, 3023 struct ib_ah_attr *ah_attr); 3024 3025 /** 3026 * ib_create_ah_from_wc - Creates an address handle associated with the 3027 * sender of the specified work completion. 3028 * @pd: The protection domain associated with the address handle. 3029 * @wc: Work completion information associated with a received message. 3030 * @grh: References the received global route header. This parameter is 3031 * ignored unless the work completion indicates that the GRH is valid. 3032 * @port_num: The outbound port number to associate with the address. 3033 * 3034 * The address handle is used to reference a local or global destination 3035 * in all UD QP post sends. 3036 */ 3037 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3038 const struct ib_grh *grh, u8 port_num); 3039 3040 /** 3041 * ib_modify_ah - Modifies the address vector associated with an address 3042 * handle. 3043 * @ah: The address handle to modify. 3044 * @ah_attr: The new address vector attributes to associate with the 3045 * address handle. 3046 */ 3047 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 3048 3049 /** 3050 * ib_query_ah - Queries the address vector associated with an address 3051 * handle. 3052 * @ah: The address handle to query. 3053 * @ah_attr: The address vector attributes associated with the address 3054 * handle. 3055 */ 3056 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 3057 3058 enum rdma_destroy_ah_flags { 3059 /* In a sleepable context */ 3060 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3061 }; 3062 3063 /** 3064 * ib_destroy_ah_user - Destroys an address handle. 3065 * @ah: The address handle to destroy. 3066 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3067 * @udata: Valid user data or NULL for kernel objects 3068 */ 3069 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3070 3071 /** 3072 * rdma_destroy_ah - Destroys an kernel address handle. 3073 * @ah: The address handle to destroy. 3074 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3075 * 3076 * NOTE: for user ah use ib_destroy_ah_user with valid udata! 3077 */ 3078 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags) 3079 { 3080 return ib_destroy_ah_user(ah, flags, NULL); 3081 } 3082 3083 /** 3084 * ib_create_srq - Creates a SRQ associated with the specified protection 3085 * domain. 3086 * @pd: The protection domain associated with the SRQ. 3087 * @srq_init_attr: A list of initial attributes required to create the 3088 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3089 * the actual capabilities of the created SRQ. 3090 * 3091 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3092 * requested size of the SRQ, and set to the actual values allocated 3093 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3094 * will always be at least as large as the requested values. 3095 */ 3096 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3097 struct ib_srq_init_attr *srq_init_attr); 3098 3099 /** 3100 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3101 * @srq: The SRQ to modify. 3102 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3103 * the current values of selected SRQ attributes are returned. 3104 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3105 * are being modified. 3106 * 3107 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3108 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3109 * the number of receives queued drops below the limit. 3110 */ 3111 int ib_modify_srq(struct ib_srq *srq, 3112 struct ib_srq_attr *srq_attr, 3113 enum ib_srq_attr_mask srq_attr_mask); 3114 3115 /** 3116 * ib_query_srq - Returns the attribute list and current values for the 3117 * specified SRQ. 3118 * @srq: The SRQ to query. 3119 * @srq_attr: The attributes of the specified SRQ. 3120 */ 3121 int ib_query_srq(struct ib_srq *srq, 3122 struct ib_srq_attr *srq_attr); 3123 3124 /** 3125 * ib_destroy_srq_user - Destroys the specified SRQ. 3126 * @srq: The SRQ to destroy. 3127 * @udata: Valid user data or NULL for kernel objects 3128 */ 3129 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3130 3131 /** 3132 * ib_destroy_srq - Destroys the specified kernel SRQ. 3133 * @srq: The SRQ to destroy. 3134 * 3135 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3136 */ 3137 static inline int ib_destroy_srq(struct ib_srq *srq) 3138 { 3139 return ib_destroy_srq_user(srq, NULL); 3140 } 3141 3142 /** 3143 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3144 * @srq: The SRQ to post the work request on. 3145 * @recv_wr: A list of work requests to post on the receive queue. 3146 * @bad_recv_wr: On an immediate failure, this parameter will reference 3147 * the work request that failed to be posted on the QP. 3148 */ 3149 static inline int ib_post_srq_recv(struct ib_srq *srq, 3150 const struct ib_recv_wr *recv_wr, 3151 const struct ib_recv_wr **bad_recv_wr) 3152 { 3153 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 3154 } 3155 3156 /** 3157 * ib_create_qp - Creates a QP associated with the specified protection 3158 * domain. 3159 * @pd: The protection domain associated with the QP. 3160 * @qp_init_attr: A list of initial attributes required to create the 3161 * QP. If QP creation succeeds, then the attributes are updated to 3162 * the actual capabilities of the created QP. 3163 */ 3164 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3165 struct ib_qp_init_attr *qp_init_attr); 3166 3167 /** 3168 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3169 * @qp: The QP to modify. 3170 * @attr: On input, specifies the QP attributes to modify. On output, 3171 * the current values of selected QP attributes are returned. 3172 * @attr_mask: A bit-mask used to specify which attributes of the QP 3173 * are being modified. 3174 * @udata: pointer to user's input output buffer information 3175 * are being modified. 3176 * It returns 0 on success and returns appropriate error code on error. 3177 */ 3178 int ib_modify_qp_with_udata(struct ib_qp *qp, 3179 struct ib_qp_attr *attr, 3180 int attr_mask, 3181 struct ib_udata *udata); 3182 3183 /** 3184 * ib_modify_qp - Modifies the attributes for the specified QP and then 3185 * transitions the QP to the given state. 3186 * @qp: The QP to modify. 3187 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3188 * the current values of selected QP attributes are returned. 3189 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3190 * are being modified. 3191 */ 3192 int ib_modify_qp(struct ib_qp *qp, 3193 struct ib_qp_attr *qp_attr, 3194 int qp_attr_mask); 3195 3196 /** 3197 * ib_query_qp - Returns the attribute list and current values for the 3198 * specified QP. 3199 * @qp: The QP to query. 3200 * @qp_attr: The attributes of the specified QP. 3201 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3202 * @qp_init_attr: Additional attributes of the selected QP. 3203 * 3204 * The qp_attr_mask may be used to limit the query to gathering only the 3205 * selected attributes. 3206 */ 3207 int ib_query_qp(struct ib_qp *qp, 3208 struct ib_qp_attr *qp_attr, 3209 int qp_attr_mask, 3210 struct ib_qp_init_attr *qp_init_attr); 3211 3212 /** 3213 * ib_destroy_qp - Destroys the specified QP. 3214 * @qp: The QP to destroy. 3215 * @udata: Valid udata or NULL for kernel objects 3216 */ 3217 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3218 3219 /** 3220 * ib_destroy_qp - Destroys the specified kernel QP. 3221 * @qp: The QP to destroy. 3222 * 3223 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3224 */ 3225 static inline int ib_destroy_qp(struct ib_qp *qp) 3226 { 3227 return ib_destroy_qp_user(qp, NULL); 3228 } 3229 3230 /** 3231 * ib_open_qp - Obtain a reference to an existing sharable QP. 3232 * @xrcd - XRC domain 3233 * @qp_open_attr: Attributes identifying the QP to open. 3234 * 3235 * Returns a reference to a sharable QP. 3236 */ 3237 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3238 struct ib_qp_open_attr *qp_open_attr); 3239 3240 /** 3241 * ib_close_qp - Release an external reference to a QP. 3242 * @qp: The QP handle to release 3243 * 3244 * The opened QP handle is released by the caller. The underlying 3245 * shared QP is not destroyed until all internal references are released. 3246 */ 3247 int ib_close_qp(struct ib_qp *qp); 3248 3249 /** 3250 * ib_post_send - Posts a list of work requests to the send queue of 3251 * the specified QP. 3252 * @qp: The QP to post the work request on. 3253 * @send_wr: A list of work requests to post on the send queue. 3254 * @bad_send_wr: On an immediate failure, this parameter will reference 3255 * the work request that failed to be posted on the QP. 3256 * 3257 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3258 * error is returned, the QP state shall not be affected, 3259 * ib_post_send() will return an immediate error after queueing any 3260 * earlier work requests in the list. 3261 */ 3262 static inline int ib_post_send(struct ib_qp *qp, 3263 const struct ib_send_wr *send_wr, 3264 const struct ib_send_wr **bad_send_wr) 3265 { 3266 return qp->device->post_send(qp, send_wr, bad_send_wr); 3267 } 3268 3269 /** 3270 * ib_post_recv - Posts a list of work requests to the receive queue of 3271 * the specified QP. 3272 * @qp: The QP to post the work request on. 3273 * @recv_wr: A list of work requests to post on the receive queue. 3274 * @bad_recv_wr: On an immediate failure, this parameter will reference 3275 * the work request that failed to be posted on the QP. 3276 */ 3277 static inline int ib_post_recv(struct ib_qp *qp, 3278 const struct ib_recv_wr *recv_wr, 3279 const struct ib_recv_wr **bad_recv_wr) 3280 { 3281 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3282 } 3283 3284 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3285 int nr_cqe, int comp_vector, 3286 enum ib_poll_context poll_ctx, 3287 const char *caller, struct ib_udata *udata); 3288 3289 /** 3290 * ib_alloc_cq_user: Allocate kernel/user CQ 3291 * @dev: The IB device 3292 * @private: Private data attached to the CQE 3293 * @nr_cqe: Number of CQEs in the CQ 3294 * @comp_vector: Completion vector used for the IRQs 3295 * @poll_ctx: Context used for polling the CQ 3296 * @udata: Valid user data or NULL for kernel objects 3297 */ 3298 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3299 void *private, int nr_cqe, 3300 int comp_vector, 3301 enum ib_poll_context poll_ctx, 3302 struct ib_udata *udata) 3303 { 3304 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3305 "ibcore", udata); 3306 } 3307 3308 /** 3309 * ib_alloc_cq: Allocate kernel CQ 3310 * @dev: The IB device 3311 * @private: Private data attached to the CQE 3312 * @nr_cqe: Number of CQEs in the CQ 3313 * @comp_vector: Completion vector used for the IRQs 3314 * @poll_ctx: Context used for polling the CQ 3315 * 3316 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3317 */ 3318 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3319 int nr_cqe, int comp_vector, 3320 enum ib_poll_context poll_ctx) 3321 { 3322 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3323 NULL); 3324 } 3325 3326 /** 3327 * ib_free_cq_user - Free kernel/user CQ 3328 * @cq: The CQ to free 3329 * @udata: Valid user data or NULL for kernel objects 3330 */ 3331 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3332 3333 /** 3334 * ib_free_cq - Free kernel CQ 3335 * @cq: The CQ to free 3336 * 3337 * NOTE: for user cq use ib_free_cq_user with valid udata! 3338 */ 3339 static inline void ib_free_cq(struct ib_cq *cq) 3340 { 3341 ib_free_cq_user(cq, NULL); 3342 } 3343 3344 /** 3345 * ib_create_cq - Creates a CQ on the specified device. 3346 * @device: The device on which to create the CQ. 3347 * @comp_handler: A user-specified callback that is invoked when a 3348 * completion event occurs on the CQ. 3349 * @event_handler: A user-specified callback that is invoked when an 3350 * asynchronous event not associated with a completion occurs on the CQ. 3351 * @cq_context: Context associated with the CQ returned to the user via 3352 * the associated completion and event handlers. 3353 * @cq_attr: The attributes the CQ should be created upon. 3354 * 3355 * Users can examine the cq structure to determine the actual CQ size. 3356 */ 3357 struct ib_cq *__ib_create_cq(struct ib_device *device, 3358 ib_comp_handler comp_handler, 3359 void (*event_handler)(struct ib_event *, void *), 3360 void *cq_context, 3361 const struct ib_cq_init_attr *cq_attr, 3362 const char *caller); 3363 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3364 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore") 3365 3366 /** 3367 * ib_resize_cq - Modifies the capacity of the CQ. 3368 * @cq: The CQ to resize. 3369 * @cqe: The minimum size of the CQ. 3370 * 3371 * Users can examine the cq structure to determine the actual CQ size. 3372 */ 3373 int ib_resize_cq(struct ib_cq *cq, int cqe); 3374 3375 /** 3376 * ib_modify_cq - Modifies moderation params of the CQ 3377 * @cq: The CQ to modify. 3378 * @cq_count: number of CQEs that will trigger an event 3379 * @cq_period: max period of time in usec before triggering an event 3380 * 3381 */ 3382 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3383 3384 /** 3385 * ib_destroy_cq_user - Destroys the specified CQ. 3386 * @cq: The CQ to destroy. 3387 * @udata: Valid user data or NULL for kernel objects 3388 */ 3389 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3390 3391 /** 3392 * ib_destroy_cq - Destroys the specified kernel CQ. 3393 * @cq: The CQ to destroy. 3394 * 3395 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3396 */ 3397 static inline void ib_destroy_cq(struct ib_cq *cq) 3398 { 3399 ib_destroy_cq_user(cq, NULL); 3400 } 3401 3402 /** 3403 * ib_poll_cq - poll a CQ for completion(s) 3404 * @cq:the CQ being polled 3405 * @num_entries:maximum number of completions to return 3406 * @wc:array of at least @num_entries &struct ib_wc where completions 3407 * will be returned 3408 * 3409 * Poll a CQ for (possibly multiple) completions. If the return value 3410 * is < 0, an error occurred. If the return value is >= 0, it is the 3411 * number of completions returned. If the return value is 3412 * non-negative and < num_entries, then the CQ was emptied. 3413 */ 3414 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3415 struct ib_wc *wc) 3416 { 3417 return cq->device->poll_cq(cq, num_entries, wc); 3418 } 3419 3420 /** 3421 * ib_peek_cq - Returns the number of unreaped completions currently 3422 * on the specified CQ. 3423 * @cq: The CQ to peek. 3424 * @wc_cnt: A minimum number of unreaped completions to check for. 3425 * 3426 * If the number of unreaped completions is greater than or equal to wc_cnt, 3427 * this function returns wc_cnt, otherwise, it returns the actual number of 3428 * unreaped completions. 3429 */ 3430 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3431 3432 /** 3433 * ib_req_notify_cq - Request completion notification on a CQ. 3434 * @cq: The CQ to generate an event for. 3435 * @flags: 3436 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3437 * to request an event on the next solicited event or next work 3438 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3439 * may also be |ed in to request a hint about missed events, as 3440 * described below. 3441 * 3442 * Return Value: 3443 * < 0 means an error occurred while requesting notification 3444 * == 0 means notification was requested successfully, and if 3445 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3446 * were missed and it is safe to wait for another event. In 3447 * this case is it guaranteed that any work completions added 3448 * to the CQ since the last CQ poll will trigger a completion 3449 * notification event. 3450 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3451 * in. It means that the consumer must poll the CQ again to 3452 * make sure it is empty to avoid missing an event because of a 3453 * race between requesting notification and an entry being 3454 * added to the CQ. This return value means it is possible 3455 * (but not guaranteed) that a work completion has been added 3456 * to the CQ since the last poll without triggering a 3457 * completion notification event. 3458 */ 3459 static inline int ib_req_notify_cq(struct ib_cq *cq, 3460 enum ib_cq_notify_flags flags) 3461 { 3462 return cq->device->req_notify_cq(cq, flags); 3463 } 3464 3465 /** 3466 * ib_req_ncomp_notif - Request completion notification when there are 3467 * at least the specified number of unreaped completions on the CQ. 3468 * @cq: The CQ to generate an event for. 3469 * @wc_cnt: The number of unreaped completions that should be on the 3470 * CQ before an event is generated. 3471 */ 3472 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3473 { 3474 return cq->device->req_ncomp_notif ? 3475 cq->device->req_ncomp_notif(cq, wc_cnt) : 3476 -ENOSYS; 3477 } 3478 3479 /** 3480 * ib_dma_mapping_error - check a DMA addr for error 3481 * @dev: The device for which the dma_addr was created 3482 * @dma_addr: The DMA address to check 3483 */ 3484 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3485 { 3486 if (dev->dma_ops) 3487 return dev->dma_ops->mapping_error(dev, dma_addr); 3488 return dma_mapping_error(dev->dma_device, dma_addr); 3489 } 3490 3491 /** 3492 * ib_dma_map_single - Map a kernel virtual address to DMA address 3493 * @dev: The device for which the dma_addr is to be created 3494 * @cpu_addr: The kernel virtual address 3495 * @size: The size of the region in bytes 3496 * @direction: The direction of the DMA 3497 */ 3498 static inline u64 ib_dma_map_single(struct ib_device *dev, 3499 void *cpu_addr, size_t size, 3500 enum dma_data_direction direction) 3501 { 3502 if (dev->dma_ops) 3503 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 3504 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3505 } 3506 3507 /** 3508 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3509 * @dev: The device for which the DMA address was created 3510 * @addr: The DMA address 3511 * @size: The size of the region in bytes 3512 * @direction: The direction of the DMA 3513 */ 3514 static inline void ib_dma_unmap_single(struct ib_device *dev, 3515 u64 addr, size_t size, 3516 enum dma_data_direction direction) 3517 { 3518 if (dev->dma_ops) 3519 dev->dma_ops->unmap_single(dev, addr, size, direction); 3520 else 3521 dma_unmap_single(dev->dma_device, addr, size, direction); 3522 } 3523 3524 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 3525 void *cpu_addr, size_t size, 3526 enum dma_data_direction direction, 3527 struct dma_attrs *dma_attrs) 3528 { 3529 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 3530 direction, dma_attrs); 3531 } 3532 3533 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 3534 u64 addr, size_t size, 3535 enum dma_data_direction direction, 3536 struct dma_attrs *dma_attrs) 3537 { 3538 return dma_unmap_single_attrs(dev->dma_device, addr, size, 3539 direction, dma_attrs); 3540 } 3541 3542 /** 3543 * ib_dma_map_page - Map a physical page to DMA address 3544 * @dev: The device for which the dma_addr is to be created 3545 * @page: The page to be mapped 3546 * @offset: The offset within the page 3547 * @size: The size of the region in bytes 3548 * @direction: The direction of the DMA 3549 */ 3550 static inline u64 ib_dma_map_page(struct ib_device *dev, 3551 struct page *page, 3552 unsigned long offset, 3553 size_t size, 3554 enum dma_data_direction direction) 3555 { 3556 if (dev->dma_ops) 3557 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3558 return dma_map_page(dev->dma_device, page, offset, size, direction); 3559 } 3560 3561 /** 3562 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3563 * @dev: The device for which the DMA address was created 3564 * @addr: The DMA address 3565 * @size: The size of the region in bytes 3566 * @direction: The direction of the DMA 3567 */ 3568 static inline void ib_dma_unmap_page(struct ib_device *dev, 3569 u64 addr, size_t size, 3570 enum dma_data_direction direction) 3571 { 3572 if (dev->dma_ops) 3573 dev->dma_ops->unmap_page(dev, addr, size, direction); 3574 else 3575 dma_unmap_page(dev->dma_device, addr, size, direction); 3576 } 3577 3578 /** 3579 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3580 * @dev: The device for which the DMA addresses are to be created 3581 * @sg: The array of scatter/gather entries 3582 * @nents: The number of scatter/gather entries 3583 * @direction: The direction of the DMA 3584 */ 3585 static inline int ib_dma_map_sg(struct ib_device *dev, 3586 struct scatterlist *sg, int nents, 3587 enum dma_data_direction direction) 3588 { 3589 if (dev->dma_ops) 3590 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3591 return dma_map_sg(dev->dma_device, sg, nents, direction); 3592 } 3593 3594 /** 3595 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3596 * @dev: The device for which the DMA addresses were created 3597 * @sg: The array of scatter/gather entries 3598 * @nents: The number of scatter/gather entries 3599 * @direction: The direction of the DMA 3600 */ 3601 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3602 struct scatterlist *sg, int nents, 3603 enum dma_data_direction direction) 3604 { 3605 if (dev->dma_ops) 3606 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3607 else 3608 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3609 } 3610 3611 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3612 struct scatterlist *sg, int nents, 3613 enum dma_data_direction direction, 3614 struct dma_attrs *dma_attrs) 3615 { 3616 if (dev->dma_ops) 3617 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3618 dma_attrs); 3619 else 3620 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3621 dma_attrs); 3622 } 3623 3624 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3625 struct scatterlist *sg, int nents, 3626 enum dma_data_direction direction, 3627 struct dma_attrs *dma_attrs) 3628 { 3629 if (dev->dma_ops) 3630 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3631 dma_attrs); 3632 else 3633 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3634 dma_attrs); 3635 } 3636 /** 3637 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3638 * @dev: The device for which the DMA addresses were created 3639 * @sg: The scatter/gather entry 3640 * 3641 * Note: this function is obsolete. To do: change all occurrences of 3642 * ib_sg_dma_address() into sg_dma_address(). 3643 */ 3644 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3645 struct scatterlist *sg) 3646 { 3647 return sg_dma_address(sg); 3648 } 3649 3650 /** 3651 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3652 * @dev: The device for which the DMA addresses were created 3653 * @sg: The scatter/gather entry 3654 * 3655 * Note: this function is obsolete. To do: change all occurrences of 3656 * ib_sg_dma_len() into sg_dma_len(). 3657 */ 3658 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3659 struct scatterlist *sg) 3660 { 3661 return sg_dma_len(sg); 3662 } 3663 3664 /** 3665 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3666 * @dev: The device for which the DMA address was created 3667 * @addr: The DMA address 3668 * @size: The size of the region in bytes 3669 * @dir: The direction of the DMA 3670 */ 3671 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3672 u64 addr, 3673 size_t size, 3674 enum dma_data_direction dir) 3675 { 3676 if (dev->dma_ops) 3677 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3678 else 3679 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3680 } 3681 3682 /** 3683 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3684 * @dev: The device for which the DMA address was created 3685 * @addr: The DMA address 3686 * @size: The size of the region in bytes 3687 * @dir: The direction of the DMA 3688 */ 3689 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3690 u64 addr, 3691 size_t size, 3692 enum dma_data_direction dir) 3693 { 3694 if (dev->dma_ops) 3695 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3696 else 3697 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3698 } 3699 3700 /** 3701 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3702 * @dev: The device for which the DMA address is requested 3703 * @size: The size of the region to allocate in bytes 3704 * @dma_handle: A pointer for returning the DMA address of the region 3705 * @flag: memory allocator flags 3706 */ 3707 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3708 size_t size, 3709 u64 *dma_handle, 3710 gfp_t flag) 3711 { 3712 if (dev->dma_ops) 3713 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3714 else { 3715 dma_addr_t handle; 3716 void *ret; 3717 3718 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3719 *dma_handle = handle; 3720 return ret; 3721 } 3722 } 3723 3724 /** 3725 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3726 * @dev: The device for which the DMA addresses were allocated 3727 * @size: The size of the region 3728 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3729 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3730 */ 3731 static inline void ib_dma_free_coherent(struct ib_device *dev, 3732 size_t size, void *cpu_addr, 3733 u64 dma_handle) 3734 { 3735 if (dev->dma_ops) 3736 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3737 else 3738 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3739 } 3740 3741 /** 3742 * ib_dereg_mr - Deregisters a memory region and removes it from the 3743 * HCA translation table. 3744 * @mr: The memory region to deregister. 3745 * 3746 * This function can fail, if the memory region has memory windows bound to it. 3747 */ 3748 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 3749 3750 /** 3751 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 3752 * HCA translation table. 3753 * @mr: The memory region to deregister. 3754 * 3755 * This function can fail, if the memory region has memory windows bound to it. 3756 * 3757 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 3758 */ 3759 static inline int ib_dereg_mr(struct ib_mr *mr) 3760 { 3761 return ib_dereg_mr_user(mr, NULL); 3762 } 3763 3764 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 3765 u32 max_num_sg, struct ib_udata *udata); 3766 3767 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3768 enum ib_mr_type mr_type, u32 max_num_sg) 3769 { 3770 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 3771 } 3772 3773 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 3774 u32 max_num_data_sg, 3775 u32 max_num_meta_sg); 3776 3777 /** 3778 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3779 * R_Key and L_Key. 3780 * @mr - struct ib_mr pointer to be updated. 3781 * @newkey - new key to be used. 3782 */ 3783 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3784 { 3785 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3786 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3787 } 3788 3789 /** 3790 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3791 * for calculating a new rkey for type 2 memory windows. 3792 * @rkey - the rkey to increment. 3793 */ 3794 static inline u32 ib_inc_rkey(u32 rkey) 3795 { 3796 const u32 mask = 0x000000ff; 3797 return ((rkey + 1) & mask) | (rkey & ~mask); 3798 } 3799 3800 /** 3801 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3802 * @pd: The protection domain associated with the unmapped region. 3803 * @mr_access_flags: Specifies the memory access rights. 3804 * @fmr_attr: Attributes of the unmapped region. 3805 * 3806 * A fast memory region must be mapped before it can be used as part of 3807 * a work request. 3808 */ 3809 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3810 int mr_access_flags, 3811 struct ib_fmr_attr *fmr_attr); 3812 3813 /** 3814 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3815 * @fmr: The fast memory region to associate with the pages. 3816 * @page_list: An array of physical pages to map to the fast memory region. 3817 * @list_len: The number of pages in page_list. 3818 * @iova: The I/O virtual address to use with the mapped region. 3819 */ 3820 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3821 u64 *page_list, int list_len, 3822 u64 iova) 3823 { 3824 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3825 } 3826 3827 /** 3828 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3829 * @fmr_list: A linked list of fast memory regions to unmap. 3830 */ 3831 int ib_unmap_fmr(struct list_head *fmr_list); 3832 3833 /** 3834 * ib_dealloc_fmr - Deallocates a fast memory region. 3835 * @fmr: The fast memory region to deallocate. 3836 */ 3837 int ib_dealloc_fmr(struct ib_fmr *fmr); 3838 3839 /** 3840 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3841 * @qp: QP to attach to the multicast group. The QP must be type 3842 * IB_QPT_UD. 3843 * @gid: Multicast group GID. 3844 * @lid: Multicast group LID in host byte order. 3845 * 3846 * In order to send and receive multicast packets, subnet 3847 * administration must have created the multicast group and configured 3848 * the fabric appropriately. The port associated with the specified 3849 * QP must also be a member of the multicast group. 3850 */ 3851 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3852 3853 /** 3854 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3855 * @qp: QP to detach from the multicast group. 3856 * @gid: Multicast group GID. 3857 * @lid: Multicast group LID in host byte order. 3858 */ 3859 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3860 3861 /** 3862 * ib_alloc_xrcd - Allocates an XRC domain. 3863 * @device: The device on which to allocate the XRC domain. 3864 * @caller: Module name for kernel consumers 3865 */ 3866 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3867 #define ib_alloc_xrcd(device) \ 3868 __ib_alloc_xrcd((device), "ibcore") 3869 3870 /** 3871 * ib_dealloc_xrcd - Deallocates an XRC domain. 3872 * @xrcd: The XRC domain to deallocate. 3873 * @udata: Valid user data or NULL for kernel object 3874 */ 3875 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 3876 3877 static inline int ib_check_mr_access(int flags) 3878 { 3879 /* 3880 * Local write permission is required if remote write or 3881 * remote atomic permission is also requested. 3882 */ 3883 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3884 !(flags & IB_ACCESS_LOCAL_WRITE)) 3885 return -EINVAL; 3886 3887 if (flags & ~IB_ACCESS_SUPPORTED) 3888 return -EINVAL; 3889 3890 return 0; 3891 } 3892 3893 static inline bool ib_access_writable(int access_flags) 3894 { 3895 /* 3896 * We have writable memory backing the MR if any of the following 3897 * access flags are set. "Local write" and "remote write" obviously 3898 * require write access. "Remote atomic" can do things like fetch and 3899 * add, which will modify memory, and "MW bind" can change permissions 3900 * by binding a window. 3901 */ 3902 return access_flags & 3903 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 3904 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 3905 } 3906 3907 /** 3908 * ib_check_mr_status: lightweight check of MR status. 3909 * This routine may provide status checks on a selected 3910 * ib_mr. first use is for signature status check. 3911 * 3912 * @mr: A memory region. 3913 * @check_mask: Bitmask of which checks to perform from 3914 * ib_mr_status_check enumeration. 3915 * @mr_status: The container of relevant status checks. 3916 * failed checks will be indicated in the status bitmask 3917 * and the relevant info shall be in the error item. 3918 */ 3919 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3920 struct ib_mr_status *mr_status); 3921 3922 if_t ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3923 u16 pkey, const union ib_gid *gid, 3924 const struct sockaddr *addr); 3925 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3926 struct ib_wq_init_attr *init_attr); 3927 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 3928 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3929 u32 wq_attr_mask); 3930 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3931 struct ib_rwq_ind_table_init_attr* 3932 wq_ind_table_init_attr); 3933 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3934 3935 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3936 unsigned int *sg_offset, unsigned int page_size); 3937 3938 static inline int 3939 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3940 unsigned int *sg_offset, unsigned int page_size) 3941 { 3942 int n; 3943 3944 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3945 mr->iova = 0; 3946 3947 return n; 3948 } 3949 3950 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3951 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3952 3953 void ib_drain_rq(struct ib_qp *qp); 3954 void ib_drain_sq(struct ib_qp *qp); 3955 void ib_drain_qp(struct ib_qp *qp); 3956 3957 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 3958 3959 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 3960 3961 int ib_resolve_eth_dmac(struct ib_device *device, 3962 struct ib_ah_attr *ah_attr); 3963 #endif /* IB_VERBS_H */ 3964