1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/if_ether.h> 52 #include <linux/mutex.h> 53 54 #include <asm/uaccess.h> 55 56 extern struct workqueue_struct *ib_wq; 57 58 union ib_gid { 59 u8 raw[16]; 60 struct { 61 __be64 subnet_prefix; 62 __be64 interface_id; 63 } global; 64 }; 65 66 enum rdma_node_type { 67 /* IB values map to NodeInfo:NodeType. */ 68 RDMA_NODE_IB_CA = 1, 69 RDMA_NODE_IB_SWITCH, 70 RDMA_NODE_IB_ROUTER, 71 RDMA_NODE_RNIC, 72 RDMA_NODE_MIC 73 }; 74 75 enum rdma_transport_type { 76 RDMA_TRANSPORT_IB, 77 RDMA_TRANSPORT_IWARP, 78 RDMA_TRANSPORT_SCIF 79 }; 80 81 enum rdma_transport_type 82 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 83 84 enum rdma_link_layer { 85 IB_LINK_LAYER_UNSPECIFIED, 86 IB_LINK_LAYER_INFINIBAND, 87 IB_LINK_LAYER_ETHERNET, 88 IB_LINK_LAYER_SCIF 89 }; 90 91 enum ib_device_cap_flags { 92 IB_DEVICE_RESIZE_MAX_WR = 1, 93 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 94 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 95 IB_DEVICE_RAW_MULTI = (1<<3), 96 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 97 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 98 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 99 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 100 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 101 IB_DEVICE_INIT_TYPE = (1<<9), 102 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 103 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 104 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 105 IB_DEVICE_SRQ_RESIZE = (1<<13), 106 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 107 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 108 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 109 IB_DEVICE_MEM_WINDOW = (1<<17), 110 /* 111 * Devices should set IB_DEVICE_UD_IP_SUM if they support 112 * insertion of UDP and TCP checksum on outgoing UD IPoIB 113 * messages and can verify the validity of checksum for 114 * incoming messages. Setting this flag implies that the 115 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 116 */ 117 IB_DEVICE_UD_IP_CSUM = (1<<18), 118 IB_DEVICE_UD_TSO = (1<<19), 119 IB_DEVICE_XRC = (1<<20), 120 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 121 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 122 IB_DEVICE_MR_ALLOCATE = (1<<23), 123 IB_DEVICE_SHARED_MR = (1<<24), 124 IB_DEVICE_QPG = (1<<25), 125 IB_DEVICE_UD_RSS = (1<<26), 126 IB_DEVICE_UD_TSS = (1<<27), 127 IB_DEVICE_CROSS_CHANNEL = (1<<28), 128 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29), 129 /* 130 * Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or 131 * IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B 132 * memory windows. It can set neither to indicate it doesn't support 133 * type 2 windows at all. 134 */ 135 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<30), 136 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<31), 137 IB_DEVICE_SIGNATURE_HANDOVER = (1LL<<32) 138 }; 139 140 enum ib_signature_prot_cap { 141 IB_PROT_T10DIF_TYPE_1 = 1, 142 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 143 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 144 }; 145 146 enum ib_signature_guard_cap { 147 IB_GUARD_T10DIF_CRC = 1, 148 IB_GUARD_T10DIF_CSUM = 1 << 1, 149 }; 150 151 enum ib_atomic_cap { 152 IB_ATOMIC_NONE, 153 IB_ATOMIC_HCA, 154 IB_ATOMIC_GLOB 155 }; 156 157 enum ib_cq_create_flags { 158 IB_CQ_CREATE_CROSS_CHANNEL = 1 << 0, 159 IB_CQ_TIMESTAMP = 1 << 1, 160 IB_CQ_TIMESTAMP_TO_SYS_TIME = 1 << 2 161 }; 162 163 struct ib_device_attr { 164 u64 fw_ver; 165 __be64 sys_image_guid; 166 u64 max_mr_size; 167 u64 page_size_cap; 168 u32 vendor_id; 169 u32 vendor_part_id; 170 u32 hw_ver; 171 int max_qp; 172 int max_qp_wr; 173 u64 device_cap_flags; 174 int max_sge; 175 int max_sge_rd; 176 int max_cq; 177 int max_cqe; 178 int max_mr; 179 int max_pd; 180 int max_qp_rd_atom; 181 int max_ee_rd_atom; 182 int max_res_rd_atom; 183 int max_qp_init_rd_atom; 184 int max_ee_init_rd_atom; 185 enum ib_atomic_cap atomic_cap; 186 enum ib_atomic_cap masked_atomic_cap; 187 int max_ee; 188 int max_rdd; 189 int max_mw; 190 int max_raw_ipv6_qp; 191 int max_raw_ethy_qp; 192 int max_mcast_grp; 193 int max_mcast_qp_attach; 194 int max_total_mcast_qp_attach; 195 int max_ah; 196 int max_fmr; 197 int max_map_per_fmr; 198 int max_srq; 199 int max_srq_wr; 200 int max_srq_sge; 201 unsigned int max_fast_reg_page_list_len; 202 int max_rss_tbl_sz; 203 u16 max_pkeys; 204 u8 local_ca_ack_delay; 205 int comp_mask; 206 uint64_t timestamp_mask; 207 uint64_t hca_core_clock; 208 unsigned int sig_prot_cap; 209 unsigned int sig_guard_cap; 210 }; 211 212 enum ib_device_attr_comp_mask { 213 IB_DEVICE_ATTR_WITH_TIMESTAMP_MASK = 1ULL << 1, 214 IB_DEVICE_ATTR_WITH_HCA_CORE_CLOCK = 1ULL << 2 215 }; 216 217 enum ib_mtu { 218 IB_MTU_256 = 1, 219 IB_MTU_512 = 2, 220 IB_MTU_1024 = 3, 221 IB_MTU_2048 = 4, 222 IB_MTU_4096 = 5 223 }; 224 225 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 226 { 227 switch (mtu) { 228 case IB_MTU_256: return 256; 229 case IB_MTU_512: return 512; 230 case IB_MTU_1024: return 1024; 231 case IB_MTU_2048: return 2048; 232 case IB_MTU_4096: return 4096; 233 default: return -1; 234 } 235 } 236 237 enum ib_port_state { 238 IB_PORT_NOP = 0, 239 IB_PORT_DOWN = 1, 240 IB_PORT_INIT = 2, 241 IB_PORT_ARMED = 3, 242 IB_PORT_ACTIVE = 4, 243 IB_PORT_ACTIVE_DEFER = 5, 244 IB_PORT_DUMMY = -1 /* force enum signed */ 245 }; 246 247 enum ib_port_cap_flags { 248 IB_PORT_SM = 1 << 1, 249 IB_PORT_NOTICE_SUP = 1 << 2, 250 IB_PORT_TRAP_SUP = 1 << 3, 251 IB_PORT_OPT_IPD_SUP = 1 << 4, 252 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 253 IB_PORT_SL_MAP_SUP = 1 << 6, 254 IB_PORT_MKEY_NVRAM = 1 << 7, 255 IB_PORT_PKEY_NVRAM = 1 << 8, 256 IB_PORT_LED_INFO_SUP = 1 << 9, 257 IB_PORT_SM_DISABLED = 1 << 10, 258 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 259 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 260 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 261 IB_PORT_CM_SUP = 1 << 16, 262 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 263 IB_PORT_REINIT_SUP = 1 << 18, 264 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 265 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 266 IB_PORT_DR_NOTICE_SUP = 1 << 21, 267 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 268 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 269 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 270 IB_PORT_CLIENT_REG_SUP = 1 << 25 271 }; 272 273 enum ib_port_width { 274 IB_WIDTH_1X = 1, 275 IB_WIDTH_4X = 2, 276 IB_WIDTH_8X = 4, 277 IB_WIDTH_12X = 8 278 }; 279 280 static inline int ib_width_enum_to_int(enum ib_port_width width) 281 { 282 switch (width) { 283 case IB_WIDTH_1X: return 1; 284 case IB_WIDTH_4X: return 4; 285 case IB_WIDTH_8X: return 8; 286 case IB_WIDTH_12X: return 12; 287 default: return -1; 288 } 289 } 290 291 enum ib_port_speed { 292 IB_SPEED_SDR = 1, 293 IB_SPEED_DDR = 2, 294 IB_SPEED_QDR = 4, 295 IB_SPEED_FDR10 = 8, 296 IB_SPEED_FDR = 16, 297 IB_SPEED_EDR = 32 298 }; 299 300 struct ib_protocol_stats { 301 /* TBD... */ 302 }; 303 304 struct iw_protocol_stats { 305 u64 ipInReceives; 306 u64 ipInHdrErrors; 307 u64 ipInTooBigErrors; 308 u64 ipInNoRoutes; 309 u64 ipInAddrErrors; 310 u64 ipInUnknownProtos; 311 u64 ipInTruncatedPkts; 312 u64 ipInDiscards; 313 u64 ipInDelivers; 314 u64 ipOutForwDatagrams; 315 u64 ipOutRequests; 316 u64 ipOutDiscards; 317 u64 ipOutNoRoutes; 318 u64 ipReasmTimeout; 319 u64 ipReasmReqds; 320 u64 ipReasmOKs; 321 u64 ipReasmFails; 322 u64 ipFragOKs; 323 u64 ipFragFails; 324 u64 ipFragCreates; 325 u64 ipInMcastPkts; 326 u64 ipOutMcastPkts; 327 u64 ipInBcastPkts; 328 u64 ipOutBcastPkts; 329 330 u64 tcpRtoAlgorithm; 331 u64 tcpRtoMin; 332 u64 tcpRtoMax; 333 u64 tcpMaxConn; 334 u64 tcpActiveOpens; 335 u64 tcpPassiveOpens; 336 u64 tcpAttemptFails; 337 u64 tcpEstabResets; 338 u64 tcpCurrEstab; 339 u64 tcpInSegs; 340 u64 tcpOutSegs; 341 u64 tcpRetransSegs; 342 u64 tcpInErrs; 343 u64 tcpOutRsts; 344 }; 345 346 union rdma_protocol_stats { 347 struct ib_protocol_stats ib; 348 struct iw_protocol_stats iw; 349 }; 350 351 struct ib_port_attr { 352 enum ib_port_state state; 353 enum ib_mtu max_mtu; 354 enum ib_mtu active_mtu; 355 int gid_tbl_len; 356 u32 port_cap_flags; 357 u32 max_msg_sz; 358 u32 bad_pkey_cntr; 359 u32 qkey_viol_cntr; 360 u16 pkey_tbl_len; 361 u16 lid; 362 u16 sm_lid; 363 u8 lmc; 364 u8 max_vl_num; 365 u8 sm_sl; 366 u8 subnet_timeout; 367 u8 init_type_reply; 368 u8 active_width; 369 u8 active_speed; 370 u8 phys_state; 371 }; 372 373 enum ib_device_modify_flags { 374 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 375 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 376 }; 377 378 struct ib_device_modify { 379 u64 sys_image_guid; 380 char node_desc[64]; 381 }; 382 383 enum ib_port_modify_flags { 384 IB_PORT_SHUTDOWN = 1, 385 IB_PORT_INIT_TYPE = (1<<2), 386 IB_PORT_RESET_QKEY_CNTR = (1<<3) 387 }; 388 389 struct ib_port_modify { 390 u32 set_port_cap_mask; 391 u32 clr_port_cap_mask; 392 u8 init_type; 393 }; 394 395 enum ib_event_type { 396 IB_EVENT_CQ_ERR, 397 IB_EVENT_QP_FATAL, 398 IB_EVENT_QP_REQ_ERR, 399 IB_EVENT_QP_ACCESS_ERR, 400 IB_EVENT_COMM_EST, 401 IB_EVENT_SQ_DRAINED, 402 IB_EVENT_PATH_MIG, 403 IB_EVENT_PATH_MIG_ERR, 404 IB_EVENT_DEVICE_FATAL, 405 IB_EVENT_PORT_ACTIVE, 406 IB_EVENT_PORT_ERR, 407 IB_EVENT_LID_CHANGE, 408 IB_EVENT_PKEY_CHANGE, 409 IB_EVENT_SM_CHANGE, 410 IB_EVENT_SRQ_ERR, 411 IB_EVENT_SRQ_LIMIT_REACHED, 412 IB_EVENT_QP_LAST_WQE_REACHED, 413 IB_EVENT_CLIENT_REREGISTER, 414 IB_EVENT_GID_CHANGE, 415 }; 416 417 struct ib_event { 418 struct ib_device *device; 419 union { 420 struct ib_cq *cq; 421 struct ib_qp *qp; 422 struct ib_srq *srq; 423 u8 port_num; 424 } element; 425 enum ib_event_type event; 426 }; 427 428 struct ib_event_handler { 429 struct ib_device *device; 430 void (*handler)(struct ib_event_handler *, struct ib_event *); 431 struct list_head list; 432 }; 433 434 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 435 do { \ 436 (_ptr)->device = _device; \ 437 (_ptr)->handler = _handler; \ 438 INIT_LIST_HEAD(&(_ptr)->list); \ 439 } while (0) 440 441 struct ib_global_route { 442 union ib_gid dgid; 443 u32 flow_label; 444 u8 sgid_index; 445 u8 hop_limit; 446 u8 traffic_class; 447 }; 448 449 struct ib_grh { 450 __be32 version_tclass_flow; 451 __be16 paylen; 452 u8 next_hdr; 453 u8 hop_limit; 454 union ib_gid sgid; 455 union ib_gid dgid; 456 }; 457 458 enum { 459 IB_MULTICAST_QPN = 0xffffff 460 }; 461 462 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 463 464 enum ib_ah_flags { 465 IB_AH_GRH = 1 466 }; 467 468 enum ib_rate { 469 IB_RATE_PORT_CURRENT = 0, 470 IB_RATE_2_5_GBPS = 2, 471 IB_RATE_5_GBPS = 5, 472 IB_RATE_10_GBPS = 3, 473 IB_RATE_20_GBPS = 6, 474 IB_RATE_30_GBPS = 4, 475 IB_RATE_40_GBPS = 7, 476 IB_RATE_60_GBPS = 8, 477 IB_RATE_80_GBPS = 9, 478 IB_RATE_120_GBPS = 10, 479 IB_RATE_14_GBPS = 11, 480 IB_RATE_56_GBPS = 12, 481 IB_RATE_112_GBPS = 13, 482 IB_RATE_168_GBPS = 14, 483 IB_RATE_25_GBPS = 15, 484 IB_RATE_100_GBPS = 16, 485 IB_RATE_200_GBPS = 17, 486 IB_RATE_300_GBPS = 18 487 }; 488 489 enum ib_mr_create_flags { 490 IB_MR_SIGNATURE_EN = 1, 491 }; 492 493 /** 494 * ib_mr_init_attr - Memory region init attributes passed to routine 495 * ib_create_mr. 496 * @max_reg_descriptors: max number of registration descriptors that 497 * may be used with registration work requests. 498 * @flags: MR creation flags bit mask. 499 */ 500 struct ib_mr_init_attr { 501 int max_reg_descriptors; 502 u32 flags; 503 }; 504 505 /** 506 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 507 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 508 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 509 * @rate: rate to convert. 510 */ 511 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 512 513 /** 514 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 515 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 516 * @rate: rate to convert. 517 */ 518 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 519 520 struct ib_cq_init_attr { 521 int cqe; 522 int comp_vector; 523 u32 flags; 524 }; 525 526 enum ib_signature_type { 527 IB_SIG_TYPE_T10_DIF, 528 }; 529 530 /** 531 * T10-DIF Signature types 532 * T10-DIF types are defined by SCSI 533 * specifications. 534 */ 535 enum ib_t10_dif_type { 536 IB_T10DIF_NONE, 537 IB_T10DIF_TYPE1, 538 IB_T10DIF_TYPE2, 539 IB_T10DIF_TYPE3 540 }; 541 542 /** 543 * Signature T10-DIF block-guard types 544 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 545 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 546 */ 547 enum ib_t10_dif_bg_type { 548 IB_T10DIF_CRC, 549 IB_T10DIF_CSUM 550 }; 551 552 /** 553 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 554 * domain. 555 * @type: T10-DIF type (0|1|2|3) 556 * @bg_type: T10-DIF block guard type (CRC|CSUM) 557 * @pi_interval: protection information interval. 558 * @bg: seed of guard computation. 559 * @app_tag: application tag of guard block 560 * @ref_tag: initial guard block reference tag. 561 * @type3_inc_reftag: T10-DIF type 3 does not state 562 * about the reference tag, it is the user 563 * choice to increment it or not. 564 */ 565 struct ib_t10_dif_domain { 566 enum ib_t10_dif_type type; 567 enum ib_t10_dif_bg_type bg_type; 568 u32 pi_interval; 569 u16 bg; 570 u16 app_tag; 571 u32 ref_tag; 572 bool type3_inc_reftag; 573 }; 574 575 /** 576 * struct ib_sig_domain - Parameters for signature domain 577 * @sig_type: specific signauture type 578 * @sig: union of all signature domain attributes that may 579 * be used to set domain layout. 580 */ 581 struct ib_sig_domain { 582 enum ib_signature_type sig_type; 583 union { 584 struct ib_t10_dif_domain dif; 585 } sig; 586 }; 587 588 /** 589 * struct ib_sig_attrs - Parameters for signature handover operation 590 * @check_mask: bitmask for signature byte check (8 bytes) 591 * @mem: memory domain layout desciptor. 592 * @wire: wire domain layout desciptor. 593 */ 594 struct ib_sig_attrs { 595 u8 check_mask; 596 struct ib_sig_domain mem; 597 struct ib_sig_domain wire; 598 }; 599 600 enum ib_sig_err_type { 601 IB_SIG_BAD_GUARD, 602 IB_SIG_BAD_REFTAG, 603 IB_SIG_BAD_APPTAG, 604 }; 605 606 /** 607 * struct ib_sig_err - signature error descriptor 608 */ 609 struct ib_sig_err { 610 enum ib_sig_err_type err_type; 611 u32 expected; 612 u32 actual; 613 u64 sig_err_offset; 614 u32 key; 615 }; 616 617 enum ib_mr_status_check { 618 IB_MR_CHECK_SIG_STATUS = 1, 619 }; 620 621 /** 622 * struct ib_mr_status - Memory region status container 623 * 624 * @fail_status: Bitmask of MR checks status. For each 625 * failed check a corresponding status bit is set. 626 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 627 * failure. 628 */ 629 struct ib_mr_status { 630 u32 fail_status; 631 struct ib_sig_err sig_err; 632 }; 633 634 /** 635 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 636 * enum. 637 * @mult: multiple to convert. 638 */ 639 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 640 641 struct ib_ah_attr { 642 struct ib_global_route grh; 643 u16 dlid; 644 u8 sl; 645 u8 src_path_bits; 646 u8 static_rate; 647 u8 ah_flags; 648 u8 port_num; 649 u8 dmac[6]; 650 u16 vlan_id; 651 }; 652 653 enum ib_wc_status { 654 IB_WC_SUCCESS, 655 IB_WC_LOC_LEN_ERR, 656 IB_WC_LOC_QP_OP_ERR, 657 IB_WC_LOC_EEC_OP_ERR, 658 IB_WC_LOC_PROT_ERR, 659 IB_WC_WR_FLUSH_ERR, 660 IB_WC_MW_BIND_ERR, 661 IB_WC_BAD_RESP_ERR, 662 IB_WC_LOC_ACCESS_ERR, 663 IB_WC_REM_INV_REQ_ERR, 664 IB_WC_REM_ACCESS_ERR, 665 IB_WC_REM_OP_ERR, 666 IB_WC_RETRY_EXC_ERR, 667 IB_WC_RNR_RETRY_EXC_ERR, 668 IB_WC_LOC_RDD_VIOL_ERR, 669 IB_WC_REM_INV_RD_REQ_ERR, 670 IB_WC_REM_ABORT_ERR, 671 IB_WC_INV_EECN_ERR, 672 IB_WC_INV_EEC_STATE_ERR, 673 IB_WC_FATAL_ERR, 674 IB_WC_RESP_TIMEOUT_ERR, 675 IB_WC_GENERAL_ERR 676 }; 677 678 enum ib_wc_opcode { 679 IB_WC_SEND, 680 IB_WC_RDMA_WRITE, 681 IB_WC_RDMA_READ, 682 IB_WC_COMP_SWAP, 683 IB_WC_FETCH_ADD, 684 IB_WC_BIND_MW, 685 IB_WC_LSO, 686 IB_WC_LOCAL_INV, 687 IB_WC_FAST_REG_MR, 688 IB_WC_MASKED_COMP_SWAP, 689 IB_WC_MASKED_FETCH_ADD, 690 /* 691 * Set value of IB_WC_RECV so consumers can test if a completion is a 692 * receive by testing (opcode & IB_WC_RECV). 693 */ 694 IB_WC_RECV = 1 << 7, 695 IB_WC_RECV_RDMA_WITH_IMM 696 }; 697 698 enum ib_wc_flags { 699 IB_WC_GRH = 1, 700 IB_WC_WITH_IMM = (1<<1), 701 IB_WC_WITH_INVALIDATE = (1<<2), 702 IB_WC_IP_CSUM_OK = (1<<3), 703 IB_WC_WITH_SL = (1<<4), 704 IB_WC_WITH_SLID = (1<<5), 705 IB_WC_WITH_TIMESTAMP = (1<<6), 706 IB_WC_WITH_SMAC = (1<<7), 707 IB_WC_WITH_VLAN = (1<<8), 708 }; 709 710 struct ib_wc { 711 u64 wr_id; 712 enum ib_wc_status status; 713 enum ib_wc_opcode opcode; 714 u32 vendor_err; 715 u32 byte_len; 716 struct ib_qp *qp; 717 union { 718 __be32 imm_data; 719 u32 invalidate_rkey; 720 } ex; 721 u32 src_qp; 722 int wc_flags; 723 u16 pkey_index; 724 u16 slid; 725 u8 sl; 726 u8 dlid_path_bits; 727 u8 port_num; /* valid only for DR SMPs on switches */ 728 int csum_ok; 729 struct { 730 uint64_t timestamp; /* timestamp = 0 indicates error*/ 731 } ts; 732 u8 smac[6]; 733 u16 vlan_id; 734 }; 735 736 enum ib_cq_notify_flags { 737 IB_CQ_SOLICITED = 1 << 0, 738 IB_CQ_NEXT_COMP = 1 << 1, 739 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 740 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 741 }; 742 743 enum ib_srq_type { 744 IB_SRQT_BASIC, 745 IB_SRQT_XRC 746 }; 747 748 enum ib_srq_attr_mask { 749 IB_SRQ_MAX_WR = 1 << 0, 750 IB_SRQ_LIMIT = 1 << 1, 751 }; 752 753 struct ib_srq_attr { 754 u32 max_wr; 755 u32 max_sge; 756 u32 srq_limit; 757 }; 758 759 struct ib_srq_init_attr { 760 void (*event_handler)(struct ib_event *, void *); 761 void *srq_context; 762 struct ib_srq_attr attr; 763 enum ib_srq_type srq_type; 764 765 union { 766 struct { 767 struct ib_xrcd *xrcd; 768 struct ib_cq *cq; 769 } xrc; 770 } ext; 771 }; 772 773 struct ib_qp_cap { 774 u32 max_send_wr; 775 u32 max_recv_wr; 776 u32 max_send_sge; 777 u32 max_recv_sge; 778 u32 max_inline_data; 779 u32 qpg_tss_mask_sz; 780 }; 781 782 enum ib_sig_type { 783 IB_SIGNAL_ALL_WR, 784 IB_SIGNAL_REQ_WR 785 }; 786 787 enum ib_qp_type { 788 /* 789 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 790 * here (and in that order) since the MAD layer uses them as 791 * indices into a 2-entry table. 792 */ 793 IB_QPT_SMI, 794 IB_QPT_GSI, 795 796 IB_QPT_RC, 797 IB_QPT_UC, 798 IB_QPT_UD, 799 IB_QPT_RAW_IPV6, 800 IB_QPT_RAW_ETHERTYPE, 801 IB_QPT_RAW_PACKET = 8, 802 IB_QPT_XRC_INI = 9, 803 IB_QPT_XRC_TGT, 804 IB_QPT_DC_INI, 805 IB_QPT_MAX, 806 /* Reserve a range for qp types internal to the low level driver. 807 * These qp types will not be visible at the IB core layer, so the 808 * IB_QPT_MAX usages should not be affected in the core layer 809 */ 810 IB_QPT_RESERVED1 = 0x1000, 811 IB_QPT_RESERVED2, 812 IB_QPT_RESERVED3, 813 IB_QPT_RESERVED4, 814 IB_QPT_RESERVED5, 815 IB_QPT_RESERVED6, 816 IB_QPT_RESERVED7, 817 IB_QPT_RESERVED8, 818 IB_QPT_RESERVED9, 819 IB_QPT_RESERVED10, 820 }; 821 822 enum ib_qp_create_flags { 823 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 824 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 825 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 826 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 827 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 828 IB_QP_CREATE_NETIF_QP = 1 << 5, 829 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 830 /* reserve bits 26-31 for low level drivers' internal use */ 831 IB_QP_CREATE_RESERVED_START = 1 << 26, 832 IB_QP_CREATE_RESERVED_END = 1 << 31, 833 }; 834 835 enum ib_qpg_type { 836 IB_QPG_NONE = 0, 837 IB_QPG_PARENT = (1<<0), 838 IB_QPG_CHILD_RX = (1<<1), 839 IB_QPG_CHILD_TX = (1<<2) 840 }; 841 842 struct ib_qpg_init_attrib { 843 u32 tss_child_count; 844 u32 rss_child_count; 845 }; 846 847 struct ib_qp_init_attr { 848 void (*event_handler)(struct ib_event *, void *); 849 void *qp_context; 850 struct ib_cq *send_cq; 851 struct ib_cq *recv_cq; 852 struct ib_srq *srq; 853 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 854 struct ib_qp_cap cap; 855 union { 856 struct ib_qp *qpg_parent; /* see qpg_type */ 857 struct ib_qpg_init_attrib parent_attrib; 858 }; 859 enum ib_sig_type sq_sig_type; 860 enum ib_qp_type qp_type; 861 enum ib_qp_create_flags create_flags; 862 enum ib_qpg_type qpg_type; 863 u8 port_num; /* special QP types only */ 864 }; 865 866 enum { 867 IB_DCT_CREATE_FLAG_RCV_INLINE = 1 << 0, 868 IB_DCT_CREATE_FLAGS_MASK = IB_DCT_CREATE_FLAG_RCV_INLINE, 869 }; 870 871 struct ib_dct_init_attr { 872 struct ib_pd *pd; 873 struct ib_cq *cq; 874 struct ib_srq *srq; 875 u64 dc_key; 876 u8 port; 877 u32 access_flags; 878 u8 min_rnr_timer; 879 u8 tclass; 880 u32 flow_label; 881 enum ib_mtu mtu; 882 u8 pkey_index; 883 u8 gid_index; 884 u8 hop_limit; 885 u32 create_flags; 886 }; 887 888 struct ib_dct_attr { 889 u64 dc_key; 890 u8 port; 891 u32 access_flags; 892 u8 min_rnr_timer; 893 u8 tclass; 894 u32 flow_label; 895 enum ib_mtu mtu; 896 u8 pkey_index; 897 u8 gid_index; 898 u8 hop_limit; 899 u32 key_violations; 900 u8 state; 901 }; 902 903 struct ib_qp_open_attr { 904 void (*event_handler)(struct ib_event *, void *); 905 void *qp_context; 906 u32 qp_num; 907 enum ib_qp_type qp_type; 908 }; 909 910 enum ib_rnr_timeout { 911 IB_RNR_TIMER_655_36 = 0, 912 IB_RNR_TIMER_000_01 = 1, 913 IB_RNR_TIMER_000_02 = 2, 914 IB_RNR_TIMER_000_03 = 3, 915 IB_RNR_TIMER_000_04 = 4, 916 IB_RNR_TIMER_000_06 = 5, 917 IB_RNR_TIMER_000_08 = 6, 918 IB_RNR_TIMER_000_12 = 7, 919 IB_RNR_TIMER_000_16 = 8, 920 IB_RNR_TIMER_000_24 = 9, 921 IB_RNR_TIMER_000_32 = 10, 922 IB_RNR_TIMER_000_48 = 11, 923 IB_RNR_TIMER_000_64 = 12, 924 IB_RNR_TIMER_000_96 = 13, 925 IB_RNR_TIMER_001_28 = 14, 926 IB_RNR_TIMER_001_92 = 15, 927 IB_RNR_TIMER_002_56 = 16, 928 IB_RNR_TIMER_003_84 = 17, 929 IB_RNR_TIMER_005_12 = 18, 930 IB_RNR_TIMER_007_68 = 19, 931 IB_RNR_TIMER_010_24 = 20, 932 IB_RNR_TIMER_015_36 = 21, 933 IB_RNR_TIMER_020_48 = 22, 934 IB_RNR_TIMER_030_72 = 23, 935 IB_RNR_TIMER_040_96 = 24, 936 IB_RNR_TIMER_061_44 = 25, 937 IB_RNR_TIMER_081_92 = 26, 938 IB_RNR_TIMER_122_88 = 27, 939 IB_RNR_TIMER_163_84 = 28, 940 IB_RNR_TIMER_245_76 = 29, 941 IB_RNR_TIMER_327_68 = 30, 942 IB_RNR_TIMER_491_52 = 31 943 }; 944 945 enum ib_qp_attr_mask { 946 IB_QP_STATE = 1, 947 IB_QP_CUR_STATE = (1<<1), 948 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 949 IB_QP_ACCESS_FLAGS = (1<<3), 950 IB_QP_PKEY_INDEX = (1<<4), 951 IB_QP_PORT = (1<<5), 952 IB_QP_QKEY = (1<<6), 953 IB_QP_AV = (1<<7), 954 IB_QP_PATH_MTU = (1<<8), 955 IB_QP_TIMEOUT = (1<<9), 956 IB_QP_RETRY_CNT = (1<<10), 957 IB_QP_RNR_RETRY = (1<<11), 958 IB_QP_RQ_PSN = (1<<12), 959 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 960 IB_QP_ALT_PATH = (1<<14), 961 IB_QP_MIN_RNR_TIMER = (1<<15), 962 IB_QP_SQ_PSN = (1<<16), 963 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 964 IB_QP_PATH_MIG_STATE = (1<<18), 965 IB_QP_CAP = (1<<19), 966 IB_QP_DEST_QPN = (1<<20), 967 IB_QP_GROUP_RSS = (1<<21), 968 IB_QP_DC_KEY = (1<<22), 969 IB_QP_SMAC = (1<<23), 970 IB_QP_ALT_SMAC = (1<<24), 971 IB_QP_VID = (1<<25), 972 IB_QP_ALT_VID = (1<<26) 973 }; 974 975 enum ib_qp_state { 976 IB_QPS_RESET, 977 IB_QPS_INIT, 978 IB_QPS_RTR, 979 IB_QPS_RTS, 980 IB_QPS_SQD, 981 IB_QPS_SQE, 982 IB_QPS_ERR, 983 IB_QPS_DUMMY = -1 /* force enum signed */ 984 }; 985 986 enum ib_mig_state { 987 IB_MIG_MIGRATED, 988 IB_MIG_REARM, 989 IB_MIG_ARMED 990 }; 991 992 enum ib_mw_type { 993 IB_MW_TYPE_1 = 1, 994 IB_MW_TYPE_2 = 2 995 }; 996 997 struct ib_qp_attr { 998 enum ib_qp_state qp_state; 999 enum ib_qp_state cur_qp_state; 1000 enum ib_mtu path_mtu; 1001 enum ib_mig_state path_mig_state; 1002 u32 qkey; 1003 u32 rq_psn; 1004 u32 sq_psn; 1005 u32 dest_qp_num; 1006 int qp_access_flags; 1007 struct ib_qp_cap cap; 1008 struct ib_ah_attr ah_attr; 1009 struct ib_ah_attr alt_ah_attr; 1010 u16 pkey_index; 1011 u16 alt_pkey_index; 1012 u8 en_sqd_async_notify; 1013 u8 sq_draining; 1014 u8 max_rd_atomic; 1015 u8 max_dest_rd_atomic; 1016 u8 min_rnr_timer; 1017 u8 port_num; 1018 u8 timeout; 1019 u8 retry_cnt; 1020 u8 rnr_retry; 1021 u8 alt_port_num; 1022 u8 alt_timeout; 1023 u8 smac[ETH_ALEN]; 1024 u8 alt_smac[ETH_ALEN]; 1025 u16 vlan_id; 1026 u16 alt_vlan_id; 1027 1028 }; 1029 1030 struct ib_qp_attr_ex { 1031 enum ib_qp_state qp_state; 1032 enum ib_qp_state cur_qp_state; 1033 enum ib_mtu path_mtu; 1034 enum ib_mig_state path_mig_state; 1035 u32 qkey; 1036 u32 rq_psn; 1037 u32 sq_psn; 1038 u32 dest_qp_num; 1039 int qp_access_flags; 1040 struct ib_qp_cap cap; 1041 struct ib_ah_attr ah_attr; 1042 struct ib_ah_attr alt_ah_attr; 1043 u16 pkey_index; 1044 u16 alt_pkey_index; 1045 u8 en_sqd_async_notify; 1046 u8 sq_draining; 1047 u8 max_rd_atomic; 1048 u8 max_dest_rd_atomic; 1049 u8 min_rnr_timer; 1050 u8 port_num; 1051 u8 timeout; 1052 u8 retry_cnt; 1053 u8 rnr_retry; 1054 u8 alt_port_num; 1055 u8 alt_timeout; 1056 u64 dct_key; 1057 }; 1058 1059 enum ib_wr_opcode { 1060 IB_WR_RDMA_WRITE, 1061 IB_WR_RDMA_WRITE_WITH_IMM, 1062 IB_WR_SEND, 1063 IB_WR_SEND_WITH_IMM, 1064 IB_WR_RDMA_READ, 1065 IB_WR_ATOMIC_CMP_AND_SWP, 1066 IB_WR_ATOMIC_FETCH_AND_ADD, 1067 IB_WR_LSO, 1068 IB_WR_SEND_WITH_INV, 1069 IB_WR_RDMA_READ_WITH_INV, 1070 IB_WR_LOCAL_INV, 1071 IB_WR_FAST_REG_MR, 1072 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1073 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1074 IB_WR_BIND_MW, 1075 IB_WR_REG_SIG_MR, 1076 /* reserve values for low level drivers' internal use. 1077 * These values will not be used at all in the ib core layer. 1078 */ 1079 IB_WR_RESERVED1 = 0xf0, 1080 IB_WR_RESERVED2, 1081 IB_WR_RESERVED3, 1082 IB_WR_RESERVED4, 1083 IB_WR_RESERVED5, 1084 IB_WR_RESERVED6, 1085 IB_WR_RESERVED7, 1086 IB_WR_RESERVED8, 1087 IB_WR_RESERVED9, 1088 IB_WR_RESERVED10, 1089 }; 1090 1091 enum ib_send_flags { 1092 IB_SEND_FENCE = 1, 1093 IB_SEND_SIGNALED = (1<<1), 1094 IB_SEND_SOLICITED = (1<<2), 1095 IB_SEND_INLINE = (1<<3), 1096 IB_SEND_IP_CSUM = (1<<4), 1097 1098 /* reserve bits 26-31 for low level drivers' internal use */ 1099 IB_SEND_RESERVED_START = (1 << 26), 1100 IB_SEND_RESERVED_END = (1 << 31), 1101 IB_SEND_UMR_UNREG = (1<<5) 1102 }; 1103 1104 struct ib_sge { 1105 u64 addr; 1106 u32 length; 1107 u32 lkey; 1108 }; 1109 1110 struct ib_fast_reg_page_list { 1111 struct ib_device *device; 1112 u64 *page_list; 1113 unsigned int max_page_list_len; 1114 }; 1115 1116 /** 1117 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 1118 * @mr: A memory region to bind the memory window to. 1119 * @addr: The address where the memory window should begin. 1120 * @length: The length of the memory window, in bytes. 1121 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 1122 * 1123 * This struct contains the shared parameters for type 1 and type 2 1124 * memory window bind operations. 1125 */ 1126 struct ib_mw_bind_info { 1127 struct ib_mr *mr; 1128 u64 addr; 1129 u64 length; 1130 int mw_access_flags; 1131 }; 1132 1133 struct ib_send_wr { 1134 struct ib_send_wr *next; 1135 u64 wr_id; 1136 struct ib_sge *sg_list; 1137 int num_sge; 1138 enum ib_wr_opcode opcode; 1139 int send_flags; 1140 union { 1141 __be32 imm_data; 1142 u32 invalidate_rkey; 1143 } ex; 1144 union { 1145 struct { 1146 u64 remote_addr; 1147 u32 rkey; 1148 } rdma; 1149 struct { 1150 u64 remote_addr; 1151 u64 compare_add; 1152 u64 swap; 1153 u64 compare_add_mask; 1154 u64 swap_mask; 1155 u32 rkey; 1156 } atomic; 1157 struct { 1158 struct ib_ah *ah; 1159 void *header; 1160 int hlen; 1161 int mss; 1162 u32 remote_qpn; 1163 u32 remote_qkey; 1164 u16 pkey_index; /* valid for GSI only */ 1165 u8 port_num; /* valid for DR SMPs on switch only */ 1166 } ud; 1167 struct { 1168 u64 iova_start; 1169 struct ib_fast_reg_page_list *page_list; 1170 unsigned int page_shift; 1171 unsigned int page_list_len; 1172 u32 length; 1173 int access_flags; 1174 u32 rkey; 1175 } fast_reg; 1176 struct { 1177 int npages; 1178 int access_flags; 1179 u32 mkey; 1180 struct ib_pd *pd; 1181 u64 virt_addr; 1182 u64 length; 1183 int page_shift; 1184 } umr; 1185 struct { 1186 struct ib_mw *mw; 1187 /* The new rkey for the memory window. */ 1188 u32 rkey; 1189 struct ib_mw_bind_info bind_info; 1190 } bind_mw; 1191 struct { 1192 struct ib_sig_attrs *sig_attrs; 1193 struct ib_mr *sig_mr; 1194 int access_flags; 1195 struct ib_sge *prot; 1196 } sig_handover; 1197 } wr; 1198 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 1199 }; 1200 1201 struct ib_recv_wr { 1202 struct ib_recv_wr *next; 1203 u64 wr_id; 1204 struct ib_sge *sg_list; 1205 int num_sge; 1206 }; 1207 1208 enum ib_access_flags { 1209 IB_ACCESS_LOCAL_WRITE = 1, 1210 IB_ACCESS_REMOTE_WRITE = (1<<1), 1211 IB_ACCESS_REMOTE_READ = (1<<2), 1212 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1213 IB_ACCESS_MW_BIND = (1<<4), 1214 IB_ACCESS_ALLOCATE_MR = (1<<5), 1215 IB_ZERO_BASED = (1<<13) 1216 }; 1217 1218 struct ib_phys_buf { 1219 u64 addr; 1220 u64 size; 1221 }; 1222 1223 struct ib_mr_attr { 1224 struct ib_pd *pd; 1225 u64 device_virt_addr; 1226 u64 size; 1227 int mr_access_flags; 1228 u32 lkey; 1229 u32 rkey; 1230 }; 1231 1232 enum ib_mr_rereg_flags { 1233 IB_MR_REREG_TRANS = 1, 1234 IB_MR_REREG_PD = (1<<1), 1235 IB_MR_REREG_ACCESS = (1<<2) 1236 }; 1237 1238 /** 1239 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 1240 * @wr_id: Work request id. 1241 * @send_flags: Flags from ib_send_flags enum. 1242 * @bind_info: More parameters of the bind operation. 1243 */ 1244 struct ib_mw_bind { 1245 u64 wr_id; 1246 int send_flags; 1247 struct ib_mw_bind_info bind_info; 1248 }; 1249 1250 struct ib_fmr_attr { 1251 int max_pages; 1252 int max_maps; 1253 u8 page_shift; 1254 }; 1255 1256 struct ib_ucontext { 1257 struct ib_device *device; 1258 struct list_head pd_list; 1259 struct list_head mr_list; 1260 struct list_head mw_list; 1261 struct list_head cq_list; 1262 struct list_head qp_list; 1263 struct list_head srq_list; 1264 struct list_head ah_list; 1265 struct list_head xrcd_list; 1266 struct list_head rule_list; 1267 struct list_head dct_list; 1268 int closing; 1269 void *peer_mem_private_data; 1270 char *peer_mem_name; 1271 }; 1272 1273 struct ib_uobject { 1274 u64 user_handle; /* handle given to us by userspace */ 1275 struct ib_ucontext *context; /* associated user context */ 1276 void *object; /* containing object */ 1277 struct list_head list; /* link to context's list */ 1278 int id; /* index into kernel idr */ 1279 struct kref ref; 1280 struct rw_semaphore mutex; /* protects .live */ 1281 int live; 1282 }; 1283 1284 struct ib_udata; 1285 struct ib_udata_ops { 1286 int (*copy_from)(void *dest, struct ib_udata *udata, 1287 size_t len); 1288 int (*copy_to)(struct ib_udata *udata, void *src, 1289 size_t len); 1290 }; 1291 1292 struct ib_udata { 1293 struct ib_udata_ops *ops; 1294 void __user *inbuf; 1295 void __user *outbuf; 1296 size_t inlen; 1297 size_t outlen; 1298 }; 1299 1300 struct ib_pd { 1301 struct ib_device *device; 1302 struct ib_uobject *uobject; 1303 atomic_t usecnt; /* count all resources */ 1304 }; 1305 1306 struct ib_xrcd { 1307 struct ib_device *device; 1308 atomic_t usecnt; /* count all exposed resources */ 1309 struct inode *inode; 1310 1311 struct mutex tgt_qp_mutex; 1312 struct list_head tgt_qp_list; 1313 }; 1314 1315 struct ib_ah { 1316 struct ib_device *device; 1317 struct ib_pd *pd; 1318 struct ib_uobject *uobject; 1319 }; 1320 1321 enum ib_cq_attr_mask { 1322 IB_CQ_MODERATION = (1 << 0), 1323 IB_CQ_CAP_FLAGS = (1 << 1) 1324 }; 1325 1326 enum ib_cq_cap_flags { 1327 IB_CQ_IGNORE_OVERRUN = (1 << 0) 1328 }; 1329 1330 struct ib_cq_attr { 1331 struct { 1332 u16 cq_count; 1333 u16 cq_period; 1334 } moderation; 1335 u32 cq_cap_flags; 1336 }; 1337 1338 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1339 1340 struct ib_cq { 1341 struct ib_device *device; 1342 struct ib_uobject *uobject; 1343 ib_comp_handler comp_handler; 1344 void (*event_handler)(struct ib_event *, void *); 1345 void *cq_context; 1346 int cqe; 1347 atomic_t usecnt; /* count number of work queues */ 1348 }; 1349 1350 struct ib_srq { 1351 struct ib_device *device; 1352 struct ib_pd *pd; 1353 struct ib_uobject *uobject; 1354 void (*event_handler)(struct ib_event *, void *); 1355 void *srq_context; 1356 enum ib_srq_type srq_type; 1357 atomic_t usecnt; 1358 1359 union { 1360 struct { 1361 struct ib_xrcd *xrcd; 1362 struct ib_cq *cq; 1363 u32 srq_num; 1364 } xrc; 1365 } ext; 1366 }; 1367 1368 struct ib_qp { 1369 struct ib_device *device; 1370 struct ib_pd *pd; 1371 struct ib_cq *send_cq; 1372 struct ib_cq *recv_cq; 1373 struct ib_srq *srq; 1374 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1375 struct list_head xrcd_list; 1376 /* count times opened, mcast attaches, flow attaches */ 1377 atomic_t usecnt; 1378 struct list_head open_list; 1379 struct ib_qp *real_qp; 1380 struct ib_uobject *uobject; 1381 void (*event_handler)(struct ib_event *, void *); 1382 void *qp_context; 1383 u32 qp_num; 1384 enum ib_qp_type qp_type; 1385 enum ib_qpg_type qpg_type; 1386 u8 port_num; 1387 }; 1388 1389 struct ib_dct { 1390 struct ib_device *device; 1391 struct ib_uobject *uobject; 1392 struct ib_pd *pd; 1393 struct ib_cq *cq; 1394 struct ib_srq *srq; 1395 u32 dct_num; 1396 }; 1397 1398 struct ib_mr { 1399 struct ib_device *device; 1400 struct ib_pd *pd; 1401 struct ib_uobject *uobject; 1402 u32 lkey; 1403 u32 rkey; 1404 atomic_t usecnt; /* count number of MWs */ 1405 }; 1406 1407 struct ib_mw { 1408 struct ib_device *device; 1409 struct ib_pd *pd; 1410 struct ib_uobject *uobject; 1411 u32 rkey; 1412 enum ib_mw_type type; 1413 }; 1414 1415 struct ib_fmr { 1416 struct ib_device *device; 1417 struct ib_pd *pd; 1418 struct list_head list; 1419 u32 lkey; 1420 u32 rkey; 1421 }; 1422 1423 /* Supported steering options */ 1424 enum ib_flow_attr_type { 1425 /* steering according to rule specifications */ 1426 IB_FLOW_ATTR_NORMAL = 0x0, 1427 /* default unicast and multicast rule - 1428 * receive all Eth traffic which isn't steered to any QP 1429 */ 1430 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1431 /* default multicast rule - 1432 * receive all Eth multicast traffic which isn't steered to any QP 1433 */ 1434 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1435 /* sniffer rule - receive all port traffic */ 1436 IB_FLOW_ATTR_SNIFFER = 0x3 1437 }; 1438 1439 /* Supported steering header types */ 1440 enum ib_flow_spec_type { 1441 /* L2 headers*/ 1442 IB_FLOW_SPEC_ETH = 0x20, 1443 IB_FLOW_SPEC_IB = 0x21, 1444 /* L3 header*/ 1445 IB_FLOW_SPEC_IPV4 = 0x30, 1446 /* L4 headers*/ 1447 IB_FLOW_SPEC_TCP = 0x40, 1448 IB_FLOW_SPEC_UDP = 0x41 1449 }; 1450 1451 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1452 1453 /* Flow steering rule priority is set according to it's domain. 1454 * Lower domain value means higher priority. 1455 */ 1456 enum ib_flow_domain { 1457 IB_FLOW_DOMAIN_USER, 1458 IB_FLOW_DOMAIN_ETHTOOL, 1459 IB_FLOW_DOMAIN_RFS, 1460 IB_FLOW_DOMAIN_NIC, 1461 IB_FLOW_DOMAIN_NUM /* Must be last */ 1462 }; 1463 1464 enum ib_flow_flags { 1465 IB_FLOW_ATTR_FLAGS_ALLOW_LOOP_BACK = 1 1466 }; 1467 1468 struct ib_flow_eth_filter { 1469 u8 dst_mac[6]; 1470 u8 src_mac[6]; 1471 __be16 ether_type; 1472 __be16 vlan_tag; 1473 }; 1474 1475 struct ib_flow_spec_eth { 1476 enum ib_flow_spec_type type; 1477 u16 size; 1478 struct ib_flow_eth_filter val; 1479 struct ib_flow_eth_filter mask; 1480 }; 1481 1482 struct ib_flow_ib_filter { 1483 __be32 l3_type_qpn; 1484 u8 dst_gid[16]; 1485 }; 1486 1487 struct ib_flow_spec_ib { 1488 enum ib_flow_spec_type type; 1489 u16 size; 1490 struct ib_flow_ib_filter val; 1491 struct ib_flow_ib_filter mask; 1492 }; 1493 1494 struct ib_flow_ipv4_filter { 1495 __be32 src_ip; 1496 __be32 dst_ip; 1497 }; 1498 1499 struct ib_flow_spec_ipv4 { 1500 enum ib_flow_spec_type type; 1501 u16 size; 1502 struct ib_flow_ipv4_filter val; 1503 struct ib_flow_ipv4_filter mask; 1504 }; 1505 1506 struct ib_flow_tcp_udp_filter { 1507 __be16 dst_port; 1508 __be16 src_port; 1509 }; 1510 1511 struct ib_flow_spec_tcp_udp { 1512 enum ib_flow_spec_type type; 1513 u16 size; 1514 struct ib_flow_tcp_udp_filter val; 1515 struct ib_flow_tcp_udp_filter mask; 1516 }; 1517 1518 union ib_flow_spec { 1519 struct { 1520 enum ib_flow_spec_type type; 1521 u16 size; 1522 }; 1523 struct ib_flow_spec_ib ib; 1524 struct ib_flow_spec_eth eth; 1525 struct ib_flow_spec_ipv4 ipv4; 1526 struct ib_flow_spec_tcp_udp tcp_udp; 1527 }; 1528 1529 struct ib_flow_attr { 1530 enum ib_flow_attr_type type; 1531 u16 size; 1532 u16 priority; 1533 u8 num_of_specs; 1534 u8 port; 1535 u32 flags; 1536 /* Following are the optional layers according to user request 1537 * struct ib_flow_spec_xxx 1538 * struct ib_flow_spec_yyy 1539 */ 1540 }; 1541 1542 struct ib_flow { 1543 struct ib_qp *qp; 1544 struct ib_uobject *uobject; 1545 }; 1546 1547 struct ib_mad; 1548 struct ib_grh; 1549 1550 enum ib_process_mad_flags { 1551 IB_MAD_IGNORE_MKEY = 1, 1552 IB_MAD_IGNORE_BKEY = 2, 1553 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1554 }; 1555 1556 enum ib_mad_result { 1557 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1558 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1559 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1560 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1561 }; 1562 1563 #define IB_DEVICE_NAME_MAX 64 1564 1565 struct ib_cache { 1566 rwlock_t lock; 1567 struct ib_event_handler event_handler; 1568 struct ib_pkey_cache **pkey_cache; 1569 struct ib_gid_cache **gid_cache; 1570 u8 *lmc_cache; 1571 }; 1572 1573 enum verbs_values_mask { 1574 IBV_VALUES_HW_CLOCK = 1 << 0 1575 }; 1576 1577 struct ib_device_values { 1578 int values_mask; 1579 uint64_t hwclock; 1580 }; 1581 1582 struct ib_dma_mapping_ops { 1583 int (*mapping_error)(struct ib_device *dev, 1584 u64 dma_addr); 1585 u64 (*map_single)(struct ib_device *dev, 1586 void *ptr, size_t size, 1587 enum dma_data_direction direction); 1588 void (*unmap_single)(struct ib_device *dev, 1589 u64 addr, size_t size, 1590 enum dma_data_direction direction); 1591 u64 (*map_page)(struct ib_device *dev, 1592 struct page *page, unsigned long offset, 1593 size_t size, 1594 enum dma_data_direction direction); 1595 void (*unmap_page)(struct ib_device *dev, 1596 u64 addr, size_t size, 1597 enum dma_data_direction direction); 1598 int (*map_sg)(struct ib_device *dev, 1599 struct scatterlist *sg, int nents, 1600 enum dma_data_direction direction); 1601 void (*unmap_sg)(struct ib_device *dev, 1602 struct scatterlist *sg, int nents, 1603 enum dma_data_direction direction); 1604 u64 (*dma_address)(struct ib_device *dev, 1605 struct scatterlist *sg); 1606 unsigned int (*dma_len)(struct ib_device *dev, 1607 struct scatterlist *sg); 1608 void (*sync_single_for_cpu)(struct ib_device *dev, 1609 u64 dma_handle, 1610 size_t size, 1611 enum dma_data_direction dir); 1612 void (*sync_single_for_device)(struct ib_device *dev, 1613 u64 dma_handle, 1614 size_t size, 1615 enum dma_data_direction dir); 1616 void *(*alloc_coherent)(struct ib_device *dev, 1617 size_t size, 1618 u64 *dma_handle, 1619 gfp_t flag); 1620 void (*free_coherent)(struct ib_device *dev, 1621 size_t size, void *cpu_addr, 1622 u64 dma_handle); 1623 }; 1624 1625 struct iw_cm_verbs; 1626 struct ib_exp_device_attr; 1627 struct ib_exp_qp_init_attr; 1628 1629 struct ib_device { 1630 struct device *dma_device; 1631 1632 char name[IB_DEVICE_NAME_MAX]; 1633 1634 struct list_head event_handler_list; 1635 spinlock_t event_handler_lock; 1636 1637 spinlock_t client_data_lock; 1638 struct list_head core_list; 1639 struct list_head client_data_list; 1640 1641 struct ib_cache cache; 1642 int *pkey_tbl_len; 1643 int *gid_tbl_len; 1644 1645 int num_comp_vectors; 1646 1647 struct iw_cm_verbs *iwcm; 1648 1649 int (*get_protocol_stats)(struct ib_device *device, 1650 union rdma_protocol_stats *stats); 1651 int (*query_device)(struct ib_device *device, 1652 struct ib_device_attr *device_attr); 1653 int (*query_port)(struct ib_device *device, 1654 u8 port_num, 1655 struct ib_port_attr *port_attr); 1656 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1657 u8 port_num); 1658 /* When calling get_netdev, the HW vendor's driver should return the 1659 * net device of device @device at port @port_num. The function 1660 * is called in rtnl_lock. The HW vendor's device driver must guarantee 1661 * to return NULL before the net device has reached 1662 * NETDEV_UNREGISTER_FINAL state. 1663 */ 1664 struct net_device *(*get_netdev)(struct ib_device *device, 1665 u8 port_num); 1666 int (*query_gid)(struct ib_device *device, 1667 u8 port_num, int index, 1668 union ib_gid *gid); 1669 int (*query_pkey)(struct ib_device *device, 1670 u8 port_num, u16 index, u16 *pkey); 1671 int (*modify_device)(struct ib_device *device, 1672 int device_modify_mask, 1673 struct ib_device_modify *device_modify); 1674 int (*modify_port)(struct ib_device *device, 1675 u8 port_num, int port_modify_mask, 1676 struct ib_port_modify *port_modify); 1677 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1678 struct ib_udata *udata); 1679 int (*dealloc_ucontext)(struct ib_ucontext *context); 1680 int (*mmap)(struct ib_ucontext *context, 1681 struct vm_area_struct *vma); 1682 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1683 struct ib_ucontext *context, 1684 struct ib_udata *udata); 1685 int (*dealloc_pd)(struct ib_pd *pd); 1686 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1687 struct ib_ah_attr *ah_attr); 1688 int (*modify_ah)(struct ib_ah *ah, 1689 struct ib_ah_attr *ah_attr); 1690 int (*query_ah)(struct ib_ah *ah, 1691 struct ib_ah_attr *ah_attr); 1692 int (*destroy_ah)(struct ib_ah *ah); 1693 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1694 struct ib_srq_init_attr *srq_init_attr, 1695 struct ib_udata *udata); 1696 int (*modify_srq)(struct ib_srq *srq, 1697 struct ib_srq_attr *srq_attr, 1698 enum ib_srq_attr_mask srq_attr_mask, 1699 struct ib_udata *udata); 1700 int (*query_srq)(struct ib_srq *srq, 1701 struct ib_srq_attr *srq_attr); 1702 int (*destroy_srq)(struct ib_srq *srq); 1703 int (*post_srq_recv)(struct ib_srq *srq, 1704 struct ib_recv_wr *recv_wr, 1705 struct ib_recv_wr **bad_recv_wr); 1706 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1707 struct ib_qp_init_attr *qp_init_attr, 1708 struct ib_udata *udata); 1709 int (*modify_qp)(struct ib_qp *qp, 1710 struct ib_qp_attr *qp_attr, 1711 int qp_attr_mask, 1712 struct ib_udata *udata); 1713 int (*query_qp)(struct ib_qp *qp, 1714 struct ib_qp_attr *qp_attr, 1715 int qp_attr_mask, 1716 struct ib_qp_init_attr *qp_init_attr); 1717 int (*destroy_qp)(struct ib_qp *qp); 1718 int (*post_send)(struct ib_qp *qp, 1719 struct ib_send_wr *send_wr, 1720 struct ib_send_wr **bad_send_wr); 1721 int (*post_recv)(struct ib_qp *qp, 1722 struct ib_recv_wr *recv_wr, 1723 struct ib_recv_wr **bad_recv_wr); 1724 struct ib_cq * (*create_cq)(struct ib_device *device, 1725 struct ib_cq_init_attr *attr, 1726 struct ib_ucontext *context, 1727 struct ib_udata *udata); 1728 int (*modify_cq)(struct ib_cq *cq, 1729 struct ib_cq_attr *cq_attr, 1730 int cq_attr_mask); 1731 int (*destroy_cq)(struct ib_cq *cq); 1732 int (*resize_cq)(struct ib_cq *cq, int cqe, 1733 struct ib_udata *udata); 1734 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1735 struct ib_wc *wc); 1736 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1737 int (*req_notify_cq)(struct ib_cq *cq, 1738 enum ib_cq_notify_flags flags); 1739 int (*req_ncomp_notif)(struct ib_cq *cq, 1740 int wc_cnt); 1741 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1742 int mr_access_flags); 1743 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1744 struct ib_phys_buf *phys_buf_array, 1745 int num_phys_buf, 1746 int mr_access_flags, 1747 u64 *iova_start); 1748 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1749 u64 start, u64 length, 1750 u64 virt_addr, 1751 int mr_access_flags, 1752 struct ib_udata *udata, 1753 int mr_id); 1754 int (*query_mr)(struct ib_mr *mr, 1755 struct ib_mr_attr *mr_attr); 1756 int (*dereg_mr)(struct ib_mr *mr); 1757 int (*destroy_mr)(struct ib_mr *mr); 1758 struct ib_mr * (*create_mr)(struct ib_pd *pd, 1759 struct ib_mr_init_attr *mr_init_attr); 1760 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1761 int max_page_list_len); 1762 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1763 int page_list_len); 1764 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1765 int (*rereg_phys_mr)(struct ib_mr *mr, 1766 int mr_rereg_mask, 1767 struct ib_pd *pd, 1768 struct ib_phys_buf *phys_buf_array, 1769 int num_phys_buf, 1770 int mr_access_flags, 1771 u64 *iova_start); 1772 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1773 enum ib_mw_type type); 1774 int (*bind_mw)(struct ib_qp *qp, 1775 struct ib_mw *mw, 1776 struct ib_mw_bind *mw_bind); 1777 int (*dealloc_mw)(struct ib_mw *mw); 1778 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1779 int mr_access_flags, 1780 struct ib_fmr_attr *fmr_attr); 1781 int (*map_phys_fmr)(struct ib_fmr *fmr, 1782 u64 *page_list, int list_len, 1783 u64 iova); 1784 int (*unmap_fmr)(struct list_head *fmr_list); 1785 int (*dealloc_fmr)(struct ib_fmr *fmr); 1786 int (*attach_mcast)(struct ib_qp *qp, 1787 union ib_gid *gid, 1788 u16 lid); 1789 int (*detach_mcast)(struct ib_qp *qp, 1790 union ib_gid *gid, 1791 u16 lid); 1792 int (*process_mad)(struct ib_device *device, 1793 int process_mad_flags, 1794 u8 port_num, 1795 struct ib_wc *in_wc, 1796 struct ib_grh *in_grh, 1797 struct ib_mad *in_mad, 1798 struct ib_mad *out_mad); 1799 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1800 struct ib_ucontext *ucontext, 1801 struct ib_udata *udata); 1802 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1803 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1804 struct ib_flow_attr 1805 *flow_attr, 1806 int domain); 1807 int (*destroy_flow)(struct ib_flow *flow_id); 1808 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1809 struct ib_mr_status *mr_status); 1810 1811 unsigned long (*get_unmapped_area)(struct file *file, 1812 unsigned long addr, 1813 unsigned long len, unsigned long pgoff, 1814 unsigned long flags); 1815 int (*ioctl)(struct ib_ucontext *context, 1816 unsigned int cmd, 1817 unsigned long arg); 1818 int (*query_values)(struct ib_device *device, 1819 int q_values, 1820 struct ib_device_values *values); 1821 struct ib_dma_mapping_ops *dma_ops; 1822 1823 struct module *owner; 1824 struct device dev; 1825 struct kobject *ports_parent; 1826 struct list_head port_list; 1827 1828 enum { 1829 IB_DEV_UNINITIALIZED, 1830 IB_DEV_REGISTERED, 1831 IB_DEV_UNREGISTERED 1832 } reg_state; 1833 1834 int uverbs_abi_ver; 1835 u64 uverbs_cmd_mask; 1836 u64 uverbs_ex_cmd_mask; 1837 1838 char node_desc[64]; 1839 __be64 node_guid; 1840 u32 local_dma_lkey; 1841 u8 node_type; 1842 u8 phys_port_cnt; 1843 int cmd_perf; 1844 u64 cmd_avg; 1845 u32 cmd_n; 1846 spinlock_t cmd_perf_lock; 1847 1848 /* 1849 * Experimental data and functions 1850 */ 1851 int (*exp_query_device)(struct ib_device *device, 1852 struct ib_exp_device_attr *device_attr); 1853 struct ib_qp * (*exp_create_qp)(struct ib_pd *pd, 1854 struct ib_exp_qp_init_attr *qp_init_attr, 1855 struct ib_udata *udata); 1856 struct ib_dct * (*exp_create_dct)(struct ib_pd *pd, 1857 struct ib_dct_init_attr *attr, 1858 struct ib_udata *udata); 1859 int (*exp_destroy_dct)(struct ib_dct *dct); 1860 int (*exp_query_dct)(struct ib_dct *dct, struct ib_dct_attr *attr); 1861 1862 u64 uverbs_exp_cmd_mask; 1863 }; 1864 1865 struct ib_client { 1866 char *name; 1867 void (*add) (struct ib_device *); 1868 void (*remove)(struct ib_device *); 1869 1870 struct list_head list; 1871 }; 1872 1873 struct ib_device *ib_alloc_device(size_t size); 1874 void ib_dealloc_device(struct ib_device *device); 1875 1876 int ib_register_device(struct ib_device *device, 1877 int (*port_callback)(struct ib_device *, 1878 u8, struct kobject *)); 1879 void ib_unregister_device(struct ib_device *device); 1880 1881 int ib_register_client (struct ib_client *client); 1882 void ib_unregister_client(struct ib_client *client); 1883 1884 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1885 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1886 void *data); 1887 1888 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1889 { 1890 return udata->ops->copy_from(dest, udata, len); 1891 } 1892 1893 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1894 { 1895 return udata->ops->copy_to(udata, src, len); 1896 } 1897 1898 /** 1899 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1900 * contains all required attributes and no attributes not allowed for 1901 * the given QP state transition. 1902 * @cur_state: Current QP state 1903 * @next_state: Next QP state 1904 * @type: QP type 1905 * @mask: Mask of supplied QP attributes 1906 * @ll : link layer of port 1907 * 1908 * This function is a helper function that a low-level driver's 1909 * modify_qp method can use to validate the consumer's input. It 1910 * checks that cur_state and next_state are valid QP states, that a 1911 * transition from cur_state to next_state is allowed by the IB spec, 1912 * and that the attribute mask supplied is allowed for the transition. 1913 */ 1914 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1915 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1916 enum rdma_link_layer ll); 1917 1918 int ib_register_event_handler (struct ib_event_handler *event_handler); 1919 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1920 void ib_dispatch_event(struct ib_event *event); 1921 1922 int ib_query_device(struct ib_device *device, 1923 struct ib_device_attr *device_attr); 1924 1925 int ib_query_port(struct ib_device *device, 1926 u8 port_num, struct ib_port_attr *port_attr); 1927 1928 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1929 u8 port_num); 1930 1931 int ib_query_gid(struct ib_device *device, 1932 u8 port_num, int index, union ib_gid *gid); 1933 1934 int ib_query_pkey(struct ib_device *device, 1935 u8 port_num, u16 index, u16 *pkey); 1936 1937 int ib_modify_device(struct ib_device *device, 1938 int device_modify_mask, 1939 struct ib_device_modify *device_modify); 1940 1941 int ib_modify_port(struct ib_device *device, 1942 u8 port_num, int port_modify_mask, 1943 struct ib_port_modify *port_modify); 1944 1945 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1946 u8 *port_num, u16 *index); 1947 1948 int ib_find_pkey(struct ib_device *device, 1949 u8 port_num, u16 pkey, u16 *index); 1950 1951 /** 1952 * ib_alloc_pd - Allocates an unused protection domain. 1953 * @device: The device on which to allocate the protection domain. 1954 * 1955 * A protection domain object provides an association between QPs, shared 1956 * receive queues, address handles, memory regions, and memory windows. 1957 */ 1958 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1959 1960 /** 1961 * ib_dealloc_pd - Deallocates a protection domain. 1962 * @pd: The protection domain to deallocate. 1963 */ 1964 int ib_dealloc_pd(struct ib_pd *pd); 1965 1966 /** 1967 * ib_create_ah - Creates an address handle for the given address vector. 1968 * @pd: The protection domain associated with the address handle. 1969 * @ah_attr: The attributes of the address vector. 1970 * 1971 * The address handle is used to reference a local or global destination 1972 * in all UD QP post sends. 1973 */ 1974 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1975 1976 /** 1977 * ib_init_ah_from_wc - Initializes address handle attributes from a 1978 * work completion. 1979 * @device: Device on which the received message arrived. 1980 * @port_num: Port on which the received message arrived. 1981 * @wc: Work completion associated with the received message. 1982 * @grh: References the received global route header. This parameter is 1983 * ignored unless the work completion indicates that the GRH is valid. 1984 * @ah_attr: Returned attributes that can be used when creating an address 1985 * handle for replying to the message. 1986 */ 1987 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1988 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1989 1990 /** 1991 * ib_create_ah_from_wc - Creates an address handle associated with the 1992 * sender of the specified work completion. 1993 * @pd: The protection domain associated with the address handle. 1994 * @wc: Work completion information associated with a received message. 1995 * @grh: References the received global route header. This parameter is 1996 * ignored unless the work completion indicates that the GRH is valid. 1997 * @port_num: The outbound port number to associate with the address. 1998 * 1999 * The address handle is used to reference a local or global destination 2000 * in all UD QP post sends. 2001 */ 2002 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 2003 struct ib_grh *grh, u8 port_num); 2004 2005 /** 2006 * ib_modify_ah - Modifies the address vector associated with an address 2007 * handle. 2008 * @ah: The address handle to modify. 2009 * @ah_attr: The new address vector attributes to associate with the 2010 * address handle. 2011 */ 2012 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2013 2014 /** 2015 * ib_query_ah - Queries the address vector associated with an address 2016 * handle. 2017 * @ah: The address handle to query. 2018 * @ah_attr: The address vector attributes associated with the address 2019 * handle. 2020 */ 2021 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2022 2023 /** 2024 * ib_destroy_ah - Destroys an address handle. 2025 * @ah: The address handle to destroy. 2026 */ 2027 int ib_destroy_ah(struct ib_ah *ah); 2028 2029 /** 2030 * ib_create_srq - Creates a SRQ associated with the specified protection 2031 * domain. 2032 * @pd: The protection domain associated with the SRQ. 2033 * @srq_init_attr: A list of initial attributes required to create the 2034 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2035 * the actual capabilities of the created SRQ. 2036 * 2037 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2038 * requested size of the SRQ, and set to the actual values allocated 2039 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2040 * will always be at least as large as the requested values. 2041 */ 2042 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2043 struct ib_srq_init_attr *srq_init_attr); 2044 2045 /** 2046 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2047 * @srq: The SRQ to modify. 2048 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2049 * the current values of selected SRQ attributes are returned. 2050 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2051 * are being modified. 2052 * 2053 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2054 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2055 * the number of receives queued drops below the limit. 2056 */ 2057 int ib_modify_srq(struct ib_srq *srq, 2058 struct ib_srq_attr *srq_attr, 2059 enum ib_srq_attr_mask srq_attr_mask); 2060 2061 /** 2062 * ib_query_srq - Returns the attribute list and current values for the 2063 * specified SRQ. 2064 * @srq: The SRQ to query. 2065 * @srq_attr: The attributes of the specified SRQ. 2066 */ 2067 int ib_query_srq(struct ib_srq *srq, 2068 struct ib_srq_attr *srq_attr); 2069 2070 /** 2071 * ib_destroy_srq - Destroys the specified SRQ. 2072 * @srq: The SRQ to destroy. 2073 */ 2074 int ib_destroy_srq(struct ib_srq *srq); 2075 2076 /** 2077 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2078 * @srq: The SRQ to post the work request on. 2079 * @recv_wr: A list of work requests to post on the receive queue. 2080 * @bad_recv_wr: On an immediate failure, this parameter will reference 2081 * the work request that failed to be posted on the QP. 2082 */ 2083 static inline int ib_post_srq_recv(struct ib_srq *srq, 2084 struct ib_recv_wr *recv_wr, 2085 struct ib_recv_wr **bad_recv_wr) 2086 { 2087 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2088 } 2089 2090 /** 2091 * ib_create_qp - Creates a QP associated with the specified protection 2092 * domain. 2093 * @pd: The protection domain associated with the QP. 2094 * @qp_init_attr: A list of initial attributes required to create the 2095 * QP. If QP creation succeeds, then the attributes are updated to 2096 * the actual capabilities of the created QP. 2097 */ 2098 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2099 struct ib_qp_init_attr *qp_init_attr); 2100 2101 /** 2102 * ib_modify_qp - Modifies the attributes for the specified QP and then 2103 * transitions the QP to the given state. 2104 * @qp: The QP to modify. 2105 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2106 * the current values of selected QP attributes are returned. 2107 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2108 * are being modified. 2109 */ 2110 int ib_modify_qp(struct ib_qp *qp, 2111 struct ib_qp_attr *qp_attr, 2112 int qp_attr_mask); 2113 2114 /** 2115 * ib_query_qp - Returns the attribute list and current values for the 2116 * specified QP. 2117 * @qp: The QP to query. 2118 * @qp_attr: The attributes of the specified QP. 2119 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2120 * @qp_init_attr: Additional attributes of the selected QP. 2121 * 2122 * The qp_attr_mask may be used to limit the query to gathering only the 2123 * selected attributes. 2124 */ 2125 int ib_query_qp(struct ib_qp *qp, 2126 struct ib_qp_attr *qp_attr, 2127 int qp_attr_mask, 2128 struct ib_qp_init_attr *qp_init_attr); 2129 2130 /** 2131 * ib_destroy_qp - Destroys the specified QP. 2132 * @qp: The QP to destroy. 2133 */ 2134 int ib_destroy_qp(struct ib_qp *qp); 2135 2136 /** 2137 * ib_open_qp - Obtain a reference to an existing sharable QP. 2138 * @xrcd - XRC domain 2139 * @qp_open_attr: Attributes identifying the QP to open. 2140 * 2141 * Returns a reference to a sharable QP. 2142 */ 2143 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2144 struct ib_qp_open_attr *qp_open_attr); 2145 2146 /** 2147 * ib_close_qp - Release an external reference to a QP. 2148 * @qp: The QP handle to release 2149 * 2150 * The opened QP handle is released by the caller. The underlying 2151 * shared QP is not destroyed until all internal references are released. 2152 */ 2153 int ib_close_qp(struct ib_qp *qp); 2154 2155 /** 2156 * ib_post_send - Posts a list of work requests to the send queue of 2157 * the specified QP. 2158 * @qp: The QP to post the work request on. 2159 * @send_wr: A list of work requests to post on the send queue. 2160 * @bad_send_wr: On an immediate failure, this parameter will reference 2161 * the work request that failed to be posted on the QP. 2162 * 2163 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2164 * error is returned, the QP state shall not be affected, 2165 * ib_post_send() will return an immediate error after queueing any 2166 * earlier work requests in the list. 2167 */ 2168 static inline int ib_post_send(struct ib_qp *qp, 2169 struct ib_send_wr *send_wr, 2170 struct ib_send_wr **bad_send_wr) 2171 { 2172 return qp->device->post_send(qp, send_wr, bad_send_wr); 2173 } 2174 2175 /** 2176 * ib_post_recv - Posts a list of work requests to the receive queue of 2177 * the specified QP. 2178 * @qp: The QP to post the work request on. 2179 * @recv_wr: A list of work requests to post on the receive queue. 2180 * @bad_recv_wr: On an immediate failure, this parameter will reference 2181 * the work request that failed to be posted on the QP. 2182 */ 2183 static inline int ib_post_recv(struct ib_qp *qp, 2184 struct ib_recv_wr *recv_wr, 2185 struct ib_recv_wr **bad_recv_wr) 2186 { 2187 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2188 } 2189 2190 /** 2191 * ib_create_cq - Creates a CQ on the specified device. 2192 * @device: The device on which to create the CQ. 2193 * @comp_handler: A user-specified callback that is invoked when a 2194 * completion event occurs on the CQ. 2195 * @event_handler: A user-specified callback that is invoked when an 2196 * asynchronous event not associated with a completion occurs on the CQ. 2197 * @cq_context: Context associated with the CQ returned to the user via 2198 * the associated completion and event handlers. 2199 * @cqe: The minimum size of the CQ. 2200 * @comp_vector - Completion vector used to signal completion events. 2201 * Must be >= 0 and < context->num_comp_vectors. 2202 * 2203 * Users can examine the cq structure to determine the actual CQ size. 2204 */ 2205 struct ib_cq *ib_create_cq(struct ib_device *device, 2206 ib_comp_handler comp_handler, 2207 void (*event_handler)(struct ib_event *, void *), 2208 void *cq_context, int cqe, int comp_vector); 2209 2210 /** 2211 * ib_resize_cq - Modifies the capacity of the CQ. 2212 * @cq: The CQ to resize. 2213 * @cqe: The minimum size of the CQ. 2214 * 2215 * Users can examine the cq structure to determine the actual CQ size. 2216 */ 2217 int ib_resize_cq(struct ib_cq *cq, int cqe); 2218 2219 /** 2220 * ib_modify_cq - Modifies the attributes for the specified CQ and then 2221 * transitions the CQ to the given state. 2222 * @cq: The CQ to modify. 2223 * @cq_attr: specifies the CQ attributes to modify. 2224 * @cq_attr_mask: A bit-mask used to specify which attributes of the CQ 2225 * are being modified. 2226 */ 2227 int ib_modify_cq(struct ib_cq *cq, 2228 struct ib_cq_attr *cq_attr, 2229 int cq_attr_mask); 2230 2231 /** 2232 * ib_destroy_cq - Destroys the specified CQ. 2233 * @cq: The CQ to destroy. 2234 */ 2235 int ib_destroy_cq(struct ib_cq *cq); 2236 2237 /** 2238 * ib_poll_cq - poll a CQ for completion(s) 2239 * @cq:the CQ being polled 2240 * @num_entries:maximum number of completions to return 2241 * @wc:array of at least @num_entries &struct ib_wc where completions 2242 * will be returned 2243 * 2244 * Poll a CQ for (possibly multiple) completions. If the return value 2245 * is < 0, an error occurred. If the return value is >= 0, it is the 2246 * number of completions returned. If the return value is 2247 * non-negative and < num_entries, then the CQ was emptied. 2248 */ 2249 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2250 struct ib_wc *wc) 2251 { 2252 return cq->device->poll_cq(cq, num_entries, wc); 2253 } 2254 2255 /** 2256 * ib_peek_cq - Returns the number of unreaped completions currently 2257 * on the specified CQ. 2258 * @cq: The CQ to peek. 2259 * @wc_cnt: A minimum number of unreaped completions to check for. 2260 * 2261 * If the number of unreaped completions is greater than or equal to wc_cnt, 2262 * this function returns wc_cnt, otherwise, it returns the actual number of 2263 * unreaped completions. 2264 */ 2265 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2266 2267 /** 2268 * ib_req_notify_cq - Request completion notification on a CQ. 2269 * @cq: The CQ to generate an event for. 2270 * @flags: 2271 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2272 * to request an event on the next solicited event or next work 2273 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2274 * may also be |ed in to request a hint about missed events, as 2275 * described below. 2276 * 2277 * Return Value: 2278 * < 0 means an error occurred while requesting notification 2279 * == 0 means notification was requested successfully, and if 2280 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2281 * were missed and it is safe to wait for another event. In 2282 * this case is it guaranteed that any work completions added 2283 * to the CQ since the last CQ poll will trigger a completion 2284 * notification event. 2285 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2286 * in. It means that the consumer must poll the CQ again to 2287 * make sure it is empty to avoid missing an event because of a 2288 * race between requesting notification and an entry being 2289 * added to the CQ. This return value means it is possible 2290 * (but not guaranteed) that a work completion has been added 2291 * to the CQ since the last poll without triggering a 2292 * completion notification event. 2293 */ 2294 static inline int ib_req_notify_cq(struct ib_cq *cq, 2295 enum ib_cq_notify_flags flags) 2296 { 2297 return cq->device->req_notify_cq(cq, flags); 2298 } 2299 2300 /** 2301 * ib_req_ncomp_notif - Request completion notification when there are 2302 * at least the specified number of unreaped completions on the CQ. 2303 * @cq: The CQ to generate an event for. 2304 * @wc_cnt: The number of unreaped completions that should be on the 2305 * CQ before an event is generated. 2306 */ 2307 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2308 { 2309 return cq->device->req_ncomp_notif ? 2310 cq->device->req_ncomp_notif(cq, wc_cnt) : 2311 -ENOSYS; 2312 } 2313 2314 /** 2315 * ib_get_dma_mr - Returns a memory region for system memory that is 2316 * usable for DMA. 2317 * @pd: The protection domain associated with the memory region. 2318 * @mr_access_flags: Specifies the memory access rights. 2319 * 2320 * Note that the ib_dma_*() functions defined below must be used 2321 * to create/destroy addresses used with the Lkey or Rkey returned 2322 * by ib_get_dma_mr(). 2323 */ 2324 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2325 2326 /** 2327 * ib_dma_mapping_error - check a DMA addr for error 2328 * @dev: The device for which the dma_addr was created 2329 * @dma_addr: The DMA address to check 2330 */ 2331 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2332 { 2333 if (dev->dma_ops) 2334 return dev->dma_ops->mapping_error(dev, dma_addr); 2335 return dma_mapping_error(dev->dma_device, dma_addr); 2336 } 2337 2338 /** 2339 * ib_dma_map_single - Map a kernel virtual address to DMA address 2340 * @dev: The device for which the dma_addr is to be created 2341 * @cpu_addr: The kernel virtual address 2342 * @size: The size of the region in bytes 2343 * @direction: The direction of the DMA 2344 */ 2345 static inline u64 ib_dma_map_single(struct ib_device *dev, 2346 void *cpu_addr, size_t size, 2347 enum dma_data_direction direction) 2348 { 2349 if (dev->dma_ops) 2350 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2351 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2352 } 2353 2354 /** 2355 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2356 * @dev: The device for which the DMA address was created 2357 * @addr: The DMA address 2358 * @size: The size of the region in bytes 2359 * @direction: The direction of the DMA 2360 */ 2361 static inline void ib_dma_unmap_single(struct ib_device *dev, 2362 u64 addr, size_t size, 2363 enum dma_data_direction direction) 2364 { 2365 if (dev->dma_ops) 2366 dev->dma_ops->unmap_single(dev, addr, size, direction); 2367 else 2368 dma_unmap_single(dev->dma_device, addr, size, direction); 2369 } 2370 2371 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2372 void *cpu_addr, size_t size, 2373 enum dma_data_direction direction, 2374 struct dma_attrs *attrs) 2375 { 2376 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2377 direction, attrs); 2378 } 2379 2380 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2381 u64 addr, size_t size, 2382 enum dma_data_direction direction, 2383 struct dma_attrs *attrs) 2384 { 2385 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2386 direction, attrs); 2387 } 2388 2389 /** 2390 * ib_dma_map_page - Map a physical page to DMA address 2391 * @dev: The device for which the dma_addr is to be created 2392 * @page: The page to be mapped 2393 * @offset: The offset within the page 2394 * @size: The size of the region in bytes 2395 * @direction: The direction of the DMA 2396 */ 2397 static inline u64 ib_dma_map_page(struct ib_device *dev, 2398 struct page *page, 2399 unsigned long offset, 2400 size_t size, 2401 enum dma_data_direction direction) 2402 { 2403 if (dev->dma_ops) 2404 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2405 return dma_map_page(dev->dma_device, page, offset, size, direction); 2406 } 2407 2408 /** 2409 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2410 * @dev: The device for which the DMA address was created 2411 * @addr: The DMA address 2412 * @size: The size of the region in bytes 2413 * @direction: The direction of the DMA 2414 */ 2415 static inline void ib_dma_unmap_page(struct ib_device *dev, 2416 u64 addr, size_t size, 2417 enum dma_data_direction direction) 2418 { 2419 if (dev->dma_ops) 2420 dev->dma_ops->unmap_page(dev, addr, size, direction); 2421 else 2422 dma_unmap_page(dev->dma_device, addr, size, direction); 2423 } 2424 2425 /** 2426 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2427 * @dev: The device for which the DMA addresses are to be created 2428 * @sg: The array of scatter/gather entries 2429 * @nents: The number of scatter/gather entries 2430 * @direction: The direction of the DMA 2431 */ 2432 static inline int ib_dma_map_sg(struct ib_device *dev, 2433 struct scatterlist *sg, int nents, 2434 enum dma_data_direction direction) 2435 { 2436 if (dev->dma_ops) 2437 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2438 return dma_map_sg(dev->dma_device, sg, nents, direction); 2439 } 2440 2441 /** 2442 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2443 * @dev: The device for which the DMA addresses were created 2444 * @sg: The array of scatter/gather entries 2445 * @nents: The number of scatter/gather entries 2446 * @direction: The direction of the DMA 2447 */ 2448 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2449 struct scatterlist *sg, int nents, 2450 enum dma_data_direction direction) 2451 { 2452 if (dev->dma_ops) 2453 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2454 else 2455 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2456 } 2457 2458 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2459 struct scatterlist *sg, int nents, 2460 enum dma_data_direction direction, 2461 struct dma_attrs *attrs) 2462 { 2463 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2464 } 2465 2466 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2467 struct scatterlist *sg, int nents, 2468 enum dma_data_direction direction, 2469 struct dma_attrs *attrs) 2470 { 2471 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2472 } 2473 /** 2474 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2475 * @dev: The device for which the DMA addresses were created 2476 * @sg: The scatter/gather entry 2477 */ 2478 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2479 struct scatterlist *sg) 2480 { 2481 if (dev->dma_ops) 2482 return dev->dma_ops->dma_address(dev, sg); 2483 return sg_dma_address(sg); 2484 } 2485 2486 /** 2487 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2488 * @dev: The device for which the DMA addresses were created 2489 * @sg: The scatter/gather entry 2490 */ 2491 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2492 struct scatterlist *sg) 2493 { 2494 if (dev->dma_ops) 2495 return dev->dma_ops->dma_len(dev, sg); 2496 return sg_dma_len(sg); 2497 } 2498 2499 /** 2500 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2501 * @dev: The device for which the DMA address was created 2502 * @addr: The DMA address 2503 * @size: The size of the region in bytes 2504 * @dir: The direction of the DMA 2505 */ 2506 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2507 u64 addr, 2508 size_t size, 2509 enum dma_data_direction dir) 2510 { 2511 if (dev->dma_ops) 2512 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2513 else 2514 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2515 } 2516 2517 /** 2518 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2519 * @dev: The device for which the DMA address was created 2520 * @addr: The DMA address 2521 * @size: The size of the region in bytes 2522 * @dir: The direction of the DMA 2523 */ 2524 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2525 u64 addr, 2526 size_t size, 2527 enum dma_data_direction dir) 2528 { 2529 if (dev->dma_ops) 2530 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2531 else 2532 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2533 } 2534 2535 /** 2536 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2537 * @dev: The device for which the DMA address is requested 2538 * @size: The size of the region to allocate in bytes 2539 * @dma_handle: A pointer for returning the DMA address of the region 2540 * @flag: memory allocator flags 2541 */ 2542 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2543 size_t size, 2544 u64 *dma_handle, 2545 gfp_t flag) 2546 { 2547 if (dev->dma_ops) 2548 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2549 else { 2550 dma_addr_t handle; 2551 void *ret; 2552 2553 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2554 *dma_handle = handle; 2555 return ret; 2556 } 2557 } 2558 2559 /** 2560 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2561 * @dev: The device for which the DMA addresses were allocated 2562 * @size: The size of the region 2563 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2564 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2565 */ 2566 static inline void ib_dma_free_coherent(struct ib_device *dev, 2567 size_t size, void *cpu_addr, 2568 u64 dma_handle) 2569 { 2570 if (dev->dma_ops) 2571 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2572 else 2573 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2574 } 2575 2576 /** 2577 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2578 * by an HCA. 2579 * @pd: The protection domain associated assigned to the registered region. 2580 * @phys_buf_array: Specifies a list of physical buffers to use in the 2581 * memory region. 2582 * @num_phys_buf: Specifies the size of the phys_buf_array. 2583 * @mr_access_flags: Specifies the memory access rights. 2584 * @iova_start: The offset of the region's starting I/O virtual address. 2585 */ 2586 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2587 struct ib_phys_buf *phys_buf_array, 2588 int num_phys_buf, 2589 int mr_access_flags, 2590 u64 *iova_start); 2591 2592 /** 2593 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2594 * Conceptually, this call performs the functions deregister memory region 2595 * followed by register physical memory region. Where possible, 2596 * resources are reused instead of deallocated and reallocated. 2597 * @mr: The memory region to modify. 2598 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2599 * properties of the memory region are being modified. 2600 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2601 * the new protection domain to associated with the memory region, 2602 * otherwise, this parameter is ignored. 2603 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2604 * field specifies a list of physical buffers to use in the new 2605 * translation, otherwise, this parameter is ignored. 2606 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2607 * field specifies the size of the phys_buf_array, otherwise, this 2608 * parameter is ignored. 2609 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2610 * field specifies the new memory access rights, otherwise, this 2611 * parameter is ignored. 2612 * @iova_start: The offset of the region's starting I/O virtual address. 2613 */ 2614 int ib_rereg_phys_mr(struct ib_mr *mr, 2615 int mr_rereg_mask, 2616 struct ib_pd *pd, 2617 struct ib_phys_buf *phys_buf_array, 2618 int num_phys_buf, 2619 int mr_access_flags, 2620 u64 *iova_start); 2621 2622 /** 2623 * ib_query_mr - Retrieves information about a specific memory region. 2624 * @mr: The memory region to retrieve information about. 2625 * @mr_attr: The attributes of the specified memory region. 2626 */ 2627 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2628 2629 /** 2630 * ib_dereg_mr - Deregisters a memory region and removes it from the 2631 * HCA translation table. 2632 * @mr: The memory region to deregister. 2633 * 2634 * This function can fail, if the memory region has memory windows bound to it. 2635 */ 2636 int ib_dereg_mr(struct ib_mr *mr); 2637 2638 2639 /** 2640 * ib_create_mr - Allocates a memory region that may be used for 2641 * signature handover operations. 2642 * @pd: The protection domain associated with the region. 2643 * @mr_init_attr: memory region init attributes. 2644 */ 2645 struct ib_mr *ib_create_mr(struct ib_pd *pd, 2646 struct ib_mr_init_attr *mr_init_attr); 2647 2648 /** 2649 * ib_destroy_mr - Destroys a memory region that was created using 2650 * ib_create_mr and removes it from HW translation tables. 2651 * @mr: The memory region to destroy. 2652 * 2653 * This function can fail, if the memory region has memory windows bound to it. 2654 */ 2655 int ib_destroy_mr(struct ib_mr *mr); 2656 2657 /** 2658 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2659 * IB_WR_FAST_REG_MR send work request. 2660 * @pd: The protection domain associated with the region. 2661 * @max_page_list_len: requested max physical buffer list length to be 2662 * used with fast register work requests for this MR. 2663 */ 2664 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2665 2666 /** 2667 * ib_alloc_fast_reg_page_list - Allocates a page list array 2668 * @device - ib device pointer. 2669 * @page_list_len - size of the page list array to be allocated. 2670 * 2671 * This allocates and returns a struct ib_fast_reg_page_list * and a 2672 * page_list array that is at least page_list_len in size. The actual 2673 * size is returned in max_page_list_len. The caller is responsible 2674 * for initializing the contents of the page_list array before posting 2675 * a send work request with the IB_WC_FAST_REG_MR opcode. 2676 * 2677 * The page_list array entries must be translated using one of the 2678 * ib_dma_*() functions just like the addresses passed to 2679 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2680 * ib_fast_reg_page_list must not be modified by the caller until the 2681 * IB_WC_FAST_REG_MR work request completes. 2682 */ 2683 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2684 struct ib_device *device, int page_list_len); 2685 2686 /** 2687 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2688 * page list array. 2689 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2690 */ 2691 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2692 2693 /** 2694 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2695 * R_Key and L_Key. 2696 * @mr - struct ib_mr pointer to be updated. 2697 * @newkey - new key to be used. 2698 */ 2699 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2700 { 2701 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2702 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2703 } 2704 2705 /** 2706 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2707 * for calculating a new rkey for type 2 memory windows. 2708 * @rkey - the rkey to increment. 2709 */ 2710 static inline u32 ib_inc_rkey(u32 rkey) 2711 { 2712 const u32 mask = 0x000000ff; 2713 return ((rkey + 1) & mask) | (rkey & ~mask); 2714 } 2715 2716 /** 2717 * ib_alloc_mw - Allocates a memory window. 2718 * @pd: The protection domain associated with the memory window. 2719 * @type: The type of the memory window (1 or 2). 2720 */ 2721 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2722 2723 /** 2724 * ib_bind_mw - Posts a work request to the send queue of the specified 2725 * QP, which binds the memory window to the given address range and 2726 * remote access attributes. 2727 * @qp: QP to post the bind work request on. 2728 * @mw: The memory window to bind. 2729 * @mw_bind: Specifies information about the memory window, including 2730 * its address range, remote access rights, and associated memory region. 2731 * 2732 * If there is no immediate error, the function will update the rkey member 2733 * of the mw parameter to its new value. The bind operation can still fail 2734 * asynchronously. 2735 */ 2736 static inline int ib_bind_mw(struct ib_qp *qp, 2737 struct ib_mw *mw, 2738 struct ib_mw_bind *mw_bind) 2739 { 2740 /* XXX reference counting in corresponding MR? */ 2741 return mw->device->bind_mw ? 2742 mw->device->bind_mw(qp, mw, mw_bind) : 2743 -ENOSYS; 2744 } 2745 2746 /** 2747 * ib_dealloc_mw - Deallocates a memory window. 2748 * @mw: The memory window to deallocate. 2749 */ 2750 int ib_dealloc_mw(struct ib_mw *mw); 2751 2752 /** 2753 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2754 * @pd: The protection domain associated with the unmapped region. 2755 * @mr_access_flags: Specifies the memory access rights. 2756 * @fmr_attr: Attributes of the unmapped region. 2757 * 2758 * A fast memory region must be mapped before it can be used as part of 2759 * a work request. 2760 */ 2761 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2762 int mr_access_flags, 2763 struct ib_fmr_attr *fmr_attr); 2764 2765 /** 2766 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2767 * @fmr: The fast memory region to associate with the pages. 2768 * @page_list: An array of physical pages to map to the fast memory region. 2769 * @list_len: The number of pages in page_list. 2770 * @iova: The I/O virtual address to use with the mapped region. 2771 */ 2772 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2773 u64 *page_list, int list_len, 2774 u64 iova) 2775 { 2776 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2777 } 2778 2779 /** 2780 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2781 * @fmr_list: A linked list of fast memory regions to unmap. 2782 */ 2783 int ib_unmap_fmr(struct list_head *fmr_list); 2784 2785 /** 2786 * ib_dealloc_fmr - Deallocates a fast memory region. 2787 * @fmr: The fast memory region to deallocate. 2788 */ 2789 int ib_dealloc_fmr(struct ib_fmr *fmr); 2790 2791 /** 2792 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2793 * @qp: QP to attach to the multicast group. The QP must be type 2794 * IB_QPT_UD. 2795 * @gid: Multicast group GID. 2796 * @lid: Multicast group LID in host byte order. 2797 * 2798 * In order to send and receive multicast packets, subnet 2799 * administration must have created the multicast group and configured 2800 * the fabric appropriately. The port associated with the specified 2801 * QP must also be a member of the multicast group. 2802 */ 2803 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2804 2805 /** 2806 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2807 * @qp: QP to detach from the multicast group. 2808 * @gid: Multicast group GID. 2809 * @lid: Multicast group LID in host byte order. 2810 */ 2811 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2812 2813 /** 2814 * ib_alloc_xrcd - Allocates an XRC domain. 2815 * @device: The device on which to allocate the XRC domain. 2816 */ 2817 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2818 2819 /** 2820 * ib_dealloc_xrcd - Deallocates an XRC domain. 2821 * @xrcd: The XRC domain to deallocate. 2822 */ 2823 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2824 2825 struct ib_flow *ib_create_flow(struct ib_qp *qp, 2826 struct ib_flow_attr *flow_attr, int domain); 2827 int ib_destroy_flow(struct ib_flow *flow_id); 2828 2829 struct ib_dct *ib_create_dct(struct ib_pd *pd, struct ib_dct_init_attr *attr, 2830 struct ib_udata *udata); 2831 int ib_destroy_dct(struct ib_dct *dct); 2832 int ib_query_dct(struct ib_dct *dct, struct ib_dct_attr *attr); 2833 2834 int ib_query_values(struct ib_device *device, 2835 int q_values, struct ib_device_values *values); 2836 2837 static inline void ib_active_speed_enum_to_rate(u8 active_speed, 2838 int *rate, 2839 char **speed) 2840 { 2841 switch (active_speed) { 2842 case IB_SPEED_DDR: 2843 *speed = " DDR"; 2844 *rate = 50; 2845 break; 2846 case IB_SPEED_QDR: 2847 *speed = " QDR"; 2848 *rate = 100; 2849 break; 2850 case IB_SPEED_FDR10: 2851 *speed = " FDR10"; 2852 *rate = 100; 2853 break; 2854 case IB_SPEED_FDR: 2855 *speed = " FDR"; 2856 *rate = 140; 2857 break; 2858 case IB_SPEED_EDR: 2859 *speed = " EDR"; 2860 *rate = 250; 2861 break; 2862 case IB_SPEED_SDR: 2863 default: /* default to SDR for invalid rates */ 2864 *rate = 25; 2865 break; 2866 } 2867 2868 } 2869 2870 static inline int ib_check_mr_access(int flags) 2871 { 2872 /* 2873 * Local write permission is required if remote write or 2874 * remote atomic permission is also requested. 2875 */ 2876 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 2877 !(flags & IB_ACCESS_LOCAL_WRITE)) 2878 return -EINVAL; 2879 2880 return 0; 2881 } 2882 2883 /** 2884 * ib_check_mr_status: lightweight check of MR status. 2885 * This routine may provide status checks on a selected 2886 * ib_mr. first use is for signature status check. 2887 * 2888 * @mr: A memory region. 2889 * @check_mask: Bitmask of which checks to perform from 2890 * ib_mr_status_check enumeration. 2891 * @mr_status: The container of relevant status checks. 2892 * failed checks will be indicated in the status bitmask 2893 * and the relevant info shall be in the error item. 2894 */ 2895 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2896 struct ib_mr_status *mr_status); 2897 2898 #endif /* IB_VERBS_H */ 2899