xref: /freebsd/sys/ofed/include/rdma/ib_verbs.h (revision 994297b01b98816bea1abf45ae4bac1bc69ee7a0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  *
40  * $FreeBSD$
41  */
42 
43 #if !defined(IB_VERBS_H)
44 #define IB_VERBS_H
45 
46 #include <linux/types.h>
47 #include <linux/device.h>
48 #include <linux/mm.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/kref.h>
51 #include <linux/list.h>
52 #include <linux/rwsem.h>
53 #include <linux/scatterlist.h>
54 #include <linux/workqueue.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <net/ipv6.h>
58 #include <net/ip.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/xarray.h>
64 #include <netinet/ip.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/signature.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69 
70 #include <asm/atomic.h>
71 #include <asm/uaccess.h>
72 
73 struct ib_uqp_object;
74 struct ib_usrq_object;
75 struct ib_uwq_object;
76 struct ifla_vf_info;
77 struct ifla_vf_stats;
78 struct ib_uverbs_file;
79 struct uverbs_attr_bundle;
80 
81 enum ib_uverbs_advise_mr_advice;
82 
83 extern struct workqueue_struct *ib_wq;
84 extern struct workqueue_struct *ib_comp_wq;
85 
86 struct ib_ucq_object;
87 
88 union ib_gid {
89 	u8	raw[16];
90 	struct {
91 		__be64	subnet_prefix;
92 		__be64	interface_id;
93 	} global;
94 };
95 
96 extern union ib_gid zgid;
97 
98 enum ib_gid_type {
99 	/* If link layer is Ethernet, this is RoCE V1 */
100 	IB_GID_TYPE_IB        = 0,
101 	IB_GID_TYPE_ROCE      = 0,
102 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
103 	IB_GID_TYPE_SIZE
104 };
105 
106 #define ROCE_V2_UDP_DPORT      4791
107 struct ib_gid_attr {
108 	enum ib_gid_type	gid_type;
109 	struct ifnet	*ndev;
110 };
111 
112 enum rdma_node_type {
113 	/* IB values map to NodeInfo:NodeType. */
114 	RDMA_NODE_IB_CA 	= 1,
115 	RDMA_NODE_IB_SWITCH,
116 	RDMA_NODE_IB_ROUTER,
117 	RDMA_NODE_RNIC,
118 	RDMA_NODE_USNIC,
119 	RDMA_NODE_USNIC_UDP,
120 };
121 
122 enum {
123 	/* set the local administered indication */
124 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
125 };
126 
127 enum rdma_transport_type {
128 	RDMA_TRANSPORT_IB,
129 	RDMA_TRANSPORT_IWARP,
130 	RDMA_TRANSPORT_USNIC,
131 	RDMA_TRANSPORT_USNIC_UDP
132 };
133 
134 enum rdma_protocol_type {
135 	RDMA_PROTOCOL_IB,
136 	RDMA_PROTOCOL_IBOE,
137 	RDMA_PROTOCOL_IWARP,
138 	RDMA_PROTOCOL_USNIC_UDP
139 };
140 
141 __attribute_const__ enum rdma_transport_type
142 rdma_node_get_transport(enum rdma_node_type node_type);
143 
144 enum rdma_network_type {
145 	RDMA_NETWORK_IB,
146 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
147 	RDMA_NETWORK_IPV4,
148 	RDMA_NETWORK_IPV6
149 };
150 
151 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
152 {
153 	if (network_type == RDMA_NETWORK_IPV4 ||
154 	    network_type == RDMA_NETWORK_IPV6)
155 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
156 
157 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
158 	return IB_GID_TYPE_IB;
159 }
160 
161 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
162 							    union ib_gid *gid)
163 {
164 	if (gid_type == IB_GID_TYPE_IB)
165 		return RDMA_NETWORK_IB;
166 
167 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
168 		return RDMA_NETWORK_IPV4;
169 	else
170 		return RDMA_NETWORK_IPV6;
171 }
172 
173 enum rdma_link_layer {
174 	IB_LINK_LAYER_UNSPECIFIED,
175 	IB_LINK_LAYER_INFINIBAND,
176 	IB_LINK_LAYER_ETHERNET,
177 };
178 
179 enum ib_device_cap_flags {
180 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
181 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
182 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
183 	IB_DEVICE_RAW_MULTI			= (1 << 3),
184 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
185 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
186 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
187 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
188 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
189 	IB_DEVICE_INIT_TYPE			= (1 << 9),
190 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
191 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
192 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
193 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
194 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
195 
196 	/*
197 	 * This device supports a per-device lkey or stag that can be
198 	 * used without performing a memory registration for the local
199 	 * memory.  Note that ULPs should never check this flag, but
200 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
201 	 * which will always contain a usable lkey.
202 	 */
203 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
204 	IB_DEVICE_RESERVED /* old SEND_W_INV */	= (1 << 16),
205 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
206 	/*
207 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
208 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
209 	 * messages and can verify the validity of checksum for
210 	 * incoming messages.  Setting this flag implies that the
211 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
212 	 */
213 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
214 	IB_DEVICE_UD_TSO			= (1 << 19),
215 	IB_DEVICE_XRC				= (1 << 20),
216 
217 	/*
218 	 * This device supports the IB "base memory management extension",
219 	 * which includes support for fast registrations (IB_WR_REG_MR,
220 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
221 	 * also be set by any iWarp device which must support FRs to comply
222 	 * to the iWarp verbs spec.  iWarp devices also support the
223 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
224 	 * stag.
225 	 */
226 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
227 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
228 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
229 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
230 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
231 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
232 	/*
233 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
234 	 * support execution of WQEs that involve synchronization
235 	 * of I/O operations with single completion queue managed
236 	 * by hardware.
237 	 */
238 	IB_DEVICE_CROSS_CHANNEL		= (1 << 27),
239 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
240 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
241 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
242 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
243 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
244 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
245 };
246 
247 enum ib_atomic_cap {
248 	IB_ATOMIC_NONE,
249 	IB_ATOMIC_HCA,
250 	IB_ATOMIC_GLOB
251 };
252 
253 enum ib_odp_general_cap_bits {
254 	IB_ODP_SUPPORT = 1 << 0,
255 };
256 
257 enum ib_odp_transport_cap_bits {
258 	IB_ODP_SUPPORT_SEND	= 1 << 0,
259 	IB_ODP_SUPPORT_RECV	= 1 << 1,
260 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
261 	IB_ODP_SUPPORT_READ	= 1 << 3,
262 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
263 };
264 
265 struct ib_odp_caps {
266 	uint64_t general_caps;
267 	struct {
268 		uint32_t  rc_odp_caps;
269 		uint32_t  uc_odp_caps;
270 		uint32_t  ud_odp_caps;
271 		uint32_t  xrc_odp_caps;
272 	} per_transport_caps;
273 };
274 
275 struct ib_rss_caps {
276 	/* Corresponding bit will be set if qp type from
277 	 * 'enum ib_qp_type' is supported, e.g.
278 	 * supported_qpts |= 1 << IB_QPT_UD
279 	 */
280 	u32 supported_qpts;
281 	u32 max_rwq_indirection_tables;
282 	u32 max_rwq_indirection_table_size;
283 };
284 
285 enum ib_tm_cap_flags {
286 	/*  Support tag matching with rendezvous offload for RC transport */
287 	IB_TM_CAP_RNDV_RC = 1 << 0,
288 };
289 
290 struct ib_tm_caps {
291 	/* Max size of RNDV header */
292 	u32 max_rndv_hdr_size;
293 	/* Max number of entries in tag matching list */
294 	u32 max_num_tags;
295 	/* From enum ib_tm_cap_flags */
296 	u32 flags;
297 	/* Max number of outstanding list operations */
298 	u32 max_ops;
299 	/* Max number of SGE in tag matching entry */
300 	u32 max_sge;
301 };
302 
303 enum ib_cq_creation_flags {
304 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
305 	IB_CQ_FLAGS_IGNORE_OVERRUN	   = 1 << 1,
306 };
307 
308 struct ib_cq_init_attr {
309 	unsigned int	cqe;
310 	u32		comp_vector;
311 	u32		flags;
312 };
313 
314 enum ib_cq_attr_mask {
315 	IB_CQ_MODERATE = 1 << 0,
316 };
317 
318 struct ib_cq_caps {
319 	u16     max_cq_moderation_count;
320 	u16     max_cq_moderation_period;
321 };
322 
323 struct ib_dm_mr_attr {
324 	u64		length;
325 	u64		offset;
326 	u32		access_flags;
327 };
328 
329 struct ib_dm_alloc_attr {
330 	u64	length;
331 	u32	alignment;
332 	u32	flags;
333 };
334 
335 struct ib_device_attr {
336 	u64			fw_ver;
337 	__be64			sys_image_guid;
338 	u64			max_mr_size;
339 	u64			page_size_cap;
340 	u32			vendor_id;
341 	u32			vendor_part_id;
342 	u32			hw_ver;
343 	int			max_qp;
344 	int			max_qp_wr;
345 	u64			device_cap_flags;
346 	int			max_sge;
347 	int			max_sge_rd;
348 	int			max_cq;
349 	int			max_cqe;
350 	int			max_mr;
351 	int			max_pd;
352 	int			max_qp_rd_atom;
353 	int			max_ee_rd_atom;
354 	int			max_res_rd_atom;
355 	int			max_qp_init_rd_atom;
356 	int			max_ee_init_rd_atom;
357 	enum ib_atomic_cap	atomic_cap;
358 	enum ib_atomic_cap	masked_atomic_cap;
359 	int			max_ee;
360 	int			max_rdd;
361 	int			max_mw;
362 	int			max_raw_ipv6_qp;
363 	int			max_raw_ethy_qp;
364 	int			max_mcast_grp;
365 	int			max_mcast_qp_attach;
366 	int			max_total_mcast_qp_attach;
367 	int			max_ah;
368 	int			max_fmr;
369 	int			max_map_per_fmr;
370 	int			max_srq;
371 	int			max_srq_wr;
372 	union {
373 		int		max_srq_sge;
374 		int		max_send_sge;
375 		int		max_recv_sge;
376 	};
377 	unsigned int		max_fast_reg_page_list_len;
378 	u16			max_pkeys;
379 	u8			local_ca_ack_delay;
380 	int			sig_prot_cap;
381 	int			sig_guard_cap;
382 	struct ib_odp_caps	odp_caps;
383 	uint64_t		timestamp_mask;
384 	uint64_t		hca_core_clock; /* in KHZ */
385 	struct ib_rss_caps	rss_caps;
386 	u32			max_wq_type_rq;
387 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
388 	struct ib_tm_caps	tm_caps;
389 	struct ib_cq_caps       cq_caps;
390 	u64			max_dm_size;
391 	/* Max entries for sgl for optimized performance per READ */
392 	u32			max_sgl_rd;
393 };
394 
395 enum ib_mtu {
396 	IB_MTU_256  = 1,
397 	IB_MTU_512  = 2,
398 	IB_MTU_1024 = 3,
399 	IB_MTU_2048 = 4,
400 	IB_MTU_4096 = 5
401 };
402 
403 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
404 {
405 	switch (mtu) {
406 	case IB_MTU_256:  return  256;
407 	case IB_MTU_512:  return  512;
408 	case IB_MTU_1024: return 1024;
409 	case IB_MTU_2048: return 2048;
410 	case IB_MTU_4096: return 4096;
411 	default: 	  return -1;
412 	}
413 }
414 
415 enum ib_port_state {
416 	IB_PORT_NOP		= 0,
417 	IB_PORT_DOWN		= 1,
418 	IB_PORT_INIT		= 2,
419 	IB_PORT_ARMED		= 3,
420 	IB_PORT_ACTIVE		= 4,
421 	IB_PORT_ACTIVE_DEFER	= 5,
422 	IB_PORT_DUMMY		= -1,	/* force enum signed */
423 };
424 
425 enum ib_port_cap_flags {
426 	IB_PORT_SM				= 1 <<  1,
427 	IB_PORT_NOTICE_SUP			= 1 <<  2,
428 	IB_PORT_TRAP_SUP			= 1 <<  3,
429 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
430 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
431 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
432 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
433 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
434 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
435 	IB_PORT_SM_DISABLED			= 1 << 10,
436 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
437 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
438 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
439 	IB_PORT_CM_SUP				= 1 << 16,
440 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
441 	IB_PORT_REINIT_SUP			= 1 << 18,
442 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
443 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
444 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
445 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
446 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
447 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
448 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
449 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
450 };
451 
452 enum ib_port_phys_state {
453 	IB_PORT_PHYS_STATE_SLEEP = 1,
454 	IB_PORT_PHYS_STATE_POLLING = 2,
455 	IB_PORT_PHYS_STATE_DISABLED = 3,
456 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
457 	IB_PORT_PHYS_STATE_LINK_UP = 5,
458 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
459 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
460 };
461 
462 enum ib_port_width {
463 	IB_WIDTH_1X	= 1,
464 	IB_WIDTH_2X	= 16,
465 	IB_WIDTH_4X	= 2,
466 	IB_WIDTH_8X	= 4,
467 	IB_WIDTH_12X	= 8
468 };
469 
470 static inline int ib_width_enum_to_int(enum ib_port_width width)
471 {
472 	switch (width) {
473 	case IB_WIDTH_1X:  return  1;
474 	case IB_WIDTH_2X:  return  2;
475 	case IB_WIDTH_4X:  return  4;
476 	case IB_WIDTH_8X:  return  8;
477 	case IB_WIDTH_12X: return 12;
478 	default: 	  return -1;
479 	}
480 }
481 
482 enum ib_port_speed {
483 	IB_SPEED_SDR	= 1,
484 	IB_SPEED_DDR	= 2,
485 	IB_SPEED_QDR	= 4,
486 	IB_SPEED_FDR10	= 8,
487 	IB_SPEED_FDR	= 16,
488 	IB_SPEED_EDR	= 32,
489 	IB_SPEED_HDR	= 64,
490 	IB_SPEED_NDR	= 128
491 };
492 
493 /**
494  * struct rdma_hw_stats
495  * @lock - Mutex to protect parallel write access to lifespan and values
496  *    of counters, which are 64bits and not guaranteeed to be written
497  *    atomicaly on 32bits systems.
498  * @timestamp - Used by the core code to track when the last update was
499  * @lifespan - Used by the core code to determine how old the counters
500  *   should be before being updated again.  Stored in jiffies, defaults
501  *   to 10 milliseconds, drivers can override the default be specifying
502  *   their own value during their allocation routine.
503  * @name - Array of pointers to static names used for the counters in
504  *   directory.
505  * @num_counters - How many hardware counters there are.  If name is
506  *   shorter than this number, a kernel oops will result.  Driver authors
507  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
508  *   in their code to prevent this.
509  * @value - Array of u64 counters that are accessed by the sysfs code and
510  *   filled in by the drivers get_stats routine
511  */
512 struct rdma_hw_stats {
513 	struct mutex	lock; /* Protect lifespan and values[] */
514 	unsigned long	timestamp;
515 	unsigned long	lifespan;
516 	const char * const *names;
517 	int		num_counters;
518 	u64		value[];
519 };
520 
521 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
522 /**
523  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
524  *   for drivers.
525  * @names - Array of static const char *
526  * @num_counters - How many elements in array
527  * @lifespan - How many milliseconds between updates
528  */
529 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
530 		const char * const *names, int num_counters,
531 		unsigned long lifespan)
532 {
533 	struct rdma_hw_stats *stats;
534 
535 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
536 			GFP_KERNEL);
537 	if (!stats)
538 		return NULL;
539 	stats->names = names;
540 	stats->num_counters = num_counters;
541 	stats->lifespan = msecs_to_jiffies(lifespan);
542 
543 	return stats;
544 }
545 
546 
547 /* Define bits for the various functionality this port needs to be supported by
548  * the core.
549  */
550 /* Management                           0x00000FFF */
551 #define RDMA_CORE_CAP_IB_MAD            0x00000001
552 #define RDMA_CORE_CAP_IB_SMI            0x00000002
553 #define RDMA_CORE_CAP_IB_CM             0x00000004
554 #define RDMA_CORE_CAP_IW_CM             0x00000008
555 #define RDMA_CORE_CAP_IB_SA             0x00000010
556 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
557 
558 /* Address format                       0x000FF000 */
559 #define RDMA_CORE_CAP_AF_IB             0x00001000
560 #define RDMA_CORE_CAP_ETH_AH            0x00002000
561 
562 /* Protocol                             0xFFF00000 */
563 #define RDMA_CORE_CAP_PROT_IB           0x00100000
564 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
565 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
566 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
567 
568 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
569 					| RDMA_CORE_CAP_IB_MAD \
570 					| RDMA_CORE_CAP_IB_SMI \
571 					| RDMA_CORE_CAP_IB_CM  \
572 					| RDMA_CORE_CAP_IB_SA  \
573 					| RDMA_CORE_CAP_AF_IB)
574 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
575 					| RDMA_CORE_CAP_IB_MAD  \
576 					| RDMA_CORE_CAP_IB_CM   \
577 					| RDMA_CORE_CAP_AF_IB   \
578 					| RDMA_CORE_CAP_ETH_AH)
579 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
580 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
581 					| RDMA_CORE_CAP_IB_MAD  \
582 					| RDMA_CORE_CAP_IB_CM   \
583 					| RDMA_CORE_CAP_AF_IB   \
584 					| RDMA_CORE_CAP_ETH_AH)
585 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
586 					| RDMA_CORE_CAP_IW_CM)
587 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
588 					| RDMA_CORE_CAP_OPA_MAD)
589 
590 struct ib_port_attr {
591 	u64			subnet_prefix;
592 	enum ib_port_state	state;
593 	enum ib_mtu		max_mtu;
594 	enum ib_mtu		active_mtu;
595 	int			gid_tbl_len;
596 	unsigned int		ip_gids:1;
597 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
598 	u32			port_cap_flags;
599 	u32			max_msg_sz;
600 	u32			bad_pkey_cntr;
601 	u32			qkey_viol_cntr;
602 	u16			pkey_tbl_len;
603 	u16			lid;
604 	u16			sm_lid;
605 	u8			lmc;
606 	u8			max_vl_num;
607 	u8			sm_sl;
608 	u8			subnet_timeout;
609 	u8			init_type_reply;
610 	u8			active_width;
611 	u8			active_speed;
612 	u8                      phys_state;
613 	bool			grh_required;
614 };
615 
616 enum ib_device_modify_flags {
617 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
618 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
619 };
620 
621 #define IB_DEVICE_NODE_DESC_MAX 64
622 
623 struct ib_device_modify {
624 	u64	sys_image_guid;
625 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
626 };
627 
628 enum ib_port_modify_flags {
629 	IB_PORT_SHUTDOWN		= 1,
630 	IB_PORT_INIT_TYPE		= (1<<2),
631 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
632 };
633 
634 struct ib_port_modify {
635 	u32	set_port_cap_mask;
636 	u32	clr_port_cap_mask;
637 	u8	init_type;
638 };
639 
640 enum ib_event_type {
641 	IB_EVENT_CQ_ERR,
642 	IB_EVENT_QP_FATAL,
643 	IB_EVENT_QP_REQ_ERR,
644 	IB_EVENT_QP_ACCESS_ERR,
645 	IB_EVENT_COMM_EST,
646 	IB_EVENT_SQ_DRAINED,
647 	IB_EVENT_PATH_MIG,
648 	IB_EVENT_PATH_MIG_ERR,
649 	IB_EVENT_DEVICE_FATAL,
650 	IB_EVENT_PORT_ACTIVE,
651 	IB_EVENT_PORT_ERR,
652 	IB_EVENT_LID_CHANGE,
653 	IB_EVENT_PKEY_CHANGE,
654 	IB_EVENT_SM_CHANGE,
655 	IB_EVENT_SRQ_ERR,
656 	IB_EVENT_SRQ_LIMIT_REACHED,
657 	IB_EVENT_QP_LAST_WQE_REACHED,
658 	IB_EVENT_CLIENT_REREGISTER,
659 	IB_EVENT_GID_CHANGE,
660 	IB_EVENT_WQ_FATAL,
661 };
662 
663 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
664 
665 struct ib_event {
666 	struct ib_device	*device;
667 	union {
668 		struct ib_cq	*cq;
669 		struct ib_qp	*qp;
670 		struct ib_srq	*srq;
671 		struct ib_wq	*wq;
672 		u8		port_num;
673 	} element;
674 	enum ib_event_type	event;
675 };
676 
677 struct ib_event_handler {
678 	struct ib_device *device;
679 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
680 	struct list_head  list;
681 };
682 
683 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
684 	do {							\
685 		(_ptr)->device  = _device;			\
686 		(_ptr)->handler = _handler;			\
687 		INIT_LIST_HEAD(&(_ptr)->list);			\
688 	} while (0)
689 
690 struct ib_global_route {
691 	union ib_gid	dgid;
692 	u32		flow_label;
693 	u8		sgid_index;
694 	u8		hop_limit;
695 	u8		traffic_class;
696 };
697 
698 struct ib_grh {
699 	__be32		version_tclass_flow;
700 	__be16		paylen;
701 	u8		next_hdr;
702 	u8		hop_limit;
703 	union ib_gid	sgid;
704 	union ib_gid	dgid;
705 };
706 
707 union rdma_network_hdr {
708 	struct ib_grh ibgrh;
709 	struct {
710 		/* The IB spec states that if it's IPv4, the header
711 		 * is located in the last 20 bytes of the header.
712 		 */
713 		u8		reserved[20];
714 		struct ip	roce4grh;
715 	};
716 };
717 
718 enum {
719 	IB_MULTICAST_QPN = 0xffffff
720 };
721 
722 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
723 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
724 
725 enum ib_ah_flags {
726 	IB_AH_GRH	= 1
727 };
728 
729 enum ib_rate {
730 	IB_RATE_PORT_CURRENT = 0,
731 	IB_RATE_2_5_GBPS = 2,
732 	IB_RATE_5_GBPS   = 5,
733 	IB_RATE_10_GBPS  = 3,
734 	IB_RATE_20_GBPS  = 6,
735 	IB_RATE_30_GBPS  = 4,
736 	IB_RATE_40_GBPS  = 7,
737 	IB_RATE_60_GBPS  = 8,
738 	IB_RATE_80_GBPS  = 9,
739 	IB_RATE_120_GBPS = 10,
740 	IB_RATE_14_GBPS  = 11,
741 	IB_RATE_56_GBPS  = 12,
742 	IB_RATE_112_GBPS = 13,
743 	IB_RATE_168_GBPS = 14,
744 	IB_RATE_25_GBPS  = 15,
745 	IB_RATE_100_GBPS = 16,
746 	IB_RATE_200_GBPS = 17,
747 	IB_RATE_300_GBPS = 18,
748 	IB_RATE_28_GBPS  = 19,
749 	IB_RATE_50_GBPS  = 20,
750 	IB_RATE_400_GBPS = 21,
751 	IB_RATE_600_GBPS = 22,
752 };
753 
754 /**
755  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
756  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
757  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
758  * @rate: rate to convert.
759  */
760 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
761 
762 /**
763  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
764  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
765  * @rate: rate to convert.
766  */
767 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
768 
769 
770 /**
771  * enum ib_mr_type - memory region type
772  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
773  *                            normal registration
774  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
775  *                            register any arbitrary sg lists (without
776  *                            the normal mr constraints - see
777  *                            ib_map_mr_sg)
778  * @IB_MR_TYPE_DM:            memory region that is used for device
779  *                            memory registration
780  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
781  *                            application
782  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
783  *                            without address translations (VA=PA)
784  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
785  *                            data integrity operations
786  */
787 enum ib_mr_type {
788 	IB_MR_TYPE_MEM_REG,
789 	IB_MR_TYPE_SG_GAPS,
790 	IB_MR_TYPE_DM,
791 	IB_MR_TYPE_USER,
792 	IB_MR_TYPE_DMA,
793 	IB_MR_TYPE_INTEGRITY,
794 };
795 
796 enum ib_mr_status_check {
797 	IB_MR_CHECK_SIG_STATUS = 1,
798 };
799 
800 /**
801  * struct ib_mr_status - Memory region status container
802  *
803  * @fail_status: Bitmask of MR checks status. For each
804  *     failed check a corresponding status bit is set.
805  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
806  *     failure.
807  */
808 struct ib_mr_status {
809 	u32		    fail_status;
810 	struct ib_sig_err   sig_err;
811 };
812 
813 /**
814  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
815  * enum.
816  * @mult: multiple to convert.
817  */
818 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
819 
820 struct ib_ah_attr {
821 	struct ib_global_route	grh;
822 	u16			dlid;
823 	u8			sl;
824 	u8			src_path_bits;
825 	u8			static_rate;
826 	u8			ah_flags;
827 	u8			port_num;
828 	u8			dmac[ETH_ALEN];
829 };
830 
831 enum ib_wc_status {
832 	IB_WC_SUCCESS,
833 	IB_WC_LOC_LEN_ERR,
834 	IB_WC_LOC_QP_OP_ERR,
835 	IB_WC_LOC_EEC_OP_ERR,
836 	IB_WC_LOC_PROT_ERR,
837 	IB_WC_WR_FLUSH_ERR,
838 	IB_WC_MW_BIND_ERR,
839 	IB_WC_BAD_RESP_ERR,
840 	IB_WC_LOC_ACCESS_ERR,
841 	IB_WC_REM_INV_REQ_ERR,
842 	IB_WC_REM_ACCESS_ERR,
843 	IB_WC_REM_OP_ERR,
844 	IB_WC_RETRY_EXC_ERR,
845 	IB_WC_RNR_RETRY_EXC_ERR,
846 	IB_WC_LOC_RDD_VIOL_ERR,
847 	IB_WC_REM_INV_RD_REQ_ERR,
848 	IB_WC_REM_ABORT_ERR,
849 	IB_WC_INV_EECN_ERR,
850 	IB_WC_INV_EEC_STATE_ERR,
851 	IB_WC_FATAL_ERR,
852 	IB_WC_RESP_TIMEOUT_ERR,
853 	IB_WC_GENERAL_ERR
854 };
855 
856 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
857 
858 enum ib_wc_opcode {
859 	IB_WC_SEND,
860 	IB_WC_RDMA_WRITE,
861 	IB_WC_RDMA_READ,
862 	IB_WC_COMP_SWAP,
863 	IB_WC_FETCH_ADD,
864 	IB_WC_LSO,
865 	IB_WC_LOCAL_INV,
866 	IB_WC_REG_MR,
867 	IB_WC_MASKED_COMP_SWAP,
868 	IB_WC_MASKED_FETCH_ADD,
869 /*
870  * Set value of IB_WC_RECV so consumers can test if a completion is a
871  * receive by testing (opcode & IB_WC_RECV).
872  */
873 	IB_WC_RECV			= 1 << 7,
874 	IB_WC_RECV_RDMA_WITH_IMM,
875 	IB_WC_DUMMY = -1,	/* force enum signed */
876 };
877 
878 enum ib_wc_flags {
879 	IB_WC_GRH		= 1,
880 	IB_WC_WITH_IMM		= (1<<1),
881 	IB_WC_WITH_INVALIDATE	= (1<<2),
882 	IB_WC_IP_CSUM_OK	= (1<<3),
883 	IB_WC_WITH_SMAC		= (1<<4),
884 	IB_WC_WITH_VLAN		= (1<<5),
885 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
886 };
887 
888 struct ib_wc {
889 	union {
890 		u64		wr_id;
891 		struct ib_cqe	*wr_cqe;
892 	};
893 	enum ib_wc_status	status;
894 	enum ib_wc_opcode	opcode;
895 	u32			vendor_err;
896 	u32			byte_len;
897 	struct ib_qp	       *qp;
898 	union {
899 		__be32		imm_data;
900 		u32		invalidate_rkey;
901 	} ex;
902 	u32			src_qp;
903 	int			wc_flags;
904 	u16			pkey_index;
905 	u16			slid;
906 	u8			sl;
907 	u8			dlid_path_bits;
908 	u8			port_num;	/* valid only for DR SMPs on switches */
909 	u8			smac[ETH_ALEN];
910 	u16			vlan_id;
911 	u8			network_hdr_type;
912 };
913 
914 enum ib_cq_notify_flags {
915 	IB_CQ_SOLICITED			= 1 << 0,
916 	IB_CQ_NEXT_COMP			= 1 << 1,
917 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
918 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
919 };
920 
921 enum ib_srq_type {
922 	IB_SRQT_BASIC,
923 	IB_SRQT_XRC,
924 	IB_SRQT_TM,
925 };
926 
927 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
928 {
929 	return srq_type == IB_SRQT_XRC ||
930 	       srq_type == IB_SRQT_TM;
931 }
932 
933 enum ib_srq_attr_mask {
934 	IB_SRQ_MAX_WR	= 1 << 0,
935 	IB_SRQ_LIMIT	= 1 << 1,
936 };
937 
938 struct ib_srq_attr {
939 	u32	max_wr;
940 	u32	max_sge;
941 	u32	srq_limit;
942 };
943 
944 struct ib_srq_init_attr {
945 	void		      (*event_handler)(struct ib_event *, void *);
946 	void		       *srq_context;
947 	struct ib_srq_attr	attr;
948 	enum ib_srq_type	srq_type;
949 
950 	struct {
951 		struct ib_cq   *cq;
952 		union {
953 			struct {
954 				struct ib_xrcd *xrcd;
955 			} xrc;
956 
957 			struct {
958 				u32		max_num_tags;
959 			} tag_matching;
960 		};
961 	} ext;
962 };
963 
964 struct ib_qp_cap {
965 	u32	max_send_wr;
966 	u32	max_recv_wr;
967 	u32	max_send_sge;
968 	u32	max_recv_sge;
969 	u32	max_inline_data;
970 
971 	/*
972 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
973 	 * ib_create_qp() will calculate the right amount of neededed WRs
974 	 * and MRs based on this.
975 	 */
976 	u32	max_rdma_ctxs;
977 };
978 
979 enum ib_sig_type {
980 	IB_SIGNAL_ALL_WR,
981 	IB_SIGNAL_REQ_WR
982 };
983 
984 enum ib_qp_type {
985 	/*
986 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
987 	 * here (and in that order) since the MAD layer uses them as
988 	 * indices into a 2-entry table.
989 	 */
990 	IB_QPT_SMI,
991 	IB_QPT_GSI,
992 
993 	IB_QPT_RC,
994 	IB_QPT_UC,
995 	IB_QPT_UD,
996 	IB_QPT_RAW_IPV6,
997 	IB_QPT_RAW_ETHERTYPE,
998 	IB_QPT_RAW_PACKET = 8,
999 	IB_QPT_XRC_INI = 9,
1000 	IB_QPT_XRC_TGT,
1001 	IB_QPT_MAX,
1002 	IB_QPT_DRIVER = 0xFF,
1003 	/* Reserve a range for qp types internal to the low level driver.
1004 	 * These qp types will not be visible at the IB core layer, so the
1005 	 * IB_QPT_MAX usages should not be affected in the core layer
1006 	 */
1007 	IB_QPT_RESERVED1 = 0x1000,
1008 	IB_QPT_RESERVED2,
1009 	IB_QPT_RESERVED3,
1010 	IB_QPT_RESERVED4,
1011 	IB_QPT_RESERVED5,
1012 	IB_QPT_RESERVED6,
1013 	IB_QPT_RESERVED7,
1014 	IB_QPT_RESERVED8,
1015 	IB_QPT_RESERVED9,
1016 	IB_QPT_RESERVED10,
1017 };
1018 
1019 enum ib_qp_create_flags {
1020 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1021 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1022 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1023 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1024 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1025 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1026 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1027 	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
1028 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1029 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1030 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1031 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1032 	/* reserve bits 26-31 for low level drivers' internal use */
1033 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1034 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1035 };
1036 
1037 /*
1038  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1039  * callback to destroy the passed in QP.
1040  */
1041 
1042 struct ib_qp_init_attr {
1043 	void                  (*event_handler)(struct ib_event *, void *);
1044 	void		       *qp_context;
1045 	struct ib_cq	       *send_cq;
1046 	struct ib_cq	       *recv_cq;
1047 	struct ib_srq	       *srq;
1048 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1049 	struct ib_qp_cap	cap;
1050 	enum ib_sig_type	sq_sig_type;
1051 	enum ib_qp_type		qp_type;
1052 	enum ib_qp_create_flags	create_flags;
1053 
1054 	/*
1055 	 * Only needed for special QP types, or when using the RW API.
1056 	 */
1057 	u8			port_num;
1058 	struct ib_rwq_ind_table *rwq_ind_tbl;
1059 	u32			source_qpn;
1060 };
1061 
1062 struct ib_qp_open_attr {
1063 	void                  (*event_handler)(struct ib_event *, void *);
1064 	void		       *qp_context;
1065 	u32			qp_num;
1066 	enum ib_qp_type		qp_type;
1067 };
1068 
1069 enum ib_rnr_timeout {
1070 	IB_RNR_TIMER_655_36 =  0,
1071 	IB_RNR_TIMER_000_01 =  1,
1072 	IB_RNR_TIMER_000_02 =  2,
1073 	IB_RNR_TIMER_000_03 =  3,
1074 	IB_RNR_TIMER_000_04 =  4,
1075 	IB_RNR_TIMER_000_06 =  5,
1076 	IB_RNR_TIMER_000_08 =  6,
1077 	IB_RNR_TIMER_000_12 =  7,
1078 	IB_RNR_TIMER_000_16 =  8,
1079 	IB_RNR_TIMER_000_24 =  9,
1080 	IB_RNR_TIMER_000_32 = 10,
1081 	IB_RNR_TIMER_000_48 = 11,
1082 	IB_RNR_TIMER_000_64 = 12,
1083 	IB_RNR_TIMER_000_96 = 13,
1084 	IB_RNR_TIMER_001_28 = 14,
1085 	IB_RNR_TIMER_001_92 = 15,
1086 	IB_RNR_TIMER_002_56 = 16,
1087 	IB_RNR_TIMER_003_84 = 17,
1088 	IB_RNR_TIMER_005_12 = 18,
1089 	IB_RNR_TIMER_007_68 = 19,
1090 	IB_RNR_TIMER_010_24 = 20,
1091 	IB_RNR_TIMER_015_36 = 21,
1092 	IB_RNR_TIMER_020_48 = 22,
1093 	IB_RNR_TIMER_030_72 = 23,
1094 	IB_RNR_TIMER_040_96 = 24,
1095 	IB_RNR_TIMER_061_44 = 25,
1096 	IB_RNR_TIMER_081_92 = 26,
1097 	IB_RNR_TIMER_122_88 = 27,
1098 	IB_RNR_TIMER_163_84 = 28,
1099 	IB_RNR_TIMER_245_76 = 29,
1100 	IB_RNR_TIMER_327_68 = 30,
1101 	IB_RNR_TIMER_491_52 = 31
1102 };
1103 
1104 enum ib_qp_attr_mask {
1105 	IB_QP_STATE			= 1,
1106 	IB_QP_CUR_STATE			= (1<<1),
1107 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1108 	IB_QP_ACCESS_FLAGS		= (1<<3),
1109 	IB_QP_PKEY_INDEX		= (1<<4),
1110 	IB_QP_PORT			= (1<<5),
1111 	IB_QP_QKEY			= (1<<6),
1112 	IB_QP_AV			= (1<<7),
1113 	IB_QP_PATH_MTU			= (1<<8),
1114 	IB_QP_TIMEOUT			= (1<<9),
1115 	IB_QP_RETRY_CNT			= (1<<10),
1116 	IB_QP_RNR_RETRY			= (1<<11),
1117 	IB_QP_RQ_PSN			= (1<<12),
1118 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1119 	IB_QP_ALT_PATH			= (1<<14),
1120 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1121 	IB_QP_SQ_PSN			= (1<<16),
1122 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1123 	IB_QP_PATH_MIG_STATE		= (1<<18),
1124 	IB_QP_CAP			= (1<<19),
1125 	IB_QP_DEST_QPN			= (1<<20),
1126 	IB_QP_RESERVED1			= (1<<21),
1127 	IB_QP_RESERVED2			= (1<<22),
1128 	IB_QP_RESERVED3			= (1<<23),
1129 	IB_QP_RESERVED4			= (1<<24),
1130 	IB_QP_RATE_LIMIT		= (1<<25),
1131 };
1132 
1133 enum ib_qp_state {
1134 	IB_QPS_RESET,
1135 	IB_QPS_INIT,
1136 	IB_QPS_RTR,
1137 	IB_QPS_RTS,
1138 	IB_QPS_SQD,
1139 	IB_QPS_SQE,
1140 	IB_QPS_ERR,
1141 	IB_QPS_DUMMY = -1,	/* force enum signed */
1142 };
1143 
1144 enum ib_mig_state {
1145 	IB_MIG_MIGRATED,
1146 	IB_MIG_REARM,
1147 	IB_MIG_ARMED
1148 };
1149 
1150 enum ib_mw_type {
1151 	IB_MW_TYPE_1 = 1,
1152 	IB_MW_TYPE_2 = 2
1153 };
1154 
1155 struct ib_qp_attr {
1156 	enum ib_qp_state	qp_state;
1157 	enum ib_qp_state	cur_qp_state;
1158 	enum ib_mtu		path_mtu;
1159 	enum ib_mig_state	path_mig_state;
1160 	u32			qkey;
1161 	u32			rq_psn;
1162 	u32			sq_psn;
1163 	u32			dest_qp_num;
1164 	int			qp_access_flags;
1165 	struct ib_qp_cap	cap;
1166 	struct ib_ah_attr	ah_attr;
1167 	struct ib_ah_attr	alt_ah_attr;
1168 	u16			pkey_index;
1169 	u16			alt_pkey_index;
1170 	u8			en_sqd_async_notify;
1171 	u8			sq_draining;
1172 	u8			max_rd_atomic;
1173 	u8			max_dest_rd_atomic;
1174 	u8			min_rnr_timer;
1175 	u8			port_num;
1176 	u8			timeout;
1177 	u8			retry_cnt;
1178 	u8			rnr_retry;
1179 	u8			alt_port_num;
1180 	u8			alt_timeout;
1181 	u32			rate_limit;
1182 };
1183 
1184 enum ib_wr_opcode {
1185 	IB_WR_RDMA_WRITE,
1186 	IB_WR_RDMA_WRITE_WITH_IMM,
1187 	IB_WR_SEND,
1188 	IB_WR_SEND_WITH_IMM,
1189 	IB_WR_RDMA_READ,
1190 	IB_WR_ATOMIC_CMP_AND_SWP,
1191 	IB_WR_ATOMIC_FETCH_AND_ADD,
1192 	IB_WR_LSO,
1193 	IB_WR_SEND_WITH_INV,
1194 	IB_WR_RDMA_READ_WITH_INV,
1195 	IB_WR_LOCAL_INV,
1196 	IB_WR_REG_MR,
1197 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1198 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1199 	IB_WR_REG_SIG_MR,
1200 	/* reserve values for low level drivers' internal use.
1201 	 * These values will not be used at all in the ib core layer.
1202 	 */
1203 	IB_WR_RESERVED1 = 0xf0,
1204 	IB_WR_RESERVED2,
1205 	IB_WR_RESERVED3,
1206 	IB_WR_RESERVED4,
1207 	IB_WR_RESERVED5,
1208 	IB_WR_RESERVED6,
1209 	IB_WR_RESERVED7,
1210 	IB_WR_RESERVED8,
1211 	IB_WR_RESERVED9,
1212 	IB_WR_RESERVED10,
1213 	IB_WR_DUMMY = -1,	/* force enum signed */
1214 };
1215 
1216 enum ib_send_flags {
1217 	IB_SEND_FENCE		= 1,
1218 	IB_SEND_SIGNALED	= (1<<1),
1219 	IB_SEND_SOLICITED	= (1<<2),
1220 	IB_SEND_INLINE		= (1<<3),
1221 	IB_SEND_IP_CSUM		= (1<<4),
1222 
1223 	/* reserve bits 26-31 for low level drivers' internal use */
1224 	IB_SEND_RESERVED_START	= (1 << 26),
1225 	IB_SEND_RESERVED_END	= (1 << 31),
1226 };
1227 
1228 struct ib_sge {
1229 	u64	addr;
1230 	u32	length;
1231 	u32	lkey;
1232 };
1233 
1234 struct ib_cqe {
1235 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1236 };
1237 
1238 struct ib_send_wr {
1239 	struct ib_send_wr      *next;
1240 	union {
1241 		u64		wr_id;
1242 		struct ib_cqe	*wr_cqe;
1243 	};
1244 	struct ib_sge	       *sg_list;
1245 	int			num_sge;
1246 	enum ib_wr_opcode	opcode;
1247 	int			send_flags;
1248 	union {
1249 		__be32		imm_data;
1250 		u32		invalidate_rkey;
1251 	} ex;
1252 };
1253 
1254 struct ib_rdma_wr {
1255 	struct ib_send_wr	wr;
1256 	u64			remote_addr;
1257 	u32			rkey;
1258 };
1259 
1260 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1261 {
1262 	return container_of(wr, struct ib_rdma_wr, wr);
1263 }
1264 
1265 struct ib_atomic_wr {
1266 	struct ib_send_wr	wr;
1267 	u64			remote_addr;
1268 	u64			compare_add;
1269 	u64			swap;
1270 	u64			compare_add_mask;
1271 	u64			swap_mask;
1272 	u32			rkey;
1273 };
1274 
1275 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1276 {
1277 	return container_of(wr, struct ib_atomic_wr, wr);
1278 }
1279 
1280 struct ib_ud_wr {
1281 	struct ib_send_wr	wr;
1282 	struct ib_ah		*ah;
1283 	void			*header;
1284 	int			hlen;
1285 	int			mss;
1286 	u32			remote_qpn;
1287 	u32			remote_qkey;
1288 	u16			pkey_index; /* valid for GSI only */
1289 	u8			port_num;   /* valid for DR SMPs on switch only */
1290 };
1291 
1292 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1293 {
1294 	return container_of(wr, struct ib_ud_wr, wr);
1295 }
1296 
1297 struct ib_reg_wr {
1298 	struct ib_send_wr	wr;
1299 	struct ib_mr		*mr;
1300 	u32			key;
1301 	int			access;
1302 };
1303 
1304 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1305 {
1306 	return container_of(wr, struct ib_reg_wr, wr);
1307 }
1308 
1309 struct ib_sig_handover_wr {
1310 	struct ib_send_wr	wr;
1311 	struct ib_sig_attrs    *sig_attrs;
1312 	struct ib_mr	       *sig_mr;
1313 	int			access_flags;
1314 	struct ib_sge	       *prot;
1315 };
1316 
1317 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr)
1318 {
1319 	return container_of(wr, struct ib_sig_handover_wr, wr);
1320 }
1321 
1322 struct ib_recv_wr {
1323 	struct ib_recv_wr      *next;
1324 	union {
1325 		u64		wr_id;
1326 		struct ib_cqe	*wr_cqe;
1327 	};
1328 	struct ib_sge	       *sg_list;
1329 	int			num_sge;
1330 };
1331 
1332 enum ib_access_flags {
1333 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1334 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1335 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1336 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1337 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1338 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1339 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1340 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1341 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1342 
1343 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1344 	IB_ACCESS_SUPPORTED =
1345 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1346 };
1347 
1348 /*
1349  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1350  * are hidden here instead of a uapi header!
1351  */
1352 enum ib_mr_rereg_flags {
1353 	IB_MR_REREG_TRANS	= 1,
1354 	IB_MR_REREG_PD		= (1<<1),
1355 	IB_MR_REREG_ACCESS	= (1<<2),
1356 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1357 };
1358 
1359 struct ib_fmr_attr {
1360 	int	max_pages;
1361 	int	max_maps;
1362 	u8	page_shift;
1363 };
1364 
1365 struct ib_umem;
1366 
1367 enum rdma_remove_reason {
1368 	/*
1369 	 * Userspace requested uobject deletion or initial try
1370 	 * to remove uobject via cleanup. Call could fail
1371 	 */
1372 	RDMA_REMOVE_DESTROY,
1373 	/* Context deletion. This call should delete the actual object itself */
1374 	RDMA_REMOVE_CLOSE,
1375 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1376 	RDMA_REMOVE_DRIVER_REMOVE,
1377 	/* uobj is being cleaned-up before being committed */
1378 	RDMA_REMOVE_ABORT,
1379 };
1380 
1381 struct ib_rdmacg_object {
1382 };
1383 
1384 struct ib_ucontext {
1385 	struct ib_device       *device;
1386 	struct ib_uverbs_file  *ufile;
1387 	/*
1388 	 * 'closing' can be read by the driver only during a destroy callback,
1389 	 * it is set when we are closing the file descriptor and indicates
1390 	 * that mm_sem may be locked.
1391 	 */
1392 	bool closing;
1393 
1394 	bool cleanup_retryable;
1395 
1396 	struct ib_rdmacg_object	cg_obj;
1397 	/*
1398 	 * Implementation details of the RDMA core, don't use in drivers:
1399 	 */
1400 	struct xarray mmap_xa;
1401 };
1402 
1403 struct ib_uobject {
1404 	u64			user_handle;	/* handle given to us by userspace */
1405 	/* ufile & ucontext owning this object */
1406 	struct ib_uverbs_file  *ufile;
1407 	/* FIXME, save memory: ufile->context == context */
1408 	struct ib_ucontext     *context;	/* associated user context */
1409 	void		       *object;		/* containing object */
1410 	struct list_head	list;		/* link to context's list */
1411 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1412 	int			id;		/* index into kernel idr */
1413 	struct kref		ref;
1414 	atomic_t		usecnt;		/* protects exclusive access */
1415 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1416 
1417 	const struct uverbs_api_object *uapi_object;
1418 };
1419 
1420 struct ib_udata {
1421 	const u8 __user *inbuf;
1422 	u8 __user *outbuf;
1423 	size_t       inlen;
1424 	size_t       outlen;
1425 };
1426 
1427 struct ib_pd {
1428 	u32			local_dma_lkey;
1429 	u32			flags;
1430 	struct ib_device       *device;
1431 	struct ib_uobject      *uobject;
1432 	atomic_t          	usecnt; /* count all resources */
1433 
1434 	u32			unsafe_global_rkey;
1435 
1436 	/*
1437 	 * Implementation details of the RDMA core, don't use in drivers:
1438 	 */
1439 	struct ib_mr	       *__internal_mr;
1440 };
1441 
1442 struct ib_xrcd {
1443 	struct ib_device       *device;
1444 	atomic_t		usecnt; /* count all exposed resources */
1445 	struct inode	       *inode;
1446 
1447 	struct mutex		tgt_qp_mutex;
1448 	struct list_head	tgt_qp_list;
1449 };
1450 
1451 struct ib_ah {
1452 	struct ib_device	*device;
1453 	struct ib_pd		*pd;
1454 	struct ib_uobject	*uobject;
1455 };
1456 
1457 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1458 
1459 enum ib_poll_context {
1460 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1461 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1462 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1463 };
1464 
1465 struct ib_cq {
1466 	struct ib_device       *device;
1467 	struct ib_ucq_object   *uobject;
1468 	ib_comp_handler   	comp_handler;
1469 	void                  (*event_handler)(struct ib_event *, void *);
1470 	void                   *cq_context;
1471 	int               	cqe;
1472 	atomic_t          	usecnt; /* count number of work queues */
1473 	enum ib_poll_context	poll_ctx;
1474 	struct work_struct	work;
1475 };
1476 
1477 struct ib_srq {
1478 	struct ib_device       *device;
1479 	struct ib_pd	       *pd;
1480 	struct ib_usrq_object  *uobject;
1481 	void		      (*event_handler)(struct ib_event *, void *);
1482 	void		       *srq_context;
1483 	enum ib_srq_type	srq_type;
1484 	atomic_t		usecnt;
1485 
1486 	struct {
1487 		struct ib_cq   *cq;
1488 		union {
1489 			struct {
1490 				struct ib_xrcd *xrcd;
1491 				u32		srq_num;
1492 			} xrc;
1493 		};
1494 	} ext;
1495 };
1496 
1497 enum ib_wq_type {
1498 	IB_WQT_RQ
1499 };
1500 
1501 enum ib_wq_state {
1502 	IB_WQS_RESET,
1503 	IB_WQS_RDY,
1504 	IB_WQS_ERR
1505 };
1506 
1507 struct ib_wq {
1508 	struct ib_device       *device;
1509 	struct ib_uwq_object   *uobject;
1510 	void		    *wq_context;
1511 	void		    (*event_handler)(struct ib_event *, void *);
1512 	struct ib_pd	       *pd;
1513 	struct ib_cq	       *cq;
1514 	u32		wq_num;
1515 	enum ib_wq_state       state;
1516 	enum ib_wq_type	wq_type;
1517 	atomic_t		usecnt;
1518 };
1519 
1520 enum ib_wq_flags {
1521 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1522 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1523 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1524 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1525 };
1526 
1527 struct ib_wq_init_attr {
1528 	void		       *wq_context;
1529 	enum ib_wq_type	wq_type;
1530 	u32		max_wr;
1531 	u32		max_sge;
1532 	struct	ib_cq	       *cq;
1533 	void		    (*event_handler)(struct ib_event *, void *);
1534 	u32		create_flags; /* Use enum ib_wq_flags */
1535 };
1536 
1537 enum ib_wq_attr_mask {
1538 	IB_WQ_STATE		= 1 << 0,
1539 	IB_WQ_CUR_STATE		= 1 << 1,
1540 	IB_WQ_FLAGS		= 1 << 2,
1541 };
1542 
1543 struct ib_wq_attr {
1544 	enum	ib_wq_state	wq_state;
1545 	enum	ib_wq_state	curr_wq_state;
1546 	u32			flags; /* Use enum ib_wq_flags */
1547 	u32			flags_mask; /* Use enum ib_wq_flags */
1548 };
1549 
1550 struct ib_rwq_ind_table {
1551 	struct ib_device	*device;
1552 	struct ib_uobject      *uobject;
1553 	atomic_t		usecnt;
1554 	u32		ind_tbl_num;
1555 	u32		log_ind_tbl_size;
1556 	struct ib_wq	**ind_tbl;
1557 };
1558 
1559 struct ib_rwq_ind_table_init_attr {
1560 	u32		log_ind_tbl_size;
1561 	/* Each entry is a pointer to Receive Work Queue */
1562 	struct ib_wq	**ind_tbl;
1563 };
1564 
1565 /*
1566  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1567  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1568  */
1569 struct ib_qp {
1570 	struct ib_device       *device;
1571 	struct ib_pd	       *pd;
1572 	struct ib_cq	       *send_cq;
1573 	struct ib_cq	       *recv_cq;
1574 	spinlock_t		mr_lock;
1575 	struct ib_srq	       *srq;
1576 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1577 	struct list_head	xrcd_list;
1578 
1579 	/* count times opened, mcast attaches, flow attaches */
1580 	atomic_t		usecnt;
1581 	struct list_head	open_list;
1582 	struct ib_qp           *real_qp;
1583 	struct ib_uqp_object   *uobject;
1584 	void                  (*event_handler)(struct ib_event *, void *);
1585 	void		       *qp_context;
1586 	u32			qp_num;
1587 	u32			max_write_sge;
1588 	u32			max_read_sge;
1589 	enum ib_qp_type		qp_type;
1590 	struct ib_rwq_ind_table *rwq_ind_tbl;
1591 	u8			port;
1592 };
1593 
1594 struct ib_dm {
1595 	struct ib_device  *device;
1596 	u32		   length;
1597 	u32		   flags;
1598 	struct ib_uobject *uobject;
1599 	atomic_t	   usecnt;
1600 };
1601 
1602 struct ib_mr {
1603 	struct ib_device  *device;
1604 	struct ib_pd	  *pd;
1605 	u32		   lkey;
1606 	u32		   rkey;
1607 	u64		   iova;
1608 	u64		   length;
1609 	unsigned int	   page_size;
1610 	enum ib_mr_type	   type;
1611 	bool		   need_inval;
1612 	union {
1613 		struct ib_uobject	*uobject;	/* user */
1614 		struct list_head	qp_entry;	/* FR */
1615 	};
1616 
1617 	struct ib_dm      *dm;
1618 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1619 };
1620 
1621 struct ib_mw {
1622 	struct ib_device	*device;
1623 	struct ib_pd		*pd;
1624 	struct ib_uobject	*uobject;
1625 	u32			rkey;
1626 	enum ib_mw_type         type;
1627 };
1628 
1629 struct ib_fmr {
1630 	struct ib_device	*device;
1631 	struct ib_pd		*pd;
1632 	struct list_head	list;
1633 	u32			lkey;
1634 	u32			rkey;
1635 };
1636 
1637 /* Supported steering options */
1638 enum ib_flow_attr_type {
1639 	/* steering according to rule specifications */
1640 	IB_FLOW_ATTR_NORMAL		= 0x0,
1641 	/* default unicast and multicast rule -
1642 	 * receive all Eth traffic which isn't steered to any QP
1643 	 */
1644 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1645 	/* default multicast rule -
1646 	 * receive all Eth multicast traffic which isn't steered to any QP
1647 	 */
1648 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1649 	/* sniffer rule - receive all port traffic */
1650 	IB_FLOW_ATTR_SNIFFER		= 0x3
1651 };
1652 
1653 /* Supported steering header types */
1654 enum ib_flow_spec_type {
1655 	/* L2 headers*/
1656 	IB_FLOW_SPEC_ETH		= 0x20,
1657 	IB_FLOW_SPEC_IB			= 0x22,
1658 	/* L3 header*/
1659 	IB_FLOW_SPEC_IPV4		= 0x30,
1660 	IB_FLOW_SPEC_IPV6		= 0x31,
1661 	IB_FLOW_SPEC_ESP                = 0x34,
1662 	/* L4 headers*/
1663 	IB_FLOW_SPEC_TCP		= 0x40,
1664 	IB_FLOW_SPEC_UDP		= 0x41,
1665 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1666 	IB_FLOW_SPEC_GRE		= 0x51,
1667 	IB_FLOW_SPEC_MPLS		= 0x60,
1668 	IB_FLOW_SPEC_INNER		= 0x100,
1669 	/* Actions */
1670 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1671 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1672 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1673 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1674 };
1675 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1676 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1677 
1678 /* Flow steering rule priority is set according to it's domain.
1679  * Lower domain value means higher priority.
1680  */
1681 enum ib_flow_domain {
1682 	IB_FLOW_DOMAIN_USER,
1683 	IB_FLOW_DOMAIN_ETHTOOL,
1684 	IB_FLOW_DOMAIN_RFS,
1685 	IB_FLOW_DOMAIN_NIC,
1686 	IB_FLOW_DOMAIN_NUM /* Must be last */
1687 };
1688 
1689 enum ib_flow_flags {
1690 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1691 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1692 };
1693 
1694 struct ib_flow_eth_filter {
1695 	u8	dst_mac[6];
1696 	u8	src_mac[6];
1697 	__be16	ether_type;
1698 	__be16	vlan_tag;
1699 	/* Must be last */
1700 	u8	real_sz[0];
1701 };
1702 
1703 struct ib_flow_spec_eth {
1704 	enum ib_flow_spec_type	  type;
1705 	u16			  size;
1706 	struct ib_flow_eth_filter val;
1707 	struct ib_flow_eth_filter mask;
1708 };
1709 
1710 struct ib_flow_ib_filter {
1711 	__be16 dlid;
1712 	__u8   sl;
1713 	/* Must be last */
1714 	u8	real_sz[0];
1715 };
1716 
1717 struct ib_flow_spec_ib {
1718 	enum ib_flow_spec_type	 type;
1719 	u16			 size;
1720 	struct ib_flow_ib_filter val;
1721 	struct ib_flow_ib_filter mask;
1722 };
1723 
1724 /* IPv4 header flags */
1725 enum ib_ipv4_flags {
1726 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1727 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1728 				    last have this flag set */
1729 };
1730 
1731 struct ib_flow_ipv4_filter {
1732 	__be32	src_ip;
1733 	__be32	dst_ip;
1734 	u8	proto;
1735 	u8	tos;
1736 	u8	ttl;
1737 	u8	flags;
1738 	/* Must be last */
1739 	u8	real_sz[0];
1740 };
1741 
1742 struct ib_flow_spec_ipv4 {
1743 	enum ib_flow_spec_type	   type;
1744 	u16			   size;
1745 	struct ib_flow_ipv4_filter val;
1746 	struct ib_flow_ipv4_filter mask;
1747 };
1748 
1749 struct ib_flow_ipv6_filter {
1750 	u8	src_ip[16];
1751 	u8	dst_ip[16];
1752 	__be32	flow_label;
1753 	u8	next_hdr;
1754 	u8	traffic_class;
1755 	u8	hop_limit;
1756 	/* Must be last */
1757 	u8	real_sz[0];
1758 };
1759 
1760 struct ib_flow_spec_ipv6 {
1761 	enum ib_flow_spec_type	   type;
1762 	u16			   size;
1763 	struct ib_flow_ipv6_filter val;
1764 	struct ib_flow_ipv6_filter mask;
1765 };
1766 
1767 struct ib_flow_tcp_udp_filter {
1768 	__be16	dst_port;
1769 	__be16	src_port;
1770 	/* Must be last */
1771 	u8	real_sz[0];
1772 };
1773 
1774 struct ib_flow_spec_tcp_udp {
1775 	enum ib_flow_spec_type	      type;
1776 	u16			      size;
1777 	struct ib_flow_tcp_udp_filter val;
1778 	struct ib_flow_tcp_udp_filter mask;
1779 };
1780 
1781 struct ib_flow_tunnel_filter {
1782 	__be32	tunnel_id;
1783 	u8	real_sz[0];
1784 };
1785 
1786 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1787  * the tunnel_id from val has the vni value
1788  */
1789 struct ib_flow_spec_tunnel {
1790 	u32			      type;
1791 	u16			      size;
1792 	struct ib_flow_tunnel_filter  val;
1793 	struct ib_flow_tunnel_filter  mask;
1794 };
1795 
1796 struct ib_flow_esp_filter {
1797 	__be32	spi;
1798 	__be32  seq;
1799 	/* Must be last */
1800 	u8	real_sz[0];
1801 };
1802 
1803 struct ib_flow_spec_esp {
1804 	u32                           type;
1805 	u16			      size;
1806 	struct ib_flow_esp_filter     val;
1807 	struct ib_flow_esp_filter     mask;
1808 };
1809 
1810 struct ib_flow_gre_filter {
1811 	__be16 c_ks_res0_ver;
1812 	__be16 protocol;
1813 	__be32 key;
1814 	/* Must be last */
1815 	u8	real_sz[0];
1816 };
1817 
1818 struct ib_flow_spec_gre {
1819 	u32                           type;
1820 	u16			      size;
1821 	struct ib_flow_gre_filter     val;
1822 	struct ib_flow_gre_filter     mask;
1823 };
1824 
1825 struct ib_flow_mpls_filter {
1826 	__be32 tag;
1827 	/* Must be last */
1828 	u8	real_sz[0];
1829 };
1830 
1831 struct ib_flow_spec_mpls {
1832 	u32                           type;
1833 	u16			      size;
1834 	struct ib_flow_mpls_filter     val;
1835 	struct ib_flow_mpls_filter     mask;
1836 };
1837 
1838 struct ib_flow_spec_action_tag {
1839 	enum ib_flow_spec_type	      type;
1840 	u16			      size;
1841 	u32                           tag_id;
1842 };
1843 
1844 struct ib_flow_spec_action_drop {
1845 	enum ib_flow_spec_type	      type;
1846 	u16			      size;
1847 };
1848 
1849 struct ib_flow_spec_action_handle {
1850 	enum ib_flow_spec_type	      type;
1851 	u16			      size;
1852 	struct ib_flow_action	     *act;
1853 };
1854 
1855 enum ib_counters_description {
1856 	IB_COUNTER_PACKETS,
1857 	IB_COUNTER_BYTES,
1858 };
1859 
1860 struct ib_flow_spec_action_count {
1861 	enum ib_flow_spec_type type;
1862 	u16 size;
1863 	struct ib_counters *counters;
1864 };
1865 
1866 union ib_flow_spec {
1867 	struct {
1868 		u32			type;
1869 		u16			size;
1870 	};
1871 	struct ib_flow_spec_eth		eth;
1872 	struct ib_flow_spec_ib		ib;
1873 	struct ib_flow_spec_ipv4        ipv4;
1874 	struct ib_flow_spec_tcp_udp	tcp_udp;
1875 	struct ib_flow_spec_ipv6        ipv6;
1876 	struct ib_flow_spec_tunnel      tunnel;
1877 	struct ib_flow_spec_esp		esp;
1878 	struct ib_flow_spec_gre		gre;
1879 	struct ib_flow_spec_mpls	mpls;
1880 	struct ib_flow_spec_action_tag  flow_tag;
1881 	struct ib_flow_spec_action_drop drop;
1882 	struct ib_flow_spec_action_handle action;
1883 	struct ib_flow_spec_action_count flow_count;
1884 };
1885 
1886 struct ib_flow_attr {
1887 	enum ib_flow_attr_type type;
1888 	u16	     size;
1889 	u16	     priority;
1890 	u32	     flags;
1891 	u8	     num_of_specs;
1892 	u8	     port;
1893 	union ib_flow_spec flows[0];
1894 };
1895 
1896 struct ib_flow {
1897 	struct ib_qp		*qp;
1898 	struct ib_device	*device;
1899 	struct ib_uobject	*uobject;
1900 };
1901 
1902 enum ib_flow_action_type {
1903 	IB_FLOW_ACTION_UNSPECIFIED,
1904 	IB_FLOW_ACTION_ESP = 1,
1905 };
1906 
1907 struct ib_flow_action_attrs_esp_keymats {
1908 	enum ib_uverbs_flow_action_esp_keymat			protocol;
1909 	union {
1910 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
1911 	} keymat;
1912 };
1913 
1914 struct ib_flow_action_attrs_esp_replays {
1915 	enum ib_uverbs_flow_action_esp_replay			protocol;
1916 	union {
1917 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
1918 	} replay;
1919 };
1920 
1921 enum ib_flow_action_attrs_esp_flags {
1922 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
1923 	 * This is done in order to share the same flags between user-space and
1924 	 * kernel and spare an unnecessary translation.
1925 	 */
1926 
1927 	/* Kernel flags */
1928 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
1929 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
1930 };
1931 
1932 struct ib_flow_spec_list {
1933 	struct ib_flow_spec_list	*next;
1934 	union ib_flow_spec		spec;
1935 };
1936 
1937 struct ib_flow_action_attrs_esp {
1938 	struct ib_flow_action_attrs_esp_keymats		*keymat;
1939 	struct ib_flow_action_attrs_esp_replays		*replay;
1940 	struct ib_flow_spec_list			*encap;
1941 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
1942 	 * Value of 0 is a valid value.
1943 	 */
1944 	u32						esn;
1945 	u32						spi;
1946 	u32						seq;
1947 	u32						tfc_pad;
1948 	/* Use enum ib_flow_action_attrs_esp_flags */
1949 	u64						flags;
1950 	u64						hard_limit_pkts;
1951 };
1952 
1953 struct ib_flow_action {
1954 	struct ib_device		*device;
1955 	struct ib_uobject		*uobject;
1956 	enum ib_flow_action_type	type;
1957 	atomic_t			usecnt;
1958 };
1959 
1960 
1961 struct ib_mad_hdr;
1962 struct ib_grh;
1963 
1964 enum ib_process_mad_flags {
1965 	IB_MAD_IGNORE_MKEY	= 1,
1966 	IB_MAD_IGNORE_BKEY	= 2,
1967 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1968 };
1969 
1970 enum ib_mad_result {
1971 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1972 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1973 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1974 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1975 };
1976 
1977 #define IB_DEVICE_NAME_MAX 64
1978 
1979 struct ib_cache {
1980 	rwlock_t                lock;
1981 	struct ib_event_handler event_handler;
1982 	struct ib_pkey_cache  **pkey_cache;
1983 	struct ib_gid_table   **gid_cache;
1984 	u8                     *lmc_cache;
1985 };
1986 
1987 struct ib_dma_mapping_ops {
1988 	int		(*mapping_error)(struct ib_device *dev,
1989 					 u64 dma_addr);
1990 	u64		(*map_single)(struct ib_device *dev,
1991 				      void *ptr, size_t size,
1992 				      enum dma_data_direction direction);
1993 	void		(*unmap_single)(struct ib_device *dev,
1994 					u64 addr, size_t size,
1995 					enum dma_data_direction direction);
1996 	u64		(*map_page)(struct ib_device *dev,
1997 				    struct page *page, unsigned long offset,
1998 				    size_t size,
1999 				    enum dma_data_direction direction);
2000 	void		(*unmap_page)(struct ib_device *dev,
2001 				      u64 addr, size_t size,
2002 				      enum dma_data_direction direction);
2003 	int		(*map_sg)(struct ib_device *dev,
2004 				  struct scatterlist *sg, int nents,
2005 				  enum dma_data_direction direction);
2006 	void		(*unmap_sg)(struct ib_device *dev,
2007 				    struct scatterlist *sg, int nents,
2008 				    enum dma_data_direction direction);
2009 	int		(*map_sg_attrs)(struct ib_device *dev,
2010 					struct scatterlist *sg, int nents,
2011 					enum dma_data_direction direction,
2012 					struct dma_attrs *attrs);
2013 	void		(*unmap_sg_attrs)(struct ib_device *dev,
2014 					  struct scatterlist *sg, int nents,
2015 					  enum dma_data_direction direction,
2016 					  struct dma_attrs *attrs);
2017 	void		(*sync_single_for_cpu)(struct ib_device *dev,
2018 					       u64 dma_handle,
2019 					       size_t size,
2020 					       enum dma_data_direction dir);
2021 	void		(*sync_single_for_device)(struct ib_device *dev,
2022 						  u64 dma_handle,
2023 						  size_t size,
2024 						  enum dma_data_direction dir);
2025 	void		*(*alloc_coherent)(struct ib_device *dev,
2026 					   size_t size,
2027 					   u64 *dma_handle,
2028 					   gfp_t flag);
2029 	void		(*free_coherent)(struct ib_device *dev,
2030 					 size_t size, void *cpu_addr,
2031 					 u64 dma_handle);
2032 };
2033 
2034 struct iw_cm_verbs;
2035 
2036 struct ib_port_immutable {
2037 	int                           pkey_tbl_len;
2038 	int                           gid_tbl_len;
2039 	u32                           core_cap_flags;
2040 	u32                           max_mad_size;
2041 };
2042 
2043 struct ib_counters {
2044 	struct ib_device	*device;
2045 	struct ib_uobject	*uobject;
2046 	/* num of objects attached */
2047 	atomic_t	usecnt;
2048 };
2049 
2050 struct ib_counters_read_attr {
2051 	u64	*counters_buff;
2052 	u32	ncounters;
2053 	u32	flags; /* use enum ib_read_counters_flags */
2054 };
2055 
2056 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2057 	.size_##ib_struct =                                                    \
2058 		(sizeof(struct drv_struct) +                                   \
2059 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2060 		 BUILD_BUG_ON_ZERO(                                            \
2061 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2062 				      struct ib_struct)))
2063 
2064 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2065 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2066 
2067 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2068 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2069 
2070 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2071 
2072 struct rdma_user_mmap_entry {
2073 	struct kref ref;
2074 	struct ib_ucontext *ucontext;
2075 	unsigned long start_pgoff;
2076 	size_t npages;
2077 	bool driver_removed;
2078 };
2079 
2080 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2081 static inline u64
2082 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2083 {
2084 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2085 }
2086 
2087 struct ib_device_ops {
2088 	enum rdma_driver_id driver_id;
2089 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2090 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2091 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2092 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2093 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2094 };
2095 
2096 #define	INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do {			\
2097 	(pop)[0] .driver_id = RDMA_DRIVER_##DRIVER;			\
2098 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah);	\
2099 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq);	\
2100 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd);	\
2101 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq);	\
2102 	(pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \
2103 } while (0)
2104 
2105 struct ib_device {
2106 	struct device                *dma_device;
2107 	struct ib_device_ops	     ops;
2108 
2109 	char                          name[IB_DEVICE_NAME_MAX];
2110 
2111 	struct list_head              event_handler_list;
2112 	spinlock_t                    event_handler_lock;
2113 
2114 	spinlock_t                    client_data_lock;
2115 	struct list_head              core_list;
2116 	/* Access to the client_data_list is protected by the client_data_lock
2117 	 * spinlock and the lists_rwsem read-write semaphore */
2118 	struct list_head              client_data_list;
2119 
2120 	struct ib_cache               cache;
2121 	/**
2122 	 * port_immutable is indexed by port number
2123 	 */
2124 	struct ib_port_immutable     *port_immutable;
2125 
2126 	int			      num_comp_vectors;
2127 
2128 	struct iw_cm_verbs	     *iwcm;
2129 
2130 	/**
2131 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2132 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2133 	 *   core when the device is removed.  A lifespan of -1 in the return
2134 	 *   struct tells the core to set a default lifespan.
2135 	 */
2136 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2137 						     u8 port_num);
2138 	/**
2139 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2140 	 * @index - The index in the value array we wish to have updated, or
2141 	 *   num_counters if we want all stats updated
2142 	 * Return codes -
2143 	 *   < 0 - Error, no counters updated
2144 	 *   index - Updated the single counter pointed to by index
2145 	 *   num_counters - Updated all counters (will reset the timestamp
2146 	 *     and prevent further calls for lifespan milliseconds)
2147 	 * Drivers are allowed to update all counters in leiu of just the
2148 	 *   one given in index at their option
2149 	 */
2150 	int		           (*get_hw_stats)(struct ib_device *device,
2151 						   struct rdma_hw_stats *stats,
2152 						   u8 port, int index);
2153 	int		           (*query_device)(struct ib_device *device,
2154 						   struct ib_device_attr *device_attr,
2155 						   struct ib_udata *udata);
2156 	int		           (*query_port)(struct ib_device *device,
2157 						 u8 port_num,
2158 						 struct ib_port_attr *port_attr);
2159 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2160 						     u8 port_num);
2161 	/* When calling get_netdev, the HW vendor's driver should return the
2162 	 * net device of device @device at port @port_num or NULL if such
2163 	 * a net device doesn't exist. The vendor driver should call dev_hold
2164 	 * on this net device. The HW vendor's device driver must guarantee
2165 	 * that this function returns NULL before the net device reaches
2166 	 * NETDEV_UNREGISTER_FINAL state.
2167 	 */
2168 	struct ifnet		  *(*get_netdev)(struct ib_device *device,
2169 						 u8 port_num);
2170 	int		           (*query_gid)(struct ib_device *device,
2171 						u8 port_num, int index,
2172 						union ib_gid *gid);
2173 	/* When calling add_gid, the HW vendor's driver should
2174 	 * add the gid of device @device at gid index @index of
2175 	 * port @port_num to be @gid. Meta-info of that gid (for example,
2176 	 * the network device related to this gid is available
2177 	 * at @attr. @context allows the HW vendor driver to store extra
2178 	 * information together with a GID entry. The HW vendor may allocate
2179 	 * memory to contain this information and store it in @context when a
2180 	 * new GID entry is written to. Params are consistent until the next
2181 	 * call of add_gid or delete_gid. The function should return 0 on
2182 	 * success or error otherwise. The function could be called
2183 	 * concurrently for different ports. This function is only called
2184 	 * when roce_gid_table is used.
2185 	 */
2186 	int		           (*add_gid)(struct ib_device *device,
2187 					      u8 port_num,
2188 					      unsigned int index,
2189 					      const union ib_gid *gid,
2190 					      const struct ib_gid_attr *attr,
2191 					      void **context);
2192 	/* When calling del_gid, the HW vendor's driver should delete the
2193 	 * gid of device @device at gid index @index of port @port_num.
2194 	 * Upon the deletion of a GID entry, the HW vendor must free any
2195 	 * allocated memory. The caller will clear @context afterwards.
2196 	 * This function is only called when roce_gid_table is used.
2197 	 */
2198 	int		           (*del_gid)(struct ib_device *device,
2199 					      u8 port_num,
2200 					      unsigned int index,
2201 					      void **context);
2202 	int		           (*query_pkey)(struct ib_device *device,
2203 						 u8 port_num, u16 index, u16 *pkey);
2204 	int		           (*modify_device)(struct ib_device *device,
2205 						    int device_modify_mask,
2206 						    struct ib_device_modify *device_modify);
2207 	int		           (*modify_port)(struct ib_device *device,
2208 						  u8 port_num, int port_modify_mask,
2209 						  struct ib_port_modify *port_modify);
2210 	int                        (*alloc_ucontext)(struct ib_ucontext *uctx,
2211 						     struct ib_udata *udata);
2212 	void                       (*dealloc_ucontext)(struct ib_ucontext *context);
2213 	int                        (*mmap)(struct ib_ucontext *context,
2214 					   struct vm_area_struct *vma);
2215 	int                        (*alloc_pd)(struct ib_pd *pd,
2216 					       struct ib_udata *udata);
2217 	void                       (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2218 	int 			   (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr,
2219 						u32 flags, struct ib_udata *udata);
2220 	int                        (*modify_ah)(struct ib_ah *ah,
2221 						struct ib_ah_attr *ah_attr);
2222 	int                        (*query_ah)(struct ib_ah *ah,
2223 					       struct ib_ah_attr *ah_attr);
2224 	void                       (*destroy_ah)(struct ib_ah *ah, u32 flags);
2225 	int 			   (*create_srq)(struct ib_srq *srq,
2226 						 struct ib_srq_init_attr *srq_init_attr,
2227 						 struct ib_udata *udata);
2228 	int                        (*modify_srq)(struct ib_srq *srq,
2229 						 struct ib_srq_attr *srq_attr,
2230 						 enum ib_srq_attr_mask srq_attr_mask,
2231 						 struct ib_udata *udata);
2232 	int                        (*query_srq)(struct ib_srq *srq,
2233 						struct ib_srq_attr *srq_attr);
2234 	void                       (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2235 	int                        (*post_srq_recv)(struct ib_srq *srq,
2236 						    const struct ib_recv_wr *recv_wr,
2237 						    const struct ib_recv_wr **bad_recv_wr);
2238 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2239 						struct ib_qp_init_attr *qp_init_attr,
2240 						struct ib_udata *udata);
2241 	int                        (*modify_qp)(struct ib_qp *qp,
2242 						struct ib_qp_attr *qp_attr,
2243 						int qp_attr_mask,
2244 						struct ib_udata *udata);
2245 	int                        (*query_qp)(struct ib_qp *qp,
2246 					       struct ib_qp_attr *qp_attr,
2247 					       int qp_attr_mask,
2248 					       struct ib_qp_init_attr *qp_init_attr);
2249 	int                        (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2250 	int                        (*post_send)(struct ib_qp *qp,
2251 						const struct ib_send_wr *send_wr,
2252 						const struct ib_send_wr **bad_send_wr);
2253 	int                        (*post_recv)(struct ib_qp *qp,
2254 						const struct ib_recv_wr *recv_wr,
2255 						const struct ib_recv_wr **bad_recv_wr);
2256 	int                        (*create_cq)(struct ib_cq *,
2257 						const struct ib_cq_init_attr *attr,
2258 						struct ib_udata *udata);
2259 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2260 						u16 cq_period);
2261 	void                       (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2262 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2263 						struct ib_udata *udata);
2264 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2265 					      struct ib_wc *wc);
2266 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2267 	int                        (*req_notify_cq)(struct ib_cq *cq,
2268 						    enum ib_cq_notify_flags flags);
2269 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2270 						      int wc_cnt);
2271 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2272 						 int mr_access_flags);
2273 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2274 						  u64 start, u64 length,
2275 						  u64 virt_addr,
2276 						  int mr_access_flags,
2277 						  struct ib_udata *udata);
2278 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2279 						    int flags,
2280 						    u64 start, u64 length,
2281 						    u64 virt_addr,
2282 						    int mr_access_flags,
2283 						    struct ib_pd *pd,
2284 						    struct ib_udata *udata);
2285 	int                        (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2286 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2287 					       u32 max_num_sg, struct ib_udata *udata);
2288 	int			   (*advise_mr)(struct ib_pd *pd,
2289 						enum ib_uverbs_advise_mr_advice advice, u32 flags,
2290 						const struct ib_sge *sg_list, u32 num_sge,
2291 						struct uverbs_attr_bundle *attrs);
2292 	int                        (*map_mr_sg)(struct ib_mr *mr,
2293 						struct scatterlist *sg,
2294 						int sg_nents,
2295 						unsigned int *sg_offset);
2296 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2297 					       enum ib_mw_type type,
2298 					       struct ib_udata *udata);
2299 	int                        (*dealloc_mw)(struct ib_mw *mw);
2300 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2301 						int mr_access_flags,
2302 						struct ib_fmr_attr *fmr_attr);
2303 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2304 						   u64 *page_list, int list_len,
2305 						   u64 iova);
2306 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2307 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2308 	int                        (*attach_mcast)(struct ib_qp *qp,
2309 						   union ib_gid *gid,
2310 						   u16 lid);
2311 	int                        (*detach_mcast)(struct ib_qp *qp,
2312 						   union ib_gid *gid,
2313 						   u16 lid);
2314 	int                        (*process_mad)(struct ib_device *device,
2315 						  int process_mad_flags,
2316 						  u8 port_num,
2317 						  const struct ib_wc *in_wc,
2318 						  const struct ib_grh *in_grh,
2319 						  const struct ib_mad_hdr *in_mad,
2320 						  size_t in_mad_size,
2321 						  struct ib_mad_hdr *out_mad,
2322 						  size_t *out_mad_size,
2323 						  u16 *out_mad_pkey_index);
2324 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2325 						 struct ib_udata *udata);
2326 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2327 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2328 						  struct ib_flow_attr
2329 						  *flow_attr,
2330 						  int domain, struct ib_udata *udata);
2331 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2332 	struct ib_flow_action *(*create_flow_action_esp)(
2333 		struct ib_device *device,
2334 		const struct ib_flow_action_attrs_esp *attr,
2335 		struct uverbs_attr_bundle *attrs);
2336 	int (*destroy_flow_action)(struct ib_flow_action *action);
2337 	int (*modify_flow_action_esp)(
2338 		struct ib_flow_action *action,
2339 		const struct ib_flow_action_attrs_esp *attr,
2340 		struct uverbs_attr_bundle *attrs);
2341 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2342 						      struct ib_mr_status *mr_status);
2343 	/**
2344 	 * This will be called once refcount of an entry in mmap_xa reaches
2345 	 * zero. The type of the memory that was mapped may differ between
2346 	 * entries and is opaque to the rdma_user_mmap interface.
2347 	 * Therefore needs to be implemented by the driver in mmap_free.
2348 	 */
2349 	void			   (*mmap_free)(struct rdma_user_mmap_entry *entry);
2350 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2351 	void			   (*drain_rq)(struct ib_qp *qp);
2352 	void			   (*drain_sq)(struct ib_qp *qp);
2353 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2354 							int state);
2355 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2356 						   struct ifla_vf_info *ivf);
2357 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2358 						   struct ifla_vf_stats *stats);
2359 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2360 						  int type);
2361 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2362 						struct ib_wq_init_attr *init_attr,
2363 						struct ib_udata *udata);
2364 	void			   (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2365 	int			   (*modify_wq)(struct ib_wq *wq,
2366 						struct ib_wq_attr *attr,
2367 						u32 wq_attr_mask,
2368 						struct ib_udata *udata);
2369 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2370 							   struct ib_rwq_ind_table_init_attr *init_attr,
2371 							   struct ib_udata *udata);
2372 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2373 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2374 				  struct ib_ucontext *context,
2375 				  struct ib_dm_alloc_attr *attr,
2376 				  struct uverbs_attr_bundle *attrs);
2377 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2378 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2379 				   struct ib_dm_mr_attr *attr,
2380 				   struct uverbs_attr_bundle *attrs);
2381 	struct ib_counters *(*create_counters)(
2382 		struct ib_device *device, struct uverbs_attr_bundle *attrs);
2383 	int (*destroy_counters)(struct ib_counters *counters);
2384 	int (*read_counters)(struct ib_counters *counters,
2385 			     struct ib_counters_read_attr *counters_read_attr,
2386 			     struct uverbs_attr_bundle *attrs);
2387 	struct ib_dma_mapping_ops   *dma_ops;
2388 
2389 	struct module               *owner;
2390 	struct device                dev;
2391 	struct kobject               *ports_parent;
2392 	struct list_head             port_list;
2393 
2394 	enum {
2395 		IB_DEV_UNINITIALIZED,
2396 		IB_DEV_REGISTERED,
2397 		IB_DEV_UNREGISTERED
2398 	}                            reg_state;
2399 
2400 	int			     uverbs_abi_ver;
2401 	u64			     uverbs_cmd_mask;
2402 	u64			     uverbs_ex_cmd_mask;
2403 
2404 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2405 	__be64			     node_guid;
2406 	u32			     local_dma_lkey;
2407 	u16                          is_switch:1;
2408 	u8                           node_type;
2409 	u8                           phys_port_cnt;
2410 	struct ib_device_attr        attrs;
2411 	struct attribute_group	     *hw_stats_ag;
2412 	struct rdma_hw_stats         *hw_stats;
2413 
2414 	const struct uapi_definition   *driver_def;
2415 
2416 	/**
2417 	 * The following mandatory functions are used only at device
2418 	 * registration.  Keep functions such as these at the end of this
2419 	 * structure to avoid cache line misses when accessing struct ib_device
2420 	 * in fast paths.
2421 	 */
2422 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2423 	void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2424 };
2425 
2426 struct ib_client {
2427 	char  *name;
2428 	void (*add)   (struct ib_device *);
2429 	void (*remove)(struct ib_device *, void *client_data);
2430 
2431 	/* Returns the net_dev belonging to this ib_client and matching the
2432 	 * given parameters.
2433 	 * @dev:	 An RDMA device that the net_dev use for communication.
2434 	 * @port:	 A physical port number on the RDMA device.
2435 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2436 	 * @gid:	 A GID that the net_dev uses to communicate.
2437 	 * @addr:	 An IP address the net_dev is configured with.
2438 	 * @client_data: The device's client data set by ib_set_client_data().
2439 	 *
2440 	 * An ib_client that implements a net_dev on top of RDMA devices
2441 	 * (such as IP over IB) should implement this callback, allowing the
2442 	 * rdma_cm module to find the right net_dev for a given request.
2443 	 *
2444 	 * The caller is responsible for calling dev_put on the returned
2445 	 * netdev. */
2446 	struct ifnet *(*get_net_dev_by_params)(
2447 			struct ib_device *dev,
2448 			u8 port,
2449 			u16 pkey,
2450 			const union ib_gid *gid,
2451 			const struct sockaddr *addr,
2452 			void *client_data);
2453 	struct list_head list;
2454 };
2455 
2456 struct ib_device *ib_alloc_device(size_t size);
2457 void ib_dealloc_device(struct ib_device *device);
2458 
2459 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2460 
2461 int ib_register_device(struct ib_device *device,
2462 		       int (*port_callback)(struct ib_device *,
2463 					    u8, struct kobject *));
2464 void ib_unregister_device(struct ib_device *device);
2465 
2466 int ib_register_client   (struct ib_client *client);
2467 void ib_unregister_client(struct ib_client *client);
2468 
2469 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2470 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2471 			 void *data);
2472 
2473 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2474 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2475 		      struct rdma_user_mmap_entry *entry);
2476 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2477 				struct rdma_user_mmap_entry *entry,
2478 				size_t length);
2479 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2480 				      struct rdma_user_mmap_entry *entry,
2481 				      size_t length, u32 min_pgoff,
2482 				      u32 max_pgoff);
2483 
2484 struct rdma_user_mmap_entry *
2485 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2486 			       unsigned long pgoff);
2487 struct rdma_user_mmap_entry *
2488 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2489 			 struct vm_area_struct *vma);
2490 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2491 
2492 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2493 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2494 {
2495 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2496 }
2497 
2498 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2499 {
2500 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2501 }
2502 
2503 static inline bool ib_is_buffer_cleared(const void __user *p,
2504 					size_t len)
2505 {
2506 	bool ret;
2507 	u8 *buf;
2508 
2509 	if (len > USHRT_MAX)
2510 		return false;
2511 
2512 	buf = memdup_user(p, len);
2513 	if (IS_ERR(buf))
2514 		return false;
2515 
2516 	ret = !memchr_inv(buf, 0, len);
2517 	kfree(buf);
2518 	return ret;
2519 }
2520 
2521 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2522 				       size_t offset,
2523 				       size_t len)
2524 {
2525 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2526 }
2527 
2528 /**
2529  * ib_is_destroy_retryable - Check whether the uobject destruction
2530  * is retryable.
2531  * @ret: The initial destruction return code
2532  * @why: remove reason
2533  * @uobj: The uobject that is destroyed
2534  *
2535  * This function is a helper function that IB layer and low-level drivers
2536  * can use to consider whether the destruction of the given uobject is
2537  * retry-able.
2538  * It checks the original return code, if it wasn't success the destruction
2539  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2540  * the remove reason. (i.e. why).
2541  * Must be called with the object locked for destroy.
2542  */
2543 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2544 					   struct ib_uobject *uobj)
2545 {
2546 	return ret && (why == RDMA_REMOVE_DESTROY ||
2547 		       uobj->context->cleanup_retryable);
2548 }
2549 
2550 /**
2551  * ib_destroy_usecnt - Called during destruction to check the usecnt
2552  * @usecnt: The usecnt atomic
2553  * @why: remove reason
2554  * @uobj: The uobject that is destroyed
2555  *
2556  * Non-zero usecnts will block destruction unless destruction was triggered by
2557  * a ucontext cleanup.
2558  */
2559 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2560 				    enum rdma_remove_reason why,
2561 				    struct ib_uobject *uobj)
2562 {
2563 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2564 		return -EBUSY;
2565 	return 0;
2566 }
2567 
2568 /**
2569  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2570  * contains all required attributes and no attributes not allowed for
2571  * the given QP state transition.
2572  * @cur_state: Current QP state
2573  * @next_state: Next QP state
2574  * @type: QP type
2575  * @mask: Mask of supplied QP attributes
2576  *
2577  * This function is a helper function that a low-level driver's
2578  * modify_qp method can use to validate the consumer's input.  It
2579  * checks that cur_state and next_state are valid QP states, that a
2580  * transition from cur_state to next_state is allowed by the IB spec,
2581  * and that the attribute mask supplied is allowed for the transition.
2582  */
2583 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2584 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2585 
2586 int ib_register_event_handler  (struct ib_event_handler *event_handler);
2587 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2588 void ib_dispatch_event(struct ib_event *event);
2589 
2590 int ib_query_port(struct ib_device *device,
2591 		  u8 port_num, struct ib_port_attr *port_attr);
2592 
2593 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2594 					       u8 port_num);
2595 
2596 /**
2597  * rdma_cap_ib_switch - Check if the device is IB switch
2598  * @device: Device to check
2599  *
2600  * Device driver is responsible for setting is_switch bit on
2601  * in ib_device structure at init time.
2602  *
2603  * Return: true if the device is IB switch.
2604  */
2605 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2606 {
2607 	return device->is_switch;
2608 }
2609 
2610 /**
2611  * rdma_start_port - Return the first valid port number for the device
2612  * specified
2613  *
2614  * @device: Device to be checked
2615  *
2616  * Return start port number
2617  */
2618 static inline u8 rdma_start_port(const struct ib_device *device)
2619 {
2620 	return rdma_cap_ib_switch(device) ? 0 : 1;
2621 }
2622 
2623 /**
2624  * rdma_end_port - Return the last valid port number for the device
2625  * specified
2626  *
2627  * @device: Device to be checked
2628  *
2629  * Return last port number
2630  */
2631 static inline u8 rdma_end_port(const struct ib_device *device)
2632 {
2633 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2634 }
2635 
2636 static inline int rdma_is_port_valid(const struct ib_device *device,
2637 				     unsigned int port)
2638 {
2639 	return (port >= rdma_start_port(device) &&
2640 		port <= rdma_end_port(device));
2641 }
2642 
2643 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2644 {
2645 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2646 }
2647 
2648 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2649 {
2650 	return device->port_immutable[port_num].core_cap_flags &
2651 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2652 }
2653 
2654 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2655 {
2656 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2657 }
2658 
2659 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2660 {
2661 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2662 }
2663 
2664 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2665 {
2666 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2667 }
2668 
2669 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2670 {
2671 	return rdma_protocol_ib(device, port_num) ||
2672 		rdma_protocol_roce(device, port_num);
2673 }
2674 
2675 /**
2676  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2677  * Management Datagrams.
2678  * @device: Device to check
2679  * @port_num: Port number to check
2680  *
2681  * Management Datagrams (MAD) are a required part of the InfiniBand
2682  * specification and are supported on all InfiniBand devices.  A slightly
2683  * extended version are also supported on OPA interfaces.
2684  *
2685  * Return: true if the port supports sending/receiving of MAD packets.
2686  */
2687 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2688 {
2689 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2690 }
2691 
2692 /**
2693  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2694  * Management Datagrams.
2695  * @device: Device to check
2696  * @port_num: Port number to check
2697  *
2698  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2699  * datagrams with their own versions.  These OPA MADs share many but not all of
2700  * the characteristics of InfiniBand MADs.
2701  *
2702  * OPA MADs differ in the following ways:
2703  *
2704  *    1) MADs are variable size up to 2K
2705  *       IBTA defined MADs remain fixed at 256 bytes
2706  *    2) OPA SMPs must carry valid PKeys
2707  *    3) OPA SMP packets are a different format
2708  *
2709  * Return: true if the port supports OPA MAD packet formats.
2710  */
2711 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2712 {
2713 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2714 		== RDMA_CORE_CAP_OPA_MAD;
2715 }
2716 
2717 /**
2718  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2719  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2720  * @device: Device to check
2721  * @port_num: Port number to check
2722  *
2723  * Each InfiniBand node is required to provide a Subnet Management Agent
2724  * that the subnet manager can access.  Prior to the fabric being fully
2725  * configured by the subnet manager, the SMA is accessed via a well known
2726  * interface called the Subnet Management Interface (SMI).  This interface
2727  * uses directed route packets to communicate with the SM to get around the
2728  * chicken and egg problem of the SM needing to know what's on the fabric
2729  * in order to configure the fabric, and needing to configure the fabric in
2730  * order to send packets to the devices on the fabric.  These directed
2731  * route packets do not need the fabric fully configured in order to reach
2732  * their destination.  The SMI is the only method allowed to send
2733  * directed route packets on an InfiniBand fabric.
2734  *
2735  * Return: true if the port provides an SMI.
2736  */
2737 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2738 {
2739 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2740 }
2741 
2742 /**
2743  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2744  * Communication Manager.
2745  * @device: Device to check
2746  * @port_num: Port number to check
2747  *
2748  * The InfiniBand Communication Manager is one of many pre-defined General
2749  * Service Agents (GSA) that are accessed via the General Service
2750  * Interface (GSI).  It's role is to facilitate establishment of connections
2751  * between nodes as well as other management related tasks for established
2752  * connections.
2753  *
2754  * Return: true if the port supports an IB CM (this does not guarantee that
2755  * a CM is actually running however).
2756  */
2757 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2758 {
2759 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2760 }
2761 
2762 /**
2763  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2764  * Communication Manager.
2765  * @device: Device to check
2766  * @port_num: Port number to check
2767  *
2768  * Similar to above, but specific to iWARP connections which have a different
2769  * managment protocol than InfiniBand.
2770  *
2771  * Return: true if the port supports an iWARP CM (this does not guarantee that
2772  * a CM is actually running however).
2773  */
2774 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2775 {
2776 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2777 }
2778 
2779 /**
2780  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2781  * Subnet Administration.
2782  * @device: Device to check
2783  * @port_num: Port number to check
2784  *
2785  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2786  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2787  * fabrics, devices should resolve routes to other hosts by contacting the
2788  * SA to query the proper route.
2789  *
2790  * Return: true if the port should act as a client to the fabric Subnet
2791  * Administration interface.  This does not imply that the SA service is
2792  * running locally.
2793  */
2794 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2795 {
2796 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2797 }
2798 
2799 /**
2800  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2801  * Multicast.
2802  * @device: Device to check
2803  * @port_num: Port number to check
2804  *
2805  * InfiniBand multicast registration is more complex than normal IPv4 or
2806  * IPv6 multicast registration.  Each Host Channel Adapter must register
2807  * with the Subnet Manager when it wishes to join a multicast group.  It
2808  * should do so only once regardless of how many queue pairs it subscribes
2809  * to this group.  And it should leave the group only after all queue pairs
2810  * attached to the group have been detached.
2811  *
2812  * Return: true if the port must undertake the additional adminstrative
2813  * overhead of registering/unregistering with the SM and tracking of the
2814  * total number of queue pairs attached to the multicast group.
2815  */
2816 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2817 {
2818 	return rdma_cap_ib_sa(device, port_num);
2819 }
2820 
2821 /**
2822  * rdma_cap_af_ib - Check if the port of device has the capability
2823  * Native Infiniband Address.
2824  * @device: Device to check
2825  * @port_num: Port number to check
2826  *
2827  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2828  * GID.  RoCE uses a different mechanism, but still generates a GID via
2829  * a prescribed mechanism and port specific data.
2830  *
2831  * Return: true if the port uses a GID address to identify devices on the
2832  * network.
2833  */
2834 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2835 {
2836 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2837 }
2838 
2839 /**
2840  * rdma_cap_eth_ah - Check if the port of device has the capability
2841  * Ethernet Address Handle.
2842  * @device: Device to check
2843  * @port_num: Port number to check
2844  *
2845  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2846  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2847  * port.  Normally, packet headers are generated by the sending host
2848  * adapter, but when sending connectionless datagrams, we must manually
2849  * inject the proper headers for the fabric we are communicating over.
2850  *
2851  * Return: true if we are running as a RoCE port and must force the
2852  * addition of a Global Route Header built from our Ethernet Address
2853  * Handle into our header list for connectionless packets.
2854  */
2855 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2856 {
2857 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2858 }
2859 
2860 /**
2861  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2862  *
2863  * @device: Device
2864  * @port_num: Port number
2865  *
2866  * This MAD size includes the MAD headers and MAD payload.  No other headers
2867  * are included.
2868  *
2869  * Return the max MAD size required by the Port.  Will return 0 if the port
2870  * does not support MADs
2871  */
2872 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2873 {
2874 	return device->port_immutable[port_num].max_mad_size;
2875 }
2876 
2877 /**
2878  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2879  * @device: Device to check
2880  * @port_num: Port number to check
2881  *
2882  * RoCE GID table mechanism manages the various GIDs for a device.
2883  *
2884  * NOTE: if allocating the port's GID table has failed, this call will still
2885  * return true, but any RoCE GID table API will fail.
2886  *
2887  * Return: true if the port uses RoCE GID table mechanism in order to manage
2888  * its GIDs.
2889  */
2890 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2891 					   u8 port_num)
2892 {
2893 	return rdma_protocol_roce(device, port_num) &&
2894 		device->add_gid && device->del_gid;
2895 }
2896 
2897 /*
2898  * Check if the device supports READ W/ INVALIDATE.
2899  */
2900 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2901 {
2902 	/*
2903 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2904 	 * has support for it yet.
2905 	 */
2906 	return rdma_protocol_iwarp(dev, port_num);
2907 }
2908 
2909 int ib_query_gid(struct ib_device *device,
2910 		 u8 port_num, int index, union ib_gid *gid,
2911 		 struct ib_gid_attr *attr);
2912 
2913 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2914 			 int state);
2915 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2916 		     struct ifla_vf_info *info);
2917 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2918 		    struct ifla_vf_stats *stats);
2919 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2920 		   int type);
2921 
2922 int ib_query_pkey(struct ib_device *device,
2923 		  u8 port_num, u16 index, u16 *pkey);
2924 
2925 int ib_modify_device(struct ib_device *device,
2926 		     int device_modify_mask,
2927 		     struct ib_device_modify *device_modify);
2928 
2929 int ib_modify_port(struct ib_device *device,
2930 		   u8 port_num, int port_modify_mask,
2931 		   struct ib_port_modify *port_modify);
2932 
2933 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2934 		enum ib_gid_type gid_type, struct ifnet *ndev,
2935 		u8 *port_num, u16 *index);
2936 
2937 int ib_find_pkey(struct ib_device *device,
2938 		 u8 port_num, u16 pkey, u16 *index);
2939 
2940 enum ib_pd_flags {
2941 	/*
2942 	 * Create a memory registration for all memory in the system and place
2943 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2944 	 * ULPs to avoid the overhead of dynamic MRs.
2945 	 *
2946 	 * This flag is generally considered unsafe and must only be used in
2947 	 * extremly trusted environments.  Every use of it will log a warning
2948 	 * in the kernel log.
2949 	 */
2950 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
2951 };
2952 
2953 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2954 		const char *caller);
2955 #define ib_alloc_pd(device, flags) \
2956 	__ib_alloc_pd((device), (flags), __func__)
2957 
2958 /**
2959  * ib_dealloc_pd_user - Deallocate kernel/user PD
2960  * @pd: The protection domain
2961  * @udata: Valid user data or NULL for kernel objects
2962  */
2963 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
2964 
2965 /**
2966  * ib_dealloc_pd - Deallocate kernel PD
2967  * @pd: The protection domain
2968  *
2969  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
2970  */
2971 static inline void ib_dealloc_pd(struct ib_pd *pd)
2972 {
2973 	ib_dealloc_pd_user(pd, NULL);
2974 }
2975 
2976 enum rdma_create_ah_flags {
2977 	/* In a sleepable context */
2978 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
2979 };
2980 
2981 /**
2982  * ib_create_ah - Creates an address handle for the given address vector.
2983  * @pd: The protection domain associated with the address handle.
2984  * @ah_attr: The attributes of the address vector.
2985  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
2986  *
2987  * The address handle is used to reference a local or global destination
2988  * in all UD QP post sends.
2989  */
2990 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
2991 			   u32 flags);
2992 
2993 /**
2994  * ib_create_user_ah - Creates an address handle for the given address vector.
2995  * It resolves destination mac address for ah attribute of RoCE type.
2996  * @pd: The protection domain associated with the address handle.
2997  * @ah_attr: The attributes of the address vector.
2998  * @udata: pointer to user's input output buffer information need by
2999  *         provider driver.
3000  *
3001  * It returns 0 on success and returns appropriate error code on error.
3002  * The address handle is used to reference a local or global destination
3003  * in all UD QP post sends.
3004  */
3005 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
3006 				struct ib_ah_attr *ah_attr,
3007 				struct ib_udata *udata);
3008 
3009 /**
3010  * ib_init_ah_from_wc - Initializes address handle attributes from a
3011  *   work completion.
3012  * @device: Device on which the received message arrived.
3013  * @port_num: Port on which the received message arrived.
3014  * @wc: Work completion associated with the received message.
3015  * @grh: References the received global route header.  This parameter is
3016  *   ignored unless the work completion indicates that the GRH is valid.
3017  * @ah_attr: Returned attributes that can be used when creating an address
3018  *   handle for replying to the message.
3019  */
3020 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
3021 		       const struct ib_wc *wc, const struct ib_grh *grh,
3022 		       struct ib_ah_attr *ah_attr);
3023 
3024 /**
3025  * ib_create_ah_from_wc - Creates an address handle associated with the
3026  *   sender of the specified work completion.
3027  * @pd: The protection domain associated with the address handle.
3028  * @wc: Work completion information associated with a received message.
3029  * @grh: References the received global route header.  This parameter is
3030  *   ignored unless the work completion indicates that the GRH is valid.
3031  * @port_num: The outbound port number to associate with the address.
3032  *
3033  * The address handle is used to reference a local or global destination
3034  * in all UD QP post sends.
3035  */
3036 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3037 				   const struct ib_grh *grh, u8 port_num);
3038 
3039 /**
3040  * ib_modify_ah - Modifies the address vector associated with an address
3041  *   handle.
3042  * @ah: The address handle to modify.
3043  * @ah_attr: The new address vector attributes to associate with the
3044  *   address handle.
3045  */
3046 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3047 
3048 /**
3049  * ib_query_ah - Queries the address vector associated with an address
3050  *   handle.
3051  * @ah: The address handle to query.
3052  * @ah_attr: The address vector attributes associated with the address
3053  *   handle.
3054  */
3055 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
3056 
3057 enum rdma_destroy_ah_flags {
3058 	/* In a sleepable context */
3059 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3060 };
3061 
3062 /**
3063  * ib_destroy_ah_user - Destroys an address handle.
3064  * @ah: The address handle to destroy.
3065  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3066  * @udata: Valid user data or NULL for kernel objects
3067  */
3068 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3069 
3070 /**
3071  * rdma_destroy_ah - Destroys an kernel address handle.
3072  * @ah: The address handle to destroy.
3073  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3074  *
3075  * NOTE: for user ah use ib_destroy_ah_user with valid udata!
3076  */
3077 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags)
3078 {
3079 	return ib_destroy_ah_user(ah, flags, NULL);
3080 }
3081 
3082 /**
3083  * ib_create_srq - Creates a SRQ associated with the specified protection
3084  *   domain.
3085  * @pd: The protection domain associated with the SRQ.
3086  * @srq_init_attr: A list of initial attributes required to create the
3087  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3088  *   the actual capabilities of the created SRQ.
3089  *
3090  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3091  * requested size of the SRQ, and set to the actual values allocated
3092  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3093  * will always be at least as large as the requested values.
3094  */
3095 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3096 			     struct ib_srq_init_attr *srq_init_attr);
3097 
3098 /**
3099  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3100  * @srq: The SRQ to modify.
3101  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3102  *   the current values of selected SRQ attributes are returned.
3103  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3104  *   are being modified.
3105  *
3106  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3107  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3108  * the number of receives queued drops below the limit.
3109  */
3110 int ib_modify_srq(struct ib_srq *srq,
3111 		  struct ib_srq_attr *srq_attr,
3112 		  enum ib_srq_attr_mask srq_attr_mask);
3113 
3114 /**
3115  * ib_query_srq - Returns the attribute list and current values for the
3116  *   specified SRQ.
3117  * @srq: The SRQ to query.
3118  * @srq_attr: The attributes of the specified SRQ.
3119  */
3120 int ib_query_srq(struct ib_srq *srq,
3121 		 struct ib_srq_attr *srq_attr);
3122 
3123 /**
3124  * ib_destroy_srq_user - Destroys the specified SRQ.
3125  * @srq: The SRQ to destroy.
3126  * @udata: Valid user data or NULL for kernel objects
3127  */
3128 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3129 
3130 /**
3131  * ib_destroy_srq - Destroys the specified kernel SRQ.
3132  * @srq: The SRQ to destroy.
3133  *
3134  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3135  */
3136 static inline int ib_destroy_srq(struct ib_srq *srq)
3137 {
3138 	return ib_destroy_srq_user(srq, NULL);
3139 }
3140 
3141 /**
3142  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3143  * @srq: The SRQ to post the work request on.
3144  * @recv_wr: A list of work requests to post on the receive queue.
3145  * @bad_recv_wr: On an immediate failure, this parameter will reference
3146  *   the work request that failed to be posted on the QP.
3147  */
3148 static inline int ib_post_srq_recv(struct ib_srq *srq,
3149 				   const struct ib_recv_wr *recv_wr,
3150 				   const struct ib_recv_wr **bad_recv_wr)
3151 {
3152 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3153 }
3154 
3155 /**
3156  * ib_create_qp - Creates a QP associated with the specified protection
3157  *   domain.
3158  * @pd: The protection domain associated with the QP.
3159  * @qp_init_attr: A list of initial attributes required to create the
3160  *   QP.  If QP creation succeeds, then the attributes are updated to
3161  *   the actual capabilities of the created QP.
3162  */
3163 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3164 			   struct ib_qp_init_attr *qp_init_attr);
3165 
3166 /**
3167  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3168  * @qp: The QP to modify.
3169  * @attr: On input, specifies the QP attributes to modify.  On output,
3170  *   the current values of selected QP attributes are returned.
3171  * @attr_mask: A bit-mask used to specify which attributes of the QP
3172  *   are being modified.
3173  * @udata: pointer to user's input output buffer information
3174  *   are being modified.
3175  * It returns 0 on success and returns appropriate error code on error.
3176  */
3177 int ib_modify_qp_with_udata(struct ib_qp *qp,
3178 			    struct ib_qp_attr *attr,
3179 			    int attr_mask,
3180 			    struct ib_udata *udata);
3181 
3182 /**
3183  * ib_modify_qp - Modifies the attributes for the specified QP and then
3184  *   transitions the QP to the given state.
3185  * @qp: The QP to modify.
3186  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3187  *   the current values of selected QP attributes are returned.
3188  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3189  *   are being modified.
3190  */
3191 int ib_modify_qp(struct ib_qp *qp,
3192 		 struct ib_qp_attr *qp_attr,
3193 		 int qp_attr_mask);
3194 
3195 /**
3196  * ib_query_qp - Returns the attribute list and current values for the
3197  *   specified QP.
3198  * @qp: The QP to query.
3199  * @qp_attr: The attributes of the specified QP.
3200  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3201  * @qp_init_attr: Additional attributes of the selected QP.
3202  *
3203  * The qp_attr_mask may be used to limit the query to gathering only the
3204  * selected attributes.
3205  */
3206 int ib_query_qp(struct ib_qp *qp,
3207 		struct ib_qp_attr *qp_attr,
3208 		int qp_attr_mask,
3209 		struct ib_qp_init_attr *qp_init_attr);
3210 
3211 /**
3212  * ib_destroy_qp - Destroys the specified QP.
3213  * @qp: The QP to destroy.
3214  * @udata: Valid udata or NULL for kernel objects
3215  */
3216 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3217 
3218 /**
3219  * ib_destroy_qp - Destroys the specified kernel QP.
3220  * @qp: The QP to destroy.
3221  *
3222  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3223  */
3224 static inline int ib_destroy_qp(struct ib_qp *qp)
3225 {
3226 	return ib_destroy_qp_user(qp, NULL);
3227 }
3228 
3229 /**
3230  * ib_open_qp - Obtain a reference to an existing sharable QP.
3231  * @xrcd - XRC domain
3232  * @qp_open_attr: Attributes identifying the QP to open.
3233  *
3234  * Returns a reference to a sharable QP.
3235  */
3236 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3237 			 struct ib_qp_open_attr *qp_open_attr);
3238 
3239 /**
3240  * ib_close_qp - Release an external reference to a QP.
3241  * @qp: The QP handle to release
3242  *
3243  * The opened QP handle is released by the caller.  The underlying
3244  * shared QP is not destroyed until all internal references are released.
3245  */
3246 int ib_close_qp(struct ib_qp *qp);
3247 
3248 /**
3249  * ib_post_send - Posts a list of work requests to the send queue of
3250  *   the specified QP.
3251  * @qp: The QP to post the work request on.
3252  * @send_wr: A list of work requests to post on the send queue.
3253  * @bad_send_wr: On an immediate failure, this parameter will reference
3254  *   the work request that failed to be posted on the QP.
3255  *
3256  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3257  * error is returned, the QP state shall not be affected,
3258  * ib_post_send() will return an immediate error after queueing any
3259  * earlier work requests in the list.
3260  */
3261 static inline int ib_post_send(struct ib_qp *qp,
3262 			       const struct ib_send_wr *send_wr,
3263 			       const struct ib_send_wr **bad_send_wr)
3264 {
3265 	return qp->device->post_send(qp, send_wr, bad_send_wr);
3266 }
3267 
3268 /**
3269  * ib_post_recv - Posts a list of work requests to the receive queue of
3270  *   the specified QP.
3271  * @qp: The QP to post the work request on.
3272  * @recv_wr: A list of work requests to post on the receive queue.
3273  * @bad_recv_wr: On an immediate failure, this parameter will reference
3274  *   the work request that failed to be posted on the QP.
3275  */
3276 static inline int ib_post_recv(struct ib_qp *qp,
3277 			       const struct ib_recv_wr *recv_wr,
3278 			       const struct ib_recv_wr **bad_recv_wr)
3279 {
3280 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3281 }
3282 
3283 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3284 				 int nr_cqe, int comp_vector,
3285 				 enum ib_poll_context poll_ctx,
3286 				 const char *caller, struct ib_udata *udata);
3287 
3288 /**
3289  * ib_alloc_cq_user: Allocate kernel/user CQ
3290  * @dev: The IB device
3291  * @private: Private data attached to the CQE
3292  * @nr_cqe: Number of CQEs in the CQ
3293  * @comp_vector: Completion vector used for the IRQs
3294  * @poll_ctx: Context used for polling the CQ
3295  * @udata: Valid user data or NULL for kernel objects
3296  */
3297 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3298 					     void *private, int nr_cqe,
3299 					     int comp_vector,
3300 					     enum ib_poll_context poll_ctx,
3301 					     struct ib_udata *udata)
3302 {
3303 	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3304 				  "ibcore", udata);
3305 }
3306 
3307 /**
3308  * ib_alloc_cq: Allocate kernel CQ
3309  * @dev: The IB device
3310  * @private: Private data attached to the CQE
3311  * @nr_cqe: Number of CQEs in the CQ
3312  * @comp_vector: Completion vector used for the IRQs
3313  * @poll_ctx: Context used for polling the CQ
3314  *
3315  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3316  */
3317 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3318 					int nr_cqe, int comp_vector,
3319 					enum ib_poll_context poll_ctx)
3320 {
3321 	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3322 				NULL);
3323 }
3324 
3325 /**
3326  * ib_free_cq_user - Free kernel/user CQ
3327  * @cq: The CQ to free
3328  * @udata: Valid user data or NULL for kernel objects
3329  */
3330 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3331 
3332 /**
3333  * ib_free_cq - Free kernel CQ
3334  * @cq: The CQ to free
3335  *
3336  * NOTE: for user cq use ib_free_cq_user with valid udata!
3337  */
3338 static inline void ib_free_cq(struct ib_cq *cq)
3339 {
3340 	ib_free_cq_user(cq, NULL);
3341 }
3342 
3343 /**
3344  * ib_create_cq - Creates a CQ on the specified device.
3345  * @device: The device on which to create the CQ.
3346  * @comp_handler: A user-specified callback that is invoked when a
3347  *   completion event occurs on the CQ.
3348  * @event_handler: A user-specified callback that is invoked when an
3349  *   asynchronous event not associated with a completion occurs on the CQ.
3350  * @cq_context: Context associated with the CQ returned to the user via
3351  *   the associated completion and event handlers.
3352  * @cq_attr: The attributes the CQ should be created upon.
3353  *
3354  * Users can examine the cq structure to determine the actual CQ size.
3355  */
3356 struct ib_cq *__ib_create_cq(struct ib_device *device,
3357 			     ib_comp_handler comp_handler,
3358 			     void (*event_handler)(struct ib_event *, void *),
3359 			     void *cq_context,
3360 			     const struct ib_cq_init_attr *cq_attr,
3361 			     const char *caller);
3362 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3363 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore")
3364 
3365 /**
3366  * ib_resize_cq - Modifies the capacity of the CQ.
3367  * @cq: The CQ to resize.
3368  * @cqe: The minimum size of the CQ.
3369  *
3370  * Users can examine the cq structure to determine the actual CQ size.
3371  */
3372 int ib_resize_cq(struct ib_cq *cq, int cqe);
3373 
3374 /**
3375  * ib_modify_cq - Modifies moderation params of the CQ
3376  * @cq: The CQ to modify.
3377  * @cq_count: number of CQEs that will trigger an event
3378  * @cq_period: max period of time in usec before triggering an event
3379  *
3380  */
3381 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3382 
3383 /**
3384  * ib_destroy_cq_user - Destroys the specified CQ.
3385  * @cq: The CQ to destroy.
3386  * @udata: Valid user data or NULL for kernel objects
3387  */
3388 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3389 
3390 /**
3391  * ib_destroy_cq - Destroys the specified kernel CQ.
3392  * @cq: The CQ to destroy.
3393  *
3394  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3395  */
3396 static inline void ib_destroy_cq(struct ib_cq *cq)
3397 {
3398 	ib_destroy_cq_user(cq, NULL);
3399 }
3400 
3401 /**
3402  * ib_poll_cq - poll a CQ for completion(s)
3403  * @cq:the CQ being polled
3404  * @num_entries:maximum number of completions to return
3405  * @wc:array of at least @num_entries &struct ib_wc where completions
3406  *   will be returned
3407  *
3408  * Poll a CQ for (possibly multiple) completions.  If the return value
3409  * is < 0, an error occurred.  If the return value is >= 0, it is the
3410  * number of completions returned.  If the return value is
3411  * non-negative and < num_entries, then the CQ was emptied.
3412  */
3413 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3414 			     struct ib_wc *wc)
3415 {
3416 	return cq->device->poll_cq(cq, num_entries, wc);
3417 }
3418 
3419 /**
3420  * ib_peek_cq - Returns the number of unreaped completions currently
3421  *   on the specified CQ.
3422  * @cq: The CQ to peek.
3423  * @wc_cnt: A minimum number of unreaped completions to check for.
3424  *
3425  * If the number of unreaped completions is greater than or equal to wc_cnt,
3426  * this function returns wc_cnt, otherwise, it returns the actual number of
3427  * unreaped completions.
3428  */
3429 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3430 
3431 /**
3432  * ib_req_notify_cq - Request completion notification on a CQ.
3433  * @cq: The CQ to generate an event for.
3434  * @flags:
3435  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3436  *   to request an event on the next solicited event or next work
3437  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3438  *   may also be |ed in to request a hint about missed events, as
3439  *   described below.
3440  *
3441  * Return Value:
3442  *    < 0 means an error occurred while requesting notification
3443  *   == 0 means notification was requested successfully, and if
3444  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3445  *        were missed and it is safe to wait for another event.  In
3446  *        this case is it guaranteed that any work completions added
3447  *        to the CQ since the last CQ poll will trigger a completion
3448  *        notification event.
3449  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3450  *        in.  It means that the consumer must poll the CQ again to
3451  *        make sure it is empty to avoid missing an event because of a
3452  *        race between requesting notification and an entry being
3453  *        added to the CQ.  This return value means it is possible
3454  *        (but not guaranteed) that a work completion has been added
3455  *        to the CQ since the last poll without triggering a
3456  *        completion notification event.
3457  */
3458 static inline int ib_req_notify_cq(struct ib_cq *cq,
3459 				   enum ib_cq_notify_flags flags)
3460 {
3461 	return cq->device->req_notify_cq(cq, flags);
3462 }
3463 
3464 /**
3465  * ib_req_ncomp_notif - Request completion notification when there are
3466  *   at least the specified number of unreaped completions on the CQ.
3467  * @cq: The CQ to generate an event for.
3468  * @wc_cnt: The number of unreaped completions that should be on the
3469  *   CQ before an event is generated.
3470  */
3471 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3472 {
3473 	return cq->device->req_ncomp_notif ?
3474 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3475 		-ENOSYS;
3476 }
3477 
3478 /**
3479  * ib_dma_mapping_error - check a DMA addr for error
3480  * @dev: The device for which the dma_addr was created
3481  * @dma_addr: The DMA address to check
3482  */
3483 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3484 {
3485 	if (dev->dma_ops)
3486 		return dev->dma_ops->mapping_error(dev, dma_addr);
3487 	return dma_mapping_error(dev->dma_device, dma_addr);
3488 }
3489 
3490 /**
3491  * ib_dma_map_single - Map a kernel virtual address to DMA address
3492  * @dev: The device for which the dma_addr is to be created
3493  * @cpu_addr: The kernel virtual address
3494  * @size: The size of the region in bytes
3495  * @direction: The direction of the DMA
3496  */
3497 static inline u64 ib_dma_map_single(struct ib_device *dev,
3498 				    void *cpu_addr, size_t size,
3499 				    enum dma_data_direction direction)
3500 {
3501 	if (dev->dma_ops)
3502 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3503 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3504 }
3505 
3506 /**
3507  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3508  * @dev: The device for which the DMA address was created
3509  * @addr: The DMA address
3510  * @size: The size of the region in bytes
3511  * @direction: The direction of the DMA
3512  */
3513 static inline void ib_dma_unmap_single(struct ib_device *dev,
3514 				       u64 addr, size_t size,
3515 				       enum dma_data_direction direction)
3516 {
3517 	if (dev->dma_ops)
3518 		dev->dma_ops->unmap_single(dev, addr, size, direction);
3519 	else
3520 		dma_unmap_single(dev->dma_device, addr, size, direction);
3521 }
3522 
3523 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3524 					  void *cpu_addr, size_t size,
3525 					  enum dma_data_direction direction,
3526 					  struct dma_attrs *dma_attrs)
3527 {
3528 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3529 				    direction, dma_attrs);
3530 }
3531 
3532 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3533 					     u64 addr, size_t size,
3534 					     enum dma_data_direction direction,
3535 					     struct dma_attrs *dma_attrs)
3536 {
3537 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
3538 				      direction, dma_attrs);
3539 }
3540 
3541 /**
3542  * ib_dma_map_page - Map a physical page to DMA address
3543  * @dev: The device for which the dma_addr is to be created
3544  * @page: The page to be mapped
3545  * @offset: The offset within the page
3546  * @size: The size of the region in bytes
3547  * @direction: The direction of the DMA
3548  */
3549 static inline u64 ib_dma_map_page(struct ib_device *dev,
3550 				  struct page *page,
3551 				  unsigned long offset,
3552 				  size_t size,
3553 					 enum dma_data_direction direction)
3554 {
3555 	if (dev->dma_ops)
3556 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
3557 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3558 }
3559 
3560 /**
3561  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3562  * @dev: The device for which the DMA address was created
3563  * @addr: The DMA address
3564  * @size: The size of the region in bytes
3565  * @direction: The direction of the DMA
3566  */
3567 static inline void ib_dma_unmap_page(struct ib_device *dev,
3568 				     u64 addr, size_t size,
3569 				     enum dma_data_direction direction)
3570 {
3571 	if (dev->dma_ops)
3572 		dev->dma_ops->unmap_page(dev, addr, size, direction);
3573 	else
3574 		dma_unmap_page(dev->dma_device, addr, size, direction);
3575 }
3576 
3577 /**
3578  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3579  * @dev: The device for which the DMA addresses are to be created
3580  * @sg: The array of scatter/gather entries
3581  * @nents: The number of scatter/gather entries
3582  * @direction: The direction of the DMA
3583  */
3584 static inline int ib_dma_map_sg(struct ib_device *dev,
3585 				struct scatterlist *sg, int nents,
3586 				enum dma_data_direction direction)
3587 {
3588 	if (dev->dma_ops)
3589 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
3590 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3591 }
3592 
3593 /**
3594  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3595  * @dev: The device for which the DMA addresses were created
3596  * @sg: The array of scatter/gather entries
3597  * @nents: The number of scatter/gather entries
3598  * @direction: The direction of the DMA
3599  */
3600 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3601 				   struct scatterlist *sg, int nents,
3602 				   enum dma_data_direction direction)
3603 {
3604 	if (dev->dma_ops)
3605 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3606 	else
3607 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
3608 }
3609 
3610 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3611 				      struct scatterlist *sg, int nents,
3612 				      enum dma_data_direction direction,
3613 				      struct dma_attrs *dma_attrs)
3614 {
3615 	if (dev->dma_ops)
3616 		return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3617 						  dma_attrs);
3618 	else
3619 		return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3620 					dma_attrs);
3621 }
3622 
3623 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3624 					 struct scatterlist *sg, int nents,
3625 					 enum dma_data_direction direction,
3626 					 struct dma_attrs *dma_attrs)
3627 {
3628 	if (dev->dma_ops)
3629 		return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3630 						  dma_attrs);
3631 	else
3632 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3633 				   dma_attrs);
3634 }
3635 /**
3636  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3637  * @dev: The device for which the DMA addresses were created
3638  * @sg: The scatter/gather entry
3639  *
3640  * Note: this function is obsolete. To do: change all occurrences of
3641  * ib_sg_dma_address() into sg_dma_address().
3642  */
3643 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3644 				    struct scatterlist *sg)
3645 {
3646 	return sg_dma_address(sg);
3647 }
3648 
3649 /**
3650  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3651  * @dev: The device for which the DMA addresses were created
3652  * @sg: The scatter/gather entry
3653  *
3654  * Note: this function is obsolete. To do: change all occurrences of
3655  * ib_sg_dma_len() into sg_dma_len().
3656  */
3657 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3658 					 struct scatterlist *sg)
3659 {
3660 	return sg_dma_len(sg);
3661 }
3662 
3663 /**
3664  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3665  * @dev: The device for which the DMA address was created
3666  * @addr: The DMA address
3667  * @size: The size of the region in bytes
3668  * @dir: The direction of the DMA
3669  */
3670 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3671 					      u64 addr,
3672 					      size_t size,
3673 					      enum dma_data_direction dir)
3674 {
3675 	if (dev->dma_ops)
3676 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3677 	else
3678 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3679 }
3680 
3681 /**
3682  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3683  * @dev: The device for which the DMA address was created
3684  * @addr: The DMA address
3685  * @size: The size of the region in bytes
3686  * @dir: The direction of the DMA
3687  */
3688 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3689 						 u64 addr,
3690 						 size_t size,
3691 						 enum dma_data_direction dir)
3692 {
3693 	if (dev->dma_ops)
3694 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3695 	else
3696 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3697 }
3698 
3699 /**
3700  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3701  * @dev: The device for which the DMA address is requested
3702  * @size: The size of the region to allocate in bytes
3703  * @dma_handle: A pointer for returning the DMA address of the region
3704  * @flag: memory allocator flags
3705  */
3706 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3707 					   size_t size,
3708 					   u64 *dma_handle,
3709 					   gfp_t flag)
3710 {
3711 	if (dev->dma_ops)
3712 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3713 	else {
3714 		dma_addr_t handle;
3715 		void *ret;
3716 
3717 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3718 		*dma_handle = handle;
3719 		return ret;
3720 	}
3721 }
3722 
3723 /**
3724  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3725  * @dev: The device for which the DMA addresses were allocated
3726  * @size: The size of the region
3727  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3728  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3729  */
3730 static inline void ib_dma_free_coherent(struct ib_device *dev,
3731 					size_t size, void *cpu_addr,
3732 					u64 dma_handle)
3733 {
3734 	if (dev->dma_ops)
3735 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3736 	else
3737 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3738 }
3739 
3740 /**
3741  * ib_dereg_mr - Deregisters a memory region and removes it from the
3742  *   HCA translation table.
3743  * @mr: The memory region to deregister.
3744  *
3745  * This function can fail, if the memory region has memory windows bound to it.
3746  */
3747 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
3748 
3749 /**
3750  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
3751  *   HCA translation table.
3752  * @mr: The memory region to deregister.
3753  *
3754  * This function can fail, if the memory region has memory windows bound to it.
3755  *
3756  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
3757  */
3758 static inline int ib_dereg_mr(struct ib_mr *mr)
3759 {
3760 	return ib_dereg_mr_user(mr, NULL);
3761 }
3762 
3763 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
3764 			       u32 max_num_sg, struct ib_udata *udata);
3765 
3766 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3767 					enum ib_mr_type mr_type, u32 max_num_sg)
3768 {
3769 	return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
3770 }
3771 
3772 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
3773 				    u32 max_num_data_sg,
3774 				    u32 max_num_meta_sg);
3775 
3776 /**
3777  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3778  *   R_Key and L_Key.
3779  * @mr - struct ib_mr pointer to be updated.
3780  * @newkey - new key to be used.
3781  */
3782 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3783 {
3784 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3785 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3786 }
3787 
3788 /**
3789  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3790  * for calculating a new rkey for type 2 memory windows.
3791  * @rkey - the rkey to increment.
3792  */
3793 static inline u32 ib_inc_rkey(u32 rkey)
3794 {
3795 	const u32 mask = 0x000000ff;
3796 	return ((rkey + 1) & mask) | (rkey & ~mask);
3797 }
3798 
3799 /**
3800  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3801  * @pd: The protection domain associated with the unmapped region.
3802  * @mr_access_flags: Specifies the memory access rights.
3803  * @fmr_attr: Attributes of the unmapped region.
3804  *
3805  * A fast memory region must be mapped before it can be used as part of
3806  * a work request.
3807  */
3808 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3809 			    int mr_access_flags,
3810 			    struct ib_fmr_attr *fmr_attr);
3811 
3812 /**
3813  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3814  * @fmr: The fast memory region to associate with the pages.
3815  * @page_list: An array of physical pages to map to the fast memory region.
3816  * @list_len: The number of pages in page_list.
3817  * @iova: The I/O virtual address to use with the mapped region.
3818  */
3819 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3820 				  u64 *page_list, int list_len,
3821 				  u64 iova)
3822 {
3823 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3824 }
3825 
3826 /**
3827  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3828  * @fmr_list: A linked list of fast memory regions to unmap.
3829  */
3830 int ib_unmap_fmr(struct list_head *fmr_list);
3831 
3832 /**
3833  * ib_dealloc_fmr - Deallocates a fast memory region.
3834  * @fmr: The fast memory region to deallocate.
3835  */
3836 int ib_dealloc_fmr(struct ib_fmr *fmr);
3837 
3838 /**
3839  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3840  * @qp: QP to attach to the multicast group.  The QP must be type
3841  *   IB_QPT_UD.
3842  * @gid: Multicast group GID.
3843  * @lid: Multicast group LID in host byte order.
3844  *
3845  * In order to send and receive multicast packets, subnet
3846  * administration must have created the multicast group and configured
3847  * the fabric appropriately.  The port associated with the specified
3848  * QP must also be a member of the multicast group.
3849  */
3850 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3851 
3852 /**
3853  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3854  * @qp: QP to detach from the multicast group.
3855  * @gid: Multicast group GID.
3856  * @lid: Multicast group LID in host byte order.
3857  */
3858 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3859 
3860 /**
3861  * ib_alloc_xrcd - Allocates an XRC domain.
3862  * @device: The device on which to allocate the XRC domain.
3863  * @caller: Module name for kernel consumers
3864  */
3865 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3866 #define ib_alloc_xrcd(device) \
3867 	__ib_alloc_xrcd((device), "ibcore")
3868 
3869 /**
3870  * ib_dealloc_xrcd - Deallocates an XRC domain.
3871  * @xrcd: The XRC domain to deallocate.
3872  * @udata: Valid user data or NULL for kernel object
3873  */
3874 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
3875 
3876 static inline int ib_check_mr_access(int flags)
3877 {
3878 	/*
3879 	 * Local write permission is required if remote write or
3880 	 * remote atomic permission is also requested.
3881 	 */
3882 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3883 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3884 		return -EINVAL;
3885 
3886 	if (flags & ~IB_ACCESS_SUPPORTED)
3887 		return -EINVAL;
3888 
3889 	return 0;
3890 }
3891 
3892 static inline bool ib_access_writable(int access_flags)
3893 {
3894 	/*
3895 	 * We have writable memory backing the MR if any of the following
3896 	 * access flags are set.  "Local write" and "remote write" obviously
3897 	 * require write access.  "Remote atomic" can do things like fetch and
3898 	 * add, which will modify memory, and "MW bind" can change permissions
3899 	 * by binding a window.
3900 	 */
3901 	return access_flags &
3902 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
3903 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3904 }
3905 
3906 /**
3907  * ib_check_mr_status: lightweight check of MR status.
3908  *     This routine may provide status checks on a selected
3909  *     ib_mr. first use is for signature status check.
3910  *
3911  * @mr: A memory region.
3912  * @check_mask: Bitmask of which checks to perform from
3913  *     ib_mr_status_check enumeration.
3914  * @mr_status: The container of relevant status checks.
3915  *     failed checks will be indicated in the status bitmask
3916  *     and the relevant info shall be in the error item.
3917  */
3918 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3919 		       struct ib_mr_status *mr_status);
3920 
3921 struct ifnet *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3922 					    u16 pkey, const union ib_gid *gid,
3923 					    const struct sockaddr *addr);
3924 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3925 			   struct ib_wq_init_attr *init_attr);
3926 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
3927 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3928 		 u32 wq_attr_mask);
3929 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3930 						 struct ib_rwq_ind_table_init_attr*
3931 						 wq_ind_table_init_attr);
3932 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3933 
3934 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3935 		 unsigned int *sg_offset, unsigned int page_size);
3936 
3937 static inline int
3938 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3939 		  unsigned int *sg_offset, unsigned int page_size)
3940 {
3941 	int n;
3942 
3943 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3944 	mr->iova = 0;
3945 
3946 	return n;
3947 }
3948 
3949 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3950 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3951 
3952 void ib_drain_rq(struct ib_qp *qp);
3953 void ib_drain_sq(struct ib_qp *qp);
3954 void ib_drain_qp(struct ib_qp *qp);
3955 
3956 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
3957 
3958 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
3959 
3960 int ib_resolve_eth_dmac(struct ib_device *device,
3961 			struct ib_ah_attr *ah_attr);
3962 #endif /* IB_VERBS_H */
3963