1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 3 * 4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 6 * Copyright (c) 2004 Intel Corporation. All rights reserved. 7 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 11 * 12 * This software is available to you under a choice of one of two 13 * licenses. You may choose to be licensed under the terms of the GNU 14 * General Public License (GPL) Version 2, available from the file 15 * COPYING in the main directory of this source tree, or the 16 * OpenIB.org BSD license below: 17 * 18 * Redistribution and use in source and binary forms, with or 19 * without modification, are permitted provided that the following 20 * conditions are met: 21 * 22 * - Redistributions of source code must retain the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer. 25 * 26 * - Redistributions in binary form must reproduce the above 27 * copyright notice, this list of conditions and the following 28 * disclaimer in the documentation and/or other materials 29 * provided with the distribution. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 * SOFTWARE. 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 #include <linux/list.h> 50 #include <linux/rwsem.h> 51 #include <linux/scatterlist.h> 52 #include <linux/workqueue.h> 53 #include <linux/socket.h> 54 #include <linux/if_ether.h> 55 #include <net/ipv6.h> 56 #include <net/ip.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/rcupdate.h> 60 #include <linux/netdevice.h> 61 #include <netinet/ip.h> 62 63 #include <asm/atomic.h> 64 #include <asm/uaccess.h> 65 66 struct ifla_vf_info; 67 struct ifla_vf_stats; 68 69 extern struct workqueue_struct *ib_wq; 70 extern struct workqueue_struct *ib_comp_wq; 71 72 union ib_gid { 73 u8 raw[16]; 74 struct { 75 __be64 subnet_prefix; 76 __be64 interface_id; 77 } global; 78 }; 79 80 extern union ib_gid zgid; 81 82 enum ib_gid_type { 83 /* If link layer is Ethernet, this is RoCE V1 */ 84 IB_GID_TYPE_IB = 0, 85 IB_GID_TYPE_ROCE = 0, 86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 87 IB_GID_TYPE_SIZE 88 }; 89 90 #define ROCE_V2_UDP_DPORT 4791 91 struct ib_gid_attr { 92 enum ib_gid_type gid_type; 93 struct net_device *ndev; 94 }; 95 96 enum rdma_node_type { 97 /* IB values map to NodeInfo:NodeType. */ 98 RDMA_NODE_IB_CA = 1, 99 RDMA_NODE_IB_SWITCH, 100 RDMA_NODE_IB_ROUTER, 101 RDMA_NODE_RNIC, 102 RDMA_NODE_USNIC, 103 RDMA_NODE_USNIC_UDP, 104 }; 105 106 enum { 107 /* set the local administered indication */ 108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 109 }; 110 111 enum rdma_transport_type { 112 RDMA_TRANSPORT_IB, 113 RDMA_TRANSPORT_IWARP, 114 RDMA_TRANSPORT_USNIC, 115 RDMA_TRANSPORT_USNIC_UDP 116 }; 117 118 enum rdma_protocol_type { 119 RDMA_PROTOCOL_IB, 120 RDMA_PROTOCOL_IBOE, 121 RDMA_PROTOCOL_IWARP, 122 RDMA_PROTOCOL_USNIC_UDP 123 }; 124 125 __attribute_const__ enum rdma_transport_type 126 rdma_node_get_transport(enum rdma_node_type node_type); 127 128 enum rdma_network_type { 129 RDMA_NETWORK_IB, 130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 131 RDMA_NETWORK_IPV4, 132 RDMA_NETWORK_IPV6 133 }; 134 135 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 136 { 137 if (network_type == RDMA_NETWORK_IPV4 || 138 network_type == RDMA_NETWORK_IPV6) 139 return IB_GID_TYPE_ROCE_UDP_ENCAP; 140 141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 142 return IB_GID_TYPE_IB; 143 } 144 145 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 146 union ib_gid *gid) 147 { 148 if (gid_type == IB_GID_TYPE_IB) 149 return RDMA_NETWORK_IB; 150 151 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 152 return RDMA_NETWORK_IPV4; 153 else 154 return RDMA_NETWORK_IPV6; 155 } 156 157 enum rdma_link_layer { 158 IB_LINK_LAYER_UNSPECIFIED, 159 IB_LINK_LAYER_INFINIBAND, 160 IB_LINK_LAYER_ETHERNET, 161 }; 162 163 enum ib_device_cap_flags { 164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 167 IB_DEVICE_RAW_MULTI = (1 << 3), 168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 173 IB_DEVICE_INIT_TYPE = (1 << 9), 174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 177 IB_DEVICE_SRQ_RESIZE = (1 << 13), 178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 179 180 /* 181 * This device supports a per-device lkey or stag that can be 182 * used without performing a memory registration for the local 183 * memory. Note that ULPs should never check this flag, but 184 * instead of use the local_dma_lkey flag in the ib_pd structure, 185 * which will always contain a usable lkey. 186 */ 187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 188 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 189 IB_DEVICE_MEM_WINDOW = (1 << 17), 190 /* 191 * Devices should set IB_DEVICE_UD_IP_SUM if they support 192 * insertion of UDP and TCP checksum on outgoing UD IPoIB 193 * messages and can verify the validity of checksum for 194 * incoming messages. Setting this flag implies that the 195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 196 */ 197 IB_DEVICE_UD_IP_CSUM = (1 << 18), 198 IB_DEVICE_UD_TSO = (1 << 19), 199 IB_DEVICE_XRC = (1 << 20), 200 201 /* 202 * This device supports the IB "base memory management extension", 203 * which includes support for fast registrations (IB_WR_REG_MR, 204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 205 * also be set by any iWarp device which must support FRs to comply 206 * to the iWarp verbs spec. iWarp devices also support the 207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 208 * stag. 209 */ 210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 214 IB_DEVICE_RC_IP_CSUM = (1 << 25), 215 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 216 /* 217 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 218 * support execution of WQEs that involve synchronization 219 * of I/O operations with single completion queue managed 220 * by hardware. 221 */ 222 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 223 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 224 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 225 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 226 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 227 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 228 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 229 }; 230 231 enum ib_signature_prot_cap { 232 IB_PROT_T10DIF_TYPE_1 = 1, 233 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 234 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 235 }; 236 237 enum ib_signature_guard_cap { 238 IB_GUARD_T10DIF_CRC = 1, 239 IB_GUARD_T10DIF_CSUM = 1 << 1, 240 }; 241 242 enum ib_atomic_cap { 243 IB_ATOMIC_NONE, 244 IB_ATOMIC_HCA, 245 IB_ATOMIC_GLOB 246 }; 247 248 enum ib_odp_general_cap_bits { 249 IB_ODP_SUPPORT = 1 << 0, 250 }; 251 252 enum ib_odp_transport_cap_bits { 253 IB_ODP_SUPPORT_SEND = 1 << 0, 254 IB_ODP_SUPPORT_RECV = 1 << 1, 255 IB_ODP_SUPPORT_WRITE = 1 << 2, 256 IB_ODP_SUPPORT_READ = 1 << 3, 257 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 258 }; 259 260 struct ib_odp_caps { 261 uint64_t general_caps; 262 struct { 263 uint32_t rc_odp_caps; 264 uint32_t uc_odp_caps; 265 uint32_t ud_odp_caps; 266 } per_transport_caps; 267 }; 268 269 struct ib_rss_caps { 270 /* Corresponding bit will be set if qp type from 271 * 'enum ib_qp_type' is supported, e.g. 272 * supported_qpts |= 1 << IB_QPT_UD 273 */ 274 u32 supported_qpts; 275 u32 max_rwq_indirection_tables; 276 u32 max_rwq_indirection_table_size; 277 }; 278 279 enum ib_cq_creation_flags { 280 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 281 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 282 }; 283 284 struct ib_cq_init_attr { 285 unsigned int cqe; 286 int comp_vector; 287 u32 flags; 288 }; 289 290 struct ib_device_attr { 291 u64 fw_ver; 292 __be64 sys_image_guid; 293 u64 max_mr_size; 294 u64 page_size_cap; 295 u32 vendor_id; 296 u32 vendor_part_id; 297 u32 hw_ver; 298 int max_qp; 299 int max_qp_wr; 300 u64 device_cap_flags; 301 int max_sge; 302 int max_sge_rd; 303 int max_cq; 304 int max_cqe; 305 int max_mr; 306 int max_pd; 307 int max_qp_rd_atom; 308 int max_ee_rd_atom; 309 int max_res_rd_atom; 310 int max_qp_init_rd_atom; 311 int max_ee_init_rd_atom; 312 enum ib_atomic_cap atomic_cap; 313 enum ib_atomic_cap masked_atomic_cap; 314 int max_ee; 315 int max_rdd; 316 int max_mw; 317 int max_raw_ipv6_qp; 318 int max_raw_ethy_qp; 319 int max_mcast_grp; 320 int max_mcast_qp_attach; 321 int max_total_mcast_qp_attach; 322 int max_ah; 323 int max_fmr; 324 int max_map_per_fmr; 325 int max_srq; 326 int max_srq_wr; 327 int max_srq_sge; 328 unsigned int max_fast_reg_page_list_len; 329 u16 max_pkeys; 330 u8 local_ca_ack_delay; 331 int sig_prot_cap; 332 int sig_guard_cap; 333 struct ib_odp_caps odp_caps; 334 uint64_t timestamp_mask; 335 uint64_t hca_core_clock; /* in KHZ */ 336 struct ib_rss_caps rss_caps; 337 u32 max_wq_type_rq; 338 }; 339 340 enum ib_mtu { 341 IB_MTU_256 = 1, 342 IB_MTU_512 = 2, 343 IB_MTU_1024 = 3, 344 IB_MTU_2048 = 4, 345 IB_MTU_4096 = 5 346 }; 347 348 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 349 { 350 switch (mtu) { 351 case IB_MTU_256: return 256; 352 case IB_MTU_512: return 512; 353 case IB_MTU_1024: return 1024; 354 case IB_MTU_2048: return 2048; 355 case IB_MTU_4096: return 4096; 356 default: return -1; 357 } 358 } 359 360 enum ib_port_state { 361 IB_PORT_NOP = 0, 362 IB_PORT_DOWN = 1, 363 IB_PORT_INIT = 2, 364 IB_PORT_ARMED = 3, 365 IB_PORT_ACTIVE = 4, 366 IB_PORT_ACTIVE_DEFER = 5, 367 IB_PORT_DUMMY = -1, /* force enum signed */ 368 }; 369 370 enum ib_port_cap_flags { 371 IB_PORT_SM = 1 << 1, 372 IB_PORT_NOTICE_SUP = 1 << 2, 373 IB_PORT_TRAP_SUP = 1 << 3, 374 IB_PORT_OPT_IPD_SUP = 1 << 4, 375 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 376 IB_PORT_SL_MAP_SUP = 1 << 6, 377 IB_PORT_MKEY_NVRAM = 1 << 7, 378 IB_PORT_PKEY_NVRAM = 1 << 8, 379 IB_PORT_LED_INFO_SUP = 1 << 9, 380 IB_PORT_SM_DISABLED = 1 << 10, 381 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 382 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 383 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 384 IB_PORT_CM_SUP = 1 << 16, 385 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 386 IB_PORT_REINIT_SUP = 1 << 18, 387 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 388 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 389 IB_PORT_DR_NOTICE_SUP = 1 << 21, 390 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 391 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 392 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 393 IB_PORT_CLIENT_REG_SUP = 1 << 25, 394 IB_PORT_IP_BASED_GIDS = 1 << 26, 395 }; 396 397 enum ib_port_width { 398 IB_WIDTH_1X = 1, 399 IB_WIDTH_4X = 2, 400 IB_WIDTH_8X = 4, 401 IB_WIDTH_12X = 8 402 }; 403 404 static inline int ib_width_enum_to_int(enum ib_port_width width) 405 { 406 switch (width) { 407 case IB_WIDTH_1X: return 1; 408 case IB_WIDTH_4X: return 4; 409 case IB_WIDTH_8X: return 8; 410 case IB_WIDTH_12X: return 12; 411 default: return -1; 412 } 413 } 414 415 enum ib_port_speed { 416 IB_SPEED_SDR = 1, 417 IB_SPEED_DDR = 2, 418 IB_SPEED_QDR = 4, 419 IB_SPEED_FDR10 = 8, 420 IB_SPEED_FDR = 16, 421 IB_SPEED_EDR = 32 422 }; 423 424 /** 425 * struct rdma_hw_stats 426 * @timestamp - Used by the core code to track when the last update was 427 * @lifespan - Used by the core code to determine how old the counters 428 * should be before being updated again. Stored in jiffies, defaults 429 * to 10 milliseconds, drivers can override the default be specifying 430 * their own value during their allocation routine. 431 * @name - Array of pointers to static names used for the counters in 432 * directory. 433 * @num_counters - How many hardware counters there are. If name is 434 * shorter than this number, a kernel oops will result. Driver authors 435 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 436 * in their code to prevent this. 437 * @value - Array of u64 counters that are accessed by the sysfs code and 438 * filled in by the drivers get_stats routine 439 */ 440 struct rdma_hw_stats { 441 unsigned long timestamp; 442 unsigned long lifespan; 443 const char * const *names; 444 int num_counters; 445 u64 value[]; 446 }; 447 448 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 449 /** 450 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 451 * for drivers. 452 * @names - Array of static const char * 453 * @num_counters - How many elements in array 454 * @lifespan - How many milliseconds between updates 455 */ 456 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 457 const char * const *names, int num_counters, 458 unsigned long lifespan) 459 { 460 struct rdma_hw_stats *stats; 461 462 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 463 GFP_KERNEL); 464 if (!stats) 465 return NULL; 466 stats->names = names; 467 stats->num_counters = num_counters; 468 stats->lifespan = msecs_to_jiffies(lifespan); 469 470 return stats; 471 } 472 473 474 /* Define bits for the various functionality this port needs to be supported by 475 * the core. 476 */ 477 /* Management 0x00000FFF */ 478 #define RDMA_CORE_CAP_IB_MAD 0x00000001 479 #define RDMA_CORE_CAP_IB_SMI 0x00000002 480 #define RDMA_CORE_CAP_IB_CM 0x00000004 481 #define RDMA_CORE_CAP_IW_CM 0x00000008 482 #define RDMA_CORE_CAP_IB_SA 0x00000010 483 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 484 485 /* Address format 0x000FF000 */ 486 #define RDMA_CORE_CAP_AF_IB 0x00001000 487 #define RDMA_CORE_CAP_ETH_AH 0x00002000 488 489 /* Protocol 0xFFF00000 */ 490 #define RDMA_CORE_CAP_PROT_IB 0x00100000 491 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 492 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 493 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 494 495 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 496 | RDMA_CORE_CAP_IB_MAD \ 497 | RDMA_CORE_CAP_IB_SMI \ 498 | RDMA_CORE_CAP_IB_CM \ 499 | RDMA_CORE_CAP_IB_SA \ 500 | RDMA_CORE_CAP_AF_IB) 501 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 502 | RDMA_CORE_CAP_IB_MAD \ 503 | RDMA_CORE_CAP_IB_CM \ 504 | RDMA_CORE_CAP_AF_IB \ 505 | RDMA_CORE_CAP_ETH_AH) 506 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 507 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 508 | RDMA_CORE_CAP_IB_MAD \ 509 | RDMA_CORE_CAP_IB_CM \ 510 | RDMA_CORE_CAP_AF_IB \ 511 | RDMA_CORE_CAP_ETH_AH) 512 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 513 | RDMA_CORE_CAP_IW_CM) 514 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 515 | RDMA_CORE_CAP_OPA_MAD) 516 517 struct ib_port_attr { 518 u64 subnet_prefix; 519 enum ib_port_state state; 520 enum ib_mtu max_mtu; 521 enum ib_mtu active_mtu; 522 int gid_tbl_len; 523 u32 port_cap_flags; 524 u32 max_msg_sz; 525 u32 bad_pkey_cntr; 526 u32 qkey_viol_cntr; 527 u16 pkey_tbl_len; 528 u16 lid; 529 u16 sm_lid; 530 u8 lmc; 531 u8 max_vl_num; 532 u8 sm_sl; 533 u8 subnet_timeout; 534 u8 init_type_reply; 535 u8 active_width; 536 u8 active_speed; 537 u8 phys_state; 538 bool grh_required; 539 }; 540 541 enum ib_device_modify_flags { 542 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 543 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 544 }; 545 546 #define IB_DEVICE_NODE_DESC_MAX 64 547 548 struct ib_device_modify { 549 u64 sys_image_guid; 550 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 551 }; 552 553 enum ib_port_modify_flags { 554 IB_PORT_SHUTDOWN = 1, 555 IB_PORT_INIT_TYPE = (1<<2), 556 IB_PORT_RESET_QKEY_CNTR = (1<<3) 557 }; 558 559 struct ib_port_modify { 560 u32 set_port_cap_mask; 561 u32 clr_port_cap_mask; 562 u8 init_type; 563 }; 564 565 enum ib_event_type { 566 IB_EVENT_CQ_ERR, 567 IB_EVENT_QP_FATAL, 568 IB_EVENT_QP_REQ_ERR, 569 IB_EVENT_QP_ACCESS_ERR, 570 IB_EVENT_COMM_EST, 571 IB_EVENT_SQ_DRAINED, 572 IB_EVENT_PATH_MIG, 573 IB_EVENT_PATH_MIG_ERR, 574 IB_EVENT_DEVICE_FATAL, 575 IB_EVENT_PORT_ACTIVE, 576 IB_EVENT_PORT_ERR, 577 IB_EVENT_LID_CHANGE, 578 IB_EVENT_PKEY_CHANGE, 579 IB_EVENT_SM_CHANGE, 580 IB_EVENT_SRQ_ERR, 581 IB_EVENT_SRQ_LIMIT_REACHED, 582 IB_EVENT_QP_LAST_WQE_REACHED, 583 IB_EVENT_CLIENT_REREGISTER, 584 IB_EVENT_GID_CHANGE, 585 IB_EVENT_WQ_FATAL, 586 }; 587 588 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 589 590 struct ib_event { 591 struct ib_device *device; 592 union { 593 struct ib_cq *cq; 594 struct ib_qp *qp; 595 struct ib_srq *srq; 596 struct ib_wq *wq; 597 u8 port_num; 598 } element; 599 enum ib_event_type event; 600 }; 601 602 struct ib_event_handler { 603 struct ib_device *device; 604 void (*handler)(struct ib_event_handler *, struct ib_event *); 605 struct list_head list; 606 }; 607 608 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 609 do { \ 610 (_ptr)->device = _device; \ 611 (_ptr)->handler = _handler; \ 612 INIT_LIST_HEAD(&(_ptr)->list); \ 613 } while (0) 614 615 struct ib_global_route { 616 union ib_gid dgid; 617 u32 flow_label; 618 u8 sgid_index; 619 u8 hop_limit; 620 u8 traffic_class; 621 }; 622 623 struct ib_grh { 624 __be32 version_tclass_flow; 625 __be16 paylen; 626 u8 next_hdr; 627 u8 hop_limit; 628 union ib_gid sgid; 629 union ib_gid dgid; 630 }; 631 632 union rdma_network_hdr { 633 struct ib_grh ibgrh; 634 struct { 635 /* The IB spec states that if it's IPv4, the header 636 * is located in the last 20 bytes of the header. 637 */ 638 u8 reserved[20]; 639 struct ip roce4grh; 640 }; 641 }; 642 643 enum { 644 IB_MULTICAST_QPN = 0xffffff 645 }; 646 647 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 648 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 649 650 enum ib_ah_flags { 651 IB_AH_GRH = 1 652 }; 653 654 enum ib_rate { 655 IB_RATE_PORT_CURRENT = 0, 656 IB_RATE_2_5_GBPS = 2, 657 IB_RATE_5_GBPS = 5, 658 IB_RATE_10_GBPS = 3, 659 IB_RATE_20_GBPS = 6, 660 IB_RATE_30_GBPS = 4, 661 IB_RATE_40_GBPS = 7, 662 IB_RATE_60_GBPS = 8, 663 IB_RATE_80_GBPS = 9, 664 IB_RATE_120_GBPS = 10, 665 IB_RATE_14_GBPS = 11, 666 IB_RATE_56_GBPS = 12, 667 IB_RATE_112_GBPS = 13, 668 IB_RATE_168_GBPS = 14, 669 IB_RATE_25_GBPS = 15, 670 IB_RATE_100_GBPS = 16, 671 IB_RATE_200_GBPS = 17, 672 IB_RATE_300_GBPS = 18 673 }; 674 675 /** 676 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 677 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 678 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 679 * @rate: rate to convert. 680 */ 681 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 682 683 /** 684 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 685 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 686 * @rate: rate to convert. 687 */ 688 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 689 690 691 /** 692 * enum ib_mr_type - memory region type 693 * @IB_MR_TYPE_MEM_REG: memory region that is used for 694 * normal registration 695 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 696 * signature operations (data-integrity 697 * capable regions) 698 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 699 * register any arbitrary sg lists (without 700 * the normal mr constraints - see 701 * ib_map_mr_sg) 702 */ 703 enum ib_mr_type { 704 IB_MR_TYPE_MEM_REG, 705 IB_MR_TYPE_SIGNATURE, 706 IB_MR_TYPE_SG_GAPS, 707 }; 708 709 /** 710 * Signature types 711 * IB_SIG_TYPE_NONE: Unprotected. 712 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 713 */ 714 enum ib_signature_type { 715 IB_SIG_TYPE_NONE, 716 IB_SIG_TYPE_T10_DIF, 717 }; 718 719 /** 720 * Signature T10-DIF block-guard types 721 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 722 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 723 */ 724 enum ib_t10_dif_bg_type { 725 IB_T10DIF_CRC, 726 IB_T10DIF_CSUM 727 }; 728 729 /** 730 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 731 * domain. 732 * @bg_type: T10-DIF block guard type (CRC|CSUM) 733 * @pi_interval: protection information interval. 734 * @bg: seed of guard computation. 735 * @app_tag: application tag of guard block 736 * @ref_tag: initial guard block reference tag. 737 * @ref_remap: Indicate wethear the reftag increments each block 738 * @app_escape: Indicate to skip block check if apptag=0xffff 739 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 740 * @apptag_check_mask: check bitmask of application tag. 741 */ 742 struct ib_t10_dif_domain { 743 enum ib_t10_dif_bg_type bg_type; 744 u16 pi_interval; 745 u16 bg; 746 u16 app_tag; 747 u32 ref_tag; 748 bool ref_remap; 749 bool app_escape; 750 bool ref_escape; 751 u16 apptag_check_mask; 752 }; 753 754 /** 755 * struct ib_sig_domain - Parameters for signature domain 756 * @sig_type: specific signauture type 757 * @sig: union of all signature domain attributes that may 758 * be used to set domain layout. 759 */ 760 struct ib_sig_domain { 761 enum ib_signature_type sig_type; 762 union { 763 struct ib_t10_dif_domain dif; 764 } sig; 765 }; 766 767 /** 768 * struct ib_sig_attrs - Parameters for signature handover operation 769 * @check_mask: bitmask for signature byte check (8 bytes) 770 * @mem: memory domain layout desciptor. 771 * @wire: wire domain layout desciptor. 772 */ 773 struct ib_sig_attrs { 774 u8 check_mask; 775 struct ib_sig_domain mem; 776 struct ib_sig_domain wire; 777 }; 778 779 enum ib_sig_err_type { 780 IB_SIG_BAD_GUARD, 781 IB_SIG_BAD_REFTAG, 782 IB_SIG_BAD_APPTAG, 783 }; 784 785 /** 786 * struct ib_sig_err - signature error descriptor 787 */ 788 struct ib_sig_err { 789 enum ib_sig_err_type err_type; 790 u32 expected; 791 u32 actual; 792 u64 sig_err_offset; 793 u32 key; 794 }; 795 796 enum ib_mr_status_check { 797 IB_MR_CHECK_SIG_STATUS = 1, 798 }; 799 800 /** 801 * struct ib_mr_status - Memory region status container 802 * 803 * @fail_status: Bitmask of MR checks status. For each 804 * failed check a corresponding status bit is set. 805 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 806 * failure. 807 */ 808 struct ib_mr_status { 809 u32 fail_status; 810 struct ib_sig_err sig_err; 811 }; 812 813 /** 814 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 815 * enum. 816 * @mult: multiple to convert. 817 */ 818 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 819 820 struct ib_ah_attr { 821 struct ib_global_route grh; 822 u16 dlid; 823 u8 sl; 824 u8 src_path_bits; 825 u8 static_rate; 826 u8 ah_flags; 827 u8 port_num; 828 u8 dmac[ETH_ALEN]; 829 }; 830 831 enum ib_wc_status { 832 IB_WC_SUCCESS, 833 IB_WC_LOC_LEN_ERR, 834 IB_WC_LOC_QP_OP_ERR, 835 IB_WC_LOC_EEC_OP_ERR, 836 IB_WC_LOC_PROT_ERR, 837 IB_WC_WR_FLUSH_ERR, 838 IB_WC_MW_BIND_ERR, 839 IB_WC_BAD_RESP_ERR, 840 IB_WC_LOC_ACCESS_ERR, 841 IB_WC_REM_INV_REQ_ERR, 842 IB_WC_REM_ACCESS_ERR, 843 IB_WC_REM_OP_ERR, 844 IB_WC_RETRY_EXC_ERR, 845 IB_WC_RNR_RETRY_EXC_ERR, 846 IB_WC_LOC_RDD_VIOL_ERR, 847 IB_WC_REM_INV_RD_REQ_ERR, 848 IB_WC_REM_ABORT_ERR, 849 IB_WC_INV_EECN_ERR, 850 IB_WC_INV_EEC_STATE_ERR, 851 IB_WC_FATAL_ERR, 852 IB_WC_RESP_TIMEOUT_ERR, 853 IB_WC_GENERAL_ERR 854 }; 855 856 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 857 858 enum ib_wc_opcode { 859 IB_WC_SEND, 860 IB_WC_RDMA_WRITE, 861 IB_WC_RDMA_READ, 862 IB_WC_COMP_SWAP, 863 IB_WC_FETCH_ADD, 864 IB_WC_LSO, 865 IB_WC_LOCAL_INV, 866 IB_WC_REG_MR, 867 IB_WC_MASKED_COMP_SWAP, 868 IB_WC_MASKED_FETCH_ADD, 869 /* 870 * Set value of IB_WC_RECV so consumers can test if a completion is a 871 * receive by testing (opcode & IB_WC_RECV). 872 */ 873 IB_WC_RECV = 1 << 7, 874 IB_WC_RECV_RDMA_WITH_IMM, 875 IB_WC_DUMMY = -1, /* force enum signed */ 876 }; 877 878 enum ib_wc_flags { 879 IB_WC_GRH = 1, 880 IB_WC_WITH_IMM = (1<<1), 881 IB_WC_WITH_INVALIDATE = (1<<2), 882 IB_WC_IP_CSUM_OK = (1<<3), 883 IB_WC_WITH_SMAC = (1<<4), 884 IB_WC_WITH_VLAN = (1<<5), 885 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 886 }; 887 888 struct ib_wc { 889 union { 890 u64 wr_id; 891 struct ib_cqe *wr_cqe; 892 }; 893 enum ib_wc_status status; 894 enum ib_wc_opcode opcode; 895 u32 vendor_err; 896 u32 byte_len; 897 struct ib_qp *qp; 898 union { 899 __be32 imm_data; 900 u32 invalidate_rkey; 901 } ex; 902 u32 src_qp; 903 int wc_flags; 904 u16 pkey_index; 905 u16 slid; 906 u8 sl; 907 u8 dlid_path_bits; 908 u8 port_num; /* valid only for DR SMPs on switches */ 909 u8 smac[ETH_ALEN]; 910 u16 vlan_id; 911 u8 network_hdr_type; 912 }; 913 914 enum ib_cq_notify_flags { 915 IB_CQ_SOLICITED = 1 << 0, 916 IB_CQ_NEXT_COMP = 1 << 1, 917 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 918 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 919 }; 920 921 enum ib_srq_type { 922 IB_SRQT_BASIC, 923 IB_SRQT_XRC 924 }; 925 926 enum ib_srq_attr_mask { 927 IB_SRQ_MAX_WR = 1 << 0, 928 IB_SRQ_LIMIT = 1 << 1, 929 }; 930 931 struct ib_srq_attr { 932 u32 max_wr; 933 u32 max_sge; 934 u32 srq_limit; 935 }; 936 937 struct ib_srq_init_attr { 938 void (*event_handler)(struct ib_event *, void *); 939 void *srq_context; 940 struct ib_srq_attr attr; 941 enum ib_srq_type srq_type; 942 943 union { 944 struct { 945 struct ib_xrcd *xrcd; 946 struct ib_cq *cq; 947 } xrc; 948 } ext; 949 }; 950 951 struct ib_qp_cap { 952 u32 max_send_wr; 953 u32 max_recv_wr; 954 u32 max_send_sge; 955 u32 max_recv_sge; 956 u32 max_inline_data; 957 958 /* 959 * Maximum number of rdma_rw_ctx structures in flight at a time. 960 * ib_create_qp() will calculate the right amount of neededed WRs 961 * and MRs based on this. 962 */ 963 u32 max_rdma_ctxs; 964 }; 965 966 enum ib_sig_type { 967 IB_SIGNAL_ALL_WR, 968 IB_SIGNAL_REQ_WR 969 }; 970 971 enum ib_qp_type { 972 /* 973 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 974 * here (and in that order) since the MAD layer uses them as 975 * indices into a 2-entry table. 976 */ 977 IB_QPT_SMI, 978 IB_QPT_GSI, 979 980 IB_QPT_RC, 981 IB_QPT_UC, 982 IB_QPT_UD, 983 IB_QPT_RAW_IPV6, 984 IB_QPT_RAW_ETHERTYPE, 985 IB_QPT_RAW_PACKET = 8, 986 IB_QPT_XRC_INI = 9, 987 IB_QPT_XRC_TGT, 988 IB_QPT_MAX, 989 /* Reserve a range for qp types internal to the low level driver. 990 * These qp types will not be visible at the IB core layer, so the 991 * IB_QPT_MAX usages should not be affected in the core layer 992 */ 993 IB_QPT_RESERVED1 = 0x1000, 994 IB_QPT_RESERVED2, 995 IB_QPT_RESERVED3, 996 IB_QPT_RESERVED4, 997 IB_QPT_RESERVED5, 998 IB_QPT_RESERVED6, 999 IB_QPT_RESERVED7, 1000 IB_QPT_RESERVED8, 1001 IB_QPT_RESERVED9, 1002 IB_QPT_RESERVED10, 1003 }; 1004 1005 enum ib_qp_create_flags { 1006 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1007 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1008 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1009 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1010 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1011 IB_QP_CREATE_NETIF_QP = 1 << 5, 1012 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1013 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1014 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1015 /* reserve bits 26-31 for low level drivers' internal use */ 1016 IB_QP_CREATE_RESERVED_START = 1 << 26, 1017 IB_QP_CREATE_RESERVED_END = 1 << 31, 1018 }; 1019 1020 /* 1021 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1022 * callback to destroy the passed in QP. 1023 */ 1024 1025 struct ib_qp_init_attr { 1026 void (*event_handler)(struct ib_event *, void *); 1027 void *qp_context; 1028 struct ib_cq *send_cq; 1029 struct ib_cq *recv_cq; 1030 struct ib_srq *srq; 1031 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1032 struct ib_qp_cap cap; 1033 enum ib_sig_type sq_sig_type; 1034 enum ib_qp_type qp_type; 1035 enum ib_qp_create_flags create_flags; 1036 1037 /* 1038 * Only needed for special QP types, or when using the RW API. 1039 */ 1040 u8 port_num; 1041 struct ib_rwq_ind_table *rwq_ind_tbl; 1042 }; 1043 1044 struct ib_qp_open_attr { 1045 void (*event_handler)(struct ib_event *, void *); 1046 void *qp_context; 1047 u32 qp_num; 1048 enum ib_qp_type qp_type; 1049 }; 1050 1051 enum ib_rnr_timeout { 1052 IB_RNR_TIMER_655_36 = 0, 1053 IB_RNR_TIMER_000_01 = 1, 1054 IB_RNR_TIMER_000_02 = 2, 1055 IB_RNR_TIMER_000_03 = 3, 1056 IB_RNR_TIMER_000_04 = 4, 1057 IB_RNR_TIMER_000_06 = 5, 1058 IB_RNR_TIMER_000_08 = 6, 1059 IB_RNR_TIMER_000_12 = 7, 1060 IB_RNR_TIMER_000_16 = 8, 1061 IB_RNR_TIMER_000_24 = 9, 1062 IB_RNR_TIMER_000_32 = 10, 1063 IB_RNR_TIMER_000_48 = 11, 1064 IB_RNR_TIMER_000_64 = 12, 1065 IB_RNR_TIMER_000_96 = 13, 1066 IB_RNR_TIMER_001_28 = 14, 1067 IB_RNR_TIMER_001_92 = 15, 1068 IB_RNR_TIMER_002_56 = 16, 1069 IB_RNR_TIMER_003_84 = 17, 1070 IB_RNR_TIMER_005_12 = 18, 1071 IB_RNR_TIMER_007_68 = 19, 1072 IB_RNR_TIMER_010_24 = 20, 1073 IB_RNR_TIMER_015_36 = 21, 1074 IB_RNR_TIMER_020_48 = 22, 1075 IB_RNR_TIMER_030_72 = 23, 1076 IB_RNR_TIMER_040_96 = 24, 1077 IB_RNR_TIMER_061_44 = 25, 1078 IB_RNR_TIMER_081_92 = 26, 1079 IB_RNR_TIMER_122_88 = 27, 1080 IB_RNR_TIMER_163_84 = 28, 1081 IB_RNR_TIMER_245_76 = 29, 1082 IB_RNR_TIMER_327_68 = 30, 1083 IB_RNR_TIMER_491_52 = 31 1084 }; 1085 1086 enum ib_qp_attr_mask { 1087 IB_QP_STATE = 1, 1088 IB_QP_CUR_STATE = (1<<1), 1089 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1090 IB_QP_ACCESS_FLAGS = (1<<3), 1091 IB_QP_PKEY_INDEX = (1<<4), 1092 IB_QP_PORT = (1<<5), 1093 IB_QP_QKEY = (1<<6), 1094 IB_QP_AV = (1<<7), 1095 IB_QP_PATH_MTU = (1<<8), 1096 IB_QP_TIMEOUT = (1<<9), 1097 IB_QP_RETRY_CNT = (1<<10), 1098 IB_QP_RNR_RETRY = (1<<11), 1099 IB_QP_RQ_PSN = (1<<12), 1100 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1101 IB_QP_ALT_PATH = (1<<14), 1102 IB_QP_MIN_RNR_TIMER = (1<<15), 1103 IB_QP_SQ_PSN = (1<<16), 1104 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1105 IB_QP_PATH_MIG_STATE = (1<<18), 1106 IB_QP_CAP = (1<<19), 1107 IB_QP_DEST_QPN = (1<<20), 1108 IB_QP_RESERVED1 = (1<<21), 1109 IB_QP_RESERVED2 = (1<<22), 1110 IB_QP_RESERVED3 = (1<<23), 1111 IB_QP_RESERVED4 = (1<<24), 1112 }; 1113 1114 enum ib_qp_state { 1115 IB_QPS_RESET, 1116 IB_QPS_INIT, 1117 IB_QPS_RTR, 1118 IB_QPS_RTS, 1119 IB_QPS_SQD, 1120 IB_QPS_SQE, 1121 IB_QPS_ERR, 1122 IB_QPS_DUMMY = -1, /* force enum signed */ 1123 }; 1124 1125 enum ib_mig_state { 1126 IB_MIG_MIGRATED, 1127 IB_MIG_REARM, 1128 IB_MIG_ARMED 1129 }; 1130 1131 enum ib_mw_type { 1132 IB_MW_TYPE_1 = 1, 1133 IB_MW_TYPE_2 = 2 1134 }; 1135 1136 struct ib_qp_attr { 1137 enum ib_qp_state qp_state; 1138 enum ib_qp_state cur_qp_state; 1139 enum ib_mtu path_mtu; 1140 enum ib_mig_state path_mig_state; 1141 u32 qkey; 1142 u32 rq_psn; 1143 u32 sq_psn; 1144 u32 dest_qp_num; 1145 int qp_access_flags; 1146 struct ib_qp_cap cap; 1147 struct ib_ah_attr ah_attr; 1148 struct ib_ah_attr alt_ah_attr; 1149 u16 pkey_index; 1150 u16 alt_pkey_index; 1151 u8 en_sqd_async_notify; 1152 u8 sq_draining; 1153 u8 max_rd_atomic; 1154 u8 max_dest_rd_atomic; 1155 u8 min_rnr_timer; 1156 u8 port_num; 1157 u8 timeout; 1158 u8 retry_cnt; 1159 u8 rnr_retry; 1160 u8 alt_port_num; 1161 u8 alt_timeout; 1162 }; 1163 1164 enum ib_wr_opcode { 1165 IB_WR_RDMA_WRITE, 1166 IB_WR_RDMA_WRITE_WITH_IMM, 1167 IB_WR_SEND, 1168 IB_WR_SEND_WITH_IMM, 1169 IB_WR_RDMA_READ, 1170 IB_WR_ATOMIC_CMP_AND_SWP, 1171 IB_WR_ATOMIC_FETCH_AND_ADD, 1172 IB_WR_LSO, 1173 IB_WR_SEND_WITH_INV, 1174 IB_WR_RDMA_READ_WITH_INV, 1175 IB_WR_LOCAL_INV, 1176 IB_WR_REG_MR, 1177 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1178 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1179 IB_WR_REG_SIG_MR, 1180 /* reserve values for low level drivers' internal use. 1181 * These values will not be used at all in the ib core layer. 1182 */ 1183 IB_WR_RESERVED1 = 0xf0, 1184 IB_WR_RESERVED2, 1185 IB_WR_RESERVED3, 1186 IB_WR_RESERVED4, 1187 IB_WR_RESERVED5, 1188 IB_WR_RESERVED6, 1189 IB_WR_RESERVED7, 1190 IB_WR_RESERVED8, 1191 IB_WR_RESERVED9, 1192 IB_WR_RESERVED10, 1193 IB_WR_DUMMY = -1, /* force enum signed */ 1194 }; 1195 1196 enum ib_send_flags { 1197 IB_SEND_FENCE = 1, 1198 IB_SEND_SIGNALED = (1<<1), 1199 IB_SEND_SOLICITED = (1<<2), 1200 IB_SEND_INLINE = (1<<3), 1201 IB_SEND_IP_CSUM = (1<<4), 1202 1203 /* reserve bits 26-31 for low level drivers' internal use */ 1204 IB_SEND_RESERVED_START = (1 << 26), 1205 IB_SEND_RESERVED_END = (1 << 31), 1206 }; 1207 1208 struct ib_sge { 1209 u64 addr; 1210 u32 length; 1211 u32 lkey; 1212 }; 1213 1214 struct ib_cqe { 1215 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1216 }; 1217 1218 struct ib_send_wr { 1219 struct ib_send_wr *next; 1220 union { 1221 u64 wr_id; 1222 struct ib_cqe *wr_cqe; 1223 }; 1224 struct ib_sge *sg_list; 1225 int num_sge; 1226 enum ib_wr_opcode opcode; 1227 int send_flags; 1228 union { 1229 __be32 imm_data; 1230 u32 invalidate_rkey; 1231 } ex; 1232 }; 1233 1234 struct ib_rdma_wr { 1235 struct ib_send_wr wr; 1236 u64 remote_addr; 1237 u32 rkey; 1238 }; 1239 1240 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1241 { 1242 return container_of(wr, struct ib_rdma_wr, wr); 1243 } 1244 1245 struct ib_atomic_wr { 1246 struct ib_send_wr wr; 1247 u64 remote_addr; 1248 u64 compare_add; 1249 u64 swap; 1250 u64 compare_add_mask; 1251 u64 swap_mask; 1252 u32 rkey; 1253 }; 1254 1255 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1256 { 1257 return container_of(wr, struct ib_atomic_wr, wr); 1258 } 1259 1260 struct ib_ud_wr { 1261 struct ib_send_wr wr; 1262 struct ib_ah *ah; 1263 void *header; 1264 int hlen; 1265 int mss; 1266 u32 remote_qpn; 1267 u32 remote_qkey; 1268 u16 pkey_index; /* valid for GSI only */ 1269 u8 port_num; /* valid for DR SMPs on switch only */ 1270 }; 1271 1272 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1273 { 1274 return container_of(wr, struct ib_ud_wr, wr); 1275 } 1276 1277 struct ib_reg_wr { 1278 struct ib_send_wr wr; 1279 struct ib_mr *mr; 1280 u32 key; 1281 int access; 1282 }; 1283 1284 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1285 { 1286 return container_of(wr, struct ib_reg_wr, wr); 1287 } 1288 1289 struct ib_sig_handover_wr { 1290 struct ib_send_wr wr; 1291 struct ib_sig_attrs *sig_attrs; 1292 struct ib_mr *sig_mr; 1293 int access_flags; 1294 struct ib_sge *prot; 1295 }; 1296 1297 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1298 { 1299 return container_of(wr, struct ib_sig_handover_wr, wr); 1300 } 1301 1302 struct ib_recv_wr { 1303 struct ib_recv_wr *next; 1304 union { 1305 u64 wr_id; 1306 struct ib_cqe *wr_cqe; 1307 }; 1308 struct ib_sge *sg_list; 1309 int num_sge; 1310 }; 1311 1312 enum ib_access_flags { 1313 IB_ACCESS_LOCAL_WRITE = 1, 1314 IB_ACCESS_REMOTE_WRITE = (1<<1), 1315 IB_ACCESS_REMOTE_READ = (1<<2), 1316 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1317 IB_ACCESS_MW_BIND = (1<<4), 1318 IB_ZERO_BASED = (1<<5), 1319 IB_ACCESS_ON_DEMAND = (1<<6), 1320 }; 1321 1322 /* 1323 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1324 * are hidden here instead of a uapi header! 1325 */ 1326 enum ib_mr_rereg_flags { 1327 IB_MR_REREG_TRANS = 1, 1328 IB_MR_REREG_PD = (1<<1), 1329 IB_MR_REREG_ACCESS = (1<<2), 1330 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1331 }; 1332 1333 struct ib_fmr_attr { 1334 int max_pages; 1335 int max_maps; 1336 u8 page_shift; 1337 }; 1338 1339 struct ib_umem; 1340 1341 struct ib_ucontext { 1342 struct ib_device *device; 1343 struct list_head pd_list; 1344 struct list_head mr_list; 1345 struct list_head mw_list; 1346 struct list_head cq_list; 1347 struct list_head qp_list; 1348 struct list_head srq_list; 1349 struct list_head ah_list; 1350 struct list_head xrcd_list; 1351 struct list_head rule_list; 1352 struct list_head wq_list; 1353 struct list_head rwq_ind_tbl_list; 1354 int closing; 1355 1356 pid_t tgid; 1357 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1358 struct rb_root umem_tree; 1359 /* 1360 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1361 * mmu notifiers registration. 1362 */ 1363 struct rw_semaphore umem_rwsem; 1364 void (*invalidate_range)(struct ib_umem *umem, 1365 unsigned long start, unsigned long end); 1366 1367 struct mmu_notifier mn; 1368 atomic_t notifier_count; 1369 /* A list of umems that don't have private mmu notifier counters yet. */ 1370 struct list_head no_private_counters; 1371 int odp_mrs_count; 1372 #endif 1373 }; 1374 1375 struct ib_uobject { 1376 u64 user_handle; /* handle given to us by userspace */ 1377 struct ib_ucontext *context; /* associated user context */ 1378 void *object; /* containing object */ 1379 struct list_head list; /* link to context's list */ 1380 int id; /* index into kernel idr */ 1381 struct kref ref; 1382 struct rw_semaphore mutex; /* protects .live */ 1383 struct rcu_head rcu; /* kfree_rcu() overhead */ 1384 int live; 1385 }; 1386 1387 struct ib_udata { 1388 const void __user *inbuf; 1389 void __user *outbuf; 1390 size_t inlen; 1391 size_t outlen; 1392 }; 1393 1394 struct ib_pd { 1395 u32 local_dma_lkey; 1396 u32 flags; 1397 struct ib_device *device; 1398 struct ib_uobject *uobject; 1399 atomic_t usecnt; /* count all resources */ 1400 1401 u32 unsafe_global_rkey; 1402 1403 /* 1404 * Implementation details of the RDMA core, don't use in drivers: 1405 */ 1406 struct ib_mr *__internal_mr; 1407 }; 1408 1409 struct ib_xrcd { 1410 struct ib_device *device; 1411 atomic_t usecnt; /* count all exposed resources */ 1412 struct inode *inode; 1413 1414 struct mutex tgt_qp_mutex; 1415 struct list_head tgt_qp_list; 1416 }; 1417 1418 struct ib_ah { 1419 struct ib_device *device; 1420 struct ib_pd *pd; 1421 struct ib_uobject *uobject; 1422 }; 1423 1424 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1425 1426 enum ib_poll_context { 1427 IB_POLL_DIRECT, /* caller context, no hw completions */ 1428 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1429 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1430 }; 1431 1432 struct ib_cq { 1433 struct ib_device *device; 1434 struct ib_uobject *uobject; 1435 ib_comp_handler comp_handler; 1436 void (*event_handler)(struct ib_event *, void *); 1437 void *cq_context; 1438 int cqe; 1439 atomic_t usecnt; /* count number of work queues */ 1440 enum ib_poll_context poll_ctx; 1441 struct work_struct work; 1442 }; 1443 1444 struct ib_srq { 1445 struct ib_device *device; 1446 struct ib_pd *pd; 1447 struct ib_uobject *uobject; 1448 void (*event_handler)(struct ib_event *, void *); 1449 void *srq_context; 1450 enum ib_srq_type srq_type; 1451 atomic_t usecnt; 1452 1453 union { 1454 struct { 1455 struct ib_xrcd *xrcd; 1456 struct ib_cq *cq; 1457 u32 srq_num; 1458 } xrc; 1459 } ext; 1460 }; 1461 1462 enum ib_wq_type { 1463 IB_WQT_RQ 1464 }; 1465 1466 enum ib_wq_state { 1467 IB_WQS_RESET, 1468 IB_WQS_RDY, 1469 IB_WQS_ERR 1470 }; 1471 1472 struct ib_wq { 1473 struct ib_device *device; 1474 struct ib_uobject *uobject; 1475 void *wq_context; 1476 void (*event_handler)(struct ib_event *, void *); 1477 struct ib_pd *pd; 1478 struct ib_cq *cq; 1479 u32 wq_num; 1480 enum ib_wq_state state; 1481 enum ib_wq_type wq_type; 1482 atomic_t usecnt; 1483 }; 1484 1485 struct ib_wq_init_attr { 1486 void *wq_context; 1487 enum ib_wq_type wq_type; 1488 u32 max_wr; 1489 u32 max_sge; 1490 struct ib_cq *cq; 1491 void (*event_handler)(struct ib_event *, void *); 1492 }; 1493 1494 enum ib_wq_attr_mask { 1495 IB_WQ_STATE = 1 << 0, 1496 IB_WQ_CUR_STATE = 1 << 1, 1497 }; 1498 1499 struct ib_wq_attr { 1500 enum ib_wq_state wq_state; 1501 enum ib_wq_state curr_wq_state; 1502 }; 1503 1504 struct ib_rwq_ind_table { 1505 struct ib_device *device; 1506 struct ib_uobject *uobject; 1507 atomic_t usecnt; 1508 u32 ind_tbl_num; 1509 u32 log_ind_tbl_size; 1510 struct ib_wq **ind_tbl; 1511 }; 1512 1513 struct ib_rwq_ind_table_init_attr { 1514 u32 log_ind_tbl_size; 1515 /* Each entry is a pointer to Receive Work Queue */ 1516 struct ib_wq **ind_tbl; 1517 }; 1518 1519 /* 1520 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1521 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1522 */ 1523 struct ib_qp { 1524 struct ib_device *device; 1525 struct ib_pd *pd; 1526 struct ib_cq *send_cq; 1527 struct ib_cq *recv_cq; 1528 spinlock_t mr_lock; 1529 struct ib_srq *srq; 1530 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1531 struct list_head xrcd_list; 1532 1533 /* count times opened, mcast attaches, flow attaches */ 1534 atomic_t usecnt; 1535 struct list_head open_list; 1536 struct ib_qp *real_qp; 1537 struct ib_uobject *uobject; 1538 void (*event_handler)(struct ib_event *, void *); 1539 void *qp_context; 1540 u32 qp_num; 1541 u32 max_write_sge; 1542 u32 max_read_sge; 1543 enum ib_qp_type qp_type; 1544 struct ib_rwq_ind_table *rwq_ind_tbl; 1545 }; 1546 1547 struct ib_mr { 1548 struct ib_device *device; 1549 struct ib_pd *pd; 1550 u32 lkey; 1551 u32 rkey; 1552 u64 iova; 1553 u32 length; 1554 unsigned int page_size; 1555 bool need_inval; 1556 union { 1557 struct ib_uobject *uobject; /* user */ 1558 struct list_head qp_entry; /* FR */ 1559 }; 1560 }; 1561 1562 struct ib_mw { 1563 struct ib_device *device; 1564 struct ib_pd *pd; 1565 struct ib_uobject *uobject; 1566 u32 rkey; 1567 enum ib_mw_type type; 1568 }; 1569 1570 struct ib_fmr { 1571 struct ib_device *device; 1572 struct ib_pd *pd; 1573 struct list_head list; 1574 u32 lkey; 1575 u32 rkey; 1576 }; 1577 1578 /* Supported steering options */ 1579 enum ib_flow_attr_type { 1580 /* steering according to rule specifications */ 1581 IB_FLOW_ATTR_NORMAL = 0x0, 1582 /* default unicast and multicast rule - 1583 * receive all Eth traffic which isn't steered to any QP 1584 */ 1585 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1586 /* default multicast rule - 1587 * receive all Eth multicast traffic which isn't steered to any QP 1588 */ 1589 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1590 /* sniffer rule - receive all port traffic */ 1591 IB_FLOW_ATTR_SNIFFER = 0x3 1592 }; 1593 1594 /* Supported steering header types */ 1595 enum ib_flow_spec_type { 1596 /* L2 headers*/ 1597 IB_FLOW_SPEC_ETH = 0x20, 1598 IB_FLOW_SPEC_IB = 0x22, 1599 /* L3 header*/ 1600 IB_FLOW_SPEC_IPV4 = 0x30, 1601 IB_FLOW_SPEC_IPV6 = 0x31, 1602 /* L4 headers*/ 1603 IB_FLOW_SPEC_TCP = 0x40, 1604 IB_FLOW_SPEC_UDP = 0x41 1605 }; 1606 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1607 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1608 1609 /* Flow steering rule priority is set according to it's domain. 1610 * Lower domain value means higher priority. 1611 */ 1612 enum ib_flow_domain { 1613 IB_FLOW_DOMAIN_USER, 1614 IB_FLOW_DOMAIN_ETHTOOL, 1615 IB_FLOW_DOMAIN_RFS, 1616 IB_FLOW_DOMAIN_NIC, 1617 IB_FLOW_DOMAIN_NUM /* Must be last */ 1618 }; 1619 1620 enum ib_flow_flags { 1621 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1622 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1623 }; 1624 1625 struct ib_flow_eth_filter { 1626 u8 dst_mac[6]; 1627 u8 src_mac[6]; 1628 __be16 ether_type; 1629 __be16 vlan_tag; 1630 /* Must be last */ 1631 u8 real_sz[0]; 1632 }; 1633 1634 struct ib_flow_spec_eth { 1635 enum ib_flow_spec_type type; 1636 u16 size; 1637 struct ib_flow_eth_filter val; 1638 struct ib_flow_eth_filter mask; 1639 }; 1640 1641 struct ib_flow_ib_filter { 1642 __be16 dlid; 1643 __u8 sl; 1644 /* Must be last */ 1645 u8 real_sz[0]; 1646 }; 1647 1648 struct ib_flow_spec_ib { 1649 enum ib_flow_spec_type type; 1650 u16 size; 1651 struct ib_flow_ib_filter val; 1652 struct ib_flow_ib_filter mask; 1653 }; 1654 1655 /* IPv4 header flags */ 1656 enum ib_ipv4_flags { 1657 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1658 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1659 last have this flag set */ 1660 }; 1661 1662 struct ib_flow_ipv4_filter { 1663 __be32 src_ip; 1664 __be32 dst_ip; 1665 u8 proto; 1666 u8 tos; 1667 u8 ttl; 1668 u8 flags; 1669 /* Must be last */ 1670 u8 real_sz[0]; 1671 }; 1672 1673 struct ib_flow_spec_ipv4 { 1674 enum ib_flow_spec_type type; 1675 u16 size; 1676 struct ib_flow_ipv4_filter val; 1677 struct ib_flow_ipv4_filter mask; 1678 }; 1679 1680 struct ib_flow_ipv6_filter { 1681 u8 src_ip[16]; 1682 u8 dst_ip[16]; 1683 __be32 flow_label; 1684 u8 next_hdr; 1685 u8 traffic_class; 1686 u8 hop_limit; 1687 /* Must be last */ 1688 u8 real_sz[0]; 1689 }; 1690 1691 struct ib_flow_spec_ipv6 { 1692 enum ib_flow_spec_type type; 1693 u16 size; 1694 struct ib_flow_ipv6_filter val; 1695 struct ib_flow_ipv6_filter mask; 1696 }; 1697 1698 struct ib_flow_tcp_udp_filter { 1699 __be16 dst_port; 1700 __be16 src_port; 1701 /* Must be last */ 1702 u8 real_sz[0]; 1703 }; 1704 1705 struct ib_flow_spec_tcp_udp { 1706 enum ib_flow_spec_type type; 1707 u16 size; 1708 struct ib_flow_tcp_udp_filter val; 1709 struct ib_flow_tcp_udp_filter mask; 1710 }; 1711 1712 union ib_flow_spec { 1713 struct { 1714 enum ib_flow_spec_type type; 1715 u16 size; 1716 }; 1717 struct ib_flow_spec_eth eth; 1718 struct ib_flow_spec_ib ib; 1719 struct ib_flow_spec_ipv4 ipv4; 1720 struct ib_flow_spec_tcp_udp tcp_udp; 1721 struct ib_flow_spec_ipv6 ipv6; 1722 }; 1723 1724 struct ib_flow_attr { 1725 enum ib_flow_attr_type type; 1726 u16 size; 1727 u16 priority; 1728 u32 flags; 1729 u8 num_of_specs; 1730 u8 port; 1731 /* Following are the optional layers according to user request 1732 * struct ib_flow_spec_xxx 1733 * struct ib_flow_spec_yyy 1734 */ 1735 }; 1736 1737 struct ib_flow { 1738 struct ib_qp *qp; 1739 struct ib_uobject *uobject; 1740 }; 1741 1742 struct ib_mad_hdr; 1743 struct ib_grh; 1744 1745 enum ib_process_mad_flags { 1746 IB_MAD_IGNORE_MKEY = 1, 1747 IB_MAD_IGNORE_BKEY = 2, 1748 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1749 }; 1750 1751 enum ib_mad_result { 1752 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1753 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1754 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1755 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1756 }; 1757 1758 #define IB_DEVICE_NAME_MAX 64 1759 1760 struct ib_cache { 1761 rwlock_t lock; 1762 struct ib_event_handler event_handler; 1763 struct ib_pkey_cache **pkey_cache; 1764 struct ib_gid_table **gid_cache; 1765 u8 *lmc_cache; 1766 }; 1767 1768 struct ib_dma_mapping_ops { 1769 int (*mapping_error)(struct ib_device *dev, 1770 u64 dma_addr); 1771 u64 (*map_single)(struct ib_device *dev, 1772 void *ptr, size_t size, 1773 enum dma_data_direction direction); 1774 void (*unmap_single)(struct ib_device *dev, 1775 u64 addr, size_t size, 1776 enum dma_data_direction direction); 1777 u64 (*map_page)(struct ib_device *dev, 1778 struct page *page, unsigned long offset, 1779 size_t size, 1780 enum dma_data_direction direction); 1781 void (*unmap_page)(struct ib_device *dev, 1782 u64 addr, size_t size, 1783 enum dma_data_direction direction); 1784 int (*map_sg)(struct ib_device *dev, 1785 struct scatterlist *sg, int nents, 1786 enum dma_data_direction direction); 1787 void (*unmap_sg)(struct ib_device *dev, 1788 struct scatterlist *sg, int nents, 1789 enum dma_data_direction direction); 1790 int (*map_sg_attrs)(struct ib_device *dev, 1791 struct scatterlist *sg, int nents, 1792 enum dma_data_direction direction, 1793 struct dma_attrs *attrs); 1794 void (*unmap_sg_attrs)(struct ib_device *dev, 1795 struct scatterlist *sg, int nents, 1796 enum dma_data_direction direction, 1797 struct dma_attrs *attrs); 1798 void (*sync_single_for_cpu)(struct ib_device *dev, 1799 u64 dma_handle, 1800 size_t size, 1801 enum dma_data_direction dir); 1802 void (*sync_single_for_device)(struct ib_device *dev, 1803 u64 dma_handle, 1804 size_t size, 1805 enum dma_data_direction dir); 1806 void *(*alloc_coherent)(struct ib_device *dev, 1807 size_t size, 1808 u64 *dma_handle, 1809 gfp_t flag); 1810 void (*free_coherent)(struct ib_device *dev, 1811 size_t size, void *cpu_addr, 1812 u64 dma_handle); 1813 }; 1814 1815 struct iw_cm_verbs; 1816 1817 struct ib_port_immutable { 1818 int pkey_tbl_len; 1819 int gid_tbl_len; 1820 u32 core_cap_flags; 1821 u32 max_mad_size; 1822 }; 1823 1824 struct ib_device { 1825 struct device *dma_device; 1826 1827 char name[IB_DEVICE_NAME_MAX]; 1828 1829 struct list_head event_handler_list; 1830 spinlock_t event_handler_lock; 1831 1832 spinlock_t client_data_lock; 1833 struct list_head core_list; 1834 /* Access to the client_data_list is protected by the client_data_lock 1835 * spinlock and the lists_rwsem read-write semaphore */ 1836 struct list_head client_data_list; 1837 1838 struct ib_cache cache; 1839 /** 1840 * port_immutable is indexed by port number 1841 */ 1842 struct ib_port_immutable *port_immutable; 1843 1844 int num_comp_vectors; 1845 1846 struct iw_cm_verbs *iwcm; 1847 1848 /** 1849 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1850 * driver initialized data. The struct is kfree()'ed by the sysfs 1851 * core when the device is removed. A lifespan of -1 in the return 1852 * struct tells the core to set a default lifespan. 1853 */ 1854 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1855 u8 port_num); 1856 /** 1857 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1858 * @index - The index in the value array we wish to have updated, or 1859 * num_counters if we want all stats updated 1860 * Return codes - 1861 * < 0 - Error, no counters updated 1862 * index - Updated the single counter pointed to by index 1863 * num_counters - Updated all counters (will reset the timestamp 1864 * and prevent further calls for lifespan milliseconds) 1865 * Drivers are allowed to update all counters in leiu of just the 1866 * one given in index at their option 1867 */ 1868 int (*get_hw_stats)(struct ib_device *device, 1869 struct rdma_hw_stats *stats, 1870 u8 port, int index); 1871 int (*query_device)(struct ib_device *device, 1872 struct ib_device_attr *device_attr, 1873 struct ib_udata *udata); 1874 int (*query_port)(struct ib_device *device, 1875 u8 port_num, 1876 struct ib_port_attr *port_attr); 1877 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1878 u8 port_num); 1879 /* When calling get_netdev, the HW vendor's driver should return the 1880 * net device of device @device at port @port_num or NULL if such 1881 * a net device doesn't exist. The vendor driver should call dev_hold 1882 * on this net device. The HW vendor's device driver must guarantee 1883 * that this function returns NULL before the net device reaches 1884 * NETDEV_UNREGISTER_FINAL state. 1885 */ 1886 struct net_device *(*get_netdev)(struct ib_device *device, 1887 u8 port_num); 1888 int (*query_gid)(struct ib_device *device, 1889 u8 port_num, int index, 1890 union ib_gid *gid); 1891 /* When calling add_gid, the HW vendor's driver should 1892 * add the gid of device @device at gid index @index of 1893 * port @port_num to be @gid. Meta-info of that gid (for example, 1894 * the network device related to this gid is available 1895 * at @attr. @context allows the HW vendor driver to store extra 1896 * information together with a GID entry. The HW vendor may allocate 1897 * memory to contain this information and store it in @context when a 1898 * new GID entry is written to. Params are consistent until the next 1899 * call of add_gid or delete_gid. The function should return 0 on 1900 * success or error otherwise. The function could be called 1901 * concurrently for different ports. This function is only called 1902 * when roce_gid_table is used. 1903 */ 1904 int (*add_gid)(struct ib_device *device, 1905 u8 port_num, 1906 unsigned int index, 1907 const union ib_gid *gid, 1908 const struct ib_gid_attr *attr, 1909 void **context); 1910 /* When calling del_gid, the HW vendor's driver should delete the 1911 * gid of device @device at gid index @index of port @port_num. 1912 * Upon the deletion of a GID entry, the HW vendor must free any 1913 * allocated memory. The caller will clear @context afterwards. 1914 * This function is only called when roce_gid_table is used. 1915 */ 1916 int (*del_gid)(struct ib_device *device, 1917 u8 port_num, 1918 unsigned int index, 1919 void **context); 1920 int (*query_pkey)(struct ib_device *device, 1921 u8 port_num, u16 index, u16 *pkey); 1922 int (*modify_device)(struct ib_device *device, 1923 int device_modify_mask, 1924 struct ib_device_modify *device_modify); 1925 int (*modify_port)(struct ib_device *device, 1926 u8 port_num, int port_modify_mask, 1927 struct ib_port_modify *port_modify); 1928 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1929 struct ib_udata *udata); 1930 int (*dealloc_ucontext)(struct ib_ucontext *context); 1931 int (*mmap)(struct ib_ucontext *context, 1932 struct vm_area_struct *vma); 1933 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1934 struct ib_ucontext *context, 1935 struct ib_udata *udata); 1936 int (*dealloc_pd)(struct ib_pd *pd); 1937 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1938 struct ib_ah_attr *ah_attr); 1939 int (*modify_ah)(struct ib_ah *ah, 1940 struct ib_ah_attr *ah_attr); 1941 int (*query_ah)(struct ib_ah *ah, 1942 struct ib_ah_attr *ah_attr); 1943 int (*destroy_ah)(struct ib_ah *ah); 1944 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1945 struct ib_srq_init_attr *srq_init_attr, 1946 struct ib_udata *udata); 1947 int (*modify_srq)(struct ib_srq *srq, 1948 struct ib_srq_attr *srq_attr, 1949 enum ib_srq_attr_mask srq_attr_mask, 1950 struct ib_udata *udata); 1951 int (*query_srq)(struct ib_srq *srq, 1952 struct ib_srq_attr *srq_attr); 1953 int (*destroy_srq)(struct ib_srq *srq); 1954 int (*post_srq_recv)(struct ib_srq *srq, 1955 struct ib_recv_wr *recv_wr, 1956 struct ib_recv_wr **bad_recv_wr); 1957 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1958 struct ib_qp_init_attr *qp_init_attr, 1959 struct ib_udata *udata); 1960 int (*modify_qp)(struct ib_qp *qp, 1961 struct ib_qp_attr *qp_attr, 1962 int qp_attr_mask, 1963 struct ib_udata *udata); 1964 int (*query_qp)(struct ib_qp *qp, 1965 struct ib_qp_attr *qp_attr, 1966 int qp_attr_mask, 1967 struct ib_qp_init_attr *qp_init_attr); 1968 int (*destroy_qp)(struct ib_qp *qp); 1969 int (*post_send)(struct ib_qp *qp, 1970 struct ib_send_wr *send_wr, 1971 struct ib_send_wr **bad_send_wr); 1972 int (*post_recv)(struct ib_qp *qp, 1973 struct ib_recv_wr *recv_wr, 1974 struct ib_recv_wr **bad_recv_wr); 1975 struct ib_cq * (*create_cq)(struct ib_device *device, 1976 const struct ib_cq_init_attr *attr, 1977 struct ib_ucontext *context, 1978 struct ib_udata *udata); 1979 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1980 u16 cq_period); 1981 int (*destroy_cq)(struct ib_cq *cq); 1982 int (*resize_cq)(struct ib_cq *cq, int cqe, 1983 struct ib_udata *udata); 1984 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1985 struct ib_wc *wc); 1986 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1987 int (*req_notify_cq)(struct ib_cq *cq, 1988 enum ib_cq_notify_flags flags); 1989 int (*req_ncomp_notif)(struct ib_cq *cq, 1990 int wc_cnt); 1991 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1992 int mr_access_flags); 1993 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1994 u64 start, u64 length, 1995 u64 virt_addr, 1996 int mr_access_flags, 1997 struct ib_udata *udata); 1998 int (*rereg_user_mr)(struct ib_mr *mr, 1999 int flags, 2000 u64 start, u64 length, 2001 u64 virt_addr, 2002 int mr_access_flags, 2003 struct ib_pd *pd, 2004 struct ib_udata *udata); 2005 int (*dereg_mr)(struct ib_mr *mr); 2006 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2007 enum ib_mr_type mr_type, 2008 u32 max_num_sg); 2009 int (*map_mr_sg)(struct ib_mr *mr, 2010 struct scatterlist *sg, 2011 int sg_nents, 2012 unsigned int *sg_offset); 2013 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2014 enum ib_mw_type type, 2015 struct ib_udata *udata); 2016 int (*dealloc_mw)(struct ib_mw *mw); 2017 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2018 int mr_access_flags, 2019 struct ib_fmr_attr *fmr_attr); 2020 int (*map_phys_fmr)(struct ib_fmr *fmr, 2021 u64 *page_list, int list_len, 2022 u64 iova); 2023 int (*unmap_fmr)(struct list_head *fmr_list); 2024 int (*dealloc_fmr)(struct ib_fmr *fmr); 2025 int (*attach_mcast)(struct ib_qp *qp, 2026 union ib_gid *gid, 2027 u16 lid); 2028 int (*detach_mcast)(struct ib_qp *qp, 2029 union ib_gid *gid, 2030 u16 lid); 2031 int (*process_mad)(struct ib_device *device, 2032 int process_mad_flags, 2033 u8 port_num, 2034 const struct ib_wc *in_wc, 2035 const struct ib_grh *in_grh, 2036 const struct ib_mad_hdr *in_mad, 2037 size_t in_mad_size, 2038 struct ib_mad_hdr *out_mad, 2039 size_t *out_mad_size, 2040 u16 *out_mad_pkey_index); 2041 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2042 struct ib_ucontext *ucontext, 2043 struct ib_udata *udata); 2044 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2045 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2046 struct ib_flow_attr 2047 *flow_attr, 2048 int domain); 2049 int (*destroy_flow)(struct ib_flow *flow_id); 2050 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2051 struct ib_mr_status *mr_status); 2052 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2053 void (*drain_rq)(struct ib_qp *qp); 2054 void (*drain_sq)(struct ib_qp *qp); 2055 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2056 int state); 2057 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2058 struct ifla_vf_info *ivf); 2059 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2060 struct ifla_vf_stats *stats); 2061 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2062 int type); 2063 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2064 struct ib_wq_init_attr *init_attr, 2065 struct ib_udata *udata); 2066 int (*destroy_wq)(struct ib_wq *wq); 2067 int (*modify_wq)(struct ib_wq *wq, 2068 struct ib_wq_attr *attr, 2069 u32 wq_attr_mask, 2070 struct ib_udata *udata); 2071 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2072 struct ib_rwq_ind_table_init_attr *init_attr, 2073 struct ib_udata *udata); 2074 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2075 struct ib_dma_mapping_ops *dma_ops; 2076 2077 struct module *owner; 2078 struct device dev; 2079 struct kobject *ports_parent; 2080 struct list_head port_list; 2081 2082 enum { 2083 IB_DEV_UNINITIALIZED, 2084 IB_DEV_REGISTERED, 2085 IB_DEV_UNREGISTERED 2086 } reg_state; 2087 2088 int uverbs_abi_ver; 2089 u64 uverbs_cmd_mask; 2090 u64 uverbs_ex_cmd_mask; 2091 2092 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2093 __be64 node_guid; 2094 u32 local_dma_lkey; 2095 u16 is_switch:1; 2096 u8 node_type; 2097 u8 phys_port_cnt; 2098 struct ib_device_attr attrs; 2099 struct attribute_group *hw_stats_ag; 2100 struct rdma_hw_stats *hw_stats; 2101 2102 /** 2103 * The following mandatory functions are used only at device 2104 * registration. Keep functions such as these at the end of this 2105 * structure to avoid cache line misses when accessing struct ib_device 2106 * in fast paths. 2107 */ 2108 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2109 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2110 }; 2111 2112 struct ib_client { 2113 char *name; 2114 void (*add) (struct ib_device *); 2115 void (*remove)(struct ib_device *, void *client_data); 2116 2117 /* Returns the net_dev belonging to this ib_client and matching the 2118 * given parameters. 2119 * @dev: An RDMA device that the net_dev use for communication. 2120 * @port: A physical port number on the RDMA device. 2121 * @pkey: P_Key that the net_dev uses if applicable. 2122 * @gid: A GID that the net_dev uses to communicate. 2123 * @addr: An IP address the net_dev is configured with. 2124 * @client_data: The device's client data set by ib_set_client_data(). 2125 * 2126 * An ib_client that implements a net_dev on top of RDMA devices 2127 * (such as IP over IB) should implement this callback, allowing the 2128 * rdma_cm module to find the right net_dev for a given request. 2129 * 2130 * The caller is responsible for calling dev_put on the returned 2131 * netdev. */ 2132 struct net_device *(*get_net_dev_by_params)( 2133 struct ib_device *dev, 2134 u8 port, 2135 u16 pkey, 2136 const union ib_gid *gid, 2137 const struct sockaddr *addr, 2138 void *client_data); 2139 struct list_head list; 2140 }; 2141 2142 struct ib_device *ib_alloc_device(size_t size); 2143 void ib_dealloc_device(struct ib_device *device); 2144 2145 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2146 2147 int ib_register_device(struct ib_device *device, 2148 int (*port_callback)(struct ib_device *, 2149 u8, struct kobject *)); 2150 void ib_unregister_device(struct ib_device *device); 2151 2152 int ib_register_client (struct ib_client *client); 2153 void ib_unregister_client(struct ib_client *client); 2154 2155 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2156 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2157 void *data); 2158 2159 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2160 { 2161 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2162 } 2163 2164 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2165 { 2166 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2167 } 2168 2169 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2170 size_t offset, 2171 size_t len) 2172 { 2173 const void __user *p = (const char __user *)udata->inbuf + offset; 2174 bool ret; 2175 u8 *buf; 2176 2177 if (len > USHRT_MAX) 2178 return false; 2179 2180 buf = memdup_user(p, len); 2181 if (IS_ERR(buf)) 2182 return false; 2183 2184 ret = !memchr_inv(buf, 0, len); 2185 kfree(buf); 2186 return ret; 2187 } 2188 2189 /** 2190 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2191 * contains all required attributes and no attributes not allowed for 2192 * the given QP state transition. 2193 * @cur_state: Current QP state 2194 * @next_state: Next QP state 2195 * @type: QP type 2196 * @mask: Mask of supplied QP attributes 2197 * @ll : link layer of port 2198 * 2199 * This function is a helper function that a low-level driver's 2200 * modify_qp method can use to validate the consumer's input. It 2201 * checks that cur_state and next_state are valid QP states, that a 2202 * transition from cur_state to next_state is allowed by the IB spec, 2203 * and that the attribute mask supplied is allowed for the transition. 2204 */ 2205 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2206 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2207 enum rdma_link_layer ll); 2208 2209 int ib_register_event_handler (struct ib_event_handler *event_handler); 2210 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2211 void ib_dispatch_event(struct ib_event *event); 2212 2213 int ib_query_port(struct ib_device *device, 2214 u8 port_num, struct ib_port_attr *port_attr); 2215 2216 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2217 u8 port_num); 2218 2219 /** 2220 * rdma_cap_ib_switch - Check if the device is IB switch 2221 * @device: Device to check 2222 * 2223 * Device driver is responsible for setting is_switch bit on 2224 * in ib_device structure at init time. 2225 * 2226 * Return: true if the device is IB switch. 2227 */ 2228 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2229 { 2230 return device->is_switch; 2231 } 2232 2233 /** 2234 * rdma_start_port - Return the first valid port number for the device 2235 * specified 2236 * 2237 * @device: Device to be checked 2238 * 2239 * Return start port number 2240 */ 2241 static inline u8 rdma_start_port(const struct ib_device *device) 2242 { 2243 return rdma_cap_ib_switch(device) ? 0 : 1; 2244 } 2245 2246 /** 2247 * rdma_end_port - Return the last valid port number for the device 2248 * specified 2249 * 2250 * @device: Device to be checked 2251 * 2252 * Return last port number 2253 */ 2254 static inline u8 rdma_end_port(const struct ib_device *device) 2255 { 2256 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2257 } 2258 2259 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2260 { 2261 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2262 } 2263 2264 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2265 { 2266 return device->port_immutable[port_num].core_cap_flags & 2267 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2268 } 2269 2270 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2271 { 2272 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2273 } 2274 2275 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2276 { 2277 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2278 } 2279 2280 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2281 { 2282 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2283 } 2284 2285 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2286 { 2287 return rdma_protocol_ib(device, port_num) || 2288 rdma_protocol_roce(device, port_num); 2289 } 2290 2291 /** 2292 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2293 * Management Datagrams. 2294 * @device: Device to check 2295 * @port_num: Port number to check 2296 * 2297 * Management Datagrams (MAD) are a required part of the InfiniBand 2298 * specification and are supported on all InfiniBand devices. A slightly 2299 * extended version are also supported on OPA interfaces. 2300 * 2301 * Return: true if the port supports sending/receiving of MAD packets. 2302 */ 2303 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2304 { 2305 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2306 } 2307 2308 /** 2309 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2310 * Management Datagrams. 2311 * @device: Device to check 2312 * @port_num: Port number to check 2313 * 2314 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2315 * datagrams with their own versions. These OPA MADs share many but not all of 2316 * the characteristics of InfiniBand MADs. 2317 * 2318 * OPA MADs differ in the following ways: 2319 * 2320 * 1) MADs are variable size up to 2K 2321 * IBTA defined MADs remain fixed at 256 bytes 2322 * 2) OPA SMPs must carry valid PKeys 2323 * 3) OPA SMP packets are a different format 2324 * 2325 * Return: true if the port supports OPA MAD packet formats. 2326 */ 2327 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2328 { 2329 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2330 == RDMA_CORE_CAP_OPA_MAD; 2331 } 2332 2333 /** 2334 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2335 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2336 * @device: Device to check 2337 * @port_num: Port number to check 2338 * 2339 * Each InfiniBand node is required to provide a Subnet Management Agent 2340 * that the subnet manager can access. Prior to the fabric being fully 2341 * configured by the subnet manager, the SMA is accessed via a well known 2342 * interface called the Subnet Management Interface (SMI). This interface 2343 * uses directed route packets to communicate with the SM to get around the 2344 * chicken and egg problem of the SM needing to know what's on the fabric 2345 * in order to configure the fabric, and needing to configure the fabric in 2346 * order to send packets to the devices on the fabric. These directed 2347 * route packets do not need the fabric fully configured in order to reach 2348 * their destination. The SMI is the only method allowed to send 2349 * directed route packets on an InfiniBand fabric. 2350 * 2351 * Return: true if the port provides an SMI. 2352 */ 2353 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2354 { 2355 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2356 } 2357 2358 /** 2359 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2360 * Communication Manager. 2361 * @device: Device to check 2362 * @port_num: Port number to check 2363 * 2364 * The InfiniBand Communication Manager is one of many pre-defined General 2365 * Service Agents (GSA) that are accessed via the General Service 2366 * Interface (GSI). It's role is to facilitate establishment of connections 2367 * between nodes as well as other management related tasks for established 2368 * connections. 2369 * 2370 * Return: true if the port supports an IB CM (this does not guarantee that 2371 * a CM is actually running however). 2372 */ 2373 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2374 { 2375 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2376 } 2377 2378 /** 2379 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2380 * Communication Manager. 2381 * @device: Device to check 2382 * @port_num: Port number to check 2383 * 2384 * Similar to above, but specific to iWARP connections which have a different 2385 * managment protocol than InfiniBand. 2386 * 2387 * Return: true if the port supports an iWARP CM (this does not guarantee that 2388 * a CM is actually running however). 2389 */ 2390 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2391 { 2392 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2393 } 2394 2395 /** 2396 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2397 * Subnet Administration. 2398 * @device: Device to check 2399 * @port_num: Port number to check 2400 * 2401 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2402 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2403 * fabrics, devices should resolve routes to other hosts by contacting the 2404 * SA to query the proper route. 2405 * 2406 * Return: true if the port should act as a client to the fabric Subnet 2407 * Administration interface. This does not imply that the SA service is 2408 * running locally. 2409 */ 2410 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2411 { 2412 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2413 } 2414 2415 /** 2416 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2417 * Multicast. 2418 * @device: Device to check 2419 * @port_num: Port number to check 2420 * 2421 * InfiniBand multicast registration is more complex than normal IPv4 or 2422 * IPv6 multicast registration. Each Host Channel Adapter must register 2423 * with the Subnet Manager when it wishes to join a multicast group. It 2424 * should do so only once regardless of how many queue pairs it subscribes 2425 * to this group. And it should leave the group only after all queue pairs 2426 * attached to the group have been detached. 2427 * 2428 * Return: true if the port must undertake the additional adminstrative 2429 * overhead of registering/unregistering with the SM and tracking of the 2430 * total number of queue pairs attached to the multicast group. 2431 */ 2432 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2433 { 2434 return rdma_cap_ib_sa(device, port_num); 2435 } 2436 2437 /** 2438 * rdma_cap_af_ib - Check if the port of device has the capability 2439 * Native Infiniband Address. 2440 * @device: Device to check 2441 * @port_num: Port number to check 2442 * 2443 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2444 * GID. RoCE uses a different mechanism, but still generates a GID via 2445 * a prescribed mechanism and port specific data. 2446 * 2447 * Return: true if the port uses a GID address to identify devices on the 2448 * network. 2449 */ 2450 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2451 { 2452 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2453 } 2454 2455 /** 2456 * rdma_cap_eth_ah - Check if the port of device has the capability 2457 * Ethernet Address Handle. 2458 * @device: Device to check 2459 * @port_num: Port number to check 2460 * 2461 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2462 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2463 * port. Normally, packet headers are generated by the sending host 2464 * adapter, but when sending connectionless datagrams, we must manually 2465 * inject the proper headers for the fabric we are communicating over. 2466 * 2467 * Return: true if we are running as a RoCE port and must force the 2468 * addition of a Global Route Header built from our Ethernet Address 2469 * Handle into our header list for connectionless packets. 2470 */ 2471 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2472 { 2473 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2474 } 2475 2476 /** 2477 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2478 * 2479 * @device: Device 2480 * @port_num: Port number 2481 * 2482 * This MAD size includes the MAD headers and MAD payload. No other headers 2483 * are included. 2484 * 2485 * Return the max MAD size required by the Port. Will return 0 if the port 2486 * does not support MADs 2487 */ 2488 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2489 { 2490 return device->port_immutable[port_num].max_mad_size; 2491 } 2492 2493 /** 2494 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2495 * @device: Device to check 2496 * @port_num: Port number to check 2497 * 2498 * RoCE GID table mechanism manages the various GIDs for a device. 2499 * 2500 * NOTE: if allocating the port's GID table has failed, this call will still 2501 * return true, but any RoCE GID table API will fail. 2502 * 2503 * Return: true if the port uses RoCE GID table mechanism in order to manage 2504 * its GIDs. 2505 */ 2506 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2507 u8 port_num) 2508 { 2509 return rdma_protocol_roce(device, port_num) && 2510 device->add_gid && device->del_gid; 2511 } 2512 2513 /* 2514 * Check if the device supports READ W/ INVALIDATE. 2515 */ 2516 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2517 { 2518 /* 2519 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2520 * has support for it yet. 2521 */ 2522 return rdma_protocol_iwarp(dev, port_num); 2523 } 2524 2525 int ib_query_gid(struct ib_device *device, 2526 u8 port_num, int index, union ib_gid *gid, 2527 struct ib_gid_attr *attr); 2528 2529 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2530 int state); 2531 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2532 struct ifla_vf_info *info); 2533 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2534 struct ifla_vf_stats *stats); 2535 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2536 int type); 2537 2538 int ib_query_pkey(struct ib_device *device, 2539 u8 port_num, u16 index, u16 *pkey); 2540 2541 int ib_modify_device(struct ib_device *device, 2542 int device_modify_mask, 2543 struct ib_device_modify *device_modify); 2544 2545 int ib_modify_port(struct ib_device *device, 2546 u8 port_num, int port_modify_mask, 2547 struct ib_port_modify *port_modify); 2548 2549 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2550 enum ib_gid_type gid_type, struct net_device *ndev, 2551 u8 *port_num, u16 *index); 2552 2553 int ib_find_pkey(struct ib_device *device, 2554 u8 port_num, u16 pkey, u16 *index); 2555 2556 enum ib_pd_flags { 2557 /* 2558 * Create a memory registration for all memory in the system and place 2559 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2560 * ULPs to avoid the overhead of dynamic MRs. 2561 * 2562 * This flag is generally considered unsafe and must only be used in 2563 * extremly trusted environments. Every use of it will log a warning 2564 * in the kernel log. 2565 */ 2566 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2567 }; 2568 2569 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2570 const char *caller); 2571 #define ib_alloc_pd(device, flags) \ 2572 __ib_alloc_pd((device), (flags), __func__) 2573 void ib_dealloc_pd(struct ib_pd *pd); 2574 2575 /** 2576 * ib_create_ah - Creates an address handle for the given address vector. 2577 * @pd: The protection domain associated with the address handle. 2578 * @ah_attr: The attributes of the address vector. 2579 * 2580 * The address handle is used to reference a local or global destination 2581 * in all UD QP post sends. 2582 */ 2583 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2584 2585 /** 2586 * ib_init_ah_from_wc - Initializes address handle attributes from a 2587 * work completion. 2588 * @device: Device on which the received message arrived. 2589 * @port_num: Port on which the received message arrived. 2590 * @wc: Work completion associated with the received message. 2591 * @grh: References the received global route header. This parameter is 2592 * ignored unless the work completion indicates that the GRH is valid. 2593 * @ah_attr: Returned attributes that can be used when creating an address 2594 * handle for replying to the message. 2595 */ 2596 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2597 const struct ib_wc *wc, const struct ib_grh *grh, 2598 struct ib_ah_attr *ah_attr); 2599 2600 /** 2601 * ib_create_ah_from_wc - Creates an address handle associated with the 2602 * sender of the specified work completion. 2603 * @pd: The protection domain associated with the address handle. 2604 * @wc: Work completion information associated with a received message. 2605 * @grh: References the received global route header. This parameter is 2606 * ignored unless the work completion indicates that the GRH is valid. 2607 * @port_num: The outbound port number to associate with the address. 2608 * 2609 * The address handle is used to reference a local or global destination 2610 * in all UD QP post sends. 2611 */ 2612 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2613 const struct ib_grh *grh, u8 port_num); 2614 2615 /** 2616 * ib_modify_ah - Modifies the address vector associated with an address 2617 * handle. 2618 * @ah: The address handle to modify. 2619 * @ah_attr: The new address vector attributes to associate with the 2620 * address handle. 2621 */ 2622 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2623 2624 /** 2625 * ib_query_ah - Queries the address vector associated with an address 2626 * handle. 2627 * @ah: The address handle to query. 2628 * @ah_attr: The address vector attributes associated with the address 2629 * handle. 2630 */ 2631 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2632 2633 /** 2634 * ib_destroy_ah - Destroys an address handle. 2635 * @ah: The address handle to destroy. 2636 */ 2637 int ib_destroy_ah(struct ib_ah *ah); 2638 2639 /** 2640 * ib_create_srq - Creates a SRQ associated with the specified protection 2641 * domain. 2642 * @pd: The protection domain associated with the SRQ. 2643 * @srq_init_attr: A list of initial attributes required to create the 2644 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2645 * the actual capabilities of the created SRQ. 2646 * 2647 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2648 * requested size of the SRQ, and set to the actual values allocated 2649 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2650 * will always be at least as large as the requested values. 2651 */ 2652 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2653 struct ib_srq_init_attr *srq_init_attr); 2654 2655 /** 2656 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2657 * @srq: The SRQ to modify. 2658 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2659 * the current values of selected SRQ attributes are returned. 2660 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2661 * are being modified. 2662 * 2663 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2664 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2665 * the number of receives queued drops below the limit. 2666 */ 2667 int ib_modify_srq(struct ib_srq *srq, 2668 struct ib_srq_attr *srq_attr, 2669 enum ib_srq_attr_mask srq_attr_mask); 2670 2671 /** 2672 * ib_query_srq - Returns the attribute list and current values for the 2673 * specified SRQ. 2674 * @srq: The SRQ to query. 2675 * @srq_attr: The attributes of the specified SRQ. 2676 */ 2677 int ib_query_srq(struct ib_srq *srq, 2678 struct ib_srq_attr *srq_attr); 2679 2680 /** 2681 * ib_destroy_srq - Destroys the specified SRQ. 2682 * @srq: The SRQ to destroy. 2683 */ 2684 int ib_destroy_srq(struct ib_srq *srq); 2685 2686 /** 2687 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2688 * @srq: The SRQ to post the work request on. 2689 * @recv_wr: A list of work requests to post on the receive queue. 2690 * @bad_recv_wr: On an immediate failure, this parameter will reference 2691 * the work request that failed to be posted on the QP. 2692 */ 2693 static inline int ib_post_srq_recv(struct ib_srq *srq, 2694 struct ib_recv_wr *recv_wr, 2695 struct ib_recv_wr **bad_recv_wr) 2696 { 2697 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2698 } 2699 2700 /** 2701 * ib_create_qp - Creates a QP associated with the specified protection 2702 * domain. 2703 * @pd: The protection domain associated with the QP. 2704 * @qp_init_attr: A list of initial attributes required to create the 2705 * QP. If QP creation succeeds, then the attributes are updated to 2706 * the actual capabilities of the created QP. 2707 */ 2708 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2709 struct ib_qp_init_attr *qp_init_attr); 2710 2711 /** 2712 * ib_modify_qp - Modifies the attributes for the specified QP and then 2713 * transitions the QP to the given state. 2714 * @qp: The QP to modify. 2715 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2716 * the current values of selected QP attributes are returned. 2717 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2718 * are being modified. 2719 */ 2720 int ib_modify_qp(struct ib_qp *qp, 2721 struct ib_qp_attr *qp_attr, 2722 int qp_attr_mask); 2723 2724 /** 2725 * ib_query_qp - Returns the attribute list and current values for the 2726 * specified QP. 2727 * @qp: The QP to query. 2728 * @qp_attr: The attributes of the specified QP. 2729 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2730 * @qp_init_attr: Additional attributes of the selected QP. 2731 * 2732 * The qp_attr_mask may be used to limit the query to gathering only the 2733 * selected attributes. 2734 */ 2735 int ib_query_qp(struct ib_qp *qp, 2736 struct ib_qp_attr *qp_attr, 2737 int qp_attr_mask, 2738 struct ib_qp_init_attr *qp_init_attr); 2739 2740 /** 2741 * ib_destroy_qp - Destroys the specified QP. 2742 * @qp: The QP to destroy. 2743 */ 2744 int ib_destroy_qp(struct ib_qp *qp); 2745 2746 /** 2747 * ib_open_qp - Obtain a reference to an existing sharable QP. 2748 * @xrcd - XRC domain 2749 * @qp_open_attr: Attributes identifying the QP to open. 2750 * 2751 * Returns a reference to a sharable QP. 2752 */ 2753 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2754 struct ib_qp_open_attr *qp_open_attr); 2755 2756 /** 2757 * ib_close_qp - Release an external reference to a QP. 2758 * @qp: The QP handle to release 2759 * 2760 * The opened QP handle is released by the caller. The underlying 2761 * shared QP is not destroyed until all internal references are released. 2762 */ 2763 int ib_close_qp(struct ib_qp *qp); 2764 2765 /** 2766 * ib_post_send - Posts a list of work requests to the send queue of 2767 * the specified QP. 2768 * @qp: The QP to post the work request on. 2769 * @send_wr: A list of work requests to post on the send queue. 2770 * @bad_send_wr: On an immediate failure, this parameter will reference 2771 * the work request that failed to be posted on the QP. 2772 * 2773 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2774 * error is returned, the QP state shall not be affected, 2775 * ib_post_send() will return an immediate error after queueing any 2776 * earlier work requests in the list. 2777 */ 2778 static inline int ib_post_send(struct ib_qp *qp, 2779 struct ib_send_wr *send_wr, 2780 struct ib_send_wr **bad_send_wr) 2781 { 2782 return qp->device->post_send(qp, send_wr, bad_send_wr); 2783 } 2784 2785 /** 2786 * ib_post_recv - Posts a list of work requests to the receive queue of 2787 * the specified QP. 2788 * @qp: The QP to post the work request on. 2789 * @recv_wr: A list of work requests to post on the receive queue. 2790 * @bad_recv_wr: On an immediate failure, this parameter will reference 2791 * the work request that failed to be posted on the QP. 2792 */ 2793 static inline int ib_post_recv(struct ib_qp *qp, 2794 struct ib_recv_wr *recv_wr, 2795 struct ib_recv_wr **bad_recv_wr) 2796 { 2797 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2798 } 2799 2800 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2801 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2802 void ib_free_cq(struct ib_cq *cq); 2803 2804 /** 2805 * ib_create_cq - Creates a CQ on the specified device. 2806 * @device: The device on which to create the CQ. 2807 * @comp_handler: A user-specified callback that is invoked when a 2808 * completion event occurs on the CQ. 2809 * @event_handler: A user-specified callback that is invoked when an 2810 * asynchronous event not associated with a completion occurs on the CQ. 2811 * @cq_context: Context associated with the CQ returned to the user via 2812 * the associated completion and event handlers. 2813 * @cq_attr: The attributes the CQ should be created upon. 2814 * 2815 * Users can examine the cq structure to determine the actual CQ size. 2816 */ 2817 struct ib_cq *ib_create_cq(struct ib_device *device, 2818 ib_comp_handler comp_handler, 2819 void (*event_handler)(struct ib_event *, void *), 2820 void *cq_context, 2821 const struct ib_cq_init_attr *cq_attr); 2822 2823 /** 2824 * ib_resize_cq - Modifies the capacity of the CQ. 2825 * @cq: The CQ to resize. 2826 * @cqe: The minimum size of the CQ. 2827 * 2828 * Users can examine the cq structure to determine the actual CQ size. 2829 */ 2830 int ib_resize_cq(struct ib_cq *cq, int cqe); 2831 2832 /** 2833 * ib_modify_cq - Modifies moderation params of the CQ 2834 * @cq: The CQ to modify. 2835 * @cq_count: number of CQEs that will trigger an event 2836 * @cq_period: max period of time in usec before triggering an event 2837 * 2838 */ 2839 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2840 2841 /** 2842 * ib_destroy_cq - Destroys the specified CQ. 2843 * @cq: The CQ to destroy. 2844 */ 2845 int ib_destroy_cq(struct ib_cq *cq); 2846 2847 /** 2848 * ib_poll_cq - poll a CQ for completion(s) 2849 * @cq:the CQ being polled 2850 * @num_entries:maximum number of completions to return 2851 * @wc:array of at least @num_entries &struct ib_wc where completions 2852 * will be returned 2853 * 2854 * Poll a CQ for (possibly multiple) completions. If the return value 2855 * is < 0, an error occurred. If the return value is >= 0, it is the 2856 * number of completions returned. If the return value is 2857 * non-negative and < num_entries, then the CQ was emptied. 2858 */ 2859 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2860 struct ib_wc *wc) 2861 { 2862 return cq->device->poll_cq(cq, num_entries, wc); 2863 } 2864 2865 /** 2866 * ib_peek_cq - Returns the number of unreaped completions currently 2867 * on the specified CQ. 2868 * @cq: The CQ to peek. 2869 * @wc_cnt: A minimum number of unreaped completions to check for. 2870 * 2871 * If the number of unreaped completions is greater than or equal to wc_cnt, 2872 * this function returns wc_cnt, otherwise, it returns the actual number of 2873 * unreaped completions. 2874 */ 2875 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2876 2877 /** 2878 * ib_req_notify_cq - Request completion notification on a CQ. 2879 * @cq: The CQ to generate an event for. 2880 * @flags: 2881 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2882 * to request an event on the next solicited event or next work 2883 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2884 * may also be |ed in to request a hint about missed events, as 2885 * described below. 2886 * 2887 * Return Value: 2888 * < 0 means an error occurred while requesting notification 2889 * == 0 means notification was requested successfully, and if 2890 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2891 * were missed and it is safe to wait for another event. In 2892 * this case is it guaranteed that any work completions added 2893 * to the CQ since the last CQ poll will trigger a completion 2894 * notification event. 2895 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2896 * in. It means that the consumer must poll the CQ again to 2897 * make sure it is empty to avoid missing an event because of a 2898 * race between requesting notification and an entry being 2899 * added to the CQ. This return value means it is possible 2900 * (but not guaranteed) that a work completion has been added 2901 * to the CQ since the last poll without triggering a 2902 * completion notification event. 2903 */ 2904 static inline int ib_req_notify_cq(struct ib_cq *cq, 2905 enum ib_cq_notify_flags flags) 2906 { 2907 return cq->device->req_notify_cq(cq, flags); 2908 } 2909 2910 /** 2911 * ib_req_ncomp_notif - Request completion notification when there are 2912 * at least the specified number of unreaped completions on the CQ. 2913 * @cq: The CQ to generate an event for. 2914 * @wc_cnt: The number of unreaped completions that should be on the 2915 * CQ before an event is generated. 2916 */ 2917 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2918 { 2919 return cq->device->req_ncomp_notif ? 2920 cq->device->req_ncomp_notif(cq, wc_cnt) : 2921 -ENOSYS; 2922 } 2923 2924 /** 2925 * ib_dma_mapping_error - check a DMA addr for error 2926 * @dev: The device for which the dma_addr was created 2927 * @dma_addr: The DMA address to check 2928 */ 2929 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2930 { 2931 if (dev->dma_ops) 2932 return dev->dma_ops->mapping_error(dev, dma_addr); 2933 return dma_mapping_error(dev->dma_device, dma_addr); 2934 } 2935 2936 /** 2937 * ib_dma_map_single - Map a kernel virtual address to DMA address 2938 * @dev: The device for which the dma_addr is to be created 2939 * @cpu_addr: The kernel virtual address 2940 * @size: The size of the region in bytes 2941 * @direction: The direction of the DMA 2942 */ 2943 static inline u64 ib_dma_map_single(struct ib_device *dev, 2944 void *cpu_addr, size_t size, 2945 enum dma_data_direction direction) 2946 { 2947 if (dev->dma_ops) 2948 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2949 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2950 } 2951 2952 /** 2953 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2954 * @dev: The device for which the DMA address was created 2955 * @addr: The DMA address 2956 * @size: The size of the region in bytes 2957 * @direction: The direction of the DMA 2958 */ 2959 static inline void ib_dma_unmap_single(struct ib_device *dev, 2960 u64 addr, size_t size, 2961 enum dma_data_direction direction) 2962 { 2963 if (dev->dma_ops) 2964 dev->dma_ops->unmap_single(dev, addr, size, direction); 2965 else 2966 dma_unmap_single(dev->dma_device, addr, size, direction); 2967 } 2968 2969 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2970 void *cpu_addr, size_t size, 2971 enum dma_data_direction direction, 2972 struct dma_attrs *dma_attrs) 2973 { 2974 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2975 direction, dma_attrs); 2976 } 2977 2978 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2979 u64 addr, size_t size, 2980 enum dma_data_direction direction, 2981 struct dma_attrs *dma_attrs) 2982 { 2983 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2984 direction, dma_attrs); 2985 } 2986 2987 /** 2988 * ib_dma_map_page - Map a physical page to DMA address 2989 * @dev: The device for which the dma_addr is to be created 2990 * @page: The page to be mapped 2991 * @offset: The offset within the page 2992 * @size: The size of the region in bytes 2993 * @direction: The direction of the DMA 2994 */ 2995 static inline u64 ib_dma_map_page(struct ib_device *dev, 2996 struct page *page, 2997 unsigned long offset, 2998 size_t size, 2999 enum dma_data_direction direction) 3000 { 3001 if (dev->dma_ops) 3002 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3003 return dma_map_page(dev->dma_device, page, offset, size, direction); 3004 } 3005 3006 /** 3007 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3008 * @dev: The device for which the DMA address was created 3009 * @addr: The DMA address 3010 * @size: The size of the region in bytes 3011 * @direction: The direction of the DMA 3012 */ 3013 static inline void ib_dma_unmap_page(struct ib_device *dev, 3014 u64 addr, size_t size, 3015 enum dma_data_direction direction) 3016 { 3017 if (dev->dma_ops) 3018 dev->dma_ops->unmap_page(dev, addr, size, direction); 3019 else 3020 dma_unmap_page(dev->dma_device, addr, size, direction); 3021 } 3022 3023 /** 3024 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3025 * @dev: The device for which the DMA addresses are to be created 3026 * @sg: The array of scatter/gather entries 3027 * @nents: The number of scatter/gather entries 3028 * @direction: The direction of the DMA 3029 */ 3030 static inline int ib_dma_map_sg(struct ib_device *dev, 3031 struct scatterlist *sg, int nents, 3032 enum dma_data_direction direction) 3033 { 3034 if (dev->dma_ops) 3035 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3036 return dma_map_sg(dev->dma_device, sg, nents, direction); 3037 } 3038 3039 /** 3040 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3041 * @dev: The device for which the DMA addresses were created 3042 * @sg: The array of scatter/gather entries 3043 * @nents: The number of scatter/gather entries 3044 * @direction: The direction of the DMA 3045 */ 3046 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3047 struct scatterlist *sg, int nents, 3048 enum dma_data_direction direction) 3049 { 3050 if (dev->dma_ops) 3051 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3052 else 3053 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3054 } 3055 3056 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3057 struct scatterlist *sg, int nents, 3058 enum dma_data_direction direction, 3059 struct dma_attrs *dma_attrs) 3060 { 3061 if (dev->dma_ops) 3062 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3063 dma_attrs); 3064 else 3065 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3066 dma_attrs); 3067 } 3068 3069 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3070 struct scatterlist *sg, int nents, 3071 enum dma_data_direction direction, 3072 struct dma_attrs *dma_attrs) 3073 { 3074 if (dev->dma_ops) 3075 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3076 dma_attrs); 3077 else 3078 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3079 dma_attrs); 3080 } 3081 /** 3082 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3083 * @dev: The device for which the DMA addresses were created 3084 * @sg: The scatter/gather entry 3085 * 3086 * Note: this function is obsolete. To do: change all occurrences of 3087 * ib_sg_dma_address() into sg_dma_address(). 3088 */ 3089 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3090 struct scatterlist *sg) 3091 { 3092 return sg_dma_address(sg); 3093 } 3094 3095 /** 3096 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3097 * @dev: The device for which the DMA addresses were created 3098 * @sg: The scatter/gather entry 3099 * 3100 * Note: this function is obsolete. To do: change all occurrences of 3101 * ib_sg_dma_len() into sg_dma_len(). 3102 */ 3103 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3104 struct scatterlist *sg) 3105 { 3106 return sg_dma_len(sg); 3107 } 3108 3109 /** 3110 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3111 * @dev: The device for which the DMA address was created 3112 * @addr: The DMA address 3113 * @size: The size of the region in bytes 3114 * @dir: The direction of the DMA 3115 */ 3116 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3117 u64 addr, 3118 size_t size, 3119 enum dma_data_direction dir) 3120 { 3121 if (dev->dma_ops) 3122 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3123 else 3124 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3125 } 3126 3127 /** 3128 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3129 * @dev: The device for which the DMA address was created 3130 * @addr: The DMA address 3131 * @size: The size of the region in bytes 3132 * @dir: The direction of the DMA 3133 */ 3134 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3135 u64 addr, 3136 size_t size, 3137 enum dma_data_direction dir) 3138 { 3139 if (dev->dma_ops) 3140 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3141 else 3142 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3143 } 3144 3145 /** 3146 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3147 * @dev: The device for which the DMA address is requested 3148 * @size: The size of the region to allocate in bytes 3149 * @dma_handle: A pointer for returning the DMA address of the region 3150 * @flag: memory allocator flags 3151 */ 3152 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3153 size_t size, 3154 u64 *dma_handle, 3155 gfp_t flag) 3156 { 3157 if (dev->dma_ops) 3158 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3159 else { 3160 dma_addr_t handle; 3161 void *ret; 3162 3163 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3164 *dma_handle = handle; 3165 return ret; 3166 } 3167 } 3168 3169 /** 3170 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3171 * @dev: The device for which the DMA addresses were allocated 3172 * @size: The size of the region 3173 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3174 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3175 */ 3176 static inline void ib_dma_free_coherent(struct ib_device *dev, 3177 size_t size, void *cpu_addr, 3178 u64 dma_handle) 3179 { 3180 if (dev->dma_ops) 3181 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3182 else 3183 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3184 } 3185 3186 /** 3187 * ib_dereg_mr - Deregisters a memory region and removes it from the 3188 * HCA translation table. 3189 * @mr: The memory region to deregister. 3190 * 3191 * This function can fail, if the memory region has memory windows bound to it. 3192 */ 3193 int ib_dereg_mr(struct ib_mr *mr); 3194 3195 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3196 enum ib_mr_type mr_type, 3197 u32 max_num_sg); 3198 3199 /** 3200 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3201 * R_Key and L_Key. 3202 * @mr - struct ib_mr pointer to be updated. 3203 * @newkey - new key to be used. 3204 */ 3205 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3206 { 3207 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3208 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3209 } 3210 3211 /** 3212 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3213 * for calculating a new rkey for type 2 memory windows. 3214 * @rkey - the rkey to increment. 3215 */ 3216 static inline u32 ib_inc_rkey(u32 rkey) 3217 { 3218 const u32 mask = 0x000000ff; 3219 return ((rkey + 1) & mask) | (rkey & ~mask); 3220 } 3221 3222 /** 3223 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3224 * @pd: The protection domain associated with the unmapped region. 3225 * @mr_access_flags: Specifies the memory access rights. 3226 * @fmr_attr: Attributes of the unmapped region. 3227 * 3228 * A fast memory region must be mapped before it can be used as part of 3229 * a work request. 3230 */ 3231 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3232 int mr_access_flags, 3233 struct ib_fmr_attr *fmr_attr); 3234 3235 /** 3236 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3237 * @fmr: The fast memory region to associate with the pages. 3238 * @page_list: An array of physical pages to map to the fast memory region. 3239 * @list_len: The number of pages in page_list. 3240 * @iova: The I/O virtual address to use with the mapped region. 3241 */ 3242 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3243 u64 *page_list, int list_len, 3244 u64 iova) 3245 { 3246 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3247 } 3248 3249 /** 3250 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3251 * @fmr_list: A linked list of fast memory regions to unmap. 3252 */ 3253 int ib_unmap_fmr(struct list_head *fmr_list); 3254 3255 /** 3256 * ib_dealloc_fmr - Deallocates a fast memory region. 3257 * @fmr: The fast memory region to deallocate. 3258 */ 3259 int ib_dealloc_fmr(struct ib_fmr *fmr); 3260 3261 /** 3262 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3263 * @qp: QP to attach to the multicast group. The QP must be type 3264 * IB_QPT_UD. 3265 * @gid: Multicast group GID. 3266 * @lid: Multicast group LID in host byte order. 3267 * 3268 * In order to send and receive multicast packets, subnet 3269 * administration must have created the multicast group and configured 3270 * the fabric appropriately. The port associated with the specified 3271 * QP must also be a member of the multicast group. 3272 */ 3273 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3274 3275 /** 3276 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3277 * @qp: QP to detach from the multicast group. 3278 * @gid: Multicast group GID. 3279 * @lid: Multicast group LID in host byte order. 3280 */ 3281 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3282 3283 /** 3284 * ib_alloc_xrcd - Allocates an XRC domain. 3285 * @device: The device on which to allocate the XRC domain. 3286 */ 3287 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3288 3289 /** 3290 * ib_dealloc_xrcd - Deallocates an XRC domain. 3291 * @xrcd: The XRC domain to deallocate. 3292 */ 3293 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3294 3295 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3296 struct ib_flow_attr *flow_attr, int domain); 3297 int ib_destroy_flow(struct ib_flow *flow_id); 3298 3299 static inline int ib_check_mr_access(int flags) 3300 { 3301 /* 3302 * Local write permission is required if remote write or 3303 * remote atomic permission is also requested. 3304 */ 3305 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3306 !(flags & IB_ACCESS_LOCAL_WRITE)) 3307 return -EINVAL; 3308 3309 return 0; 3310 } 3311 3312 /** 3313 * ib_check_mr_status: lightweight check of MR status. 3314 * This routine may provide status checks on a selected 3315 * ib_mr. first use is for signature status check. 3316 * 3317 * @mr: A memory region. 3318 * @check_mask: Bitmask of which checks to perform from 3319 * ib_mr_status_check enumeration. 3320 * @mr_status: The container of relevant status checks. 3321 * failed checks will be indicated in the status bitmask 3322 * and the relevant info shall be in the error item. 3323 */ 3324 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3325 struct ib_mr_status *mr_status); 3326 3327 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3328 u16 pkey, const union ib_gid *gid, 3329 const struct sockaddr *addr); 3330 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3331 struct ib_wq_init_attr *init_attr); 3332 int ib_destroy_wq(struct ib_wq *wq); 3333 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3334 u32 wq_attr_mask); 3335 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3336 struct ib_rwq_ind_table_init_attr* 3337 wq_ind_table_init_attr); 3338 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3339 3340 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3341 unsigned int *sg_offset, unsigned int page_size); 3342 3343 static inline int 3344 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3345 unsigned int *sg_offset, unsigned int page_size) 3346 { 3347 int n; 3348 3349 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3350 mr->iova = 0; 3351 3352 return n; 3353 } 3354 3355 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3356 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3357 3358 void ib_drain_rq(struct ib_qp *qp); 3359 void ib_drain_sq(struct ib_qp *qp); 3360 void ib_drain_qp(struct ib_qp *qp); 3361 #endif /* IB_VERBS_H */ 3362