1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 51 #include <asm/atomic.h> 52 #include <asm/uaccess.h> 53 #include <linux/rbtree.h> 54 #include <linux/mutex.h> 55 56 union ib_gid { 57 u8 raw[16]; 58 struct { 59 __be64 subnet_prefix; 60 __be64 interface_id; 61 } global; 62 }; 63 64 enum rdma_node_type { 65 /* IB values map to NodeInfo:NodeType. */ 66 RDMA_NODE_IB_CA = 1, 67 RDMA_NODE_IB_SWITCH, 68 RDMA_NODE_IB_ROUTER, 69 RDMA_NODE_RNIC 70 }; 71 72 enum rdma_transport_type { 73 RDMA_TRANSPORT_IB, 74 RDMA_TRANSPORT_IWARP 75 }; 76 77 enum rdma_transport_type 78 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 79 80 enum rdma_link_layer { 81 IB_LINK_LAYER_UNSPECIFIED, 82 IB_LINK_LAYER_INFINIBAND, 83 IB_LINK_LAYER_ETHERNET, 84 }; 85 86 enum ib_device_cap_flags { 87 IB_DEVICE_RESIZE_MAX_WR = 1, 88 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 89 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 90 IB_DEVICE_RAW_MULTI = (1<<3), 91 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 92 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 93 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 94 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 95 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 96 IB_DEVICE_INIT_TYPE = (1<<9), 97 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 98 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 99 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 100 IB_DEVICE_SRQ_RESIZE = (1<<13), 101 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 102 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 103 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 104 IB_DEVICE_MEM_WINDOW = (1<<17), 105 /* 106 * Devices should set IB_DEVICE_UD_IP_SUM if they support 107 * insertion of UDP and TCP checksum on outgoing UD IPoIB 108 * messages and can verify the validity of checksum for 109 * incoming messages. Setting this flag implies that the 110 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 111 */ 112 IB_DEVICE_UD_IP_CSUM = (1<<18), 113 IB_DEVICE_UD_TSO = (1<<19), 114 IB_DEVICE_XRC = (1<<20), 115 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 116 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 117 }; 118 119 enum ib_atomic_cap { 120 IB_ATOMIC_NONE, 121 IB_ATOMIC_HCA, 122 IB_ATOMIC_GLOB 123 }; 124 125 struct ib_device_attr { 126 u64 fw_ver; 127 __be64 sys_image_guid; 128 u64 max_mr_size; 129 u64 page_size_cap; 130 u32 vendor_id; 131 u32 vendor_part_id; 132 u32 hw_ver; 133 int max_qp; 134 int max_qp_wr; 135 int device_cap_flags; 136 int max_sge; 137 int max_sge_rd; 138 int max_cq; 139 int max_cqe; 140 int max_mr; 141 int max_pd; 142 int max_qp_rd_atom; 143 int max_ee_rd_atom; 144 int max_res_rd_atom; 145 int max_qp_init_rd_atom; 146 int max_ee_init_rd_atom; 147 enum ib_atomic_cap atomic_cap; 148 enum ib_atomic_cap masked_atomic_cap; 149 int max_ee; 150 int max_rdd; 151 int max_mw; 152 int max_raw_ipv6_qp; 153 int max_raw_ethy_qp; 154 int max_mcast_grp; 155 int max_mcast_qp_attach; 156 int max_total_mcast_qp_attach; 157 int max_ah; 158 int max_fmr; 159 int max_map_per_fmr; 160 int max_srq; 161 int max_srq_wr; 162 int max_srq_sge; 163 unsigned int max_fast_reg_page_list_len; 164 u16 max_pkeys; 165 u8 local_ca_ack_delay; 166 }; 167 168 enum ib_mtu { 169 IB_MTU_256 = 1, 170 IB_MTU_512 = 2, 171 IB_MTU_1024 = 3, 172 IB_MTU_2048 = 4, 173 IB_MTU_4096 = 5 174 }; 175 176 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 177 { 178 switch (mtu) { 179 case IB_MTU_256: return 256; 180 case IB_MTU_512: return 512; 181 case IB_MTU_1024: return 1024; 182 case IB_MTU_2048: return 2048; 183 case IB_MTU_4096: return 4096; 184 default: return -1; 185 } 186 } 187 188 enum ib_port_state { 189 IB_PORT_NOP = 0, 190 IB_PORT_DOWN = 1, 191 IB_PORT_INIT = 2, 192 IB_PORT_ARMED = 3, 193 IB_PORT_ACTIVE = 4, 194 IB_PORT_ACTIVE_DEFER = 5 195 }; 196 197 enum ib_port_cap_flags { 198 IB_PORT_SM = 1 << 1, 199 IB_PORT_NOTICE_SUP = 1 << 2, 200 IB_PORT_TRAP_SUP = 1 << 3, 201 IB_PORT_OPT_IPD_SUP = 1 << 4, 202 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 203 IB_PORT_SL_MAP_SUP = 1 << 6, 204 IB_PORT_MKEY_NVRAM = 1 << 7, 205 IB_PORT_PKEY_NVRAM = 1 << 8, 206 IB_PORT_LED_INFO_SUP = 1 << 9, 207 IB_PORT_SM_DISABLED = 1 << 10, 208 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 209 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 210 IB_PORT_CM_SUP = 1 << 16, 211 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 212 IB_PORT_REINIT_SUP = 1 << 18, 213 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 214 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 215 IB_PORT_DR_NOTICE_SUP = 1 << 21, 216 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 217 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 218 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 219 IB_PORT_CLIENT_REG_SUP = 1 << 25 220 }; 221 222 enum ib_port_width { 223 IB_WIDTH_1X = 1, 224 IB_WIDTH_4X = 2, 225 IB_WIDTH_8X = 4, 226 IB_WIDTH_12X = 8 227 }; 228 229 static inline int ib_width_enum_to_int(enum ib_port_width width) 230 { 231 switch (width) { 232 case IB_WIDTH_1X: return 1; 233 case IB_WIDTH_4X: return 4; 234 case IB_WIDTH_8X: return 8; 235 case IB_WIDTH_12X: return 12; 236 default: return -1; 237 } 238 } 239 240 struct ib_protocol_stats { 241 /* TBD... */ 242 }; 243 244 struct iw_protocol_stats { 245 u64 ipInReceives; 246 u64 ipInHdrErrors; 247 u64 ipInTooBigErrors; 248 u64 ipInNoRoutes; 249 u64 ipInAddrErrors; 250 u64 ipInUnknownProtos; 251 u64 ipInTruncatedPkts; 252 u64 ipInDiscards; 253 u64 ipInDelivers; 254 u64 ipOutForwDatagrams; 255 u64 ipOutRequests; 256 u64 ipOutDiscards; 257 u64 ipOutNoRoutes; 258 u64 ipReasmTimeout; 259 u64 ipReasmReqds; 260 u64 ipReasmOKs; 261 u64 ipReasmFails; 262 u64 ipFragOKs; 263 u64 ipFragFails; 264 u64 ipFragCreates; 265 u64 ipInMcastPkts; 266 u64 ipOutMcastPkts; 267 u64 ipInBcastPkts; 268 u64 ipOutBcastPkts; 269 270 u64 tcpRtoAlgorithm; 271 u64 tcpRtoMin; 272 u64 tcpRtoMax; 273 u64 tcpMaxConn; 274 u64 tcpActiveOpens; 275 u64 tcpPassiveOpens; 276 u64 tcpAttemptFails; 277 u64 tcpEstabResets; 278 u64 tcpCurrEstab; 279 u64 tcpInSegs; 280 u64 tcpOutSegs; 281 u64 tcpRetransSegs; 282 u64 tcpInErrs; 283 u64 tcpOutRsts; 284 }; 285 286 union rdma_protocol_stats { 287 struct ib_protocol_stats ib; 288 struct iw_protocol_stats iw; 289 }; 290 291 struct ib_port_attr { 292 enum ib_port_state state; 293 enum ib_mtu max_mtu; 294 enum ib_mtu active_mtu; 295 int gid_tbl_len; 296 u32 port_cap_flags; 297 u32 max_msg_sz; 298 u32 bad_pkey_cntr; 299 u32 qkey_viol_cntr; 300 u16 pkey_tbl_len; 301 u16 lid; 302 u16 sm_lid; 303 u8 lmc; 304 u8 max_vl_num; 305 u8 sm_sl; 306 u8 subnet_timeout; 307 u8 init_type_reply; 308 u8 active_width; 309 u8 active_speed; 310 u8 phys_state; 311 enum rdma_link_layer link_layer; 312 }; 313 314 enum ib_device_modify_flags { 315 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 316 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 317 }; 318 319 struct ib_device_modify { 320 u64 sys_image_guid; 321 char node_desc[64]; 322 }; 323 324 enum ib_port_modify_flags { 325 IB_PORT_SHUTDOWN = 1, 326 IB_PORT_INIT_TYPE = (1<<2), 327 IB_PORT_RESET_QKEY_CNTR = (1<<3) 328 }; 329 330 struct ib_port_modify { 331 u32 set_port_cap_mask; 332 u32 clr_port_cap_mask; 333 u8 init_type; 334 }; 335 336 enum ib_event_type { 337 IB_EVENT_CQ_ERR, 338 IB_EVENT_QP_FATAL, 339 IB_EVENT_QP_REQ_ERR, 340 IB_EVENT_QP_ACCESS_ERR, 341 IB_EVENT_COMM_EST, 342 IB_EVENT_SQ_DRAINED, 343 IB_EVENT_PATH_MIG, 344 IB_EVENT_PATH_MIG_ERR, 345 IB_EVENT_DEVICE_FATAL, 346 IB_EVENT_PORT_ACTIVE, 347 IB_EVENT_PORT_ERR, 348 IB_EVENT_LID_CHANGE, 349 IB_EVENT_PKEY_CHANGE, 350 IB_EVENT_SM_CHANGE, 351 IB_EVENT_SRQ_ERR, 352 IB_EVENT_SRQ_LIMIT_REACHED, 353 IB_EVENT_QP_LAST_WQE_REACHED, 354 IB_EVENT_CLIENT_REREGISTER, 355 IB_EVENT_GID_CHANGE, 356 }; 357 358 enum ib_event_flags { 359 IB_XRC_QP_EVENT_FLAG = 0x80000000, 360 }; 361 362 struct ib_event { 363 struct ib_device *device; 364 union { 365 struct ib_cq *cq; 366 struct ib_qp *qp; 367 struct ib_srq *srq; 368 u8 port_num; 369 u32 xrc_qp_num; 370 } element; 371 enum ib_event_type event; 372 }; 373 374 struct ib_event_handler { 375 struct ib_device *device; 376 void (*handler)(struct ib_event_handler *, struct ib_event *); 377 struct list_head list; 378 }; 379 380 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 381 do { \ 382 (_ptr)->device = _device; \ 383 (_ptr)->handler = _handler; \ 384 INIT_LIST_HEAD(&(_ptr)->list); \ 385 } while (0) 386 387 struct ib_global_route { 388 union ib_gid dgid; 389 u32 flow_label; 390 u8 sgid_index; 391 u8 hop_limit; 392 u8 traffic_class; 393 }; 394 395 struct ib_grh { 396 __be32 version_tclass_flow; 397 __be16 paylen; 398 u8 next_hdr; 399 u8 hop_limit; 400 union ib_gid sgid; 401 union ib_gid dgid; 402 }; 403 404 enum { 405 IB_MULTICAST_QPN = 0xffffff 406 }; 407 408 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 409 410 enum ib_ah_flags { 411 IB_AH_GRH = 1 412 }; 413 414 enum ib_rate { 415 IB_RATE_PORT_CURRENT = 0, 416 IB_RATE_2_5_GBPS = 2, 417 IB_RATE_5_GBPS = 5, 418 IB_RATE_10_GBPS = 3, 419 IB_RATE_20_GBPS = 6, 420 IB_RATE_30_GBPS = 4, 421 IB_RATE_40_GBPS = 7, 422 IB_RATE_60_GBPS = 8, 423 IB_RATE_80_GBPS = 9, 424 IB_RATE_120_GBPS = 10 425 }; 426 427 /** 428 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 429 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 430 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 431 * @rate: rate to convert. 432 */ 433 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 434 435 /** 436 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 437 * enum. 438 * @mult: multiple to convert. 439 */ 440 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 441 442 struct ib_ah_attr { 443 struct ib_global_route grh; 444 u16 dlid; 445 u8 sl; 446 u8 src_path_bits; 447 u8 static_rate; 448 u8 ah_flags; 449 u8 port_num; 450 }; 451 452 enum ib_wc_status { 453 IB_WC_SUCCESS, 454 IB_WC_LOC_LEN_ERR, 455 IB_WC_LOC_QP_OP_ERR, 456 IB_WC_LOC_EEC_OP_ERR, 457 IB_WC_LOC_PROT_ERR, 458 IB_WC_WR_FLUSH_ERR, 459 IB_WC_MW_BIND_ERR, 460 IB_WC_BAD_RESP_ERR, 461 IB_WC_LOC_ACCESS_ERR, 462 IB_WC_REM_INV_REQ_ERR, 463 IB_WC_REM_ACCESS_ERR, 464 IB_WC_REM_OP_ERR, 465 IB_WC_RETRY_EXC_ERR, 466 IB_WC_RNR_RETRY_EXC_ERR, 467 IB_WC_LOC_RDD_VIOL_ERR, 468 IB_WC_REM_INV_RD_REQ_ERR, 469 IB_WC_REM_ABORT_ERR, 470 IB_WC_INV_EECN_ERR, 471 IB_WC_INV_EEC_STATE_ERR, 472 IB_WC_FATAL_ERR, 473 IB_WC_RESP_TIMEOUT_ERR, 474 IB_WC_GENERAL_ERR 475 }; 476 477 enum ib_wc_opcode { 478 IB_WC_SEND, 479 IB_WC_RDMA_WRITE, 480 IB_WC_RDMA_READ, 481 IB_WC_COMP_SWAP, 482 IB_WC_FETCH_ADD, 483 IB_WC_BIND_MW, 484 IB_WC_LSO, 485 IB_WC_LOCAL_INV, 486 IB_WC_FAST_REG_MR, 487 IB_WC_MASKED_COMP_SWAP, 488 IB_WC_MASKED_FETCH_ADD, 489 /* 490 * Set value of IB_WC_RECV so consumers can test if a completion is a 491 * receive by testing (opcode & IB_WC_RECV). 492 */ 493 IB_WC_RECV = 1 << 7, 494 IB_WC_RECV_RDMA_WITH_IMM 495 }; 496 497 enum ib_wc_flags { 498 IB_WC_GRH = 1, 499 IB_WC_WITH_IMM = (1<<1), 500 IB_WC_WITH_INVALIDATE = (1<<2), 501 }; 502 503 struct ib_wc { 504 u64 wr_id; 505 enum ib_wc_status status; 506 enum ib_wc_opcode opcode; 507 u32 vendor_err; 508 u32 byte_len; 509 struct ib_qp *qp; 510 union { 511 __be32 imm_data; 512 u32 invalidate_rkey; 513 } ex; 514 u32 src_qp; 515 int wc_flags; 516 u16 pkey_index; 517 u16 slid; 518 u8 sl; 519 u8 dlid_path_bits; 520 u8 port_num; /* valid only for DR SMPs on switches */ 521 int csum_ok; 522 }; 523 524 enum ib_cq_notify_flags { 525 IB_CQ_SOLICITED = 1 << 0, 526 IB_CQ_NEXT_COMP = 1 << 1, 527 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 528 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 529 }; 530 531 enum ib_srq_attr_mask { 532 IB_SRQ_MAX_WR = 1 << 0, 533 IB_SRQ_LIMIT = 1 << 1, 534 }; 535 536 struct ib_srq_attr { 537 u32 max_wr; 538 u32 max_sge; 539 u32 srq_limit; 540 }; 541 542 struct ib_srq_init_attr { 543 void (*event_handler)(struct ib_event *, void *); 544 void *srq_context; 545 struct ib_srq_attr attr; 546 }; 547 548 struct ib_qp_cap { 549 u32 max_send_wr; 550 u32 max_recv_wr; 551 u32 max_send_sge; 552 u32 max_recv_sge; 553 u32 max_inline_data; 554 }; 555 556 enum ib_sig_type { 557 IB_SIGNAL_ALL_WR, 558 IB_SIGNAL_REQ_WR 559 }; 560 561 enum ib_qp_type { 562 /* 563 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 564 * here (and in that order) since the MAD layer uses them as 565 * indices into a 2-entry table. 566 */ 567 IB_QPT_SMI, 568 IB_QPT_GSI, 569 570 IB_QPT_RC, 571 IB_QPT_UC, 572 IB_QPT_UD, 573 IB_QPT_XRC, 574 IB_QPT_RAW_IPV6, 575 IB_QPT_RAW_ETY, 576 IB_QPT_RAW_ETH 577 }; 578 579 enum ib_qp_create_flags { 580 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 581 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 582 }; 583 584 struct ib_qp_init_attr { 585 void (*event_handler)(struct ib_event *, void *); 586 void *qp_context; 587 struct ib_cq *send_cq; 588 struct ib_cq *recv_cq; 589 struct ib_srq *srq; 590 struct ib_qp_cap cap; 591 enum ib_sig_type sq_sig_type; 592 enum ib_qp_type qp_type; 593 enum ib_qp_create_flags create_flags; 594 struct ib_xrcd *xrc_domain; /* XRC qp's only */ 595 u8 port_num; /* special QP types only */ 596 }; 597 598 enum ib_rnr_timeout { 599 IB_RNR_TIMER_655_36 = 0, 600 IB_RNR_TIMER_000_01 = 1, 601 IB_RNR_TIMER_000_02 = 2, 602 IB_RNR_TIMER_000_03 = 3, 603 IB_RNR_TIMER_000_04 = 4, 604 IB_RNR_TIMER_000_06 = 5, 605 IB_RNR_TIMER_000_08 = 6, 606 IB_RNR_TIMER_000_12 = 7, 607 IB_RNR_TIMER_000_16 = 8, 608 IB_RNR_TIMER_000_24 = 9, 609 IB_RNR_TIMER_000_32 = 10, 610 IB_RNR_TIMER_000_48 = 11, 611 IB_RNR_TIMER_000_64 = 12, 612 IB_RNR_TIMER_000_96 = 13, 613 IB_RNR_TIMER_001_28 = 14, 614 IB_RNR_TIMER_001_92 = 15, 615 IB_RNR_TIMER_002_56 = 16, 616 IB_RNR_TIMER_003_84 = 17, 617 IB_RNR_TIMER_005_12 = 18, 618 IB_RNR_TIMER_007_68 = 19, 619 IB_RNR_TIMER_010_24 = 20, 620 IB_RNR_TIMER_015_36 = 21, 621 IB_RNR_TIMER_020_48 = 22, 622 IB_RNR_TIMER_030_72 = 23, 623 IB_RNR_TIMER_040_96 = 24, 624 IB_RNR_TIMER_061_44 = 25, 625 IB_RNR_TIMER_081_92 = 26, 626 IB_RNR_TIMER_122_88 = 27, 627 IB_RNR_TIMER_163_84 = 28, 628 IB_RNR_TIMER_245_76 = 29, 629 IB_RNR_TIMER_327_68 = 30, 630 IB_RNR_TIMER_491_52 = 31 631 }; 632 633 enum ib_qp_attr_mask { 634 IB_QP_STATE = 1, 635 IB_QP_CUR_STATE = (1<<1), 636 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 637 IB_QP_ACCESS_FLAGS = (1<<3), 638 IB_QP_PKEY_INDEX = (1<<4), 639 IB_QP_PORT = (1<<5), 640 IB_QP_QKEY = (1<<6), 641 IB_QP_AV = (1<<7), 642 IB_QP_PATH_MTU = (1<<8), 643 IB_QP_TIMEOUT = (1<<9), 644 IB_QP_RETRY_CNT = (1<<10), 645 IB_QP_RNR_RETRY = (1<<11), 646 IB_QP_RQ_PSN = (1<<12), 647 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 648 IB_QP_ALT_PATH = (1<<14), 649 IB_QP_MIN_RNR_TIMER = (1<<15), 650 IB_QP_SQ_PSN = (1<<16), 651 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 652 IB_QP_PATH_MIG_STATE = (1<<18), 653 IB_QP_CAP = (1<<19), 654 IB_QP_DEST_QPN = (1<<20) 655 }; 656 657 enum ib_qp_state { 658 IB_QPS_RESET, 659 IB_QPS_INIT, 660 IB_QPS_RTR, 661 IB_QPS_RTS, 662 IB_QPS_SQD, 663 IB_QPS_SQE, 664 IB_QPS_ERR 665 }; 666 667 enum ib_mig_state { 668 IB_MIG_MIGRATED, 669 IB_MIG_REARM, 670 IB_MIG_ARMED 671 }; 672 673 struct ib_qp_attr { 674 enum ib_qp_state qp_state; 675 enum ib_qp_state cur_qp_state; 676 enum ib_mtu path_mtu; 677 enum ib_mig_state path_mig_state; 678 u32 qkey; 679 u32 rq_psn; 680 u32 sq_psn; 681 u32 dest_qp_num; 682 int qp_access_flags; 683 struct ib_qp_cap cap; 684 struct ib_ah_attr ah_attr; 685 struct ib_ah_attr alt_ah_attr; 686 u16 pkey_index; 687 u16 alt_pkey_index; 688 u8 en_sqd_async_notify; 689 u8 sq_draining; 690 u8 max_rd_atomic; 691 u8 max_dest_rd_atomic; 692 u8 min_rnr_timer; 693 u8 port_num; 694 u8 timeout; 695 u8 retry_cnt; 696 u8 rnr_retry; 697 u8 alt_port_num; 698 u8 alt_timeout; 699 }; 700 701 enum ib_wr_opcode { 702 IB_WR_RDMA_WRITE, 703 IB_WR_RDMA_WRITE_WITH_IMM, 704 IB_WR_SEND, 705 IB_WR_SEND_WITH_IMM, 706 IB_WR_RDMA_READ, 707 IB_WR_ATOMIC_CMP_AND_SWP, 708 IB_WR_ATOMIC_FETCH_AND_ADD, 709 IB_WR_LSO, 710 IB_WR_BIG_LSO, 711 IB_WR_SEND_WITH_INV, 712 IB_WR_RDMA_READ_WITH_INV, 713 IB_WR_LOCAL_INV, 714 IB_WR_FAST_REG_MR, 715 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 716 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 717 }; 718 719 enum ib_send_flags { 720 IB_SEND_FENCE = 1, 721 IB_SEND_SIGNALED = (1<<1), 722 IB_SEND_SOLICITED = (1<<2), 723 IB_SEND_INLINE = (1<<3), 724 IB_SEND_IP_CSUM = (1<<4) 725 }; 726 727 struct ib_sge { 728 u64 addr; 729 u32 length; 730 u32 lkey; 731 }; 732 733 struct ib_fast_reg_page_list { 734 struct ib_device *device; 735 u64 *page_list; 736 unsigned int max_page_list_len; 737 }; 738 739 struct ib_send_wr { 740 struct ib_send_wr *next; 741 u64 wr_id; 742 struct ib_sge *sg_list; 743 int num_sge; 744 enum ib_wr_opcode opcode; 745 int send_flags; 746 union { 747 __be32 imm_data; 748 u32 invalidate_rkey; 749 } ex; 750 union { 751 struct { 752 u64 remote_addr; 753 u32 rkey; 754 } rdma; 755 struct { 756 u64 remote_addr; 757 u64 compare_add; 758 u64 swap; 759 u64 compare_add_mask; 760 u64 swap_mask; 761 u32 rkey; 762 } atomic; 763 struct { 764 struct ib_ah *ah; 765 void *header; 766 int hlen; 767 int mss; 768 u32 remote_qpn; 769 u32 remote_qkey; 770 u16 pkey_index; /* valid for GSI only */ 771 u8 port_num; /* valid for DR SMPs on switch only */ 772 } ud; 773 struct { 774 u64 iova_start; 775 struct ib_fast_reg_page_list *page_list; 776 unsigned int page_shift; 777 unsigned int page_list_len; 778 u32 length; 779 int access_flags; 780 u32 rkey; 781 } fast_reg; 782 struct { 783 struct ib_unpacked_lrh *lrh; 784 u32 eth_type; 785 u8 static_rate; 786 } raw_ety; 787 } wr; 788 u32 xrc_remote_srq_num; /* valid for XRC sends only */ 789 }; 790 791 struct ib_recv_wr { 792 struct ib_recv_wr *next; 793 u64 wr_id; 794 struct ib_sge *sg_list; 795 int num_sge; 796 }; 797 798 enum ib_access_flags { 799 IB_ACCESS_LOCAL_WRITE = 1, 800 IB_ACCESS_REMOTE_WRITE = (1<<1), 801 IB_ACCESS_REMOTE_READ = (1<<2), 802 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 803 IB_ACCESS_MW_BIND = (1<<4) 804 }; 805 806 struct ib_phys_buf { 807 u64 addr; 808 u64 size; 809 }; 810 811 struct ib_mr_attr { 812 struct ib_pd *pd; 813 u64 device_virt_addr; 814 u64 size; 815 int mr_access_flags; 816 u32 lkey; 817 u32 rkey; 818 }; 819 820 enum ib_mr_rereg_flags { 821 IB_MR_REREG_TRANS = 1, 822 IB_MR_REREG_PD = (1<<1), 823 IB_MR_REREG_ACCESS = (1<<2) 824 }; 825 826 struct ib_mw_bind { 827 struct ib_mr *mr; 828 u64 wr_id; 829 u64 addr; 830 u32 length; 831 int send_flags; 832 int mw_access_flags; 833 }; 834 835 struct ib_fmr_attr { 836 int max_pages; 837 int max_maps; 838 u8 page_shift; 839 }; 840 841 struct ib_ucontext { 842 struct ib_device *device; 843 struct list_head pd_list; 844 struct list_head mr_list; 845 struct list_head mw_list; 846 struct list_head cq_list; 847 struct list_head qp_list; 848 struct list_head srq_list; 849 struct list_head ah_list; 850 struct list_head xrc_domain_list; 851 int closing; 852 }; 853 854 struct ib_uobject { 855 u64 user_handle; /* handle given to us by userspace */ 856 struct ib_ucontext *context; /* associated user context */ 857 void *object; /* containing object */ 858 struct list_head list; /* link to context's list */ 859 int id; /* index into kernel idr */ 860 struct kref ref; 861 struct rw_semaphore mutex; /* protects .live */ 862 int live; 863 }; 864 865 struct ib_udata { 866 void __user *inbuf; 867 void __user *outbuf; 868 size_t inlen; 869 size_t outlen; 870 }; 871 872 struct ib_uxrc_rcv_object { 873 struct list_head list; /* link to context's list */ 874 u32 qp_num; 875 u32 domain_handle; 876 }; 877 878 struct ib_pd { 879 struct ib_device *device; 880 struct ib_uobject *uobject; 881 atomic_t usecnt; /* count all resources */ 882 }; 883 884 struct ib_xrcd { 885 struct ib_device *device; 886 struct ib_uobject *uobject; 887 struct inode *inode; 888 struct rb_node node; 889 atomic_t usecnt; /* count all resources */ 890 }; 891 892 893 struct ib_ah { 894 struct ib_device *device; 895 struct ib_pd *pd; 896 struct ib_uobject *uobject; 897 }; 898 899 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 900 901 struct ib_cq { 902 struct ib_device *device; 903 struct ib_uobject *uobject; 904 ib_comp_handler comp_handler; 905 void (*event_handler)(struct ib_event *, void *); 906 void *cq_context; 907 int cqe; 908 atomic_t usecnt; /* count number of work queues */ 909 }; 910 911 struct ib_srq { 912 struct ib_device *device; 913 struct ib_pd *pd; 914 struct ib_cq *xrc_cq; 915 struct ib_xrcd *xrcd; 916 struct ib_uobject *uobject; 917 void (*event_handler)(struct ib_event *, void *); 918 void *srq_context; 919 atomic_t usecnt; 920 u32 xrc_srq_num; 921 }; 922 923 struct ib_qp { 924 struct ib_device *device; 925 struct ib_pd *pd; 926 struct ib_cq *send_cq; 927 struct ib_cq *recv_cq; 928 struct ib_srq *srq; 929 struct ib_uobject *uobject; 930 void (*event_handler)(struct ib_event *, void *); 931 void *qp_context; 932 u32 qp_num; 933 enum ib_qp_type qp_type; 934 struct ib_xrcd *xrcd; /* XRC QPs only */ 935 }; 936 937 struct ib_mr { 938 struct ib_device *device; 939 struct ib_pd *pd; 940 struct ib_uobject *uobject; 941 u32 lkey; 942 u32 rkey; 943 atomic_t usecnt; /* count number of MWs */ 944 }; 945 946 struct ib_mw { 947 struct ib_device *device; 948 struct ib_pd *pd; 949 struct ib_uobject *uobject; 950 u32 rkey; 951 }; 952 953 struct ib_fmr { 954 struct ib_device *device; 955 struct ib_pd *pd; 956 struct list_head list; 957 u32 lkey; 958 u32 rkey; 959 }; 960 961 struct ib_mad; 962 struct ib_grh; 963 964 enum ib_process_mad_flags { 965 IB_MAD_IGNORE_MKEY = 1, 966 IB_MAD_IGNORE_BKEY = 2, 967 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 968 }; 969 970 enum ib_mad_result { 971 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 972 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 973 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 974 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 975 }; 976 977 #define IB_DEVICE_NAME_MAX 64 978 979 struct ib_cache { 980 rwlock_t lock; 981 struct ib_event_handler event_handler; 982 struct ib_pkey_cache **pkey_cache; 983 struct ib_gid_cache **gid_cache; 984 u8 *lmc_cache; 985 }; 986 987 struct ib_dma_mapping_ops { 988 int (*mapping_error)(struct ib_device *dev, 989 u64 dma_addr); 990 u64 (*map_single)(struct ib_device *dev, 991 void *ptr, size_t size, 992 enum dma_data_direction direction); 993 void (*unmap_single)(struct ib_device *dev, 994 u64 addr, size_t size, 995 enum dma_data_direction direction); 996 u64 (*map_page)(struct ib_device *dev, 997 struct page *page, unsigned long offset, 998 size_t size, 999 enum dma_data_direction direction); 1000 void (*unmap_page)(struct ib_device *dev, 1001 u64 addr, size_t size, 1002 enum dma_data_direction direction); 1003 int (*map_sg)(struct ib_device *dev, 1004 struct scatterlist *sg, int nents, 1005 enum dma_data_direction direction); 1006 void (*unmap_sg)(struct ib_device *dev, 1007 struct scatterlist *sg, int nents, 1008 enum dma_data_direction direction); 1009 u64 (*dma_address)(struct ib_device *dev, 1010 struct scatterlist *sg); 1011 unsigned int (*dma_len)(struct ib_device *dev, 1012 struct scatterlist *sg); 1013 void (*sync_single_for_cpu)(struct ib_device *dev, 1014 u64 dma_handle, 1015 size_t size, 1016 enum dma_data_direction dir); 1017 void (*sync_single_for_device)(struct ib_device *dev, 1018 u64 dma_handle, 1019 size_t size, 1020 enum dma_data_direction dir); 1021 void *(*alloc_coherent)(struct ib_device *dev, 1022 size_t size, 1023 u64 *dma_handle, 1024 gfp_t flag); 1025 void (*free_coherent)(struct ib_device *dev, 1026 size_t size, void *cpu_addr, 1027 u64 dma_handle); 1028 }; 1029 1030 struct iw_cm_verbs; 1031 1032 struct ib_device { 1033 struct device *dma_device; 1034 1035 char name[IB_DEVICE_NAME_MAX]; 1036 1037 struct list_head event_handler_list; 1038 spinlock_t event_handler_lock; 1039 1040 struct list_head core_list; 1041 struct list_head client_data_list; 1042 spinlock_t client_data_lock; 1043 1044 struct ib_cache cache; 1045 int *pkey_tbl_len; 1046 int *gid_tbl_len; 1047 1048 int num_comp_vectors; 1049 1050 struct iw_cm_verbs *iwcm; 1051 1052 int (*get_protocol_stats)(struct ib_device *device, 1053 union rdma_protocol_stats *stats); 1054 int (*query_device)(struct ib_device *device, 1055 struct ib_device_attr *device_attr); 1056 int (*query_port)(struct ib_device *device, 1057 u8 port_num, 1058 struct ib_port_attr *port_attr); 1059 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1060 u8 port_num); 1061 int (*query_gid)(struct ib_device *device, 1062 u8 port_num, int index, 1063 union ib_gid *gid); 1064 int (*query_pkey)(struct ib_device *device, 1065 u8 port_num, u16 index, u16 *pkey); 1066 int (*modify_device)(struct ib_device *device, 1067 int device_modify_mask, 1068 struct ib_device_modify *device_modify); 1069 int (*modify_port)(struct ib_device *device, 1070 u8 port_num, int port_modify_mask, 1071 struct ib_port_modify *port_modify); 1072 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1073 struct ib_udata *udata); 1074 int (*dealloc_ucontext)(struct ib_ucontext *context); 1075 int (*mmap)(struct ib_ucontext *context, 1076 struct vm_area_struct *vma); 1077 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1078 struct ib_ucontext *context, 1079 struct ib_udata *udata); 1080 int (*dealloc_pd)(struct ib_pd *pd); 1081 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1082 struct ib_ah_attr *ah_attr); 1083 int (*modify_ah)(struct ib_ah *ah, 1084 struct ib_ah_attr *ah_attr); 1085 int (*query_ah)(struct ib_ah *ah, 1086 struct ib_ah_attr *ah_attr); 1087 int (*destroy_ah)(struct ib_ah *ah); 1088 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1089 struct ib_srq_init_attr *srq_init_attr, 1090 struct ib_udata *udata); 1091 int (*modify_srq)(struct ib_srq *srq, 1092 struct ib_srq_attr *srq_attr, 1093 enum ib_srq_attr_mask srq_attr_mask, 1094 struct ib_udata *udata); 1095 int (*query_srq)(struct ib_srq *srq, 1096 struct ib_srq_attr *srq_attr); 1097 int (*destroy_srq)(struct ib_srq *srq); 1098 int (*post_srq_recv)(struct ib_srq *srq, 1099 struct ib_recv_wr *recv_wr, 1100 struct ib_recv_wr **bad_recv_wr); 1101 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1102 struct ib_qp_init_attr *qp_init_attr, 1103 struct ib_udata *udata); 1104 int (*modify_qp)(struct ib_qp *qp, 1105 struct ib_qp_attr *qp_attr, 1106 int qp_attr_mask, 1107 struct ib_udata *udata); 1108 int (*query_qp)(struct ib_qp *qp, 1109 struct ib_qp_attr *qp_attr, 1110 int qp_attr_mask, 1111 struct ib_qp_init_attr *qp_init_attr); 1112 int (*destroy_qp)(struct ib_qp *qp); 1113 int (*post_send)(struct ib_qp *qp, 1114 struct ib_send_wr *send_wr, 1115 struct ib_send_wr **bad_send_wr); 1116 int (*post_recv)(struct ib_qp *qp, 1117 struct ib_recv_wr *recv_wr, 1118 struct ib_recv_wr **bad_recv_wr); 1119 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1120 int comp_vector, 1121 struct ib_ucontext *context, 1122 struct ib_udata *udata); 1123 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1124 u16 cq_period); 1125 int (*destroy_cq)(struct ib_cq *cq); 1126 int (*resize_cq)(struct ib_cq *cq, int cqe, 1127 struct ib_udata *udata); 1128 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1129 struct ib_wc *wc); 1130 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1131 int (*req_notify_cq)(struct ib_cq *cq, 1132 enum ib_cq_notify_flags flags); 1133 int (*req_ncomp_notif)(struct ib_cq *cq, 1134 int wc_cnt); 1135 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1136 int mr_access_flags); 1137 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1138 struct ib_phys_buf *phys_buf_array, 1139 int num_phys_buf, 1140 int mr_access_flags, 1141 u64 *iova_start); 1142 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1143 u64 start, u64 length, 1144 u64 virt_addr, 1145 int mr_access_flags, 1146 struct ib_udata *udata); 1147 int (*query_mr)(struct ib_mr *mr, 1148 struct ib_mr_attr *mr_attr); 1149 int (*dereg_mr)(struct ib_mr *mr); 1150 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1151 int max_page_list_len); 1152 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1153 int page_list_len); 1154 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1155 int (*rereg_phys_mr)(struct ib_mr *mr, 1156 int mr_rereg_mask, 1157 struct ib_pd *pd, 1158 struct ib_phys_buf *phys_buf_array, 1159 int num_phys_buf, 1160 int mr_access_flags, 1161 u64 *iova_start); 1162 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1163 int (*bind_mw)(struct ib_qp *qp, 1164 struct ib_mw *mw, 1165 struct ib_mw_bind *mw_bind); 1166 int (*dealloc_mw)(struct ib_mw *mw); 1167 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1168 int mr_access_flags, 1169 struct ib_fmr_attr *fmr_attr); 1170 int (*map_phys_fmr)(struct ib_fmr *fmr, 1171 u64 *page_list, int list_len, 1172 u64 iova); 1173 int (*unmap_fmr)(struct list_head *fmr_list); 1174 int (*dealloc_fmr)(struct ib_fmr *fmr); 1175 int (*attach_mcast)(struct ib_qp *qp, 1176 union ib_gid *gid, 1177 u16 lid); 1178 int (*detach_mcast)(struct ib_qp *qp, 1179 union ib_gid *gid, 1180 u16 lid); 1181 int (*process_mad)(struct ib_device *device, 1182 int process_mad_flags, 1183 u8 port_num, 1184 struct ib_wc *in_wc, 1185 struct ib_grh *in_grh, 1186 struct ib_mad *in_mad, 1187 struct ib_mad *out_mad); 1188 struct ib_srq * (*create_xrc_srq)(struct ib_pd *pd, 1189 struct ib_cq *xrc_cq, 1190 struct ib_xrcd *xrcd, 1191 struct ib_srq_init_attr *srq_init_attr, 1192 struct ib_udata *udata); 1193 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1194 struct ib_ucontext *context, 1195 struct ib_udata *udata); 1196 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1197 int (*create_xrc_rcv_qp)(struct ib_qp_init_attr *init_attr, 1198 u32 *qp_num); 1199 int (*modify_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1200 u32 qp_num, 1201 struct ib_qp_attr *attr, 1202 int attr_mask); 1203 int (*query_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1204 u32 qp_num, 1205 struct ib_qp_attr *attr, 1206 int attr_mask, 1207 struct ib_qp_init_attr *init_attr); 1208 int (*reg_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1209 void *context, 1210 u32 qp_num); 1211 int (*unreg_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1212 void *context, 1213 u32 qp_num); 1214 1215 struct ib_dma_mapping_ops *dma_ops; 1216 1217 struct module *owner; 1218 struct device dev; 1219 struct kobject *ports_parent; 1220 struct list_head port_list; 1221 1222 enum { 1223 IB_DEV_UNINITIALIZED, 1224 IB_DEV_REGISTERED, 1225 IB_DEV_UNREGISTERED 1226 } reg_state; 1227 1228 u64 uverbs_cmd_mask; 1229 int uverbs_abi_ver; 1230 1231 char node_desc[64]; 1232 __be64 node_guid; 1233 u32 local_dma_lkey; 1234 u8 node_type; 1235 u8 phys_port_cnt; 1236 struct rb_root ib_uverbs_xrcd_table; 1237 struct mutex xrcd_table_mutex; 1238 }; 1239 1240 struct ib_client { 1241 char *name; 1242 void (*add) (struct ib_device *); 1243 void (*remove)(struct ib_device *); 1244 1245 struct list_head list; 1246 }; 1247 1248 struct ib_device *ib_alloc_device(size_t size); 1249 void ib_dealloc_device(struct ib_device *device); 1250 1251 int ib_register_device (struct ib_device *device); 1252 void ib_unregister_device(struct ib_device *device); 1253 1254 int ib_register_client (struct ib_client *client); 1255 void ib_unregister_client(struct ib_client *client); 1256 1257 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1258 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1259 void *data); 1260 1261 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1262 { 1263 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1264 } 1265 1266 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1267 { 1268 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1269 } 1270 1271 /** 1272 * ib_sysfs_create_port_files - iterate over port sysfs directories 1273 * @device: the IB device 1274 * @create: a function to create sysfs files in each port directory 1275 */ 1276 int ib_sysfs_create_port_files(struct ib_device *device, 1277 int (*create)(struct ib_device *dev, u8 port_num, 1278 struct kobject *kobj)); 1279 1280 /** 1281 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1282 * contains all required attributes and no attributes not allowed for 1283 * the given QP state transition. 1284 * @cur_state: Current QP state 1285 * @next_state: Next QP state 1286 * @type: QP type 1287 * @mask: Mask of supplied QP attributes 1288 * 1289 * This function is a helper function that a low-level driver's 1290 * modify_qp method can use to validate the consumer's input. It 1291 * checks that cur_state and next_state are valid QP states, that a 1292 * transition from cur_state to next_state is allowed by the IB spec, 1293 * and that the attribute mask supplied is allowed for the transition. 1294 */ 1295 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1296 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1297 1298 int ib_register_event_handler (struct ib_event_handler *event_handler); 1299 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1300 void ib_dispatch_event(struct ib_event *event); 1301 1302 int ib_query_device(struct ib_device *device, 1303 struct ib_device_attr *device_attr); 1304 1305 int ib_query_port(struct ib_device *device, 1306 u8 port_num, struct ib_port_attr *port_attr); 1307 1308 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1309 u8 port_num); 1310 1311 int ib_query_gid(struct ib_device *device, 1312 u8 port_num, int index, union ib_gid *gid); 1313 1314 int ib_query_pkey(struct ib_device *device, 1315 u8 port_num, u16 index, u16 *pkey); 1316 1317 int ib_modify_device(struct ib_device *device, 1318 int device_modify_mask, 1319 struct ib_device_modify *device_modify); 1320 1321 int ib_modify_port(struct ib_device *device, 1322 u8 port_num, int port_modify_mask, 1323 struct ib_port_modify *port_modify); 1324 1325 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1326 u8 *port_num, u16 *index); 1327 1328 int ib_find_pkey(struct ib_device *device, 1329 u8 port_num, u16 pkey, u16 *index); 1330 1331 /** 1332 * ib_alloc_pd - Allocates an unused protection domain. 1333 * @device: The device on which to allocate the protection domain. 1334 * 1335 * A protection domain object provides an association between QPs, shared 1336 * receive queues, address handles, memory regions, and memory windows. 1337 */ 1338 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1339 1340 /** 1341 * ib_dealloc_pd - Deallocates a protection domain. 1342 * @pd: The protection domain to deallocate. 1343 */ 1344 int ib_dealloc_pd(struct ib_pd *pd); 1345 1346 /** 1347 * ib_create_ah - Creates an address handle for the given address vector. 1348 * @pd: The protection domain associated with the address handle. 1349 * @ah_attr: The attributes of the address vector. 1350 * 1351 * The address handle is used to reference a local or global destination 1352 * in all UD QP post sends. 1353 */ 1354 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1355 1356 /** 1357 * ib_init_ah_from_wc - Initializes address handle attributes from a 1358 * work completion. 1359 * @device: Device on which the received message arrived. 1360 * @port_num: Port on which the received message arrived. 1361 * @wc: Work completion associated with the received message. 1362 * @grh: References the received global route header. This parameter is 1363 * ignored unless the work completion indicates that the GRH is valid. 1364 * @ah_attr: Returned attributes that can be used when creating an address 1365 * handle for replying to the message. 1366 */ 1367 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1368 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1369 1370 /** 1371 * ib_create_ah_from_wc - Creates an address handle associated with the 1372 * sender of the specified work completion. 1373 * @pd: The protection domain associated with the address handle. 1374 * @wc: Work completion information associated with a received message. 1375 * @grh: References the received global route header. This parameter is 1376 * ignored unless the work completion indicates that the GRH is valid. 1377 * @port_num: The outbound port number to associate with the address. 1378 * 1379 * The address handle is used to reference a local or global destination 1380 * in all UD QP post sends. 1381 */ 1382 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1383 struct ib_grh *grh, u8 port_num); 1384 1385 /** 1386 * ib_modify_ah - Modifies the address vector associated with an address 1387 * handle. 1388 * @ah: The address handle to modify. 1389 * @ah_attr: The new address vector attributes to associate with the 1390 * address handle. 1391 */ 1392 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1393 1394 /** 1395 * ib_query_ah - Queries the address vector associated with an address 1396 * handle. 1397 * @ah: The address handle to query. 1398 * @ah_attr: The address vector attributes associated with the address 1399 * handle. 1400 */ 1401 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1402 1403 /** 1404 * ib_destroy_ah - Destroys an address handle. 1405 * @ah: The address handle to destroy. 1406 */ 1407 int ib_destroy_ah(struct ib_ah *ah); 1408 1409 /** 1410 * ib_create_xrc_srq - Creates an XRC SRQ associated with the specified 1411 * protection domain, cq, and xrc domain. 1412 * @pd: The protection domain associated with the SRQ. 1413 * @xrc_cq: The cq to be associated with the XRC SRQ. 1414 * @xrcd: The XRC domain to be associated with the XRC SRQ. 1415 * @srq_init_attr: A list of initial attributes required to create the 1416 * XRC SRQ. If XRC SRQ creation succeeds, then the attributes are updated 1417 * to the actual capabilities of the created XRC SRQ. 1418 * 1419 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1420 * requested size of the XRC SRQ, and set to the actual values allocated 1421 * on return. If ib_create_xrc_srq() succeeds, then max_wr and max_sge 1422 * will always be at least as large as the requested values. 1423 */ 1424 struct ib_srq *ib_create_xrc_srq(struct ib_pd *pd, 1425 struct ib_cq *xrc_cq, 1426 struct ib_xrcd *xrcd, 1427 struct ib_srq_init_attr *srq_init_attr); 1428 1429 /** 1430 * ib_create_srq - Creates an SRQ associated with the specified 1431 * protection domain. 1432 * @pd: The protection domain associated with the SRQ. 1433 * @srq_init_attr: A list of initial attributes required to create the 1434 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1435 * the actual capabilities of the created SRQ. 1436 * 1437 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1438 * requested size of the SRQ, and set to the actual values allocated 1439 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1440 * will always be at least as large as the requested values. 1441 */ 1442 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1443 struct ib_srq_init_attr *srq_init_attr); 1444 1445 /** 1446 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1447 * @srq: The SRQ to modify. 1448 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1449 * the current values of selected SRQ attributes are returned. 1450 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1451 * are being modified. 1452 * 1453 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1454 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1455 * the number of receives queued drops below the limit. 1456 */ 1457 int ib_modify_srq(struct ib_srq *srq, 1458 struct ib_srq_attr *srq_attr, 1459 enum ib_srq_attr_mask srq_attr_mask); 1460 1461 /** 1462 * ib_query_srq - Returns the attribute list and current values for the 1463 * specified SRQ. 1464 * @srq: The SRQ to query. 1465 * @srq_attr: The attributes of the specified SRQ. 1466 */ 1467 int ib_query_srq(struct ib_srq *srq, 1468 struct ib_srq_attr *srq_attr); 1469 1470 /** 1471 * ib_destroy_srq - Destroys the specified SRQ. 1472 * @srq: The SRQ to destroy. 1473 */ 1474 int ib_destroy_srq(struct ib_srq *srq); 1475 1476 /** 1477 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1478 * @srq: The SRQ to post the work request on. 1479 * @recv_wr: A list of work requests to post on the receive queue. 1480 * @bad_recv_wr: On an immediate failure, this parameter will reference 1481 * the work request that failed to be posted on the QP. 1482 */ 1483 static inline int ib_post_srq_recv(struct ib_srq *srq, 1484 struct ib_recv_wr *recv_wr, 1485 struct ib_recv_wr **bad_recv_wr) 1486 { 1487 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1488 } 1489 1490 /** 1491 * ib_create_qp - Creates a QP associated with the specified protection 1492 * domain. 1493 * @pd: The protection domain associated with the QP. 1494 * @qp_init_attr: A list of initial attributes required to create the 1495 * QP. If QP creation succeeds, then the attributes are updated to 1496 * the actual capabilities of the created QP. 1497 */ 1498 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1499 struct ib_qp_init_attr *qp_init_attr); 1500 1501 /** 1502 * ib_modify_qp - Modifies the attributes for the specified QP and then 1503 * transitions the QP to the given state. 1504 * @qp: The QP to modify. 1505 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1506 * the current values of selected QP attributes are returned. 1507 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1508 * are being modified. 1509 */ 1510 int ib_modify_qp(struct ib_qp *qp, 1511 struct ib_qp_attr *qp_attr, 1512 int qp_attr_mask); 1513 1514 /** 1515 * ib_query_qp - Returns the attribute list and current values for the 1516 * specified QP. 1517 * @qp: The QP to query. 1518 * @qp_attr: The attributes of the specified QP. 1519 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1520 * @qp_init_attr: Additional attributes of the selected QP. 1521 * 1522 * The qp_attr_mask may be used to limit the query to gathering only the 1523 * selected attributes. 1524 */ 1525 int ib_query_qp(struct ib_qp *qp, 1526 struct ib_qp_attr *qp_attr, 1527 int qp_attr_mask, 1528 struct ib_qp_init_attr *qp_init_attr); 1529 1530 /** 1531 * ib_destroy_qp - Destroys the specified QP. 1532 * @qp: The QP to destroy. 1533 */ 1534 int ib_destroy_qp(struct ib_qp *qp); 1535 1536 /** 1537 * ib_post_send - Posts a list of work requests to the send queue of 1538 * the specified QP. 1539 * @qp: The QP to post the work request on. 1540 * @send_wr: A list of work requests to post on the send queue. 1541 * @bad_send_wr: On an immediate failure, this parameter will reference 1542 * the work request that failed to be posted on the QP. 1543 */ 1544 static inline int ib_post_send(struct ib_qp *qp, 1545 struct ib_send_wr *send_wr, 1546 struct ib_send_wr **bad_send_wr) 1547 { 1548 return qp->device->post_send(qp, send_wr, bad_send_wr); 1549 } 1550 1551 /** 1552 * ib_post_recv - Posts a list of work requests to the receive queue of 1553 * the specified QP. 1554 * @qp: The QP to post the work request on. 1555 * @recv_wr: A list of work requests to post on the receive queue. 1556 * @bad_recv_wr: On an immediate failure, this parameter will reference 1557 * the work request that failed to be posted on the QP. 1558 */ 1559 static inline int ib_post_recv(struct ib_qp *qp, 1560 struct ib_recv_wr *recv_wr, 1561 struct ib_recv_wr **bad_recv_wr) 1562 { 1563 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1564 } 1565 1566 /* 1567 * IB_CQ_VECTOR_LEAST_ATTACHED: The constant specifies that 1568 * the CQ will be attached to the completion vector that has 1569 * the least number of CQs already attached to it. 1570 */ 1571 #define IB_CQ_VECTOR_LEAST_ATTACHED 0xffffffff 1572 1573 /** 1574 * ib_create_cq - Creates a CQ on the specified device. 1575 * @device: The device on which to create the CQ. 1576 * @comp_handler: A user-specified callback that is invoked when a 1577 * completion event occurs on the CQ. 1578 * @event_handler: A user-specified callback that is invoked when an 1579 * asynchronous event not associated with a completion occurs on the CQ. 1580 * @cq_context: Context associated with the CQ returned to the user via 1581 * the associated completion and event handlers. 1582 * @cqe: The minimum size of the CQ. 1583 * @comp_vector - Completion vector used to signal completion events. 1584 * Must be >= 0 and < context->num_comp_vectors 1585 * or IB_CQ_VECTOR_LEAST_ATTACHED. 1586 * 1587 * Users can examine the cq structure to determine the actual CQ size. 1588 */ 1589 struct ib_cq *ib_create_cq(struct ib_device *device, 1590 ib_comp_handler comp_handler, 1591 void (*event_handler)(struct ib_event *, void *), 1592 void *cq_context, int cqe, int comp_vector); 1593 1594 /** 1595 * ib_resize_cq - Modifies the capacity of the CQ. 1596 * @cq: The CQ to resize. 1597 * @cqe: The minimum size of the CQ. 1598 * 1599 * Users can examine the cq structure to determine the actual CQ size. 1600 */ 1601 int ib_resize_cq(struct ib_cq *cq, int cqe); 1602 1603 /** 1604 * ib_modify_cq - Modifies moderation params of the CQ 1605 * @cq: The CQ to modify. 1606 * @cq_count: number of CQEs that will trigger an event 1607 * @cq_period: max period of time in usec before triggering an event 1608 * 1609 */ 1610 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1611 1612 /** 1613 * ib_destroy_cq - Destroys the specified CQ. 1614 * @cq: The CQ to destroy. 1615 */ 1616 int ib_destroy_cq(struct ib_cq *cq); 1617 1618 /** 1619 * ib_poll_cq - poll a CQ for completion(s) 1620 * @cq:the CQ being polled 1621 * @num_entries:maximum number of completions to return 1622 * @wc:array of at least @num_entries &struct ib_wc where completions 1623 * will be returned 1624 * 1625 * Poll a CQ for (possibly multiple) completions. If the return value 1626 * is < 0, an error occurred. If the return value is >= 0, it is the 1627 * number of completions returned. If the return value is 1628 * non-negative and < num_entries, then the CQ was emptied. 1629 */ 1630 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1631 struct ib_wc *wc) 1632 { 1633 return cq->device->poll_cq(cq, num_entries, wc); 1634 } 1635 1636 /** 1637 * ib_peek_cq - Returns the number of unreaped completions currently 1638 * on the specified CQ. 1639 * @cq: The CQ to peek. 1640 * @wc_cnt: A minimum number of unreaped completions to check for. 1641 * 1642 * If the number of unreaped completions is greater than or equal to wc_cnt, 1643 * this function returns wc_cnt, otherwise, it returns the actual number of 1644 * unreaped completions. 1645 */ 1646 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1647 1648 /** 1649 * ib_req_notify_cq - Request completion notification on a CQ. 1650 * @cq: The CQ to generate an event for. 1651 * @flags: 1652 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1653 * to request an event on the next solicited event or next work 1654 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1655 * may also be |ed in to request a hint about missed events, as 1656 * described below. 1657 * 1658 * Return Value: 1659 * < 0 means an error occurred while requesting notification 1660 * == 0 means notification was requested successfully, and if 1661 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1662 * were missed and it is safe to wait for another event. In 1663 * this case is it guaranteed that any work completions added 1664 * to the CQ since the last CQ poll will trigger a completion 1665 * notification event. 1666 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1667 * in. It means that the consumer must poll the CQ again to 1668 * make sure it is empty to avoid missing an event because of a 1669 * race between requesting notification and an entry being 1670 * added to the CQ. This return value means it is possible 1671 * (but not guaranteed) that a work completion has been added 1672 * to the CQ since the last poll without triggering a 1673 * completion notification event. 1674 */ 1675 static inline int ib_req_notify_cq(struct ib_cq *cq, 1676 enum ib_cq_notify_flags flags) 1677 { 1678 return cq->device->req_notify_cq(cq, flags); 1679 } 1680 1681 /** 1682 * ib_req_ncomp_notif - Request completion notification when there are 1683 * at least the specified number of unreaped completions on the CQ. 1684 * @cq: The CQ to generate an event for. 1685 * @wc_cnt: The number of unreaped completions that should be on the 1686 * CQ before an event is generated. 1687 */ 1688 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1689 { 1690 return cq->device->req_ncomp_notif ? 1691 cq->device->req_ncomp_notif(cq, wc_cnt) : 1692 -ENOSYS; 1693 } 1694 1695 /** 1696 * ib_get_dma_mr - Returns a memory region for system memory that is 1697 * usable for DMA. 1698 * @pd: The protection domain associated with the memory region. 1699 * @mr_access_flags: Specifies the memory access rights. 1700 * 1701 * Note that the ib_dma_*() functions defined below must be used 1702 * to create/destroy addresses used with the Lkey or Rkey returned 1703 * by ib_get_dma_mr(). 1704 */ 1705 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1706 1707 /** 1708 * ib_dma_mapping_error - check a DMA addr for error 1709 * @dev: The device for which the dma_addr was created 1710 * @dma_addr: The DMA address to check 1711 */ 1712 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1713 { 1714 if (dev->dma_ops) 1715 return dev->dma_ops->mapping_error(dev, dma_addr); 1716 return dma_mapping_error(dev->dma_device, dma_addr); 1717 } 1718 1719 /** 1720 * ib_dma_map_single - Map a kernel virtual address to DMA address 1721 * @dev: The device for which the dma_addr is to be created 1722 * @cpu_addr: The kernel virtual address 1723 * @size: The size of the region in bytes 1724 * @direction: The direction of the DMA 1725 */ 1726 static inline u64 ib_dma_map_single(struct ib_device *dev, 1727 void *cpu_addr, size_t size, 1728 enum dma_data_direction direction) 1729 { 1730 if (dev->dma_ops) 1731 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1732 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1733 } 1734 1735 /** 1736 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1737 * @dev: The device for which the DMA address was created 1738 * @addr: The DMA address 1739 * @size: The size of the region in bytes 1740 * @direction: The direction of the DMA 1741 */ 1742 static inline void ib_dma_unmap_single(struct ib_device *dev, 1743 u64 addr, size_t size, 1744 enum dma_data_direction direction) 1745 { 1746 if (dev->dma_ops) 1747 dev->dma_ops->unmap_single(dev, addr, size, direction); 1748 else 1749 dma_unmap_single(dev->dma_device, addr, size, direction); 1750 } 1751 1752 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1753 void *cpu_addr, size_t size, 1754 enum dma_data_direction direction, 1755 struct dma_attrs *attrs) 1756 { 1757 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1758 direction, attrs); 1759 } 1760 1761 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1762 u64 addr, size_t size, 1763 enum dma_data_direction direction, 1764 struct dma_attrs *attrs) 1765 { 1766 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1767 direction, attrs); 1768 } 1769 1770 /** 1771 * ib_dma_map_page - Map a physical page to DMA address 1772 * @dev: The device for which the dma_addr is to be created 1773 * @page: The page to be mapped 1774 * @offset: The offset within the page 1775 * @size: The size of the region in bytes 1776 * @direction: The direction of the DMA 1777 */ 1778 static inline u64 ib_dma_map_page(struct ib_device *dev, 1779 struct page *page, 1780 unsigned long offset, 1781 size_t size, 1782 enum dma_data_direction direction) 1783 { 1784 if (dev->dma_ops) 1785 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1786 return dma_map_page(dev->dma_device, page, offset, size, direction); 1787 } 1788 1789 /** 1790 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1791 * @dev: The device for which the DMA address was created 1792 * @addr: The DMA address 1793 * @size: The size of the region in bytes 1794 * @direction: The direction of the DMA 1795 */ 1796 static inline void ib_dma_unmap_page(struct ib_device *dev, 1797 u64 addr, size_t size, 1798 enum dma_data_direction direction) 1799 { 1800 if (dev->dma_ops) 1801 dev->dma_ops->unmap_page(dev, addr, size, direction); 1802 else 1803 dma_unmap_page(dev->dma_device, addr, size, direction); 1804 } 1805 1806 /** 1807 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1808 * @dev: The device for which the DMA addresses are to be created 1809 * @sg: The array of scatter/gather entries 1810 * @nents: The number of scatter/gather entries 1811 * @direction: The direction of the DMA 1812 */ 1813 static inline int ib_dma_map_sg(struct ib_device *dev, 1814 struct scatterlist *sg, int nents, 1815 enum dma_data_direction direction) 1816 { 1817 if (dev->dma_ops) 1818 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1819 return dma_map_sg(dev->dma_device, sg, nents, direction); 1820 } 1821 1822 /** 1823 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1824 * @dev: The device for which the DMA addresses were created 1825 * @sg: The array of scatter/gather entries 1826 * @nents: The number of scatter/gather entries 1827 * @direction: The direction of the DMA 1828 */ 1829 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1830 struct scatterlist *sg, int nents, 1831 enum dma_data_direction direction) 1832 { 1833 if (dev->dma_ops) 1834 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1835 else 1836 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1837 } 1838 1839 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1840 struct scatterlist *sg, int nents, 1841 enum dma_data_direction direction, 1842 struct dma_attrs *attrs) 1843 { 1844 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1845 } 1846 1847 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1848 struct scatterlist *sg, int nents, 1849 enum dma_data_direction direction, 1850 struct dma_attrs *attrs) 1851 { 1852 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1853 } 1854 /** 1855 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1856 * @dev: The device for which the DMA addresses were created 1857 * @sg: The scatter/gather entry 1858 */ 1859 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1860 struct scatterlist *sg) 1861 { 1862 if (dev->dma_ops) 1863 return dev->dma_ops->dma_address(dev, sg); 1864 return sg_dma_address(sg); 1865 } 1866 1867 /** 1868 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1869 * @dev: The device for which the DMA addresses were created 1870 * @sg: The scatter/gather entry 1871 */ 1872 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1873 struct scatterlist *sg) 1874 { 1875 if (dev->dma_ops) 1876 return dev->dma_ops->dma_len(dev, sg); 1877 return sg_dma_len(sg); 1878 } 1879 1880 /** 1881 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1882 * @dev: The device for which the DMA address was created 1883 * @addr: The DMA address 1884 * @size: The size of the region in bytes 1885 * @dir: The direction of the DMA 1886 */ 1887 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1888 u64 addr, 1889 size_t size, 1890 enum dma_data_direction dir) 1891 { 1892 if (dev->dma_ops) 1893 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1894 else 1895 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1896 } 1897 1898 /** 1899 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1900 * @dev: The device for which the DMA address was created 1901 * @addr: The DMA address 1902 * @size: The size of the region in bytes 1903 * @dir: The direction of the DMA 1904 */ 1905 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1906 u64 addr, 1907 size_t size, 1908 enum dma_data_direction dir) 1909 { 1910 if (dev->dma_ops) 1911 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1912 else 1913 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1914 } 1915 1916 /** 1917 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1918 * @dev: The device for which the DMA address is requested 1919 * @size: The size of the region to allocate in bytes 1920 * @dma_handle: A pointer for returning the DMA address of the region 1921 * @flag: memory allocator flags 1922 */ 1923 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1924 size_t size, 1925 u64 *dma_handle, 1926 gfp_t flag) 1927 { 1928 if (dev->dma_ops) 1929 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1930 else { 1931 dma_addr_t handle; 1932 void *ret; 1933 1934 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1935 *dma_handle = handle; 1936 return ret; 1937 } 1938 } 1939 1940 /** 1941 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1942 * @dev: The device for which the DMA addresses were allocated 1943 * @size: The size of the region 1944 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1945 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1946 */ 1947 static inline void ib_dma_free_coherent(struct ib_device *dev, 1948 size_t size, void *cpu_addr, 1949 u64 dma_handle) 1950 { 1951 if (dev->dma_ops) 1952 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1953 else 1954 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1955 } 1956 1957 /** 1958 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1959 * by an HCA. 1960 * @pd: The protection domain associated assigned to the registered region. 1961 * @phys_buf_array: Specifies a list of physical buffers to use in the 1962 * memory region. 1963 * @num_phys_buf: Specifies the size of the phys_buf_array. 1964 * @mr_access_flags: Specifies the memory access rights. 1965 * @iova_start: The offset of the region's starting I/O virtual address. 1966 */ 1967 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1968 struct ib_phys_buf *phys_buf_array, 1969 int num_phys_buf, 1970 int mr_access_flags, 1971 u64 *iova_start); 1972 1973 /** 1974 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1975 * Conceptually, this call performs the functions deregister memory region 1976 * followed by register physical memory region. Where possible, 1977 * resources are reused instead of deallocated and reallocated. 1978 * @mr: The memory region to modify. 1979 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1980 * properties of the memory region are being modified. 1981 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1982 * the new protection domain to associated with the memory region, 1983 * otherwise, this parameter is ignored. 1984 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1985 * field specifies a list of physical buffers to use in the new 1986 * translation, otherwise, this parameter is ignored. 1987 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1988 * field specifies the size of the phys_buf_array, otherwise, this 1989 * parameter is ignored. 1990 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1991 * field specifies the new memory access rights, otherwise, this 1992 * parameter is ignored. 1993 * @iova_start: The offset of the region's starting I/O virtual address. 1994 */ 1995 int ib_rereg_phys_mr(struct ib_mr *mr, 1996 int mr_rereg_mask, 1997 struct ib_pd *pd, 1998 struct ib_phys_buf *phys_buf_array, 1999 int num_phys_buf, 2000 int mr_access_flags, 2001 u64 *iova_start); 2002 2003 /** 2004 * ib_query_mr - Retrieves information about a specific memory region. 2005 * @mr: The memory region to retrieve information about. 2006 * @mr_attr: The attributes of the specified memory region. 2007 */ 2008 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2009 2010 /** 2011 * ib_dereg_mr - Deregisters a memory region and removes it from the 2012 * HCA translation table. 2013 * @mr: The memory region to deregister. 2014 */ 2015 int ib_dereg_mr(struct ib_mr *mr); 2016 2017 /** 2018 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2019 * IB_WR_FAST_REG_MR send work request. 2020 * @pd: The protection domain associated with the region. 2021 * @max_page_list_len: requested max physical buffer list length to be 2022 * used with fast register work requests for this MR. 2023 */ 2024 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2025 2026 /** 2027 * ib_alloc_fast_reg_page_list - Allocates a page list array 2028 * @device - ib device pointer. 2029 * @page_list_len - size of the page list array to be allocated. 2030 * 2031 * This allocates and returns a struct ib_fast_reg_page_list * and a 2032 * page_list array that is at least page_list_len in size. The actual 2033 * size is returned in max_page_list_len. The caller is responsible 2034 * for initializing the contents of the page_list array before posting 2035 * a send work request with the IB_WC_FAST_REG_MR opcode. 2036 * 2037 * The page_list array entries must be translated using one of the 2038 * ib_dma_*() functions just like the addresses passed to 2039 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2040 * ib_fast_reg_page_list must not be modified by the caller until the 2041 * IB_WC_FAST_REG_MR work request completes. 2042 */ 2043 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2044 struct ib_device *device, int page_list_len); 2045 2046 /** 2047 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2048 * page list array. 2049 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2050 */ 2051 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2052 2053 /** 2054 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2055 * R_Key and L_Key. 2056 * @mr - struct ib_mr pointer to be updated. 2057 * @newkey - new key to be used. 2058 */ 2059 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2060 { 2061 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2062 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2063 } 2064 2065 /** 2066 * ib_alloc_mw - Allocates a memory window. 2067 * @pd: The protection domain associated with the memory window. 2068 */ 2069 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 2070 2071 /** 2072 * ib_bind_mw - Posts a work request to the send queue of the specified 2073 * QP, which binds the memory window to the given address range and 2074 * remote access attributes. 2075 * @qp: QP to post the bind work request on. 2076 * @mw: The memory window to bind. 2077 * @mw_bind: Specifies information about the memory window, including 2078 * its address range, remote access rights, and associated memory region. 2079 */ 2080 static inline int ib_bind_mw(struct ib_qp *qp, 2081 struct ib_mw *mw, 2082 struct ib_mw_bind *mw_bind) 2083 { 2084 /* XXX reference counting in corresponding MR? */ 2085 return mw->device->bind_mw ? 2086 mw->device->bind_mw(qp, mw, mw_bind) : 2087 -ENOSYS; 2088 } 2089 2090 /** 2091 * ib_dealloc_mw - Deallocates a memory window. 2092 * @mw: The memory window to deallocate. 2093 */ 2094 int ib_dealloc_mw(struct ib_mw *mw); 2095 2096 /** 2097 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2098 * @pd: The protection domain associated with the unmapped region. 2099 * @mr_access_flags: Specifies the memory access rights. 2100 * @fmr_attr: Attributes of the unmapped region. 2101 * 2102 * A fast memory region must be mapped before it can be used as part of 2103 * a work request. 2104 */ 2105 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2106 int mr_access_flags, 2107 struct ib_fmr_attr *fmr_attr); 2108 2109 /** 2110 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2111 * @fmr: The fast memory region to associate with the pages. 2112 * @page_list: An array of physical pages to map to the fast memory region. 2113 * @list_len: The number of pages in page_list. 2114 * @iova: The I/O virtual address to use with the mapped region. 2115 */ 2116 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2117 u64 *page_list, int list_len, 2118 u64 iova) 2119 { 2120 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2121 } 2122 2123 /** 2124 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2125 * @fmr_list: A linked list of fast memory regions to unmap. 2126 */ 2127 int ib_unmap_fmr(struct list_head *fmr_list); 2128 2129 /** 2130 * ib_dealloc_fmr - Deallocates a fast memory region. 2131 * @fmr: The fast memory region to deallocate. 2132 */ 2133 int ib_dealloc_fmr(struct ib_fmr *fmr); 2134 2135 /** 2136 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2137 * @qp: QP to attach to the multicast group. The QP must be type 2138 * IB_QPT_UD. 2139 * @gid: Multicast group GID. 2140 * @lid: Multicast group LID in host byte order. 2141 * 2142 * In order to send and receive multicast packets, subnet 2143 * administration must have created the multicast group and configured 2144 * the fabric appropriately. The port associated with the specified 2145 * QP must also be a member of the multicast group. 2146 */ 2147 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2148 2149 /** 2150 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2151 * @qp: QP to detach from the multicast group. 2152 * @gid: Multicast group GID. 2153 * @lid: Multicast group LID in host byte order. 2154 */ 2155 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2156 2157 2158 /** 2159 * ib_dealloc_xrcd - Deallocates an extended reliably connected domain. 2160 * @xrcd: The xrc domain to deallocate. 2161 */ 2162 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2163 2164 /** 2165 * ib_alloc_xrcd - Allocates an extended reliably connected domain. 2166 * @device: The device on which to allocate the xrcd. 2167 */ 2168 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2169 2170 #endif /* IB_VERBS_H */ 2171