xref: /freebsd/sys/ofed/include/rdma/ib_verbs.h (revision bc5304a006238115291e7568583632889dffbab9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  *
40  * $FreeBSD$
41  */
42 
43 #if !defined(IB_VERBS_H)
44 #define IB_VERBS_H
45 
46 #include <linux/types.h>
47 #include <linux/device.h>
48 #include <linux/mm.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/kref.h>
51 #include <linux/list.h>
52 #include <linux/rwsem.h>
53 #include <linux/scatterlist.h>
54 #include <linux/workqueue.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <net/ipv6.h>
58 #include <net/ip.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/xarray.h>
64 #include <netinet/ip.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/signature.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69 
70 #include <asm/atomic.h>
71 #include <asm/uaccess.h>
72 
73 struct ib_uqp_object;
74 struct ib_usrq_object;
75 struct ib_uwq_object;
76 struct ifla_vf_info;
77 struct ifla_vf_stats;
78 struct ib_uverbs_file;
79 struct uverbs_attr_bundle;
80 
81 enum ib_uverbs_advise_mr_advice;
82 
83 extern struct workqueue_struct *ib_wq;
84 extern struct workqueue_struct *ib_comp_wq;
85 
86 struct ib_ucq_object;
87 
88 union ib_gid {
89 	u8	raw[16];
90 	struct {
91 		__be64	subnet_prefix;
92 		__be64	interface_id;
93 	} global;
94 };
95 
96 extern union ib_gid zgid;
97 
98 enum ib_gid_type {
99 	/* If link layer is Ethernet, this is RoCE V1 */
100 	IB_GID_TYPE_IB        = 0,
101 	IB_GID_TYPE_ROCE      = 0,
102 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
103 	IB_GID_TYPE_SIZE
104 };
105 
106 #define ROCE_V2_UDP_DPORT      4791
107 struct ib_gid_attr {
108 	enum ib_gid_type	gid_type;
109 	struct ifnet	*ndev;
110 };
111 
112 enum rdma_node_type {
113 	/* IB values map to NodeInfo:NodeType. */
114 	RDMA_NODE_IB_CA 	= 1,
115 	RDMA_NODE_IB_SWITCH,
116 	RDMA_NODE_IB_ROUTER,
117 	RDMA_NODE_RNIC,
118 	RDMA_NODE_USNIC,
119 	RDMA_NODE_USNIC_UDP,
120 };
121 
122 enum {
123 	/* set the local administered indication */
124 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
125 };
126 
127 enum rdma_transport_type {
128 	RDMA_TRANSPORT_IB,
129 	RDMA_TRANSPORT_IWARP,
130 	RDMA_TRANSPORT_USNIC,
131 	RDMA_TRANSPORT_USNIC_UDP
132 };
133 
134 enum rdma_protocol_type {
135 	RDMA_PROTOCOL_IB,
136 	RDMA_PROTOCOL_IBOE,
137 	RDMA_PROTOCOL_IWARP,
138 	RDMA_PROTOCOL_USNIC_UDP
139 };
140 
141 __attribute_const__ enum rdma_transport_type
142 rdma_node_get_transport(enum rdma_node_type node_type);
143 
144 enum rdma_network_type {
145 	RDMA_NETWORK_IB,
146 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
147 	RDMA_NETWORK_IPV4,
148 	RDMA_NETWORK_IPV6
149 };
150 
151 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
152 {
153 	if (network_type == RDMA_NETWORK_IPV4 ||
154 	    network_type == RDMA_NETWORK_IPV6)
155 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
156 
157 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
158 	return IB_GID_TYPE_IB;
159 }
160 
161 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
162 							    union ib_gid *gid)
163 {
164 	if (gid_type == IB_GID_TYPE_IB)
165 		return RDMA_NETWORK_IB;
166 
167 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
168 		return RDMA_NETWORK_IPV4;
169 	else
170 		return RDMA_NETWORK_IPV6;
171 }
172 
173 enum rdma_link_layer {
174 	IB_LINK_LAYER_UNSPECIFIED,
175 	IB_LINK_LAYER_INFINIBAND,
176 	IB_LINK_LAYER_ETHERNET,
177 };
178 
179 enum ib_device_cap_flags {
180 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
181 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
182 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
183 	IB_DEVICE_RAW_MULTI			= (1 << 3),
184 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
185 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
186 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
187 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
188 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
189 	IB_DEVICE_INIT_TYPE			= (1 << 9),
190 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
191 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
192 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
193 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
194 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
195 
196 	/*
197 	 * This device supports a per-device lkey or stag that can be
198 	 * used without performing a memory registration for the local
199 	 * memory.  Note that ULPs should never check this flag, but
200 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
201 	 * which will always contain a usable lkey.
202 	 */
203 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
204 	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
205 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
206 	/*
207 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
208 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
209 	 * messages and can verify the validity of checksum for
210 	 * incoming messages.  Setting this flag implies that the
211 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
212 	 */
213 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
214 	IB_DEVICE_UD_TSO			= (1 << 19),
215 	IB_DEVICE_XRC				= (1 << 20),
216 
217 	/*
218 	 * This device supports the IB "base memory management extension",
219 	 * which includes support for fast registrations (IB_WR_REG_MR,
220 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
221 	 * also be set by any iWarp device which must support FRs to comply
222 	 * to the iWarp verbs spec.  iWarp devices also support the
223 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
224 	 * stag.
225 	 */
226 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
227 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
228 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
229 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
230 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
231 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
232 	/*
233 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
234 	 * support execution of WQEs that involve synchronization
235 	 * of I/O operations with single completion queue managed
236 	 * by hardware.
237 	 */
238 	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
239 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
240 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
241 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
242 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
243 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
244 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
245 };
246 
247 enum ib_atomic_cap {
248 	IB_ATOMIC_NONE,
249 	IB_ATOMIC_HCA,
250 	IB_ATOMIC_GLOB
251 };
252 
253 enum ib_odp_general_cap_bits {
254 	IB_ODP_SUPPORT = 1 << 0,
255 };
256 
257 enum ib_odp_transport_cap_bits {
258 	IB_ODP_SUPPORT_SEND	= 1 << 0,
259 	IB_ODP_SUPPORT_RECV	= 1 << 1,
260 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
261 	IB_ODP_SUPPORT_READ	= 1 << 3,
262 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
263 };
264 
265 struct ib_odp_caps {
266 	uint64_t general_caps;
267 	struct {
268 		uint32_t  rc_odp_caps;
269 		uint32_t  uc_odp_caps;
270 		uint32_t  ud_odp_caps;
271 		uint32_t  xrc_odp_caps;
272 	} per_transport_caps;
273 };
274 
275 struct ib_rss_caps {
276 	/* Corresponding bit will be set if qp type from
277 	 * 'enum ib_qp_type' is supported, e.g.
278 	 * supported_qpts |= 1 << IB_QPT_UD
279 	 */
280 	u32 supported_qpts;
281 	u32 max_rwq_indirection_tables;
282 	u32 max_rwq_indirection_table_size;
283 };
284 
285 enum ib_tm_cap_flags {
286 	/*  Support tag matching with rendezvous offload for RC transport */
287 	IB_TM_CAP_RNDV_RC = 1 << 0,
288 };
289 
290 struct ib_tm_caps {
291 	/* Max size of RNDV header */
292 	u32 max_rndv_hdr_size;
293 	/* Max number of entries in tag matching list */
294 	u32 max_num_tags;
295 	/* From enum ib_tm_cap_flags */
296 	u32 flags;
297 	/* Max number of outstanding list operations */
298 	u32 max_ops;
299 	/* Max number of SGE in tag matching entry */
300 	u32 max_sge;
301 };
302 
303 enum ib_cq_creation_flags {
304 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
305 	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
306 };
307 
308 struct ib_cq_init_attr {
309 	unsigned int	cqe;
310 	u32		comp_vector;
311 	u32		flags;
312 };
313 
314 enum ib_cq_attr_mask {
315 	IB_CQ_MODERATE = 1 << 0,
316 };
317 
318 struct ib_cq_caps {
319 	u16     max_cq_moderation_count;
320 	u16     max_cq_moderation_period;
321 };
322 
323 struct ib_dm_mr_attr {
324 	u64		length;
325 	u64		offset;
326 	u32		access_flags;
327 };
328 
329 struct ib_dm_alloc_attr {
330 	u64	length;
331 	u32	alignment;
332 	u32	flags;
333 };
334 
335 struct ib_device_attr {
336 	u64			fw_ver;
337 	__be64			sys_image_guid;
338 	u64			max_mr_size;
339 	u64			page_size_cap;
340 	u32			vendor_id;
341 	u32			vendor_part_id;
342 	u32			hw_ver;
343 	int			max_qp;
344 	int			max_qp_wr;
345 	u64			device_cap_flags;
346 	int			max_sge;
347 	int			max_sge_rd;
348 	int			max_cq;
349 	int			max_cqe;
350 	int			max_mr;
351 	int			max_pd;
352 	int			max_qp_rd_atom;
353 	int			max_ee_rd_atom;
354 	int			max_res_rd_atom;
355 	int			max_qp_init_rd_atom;
356 	int			max_ee_init_rd_atom;
357 	enum ib_atomic_cap	atomic_cap;
358 	enum ib_atomic_cap	masked_atomic_cap;
359 	int			max_ee;
360 	int			max_rdd;
361 	int			max_mw;
362 	int			max_raw_ipv6_qp;
363 	int			max_raw_ethy_qp;
364 	int			max_mcast_grp;
365 	int			max_mcast_qp_attach;
366 	int			max_total_mcast_qp_attach;
367 	int			max_ah;
368 	int			max_fmr;
369 	int			max_map_per_fmr;
370 	int			max_srq;
371 	int			max_srq_wr;
372 	union {
373 		int		max_srq_sge;
374 		int		max_send_sge;
375 		int		max_recv_sge;
376 	};
377 	unsigned int		max_fast_reg_page_list_len;
378 	u16			max_pkeys;
379 	u8			local_ca_ack_delay;
380 	int			sig_prot_cap;
381 	int			sig_guard_cap;
382 	struct ib_odp_caps	odp_caps;
383 	uint64_t		timestamp_mask;
384 	uint64_t		hca_core_clock; /* in KHZ */
385 	struct ib_rss_caps	rss_caps;
386 	u32			max_wq_type_rq;
387 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
388 	struct ib_tm_caps	tm_caps;
389 	struct ib_cq_caps       cq_caps;
390 	u64			max_dm_size;
391 	/* Max entries for sgl for optimized performance per READ */
392 	u32			max_sgl_rd;
393 };
394 
395 enum ib_mtu {
396 	IB_MTU_256  = 1,
397 	IB_MTU_512  = 2,
398 	IB_MTU_1024 = 3,
399 	IB_MTU_2048 = 4,
400 	IB_MTU_4096 = 5
401 };
402 
403 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
404 {
405 	switch (mtu) {
406 	case IB_MTU_256:  return  256;
407 	case IB_MTU_512:  return  512;
408 	case IB_MTU_1024: return 1024;
409 	case IB_MTU_2048: return 2048;
410 	case IB_MTU_4096: return 4096;
411 	default: 	  return -1;
412 	}
413 }
414 
415 enum ib_port_state {
416 	IB_PORT_NOP		= 0,
417 	IB_PORT_DOWN		= 1,
418 	IB_PORT_INIT		= 2,
419 	IB_PORT_ARMED		= 3,
420 	IB_PORT_ACTIVE		= 4,
421 	IB_PORT_ACTIVE_DEFER	= 5,
422 	IB_PORT_DUMMY		= -1,	/* force enum signed */
423 };
424 
425 enum ib_port_cap_flags {
426 	IB_PORT_SM				= 1 <<  1,
427 	IB_PORT_NOTICE_SUP			= 1 <<  2,
428 	IB_PORT_TRAP_SUP			= 1 <<  3,
429 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
430 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
431 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
432 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
433 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
434 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
435 	IB_PORT_SM_DISABLED			= 1 << 10,
436 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
437 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
438 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
439 	IB_PORT_CM_SUP				= 1 << 16,
440 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
441 	IB_PORT_REINIT_SUP			= 1 << 18,
442 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
443 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
444 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
445 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
446 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
447 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
448 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
449 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
450 };
451 
452 enum ib_port_phys_state {
453 	IB_PORT_PHYS_STATE_SLEEP = 1,
454 	IB_PORT_PHYS_STATE_POLLING = 2,
455 	IB_PORT_PHYS_STATE_DISABLED = 3,
456 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
457 	IB_PORT_PHYS_STATE_LINK_UP = 5,
458 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
459 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
460 };
461 
462 enum ib_port_width {
463 	IB_WIDTH_1X	= 1,
464 	IB_WIDTH_2X	= 16,
465 	IB_WIDTH_4X	= 2,
466 	IB_WIDTH_8X	= 4,
467 	IB_WIDTH_12X	= 8
468 };
469 
470 static inline int ib_width_enum_to_int(enum ib_port_width width)
471 {
472 	switch (width) {
473 	case IB_WIDTH_1X:  return  1;
474 	case IB_WIDTH_2X:  return  2;
475 	case IB_WIDTH_4X:  return  4;
476 	case IB_WIDTH_8X:  return  8;
477 	case IB_WIDTH_12X: return 12;
478 	default: 	  return -1;
479 	}
480 }
481 
482 enum ib_port_speed {
483 	IB_SPEED_SDR	= 1,
484 	IB_SPEED_DDR	= 2,
485 	IB_SPEED_QDR	= 4,
486 	IB_SPEED_FDR10	= 8,
487 	IB_SPEED_FDR	= 16,
488 	IB_SPEED_EDR	= 32,
489 	IB_SPEED_HDR	= 64
490 };
491 
492 /**
493  * struct rdma_hw_stats
494  * @lock - Mutex to protect parallel write access to lifespan and values
495  *    of counters, which are 64bits and not guaranteeed to be written
496  *    atomicaly on 32bits systems.
497  * @timestamp - Used by the core code to track when the last update was
498  * @lifespan - Used by the core code to determine how old the counters
499  *   should be before being updated again.  Stored in jiffies, defaults
500  *   to 10 milliseconds, drivers can override the default be specifying
501  *   their own value during their allocation routine.
502  * @name - Array of pointers to static names used for the counters in
503  *   directory.
504  * @num_counters - How many hardware counters there are.  If name is
505  *   shorter than this number, a kernel oops will result.  Driver authors
506  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
507  *   in their code to prevent this.
508  * @value - Array of u64 counters that are accessed by the sysfs code and
509  *   filled in by the drivers get_stats routine
510  */
511 struct rdma_hw_stats {
512 	struct mutex	lock; /* Protect lifespan and values[] */
513 	unsigned long	timestamp;
514 	unsigned long	lifespan;
515 	const char * const *names;
516 	int		num_counters;
517 	u64		value[];
518 };
519 
520 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
521 /**
522  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
523  *   for drivers.
524  * @names - Array of static const char *
525  * @num_counters - How many elements in array
526  * @lifespan - How many milliseconds between updates
527  */
528 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
529 		const char * const *names, int num_counters,
530 		unsigned long lifespan)
531 {
532 	struct rdma_hw_stats *stats;
533 
534 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
535 			GFP_KERNEL);
536 	if (!stats)
537 		return NULL;
538 	stats->names = names;
539 	stats->num_counters = num_counters;
540 	stats->lifespan = msecs_to_jiffies(lifespan);
541 
542 	return stats;
543 }
544 
545 
546 /* Define bits for the various functionality this port needs to be supported by
547  * the core.
548  */
549 /* Management                           0x00000FFF */
550 #define RDMA_CORE_CAP_IB_MAD            0x00000001
551 #define RDMA_CORE_CAP_IB_SMI            0x00000002
552 #define RDMA_CORE_CAP_IB_CM             0x00000004
553 #define RDMA_CORE_CAP_IW_CM             0x00000008
554 #define RDMA_CORE_CAP_IB_SA             0x00000010
555 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
556 
557 /* Address format                       0x000FF000 */
558 #define RDMA_CORE_CAP_AF_IB             0x00001000
559 #define RDMA_CORE_CAP_ETH_AH            0x00002000
560 
561 /* Protocol                             0xFFF00000 */
562 #define RDMA_CORE_CAP_PROT_IB           0x00100000
563 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
564 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
565 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
566 
567 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
568 					| RDMA_CORE_CAP_IB_MAD \
569 					| RDMA_CORE_CAP_IB_SMI \
570 					| RDMA_CORE_CAP_IB_CM  \
571 					| RDMA_CORE_CAP_IB_SA  \
572 					| RDMA_CORE_CAP_AF_IB)
573 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
574 					| RDMA_CORE_CAP_IB_MAD  \
575 					| RDMA_CORE_CAP_IB_CM   \
576 					| RDMA_CORE_CAP_AF_IB   \
577 					| RDMA_CORE_CAP_ETH_AH)
578 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
579 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
580 					| RDMA_CORE_CAP_IB_MAD  \
581 					| RDMA_CORE_CAP_IB_CM   \
582 					| RDMA_CORE_CAP_AF_IB   \
583 					| RDMA_CORE_CAP_ETH_AH)
584 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
585 					| RDMA_CORE_CAP_IW_CM)
586 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
587 					| RDMA_CORE_CAP_OPA_MAD)
588 
589 struct ib_port_attr {
590 	u64			subnet_prefix;
591 	enum ib_port_state	state;
592 	enum ib_mtu		max_mtu;
593 	enum ib_mtu		active_mtu;
594 	int			gid_tbl_len;
595 	unsigned int		ip_gids:1;
596 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
597 	u32			port_cap_flags;
598 	u32			max_msg_sz;
599 	u32			bad_pkey_cntr;
600 	u32			qkey_viol_cntr;
601 	u16			pkey_tbl_len;
602 	u16			lid;
603 	u16			sm_lid;
604 	u8			lmc;
605 	u8			max_vl_num;
606 	u8			sm_sl;
607 	u8			subnet_timeout;
608 	u8			init_type_reply;
609 	u8			active_width;
610 	u8			active_speed;
611 	u8                      phys_state;
612 	bool			grh_required;
613 };
614 
615 enum ib_device_modify_flags {
616 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
617 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
618 };
619 
620 #define IB_DEVICE_NODE_DESC_MAX 64
621 
622 struct ib_device_modify {
623 	u64	sys_image_guid;
624 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
625 };
626 
627 enum ib_port_modify_flags {
628 	IB_PORT_SHUTDOWN		= 1,
629 	IB_PORT_INIT_TYPE		= (1<<2),
630 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
631 };
632 
633 struct ib_port_modify {
634 	u32	set_port_cap_mask;
635 	u32	clr_port_cap_mask;
636 	u8	init_type;
637 };
638 
639 enum ib_event_type {
640 	IB_EVENT_CQ_ERR,
641 	IB_EVENT_QP_FATAL,
642 	IB_EVENT_QP_REQ_ERR,
643 	IB_EVENT_QP_ACCESS_ERR,
644 	IB_EVENT_COMM_EST,
645 	IB_EVENT_SQ_DRAINED,
646 	IB_EVENT_PATH_MIG,
647 	IB_EVENT_PATH_MIG_ERR,
648 	IB_EVENT_DEVICE_FATAL,
649 	IB_EVENT_PORT_ACTIVE,
650 	IB_EVENT_PORT_ERR,
651 	IB_EVENT_LID_CHANGE,
652 	IB_EVENT_PKEY_CHANGE,
653 	IB_EVENT_SM_CHANGE,
654 	IB_EVENT_SRQ_ERR,
655 	IB_EVENT_SRQ_LIMIT_REACHED,
656 	IB_EVENT_QP_LAST_WQE_REACHED,
657 	IB_EVENT_CLIENT_REREGISTER,
658 	IB_EVENT_GID_CHANGE,
659 	IB_EVENT_WQ_FATAL,
660 };
661 
662 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
663 
664 struct ib_event {
665 	struct ib_device	*device;
666 	union {
667 		struct ib_cq	*cq;
668 		struct ib_qp	*qp;
669 		struct ib_srq	*srq;
670 		struct ib_wq	*wq;
671 		u8		port_num;
672 	} element;
673 	enum ib_event_type	event;
674 };
675 
676 struct ib_event_handler {
677 	struct ib_device *device;
678 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
679 	struct list_head  list;
680 };
681 
682 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
683 	do {							\
684 		(_ptr)->device  = _device;			\
685 		(_ptr)->handler = _handler;			\
686 		INIT_LIST_HEAD(&(_ptr)->list);			\
687 	} while (0)
688 
689 struct ib_global_route {
690 	union ib_gid	dgid;
691 	u32		flow_label;
692 	u8		sgid_index;
693 	u8		hop_limit;
694 	u8		traffic_class;
695 };
696 
697 struct ib_grh {
698 	__be32		version_tclass_flow;
699 	__be16		paylen;
700 	u8		next_hdr;
701 	u8		hop_limit;
702 	union ib_gid	sgid;
703 	union ib_gid	dgid;
704 };
705 
706 union rdma_network_hdr {
707 	struct ib_grh ibgrh;
708 	struct {
709 		/* The IB spec states that if it's IPv4, the header
710 		 * is located in the last 20 bytes of the header.
711 		 */
712 		u8		reserved[20];
713 		struct ip	roce4grh;
714 	};
715 };
716 
717 enum {
718 	IB_MULTICAST_QPN = 0xffffff
719 };
720 
721 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
722 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
723 
724 enum ib_ah_flags {
725 	IB_AH_GRH	= 1
726 };
727 
728 enum ib_rate {
729 	IB_RATE_PORT_CURRENT = 0,
730 	IB_RATE_2_5_GBPS = 2,
731 	IB_RATE_5_GBPS   = 5,
732 	IB_RATE_10_GBPS  = 3,
733 	IB_RATE_20_GBPS  = 6,
734 	IB_RATE_30_GBPS  = 4,
735 	IB_RATE_40_GBPS  = 7,
736 	IB_RATE_60_GBPS  = 8,
737 	IB_RATE_80_GBPS  = 9,
738 	IB_RATE_120_GBPS = 10,
739 	IB_RATE_14_GBPS  = 11,
740 	IB_RATE_56_GBPS  = 12,
741 	IB_RATE_112_GBPS = 13,
742 	IB_RATE_168_GBPS = 14,
743 	IB_RATE_25_GBPS  = 15,
744 	IB_RATE_100_GBPS = 16,
745 	IB_RATE_200_GBPS = 17,
746 	IB_RATE_300_GBPS = 18,
747 	IB_RATE_28_GBPS  = 19,
748 	IB_RATE_50_GBPS  = 20,
749 	IB_RATE_400_GBPS = 21,
750 	IB_RATE_600_GBPS = 22,
751 };
752 
753 /**
754  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
755  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
756  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
757  * @rate: rate to convert.
758  */
759 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
760 
761 /**
762  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
763  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
764  * @rate: rate to convert.
765  */
766 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
767 
768 
769 /**
770  * enum ib_mr_type - memory region type
771  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
772  *                            normal registration
773  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
774  *                            register any arbitrary sg lists (without
775  *                            the normal mr constraints - see
776  *                            ib_map_mr_sg)
777  * @IB_MR_TYPE_DM:            memory region that is used for device
778  *                            memory registration
779  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
780  *                            application
781  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
782  *                            without address translations (VA=PA)
783  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
784  *                            data integrity operations
785  */
786 enum ib_mr_type {
787 	IB_MR_TYPE_MEM_REG,
788 	IB_MR_TYPE_SG_GAPS,
789 	IB_MR_TYPE_DM,
790 	IB_MR_TYPE_USER,
791 	IB_MR_TYPE_DMA,
792 	IB_MR_TYPE_INTEGRITY,
793 };
794 
795 enum ib_mr_status_check {
796 	IB_MR_CHECK_SIG_STATUS = 1,
797 };
798 
799 /**
800  * struct ib_mr_status - Memory region status container
801  *
802  * @fail_status: Bitmask of MR checks status. For each
803  *     failed check a corresponding status bit is set.
804  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
805  *     failure.
806  */
807 struct ib_mr_status {
808 	u32		    fail_status;
809 	struct ib_sig_err   sig_err;
810 };
811 
812 /**
813  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
814  * enum.
815  * @mult: multiple to convert.
816  */
817 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
818 
819 struct ib_ah_attr {
820 	struct ib_global_route	grh;
821 	u16			dlid;
822 	u8			sl;
823 	u8			src_path_bits;
824 	u8			static_rate;
825 	u8			ah_flags;
826 	u8			port_num;
827 	u8			dmac[ETH_ALEN];
828 };
829 
830 enum ib_wc_status {
831 	IB_WC_SUCCESS,
832 	IB_WC_LOC_LEN_ERR,
833 	IB_WC_LOC_QP_OP_ERR,
834 	IB_WC_LOC_EEC_OP_ERR,
835 	IB_WC_LOC_PROT_ERR,
836 	IB_WC_WR_FLUSH_ERR,
837 	IB_WC_MW_BIND_ERR,
838 	IB_WC_BAD_RESP_ERR,
839 	IB_WC_LOC_ACCESS_ERR,
840 	IB_WC_REM_INV_REQ_ERR,
841 	IB_WC_REM_ACCESS_ERR,
842 	IB_WC_REM_OP_ERR,
843 	IB_WC_RETRY_EXC_ERR,
844 	IB_WC_RNR_RETRY_EXC_ERR,
845 	IB_WC_LOC_RDD_VIOL_ERR,
846 	IB_WC_REM_INV_RD_REQ_ERR,
847 	IB_WC_REM_ABORT_ERR,
848 	IB_WC_INV_EECN_ERR,
849 	IB_WC_INV_EEC_STATE_ERR,
850 	IB_WC_FATAL_ERR,
851 	IB_WC_RESP_TIMEOUT_ERR,
852 	IB_WC_GENERAL_ERR
853 };
854 
855 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
856 
857 enum ib_wc_opcode {
858 	IB_WC_SEND,
859 	IB_WC_RDMA_WRITE,
860 	IB_WC_RDMA_READ,
861 	IB_WC_COMP_SWAP,
862 	IB_WC_FETCH_ADD,
863 	IB_WC_LSO,
864 	IB_WC_LOCAL_INV,
865 	IB_WC_REG_MR,
866 	IB_WC_MASKED_COMP_SWAP,
867 	IB_WC_MASKED_FETCH_ADD,
868 /*
869  * Set value of IB_WC_RECV so consumers can test if a completion is a
870  * receive by testing (opcode & IB_WC_RECV).
871  */
872 	IB_WC_RECV			= 1 << 7,
873 	IB_WC_RECV_RDMA_WITH_IMM,
874 	IB_WC_DUMMY = -1,	/* force enum signed */
875 };
876 
877 enum ib_wc_flags {
878 	IB_WC_GRH		= 1,
879 	IB_WC_WITH_IMM		= (1<<1),
880 	IB_WC_WITH_INVALIDATE	= (1<<2),
881 	IB_WC_IP_CSUM_OK	= (1<<3),
882 	IB_WC_WITH_SMAC		= (1<<4),
883 	IB_WC_WITH_VLAN		= (1<<5),
884 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
885 };
886 
887 struct ib_wc {
888 	union {
889 		u64		wr_id;
890 		struct ib_cqe	*wr_cqe;
891 	};
892 	enum ib_wc_status	status;
893 	enum ib_wc_opcode	opcode;
894 	u32			vendor_err;
895 	u32			byte_len;
896 	struct ib_qp	       *qp;
897 	union {
898 		__be32		imm_data;
899 		u32		invalidate_rkey;
900 	} ex;
901 	u32			src_qp;
902 	int			wc_flags;
903 	u16			pkey_index;
904 	u16			slid;
905 	u8			sl;
906 	u8			dlid_path_bits;
907 	u8			port_num;	/* valid only for DR SMPs on switches */
908 	u8			smac[ETH_ALEN];
909 	u16			vlan_id;
910 	u8			network_hdr_type;
911 };
912 
913 enum ib_cq_notify_flags {
914 	IB_CQ_SOLICITED			= 1 << 0,
915 	IB_CQ_NEXT_COMP			= 1 << 1,
916 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
917 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
918 };
919 
920 enum ib_srq_type {
921 	IB_SRQT_BASIC,
922 	IB_SRQT_XRC,
923 	IB_SRQT_TM,
924 };
925 
926 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
927 {
928 	return srq_type == IB_SRQT_XRC ||
929 	       srq_type == IB_SRQT_TM;
930 }
931 
932 enum ib_srq_attr_mask {
933 	IB_SRQ_MAX_WR	= 1 << 0,
934 	IB_SRQ_LIMIT	= 1 << 1,
935 };
936 
937 struct ib_srq_attr {
938 	u32	max_wr;
939 	u32	max_sge;
940 	u32	srq_limit;
941 };
942 
943 struct ib_srq_init_attr {
944 	void		      (*event_handler)(struct ib_event *, void *);
945 	void		       *srq_context;
946 	struct ib_srq_attr	attr;
947 	enum ib_srq_type	srq_type;
948 
949 	struct {
950 		struct ib_cq   *cq;
951 		union {
952 			struct {
953 				struct ib_xrcd *xrcd;
954 			} xrc;
955 
956 			struct {
957 				u32		max_num_tags;
958 			} tag_matching;
959 		};
960 	} ext;
961 };
962 
963 struct ib_qp_cap {
964 	u32	max_send_wr;
965 	u32	max_recv_wr;
966 	u32	max_send_sge;
967 	u32	max_recv_sge;
968 	u32	max_inline_data;
969 
970 	/*
971 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
972 	 * ib_create_qp() will calculate the right amount of neededed WRs
973 	 * and MRs based on this.
974 	 */
975 	u32	max_rdma_ctxs;
976 };
977 
978 enum ib_sig_type {
979 	IB_SIGNAL_ALL_WR,
980 	IB_SIGNAL_REQ_WR
981 };
982 
983 enum ib_qp_type {
984 	/*
985 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
986 	 * here (and in that order) since the MAD layer uses them as
987 	 * indices into a 2-entry table.
988 	 */
989 	IB_QPT_SMI,
990 	IB_QPT_GSI,
991 
992 	IB_QPT_RC,
993 	IB_QPT_UC,
994 	IB_QPT_UD,
995 	IB_QPT_RAW_IPV6,
996 	IB_QPT_RAW_ETHERTYPE,
997 	IB_QPT_RAW_PACKET = 8,
998 	IB_QPT_XRC_INI = 9,
999 	IB_QPT_XRC_TGT,
1000 	IB_QPT_MAX,
1001 	IB_QPT_DRIVER = 0xFF,
1002 	/* Reserve a range for qp types internal to the low level driver.
1003 	 * These qp types will not be visible at the IB core layer, so the
1004 	 * IB_QPT_MAX usages should not be affected in the core layer
1005 	 */
1006 	IB_QPT_RESERVED1 = 0x1000,
1007 	IB_QPT_RESERVED2,
1008 	IB_QPT_RESERVED3,
1009 	IB_QPT_RESERVED4,
1010 	IB_QPT_RESERVED5,
1011 	IB_QPT_RESERVED6,
1012 	IB_QPT_RESERVED7,
1013 	IB_QPT_RESERVED8,
1014 	IB_QPT_RESERVED9,
1015 	IB_QPT_RESERVED10,
1016 };
1017 
1018 enum ib_qp_create_flags {
1019 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1020 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1021 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1022 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1023 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1024 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1025 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1026 	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
1027 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1028 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1029 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1030 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1031 	/* reserve bits 26-31 for low level drivers' internal use */
1032 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1033 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1034 };
1035 
1036 /*
1037  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1038  * callback to destroy the passed in QP.
1039  */
1040 
1041 struct ib_qp_init_attr {
1042 	void                  (*event_handler)(struct ib_event *, void *);
1043 	void		       *qp_context;
1044 	struct ib_cq	       *send_cq;
1045 	struct ib_cq	       *recv_cq;
1046 	struct ib_srq	       *srq;
1047 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1048 	struct ib_qp_cap	cap;
1049 	enum ib_sig_type	sq_sig_type;
1050 	enum ib_qp_type		qp_type;
1051 	enum ib_qp_create_flags	create_flags;
1052 
1053 	/*
1054 	 * Only needed for special QP types, or when using the RW API.
1055 	 */
1056 	u8			port_num;
1057 	struct ib_rwq_ind_table *rwq_ind_tbl;
1058 	u32			source_qpn;
1059 };
1060 
1061 struct ib_qp_open_attr {
1062 	void                  (*event_handler)(struct ib_event *, void *);
1063 	void		       *qp_context;
1064 	u32			qp_num;
1065 	enum ib_qp_type		qp_type;
1066 };
1067 
1068 enum ib_rnr_timeout {
1069 	IB_RNR_TIMER_655_36 =  0,
1070 	IB_RNR_TIMER_000_01 =  1,
1071 	IB_RNR_TIMER_000_02 =  2,
1072 	IB_RNR_TIMER_000_03 =  3,
1073 	IB_RNR_TIMER_000_04 =  4,
1074 	IB_RNR_TIMER_000_06 =  5,
1075 	IB_RNR_TIMER_000_08 =  6,
1076 	IB_RNR_TIMER_000_12 =  7,
1077 	IB_RNR_TIMER_000_16 =  8,
1078 	IB_RNR_TIMER_000_24 =  9,
1079 	IB_RNR_TIMER_000_32 = 10,
1080 	IB_RNR_TIMER_000_48 = 11,
1081 	IB_RNR_TIMER_000_64 = 12,
1082 	IB_RNR_TIMER_000_96 = 13,
1083 	IB_RNR_TIMER_001_28 = 14,
1084 	IB_RNR_TIMER_001_92 = 15,
1085 	IB_RNR_TIMER_002_56 = 16,
1086 	IB_RNR_TIMER_003_84 = 17,
1087 	IB_RNR_TIMER_005_12 = 18,
1088 	IB_RNR_TIMER_007_68 = 19,
1089 	IB_RNR_TIMER_010_24 = 20,
1090 	IB_RNR_TIMER_015_36 = 21,
1091 	IB_RNR_TIMER_020_48 = 22,
1092 	IB_RNR_TIMER_030_72 = 23,
1093 	IB_RNR_TIMER_040_96 = 24,
1094 	IB_RNR_TIMER_061_44 = 25,
1095 	IB_RNR_TIMER_081_92 = 26,
1096 	IB_RNR_TIMER_122_88 = 27,
1097 	IB_RNR_TIMER_163_84 = 28,
1098 	IB_RNR_TIMER_245_76 = 29,
1099 	IB_RNR_TIMER_327_68 = 30,
1100 	IB_RNR_TIMER_491_52 = 31
1101 };
1102 
1103 enum ib_qp_attr_mask {
1104 	IB_QP_STATE			= 1,
1105 	IB_QP_CUR_STATE			= (1<<1),
1106 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1107 	IB_QP_ACCESS_FLAGS		= (1<<3),
1108 	IB_QP_PKEY_INDEX		= (1<<4),
1109 	IB_QP_PORT			= (1<<5),
1110 	IB_QP_QKEY			= (1<<6),
1111 	IB_QP_AV			= (1<<7),
1112 	IB_QP_PATH_MTU			= (1<<8),
1113 	IB_QP_TIMEOUT			= (1<<9),
1114 	IB_QP_RETRY_CNT			= (1<<10),
1115 	IB_QP_RNR_RETRY			= (1<<11),
1116 	IB_QP_RQ_PSN			= (1<<12),
1117 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1118 	IB_QP_ALT_PATH			= (1<<14),
1119 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1120 	IB_QP_SQ_PSN			= (1<<16),
1121 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1122 	IB_QP_PATH_MIG_STATE		= (1<<18),
1123 	IB_QP_CAP			= (1<<19),
1124 	IB_QP_DEST_QPN			= (1<<20),
1125 	IB_QP_RESERVED1			= (1<<21),
1126 	IB_QP_RESERVED2			= (1<<22),
1127 	IB_QP_RESERVED3			= (1<<23),
1128 	IB_QP_RESERVED4			= (1<<24),
1129 	IB_QP_RATE_LIMIT		= (1<<25),
1130 };
1131 
1132 enum ib_qp_state {
1133 	IB_QPS_RESET,
1134 	IB_QPS_INIT,
1135 	IB_QPS_RTR,
1136 	IB_QPS_RTS,
1137 	IB_QPS_SQD,
1138 	IB_QPS_SQE,
1139 	IB_QPS_ERR,
1140 	IB_QPS_DUMMY = -1,	/* force enum signed */
1141 };
1142 
1143 enum ib_mig_state {
1144 	IB_MIG_MIGRATED,
1145 	IB_MIG_REARM,
1146 	IB_MIG_ARMED
1147 };
1148 
1149 enum ib_mw_type {
1150 	IB_MW_TYPE_1 = 1,
1151 	IB_MW_TYPE_2 = 2
1152 };
1153 
1154 struct ib_qp_attr {
1155 	enum ib_qp_state	qp_state;
1156 	enum ib_qp_state	cur_qp_state;
1157 	enum ib_mtu		path_mtu;
1158 	enum ib_mig_state	path_mig_state;
1159 	u32			qkey;
1160 	u32			rq_psn;
1161 	u32			sq_psn;
1162 	u32			dest_qp_num;
1163 	int			qp_access_flags;
1164 	struct ib_qp_cap	cap;
1165 	struct ib_ah_attr	ah_attr;
1166 	struct ib_ah_attr	alt_ah_attr;
1167 	u16			pkey_index;
1168 	u16			alt_pkey_index;
1169 	u8			en_sqd_async_notify;
1170 	u8			sq_draining;
1171 	u8			max_rd_atomic;
1172 	u8			max_dest_rd_atomic;
1173 	u8			min_rnr_timer;
1174 	u8			port_num;
1175 	u8			timeout;
1176 	u8			retry_cnt;
1177 	u8			rnr_retry;
1178 	u8			alt_port_num;
1179 	u8			alt_timeout;
1180 	u32			rate_limit;
1181 };
1182 
1183 enum ib_wr_opcode {
1184 	IB_WR_RDMA_WRITE,
1185 	IB_WR_RDMA_WRITE_WITH_IMM,
1186 	IB_WR_SEND,
1187 	IB_WR_SEND_WITH_IMM,
1188 	IB_WR_RDMA_READ,
1189 	IB_WR_ATOMIC_CMP_AND_SWP,
1190 	IB_WR_ATOMIC_FETCH_AND_ADD,
1191 	IB_WR_LSO,
1192 	IB_WR_SEND_WITH_INV,
1193 	IB_WR_RDMA_READ_WITH_INV,
1194 	IB_WR_LOCAL_INV,
1195 	IB_WR_REG_MR,
1196 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1197 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1198 	IB_WR_REG_SIG_MR,
1199 	/* reserve values for low level drivers' internal use.
1200 	 * These values will not be used at all in the ib core layer.
1201 	 */
1202 	IB_WR_RESERVED1 = 0xf0,
1203 	IB_WR_RESERVED2,
1204 	IB_WR_RESERVED3,
1205 	IB_WR_RESERVED4,
1206 	IB_WR_RESERVED5,
1207 	IB_WR_RESERVED6,
1208 	IB_WR_RESERVED7,
1209 	IB_WR_RESERVED8,
1210 	IB_WR_RESERVED9,
1211 	IB_WR_RESERVED10,
1212 	IB_WR_DUMMY = -1,	/* force enum signed */
1213 };
1214 
1215 enum ib_send_flags {
1216 	IB_SEND_FENCE		= 1,
1217 	IB_SEND_SIGNALED	= (1<<1),
1218 	IB_SEND_SOLICITED	= (1<<2),
1219 	IB_SEND_INLINE		= (1<<3),
1220 	IB_SEND_IP_CSUM		= (1<<4),
1221 
1222 	/* reserve bits 26-31 for low level drivers' internal use */
1223 	IB_SEND_RESERVED_START	= (1 << 26),
1224 	IB_SEND_RESERVED_END	= (1 << 31),
1225 };
1226 
1227 struct ib_sge {
1228 	u64	addr;
1229 	u32	length;
1230 	u32	lkey;
1231 };
1232 
1233 struct ib_cqe {
1234 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1235 };
1236 
1237 struct ib_send_wr {
1238 	struct ib_send_wr      *next;
1239 	union {
1240 		u64		wr_id;
1241 		struct ib_cqe	*wr_cqe;
1242 	};
1243 	struct ib_sge	       *sg_list;
1244 	int			num_sge;
1245 	enum ib_wr_opcode	opcode;
1246 	int			send_flags;
1247 	union {
1248 		__be32		imm_data;
1249 		u32		invalidate_rkey;
1250 	} ex;
1251 };
1252 
1253 struct ib_rdma_wr {
1254 	struct ib_send_wr	wr;
1255 	u64			remote_addr;
1256 	u32			rkey;
1257 };
1258 
1259 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1260 {
1261 	return container_of(wr, struct ib_rdma_wr, wr);
1262 }
1263 
1264 struct ib_atomic_wr {
1265 	struct ib_send_wr	wr;
1266 	u64			remote_addr;
1267 	u64			compare_add;
1268 	u64			swap;
1269 	u64			compare_add_mask;
1270 	u64			swap_mask;
1271 	u32			rkey;
1272 };
1273 
1274 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1275 {
1276 	return container_of(wr, struct ib_atomic_wr, wr);
1277 }
1278 
1279 struct ib_ud_wr {
1280 	struct ib_send_wr	wr;
1281 	struct ib_ah		*ah;
1282 	void			*header;
1283 	int			hlen;
1284 	int			mss;
1285 	u32			remote_qpn;
1286 	u32			remote_qkey;
1287 	u16			pkey_index; /* valid for GSI only */
1288 	u8			port_num;   /* valid for DR SMPs on switch only */
1289 };
1290 
1291 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1292 {
1293 	return container_of(wr, struct ib_ud_wr, wr);
1294 }
1295 
1296 struct ib_reg_wr {
1297 	struct ib_send_wr	wr;
1298 	struct ib_mr		*mr;
1299 	u32			key;
1300 	int			access;
1301 };
1302 
1303 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1304 {
1305 	return container_of(wr, struct ib_reg_wr, wr);
1306 }
1307 
1308 struct ib_sig_handover_wr {
1309 	struct ib_send_wr	wr;
1310 	struct ib_sig_attrs    *sig_attrs;
1311 	struct ib_mr	       *sig_mr;
1312 	int			access_flags;
1313 	struct ib_sge	       *prot;
1314 };
1315 
1316 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr)
1317 {
1318 	return container_of(wr, struct ib_sig_handover_wr, wr);
1319 }
1320 
1321 struct ib_recv_wr {
1322 	struct ib_recv_wr      *next;
1323 	union {
1324 		u64		wr_id;
1325 		struct ib_cqe	*wr_cqe;
1326 	};
1327 	struct ib_sge	       *sg_list;
1328 	int			num_sge;
1329 };
1330 
1331 enum ib_access_flags {
1332 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1333 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1334 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1335 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1336 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1337 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1338 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1339 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1340 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1341 
1342 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1343 	IB_ACCESS_SUPPORTED =
1344 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1345 };
1346 
1347 /*
1348  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1349  * are hidden here instead of a uapi header!
1350  */
1351 enum ib_mr_rereg_flags {
1352 	IB_MR_REREG_TRANS	= 1,
1353 	IB_MR_REREG_PD		= (1<<1),
1354 	IB_MR_REREG_ACCESS	= (1<<2),
1355 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1356 };
1357 
1358 struct ib_fmr_attr {
1359 	int	max_pages;
1360 	int	max_maps;
1361 	u8	page_shift;
1362 };
1363 
1364 struct ib_umem;
1365 
1366 enum rdma_remove_reason {
1367 	/*
1368 	 * Userspace requested uobject deletion or initial try
1369 	 * to remove uobject via cleanup. Call could fail
1370 	 */
1371 	RDMA_REMOVE_DESTROY,
1372 	/* Context deletion. This call should delete the actual object itself */
1373 	RDMA_REMOVE_CLOSE,
1374 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1375 	RDMA_REMOVE_DRIVER_REMOVE,
1376 	/* uobj is being cleaned-up before being committed */
1377 	RDMA_REMOVE_ABORT,
1378 };
1379 
1380 struct ib_rdmacg_object {
1381 };
1382 
1383 struct ib_ucontext {
1384 	struct ib_device       *device;
1385 	struct ib_uverbs_file  *ufile;
1386 	/*
1387 	 * 'closing' can be read by the driver only during a destroy callback,
1388 	 * it is set when we are closing the file descriptor and indicates
1389 	 * that mm_sem may be locked.
1390 	 */
1391 	bool closing;
1392 
1393 	bool cleanup_retryable;
1394 
1395 	struct ib_rdmacg_object	cg_obj;
1396 	/*
1397 	 * Implementation details of the RDMA core, don't use in drivers:
1398 	 */
1399 	struct xarray mmap_xa;
1400 };
1401 
1402 struct ib_uobject {
1403 	u64			user_handle;	/* handle given to us by userspace */
1404 	/* ufile & ucontext owning this object */
1405 	struct ib_uverbs_file  *ufile;
1406 	/* FIXME, save memory: ufile->context == context */
1407 	struct ib_ucontext     *context;	/* associated user context */
1408 	void		       *object;		/* containing object */
1409 	struct list_head	list;		/* link to context's list */
1410 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1411 	int			id;		/* index into kernel idr */
1412 	struct kref		ref;
1413 	atomic_t		usecnt;		/* protects exclusive access */
1414 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1415 
1416 	const struct uverbs_api_object *uapi_object;
1417 };
1418 
1419 struct ib_udata {
1420 	const u8 __user *inbuf;
1421 	u8 __user *outbuf;
1422 	size_t       inlen;
1423 	size_t       outlen;
1424 };
1425 
1426 struct ib_pd {
1427 	u32			local_dma_lkey;
1428 	u32			flags;
1429 	struct ib_device       *device;
1430 	struct ib_uobject      *uobject;
1431 	atomic_t          	usecnt; /* count all resources */
1432 
1433 	u32			unsafe_global_rkey;
1434 
1435 	/*
1436 	 * Implementation details of the RDMA core, don't use in drivers:
1437 	 */
1438 	struct ib_mr	       *__internal_mr;
1439 };
1440 
1441 struct ib_xrcd {
1442 	struct ib_device       *device;
1443 	atomic_t		usecnt; /* count all exposed resources */
1444 	struct inode	       *inode;
1445 
1446 	struct mutex		tgt_qp_mutex;
1447 	struct list_head	tgt_qp_list;
1448 };
1449 
1450 struct ib_ah {
1451 	struct ib_device	*device;
1452 	struct ib_pd		*pd;
1453 	struct ib_uobject	*uobject;
1454 };
1455 
1456 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1457 
1458 enum ib_poll_context {
1459 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1460 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1461 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1462 };
1463 
1464 struct ib_cq {
1465 	struct ib_device       *device;
1466 	struct ib_ucq_object   *uobject;
1467 	ib_comp_handler   	comp_handler;
1468 	void                  (*event_handler)(struct ib_event *, void *);
1469 	void                   *cq_context;
1470 	int               	cqe;
1471 	atomic_t          	usecnt; /* count number of work queues */
1472 	enum ib_poll_context	poll_ctx;
1473 	struct work_struct	work;
1474 };
1475 
1476 struct ib_srq {
1477 	struct ib_device       *device;
1478 	struct ib_pd	       *pd;
1479 	struct ib_usrq_object  *uobject;
1480 	void		      (*event_handler)(struct ib_event *, void *);
1481 	void		       *srq_context;
1482 	enum ib_srq_type	srq_type;
1483 	atomic_t		usecnt;
1484 
1485 	struct {
1486 		struct ib_cq   *cq;
1487 		union {
1488 			struct {
1489 				struct ib_xrcd *xrcd;
1490 				u32		srq_num;
1491 			} xrc;
1492 		};
1493 	} ext;
1494 };
1495 
1496 enum ib_wq_type {
1497 	IB_WQT_RQ
1498 };
1499 
1500 enum ib_wq_state {
1501 	IB_WQS_RESET,
1502 	IB_WQS_RDY,
1503 	IB_WQS_ERR
1504 };
1505 
1506 struct ib_wq {
1507 	struct ib_device       *device;
1508 	struct ib_uwq_object   *uobject;
1509 	void		    *wq_context;
1510 	void		    (*event_handler)(struct ib_event *, void *);
1511 	struct ib_pd	       *pd;
1512 	struct ib_cq	       *cq;
1513 	u32		wq_num;
1514 	enum ib_wq_state       state;
1515 	enum ib_wq_type	wq_type;
1516 	atomic_t		usecnt;
1517 };
1518 
1519 enum ib_wq_flags {
1520 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1521 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1522 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1523 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1524 };
1525 
1526 struct ib_wq_init_attr {
1527 	void		       *wq_context;
1528 	enum ib_wq_type	wq_type;
1529 	u32		max_wr;
1530 	u32		max_sge;
1531 	struct	ib_cq	       *cq;
1532 	void		    (*event_handler)(struct ib_event *, void *);
1533 	u32		create_flags; /* Use enum ib_wq_flags */
1534 };
1535 
1536 enum ib_wq_attr_mask {
1537 	IB_WQ_STATE		= 1 << 0,
1538 	IB_WQ_CUR_STATE		= 1 << 1,
1539 	IB_WQ_FLAGS		= 1 << 2,
1540 };
1541 
1542 struct ib_wq_attr {
1543 	enum	ib_wq_state	wq_state;
1544 	enum	ib_wq_state	curr_wq_state;
1545 	u32			flags; /* Use enum ib_wq_flags */
1546 	u32			flags_mask; /* Use enum ib_wq_flags */
1547 };
1548 
1549 struct ib_rwq_ind_table {
1550 	struct ib_device	*device;
1551 	struct ib_uobject      *uobject;
1552 	atomic_t		usecnt;
1553 	u32		ind_tbl_num;
1554 	u32		log_ind_tbl_size;
1555 	struct ib_wq	**ind_tbl;
1556 };
1557 
1558 struct ib_rwq_ind_table_init_attr {
1559 	u32		log_ind_tbl_size;
1560 	/* Each entry is a pointer to Receive Work Queue */
1561 	struct ib_wq	**ind_tbl;
1562 };
1563 
1564 /*
1565  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1566  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1567  */
1568 struct ib_qp {
1569 	struct ib_device       *device;
1570 	struct ib_pd	       *pd;
1571 	struct ib_cq	       *send_cq;
1572 	struct ib_cq	       *recv_cq;
1573 	spinlock_t		mr_lock;
1574 	struct ib_srq	       *srq;
1575 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1576 	struct list_head	xrcd_list;
1577 
1578 	/* count times opened, mcast attaches, flow attaches */
1579 	atomic_t		usecnt;
1580 	struct list_head	open_list;
1581 	struct ib_qp           *real_qp;
1582 	struct ib_uqp_object   *uobject;
1583 	void                  (*event_handler)(struct ib_event *, void *);
1584 	void		       *qp_context;
1585 	u32			qp_num;
1586 	u32			max_write_sge;
1587 	u32			max_read_sge;
1588 	enum ib_qp_type		qp_type;
1589 	struct ib_rwq_ind_table *rwq_ind_tbl;
1590 	u8			port;
1591 };
1592 
1593 struct ib_dm {
1594 	struct ib_device  *device;
1595 	u32		   length;
1596 	u32		   flags;
1597 	struct ib_uobject *uobject;
1598 	atomic_t	   usecnt;
1599 };
1600 
1601 struct ib_mr {
1602 	struct ib_device  *device;
1603 	struct ib_pd	  *pd;
1604 	u32		   lkey;
1605 	u32		   rkey;
1606 	u64		   iova;
1607 	u64		   length;
1608 	unsigned int	   page_size;
1609 	enum ib_mr_type	   type;
1610 	bool		   need_inval;
1611 	union {
1612 		struct ib_uobject	*uobject;	/* user */
1613 		struct list_head	qp_entry;	/* FR */
1614 	};
1615 
1616 	struct ib_dm      *dm;
1617 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1618 };
1619 
1620 struct ib_mw {
1621 	struct ib_device	*device;
1622 	struct ib_pd		*pd;
1623 	struct ib_uobject	*uobject;
1624 	u32			rkey;
1625 	enum ib_mw_type         type;
1626 };
1627 
1628 struct ib_fmr {
1629 	struct ib_device	*device;
1630 	struct ib_pd		*pd;
1631 	struct list_head	list;
1632 	u32			lkey;
1633 	u32			rkey;
1634 };
1635 
1636 /* Supported steering options */
1637 enum ib_flow_attr_type {
1638 	/* steering according to rule specifications */
1639 	IB_FLOW_ATTR_NORMAL		= 0x0,
1640 	/* default unicast and multicast rule -
1641 	 * receive all Eth traffic which isn't steered to any QP
1642 	 */
1643 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1644 	/* default multicast rule -
1645 	 * receive all Eth multicast traffic which isn't steered to any QP
1646 	 */
1647 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1648 	/* sniffer rule - receive all port traffic */
1649 	IB_FLOW_ATTR_SNIFFER		= 0x3
1650 };
1651 
1652 /* Supported steering header types */
1653 enum ib_flow_spec_type {
1654 	/* L2 headers*/
1655 	IB_FLOW_SPEC_ETH		= 0x20,
1656 	IB_FLOW_SPEC_IB			= 0x22,
1657 	/* L3 header*/
1658 	IB_FLOW_SPEC_IPV4		= 0x30,
1659 	IB_FLOW_SPEC_IPV6		= 0x31,
1660 	IB_FLOW_SPEC_ESP                = 0x34,
1661 	/* L4 headers*/
1662 	IB_FLOW_SPEC_TCP		= 0x40,
1663 	IB_FLOW_SPEC_UDP		= 0x41,
1664 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1665 	IB_FLOW_SPEC_GRE		= 0x51,
1666 	IB_FLOW_SPEC_MPLS		= 0x60,
1667 	IB_FLOW_SPEC_INNER		= 0x100,
1668 	/* Actions */
1669 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1670 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1671 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1672 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1673 };
1674 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1675 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1676 
1677 /* Flow steering rule priority is set according to it's domain.
1678  * Lower domain value means higher priority.
1679  */
1680 enum ib_flow_domain {
1681 	IB_FLOW_DOMAIN_USER,
1682 	IB_FLOW_DOMAIN_ETHTOOL,
1683 	IB_FLOW_DOMAIN_RFS,
1684 	IB_FLOW_DOMAIN_NIC,
1685 	IB_FLOW_DOMAIN_NUM /* Must be last */
1686 };
1687 
1688 enum ib_flow_flags {
1689 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1690 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1691 };
1692 
1693 struct ib_flow_eth_filter {
1694 	u8	dst_mac[6];
1695 	u8	src_mac[6];
1696 	__be16	ether_type;
1697 	__be16	vlan_tag;
1698 	/* Must be last */
1699 	u8	real_sz[0];
1700 };
1701 
1702 struct ib_flow_spec_eth {
1703 	enum ib_flow_spec_type	  type;
1704 	u16			  size;
1705 	struct ib_flow_eth_filter val;
1706 	struct ib_flow_eth_filter mask;
1707 };
1708 
1709 struct ib_flow_ib_filter {
1710 	__be16 dlid;
1711 	__u8   sl;
1712 	/* Must be last */
1713 	u8	real_sz[0];
1714 };
1715 
1716 struct ib_flow_spec_ib {
1717 	enum ib_flow_spec_type	 type;
1718 	u16			 size;
1719 	struct ib_flow_ib_filter val;
1720 	struct ib_flow_ib_filter mask;
1721 };
1722 
1723 /* IPv4 header flags */
1724 enum ib_ipv4_flags {
1725 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1726 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1727 				    last have this flag set */
1728 };
1729 
1730 struct ib_flow_ipv4_filter {
1731 	__be32	src_ip;
1732 	__be32	dst_ip;
1733 	u8	proto;
1734 	u8	tos;
1735 	u8	ttl;
1736 	u8	flags;
1737 	/* Must be last */
1738 	u8	real_sz[0];
1739 };
1740 
1741 struct ib_flow_spec_ipv4 {
1742 	enum ib_flow_spec_type	   type;
1743 	u16			   size;
1744 	struct ib_flow_ipv4_filter val;
1745 	struct ib_flow_ipv4_filter mask;
1746 };
1747 
1748 struct ib_flow_ipv6_filter {
1749 	u8	src_ip[16];
1750 	u8	dst_ip[16];
1751 	__be32	flow_label;
1752 	u8	next_hdr;
1753 	u8	traffic_class;
1754 	u8	hop_limit;
1755 	/* Must be last */
1756 	u8	real_sz[0];
1757 };
1758 
1759 struct ib_flow_spec_ipv6 {
1760 	enum ib_flow_spec_type	   type;
1761 	u16			   size;
1762 	struct ib_flow_ipv6_filter val;
1763 	struct ib_flow_ipv6_filter mask;
1764 };
1765 
1766 struct ib_flow_tcp_udp_filter {
1767 	__be16	dst_port;
1768 	__be16	src_port;
1769 	/* Must be last */
1770 	u8	real_sz[0];
1771 };
1772 
1773 struct ib_flow_spec_tcp_udp {
1774 	enum ib_flow_spec_type	      type;
1775 	u16			      size;
1776 	struct ib_flow_tcp_udp_filter val;
1777 	struct ib_flow_tcp_udp_filter mask;
1778 };
1779 
1780 struct ib_flow_tunnel_filter {
1781 	__be32	tunnel_id;
1782 	u8	real_sz[0];
1783 };
1784 
1785 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1786  * the tunnel_id from val has the vni value
1787  */
1788 struct ib_flow_spec_tunnel {
1789 	u32			      type;
1790 	u16			      size;
1791 	struct ib_flow_tunnel_filter  val;
1792 	struct ib_flow_tunnel_filter  mask;
1793 };
1794 
1795 struct ib_flow_esp_filter {
1796 	__be32	spi;
1797 	__be32  seq;
1798 	/* Must be last */
1799 	u8	real_sz[0];
1800 };
1801 
1802 struct ib_flow_spec_esp {
1803 	u32                           type;
1804 	u16			      size;
1805 	struct ib_flow_esp_filter     val;
1806 	struct ib_flow_esp_filter     mask;
1807 };
1808 
1809 struct ib_flow_gre_filter {
1810 	__be16 c_ks_res0_ver;
1811 	__be16 protocol;
1812 	__be32 key;
1813 	/* Must be last */
1814 	u8	real_sz[0];
1815 };
1816 
1817 struct ib_flow_spec_gre {
1818 	u32                           type;
1819 	u16			      size;
1820 	struct ib_flow_gre_filter     val;
1821 	struct ib_flow_gre_filter     mask;
1822 };
1823 
1824 struct ib_flow_mpls_filter {
1825 	__be32 tag;
1826 	/* Must be last */
1827 	u8	real_sz[0];
1828 };
1829 
1830 struct ib_flow_spec_mpls {
1831 	u32                           type;
1832 	u16			      size;
1833 	struct ib_flow_mpls_filter     val;
1834 	struct ib_flow_mpls_filter     mask;
1835 };
1836 
1837 struct ib_flow_spec_action_tag {
1838 	enum ib_flow_spec_type	      type;
1839 	u16			      size;
1840 	u32                           tag_id;
1841 };
1842 
1843 struct ib_flow_spec_action_drop {
1844 	enum ib_flow_spec_type	      type;
1845 	u16			      size;
1846 };
1847 
1848 struct ib_flow_spec_action_handle {
1849 	enum ib_flow_spec_type	      type;
1850 	u16			      size;
1851 	struct ib_flow_action	     *act;
1852 };
1853 
1854 enum ib_counters_description {
1855 	IB_COUNTER_PACKETS,
1856 	IB_COUNTER_BYTES,
1857 };
1858 
1859 struct ib_flow_spec_action_count {
1860 	enum ib_flow_spec_type type;
1861 	u16 size;
1862 	struct ib_counters *counters;
1863 };
1864 
1865 union ib_flow_spec {
1866 	struct {
1867 		u32			type;
1868 		u16			size;
1869 	};
1870 	struct ib_flow_spec_eth		eth;
1871 	struct ib_flow_spec_ib		ib;
1872 	struct ib_flow_spec_ipv4        ipv4;
1873 	struct ib_flow_spec_tcp_udp	tcp_udp;
1874 	struct ib_flow_spec_ipv6        ipv6;
1875 	struct ib_flow_spec_tunnel      tunnel;
1876 	struct ib_flow_spec_esp		esp;
1877 	struct ib_flow_spec_gre		gre;
1878 	struct ib_flow_spec_mpls	mpls;
1879 	struct ib_flow_spec_action_tag  flow_tag;
1880 	struct ib_flow_spec_action_drop drop;
1881 	struct ib_flow_spec_action_handle action;
1882 	struct ib_flow_spec_action_count flow_count;
1883 };
1884 
1885 struct ib_flow_attr {
1886 	enum ib_flow_attr_type type;
1887 	u16	     size;
1888 	u16	     priority;
1889 	u32	     flags;
1890 	u8	     num_of_specs;
1891 	u8	     port;
1892 	union ib_flow_spec flows[0];
1893 };
1894 
1895 struct ib_flow {
1896 	struct ib_qp		*qp;
1897 	struct ib_device	*device;
1898 	struct ib_uobject	*uobject;
1899 };
1900 
1901 enum ib_flow_action_type {
1902 	IB_FLOW_ACTION_UNSPECIFIED,
1903 	IB_FLOW_ACTION_ESP = 1,
1904 };
1905 
1906 struct ib_flow_action_attrs_esp_keymats {
1907 	enum ib_uverbs_flow_action_esp_keymat			protocol;
1908 	union {
1909 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
1910 	} keymat;
1911 };
1912 
1913 struct ib_flow_action_attrs_esp_replays {
1914 	enum ib_uverbs_flow_action_esp_replay			protocol;
1915 	union {
1916 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
1917 	} replay;
1918 };
1919 
1920 enum ib_flow_action_attrs_esp_flags {
1921 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
1922 	 * This is done in order to share the same flags between user-space and
1923 	 * kernel and spare an unnecessary translation.
1924 	 */
1925 
1926 	/* Kernel flags */
1927 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
1928 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
1929 };
1930 
1931 struct ib_flow_spec_list {
1932 	struct ib_flow_spec_list	*next;
1933 	union ib_flow_spec		spec;
1934 };
1935 
1936 struct ib_flow_action_attrs_esp {
1937 	struct ib_flow_action_attrs_esp_keymats		*keymat;
1938 	struct ib_flow_action_attrs_esp_replays		*replay;
1939 	struct ib_flow_spec_list			*encap;
1940 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
1941 	 * Value of 0 is a valid value.
1942 	 */
1943 	u32						esn;
1944 	u32						spi;
1945 	u32						seq;
1946 	u32						tfc_pad;
1947 	/* Use enum ib_flow_action_attrs_esp_flags */
1948 	u64						flags;
1949 	u64						hard_limit_pkts;
1950 };
1951 
1952 struct ib_flow_action {
1953 	struct ib_device		*device;
1954 	struct ib_uobject		*uobject;
1955 	enum ib_flow_action_type	type;
1956 	atomic_t			usecnt;
1957 };
1958 
1959 
1960 struct ib_mad_hdr;
1961 struct ib_grh;
1962 
1963 enum ib_process_mad_flags {
1964 	IB_MAD_IGNORE_MKEY	= 1,
1965 	IB_MAD_IGNORE_BKEY	= 2,
1966 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1967 };
1968 
1969 enum ib_mad_result {
1970 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1971 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1972 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1973 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1974 };
1975 
1976 #define IB_DEVICE_NAME_MAX 64
1977 
1978 struct ib_cache {
1979 	rwlock_t                lock;
1980 	struct ib_event_handler event_handler;
1981 	struct ib_pkey_cache  **pkey_cache;
1982 	struct ib_gid_table   **gid_cache;
1983 	u8                     *lmc_cache;
1984 };
1985 
1986 struct ib_dma_mapping_ops {
1987 	int		(*mapping_error)(struct ib_device *dev,
1988 					 u64 dma_addr);
1989 	u64		(*map_single)(struct ib_device *dev,
1990 				      void *ptr, size_t size,
1991 				      enum dma_data_direction direction);
1992 	void		(*unmap_single)(struct ib_device *dev,
1993 					u64 addr, size_t size,
1994 					enum dma_data_direction direction);
1995 	u64		(*map_page)(struct ib_device *dev,
1996 				    struct page *page, unsigned long offset,
1997 				    size_t size,
1998 				    enum dma_data_direction direction);
1999 	void		(*unmap_page)(struct ib_device *dev,
2000 				      u64 addr, size_t size,
2001 				      enum dma_data_direction direction);
2002 	int		(*map_sg)(struct ib_device *dev,
2003 				  struct scatterlist *sg, int nents,
2004 				  enum dma_data_direction direction);
2005 	void		(*unmap_sg)(struct ib_device *dev,
2006 				    struct scatterlist *sg, int nents,
2007 				    enum dma_data_direction direction);
2008 	int		(*map_sg_attrs)(struct ib_device *dev,
2009 					struct scatterlist *sg, int nents,
2010 					enum dma_data_direction direction,
2011 					struct dma_attrs *attrs);
2012 	void		(*unmap_sg_attrs)(struct ib_device *dev,
2013 					  struct scatterlist *sg, int nents,
2014 					  enum dma_data_direction direction,
2015 					  struct dma_attrs *attrs);
2016 	void		(*sync_single_for_cpu)(struct ib_device *dev,
2017 					       u64 dma_handle,
2018 					       size_t size,
2019 					       enum dma_data_direction dir);
2020 	void		(*sync_single_for_device)(struct ib_device *dev,
2021 						  u64 dma_handle,
2022 						  size_t size,
2023 						  enum dma_data_direction dir);
2024 	void		*(*alloc_coherent)(struct ib_device *dev,
2025 					   size_t size,
2026 					   u64 *dma_handle,
2027 					   gfp_t flag);
2028 	void		(*free_coherent)(struct ib_device *dev,
2029 					 size_t size, void *cpu_addr,
2030 					 u64 dma_handle);
2031 };
2032 
2033 struct iw_cm_verbs;
2034 
2035 struct ib_port_immutable {
2036 	int                           pkey_tbl_len;
2037 	int                           gid_tbl_len;
2038 	u32                           core_cap_flags;
2039 	u32                           max_mad_size;
2040 };
2041 
2042 struct ib_counters {
2043 	struct ib_device	*device;
2044 	struct ib_uobject	*uobject;
2045 	/* num of objects attached */
2046 	atomic_t	usecnt;
2047 };
2048 
2049 struct ib_counters_read_attr {
2050 	u64	*counters_buff;
2051 	u32	ncounters;
2052 	u32	flags; /* use enum ib_read_counters_flags */
2053 };
2054 
2055 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2056 	.size_##ib_struct =                                                    \
2057 		(sizeof(struct drv_struct) +                                   \
2058 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2059 		 BUILD_BUG_ON_ZERO(                                            \
2060 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2061 				      struct ib_struct)))
2062 
2063 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2064 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2065 
2066 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2067 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2068 
2069 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2070 
2071 struct rdma_user_mmap_entry {
2072 	struct kref ref;
2073 	struct ib_ucontext *ucontext;
2074 	unsigned long start_pgoff;
2075 	size_t npages;
2076 	bool driver_removed;
2077 };
2078 
2079 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2080 static inline u64
2081 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2082 {
2083 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2084 }
2085 
2086 struct ib_device_ops {
2087 	enum rdma_driver_id driver_id;
2088 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2089 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2090 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2091 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2092 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2093 };
2094 
2095 #define	INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do {			\
2096 	(pop)[0] .driver_id = RDMA_DRIVER_##DRIVER;			\
2097 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah);	\
2098 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq);	\
2099 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd);	\
2100 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq);	\
2101 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \
2102 } while (0)
2103 
2104 struct ib_device {
2105 	struct device                *dma_device;
2106 	struct ib_device_ops	     ops;
2107 
2108 	char                          name[IB_DEVICE_NAME_MAX];
2109 
2110 	struct list_head              event_handler_list;
2111 	spinlock_t                    event_handler_lock;
2112 
2113 	spinlock_t                    client_data_lock;
2114 	struct list_head              core_list;
2115 	/* Access to the client_data_list is protected by the client_data_lock
2116 	 * spinlock and the lists_rwsem read-write semaphore */
2117 	struct list_head              client_data_list;
2118 
2119 	struct ib_cache               cache;
2120 	/**
2121 	 * port_immutable is indexed by port number
2122 	 */
2123 	struct ib_port_immutable     *port_immutable;
2124 
2125 	int			      num_comp_vectors;
2126 
2127 	struct iw_cm_verbs	     *iwcm;
2128 
2129 	/**
2130 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2131 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2132 	 *   core when the device is removed.  A lifespan of -1 in the return
2133 	 *   struct tells the core to set a default lifespan.
2134 	 */
2135 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2136 						     u8 port_num);
2137 	/**
2138 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2139 	 * @index - The index in the value array we wish to have updated, or
2140 	 *   num_counters if we want all stats updated
2141 	 * Return codes -
2142 	 *   < 0 - Error, no counters updated
2143 	 *   index - Updated the single counter pointed to by index
2144 	 *   num_counters - Updated all counters (will reset the timestamp
2145 	 *     and prevent further calls for lifespan milliseconds)
2146 	 * Drivers are allowed to update all counters in leiu of just the
2147 	 *   one given in index at their option
2148 	 */
2149 	int		           (*get_hw_stats)(struct ib_device *device,
2150 						   struct rdma_hw_stats *stats,
2151 						   u8 port, int index);
2152 	int		           (*query_device)(struct ib_device *device,
2153 						   struct ib_device_attr *device_attr,
2154 						   struct ib_udata *udata);
2155 	int		           (*query_port)(struct ib_device *device,
2156 						 u8 port_num,
2157 						 struct ib_port_attr *port_attr);
2158 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2159 						     u8 port_num);
2160 	/* When calling get_netdev, the HW vendor's driver should return the
2161 	 * net device of device @device at port @port_num or NULL if such
2162 	 * a net device doesn't exist. The vendor driver should call dev_hold
2163 	 * on this net device. The HW vendor's device driver must guarantee
2164 	 * that this function returns NULL before the net device reaches
2165 	 * NETDEV_UNREGISTER_FINAL state.
2166 	 */
2167 	struct ifnet		  *(*get_netdev)(struct ib_device *device,
2168 						 u8 port_num);
2169 	int		           (*query_gid)(struct ib_device *device,
2170 						u8 port_num, int index,
2171 						union ib_gid *gid);
2172 	/* When calling add_gid, the HW vendor's driver should
2173 	 * add the gid of device @device at gid index @index of
2174 	 * port @port_num to be @gid. Meta-info of that gid (for example,
2175 	 * the network device related to this gid is available
2176 	 * at @attr. @context allows the HW vendor driver to store extra
2177 	 * information together with a GID entry. The HW vendor may allocate
2178 	 * memory to contain this information and store it in @context when a
2179 	 * new GID entry is written to. Params are consistent until the next
2180 	 * call of add_gid or delete_gid. The function should return 0 on
2181 	 * success or error otherwise. The function could be called
2182 	 * concurrently for different ports. This function is only called
2183 	 * when roce_gid_table is used.
2184 	 */
2185 	int		           (*add_gid)(struct ib_device *device,
2186 					      u8 port_num,
2187 					      unsigned int index,
2188 					      const union ib_gid *gid,
2189 					      const struct ib_gid_attr *attr,
2190 					      void **context);
2191 	/* When calling del_gid, the HW vendor's driver should delete the
2192 	 * gid of device @device at gid index @index of port @port_num.
2193 	 * Upon the deletion of a GID entry, the HW vendor must free any
2194 	 * allocated memory. The caller will clear @context afterwards.
2195 	 * This function is only called when roce_gid_table is used.
2196 	 */
2197 	int		           (*del_gid)(struct ib_device *device,
2198 					      u8 port_num,
2199 					      unsigned int index,
2200 					      void **context);
2201 	int		           (*query_pkey)(struct ib_device *device,
2202 						 u8 port_num, u16 index, u16 *pkey);
2203 	int		           (*modify_device)(struct ib_device *device,
2204 						    int device_modify_mask,
2205 						    struct ib_device_modify *device_modify);
2206 	int		           (*modify_port)(struct ib_device *device,
2207 						  u8 port_num, int port_modify_mask,
2208 						  struct ib_port_modify *port_modify);
2209 	int                        (*alloc_ucontext)(struct ib_ucontext *uctx,
2210 						     struct ib_udata *udata);
2211 	void                       (*dealloc_ucontext)(struct ib_ucontext *context);
2212 	int                        (*mmap)(struct ib_ucontext *context,
2213 					   struct vm_area_struct *vma);
2214 	int                        (*alloc_pd)(struct ib_pd *pd,
2215 					       struct ib_udata *udata);
2216 	void                       (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2217 	int 			   (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr,
2218 						u32 flags, struct ib_udata *udata);
2219 	int                        (*modify_ah)(struct ib_ah *ah,
2220 						struct ib_ah_attr *ah_attr);
2221 	int                        (*query_ah)(struct ib_ah *ah,
2222 					       struct ib_ah_attr *ah_attr);
2223 	void                       (*destroy_ah)(struct ib_ah *ah, u32 flags);
2224 	int 			   (*create_srq)(struct ib_srq *srq,
2225 						 struct ib_srq_init_attr *srq_init_attr,
2226 						 struct ib_udata *udata);
2227 	int                        (*modify_srq)(struct ib_srq *srq,
2228 						 struct ib_srq_attr *srq_attr,
2229 						 enum ib_srq_attr_mask srq_attr_mask,
2230 						 struct ib_udata *udata);
2231 	int                        (*query_srq)(struct ib_srq *srq,
2232 						struct ib_srq_attr *srq_attr);
2233 	void                       (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2234 	int                        (*post_srq_recv)(struct ib_srq *srq,
2235 						    const struct ib_recv_wr *recv_wr,
2236 						    const struct ib_recv_wr **bad_recv_wr);
2237 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2238 						struct ib_qp_init_attr *qp_init_attr,
2239 						struct ib_udata *udata);
2240 	int                        (*modify_qp)(struct ib_qp *qp,
2241 						struct ib_qp_attr *qp_attr,
2242 						int qp_attr_mask,
2243 						struct ib_udata *udata);
2244 	int                        (*query_qp)(struct ib_qp *qp,
2245 					       struct ib_qp_attr *qp_attr,
2246 					       int qp_attr_mask,
2247 					       struct ib_qp_init_attr *qp_init_attr);
2248 	int                        (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2249 	int                        (*post_send)(struct ib_qp *qp,
2250 						const struct ib_send_wr *send_wr,
2251 						const struct ib_send_wr **bad_send_wr);
2252 	int                        (*post_recv)(struct ib_qp *qp,
2253 						const struct ib_recv_wr *recv_wr,
2254 						const struct ib_recv_wr **bad_recv_wr);
2255 	int                        (*create_cq)(struct ib_cq *,
2256 						const struct ib_cq_init_attr *attr,
2257 						struct ib_udata *udata);
2258 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2259 						u16 cq_period);
2260 	void                       (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2261 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2262 						struct ib_udata *udata);
2263 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2264 					      struct ib_wc *wc);
2265 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2266 	int                        (*req_notify_cq)(struct ib_cq *cq,
2267 						    enum ib_cq_notify_flags flags);
2268 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2269 						      int wc_cnt);
2270 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2271 						 int mr_access_flags);
2272 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2273 						  u64 start, u64 length,
2274 						  u64 virt_addr,
2275 						  int mr_access_flags,
2276 						  struct ib_udata *udata);
2277 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2278 						    int flags,
2279 						    u64 start, u64 length,
2280 						    u64 virt_addr,
2281 						    int mr_access_flags,
2282 						    struct ib_pd *pd,
2283 						    struct ib_udata *udata);
2284 	int                        (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2285 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2286 					       u32 max_num_sg, struct ib_udata *udata);
2287 	int			   (*advise_mr)(struct ib_pd *pd,
2288 						enum ib_uverbs_advise_mr_advice advice, u32 flags,
2289 						const struct ib_sge *sg_list, u32 num_sge,
2290 						struct uverbs_attr_bundle *attrs);
2291 	int                        (*map_mr_sg)(struct ib_mr *mr,
2292 						struct scatterlist *sg,
2293 						int sg_nents,
2294 						unsigned int *sg_offset);
2295 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2296 					       enum ib_mw_type type,
2297 					       struct ib_udata *udata);
2298 	int                        (*dealloc_mw)(struct ib_mw *mw);
2299 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2300 						int mr_access_flags,
2301 						struct ib_fmr_attr *fmr_attr);
2302 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2303 						   u64 *page_list, int list_len,
2304 						   u64 iova);
2305 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2306 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2307 	int                        (*attach_mcast)(struct ib_qp *qp,
2308 						   union ib_gid *gid,
2309 						   u16 lid);
2310 	int                        (*detach_mcast)(struct ib_qp *qp,
2311 						   union ib_gid *gid,
2312 						   u16 lid);
2313 	int                        (*process_mad)(struct ib_device *device,
2314 						  int process_mad_flags,
2315 						  u8 port_num,
2316 						  const struct ib_wc *in_wc,
2317 						  const struct ib_grh *in_grh,
2318 						  const struct ib_mad_hdr *in_mad,
2319 						  size_t in_mad_size,
2320 						  struct ib_mad_hdr *out_mad,
2321 						  size_t *out_mad_size,
2322 						  u16 *out_mad_pkey_index);
2323 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2324 						 struct ib_udata *udata);
2325 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2326 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2327 						  struct ib_flow_attr
2328 						  *flow_attr,
2329 						  int domain, struct ib_udata *udata);
2330 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2331 	struct ib_flow_action *(*create_flow_action_esp)(
2332 		struct ib_device *device,
2333 		const struct ib_flow_action_attrs_esp *attr,
2334 		struct uverbs_attr_bundle *attrs);
2335 	int (*destroy_flow_action)(struct ib_flow_action *action);
2336 	int (*modify_flow_action_esp)(
2337 		struct ib_flow_action *action,
2338 		const struct ib_flow_action_attrs_esp *attr,
2339 		struct uverbs_attr_bundle *attrs);
2340 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2341 						      struct ib_mr_status *mr_status);
2342 	/**
2343 	 * This will be called once refcount of an entry in mmap_xa reaches
2344 	 * zero. The type of the memory that was mapped may differ between
2345 	 * entries and is opaque to the rdma_user_mmap interface.
2346 	 * Therefore needs to be implemented by the driver in mmap_free.
2347 	 */
2348 	void			   (*mmap_free)(struct rdma_user_mmap_entry *entry);
2349 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2350 	void			   (*drain_rq)(struct ib_qp *qp);
2351 	void			   (*drain_sq)(struct ib_qp *qp);
2352 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2353 							int state);
2354 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2355 						   struct ifla_vf_info *ivf);
2356 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2357 						   struct ifla_vf_stats *stats);
2358 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2359 						  int type);
2360 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2361 						struct ib_wq_init_attr *init_attr,
2362 						struct ib_udata *udata);
2363 	void			   (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2364 	int			   (*modify_wq)(struct ib_wq *wq,
2365 						struct ib_wq_attr *attr,
2366 						u32 wq_attr_mask,
2367 						struct ib_udata *udata);
2368 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2369 							   struct ib_rwq_ind_table_init_attr *init_attr,
2370 							   struct ib_udata *udata);
2371 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2372 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2373 				  struct ib_ucontext *context,
2374 				  struct ib_dm_alloc_attr *attr,
2375 				  struct uverbs_attr_bundle *attrs);
2376 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2377 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2378 				   struct ib_dm_mr_attr *attr,
2379 				   struct uverbs_attr_bundle *attrs);
2380 	struct ib_counters *(*create_counters)(
2381 		struct ib_device *device, struct uverbs_attr_bundle *attrs);
2382 	int (*destroy_counters)(struct ib_counters *counters);
2383 	int (*read_counters)(struct ib_counters *counters,
2384 			     struct ib_counters_read_attr *counters_read_attr,
2385 			     struct uverbs_attr_bundle *attrs);
2386 	struct ib_dma_mapping_ops   *dma_ops;
2387 
2388 	struct module               *owner;
2389 	struct device                dev;
2390 	struct kobject               *ports_parent;
2391 	struct list_head             port_list;
2392 
2393 	enum {
2394 		IB_DEV_UNINITIALIZED,
2395 		IB_DEV_REGISTERED,
2396 		IB_DEV_UNREGISTERED
2397 	}                            reg_state;
2398 
2399 	int			     uverbs_abi_ver;
2400 	u64			     uverbs_cmd_mask;
2401 	u64			     uverbs_ex_cmd_mask;
2402 
2403 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2404 	__be64			     node_guid;
2405 	u32			     local_dma_lkey;
2406 	u16                          is_switch:1;
2407 	u8                           node_type;
2408 	u8                           phys_port_cnt;
2409 	struct ib_device_attr        attrs;
2410 	struct attribute_group	     *hw_stats_ag;
2411 	struct rdma_hw_stats         *hw_stats;
2412 
2413 	const struct uapi_definition   *driver_def;
2414 
2415 	/**
2416 	 * The following mandatory functions are used only at device
2417 	 * registration.  Keep functions such as these at the end of this
2418 	 * structure to avoid cache line misses when accessing struct ib_device
2419 	 * in fast paths.
2420 	 */
2421 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2422 	void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2423 };
2424 
2425 struct ib_client {
2426 	char  *name;
2427 	void (*add)   (struct ib_device *);
2428 	void (*remove)(struct ib_device *, void *client_data);
2429 
2430 	/* Returns the net_dev belonging to this ib_client and matching the
2431 	 * given parameters.
2432 	 * @dev:	 An RDMA device that the net_dev use for communication.
2433 	 * @port:	 A physical port number on the RDMA device.
2434 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2435 	 * @gid:	 A GID that the net_dev uses to communicate.
2436 	 * @addr:	 An IP address the net_dev is configured with.
2437 	 * @client_data: The device's client data set by ib_set_client_data().
2438 	 *
2439 	 * An ib_client that implements a net_dev on top of RDMA devices
2440 	 * (such as IP over IB) should implement this callback, allowing the
2441 	 * rdma_cm module to find the right net_dev for a given request.
2442 	 *
2443 	 * The caller is responsible for calling dev_put on the returned
2444 	 * netdev. */
2445 	struct ifnet *(*get_net_dev_by_params)(
2446 			struct ib_device *dev,
2447 			u8 port,
2448 			u16 pkey,
2449 			const union ib_gid *gid,
2450 			const struct sockaddr *addr,
2451 			void *client_data);
2452 	struct list_head list;
2453 };
2454 
2455 struct ib_device *ib_alloc_device(size_t size);
2456 void ib_dealloc_device(struct ib_device *device);
2457 
2458 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2459 
2460 int ib_register_device(struct ib_device *device,
2461 		       int (*port_callback)(struct ib_device *,
2462 					    u8, struct kobject *));
2463 void ib_unregister_device(struct ib_device *device);
2464 
2465 int ib_register_client   (struct ib_client *client);
2466 void ib_unregister_client(struct ib_client *client);
2467 
2468 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2469 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2470 			 void *data);
2471 
2472 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2473 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2474 		      struct rdma_user_mmap_entry *entry);
2475 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2476 				struct rdma_user_mmap_entry *entry,
2477 				size_t length);
2478 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2479 				      struct rdma_user_mmap_entry *entry,
2480 				      size_t length, u32 min_pgoff,
2481 				      u32 max_pgoff);
2482 
2483 struct rdma_user_mmap_entry *
2484 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2485 			       unsigned long pgoff);
2486 struct rdma_user_mmap_entry *
2487 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2488 			 struct vm_area_struct *vma);
2489 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2490 
2491 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2492 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2493 {
2494 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2495 }
2496 
2497 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2498 {
2499 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2500 }
2501 
2502 static inline bool ib_is_buffer_cleared(const void __user *p,
2503 					size_t len)
2504 {
2505 	bool ret;
2506 	u8 *buf;
2507 
2508 	if (len > USHRT_MAX)
2509 		return false;
2510 
2511 	buf = memdup_user(p, len);
2512 	if (IS_ERR(buf))
2513 		return false;
2514 
2515 	ret = !memchr_inv(buf, 0, len);
2516 	kfree(buf);
2517 	return ret;
2518 }
2519 
2520 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2521 				       size_t offset,
2522 				       size_t len)
2523 {
2524 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2525 }
2526 
2527 /**
2528  * ib_is_destroy_retryable - Check whether the uobject destruction
2529  * is retryable.
2530  * @ret: The initial destruction return code
2531  * @why: remove reason
2532  * @uobj: The uobject that is destroyed
2533  *
2534  * This function is a helper function that IB layer and low-level drivers
2535  * can use to consider whether the destruction of the given uobject is
2536  * retry-able.
2537  * It checks the original return code, if it wasn't success the destruction
2538  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2539  * the remove reason. (i.e. why).
2540  * Must be called with the object locked for destroy.
2541  */
2542 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2543 					   struct ib_uobject *uobj)
2544 {
2545 	return ret && (why == RDMA_REMOVE_DESTROY ||
2546 		       uobj->context->cleanup_retryable);
2547 }
2548 
2549 /**
2550  * ib_destroy_usecnt - Called during destruction to check the usecnt
2551  * @usecnt: The usecnt atomic
2552  * @why: remove reason
2553  * @uobj: The uobject that is destroyed
2554  *
2555  * Non-zero usecnts will block destruction unless destruction was triggered by
2556  * a ucontext cleanup.
2557  */
2558 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2559 				    enum rdma_remove_reason why,
2560 				    struct ib_uobject *uobj)
2561 {
2562 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2563 		return -EBUSY;
2564 	return 0;
2565 }
2566 
2567 /**
2568  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2569  * contains all required attributes and no attributes not allowed for
2570  * the given QP state transition.
2571  * @cur_state: Current QP state
2572  * @next_state: Next QP state
2573  * @type: QP type
2574  * @mask: Mask of supplied QP attributes
2575  *
2576  * This function is a helper function that a low-level driver's
2577  * modify_qp method can use to validate the consumer's input.  It
2578  * checks that cur_state and next_state are valid QP states, that a
2579  * transition from cur_state to next_state is allowed by the IB spec,
2580  * and that the attribute mask supplied is allowed for the transition.
2581  */
2582 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2583 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2584 
2585 int ib_register_event_handler  (struct ib_event_handler *event_handler);
2586 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2587 void ib_dispatch_event(struct ib_event *event);
2588 
2589 int ib_query_port(struct ib_device *device,
2590 		  u8 port_num, struct ib_port_attr *port_attr);
2591 
2592 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2593 					       u8 port_num);
2594 
2595 /**
2596  * rdma_cap_ib_switch - Check if the device is IB switch
2597  * @device: Device to check
2598  *
2599  * Device driver is responsible for setting is_switch bit on
2600  * in ib_device structure at init time.
2601  *
2602  * Return: true if the device is IB switch.
2603  */
2604 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2605 {
2606 	return device->is_switch;
2607 }
2608 
2609 /**
2610  * rdma_start_port - Return the first valid port number for the device
2611  * specified
2612  *
2613  * @device: Device to be checked
2614  *
2615  * Return start port number
2616  */
2617 static inline u8 rdma_start_port(const struct ib_device *device)
2618 {
2619 	return rdma_cap_ib_switch(device) ? 0 : 1;
2620 }
2621 
2622 /**
2623  * rdma_end_port - Return the last valid port number for the device
2624  * specified
2625  *
2626  * @device: Device to be checked
2627  *
2628  * Return last port number
2629  */
2630 static inline u8 rdma_end_port(const struct ib_device *device)
2631 {
2632 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2633 }
2634 
2635 static inline int rdma_is_port_valid(const struct ib_device *device,
2636 				     unsigned int port)
2637 {
2638 	return (port >= rdma_start_port(device) &&
2639 		port <= rdma_end_port(device));
2640 }
2641 
2642 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2643 {
2644 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2645 }
2646 
2647 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2648 {
2649 	return device->port_immutable[port_num].core_cap_flags &
2650 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2651 }
2652 
2653 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2654 {
2655 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2656 }
2657 
2658 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2659 {
2660 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2661 }
2662 
2663 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2664 {
2665 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2666 }
2667 
2668 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2669 {
2670 	return rdma_protocol_ib(device, port_num) ||
2671 		rdma_protocol_roce(device, port_num);
2672 }
2673 
2674 /**
2675  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2676  * Management Datagrams.
2677  * @device: Device to check
2678  * @port_num: Port number to check
2679  *
2680  * Management Datagrams (MAD) are a required part of the InfiniBand
2681  * specification and are supported on all InfiniBand devices.  A slightly
2682  * extended version are also supported on OPA interfaces.
2683  *
2684  * Return: true if the port supports sending/receiving of MAD packets.
2685  */
2686 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2687 {
2688 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2689 }
2690 
2691 /**
2692  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2693  * Management Datagrams.
2694  * @device: Device to check
2695  * @port_num: Port number to check
2696  *
2697  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2698  * datagrams with their own versions.  These OPA MADs share many but not all of
2699  * the characteristics of InfiniBand MADs.
2700  *
2701  * OPA MADs differ in the following ways:
2702  *
2703  *    1) MADs are variable size up to 2K
2704  *       IBTA defined MADs remain fixed at 256 bytes
2705  *    2) OPA SMPs must carry valid PKeys
2706  *    3) OPA SMP packets are a different format
2707  *
2708  * Return: true if the port supports OPA MAD packet formats.
2709  */
2710 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2711 {
2712 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2713 		== RDMA_CORE_CAP_OPA_MAD;
2714 }
2715 
2716 /**
2717  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2718  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2719  * @device: Device to check
2720  * @port_num: Port number to check
2721  *
2722  * Each InfiniBand node is required to provide a Subnet Management Agent
2723  * that the subnet manager can access.  Prior to the fabric being fully
2724  * configured by the subnet manager, the SMA is accessed via a well known
2725  * interface called the Subnet Management Interface (SMI).  This interface
2726  * uses directed route packets to communicate with the SM to get around the
2727  * chicken and egg problem of the SM needing to know what's on the fabric
2728  * in order to configure the fabric, and needing to configure the fabric in
2729  * order to send packets to the devices on the fabric.  These directed
2730  * route packets do not need the fabric fully configured in order to reach
2731  * their destination.  The SMI is the only method allowed to send
2732  * directed route packets on an InfiniBand fabric.
2733  *
2734  * Return: true if the port provides an SMI.
2735  */
2736 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2737 {
2738 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2739 }
2740 
2741 /**
2742  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2743  * Communication Manager.
2744  * @device: Device to check
2745  * @port_num: Port number to check
2746  *
2747  * The InfiniBand Communication Manager is one of many pre-defined General
2748  * Service Agents (GSA) that are accessed via the General Service
2749  * Interface (GSI).  It's role is to facilitate establishment of connections
2750  * between nodes as well as other management related tasks for established
2751  * connections.
2752  *
2753  * Return: true if the port supports an IB CM (this does not guarantee that
2754  * a CM is actually running however).
2755  */
2756 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2757 {
2758 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2759 }
2760 
2761 /**
2762  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2763  * Communication Manager.
2764  * @device: Device to check
2765  * @port_num: Port number to check
2766  *
2767  * Similar to above, but specific to iWARP connections which have a different
2768  * managment protocol than InfiniBand.
2769  *
2770  * Return: true if the port supports an iWARP CM (this does not guarantee that
2771  * a CM is actually running however).
2772  */
2773 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2774 {
2775 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2776 }
2777 
2778 /**
2779  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2780  * Subnet Administration.
2781  * @device: Device to check
2782  * @port_num: Port number to check
2783  *
2784  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2785  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2786  * fabrics, devices should resolve routes to other hosts by contacting the
2787  * SA to query the proper route.
2788  *
2789  * Return: true if the port should act as a client to the fabric Subnet
2790  * Administration interface.  This does not imply that the SA service is
2791  * running locally.
2792  */
2793 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2794 {
2795 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2796 }
2797 
2798 /**
2799  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2800  * Multicast.
2801  * @device: Device to check
2802  * @port_num: Port number to check
2803  *
2804  * InfiniBand multicast registration is more complex than normal IPv4 or
2805  * IPv6 multicast registration.  Each Host Channel Adapter must register
2806  * with the Subnet Manager when it wishes to join a multicast group.  It
2807  * should do so only once regardless of how many queue pairs it subscribes
2808  * to this group.  And it should leave the group only after all queue pairs
2809  * attached to the group have been detached.
2810  *
2811  * Return: true if the port must undertake the additional adminstrative
2812  * overhead of registering/unregistering with the SM and tracking of the
2813  * total number of queue pairs attached to the multicast group.
2814  */
2815 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2816 {
2817 	return rdma_cap_ib_sa(device, port_num);
2818 }
2819 
2820 /**
2821  * rdma_cap_af_ib - Check if the port of device has the capability
2822  * Native Infiniband Address.
2823  * @device: Device to check
2824  * @port_num: Port number to check
2825  *
2826  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2827  * GID.  RoCE uses a different mechanism, but still generates a GID via
2828  * a prescribed mechanism and port specific data.
2829  *
2830  * Return: true if the port uses a GID address to identify devices on the
2831  * network.
2832  */
2833 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2834 {
2835 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2836 }
2837 
2838 /**
2839  * rdma_cap_eth_ah - Check if the port of device has the capability
2840  * Ethernet Address Handle.
2841  * @device: Device to check
2842  * @port_num: Port number to check
2843  *
2844  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2845  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2846  * port.  Normally, packet headers are generated by the sending host
2847  * adapter, but when sending connectionless datagrams, we must manually
2848  * inject the proper headers for the fabric we are communicating over.
2849  *
2850  * Return: true if we are running as a RoCE port and must force the
2851  * addition of a Global Route Header built from our Ethernet Address
2852  * Handle into our header list for connectionless packets.
2853  */
2854 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2855 {
2856 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2857 }
2858 
2859 /**
2860  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2861  *
2862  * @device: Device
2863  * @port_num: Port number
2864  *
2865  * This MAD size includes the MAD headers and MAD payload.  No other headers
2866  * are included.
2867  *
2868  * Return the max MAD size required by the Port.  Will return 0 if the port
2869  * does not support MADs
2870  */
2871 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2872 {
2873 	return device->port_immutable[port_num].max_mad_size;
2874 }
2875 
2876 /**
2877  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2878  * @device: Device to check
2879  * @port_num: Port number to check
2880  *
2881  * RoCE GID table mechanism manages the various GIDs for a device.
2882  *
2883  * NOTE: if allocating the port's GID table has failed, this call will still
2884  * return true, but any RoCE GID table API will fail.
2885  *
2886  * Return: true if the port uses RoCE GID table mechanism in order to manage
2887  * its GIDs.
2888  */
2889 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2890 					   u8 port_num)
2891 {
2892 	return rdma_protocol_roce(device, port_num) &&
2893 		device->add_gid && device->del_gid;
2894 }
2895 
2896 /*
2897  * Check if the device supports READ W/ INVALIDATE.
2898  */
2899 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2900 {
2901 	/*
2902 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2903 	 * has support for it yet.
2904 	 */
2905 	return rdma_protocol_iwarp(dev, port_num);
2906 }
2907 
2908 int ib_query_gid(struct ib_device *device,
2909 		 u8 port_num, int index, union ib_gid *gid,
2910 		 struct ib_gid_attr *attr);
2911 
2912 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2913 			 int state);
2914 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2915 		     struct ifla_vf_info *info);
2916 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2917 		    struct ifla_vf_stats *stats);
2918 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2919 		   int type);
2920 
2921 int ib_query_pkey(struct ib_device *device,
2922 		  u8 port_num, u16 index, u16 *pkey);
2923 
2924 int ib_modify_device(struct ib_device *device,
2925 		     int device_modify_mask,
2926 		     struct ib_device_modify *device_modify);
2927 
2928 int ib_modify_port(struct ib_device *device,
2929 		   u8 port_num, int port_modify_mask,
2930 		   struct ib_port_modify *port_modify);
2931 
2932 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2933 		enum ib_gid_type gid_type, struct ifnet *ndev,
2934 		u8 *port_num, u16 *index);
2935 
2936 int ib_find_pkey(struct ib_device *device,
2937 		 u8 port_num, u16 pkey, u16 *index);
2938 
2939 enum ib_pd_flags {
2940 	/*
2941 	 * Create a memory registration for all memory in the system and place
2942 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2943 	 * ULPs to avoid the overhead of dynamic MRs.
2944 	 *
2945 	 * This flag is generally considered unsafe and must only be used in
2946 	 * extremly trusted environments.  Every use of it will log a warning
2947 	 * in the kernel log.
2948 	 */
2949 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2950 };
2951 
2952 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2953 		const char *caller);
2954 #define ib_alloc_pd(device, flags) \
2955 	__ib_alloc_pd((device), (flags), __func__)
2956 
2957 /**
2958  * ib_dealloc_pd_user - Deallocate kernel/user PD
2959  * @pd: The protection domain
2960  * @udata: Valid user data or NULL for kernel objects
2961  */
2962 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
2963 
2964 /**
2965  * ib_dealloc_pd - Deallocate kernel PD
2966  * @pd: The protection domain
2967  *
2968  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
2969  */
2970 static inline void ib_dealloc_pd(struct ib_pd *pd)
2971 {
2972 	ib_dealloc_pd_user(pd, NULL);
2973 }
2974 
2975 enum rdma_create_ah_flags {
2976 	/* In a sleepable context */
2977 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
2978 };
2979 
2980 /**
2981  * ib_create_ah - Creates an address handle for the given address vector.
2982  * @pd: The protection domain associated with the address handle.
2983  * @ah_attr: The attributes of the address vector.
2984  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
2985  *
2986  * The address handle is used to reference a local or global destination
2987  * in all UD QP post sends.
2988  */
2989 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
2990 			   u32 flags);
2991 
2992 /**
2993  * ib_create_user_ah - Creates an address handle for the given address vector.
2994  * It resolves destination mac address for ah attribute of RoCE type.
2995  * @pd: The protection domain associated with the address handle.
2996  * @ah_attr: The attributes of the address vector.
2997  * @udata: pointer to user's input output buffer information need by
2998  *         provider driver.
2999  *
3000  * It returns 0 on success and returns appropriate error code on error.
3001  * The address handle is used to reference a local or global destination
3002  * in all UD QP post sends.
3003  */
3004 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
3005 				struct ib_ah_attr *ah_attr,
3006 				struct ib_udata *udata);
3007 
3008 /**
3009  * ib_init_ah_from_wc - Initializes address handle attributes from a
3010  *   work completion.
3011  * @device: Device on which the received message arrived.
3012  * @port_num: Port on which the received message arrived.
3013  * @wc: Work completion associated with the received message.
3014  * @grh: References the received global route header.  This parameter is
3015  *   ignored unless the work completion indicates that the GRH is valid.
3016  * @ah_attr: Returned attributes that can be used when creating an address
3017  *   handle for replying to the message.
3018  */
3019 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
3020 		       const struct ib_wc *wc, const struct ib_grh *grh,
3021 		       struct ib_ah_attr *ah_attr);
3022 
3023 /**
3024  * ib_create_ah_from_wc - Creates an address handle associated with the
3025  *   sender of the specified work completion.
3026  * @pd: The protection domain associated with the address handle.
3027  * @wc: Work completion information associated with a received message.
3028  * @grh: References the received global route header.  This parameter is
3029  *   ignored unless the work completion indicates that the GRH is valid.
3030  * @port_num: The outbound port number to associate with the address.
3031  *
3032  * The address handle is used to reference a local or global destination
3033  * in all UD QP post sends.
3034  */
3035 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3036 				   const struct ib_grh *grh, u8 port_num);
3037 
3038 /**
3039  * ib_modify_ah - Modifies the address vector associated with an address
3040  *   handle.
3041  * @ah: The address handle to modify.
3042  * @ah_attr: The new address vector attributes to associate with the
3043  *   address handle.
3044  */
3045 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3046 
3047 /**
3048  * ib_query_ah - Queries the address vector associated with an address
3049  *   handle.
3050  * @ah: The address handle to query.
3051  * @ah_attr: The address vector attributes associated with the address
3052  *   handle.
3053  */
3054 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3055 
3056 enum rdma_destroy_ah_flags {
3057 	/* In a sleepable context */
3058 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3059 };
3060 
3061 /**
3062  * ib_destroy_ah_user - Destroys an address handle.
3063  * @ah: The address handle to destroy.
3064  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3065  * @udata: Valid user data or NULL for kernel objects
3066  */
3067 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3068 
3069 /**
3070  * rdma_destroy_ah - Destroys an kernel address handle.
3071  * @ah: The address handle to destroy.
3072  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3073  *
3074  * NOTE: for user ah use ib_destroy_ah_user with valid udata!
3075  */
3076 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags)
3077 {
3078 	return ib_destroy_ah_user(ah, flags, NULL);
3079 }
3080 
3081 /**
3082  * ib_create_srq - Creates a SRQ associated with the specified protection
3083  *   domain.
3084  * @pd: The protection domain associated with the SRQ.
3085  * @srq_init_attr: A list of initial attributes required to create the
3086  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3087  *   the actual capabilities of the created SRQ.
3088  *
3089  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3090  * requested size of the SRQ, and set to the actual values allocated
3091  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3092  * will always be at least as large as the requested values.
3093  */
3094 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3095 			     struct ib_srq_init_attr *srq_init_attr);
3096 
3097 /**
3098  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3099  * @srq: The SRQ to modify.
3100  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3101  *   the current values of selected SRQ attributes are returned.
3102  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3103  *   are being modified.
3104  *
3105  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3106  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3107  * the number of receives queued drops below the limit.
3108  */
3109 int ib_modify_srq(struct ib_srq *srq,
3110 		  struct ib_srq_attr *srq_attr,
3111 		  enum ib_srq_attr_mask srq_attr_mask);
3112 
3113 /**
3114  * ib_query_srq - Returns the attribute list and current values for the
3115  *   specified SRQ.
3116  * @srq: The SRQ to query.
3117  * @srq_attr: The attributes of the specified SRQ.
3118  */
3119 int ib_query_srq(struct ib_srq *srq,
3120 		 struct ib_srq_attr *srq_attr);
3121 
3122 /**
3123  * ib_destroy_srq_user - Destroys the specified SRQ.
3124  * @srq: The SRQ to destroy.
3125  * @udata: Valid user data or NULL for kernel objects
3126  */
3127 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3128 
3129 /**
3130  * ib_destroy_srq - Destroys the specified kernel SRQ.
3131  * @srq: The SRQ to destroy.
3132  *
3133  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3134  */
3135 static inline int ib_destroy_srq(struct ib_srq *srq)
3136 {
3137 	return ib_destroy_srq_user(srq, NULL);
3138 }
3139 
3140 /**
3141  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3142  * @srq: The SRQ to post the work request on.
3143  * @recv_wr: A list of work requests to post on the receive queue.
3144  * @bad_recv_wr: On an immediate failure, this parameter will reference
3145  *   the work request that failed to be posted on the QP.
3146  */
3147 static inline int ib_post_srq_recv(struct ib_srq *srq,
3148 				   const struct ib_recv_wr *recv_wr,
3149 				   const struct ib_recv_wr **bad_recv_wr)
3150 {
3151 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3152 }
3153 
3154 /**
3155  * ib_create_qp - Creates a QP associated with the specified protection
3156  *   domain.
3157  * @pd: The protection domain associated with the QP.
3158  * @qp_init_attr: A list of initial attributes required to create the
3159  *   QP.  If QP creation succeeds, then the attributes are updated to
3160  *   the actual capabilities of the created QP.
3161  */
3162 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3163 			   struct ib_qp_init_attr *qp_init_attr);
3164 
3165 /**
3166  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3167  * @qp: The QP to modify.
3168  * @attr: On input, specifies the QP attributes to modify.  On output,
3169  *   the current values of selected QP attributes are returned.
3170  * @attr_mask: A bit-mask used to specify which attributes of the QP
3171  *   are being modified.
3172  * @udata: pointer to user's input output buffer information
3173  *   are being modified.
3174  * It returns 0 on success and returns appropriate error code on error.
3175  */
3176 int ib_modify_qp_with_udata(struct ib_qp *qp,
3177 			    struct ib_qp_attr *attr,
3178 			    int attr_mask,
3179 			    struct ib_udata *udata);
3180 
3181 /**
3182  * ib_modify_qp - Modifies the attributes for the specified QP and then
3183  *   transitions the QP to the given state.
3184  * @qp: The QP to modify.
3185  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3186  *   the current values of selected QP attributes are returned.
3187  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3188  *   are being modified.
3189  */
3190 int ib_modify_qp(struct ib_qp *qp,
3191 		 struct ib_qp_attr *qp_attr,
3192 		 int qp_attr_mask);
3193 
3194 /**
3195  * ib_query_qp - Returns the attribute list and current values for the
3196  *   specified QP.
3197  * @qp: The QP to query.
3198  * @qp_attr: The attributes of the specified QP.
3199  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3200  * @qp_init_attr: Additional attributes of the selected QP.
3201  *
3202  * The qp_attr_mask may be used to limit the query to gathering only the
3203  * selected attributes.
3204  */
3205 int ib_query_qp(struct ib_qp *qp,
3206 		struct ib_qp_attr *qp_attr,
3207 		int qp_attr_mask,
3208 		struct ib_qp_init_attr *qp_init_attr);
3209 
3210 /**
3211  * ib_destroy_qp - Destroys the specified QP.
3212  * @qp: The QP to destroy.
3213  * @udata: Valid udata or NULL for kernel objects
3214  */
3215 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3216 
3217 /**
3218  * ib_destroy_qp - Destroys the specified kernel QP.
3219  * @qp: The QP to destroy.
3220  *
3221  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3222  */
3223 static inline int ib_destroy_qp(struct ib_qp *qp)
3224 {
3225 	return ib_destroy_qp_user(qp, NULL);
3226 }
3227 
3228 /**
3229  * ib_open_qp - Obtain a reference to an existing sharable QP.
3230  * @xrcd - XRC domain
3231  * @qp_open_attr: Attributes identifying the QP to open.
3232  *
3233  * Returns a reference to a sharable QP.
3234  */
3235 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3236 			 struct ib_qp_open_attr *qp_open_attr);
3237 
3238 /**
3239  * ib_close_qp - Release an external reference to a QP.
3240  * @qp: The QP handle to release
3241  *
3242  * The opened QP handle is released by the caller.  The underlying
3243  * shared QP is not destroyed until all internal references are released.
3244  */
3245 int ib_close_qp(struct ib_qp *qp);
3246 
3247 /**
3248  * ib_post_send - Posts a list of work requests to the send queue of
3249  *   the specified QP.
3250  * @qp: The QP to post the work request on.
3251  * @send_wr: A list of work requests to post on the send queue.
3252  * @bad_send_wr: On an immediate failure, this parameter will reference
3253  *   the work request that failed to be posted on the QP.
3254  *
3255  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3256  * error is returned, the QP state shall not be affected,
3257  * ib_post_send() will return an immediate error after queueing any
3258  * earlier work requests in the list.
3259  */
3260 static inline int ib_post_send(struct ib_qp *qp,
3261 			       const struct ib_send_wr *send_wr,
3262 			       const struct ib_send_wr **bad_send_wr)
3263 {
3264 	return qp->device->post_send(qp, send_wr, bad_send_wr);
3265 }
3266 
3267 /**
3268  * ib_post_recv - Posts a list of work requests to the receive queue of
3269  *   the specified QP.
3270  * @qp: The QP to post the work request on.
3271  * @recv_wr: A list of work requests to post on the receive queue.
3272  * @bad_recv_wr: On an immediate failure, this parameter will reference
3273  *   the work request that failed to be posted on the QP.
3274  */
3275 static inline int ib_post_recv(struct ib_qp *qp,
3276 			       const struct ib_recv_wr *recv_wr,
3277 			       const struct ib_recv_wr **bad_recv_wr)
3278 {
3279 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3280 }
3281 
3282 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3283 				 int nr_cqe, int comp_vector,
3284 				 enum ib_poll_context poll_ctx,
3285 				 const char *caller, struct ib_udata *udata);
3286 
3287 /**
3288  * ib_alloc_cq_user: Allocate kernel/user CQ
3289  * @dev: The IB device
3290  * @private: Private data attached to the CQE
3291  * @nr_cqe: Number of CQEs in the CQ
3292  * @comp_vector: Completion vector used for the IRQs
3293  * @poll_ctx: Context used for polling the CQ
3294  * @udata: Valid user data or NULL for kernel objects
3295  */
3296 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3297 					     void *private, int nr_cqe,
3298 					     int comp_vector,
3299 					     enum ib_poll_context poll_ctx,
3300 					     struct ib_udata *udata)
3301 {
3302 	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3303 				  "ibcore", udata);
3304 }
3305 
3306 /**
3307  * ib_alloc_cq: Allocate kernel CQ
3308  * @dev: The IB device
3309  * @private: Private data attached to the CQE
3310  * @nr_cqe: Number of CQEs in the CQ
3311  * @comp_vector: Completion vector used for the IRQs
3312  * @poll_ctx: Context used for polling the CQ
3313  *
3314  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3315  */
3316 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3317 					int nr_cqe, int comp_vector,
3318 					enum ib_poll_context poll_ctx)
3319 {
3320 	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3321 				NULL);
3322 }
3323 
3324 /**
3325  * ib_free_cq_user - Free kernel/user CQ
3326  * @cq: The CQ to free
3327  * @udata: Valid user data or NULL for kernel objects
3328  */
3329 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3330 
3331 /**
3332  * ib_free_cq - Free kernel CQ
3333  * @cq: The CQ to free
3334  *
3335  * NOTE: for user cq use ib_free_cq_user with valid udata!
3336  */
3337 static inline void ib_free_cq(struct ib_cq *cq)
3338 {
3339 	ib_free_cq_user(cq, NULL);
3340 }
3341 
3342 /**
3343  * ib_create_cq - Creates a CQ on the specified device.
3344  * @device: The device on which to create the CQ.
3345  * @comp_handler: A user-specified callback that is invoked when a
3346  *   completion event occurs on the CQ.
3347  * @event_handler: A user-specified callback that is invoked when an
3348  *   asynchronous event not associated with a completion occurs on the CQ.
3349  * @cq_context: Context associated with the CQ returned to the user via
3350  *   the associated completion and event handlers.
3351  * @cq_attr: The attributes the CQ should be created upon.
3352  *
3353  * Users can examine the cq structure to determine the actual CQ size.
3354  */
3355 struct ib_cq *__ib_create_cq(struct ib_device *device,
3356 			     ib_comp_handler comp_handler,
3357 			     void (*event_handler)(struct ib_event *, void *),
3358 			     void *cq_context,
3359 			     const struct ib_cq_init_attr *cq_attr,
3360 			     const char *caller);
3361 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3362 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore")
3363 
3364 /**
3365  * ib_resize_cq - Modifies the capacity of the CQ.
3366  * @cq: The CQ to resize.
3367  * @cqe: The minimum size of the CQ.
3368  *
3369  * Users can examine the cq structure to determine the actual CQ size.
3370  */
3371 int ib_resize_cq(struct ib_cq *cq, int cqe);
3372 
3373 /**
3374  * ib_modify_cq - Modifies moderation params of the CQ
3375  * @cq: The CQ to modify.
3376  * @cq_count: number of CQEs that will trigger an event
3377  * @cq_period: max period of time in usec before triggering an event
3378  *
3379  */
3380 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3381 
3382 /**
3383  * ib_destroy_cq_user - Destroys the specified CQ.
3384  * @cq: The CQ to destroy.
3385  * @udata: Valid user data or NULL for kernel objects
3386  */
3387 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3388 
3389 /**
3390  * ib_destroy_cq - Destroys the specified kernel CQ.
3391  * @cq: The CQ to destroy.
3392  *
3393  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3394  */
3395 static inline void ib_destroy_cq(struct ib_cq *cq)
3396 {
3397 	ib_destroy_cq_user(cq, NULL);
3398 }
3399 
3400 /**
3401  * ib_poll_cq - poll a CQ for completion(s)
3402  * @cq:the CQ being polled
3403  * @num_entries:maximum number of completions to return
3404  * @wc:array of at least @num_entries &struct ib_wc where completions
3405  *   will be returned
3406  *
3407  * Poll a CQ for (possibly multiple) completions.  If the return value
3408  * is < 0, an error occurred.  If the return value is >= 0, it is the
3409  * number of completions returned.  If the return value is
3410  * non-negative and < num_entries, then the CQ was emptied.
3411  */
3412 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3413 			     struct ib_wc *wc)
3414 {
3415 	return cq->device->poll_cq(cq, num_entries, wc);
3416 }
3417 
3418 /**
3419  * ib_peek_cq - Returns the number of unreaped completions currently
3420  *   on the specified CQ.
3421  * @cq: The CQ to peek.
3422  * @wc_cnt: A minimum number of unreaped completions to check for.
3423  *
3424  * If the number of unreaped completions is greater than or equal to wc_cnt,
3425  * this function returns wc_cnt, otherwise, it returns the actual number of
3426  * unreaped completions.
3427  */
3428 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3429 
3430 /**
3431  * ib_req_notify_cq - Request completion notification on a CQ.
3432  * @cq: The CQ to generate an event for.
3433  * @flags:
3434  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3435  *   to request an event on the next solicited event or next work
3436  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3437  *   may also be |ed in to request a hint about missed events, as
3438  *   described below.
3439  *
3440  * Return Value:
3441  *    < 0 means an error occurred while requesting notification
3442  *   == 0 means notification was requested successfully, and if
3443  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3444  *        were missed and it is safe to wait for another event.  In
3445  *        this case is it guaranteed that any work completions added
3446  *        to the CQ since the last CQ poll will trigger a completion
3447  *        notification event.
3448  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3449  *        in.  It means that the consumer must poll the CQ again to
3450  *        make sure it is empty to avoid missing an event because of a
3451  *        race between requesting notification and an entry being
3452  *        added to the CQ.  This return value means it is possible
3453  *        (but not guaranteed) that a work completion has been added
3454  *        to the CQ since the last poll without triggering a
3455  *        completion notification event.
3456  */
3457 static inline int ib_req_notify_cq(struct ib_cq *cq,
3458 				   enum ib_cq_notify_flags flags)
3459 {
3460 	return cq->device->req_notify_cq(cq, flags);
3461 }
3462 
3463 /**
3464  * ib_req_ncomp_notif - Request completion notification when there are
3465  *   at least the specified number of unreaped completions on the CQ.
3466  * @cq: The CQ to generate an event for.
3467  * @wc_cnt: The number of unreaped completions that should be on the
3468  *   CQ before an event is generated.
3469  */
3470 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3471 {
3472 	return cq->device->req_ncomp_notif ?
3473 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3474 		-ENOSYS;
3475 }
3476 
3477 /**
3478  * ib_dma_mapping_error - check a DMA addr for error
3479  * @dev: The device for which the dma_addr was created
3480  * @dma_addr: The DMA address to check
3481  */
3482 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3483 {
3484 	if (dev->dma_ops)
3485 		return dev->dma_ops->mapping_error(dev, dma_addr);
3486 	return dma_mapping_error(dev->dma_device, dma_addr);
3487 }
3488 
3489 /**
3490  * ib_dma_map_single - Map a kernel virtual address to DMA address
3491  * @dev: The device for which the dma_addr is to be created
3492  * @cpu_addr: The kernel virtual address
3493  * @size: The size of the region in bytes
3494  * @direction: The direction of the DMA
3495  */
3496 static inline u64 ib_dma_map_single(struct ib_device *dev,
3497 				    void *cpu_addr, size_t size,
3498 				    enum dma_data_direction direction)
3499 {
3500 	if (dev->dma_ops)
3501 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3502 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3503 }
3504 
3505 /**
3506  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3507  * @dev: The device for which the DMA address was created
3508  * @addr: The DMA address
3509  * @size: The size of the region in bytes
3510  * @direction: The direction of the DMA
3511  */
3512 static inline void ib_dma_unmap_single(struct ib_device *dev,
3513 				       u64 addr, size_t size,
3514 				       enum dma_data_direction direction)
3515 {
3516 	if (dev->dma_ops)
3517 		dev->dma_ops->unmap_single(dev, addr, size, direction);
3518 	else
3519 		dma_unmap_single(dev->dma_device, addr, size, direction);
3520 }
3521 
3522 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3523 					  void *cpu_addr, size_t size,
3524 					  enum dma_data_direction direction,
3525 					  struct dma_attrs *dma_attrs)
3526 {
3527 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3528 				    direction, dma_attrs);
3529 }
3530 
3531 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3532 					     u64 addr, size_t size,
3533 					     enum dma_data_direction direction,
3534 					     struct dma_attrs *dma_attrs)
3535 {
3536 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
3537 				      direction, dma_attrs);
3538 }
3539 
3540 /**
3541  * ib_dma_map_page - Map a physical page to DMA address
3542  * @dev: The device for which the dma_addr is to be created
3543  * @page: The page to be mapped
3544  * @offset: The offset within the page
3545  * @size: The size of the region in bytes
3546  * @direction: The direction of the DMA
3547  */
3548 static inline u64 ib_dma_map_page(struct ib_device *dev,
3549 				  struct page *page,
3550 				  unsigned long offset,
3551 				  size_t size,
3552 					 enum dma_data_direction direction)
3553 {
3554 	if (dev->dma_ops)
3555 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
3556 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3557 }
3558 
3559 /**
3560  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3561  * @dev: The device for which the DMA address was created
3562  * @addr: The DMA address
3563  * @size: The size of the region in bytes
3564  * @direction: The direction of the DMA
3565  */
3566 static inline void ib_dma_unmap_page(struct ib_device *dev,
3567 				     u64 addr, size_t size,
3568 				     enum dma_data_direction direction)
3569 {
3570 	if (dev->dma_ops)
3571 		dev->dma_ops->unmap_page(dev, addr, size, direction);
3572 	else
3573 		dma_unmap_page(dev->dma_device, addr, size, direction);
3574 }
3575 
3576 /**
3577  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3578  * @dev: The device for which the DMA addresses are to be created
3579  * @sg: The array of scatter/gather entries
3580  * @nents: The number of scatter/gather entries
3581  * @direction: The direction of the DMA
3582  */
3583 static inline int ib_dma_map_sg(struct ib_device *dev,
3584 				struct scatterlist *sg, int nents,
3585 				enum dma_data_direction direction)
3586 {
3587 	if (dev->dma_ops)
3588 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
3589 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3590 }
3591 
3592 /**
3593  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3594  * @dev: The device for which the DMA addresses were created
3595  * @sg: The array of scatter/gather entries
3596  * @nents: The number of scatter/gather entries
3597  * @direction: The direction of the DMA
3598  */
3599 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3600 				   struct scatterlist *sg, int nents,
3601 				   enum dma_data_direction direction)
3602 {
3603 	if (dev->dma_ops)
3604 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3605 	else
3606 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
3607 }
3608 
3609 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3610 				      struct scatterlist *sg, int nents,
3611 				      enum dma_data_direction direction,
3612 				      struct dma_attrs *dma_attrs)
3613 {
3614 	if (dev->dma_ops)
3615 		return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3616 						  dma_attrs);
3617 	else
3618 		return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3619 					dma_attrs);
3620 }
3621 
3622 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3623 					 struct scatterlist *sg, int nents,
3624 					 enum dma_data_direction direction,
3625 					 struct dma_attrs *dma_attrs)
3626 {
3627 	if (dev->dma_ops)
3628 		return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3629 						  dma_attrs);
3630 	else
3631 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3632 				   dma_attrs);
3633 }
3634 /**
3635  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3636  * @dev: The device for which the DMA addresses were created
3637  * @sg: The scatter/gather entry
3638  *
3639  * Note: this function is obsolete. To do: change all occurrences of
3640  * ib_sg_dma_address() into sg_dma_address().
3641  */
3642 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3643 				    struct scatterlist *sg)
3644 {
3645 	return sg_dma_address(sg);
3646 }
3647 
3648 /**
3649  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3650  * @dev: The device for which the DMA addresses were created
3651  * @sg: The scatter/gather entry
3652  *
3653  * Note: this function is obsolete. To do: change all occurrences of
3654  * ib_sg_dma_len() into sg_dma_len().
3655  */
3656 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3657 					 struct scatterlist *sg)
3658 {
3659 	return sg_dma_len(sg);
3660 }
3661 
3662 /**
3663  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3664  * @dev: The device for which the DMA address was created
3665  * @addr: The DMA address
3666  * @size: The size of the region in bytes
3667  * @dir: The direction of the DMA
3668  */
3669 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3670 					      u64 addr,
3671 					      size_t size,
3672 					      enum dma_data_direction dir)
3673 {
3674 	if (dev->dma_ops)
3675 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3676 	else
3677 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3678 }
3679 
3680 /**
3681  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3682  * @dev: The device for which the DMA address was created
3683  * @addr: The DMA address
3684  * @size: The size of the region in bytes
3685  * @dir: The direction of the DMA
3686  */
3687 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3688 						 u64 addr,
3689 						 size_t size,
3690 						 enum dma_data_direction dir)
3691 {
3692 	if (dev->dma_ops)
3693 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3694 	else
3695 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3696 }
3697 
3698 /**
3699  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3700  * @dev: The device for which the DMA address is requested
3701  * @size: The size of the region to allocate in bytes
3702  * @dma_handle: A pointer for returning the DMA address of the region
3703  * @flag: memory allocator flags
3704  */
3705 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3706 					   size_t size,
3707 					   u64 *dma_handle,
3708 					   gfp_t flag)
3709 {
3710 	if (dev->dma_ops)
3711 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3712 	else {
3713 		dma_addr_t handle;
3714 		void *ret;
3715 
3716 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3717 		*dma_handle = handle;
3718 		return ret;
3719 	}
3720 }
3721 
3722 /**
3723  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3724  * @dev: The device for which the DMA addresses were allocated
3725  * @size: The size of the region
3726  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3727  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3728  */
3729 static inline void ib_dma_free_coherent(struct ib_device *dev,
3730 					size_t size, void *cpu_addr,
3731 					u64 dma_handle)
3732 {
3733 	if (dev->dma_ops)
3734 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3735 	else
3736 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3737 }
3738 
3739 /**
3740  * ib_dereg_mr - Deregisters a memory region and removes it from the
3741  *   HCA translation table.
3742  * @mr: The memory region to deregister.
3743  *
3744  * This function can fail, if the memory region has memory windows bound to it.
3745  */
3746 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
3747 
3748 /**
3749  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
3750  *   HCA translation table.
3751  * @mr: The memory region to deregister.
3752  *
3753  * This function can fail, if the memory region has memory windows bound to it.
3754  *
3755  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
3756  */
3757 static inline int ib_dereg_mr(struct ib_mr *mr)
3758 {
3759 	return ib_dereg_mr_user(mr, NULL);
3760 }
3761 
3762 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
3763 			       u32 max_num_sg, struct ib_udata *udata);
3764 
3765 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3766 					enum ib_mr_type mr_type, u32 max_num_sg)
3767 {
3768 	return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
3769 }
3770 
3771 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
3772 				    u32 max_num_data_sg,
3773 				    u32 max_num_meta_sg);
3774 
3775 /**
3776  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3777  *   R_Key and L_Key.
3778  * @mr - struct ib_mr pointer to be updated.
3779  * @newkey - new key to be used.
3780  */
3781 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3782 {
3783 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3784 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3785 }
3786 
3787 /**
3788  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3789  * for calculating a new rkey for type 2 memory windows.
3790  * @rkey - the rkey to increment.
3791  */
3792 static inline u32 ib_inc_rkey(u32 rkey)
3793 {
3794 	const u32 mask = 0x000000ff;
3795 	return ((rkey + 1) & mask) | (rkey & ~mask);
3796 }
3797 
3798 /**
3799  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3800  * @pd: The protection domain associated with the unmapped region.
3801  * @mr_access_flags: Specifies the memory access rights.
3802  * @fmr_attr: Attributes of the unmapped region.
3803  *
3804  * A fast memory region must be mapped before it can be used as part of
3805  * a work request.
3806  */
3807 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3808 			    int mr_access_flags,
3809 			    struct ib_fmr_attr *fmr_attr);
3810 
3811 /**
3812  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3813  * @fmr: The fast memory region to associate with the pages.
3814  * @page_list: An array of physical pages to map to the fast memory region.
3815  * @list_len: The number of pages in page_list.
3816  * @iova: The I/O virtual address to use with the mapped region.
3817  */
3818 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3819 				  u64 *page_list, int list_len,
3820 				  u64 iova)
3821 {
3822 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3823 }
3824 
3825 /**
3826  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3827  * @fmr_list: A linked list of fast memory regions to unmap.
3828  */
3829 int ib_unmap_fmr(struct list_head *fmr_list);
3830 
3831 /**
3832  * ib_dealloc_fmr - Deallocates a fast memory region.
3833  * @fmr: The fast memory region to deallocate.
3834  */
3835 int ib_dealloc_fmr(struct ib_fmr *fmr);
3836 
3837 /**
3838  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3839  * @qp: QP to attach to the multicast group.  The QP must be type
3840  *   IB_QPT_UD.
3841  * @gid: Multicast group GID.
3842  * @lid: Multicast group LID in host byte order.
3843  *
3844  * In order to send and receive multicast packets, subnet
3845  * administration must have created the multicast group and configured
3846  * the fabric appropriately.  The port associated with the specified
3847  * QP must also be a member of the multicast group.
3848  */
3849 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3850 
3851 /**
3852  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3853  * @qp: QP to detach from the multicast group.
3854  * @gid: Multicast group GID.
3855  * @lid: Multicast group LID in host byte order.
3856  */
3857 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3858 
3859 /**
3860  * ib_alloc_xrcd - Allocates an XRC domain.
3861  * @device: The device on which to allocate the XRC domain.
3862  * @caller: Module name for kernel consumers
3863  */
3864 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3865 #define ib_alloc_xrcd(device) \
3866 	__ib_alloc_xrcd((device), "ibcore")
3867 
3868 /**
3869  * ib_dealloc_xrcd - Deallocates an XRC domain.
3870  * @xrcd: The XRC domain to deallocate.
3871  * @udata: Valid user data or NULL for kernel object
3872  */
3873 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
3874 
3875 static inline int ib_check_mr_access(int flags)
3876 {
3877 	/*
3878 	 * Local write permission is required if remote write or
3879 	 * remote atomic permission is also requested.
3880 	 */
3881 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3882 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3883 		return -EINVAL;
3884 
3885 	if (flags & ~IB_ACCESS_SUPPORTED)
3886 		return -EINVAL;
3887 
3888 	return 0;
3889 }
3890 
3891 static inline bool ib_access_writable(int access_flags)
3892 {
3893 	/*
3894 	 * We have writable memory backing the MR if any of the following
3895 	 * access flags are set.  "Local write" and "remote write" obviously
3896 	 * require write access.  "Remote atomic" can do things like fetch and
3897 	 * add, which will modify memory, and "MW bind" can change permissions
3898 	 * by binding a window.
3899 	 */
3900 	return access_flags &
3901 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
3902 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3903 }
3904 
3905 /**
3906  * ib_check_mr_status: lightweight check of MR status.
3907  *     This routine may provide status checks on a selected
3908  *     ib_mr. first use is for signature status check.
3909  *
3910  * @mr: A memory region.
3911  * @check_mask: Bitmask of which checks to perform from
3912  *     ib_mr_status_check enumeration.
3913  * @mr_status: The container of relevant status checks.
3914  *     failed checks will be indicated in the status bitmask
3915  *     and the relevant info shall be in the error item.
3916  */
3917 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3918 		       struct ib_mr_status *mr_status);
3919 
3920 struct ifnet *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3921 					    u16 pkey, const union ib_gid *gid,
3922 					    const struct sockaddr *addr);
3923 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3924 			   struct ib_wq_init_attr *init_attr);
3925 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
3926 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3927 		 u32 wq_attr_mask);
3928 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3929 						 struct ib_rwq_ind_table_init_attr*
3930 						 wq_ind_table_init_attr);
3931 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3932 
3933 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3934 		 unsigned int *sg_offset, unsigned int page_size);
3935 
3936 static inline int
3937 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3938 		  unsigned int *sg_offset, unsigned int page_size)
3939 {
3940 	int n;
3941 
3942 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3943 	mr->iova = 0;
3944 
3945 	return n;
3946 }
3947 
3948 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3949 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3950 
3951 void ib_drain_rq(struct ib_qp *qp);
3952 void ib_drain_sq(struct ib_qp *qp);
3953 void ib_drain_qp(struct ib_qp *qp);
3954 
3955 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
3956 
3957 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
3958 
3959 int ib_resolve_eth_dmac(struct ib_device *device,
3960 			struct ib_ah_attr *ah_attr);
3961 #endif /* IB_VERBS_H */
3962