1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <linux/atomic.h> 53 #include <asm/uaccess.h> 54 #include <linux/rbtree.h> 55 #include <linux/mutex.h> 56 57 extern struct workqueue_struct *ib_wq; 58 59 union ib_gid { 60 u8 raw[16]; 61 struct { 62 __be64 subnet_prefix; 63 __be64 interface_id; 64 } global; 65 }; 66 67 enum rdma_node_type { 68 /* IB values map to NodeInfo:NodeType. */ 69 RDMA_NODE_IB_CA = 1, 70 RDMA_NODE_IB_SWITCH, 71 RDMA_NODE_IB_ROUTER, 72 RDMA_NODE_RNIC 73 }; 74 75 enum rdma_transport_type { 76 RDMA_TRANSPORT_IB, 77 RDMA_TRANSPORT_IWARP 78 }; 79 80 enum rdma_transport_type 81 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 82 83 enum rdma_link_layer { 84 IB_LINK_LAYER_UNSPECIFIED, 85 IB_LINK_LAYER_INFINIBAND, 86 IB_LINK_LAYER_ETHERNET, 87 }; 88 89 enum ib_device_cap_flags { 90 IB_DEVICE_RESIZE_MAX_WR = 1, 91 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 92 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 93 IB_DEVICE_RAW_MULTI = (1<<3), 94 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 95 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 96 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 97 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 98 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 99 IB_DEVICE_INIT_TYPE = (1<<9), 100 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 101 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 102 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 103 IB_DEVICE_SRQ_RESIZE = (1<<13), 104 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 105 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 106 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 107 IB_DEVICE_MEM_WINDOW = (1<<17), 108 /* 109 * Devices should set IB_DEVICE_UD_IP_SUM if they support 110 * insertion of UDP and TCP checksum on outgoing UD IPoIB 111 * messages and can verify the validity of checksum for 112 * incoming messages. Setting this flag implies that the 113 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 114 */ 115 IB_DEVICE_UD_IP_CSUM = (1<<18), 116 IB_DEVICE_UD_TSO = (1<<19), 117 IB_DEVICE_XRC = (1<<20), 118 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 119 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 120 IB_DEVICE_MR_ALLOCATE = (1<<23), 121 IB_DEVICE_SHARED_MR = (1<<24), 122 IB_DEVICE_QPG = (1<<25), 123 IB_DEVICE_UD_RSS = (1<<26), 124 IB_DEVICE_UD_TSS = (1<<27) 125 }; 126 127 enum ib_atomic_cap { 128 IB_ATOMIC_NONE, 129 IB_ATOMIC_HCA, 130 IB_ATOMIC_GLOB 131 }; 132 133 struct ib_device_attr { 134 u64 fw_ver; 135 __be64 sys_image_guid; 136 u64 max_mr_size; 137 u64 page_size_cap; 138 u32 vendor_id; 139 u32 vendor_part_id; 140 u32 hw_ver; 141 int max_qp; 142 int max_qp_wr; 143 int device_cap_flags; 144 int max_sge; 145 int max_sge_rd; 146 int max_cq; 147 int max_cqe; 148 int max_mr; 149 int max_pd; 150 int max_qp_rd_atom; 151 int max_ee_rd_atom; 152 int max_res_rd_atom; 153 int max_qp_init_rd_atom; 154 int max_ee_init_rd_atom; 155 enum ib_atomic_cap atomic_cap; 156 enum ib_atomic_cap masked_atomic_cap; 157 int max_ee; 158 int max_rdd; 159 int max_mw; 160 int max_raw_ipv6_qp; 161 int max_raw_ethy_qp; 162 int max_mcast_grp; 163 int max_mcast_qp_attach; 164 int max_total_mcast_qp_attach; 165 int max_ah; 166 int max_fmr; 167 int max_map_per_fmr; 168 int max_srq; 169 int max_srq_wr; 170 int max_srq_sge; 171 unsigned int max_fast_reg_page_list_len; 172 int max_rss_tbl_sz; 173 u16 max_pkeys; 174 u8 local_ca_ack_delay; 175 }; 176 177 enum ib_mtu { 178 IB_MTU_256 = 1, 179 IB_MTU_512 = 2, 180 IB_MTU_1024 = 3, 181 IB_MTU_2048 = 4, 182 IB_MTU_4096 = 5 183 }; 184 185 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 186 { 187 switch (mtu) { 188 case IB_MTU_256: return 256; 189 case IB_MTU_512: return 512; 190 case IB_MTU_1024: return 1024; 191 case IB_MTU_2048: return 2048; 192 case IB_MTU_4096: return 4096; 193 default: return -1; 194 } 195 } 196 197 enum ib_port_state { 198 IB_PORT_NOP = 0, 199 IB_PORT_DOWN = 1, 200 IB_PORT_INIT = 2, 201 IB_PORT_ARMED = 3, 202 IB_PORT_ACTIVE = 4, 203 IB_PORT_ACTIVE_DEFER = 5 204 }; 205 206 enum ib_port_cap_flags { 207 IB_PORT_SM = 1 << 1, 208 IB_PORT_NOTICE_SUP = 1 << 2, 209 IB_PORT_TRAP_SUP = 1 << 3, 210 IB_PORT_OPT_IPD_SUP = 1 << 4, 211 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 212 IB_PORT_SL_MAP_SUP = 1 << 6, 213 IB_PORT_MKEY_NVRAM = 1 << 7, 214 IB_PORT_PKEY_NVRAM = 1 << 8, 215 IB_PORT_LED_INFO_SUP = 1 << 9, 216 IB_PORT_SM_DISABLED = 1 << 10, 217 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 218 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 219 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 220 IB_PORT_CM_SUP = 1 << 16, 221 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 222 IB_PORT_REINIT_SUP = 1 << 18, 223 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 224 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 225 IB_PORT_DR_NOTICE_SUP = 1 << 21, 226 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 227 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 228 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 229 IB_PORT_CLIENT_REG_SUP = 1 << 25 230 }; 231 232 enum ib_port_width { 233 IB_WIDTH_1X = 1, 234 IB_WIDTH_4X = 2, 235 IB_WIDTH_8X = 4, 236 IB_WIDTH_12X = 8 237 }; 238 239 static inline int ib_width_enum_to_int(enum ib_port_width width) 240 { 241 switch (width) { 242 case IB_WIDTH_1X: return 1; 243 case IB_WIDTH_4X: return 4; 244 case IB_WIDTH_8X: return 8; 245 case IB_WIDTH_12X: return 12; 246 default: return -1; 247 } 248 } 249 250 enum ib_port_speed { 251 IB_SPEED_SDR = 1, 252 IB_SPEED_DDR = 2, 253 IB_SPEED_QDR = 4, 254 IB_SPEED_FDR10 = 8, 255 IB_SPEED_FDR = 16, 256 IB_SPEED_EDR = 32 257 }; 258 259 struct ib_protocol_stats { 260 /* TBD... */ 261 }; 262 263 struct iw_protocol_stats { 264 u64 ipInReceives; 265 u64 ipInHdrErrors; 266 u64 ipInTooBigErrors; 267 u64 ipInNoRoutes; 268 u64 ipInAddrErrors; 269 u64 ipInUnknownProtos; 270 u64 ipInTruncatedPkts; 271 u64 ipInDiscards; 272 u64 ipInDelivers; 273 u64 ipOutForwDatagrams; 274 u64 ipOutRequests; 275 u64 ipOutDiscards; 276 u64 ipOutNoRoutes; 277 u64 ipReasmTimeout; 278 u64 ipReasmReqds; 279 u64 ipReasmOKs; 280 u64 ipReasmFails; 281 u64 ipFragOKs; 282 u64 ipFragFails; 283 u64 ipFragCreates; 284 u64 ipInMcastPkts; 285 u64 ipOutMcastPkts; 286 u64 ipInBcastPkts; 287 u64 ipOutBcastPkts; 288 289 u64 tcpRtoAlgorithm; 290 u64 tcpRtoMin; 291 u64 tcpRtoMax; 292 u64 tcpMaxConn; 293 u64 tcpActiveOpens; 294 u64 tcpPassiveOpens; 295 u64 tcpAttemptFails; 296 u64 tcpEstabResets; 297 u64 tcpCurrEstab; 298 u64 tcpInSegs; 299 u64 tcpOutSegs; 300 u64 tcpRetransSegs; 301 u64 tcpInErrs; 302 u64 tcpOutRsts; 303 }; 304 305 union rdma_protocol_stats { 306 struct ib_protocol_stats ib; 307 struct iw_protocol_stats iw; 308 }; 309 310 struct ib_port_attr { 311 enum ib_port_state state; 312 enum ib_mtu max_mtu; 313 enum ib_mtu active_mtu; 314 int gid_tbl_len; 315 u32 port_cap_flags; 316 u32 max_msg_sz; 317 u32 bad_pkey_cntr; 318 u32 qkey_viol_cntr; 319 u16 pkey_tbl_len; 320 u16 lid; 321 u16 sm_lid; 322 u8 lmc; 323 u8 max_vl_num; 324 u8 sm_sl; 325 u8 subnet_timeout; 326 u8 init_type_reply; 327 u8 active_width; 328 u8 active_speed; 329 u8 phys_state; 330 enum rdma_link_layer link_layer; 331 }; 332 333 enum ib_device_modify_flags { 334 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 335 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 336 }; 337 338 struct ib_device_modify { 339 u64 sys_image_guid; 340 char node_desc[64]; 341 }; 342 343 enum ib_port_modify_flags { 344 IB_PORT_SHUTDOWN = 1, 345 IB_PORT_INIT_TYPE = (1<<2), 346 IB_PORT_RESET_QKEY_CNTR = (1<<3) 347 }; 348 349 struct ib_port_modify { 350 u32 set_port_cap_mask; 351 u32 clr_port_cap_mask; 352 u8 init_type; 353 }; 354 355 enum ib_event_type { 356 IB_EVENT_CQ_ERR, 357 IB_EVENT_QP_FATAL, 358 IB_EVENT_QP_REQ_ERR, 359 IB_EVENT_QP_ACCESS_ERR, 360 IB_EVENT_COMM_EST, 361 IB_EVENT_SQ_DRAINED, 362 IB_EVENT_PATH_MIG, 363 IB_EVENT_PATH_MIG_ERR, 364 IB_EVENT_DEVICE_FATAL, 365 IB_EVENT_PORT_ACTIVE, 366 IB_EVENT_PORT_ERR, 367 IB_EVENT_LID_CHANGE, 368 IB_EVENT_PKEY_CHANGE, 369 IB_EVENT_SM_CHANGE, 370 IB_EVENT_SRQ_ERR, 371 IB_EVENT_SRQ_LIMIT_REACHED, 372 IB_EVENT_QP_LAST_WQE_REACHED, 373 IB_EVENT_CLIENT_REREGISTER, 374 IB_EVENT_GID_CHANGE, 375 }; 376 377 enum ib_event_flags { 378 IB_XRC_QP_EVENT_FLAG = 0x80000000, 379 }; 380 381 struct ib_event { 382 struct ib_device *device; 383 union { 384 struct ib_cq *cq; 385 struct ib_qp *qp; 386 struct ib_srq *srq; 387 u8 port_num; 388 u32 xrc_qp_num; 389 } element; 390 enum ib_event_type event; 391 }; 392 393 struct ib_event_handler { 394 struct ib_device *device; 395 void (*handler)(struct ib_event_handler *, struct ib_event *); 396 struct list_head list; 397 }; 398 399 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 400 do { \ 401 (_ptr)->device = _device; \ 402 (_ptr)->handler = _handler; \ 403 INIT_LIST_HEAD(&(_ptr)->list); \ 404 } while (0) 405 406 struct ib_global_route { 407 union ib_gid dgid; 408 u32 flow_label; 409 u8 sgid_index; 410 u8 hop_limit; 411 u8 traffic_class; 412 }; 413 414 struct ib_grh { 415 __be32 version_tclass_flow; 416 __be16 paylen; 417 u8 next_hdr; 418 u8 hop_limit; 419 union ib_gid sgid; 420 union ib_gid dgid; 421 }; 422 423 enum { 424 IB_MULTICAST_QPN = 0xffffff 425 }; 426 427 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 428 429 enum ib_ah_flags { 430 IB_AH_GRH = 1 431 }; 432 433 enum ib_rate { 434 IB_RATE_PORT_CURRENT = 0, 435 IB_RATE_2_5_GBPS = 2, 436 IB_RATE_5_GBPS = 5, 437 IB_RATE_10_GBPS = 3, 438 IB_RATE_20_GBPS = 6, 439 IB_RATE_30_GBPS = 4, 440 IB_RATE_40_GBPS = 7, 441 IB_RATE_60_GBPS = 8, 442 IB_RATE_80_GBPS = 9, 443 IB_RATE_120_GBPS = 10, 444 IB_RATE_14_GBPS = 11, 445 IB_RATE_56_GBPS = 12, 446 IB_RATE_112_GBPS = 13, 447 IB_RATE_168_GBPS = 14, 448 IB_RATE_25_GBPS = 15, 449 IB_RATE_100_GBPS = 16, 450 IB_RATE_200_GBPS = 17, 451 IB_RATE_300_GBPS = 18 452 }; 453 454 /** 455 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 456 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 457 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 458 * @rate: rate to convert. 459 */ 460 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 461 462 /** 463 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 464 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 465 * @rate: rate to convert. 466 */ 467 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 468 469 /** 470 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 471 * enum. 472 * @mult: multiple to convert. 473 */ 474 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 475 476 struct ib_ah_attr { 477 struct ib_global_route grh; 478 u16 dlid; 479 u8 sl; 480 u8 src_path_bits; 481 u8 static_rate; 482 u8 ah_flags; 483 u8 port_num; 484 }; 485 486 enum ib_wc_status { 487 IB_WC_SUCCESS, 488 IB_WC_LOC_LEN_ERR, 489 IB_WC_LOC_QP_OP_ERR, 490 IB_WC_LOC_EEC_OP_ERR, 491 IB_WC_LOC_PROT_ERR, 492 IB_WC_WR_FLUSH_ERR, 493 IB_WC_MW_BIND_ERR, 494 IB_WC_BAD_RESP_ERR, 495 IB_WC_LOC_ACCESS_ERR, 496 IB_WC_REM_INV_REQ_ERR, 497 IB_WC_REM_ACCESS_ERR, 498 IB_WC_REM_OP_ERR, 499 IB_WC_RETRY_EXC_ERR, 500 IB_WC_RNR_RETRY_EXC_ERR, 501 IB_WC_LOC_RDD_VIOL_ERR, 502 IB_WC_REM_INV_RD_REQ_ERR, 503 IB_WC_REM_ABORT_ERR, 504 IB_WC_INV_EECN_ERR, 505 IB_WC_INV_EEC_STATE_ERR, 506 IB_WC_FATAL_ERR, 507 IB_WC_RESP_TIMEOUT_ERR, 508 IB_WC_GENERAL_ERR 509 }; 510 511 enum ib_wc_opcode { 512 IB_WC_SEND, 513 IB_WC_RDMA_WRITE, 514 IB_WC_RDMA_READ, 515 IB_WC_COMP_SWAP, 516 IB_WC_FETCH_ADD, 517 IB_WC_BIND_MW, 518 IB_WC_LSO, 519 IB_WC_LOCAL_INV, 520 IB_WC_FAST_REG_MR, 521 IB_WC_MASKED_COMP_SWAP, 522 IB_WC_MASKED_FETCH_ADD, 523 /* 524 * Set value of IB_WC_RECV so consumers can test if a completion is a 525 * receive by testing (opcode & IB_WC_RECV). 526 */ 527 IB_WC_RECV = 1 << 7, 528 IB_WC_RECV_RDMA_WITH_IMM 529 }; 530 531 enum ib_wc_flags { 532 IB_WC_GRH = 1, 533 IB_WC_WITH_IMM = (1<<1), 534 IB_WC_WITH_INVALIDATE = (1<<2), 535 IB_WC_IP_CSUM_OK = (1<<3), 536 }; 537 538 struct ib_wc { 539 u64 wr_id; 540 enum ib_wc_status status; 541 enum ib_wc_opcode opcode; 542 u32 vendor_err; 543 u32 byte_len; 544 struct ib_qp *qp; 545 union { 546 __be32 imm_data; 547 u32 invalidate_rkey; 548 } ex; 549 u32 src_qp; 550 int wc_flags; 551 u16 pkey_index; 552 u16 slid; 553 u8 sl; 554 u8 dlid_path_bits; 555 u8 port_num; /* valid only for DR SMPs on switches */ 556 int csum_ok; 557 }; 558 559 enum ib_cq_notify_flags { 560 IB_CQ_SOLICITED = 1 << 0, 561 IB_CQ_NEXT_COMP = 1 << 1, 562 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 563 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 564 }; 565 566 enum ib_srq_type { 567 IB_SRQT_BASIC, 568 IB_SRQT_XRC 569 }; 570 571 enum ib_srq_attr_mask { 572 IB_SRQ_MAX_WR = 1 << 0, 573 IB_SRQ_LIMIT = 1 << 1, 574 }; 575 576 struct ib_srq_attr { 577 u32 max_wr; 578 u32 max_sge; 579 u32 srq_limit; 580 }; 581 582 struct ib_srq_init_attr { 583 void (*event_handler)(struct ib_event *, void *); 584 void *srq_context; 585 struct ib_srq_attr attr; 586 enum ib_srq_type srq_type; 587 588 union { 589 struct { 590 struct ib_xrcd *xrcd; 591 struct ib_cq *cq; 592 } xrc; 593 } ext; 594 }; 595 596 struct ib_qp_cap { 597 u32 max_send_wr; 598 u32 max_recv_wr; 599 u32 max_send_sge; 600 u32 max_recv_sge; 601 u32 max_inline_data; 602 u32 qpg_tss_mask_sz; 603 }; 604 605 enum ib_sig_type { 606 IB_SIGNAL_ALL_WR, 607 IB_SIGNAL_REQ_WR 608 }; 609 610 enum ib_qp_type { 611 /* 612 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 613 * here (and in that order) since the MAD layer uses them as 614 * indices into a 2-entry table. 615 */ 616 IB_QPT_SMI, 617 IB_QPT_GSI, 618 619 IB_QPT_RC, 620 IB_QPT_UC, 621 IB_QPT_UD, 622 IB_QPT_XRC, 623 IB_QPT_RAW_IPV6, 624 IB_QPT_RAW_ETHERTYPE, 625 IB_QPT_RAW_PACKET = 8, 626 IB_QPT_XRC_INI = 9, 627 IB_QPT_XRC_TGT, 628 IB_QPT_MAX, 629 }; 630 631 enum ib_qp_create_flags { 632 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 633 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 634 IB_QP_CREATE_NETIF_QP = 1 << 2, 635 /* reserve bits 26-31 for low level drivers' internal use */ 636 IB_QP_CREATE_RESERVED_START = 1 << 26, 637 IB_QP_CREATE_RESERVED_END = 1 << 31, 638 }; 639 640 enum ib_qpg_type { 641 IB_QPG_NONE = 0, 642 IB_QPG_PARENT = (1<<0), 643 IB_QPG_CHILD_RX = (1<<1), 644 IB_QPG_CHILD_TX = (1<<2) 645 }; 646 647 struct ib_qpg_init_attrib { 648 u32 tss_child_count; 649 u32 rss_child_count; 650 }; 651 652 struct ib_qp_init_attr { 653 void (*event_handler)(struct ib_event *, void *); 654 void *qp_context; 655 struct ib_cq *send_cq; 656 struct ib_cq *recv_cq; 657 struct ib_srq *srq; 658 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 659 struct ib_qp_cap cap; 660 union { 661 struct ib_qp *qpg_parent; /* see qpg_type */ 662 struct ib_qpg_init_attrib parent_attrib; 663 } pp; 664 enum ib_sig_type sq_sig_type; 665 enum ib_qp_type qp_type; 666 enum ib_qp_create_flags create_flags; 667 enum ib_qpg_type qpg_type; 668 u8 port_num; /* special QP types only */ 669 }; 670 671 struct ib_qp_open_attr { 672 void (*event_handler)(struct ib_event *, void *); 673 void *qp_context; 674 u32 qp_num; 675 enum ib_qp_type qp_type; 676 }; 677 678 enum ib_rnr_timeout { 679 IB_RNR_TIMER_655_36 = 0, 680 IB_RNR_TIMER_000_01 = 1, 681 IB_RNR_TIMER_000_02 = 2, 682 IB_RNR_TIMER_000_03 = 3, 683 IB_RNR_TIMER_000_04 = 4, 684 IB_RNR_TIMER_000_06 = 5, 685 IB_RNR_TIMER_000_08 = 6, 686 IB_RNR_TIMER_000_12 = 7, 687 IB_RNR_TIMER_000_16 = 8, 688 IB_RNR_TIMER_000_24 = 9, 689 IB_RNR_TIMER_000_32 = 10, 690 IB_RNR_TIMER_000_48 = 11, 691 IB_RNR_TIMER_000_64 = 12, 692 IB_RNR_TIMER_000_96 = 13, 693 IB_RNR_TIMER_001_28 = 14, 694 IB_RNR_TIMER_001_92 = 15, 695 IB_RNR_TIMER_002_56 = 16, 696 IB_RNR_TIMER_003_84 = 17, 697 IB_RNR_TIMER_005_12 = 18, 698 IB_RNR_TIMER_007_68 = 19, 699 IB_RNR_TIMER_010_24 = 20, 700 IB_RNR_TIMER_015_36 = 21, 701 IB_RNR_TIMER_020_48 = 22, 702 IB_RNR_TIMER_030_72 = 23, 703 IB_RNR_TIMER_040_96 = 24, 704 IB_RNR_TIMER_061_44 = 25, 705 IB_RNR_TIMER_081_92 = 26, 706 IB_RNR_TIMER_122_88 = 27, 707 IB_RNR_TIMER_163_84 = 28, 708 IB_RNR_TIMER_245_76 = 29, 709 IB_RNR_TIMER_327_68 = 30, 710 IB_RNR_TIMER_491_52 = 31 711 }; 712 713 enum ib_qp_attr_mask { 714 IB_QP_STATE = 1, 715 IB_QP_CUR_STATE = (1<<1), 716 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 717 IB_QP_ACCESS_FLAGS = (1<<3), 718 IB_QP_PKEY_INDEX = (1<<4), 719 IB_QP_PORT = (1<<5), 720 IB_QP_QKEY = (1<<6), 721 IB_QP_AV = (1<<7), 722 IB_QP_PATH_MTU = (1<<8), 723 IB_QP_TIMEOUT = (1<<9), 724 IB_QP_RETRY_CNT = (1<<10), 725 IB_QP_RNR_RETRY = (1<<11), 726 IB_QP_RQ_PSN = (1<<12), 727 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 728 IB_QP_ALT_PATH = (1<<14), 729 IB_QP_MIN_RNR_TIMER = (1<<15), 730 IB_QP_SQ_PSN = (1<<16), 731 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 732 IB_QP_PATH_MIG_STATE = (1<<18), 733 IB_QP_CAP = (1<<19), 734 IB_QP_DEST_QPN = (1<<20), 735 IB_QP_GROUP_RSS = (1<<21) 736 }; 737 738 enum ib_qp_state { 739 IB_QPS_RESET, 740 IB_QPS_INIT, 741 IB_QPS_RTR, 742 IB_QPS_RTS, 743 IB_QPS_SQD, 744 IB_QPS_SQE, 745 IB_QPS_ERR 746 }; 747 748 enum ib_mig_state { 749 IB_MIG_MIGRATED, 750 IB_MIG_REARM, 751 IB_MIG_ARMED 752 }; 753 754 struct ib_qp_attr { 755 enum ib_qp_state qp_state; 756 enum ib_qp_state cur_qp_state; 757 enum ib_mtu path_mtu; 758 enum ib_mig_state path_mig_state; 759 u32 qkey; 760 u32 rq_psn; 761 u32 sq_psn; 762 u32 dest_qp_num; 763 int qp_access_flags; 764 struct ib_qp_cap cap; 765 struct ib_ah_attr ah_attr; 766 struct ib_ah_attr alt_ah_attr; 767 u16 pkey_index; 768 u16 alt_pkey_index; 769 u8 en_sqd_async_notify; 770 u8 sq_draining; 771 u8 max_rd_atomic; 772 u8 max_dest_rd_atomic; 773 u8 min_rnr_timer; 774 u8 port_num; 775 u8 timeout; 776 u8 retry_cnt; 777 u8 rnr_retry; 778 u8 alt_port_num; 779 u8 alt_timeout; 780 }; 781 782 enum ib_wr_opcode { 783 IB_WR_RDMA_WRITE, 784 IB_WR_RDMA_WRITE_WITH_IMM, 785 IB_WR_SEND, 786 IB_WR_SEND_WITH_IMM, 787 IB_WR_RDMA_READ, 788 IB_WR_ATOMIC_CMP_AND_SWP, 789 IB_WR_ATOMIC_FETCH_AND_ADD, 790 IB_WR_LSO, 791 IB_WR_BIG_LSO, 792 IB_WR_SEND_WITH_INV, 793 IB_WR_RDMA_READ_WITH_INV, 794 IB_WR_LOCAL_INV, 795 IB_WR_FAST_REG_MR, 796 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 797 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 798 }; 799 800 enum ib_send_flags { 801 IB_SEND_FENCE = 1, 802 IB_SEND_SIGNALED = (1<<1), 803 IB_SEND_SOLICITED = (1<<2), 804 IB_SEND_INLINE = (1<<3), 805 IB_SEND_IP_CSUM = (1<<4) 806 }; 807 808 enum ib_flow_types { 809 IB_FLOW_ETH = 0, 810 IB_FLOW_IB_UC = 1, 811 IB_FLOW_IB_MC_IPV4 = 2, 812 IB_FLOW_IB_MC_IPV6 = 3 813 }; 814 815 enum { 816 IB_FLOW_L4_NONE = 0, 817 IB_FLOW_L4_OTHER = 3, 818 IB_FLOW_L4_UDP = 5, 819 IB_FLOW_L4_TCP = 6 820 }; 821 822 struct ib_sge { 823 u64 addr; 824 u32 length; 825 u32 lkey; 826 }; 827 828 struct ib_fast_reg_page_list { 829 struct ib_device *device; 830 u64 *page_list; 831 unsigned int max_page_list_len; 832 }; 833 834 struct ib_send_wr { 835 struct ib_send_wr *next; 836 u64 wr_id; 837 struct ib_sge *sg_list; 838 int num_sge; 839 enum ib_wr_opcode opcode; 840 int send_flags; 841 union { 842 __be32 imm_data; 843 u32 invalidate_rkey; 844 } ex; 845 union { 846 struct { 847 u64 remote_addr; 848 u32 rkey; 849 } rdma; 850 struct { 851 u64 remote_addr; 852 u64 compare_add; 853 u64 swap; 854 u64 compare_add_mask; 855 u64 swap_mask; 856 u32 rkey; 857 } atomic; 858 struct { 859 struct ib_ah *ah; 860 void *header; 861 int hlen; 862 int mss; 863 u32 remote_qpn; 864 u32 remote_qkey; 865 u16 pkey_index; /* valid for GSI only */ 866 u8 port_num; /* valid for DR SMPs on switch only */ 867 } ud; 868 struct { 869 u64 iova_start; 870 struct ib_fast_reg_page_list *page_list; 871 unsigned int page_shift; 872 unsigned int page_list_len; 873 u32 length; 874 int access_flags; 875 u32 rkey; 876 } fast_reg; 877 struct { 878 struct ib_unpacked_lrh *lrh; 879 u32 eth_type; 880 u8 static_rate; 881 } raw_ety; 882 } wr; 883 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 884 }; 885 886 struct ib_recv_wr { 887 struct ib_recv_wr *next; 888 u64 wr_id; 889 struct ib_sge *sg_list; 890 int num_sge; 891 }; 892 893 enum ib_access_flags { 894 IB_ACCESS_LOCAL_WRITE = 1, 895 IB_ACCESS_REMOTE_WRITE = (1<<1), 896 IB_ACCESS_REMOTE_READ = (1<<2), 897 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 898 IB_ACCESS_MW_BIND = (1<<4), 899 IB_ACCESS_ALLOCATE_MR = (1<<5), 900 IB_ACCESS_SHARED_MR_USER_READ = (1<<6), 901 IB_ACCESS_SHARED_MR_USER_WRITE = (1<<7), 902 IB_ACCESS_SHARED_MR_GROUP_READ = (1<<8), 903 IB_ACCESS_SHARED_MR_GROUP_WRITE = (1<<9), 904 IB_ACCESS_SHARED_MR_OTHER_READ = (1<<10), 905 IB_ACCESS_SHARED_MR_OTHER_WRITE = (1<<11) 906 907 }; 908 909 struct ib_phys_buf { 910 u64 addr; 911 u64 size; 912 }; 913 914 struct ib_mr_attr { 915 struct ib_pd *pd; 916 u64 device_virt_addr; 917 u64 size; 918 int mr_access_flags; 919 u32 lkey; 920 u32 rkey; 921 }; 922 923 enum ib_mr_rereg_flags { 924 IB_MR_REREG_TRANS = 1, 925 IB_MR_REREG_PD = (1<<1), 926 IB_MR_REREG_ACCESS = (1<<2) 927 }; 928 929 struct ib_mw_bind { 930 struct ib_mr *mr; 931 u64 wr_id; 932 u64 addr; 933 u32 length; 934 int send_flags; 935 int mw_access_flags; 936 }; 937 938 struct ib_fmr_attr { 939 int max_pages; 940 int max_maps; 941 u8 page_shift; 942 }; 943 944 struct ib_ucontext { 945 struct ib_device *device; 946 struct list_head pd_list; 947 struct list_head mr_list; 948 struct list_head mw_list; 949 struct list_head cq_list; 950 struct list_head qp_list; 951 struct list_head srq_list; 952 struct list_head ah_list; 953 struct list_head xrcd_list; 954 int closing; 955 }; 956 957 struct ib_uobject { 958 u64 user_handle; /* handle given to us by userspace */ 959 struct ib_ucontext *context; /* associated user context */ 960 void *object; /* containing object */ 961 struct list_head list; /* link to context's list */ 962 int id; /* index into kernel idr */ 963 struct kref ref; 964 struct rw_semaphore mutex; /* protects .live */ 965 int live; 966 }; 967 968 struct ib_udata { 969 void __user *inbuf; 970 void __user *outbuf; 971 size_t inlen; 972 size_t outlen; 973 }; 974 975 struct ib_uxrc_rcv_object { 976 struct list_head list; /* link to context's list */ 977 u32 qp_num; 978 u32 domain_handle; 979 }; 980 981 struct ib_pd { 982 struct ib_device *device; 983 struct ib_uobject *uobject; 984 atomic_t usecnt; /* count all resources */ 985 }; 986 987 struct ib_xrcd { 988 struct ib_device *device; 989 struct ib_uobject *uobject; 990 atomic_t usecnt; /* count all exposed resources */ 991 struct inode *inode; 992 struct rb_node node; 993 994 struct mutex tgt_qp_mutex; 995 struct list_head tgt_qp_list; 996 }; 997 998 struct ib_ah { 999 struct ib_device *device; 1000 struct ib_pd *pd; 1001 struct ib_uobject *uobject; 1002 }; 1003 1004 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1005 1006 struct ib_cq { 1007 struct ib_device *device; 1008 struct ib_uobject *uobject; 1009 ib_comp_handler comp_handler; 1010 void (*event_handler)(struct ib_event *, void *); 1011 void *cq_context; 1012 int cqe; 1013 atomic_t usecnt; /* count number of work queues */ 1014 }; 1015 1016 struct ib_srq { 1017 struct ib_device *device; 1018 struct ib_pd *pd; 1019 struct ib_uobject *uobject; 1020 void (*event_handler)(struct ib_event *, void *); 1021 void *srq_context; 1022 enum ib_srq_type srq_type; 1023 atomic_t usecnt; 1024 1025 union { 1026 struct { 1027 struct ib_xrcd *xrcd; 1028 struct ib_cq *cq; 1029 u32 srq_num; 1030 } xrc; 1031 } ext; 1032 }; 1033 1034 struct ib_qp { 1035 struct ib_device *device; 1036 struct ib_pd *pd; 1037 struct ib_cq *send_cq; 1038 struct ib_cq *recv_cq; 1039 struct ib_srq *srq; 1040 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1041 struct list_head xrcd_list; 1042 atomic_t usecnt; /* count times opened, mcast attaches */ 1043 struct list_head open_list; 1044 struct ib_qp *real_qp; 1045 struct ib_uobject *uobject; 1046 void (*event_handler)(struct ib_event *, void *); 1047 void *qp_context; 1048 u32 qp_num; 1049 enum ib_qp_type qp_type; 1050 enum ib_qpg_type qpg_type; 1051 }; 1052 1053 struct ib_mr { 1054 struct ib_device *device; 1055 struct ib_pd *pd; 1056 struct ib_uobject *uobject; 1057 u32 lkey; 1058 u32 rkey; 1059 atomic_t usecnt; /* count number of MWs */ 1060 }; 1061 1062 struct ib_mw { 1063 struct ib_device *device; 1064 struct ib_pd *pd; 1065 struct ib_uobject *uobject; 1066 u32 rkey; 1067 }; 1068 1069 struct ib_fmr { 1070 struct ib_device *device; 1071 struct ib_pd *pd; 1072 struct list_head list; 1073 u32 lkey; 1074 u32 rkey; 1075 }; 1076 1077 struct ib_flow_spec { 1078 enum ib_flow_types type; 1079 union { 1080 struct { 1081 __be16 ethertype; 1082 __be16 vlan; 1083 u8 vlan_present; 1084 u8 mac[6]; 1085 u8 port; 1086 } eth; 1087 struct { 1088 __be32 qpn; 1089 } ib_uc; 1090 struct { 1091 u8 mgid[16]; 1092 } ib_mc; 1093 } l2_id; 1094 __be32 src_ip; 1095 __be32 dst_ip; 1096 __be16 src_port; 1097 __be16 dst_port; 1098 u8 l4_protocol; 1099 u8 block_mc_loopback; 1100 u8 rule_type; 1101 }; 1102 1103 struct ib_mad; 1104 struct ib_grh; 1105 1106 enum ib_process_mad_flags { 1107 IB_MAD_IGNORE_MKEY = 1, 1108 IB_MAD_IGNORE_BKEY = 2, 1109 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1110 }; 1111 1112 enum ib_mad_result { 1113 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1114 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1115 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1116 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1117 }; 1118 1119 #define IB_DEVICE_NAME_MAX 64 1120 1121 struct ib_cache { 1122 rwlock_t lock; 1123 struct ib_event_handler event_handler; 1124 struct ib_pkey_cache **pkey_cache; 1125 struct ib_gid_cache **gid_cache; 1126 u8 *lmc_cache; 1127 }; 1128 1129 struct ib_dma_mapping_ops { 1130 int (*mapping_error)(struct ib_device *dev, 1131 u64 dma_addr); 1132 u64 (*map_single)(struct ib_device *dev, 1133 void *ptr, size_t size, 1134 enum dma_data_direction direction); 1135 void (*unmap_single)(struct ib_device *dev, 1136 u64 addr, size_t size, 1137 enum dma_data_direction direction); 1138 u64 (*map_page)(struct ib_device *dev, 1139 struct page *page, unsigned long offset, 1140 size_t size, 1141 enum dma_data_direction direction); 1142 void (*unmap_page)(struct ib_device *dev, 1143 u64 addr, size_t size, 1144 enum dma_data_direction direction); 1145 int (*map_sg)(struct ib_device *dev, 1146 struct scatterlist *sg, int nents, 1147 enum dma_data_direction direction); 1148 void (*unmap_sg)(struct ib_device *dev, 1149 struct scatterlist *sg, int nents, 1150 enum dma_data_direction direction); 1151 u64 (*dma_address)(struct ib_device *dev, 1152 struct scatterlist *sg); 1153 unsigned int (*dma_len)(struct ib_device *dev, 1154 struct scatterlist *sg); 1155 void (*sync_single_for_cpu)(struct ib_device *dev, 1156 u64 dma_handle, 1157 size_t size, 1158 enum dma_data_direction dir); 1159 void (*sync_single_for_device)(struct ib_device *dev, 1160 u64 dma_handle, 1161 size_t size, 1162 enum dma_data_direction dir); 1163 void *(*alloc_coherent)(struct ib_device *dev, 1164 size_t size, 1165 u64 *dma_handle, 1166 gfp_t flag); 1167 void (*free_coherent)(struct ib_device *dev, 1168 size_t size, void *cpu_addr, 1169 u64 dma_handle); 1170 }; 1171 1172 struct iw_cm_verbs; 1173 1174 struct ib_device { 1175 struct device *dma_device; 1176 1177 char name[IB_DEVICE_NAME_MAX]; 1178 1179 struct list_head event_handler_list; 1180 spinlock_t event_handler_lock; 1181 1182 spinlock_t client_data_lock; 1183 struct list_head core_list; 1184 struct list_head client_data_list; 1185 1186 struct ib_cache cache; 1187 int *pkey_tbl_len; 1188 int *gid_tbl_len; 1189 1190 int num_comp_vectors; 1191 1192 struct iw_cm_verbs *iwcm; 1193 1194 int (*get_protocol_stats)(struct ib_device *device, 1195 union rdma_protocol_stats *stats); 1196 int (*query_device)(struct ib_device *device, 1197 struct ib_device_attr *device_attr); 1198 int (*query_port)(struct ib_device *device, 1199 u8 port_num, 1200 struct ib_port_attr *port_attr); 1201 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1202 u8 port_num); 1203 int (*query_gid)(struct ib_device *device, 1204 u8 port_num, int index, 1205 union ib_gid *gid); 1206 int (*query_pkey)(struct ib_device *device, 1207 u8 port_num, u16 index, u16 *pkey); 1208 int (*modify_device)(struct ib_device *device, 1209 int device_modify_mask, 1210 struct ib_device_modify *device_modify); 1211 int (*modify_port)(struct ib_device *device, 1212 u8 port_num, int port_modify_mask, 1213 struct ib_port_modify *port_modify); 1214 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1215 struct ib_udata *udata); 1216 int (*dealloc_ucontext)(struct ib_ucontext *context); 1217 int (*mmap)(struct ib_ucontext *context, 1218 struct vm_area_struct *vma); 1219 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1220 struct ib_ucontext *context, 1221 struct ib_udata *udata); 1222 int (*dealloc_pd)(struct ib_pd *pd); 1223 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1224 struct ib_ah_attr *ah_attr); 1225 int (*modify_ah)(struct ib_ah *ah, 1226 struct ib_ah_attr *ah_attr); 1227 int (*query_ah)(struct ib_ah *ah, 1228 struct ib_ah_attr *ah_attr); 1229 int (*destroy_ah)(struct ib_ah *ah); 1230 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1231 struct ib_srq_init_attr *srq_init_attr, 1232 struct ib_udata *udata); 1233 int (*modify_srq)(struct ib_srq *srq, 1234 struct ib_srq_attr *srq_attr, 1235 enum ib_srq_attr_mask srq_attr_mask, 1236 struct ib_udata *udata); 1237 int (*query_srq)(struct ib_srq *srq, 1238 struct ib_srq_attr *srq_attr); 1239 int (*destroy_srq)(struct ib_srq *srq); 1240 int (*post_srq_recv)(struct ib_srq *srq, 1241 struct ib_recv_wr *recv_wr, 1242 struct ib_recv_wr **bad_recv_wr); 1243 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1244 struct ib_qp_init_attr *qp_init_attr, 1245 struct ib_udata *udata); 1246 int (*modify_qp)(struct ib_qp *qp, 1247 struct ib_qp_attr *qp_attr, 1248 int qp_attr_mask, 1249 struct ib_udata *udata); 1250 int (*query_qp)(struct ib_qp *qp, 1251 struct ib_qp_attr *qp_attr, 1252 int qp_attr_mask, 1253 struct ib_qp_init_attr *qp_init_attr); 1254 int (*destroy_qp)(struct ib_qp *qp); 1255 int (*post_send)(struct ib_qp *qp, 1256 struct ib_send_wr *send_wr, 1257 struct ib_send_wr **bad_send_wr); 1258 int (*post_recv)(struct ib_qp *qp, 1259 struct ib_recv_wr *recv_wr, 1260 struct ib_recv_wr **bad_recv_wr); 1261 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1262 int comp_vector, 1263 struct ib_ucontext *context, 1264 struct ib_udata *udata); 1265 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1266 u16 cq_period); 1267 int (*destroy_cq)(struct ib_cq *cq); 1268 int (*resize_cq)(struct ib_cq *cq, int cqe, 1269 struct ib_udata *udata); 1270 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1271 struct ib_wc *wc); 1272 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1273 int (*req_notify_cq)(struct ib_cq *cq, 1274 enum ib_cq_notify_flags flags); 1275 int (*req_ncomp_notif)(struct ib_cq *cq, 1276 int wc_cnt); 1277 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1278 int mr_access_flags); 1279 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1280 struct ib_phys_buf *phys_buf_array, 1281 int num_phys_buf, 1282 int mr_access_flags, 1283 u64 *iova_start); 1284 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1285 u64 start, u64 length, 1286 u64 virt_addr, 1287 int mr_access_flags, 1288 struct ib_udata *udata, 1289 int mr_id); 1290 int (*query_mr)(struct ib_mr *mr, 1291 struct ib_mr_attr *mr_attr); 1292 int (*dereg_mr)(struct ib_mr *mr); 1293 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1294 int max_page_list_len); 1295 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1296 int page_list_len); 1297 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1298 int (*rereg_phys_mr)(struct ib_mr *mr, 1299 int mr_rereg_mask, 1300 struct ib_pd *pd, 1301 struct ib_phys_buf *phys_buf_array, 1302 int num_phys_buf, 1303 int mr_access_flags, 1304 u64 *iova_start); 1305 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1306 int (*bind_mw)(struct ib_qp *qp, 1307 struct ib_mw *mw, 1308 struct ib_mw_bind *mw_bind); 1309 int (*dealloc_mw)(struct ib_mw *mw); 1310 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1311 int mr_access_flags, 1312 struct ib_fmr_attr *fmr_attr); 1313 int (*map_phys_fmr)(struct ib_fmr *fmr, 1314 u64 *page_list, int list_len, 1315 u64 iova); 1316 int (*unmap_fmr)(struct list_head *fmr_list); 1317 int (*dealloc_fmr)(struct ib_fmr *fmr); 1318 int (*attach_mcast)(struct ib_qp *qp, 1319 union ib_gid *gid, 1320 u16 lid); 1321 int (*detach_mcast)(struct ib_qp *qp, 1322 union ib_gid *gid, 1323 u16 lid); 1324 int (*process_mad)(struct ib_device *device, 1325 int process_mad_flags, 1326 u8 port_num, 1327 struct ib_wc *in_wc, 1328 struct ib_grh *in_grh, 1329 struct ib_mad *in_mad, 1330 struct ib_mad *out_mad); 1331 struct ib_srq * (*create_xrc_srq)(struct ib_pd *pd, 1332 struct ib_cq *xrc_cq, 1333 struct ib_xrcd *xrcd, 1334 struct ib_srq_init_attr *srq_init_attr, 1335 struct ib_udata *udata); 1336 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1337 struct ib_ucontext *ucontext, 1338 struct ib_udata *udata); 1339 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1340 int (*create_xrc_rcv_qp)(struct ib_qp_init_attr *init_attr, 1341 u32 *qp_num); 1342 int (*modify_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1343 u32 qp_num, 1344 struct ib_qp_attr *attr, 1345 int attr_mask); 1346 int (*query_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1347 u32 qp_num, 1348 struct ib_qp_attr *attr, 1349 int attr_mask, 1350 struct ib_qp_init_attr *init_attr); 1351 int (*reg_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1352 void *context, 1353 u32 qp_num); 1354 int (*unreg_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1355 void *context, 1356 u32 qp_num); 1357 int (*attach_flow)(struct ib_qp *qp, 1358 struct ib_flow_spec *spec, 1359 int priority); 1360 int (*detach_flow)(struct ib_qp *qp, 1361 struct ib_flow_spec *spec, 1362 int priority); 1363 1364 unsigned long (*get_unmapped_area)(struct file *file, 1365 unsigned long addr, 1366 unsigned long len, unsigned long pgoff, 1367 unsigned long flags); 1368 struct ib_dma_mapping_ops *dma_ops; 1369 1370 struct module *owner; 1371 struct device dev; 1372 struct kobject *ports_parent; 1373 struct list_head port_list; 1374 1375 enum { 1376 IB_DEV_UNINITIALIZED, 1377 IB_DEV_REGISTERED, 1378 IB_DEV_UNREGISTERED 1379 } reg_state; 1380 1381 int uverbs_abi_ver; 1382 u64 uverbs_cmd_mask; 1383 1384 char node_desc[64]; 1385 __be64 node_guid; 1386 u32 local_dma_lkey; 1387 u8 node_type; 1388 u8 phys_port_cnt; 1389 struct rb_root ib_uverbs_xrcd_table; 1390 struct mutex xrcd_table_mutex; 1391 }; 1392 1393 struct ib_client { 1394 char *name; 1395 void (*add) (struct ib_device *); 1396 void (*remove)(struct ib_device *); 1397 1398 struct list_head list; 1399 }; 1400 1401 struct ib_device *ib_alloc_device(size_t size); 1402 void ib_dealloc_device(struct ib_device *device); 1403 1404 int ib_register_device(struct ib_device *device, 1405 int (*port_callback)(struct ib_device *, 1406 u8, struct kobject *)); 1407 void ib_unregister_device(struct ib_device *device); 1408 1409 int ib_register_client (struct ib_client *client); 1410 void ib_unregister_client(struct ib_client *client); 1411 1412 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1413 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1414 void *data); 1415 1416 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1417 { 1418 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1419 } 1420 1421 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1422 { 1423 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1424 } 1425 1426 /** 1427 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1428 * contains all required attributes and no attributes not allowed for 1429 * the given QP state transition. 1430 * @cur_state: Current QP state 1431 * @next_state: Next QP state 1432 * @type: QP type 1433 * @mask: Mask of supplied QP attributes 1434 * 1435 * This function is a helper function that a low-level driver's 1436 * modify_qp method can use to validate the consumer's input. It 1437 * checks that cur_state and next_state are valid QP states, that a 1438 * transition from cur_state to next_state is allowed by the IB spec, 1439 * and that the attribute mask supplied is allowed for the transition. 1440 */ 1441 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1442 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1443 1444 int ib_register_event_handler (struct ib_event_handler *event_handler); 1445 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1446 void ib_dispatch_event(struct ib_event *event); 1447 1448 int ib_query_device(struct ib_device *device, 1449 struct ib_device_attr *device_attr); 1450 1451 int ib_query_port(struct ib_device *device, 1452 u8 port_num, struct ib_port_attr *port_attr); 1453 1454 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1455 u8 port_num); 1456 1457 int ib_query_gid(struct ib_device *device, 1458 u8 port_num, int index, union ib_gid *gid); 1459 1460 int ib_query_pkey(struct ib_device *device, 1461 u8 port_num, u16 index, u16 *pkey); 1462 1463 int ib_modify_device(struct ib_device *device, 1464 int device_modify_mask, 1465 struct ib_device_modify *device_modify); 1466 1467 int ib_modify_port(struct ib_device *device, 1468 u8 port_num, int port_modify_mask, 1469 struct ib_port_modify *port_modify); 1470 1471 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1472 u8 *port_num, u16 *index); 1473 1474 int ib_find_pkey(struct ib_device *device, 1475 u8 port_num, u16 pkey, u16 *index); 1476 1477 /** 1478 * ib_alloc_pd - Allocates an unused protection domain. 1479 * @device: The device on which to allocate the protection domain. 1480 * 1481 * A protection domain object provides an association between QPs, shared 1482 * receive queues, address handles, memory regions, and memory windows. 1483 */ 1484 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1485 1486 /** 1487 * ib_dealloc_pd - Deallocates a protection domain. 1488 * @pd: The protection domain to deallocate. 1489 */ 1490 int ib_dealloc_pd(struct ib_pd *pd); 1491 1492 /** 1493 * ib_create_ah - Creates an address handle for the given address vector. 1494 * @pd: The protection domain associated with the address handle. 1495 * @ah_attr: The attributes of the address vector. 1496 * 1497 * The address handle is used to reference a local or global destination 1498 * in all UD QP post sends. 1499 */ 1500 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1501 1502 /** 1503 * ib_init_ah_from_wc - Initializes address handle attributes from a 1504 * work completion. 1505 * @device: Device on which the received message arrived. 1506 * @port_num: Port on which the received message arrived. 1507 * @wc: Work completion associated with the received message. 1508 * @grh: References the received global route header. This parameter is 1509 * ignored unless the work completion indicates that the GRH is valid. 1510 * @ah_attr: Returned attributes that can be used when creating an address 1511 * handle for replying to the message. 1512 */ 1513 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1514 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1515 1516 /** 1517 * ib_create_ah_from_wc - Creates an address handle associated with the 1518 * sender of the specified work completion. 1519 * @pd: The protection domain associated with the address handle. 1520 * @wc: Work completion information associated with a received message. 1521 * @grh: References the received global route header. This parameter is 1522 * ignored unless the work completion indicates that the GRH is valid. 1523 * @port_num: The outbound port number to associate with the address. 1524 * 1525 * The address handle is used to reference a local or global destination 1526 * in all UD QP post sends. 1527 */ 1528 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1529 struct ib_grh *grh, u8 port_num); 1530 1531 /** 1532 * ib_modify_ah - Modifies the address vector associated with an address 1533 * handle. 1534 * @ah: The address handle to modify. 1535 * @ah_attr: The new address vector attributes to associate with the 1536 * address handle. 1537 */ 1538 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1539 1540 /** 1541 * ib_query_ah - Queries the address vector associated with an address 1542 * handle. 1543 * @ah: The address handle to query. 1544 * @ah_attr: The address vector attributes associated with the address 1545 * handle. 1546 */ 1547 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1548 1549 /** 1550 * ib_destroy_ah - Destroys an address handle. 1551 * @ah: The address handle to destroy. 1552 */ 1553 int ib_destroy_ah(struct ib_ah *ah); 1554 1555 /** 1556 * ib_create_xrc_srq - Creates an XRC SRQ associated with the specified 1557 * protection domain, cq, and xrc domain. 1558 * @pd: The protection domain associated with the SRQ. 1559 * @xrc_cq: The cq to be associated with the XRC SRQ. 1560 * @xrcd: The XRC domain to be associated with the XRC SRQ. 1561 * @srq_init_attr: A list of initial attributes required to create the 1562 * XRC SRQ. If XRC SRQ creation succeeds, then the attributes are updated 1563 * to the actual capabilities of the created XRC SRQ. 1564 * 1565 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1566 * requested size of the XRC SRQ, and set to the actual values allocated 1567 * on return. If ib_create_xrc_srq() succeeds, then max_wr and max_sge 1568 * will always be at least as large as the requested values. 1569 */ 1570 struct ib_srq *ib_create_xrc_srq(struct ib_pd *pd, 1571 struct ib_cq *xrc_cq, 1572 struct ib_xrcd *xrcd, 1573 struct ib_srq_init_attr *srq_init_attr); 1574 1575 /** 1576 * ib_create_srq - Creates a SRQ associated with the specified protection 1577 * domain. 1578 * @pd: The protection domain associated with the SRQ. 1579 * @srq_init_attr: A list of initial attributes required to create the 1580 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1581 * the actual capabilities of the created SRQ. 1582 * 1583 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1584 * requested size of the SRQ, and set to the actual values allocated 1585 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1586 * will always be at least as large as the requested values. 1587 */ 1588 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1589 struct ib_srq_init_attr *srq_init_attr); 1590 1591 /** 1592 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1593 * @srq: The SRQ to modify. 1594 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1595 * the current values of selected SRQ attributes are returned. 1596 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1597 * are being modified. 1598 * 1599 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1600 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1601 * the number of receives queued drops below the limit. 1602 */ 1603 int ib_modify_srq(struct ib_srq *srq, 1604 struct ib_srq_attr *srq_attr, 1605 enum ib_srq_attr_mask srq_attr_mask); 1606 1607 /** 1608 * ib_query_srq - Returns the attribute list and current values for the 1609 * specified SRQ. 1610 * @srq: The SRQ to query. 1611 * @srq_attr: The attributes of the specified SRQ. 1612 */ 1613 int ib_query_srq(struct ib_srq *srq, 1614 struct ib_srq_attr *srq_attr); 1615 1616 /** 1617 * ib_destroy_srq - Destroys the specified SRQ. 1618 * @srq: The SRQ to destroy. 1619 */ 1620 int ib_destroy_srq(struct ib_srq *srq); 1621 1622 /** 1623 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1624 * @srq: The SRQ to post the work request on. 1625 * @recv_wr: A list of work requests to post on the receive queue. 1626 * @bad_recv_wr: On an immediate failure, this parameter will reference 1627 * the work request that failed to be posted on the QP. 1628 */ 1629 static inline int ib_post_srq_recv(struct ib_srq *srq, 1630 struct ib_recv_wr *recv_wr, 1631 struct ib_recv_wr **bad_recv_wr) 1632 { 1633 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1634 } 1635 1636 /** 1637 * ib_create_qp - Creates a QP associated with the specified protection 1638 * domain. 1639 * @pd: The protection domain associated with the QP. 1640 * @qp_init_attr: A list of initial attributes required to create the 1641 * QP. If QP creation succeeds, then the attributes are updated to 1642 * the actual capabilities of the created QP. 1643 */ 1644 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1645 struct ib_qp_init_attr *qp_init_attr); 1646 1647 /** 1648 * ib_modify_qp - Modifies the attributes for the specified QP and then 1649 * transitions the QP to the given state. 1650 * @qp: The QP to modify. 1651 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1652 * the current values of selected QP attributes are returned. 1653 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1654 * are being modified. 1655 */ 1656 int ib_modify_qp(struct ib_qp *qp, 1657 struct ib_qp_attr *qp_attr, 1658 int qp_attr_mask); 1659 1660 /** 1661 * ib_query_qp - Returns the attribute list and current values for the 1662 * specified QP. 1663 * @qp: The QP to query. 1664 * @qp_attr: The attributes of the specified QP. 1665 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1666 * @qp_init_attr: Additional attributes of the selected QP. 1667 * 1668 * The qp_attr_mask may be used to limit the query to gathering only the 1669 * selected attributes. 1670 */ 1671 int ib_query_qp(struct ib_qp *qp, 1672 struct ib_qp_attr *qp_attr, 1673 int qp_attr_mask, 1674 struct ib_qp_init_attr *qp_init_attr); 1675 1676 /** 1677 * ib_destroy_qp - Destroys the specified QP. 1678 * @qp: The QP to destroy. 1679 */ 1680 int ib_destroy_qp(struct ib_qp *qp); 1681 1682 /** 1683 * ib_open_qp - Obtain a reference to an existing sharable QP. 1684 * @xrcd - XRC domain 1685 * @qp_open_attr: Attributes identifying the QP to open. 1686 * 1687 * Returns a reference to a sharable QP. 1688 */ 1689 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1690 struct ib_qp_open_attr *qp_open_attr); 1691 1692 /** 1693 * ib_close_qp - Release an external reference to a QP. 1694 * @qp: The QP handle to release 1695 * 1696 * The opened QP handle is released by the caller. The underlying 1697 * shared QP is not destroyed until all internal references are released. 1698 */ 1699 int ib_close_qp(struct ib_qp *qp); 1700 1701 /** 1702 * ib_post_send - Posts a list of work requests to the send queue of 1703 * the specified QP. 1704 * @qp: The QP to post the work request on. 1705 * @send_wr: A list of work requests to post on the send queue. 1706 * @bad_send_wr: On an immediate failure, this parameter will reference 1707 * the work request that failed to be posted on the QP. 1708 * 1709 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1710 * error is returned, the QP state shall not be affected, 1711 * ib_post_send() will return an immediate error after queueing any 1712 * earlier work requests in the list. 1713 */ 1714 static inline int ib_post_send(struct ib_qp *qp, 1715 struct ib_send_wr *send_wr, 1716 struct ib_send_wr **bad_send_wr) 1717 { 1718 return qp->device->post_send(qp, send_wr, bad_send_wr); 1719 } 1720 1721 /** 1722 * ib_post_recv - Posts a list of work requests to the receive queue of 1723 * the specified QP. 1724 * @qp: The QP to post the work request on. 1725 * @recv_wr: A list of work requests to post on the receive queue. 1726 * @bad_recv_wr: On an immediate failure, this parameter will reference 1727 * the work request that failed to be posted on the QP. 1728 */ 1729 static inline int ib_post_recv(struct ib_qp *qp, 1730 struct ib_recv_wr *recv_wr, 1731 struct ib_recv_wr **bad_recv_wr) 1732 { 1733 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1734 } 1735 1736 /* 1737 * IB_CQ_VECTOR_LEAST_ATTACHED: The constant specifies that 1738 * the CQ will be attached to the completion vector that has 1739 * the least number of CQs already attached to it. 1740 */ 1741 #define IB_CQ_VECTOR_LEAST_ATTACHED 0xffffffff 1742 1743 /** 1744 * ib_create_cq - Creates a CQ on the specified device. 1745 * @device: The device on which to create the CQ. 1746 * @comp_handler: A user-specified callback that is invoked when a 1747 * completion event occurs on the CQ. 1748 * @event_handler: A user-specified callback that is invoked when an 1749 * asynchronous event not associated with a completion occurs on the CQ. 1750 * @cq_context: Context associated with the CQ returned to the user via 1751 * the associated completion and event handlers. 1752 * @cqe: The minimum size of the CQ. 1753 * @comp_vector - Completion vector used to signal completion events. 1754 * Must be >= 0 and < context->num_comp_vectors. 1755 * 1756 * Users can examine the cq structure to determine the actual CQ size. 1757 */ 1758 struct ib_cq *ib_create_cq(struct ib_device *device, 1759 ib_comp_handler comp_handler, 1760 void (*event_handler)(struct ib_event *, void *), 1761 void *cq_context, int cqe, int comp_vector); 1762 1763 /** 1764 * ib_resize_cq - Modifies the capacity of the CQ. 1765 * @cq: The CQ to resize. 1766 * @cqe: The minimum size of the CQ. 1767 * 1768 * Users can examine the cq structure to determine the actual CQ size. 1769 */ 1770 int ib_resize_cq(struct ib_cq *cq, int cqe); 1771 1772 /** 1773 * ib_modify_cq - Modifies moderation params of the CQ 1774 * @cq: The CQ to modify. 1775 * @cq_count: number of CQEs that will trigger an event 1776 * @cq_period: max period of time in usec before triggering an event 1777 * 1778 */ 1779 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1780 1781 /** 1782 * ib_destroy_cq - Destroys the specified CQ. 1783 * @cq: The CQ to destroy. 1784 */ 1785 int ib_destroy_cq(struct ib_cq *cq); 1786 1787 /** 1788 * ib_poll_cq - poll a CQ for completion(s) 1789 * @cq:the CQ being polled 1790 * @num_entries:maximum number of completions to return 1791 * @wc:array of at least @num_entries &struct ib_wc where completions 1792 * will be returned 1793 * 1794 * Poll a CQ for (possibly multiple) completions. If the return value 1795 * is < 0, an error occurred. If the return value is >= 0, it is the 1796 * number of completions returned. If the return value is 1797 * non-negative and < num_entries, then the CQ was emptied. 1798 */ 1799 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1800 struct ib_wc *wc) 1801 { 1802 return cq->device->poll_cq(cq, num_entries, wc); 1803 } 1804 1805 /** 1806 * ib_peek_cq - Returns the number of unreaped completions currently 1807 * on the specified CQ. 1808 * @cq: The CQ to peek. 1809 * @wc_cnt: A minimum number of unreaped completions to check for. 1810 * 1811 * If the number of unreaped completions is greater than or equal to wc_cnt, 1812 * this function returns wc_cnt, otherwise, it returns the actual number of 1813 * unreaped completions. 1814 */ 1815 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1816 1817 /** 1818 * ib_req_notify_cq - Request completion notification on a CQ. 1819 * @cq: The CQ to generate an event for. 1820 * @flags: 1821 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1822 * to request an event on the next solicited event or next work 1823 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1824 * may also be |ed in to request a hint about missed events, as 1825 * described below. 1826 * 1827 * Return Value: 1828 * < 0 means an error occurred while requesting notification 1829 * == 0 means notification was requested successfully, and if 1830 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1831 * were missed and it is safe to wait for another event. In 1832 * this case is it guaranteed that any work completions added 1833 * to the CQ since the last CQ poll will trigger a completion 1834 * notification event. 1835 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1836 * in. It means that the consumer must poll the CQ again to 1837 * make sure it is empty to avoid missing an event because of a 1838 * race between requesting notification and an entry being 1839 * added to the CQ. This return value means it is possible 1840 * (but not guaranteed) that a work completion has been added 1841 * to the CQ since the last poll without triggering a 1842 * completion notification event. 1843 */ 1844 static inline int ib_req_notify_cq(struct ib_cq *cq, 1845 enum ib_cq_notify_flags flags) 1846 { 1847 return cq->device->req_notify_cq(cq, flags); 1848 } 1849 1850 /** 1851 * ib_req_ncomp_notif - Request completion notification when there are 1852 * at least the specified number of unreaped completions on the CQ. 1853 * @cq: The CQ to generate an event for. 1854 * @wc_cnt: The number of unreaped completions that should be on the 1855 * CQ before an event is generated. 1856 */ 1857 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1858 { 1859 return cq->device->req_ncomp_notif ? 1860 cq->device->req_ncomp_notif(cq, wc_cnt) : 1861 -ENOSYS; 1862 } 1863 1864 /** 1865 * ib_get_dma_mr - Returns a memory region for system memory that is 1866 * usable for DMA. 1867 * @pd: The protection domain associated with the memory region. 1868 * @mr_access_flags: Specifies the memory access rights. 1869 * 1870 * Note that the ib_dma_*() functions defined below must be used 1871 * to create/destroy addresses used with the Lkey or Rkey returned 1872 * by ib_get_dma_mr(). 1873 */ 1874 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1875 1876 /** 1877 * ib_dma_mapping_error - check a DMA addr for error 1878 * @dev: The device for which the dma_addr was created 1879 * @dma_addr: The DMA address to check 1880 */ 1881 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1882 { 1883 if (dev->dma_ops) 1884 return dev->dma_ops->mapping_error(dev, dma_addr); 1885 return dma_mapping_error(dev->dma_device, dma_addr); 1886 } 1887 1888 /** 1889 * ib_dma_map_single - Map a kernel virtual address to DMA address 1890 * @dev: The device for which the dma_addr is to be created 1891 * @cpu_addr: The kernel virtual address 1892 * @size: The size of the region in bytes 1893 * @direction: The direction of the DMA 1894 */ 1895 static inline u64 ib_dma_map_single(struct ib_device *dev, 1896 void *cpu_addr, size_t size, 1897 enum dma_data_direction direction) 1898 { 1899 if (dev->dma_ops) 1900 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1901 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1902 } 1903 1904 /** 1905 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1906 * @dev: The device for which the DMA address was created 1907 * @addr: The DMA address 1908 * @size: The size of the region in bytes 1909 * @direction: The direction of the DMA 1910 */ 1911 static inline void ib_dma_unmap_single(struct ib_device *dev, 1912 u64 addr, size_t size, 1913 enum dma_data_direction direction) 1914 { 1915 if (dev->dma_ops) 1916 dev->dma_ops->unmap_single(dev, addr, size, direction); 1917 else 1918 dma_unmap_single(dev->dma_device, addr, size, direction); 1919 } 1920 1921 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1922 void *cpu_addr, size_t size, 1923 enum dma_data_direction direction, 1924 struct dma_attrs *attrs) 1925 { 1926 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1927 direction, attrs); 1928 } 1929 1930 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1931 u64 addr, size_t size, 1932 enum dma_data_direction direction, 1933 struct dma_attrs *attrs) 1934 { 1935 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1936 direction, attrs); 1937 } 1938 1939 /** 1940 * ib_dma_map_page - Map a physical page to DMA address 1941 * @dev: The device for which the dma_addr is to be created 1942 * @page: The page to be mapped 1943 * @offset: The offset within the page 1944 * @size: The size of the region in bytes 1945 * @direction: The direction of the DMA 1946 */ 1947 static inline u64 ib_dma_map_page(struct ib_device *dev, 1948 struct page *page, 1949 unsigned long offset, 1950 size_t size, 1951 enum dma_data_direction direction) 1952 { 1953 if (dev->dma_ops) 1954 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1955 return dma_map_page(dev->dma_device, page, offset, size, direction); 1956 } 1957 1958 /** 1959 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1960 * @dev: The device for which the DMA address was created 1961 * @addr: The DMA address 1962 * @size: The size of the region in bytes 1963 * @direction: The direction of the DMA 1964 */ 1965 static inline void ib_dma_unmap_page(struct ib_device *dev, 1966 u64 addr, size_t size, 1967 enum dma_data_direction direction) 1968 { 1969 if (dev->dma_ops) 1970 dev->dma_ops->unmap_page(dev, addr, size, direction); 1971 else 1972 dma_unmap_page(dev->dma_device, addr, size, direction); 1973 } 1974 1975 /** 1976 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1977 * @dev: The device for which the DMA addresses are to be created 1978 * @sg: The array of scatter/gather entries 1979 * @nents: The number of scatter/gather entries 1980 * @direction: The direction of the DMA 1981 */ 1982 static inline int ib_dma_map_sg(struct ib_device *dev, 1983 struct scatterlist *sg, int nents, 1984 enum dma_data_direction direction) 1985 { 1986 if (dev->dma_ops) 1987 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1988 return dma_map_sg(dev->dma_device, sg, nents, direction); 1989 } 1990 1991 /** 1992 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1993 * @dev: The device for which the DMA addresses were created 1994 * @sg: The array of scatter/gather entries 1995 * @nents: The number of scatter/gather entries 1996 * @direction: The direction of the DMA 1997 */ 1998 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1999 struct scatterlist *sg, int nents, 2000 enum dma_data_direction direction) 2001 { 2002 if (dev->dma_ops) 2003 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2004 else 2005 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2006 } 2007 2008 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2009 struct scatterlist *sg, int nents, 2010 enum dma_data_direction direction, 2011 struct dma_attrs *attrs) 2012 { 2013 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2014 } 2015 2016 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2017 struct scatterlist *sg, int nents, 2018 enum dma_data_direction direction, 2019 struct dma_attrs *attrs) 2020 { 2021 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2022 } 2023 /** 2024 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2025 * @dev: The device for which the DMA addresses were created 2026 * @sg: The scatter/gather entry 2027 */ 2028 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2029 struct scatterlist *sg) 2030 { 2031 if (dev->dma_ops) 2032 return dev->dma_ops->dma_address(dev, sg); 2033 return sg_dma_address(sg); 2034 } 2035 2036 /** 2037 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2038 * @dev: The device for which the DMA addresses were created 2039 * @sg: The scatter/gather entry 2040 */ 2041 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2042 struct scatterlist *sg) 2043 { 2044 if (dev->dma_ops) 2045 return dev->dma_ops->dma_len(dev, sg); 2046 return sg_dma_len(sg); 2047 } 2048 2049 /** 2050 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2051 * @dev: The device for which the DMA address was created 2052 * @addr: The DMA address 2053 * @size: The size of the region in bytes 2054 * @dir: The direction of the DMA 2055 */ 2056 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2057 u64 addr, 2058 size_t size, 2059 enum dma_data_direction dir) 2060 { 2061 if (dev->dma_ops) 2062 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2063 else 2064 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2065 } 2066 2067 /** 2068 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2069 * @dev: The device for which the DMA address was created 2070 * @addr: The DMA address 2071 * @size: The size of the region in bytes 2072 * @dir: The direction of the DMA 2073 */ 2074 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2075 u64 addr, 2076 size_t size, 2077 enum dma_data_direction dir) 2078 { 2079 if (dev->dma_ops) 2080 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2081 else 2082 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2083 } 2084 2085 /** 2086 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2087 * @dev: The device for which the DMA address is requested 2088 * @size: The size of the region to allocate in bytes 2089 * @dma_handle: A pointer for returning the DMA address of the region 2090 * @flag: memory allocator flags 2091 */ 2092 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2093 size_t size, 2094 u64 *dma_handle, 2095 gfp_t flag) 2096 { 2097 if (dev->dma_ops) 2098 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2099 else { 2100 dma_addr_t handle; 2101 void *ret; 2102 2103 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2104 *dma_handle = handle; 2105 return ret; 2106 } 2107 } 2108 2109 /** 2110 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2111 * @dev: The device for which the DMA addresses were allocated 2112 * @size: The size of the region 2113 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2114 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2115 */ 2116 static inline void ib_dma_free_coherent(struct ib_device *dev, 2117 size_t size, void *cpu_addr, 2118 u64 dma_handle) 2119 { 2120 if (dev->dma_ops) 2121 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2122 else 2123 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2124 } 2125 2126 /** 2127 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2128 * by an HCA. 2129 * @pd: The protection domain associated assigned to the registered region. 2130 * @phys_buf_array: Specifies a list of physical buffers to use in the 2131 * memory region. 2132 * @num_phys_buf: Specifies the size of the phys_buf_array. 2133 * @mr_access_flags: Specifies the memory access rights. 2134 * @iova_start: The offset of the region's starting I/O virtual address. 2135 */ 2136 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2137 struct ib_phys_buf *phys_buf_array, 2138 int num_phys_buf, 2139 int mr_access_flags, 2140 u64 *iova_start); 2141 2142 /** 2143 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2144 * Conceptually, this call performs the functions deregister memory region 2145 * followed by register physical memory region. Where possible, 2146 * resources are reused instead of deallocated and reallocated. 2147 * @mr: The memory region to modify. 2148 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2149 * properties of the memory region are being modified. 2150 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2151 * the new protection domain to associated with the memory region, 2152 * otherwise, this parameter is ignored. 2153 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2154 * field specifies a list of physical buffers to use in the new 2155 * translation, otherwise, this parameter is ignored. 2156 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2157 * field specifies the size of the phys_buf_array, otherwise, this 2158 * parameter is ignored. 2159 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2160 * field specifies the new memory access rights, otherwise, this 2161 * parameter is ignored. 2162 * @iova_start: The offset of the region's starting I/O virtual address. 2163 */ 2164 int ib_rereg_phys_mr(struct ib_mr *mr, 2165 int mr_rereg_mask, 2166 struct ib_pd *pd, 2167 struct ib_phys_buf *phys_buf_array, 2168 int num_phys_buf, 2169 int mr_access_flags, 2170 u64 *iova_start); 2171 2172 /** 2173 * ib_query_mr - Retrieves information about a specific memory region. 2174 * @mr: The memory region to retrieve information about. 2175 * @mr_attr: The attributes of the specified memory region. 2176 */ 2177 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2178 2179 /** 2180 * ib_dereg_mr - Deregisters a memory region and removes it from the 2181 * HCA translation table. 2182 * @mr: The memory region to deregister. 2183 */ 2184 int ib_dereg_mr(struct ib_mr *mr); 2185 2186 /** 2187 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2188 * IB_WR_FAST_REG_MR send work request. 2189 * @pd: The protection domain associated with the region. 2190 * @max_page_list_len: requested max physical buffer list length to be 2191 * used with fast register work requests for this MR. 2192 */ 2193 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2194 2195 /** 2196 * ib_alloc_fast_reg_page_list - Allocates a page list array 2197 * @device - ib device pointer. 2198 * @page_list_len - size of the page list array to be allocated. 2199 * 2200 * This allocates and returns a struct ib_fast_reg_page_list * and a 2201 * page_list array that is at least page_list_len in size. The actual 2202 * size is returned in max_page_list_len. The caller is responsible 2203 * for initializing the contents of the page_list array before posting 2204 * a send work request with the IB_WC_FAST_REG_MR opcode. 2205 * 2206 * The page_list array entries must be translated using one of the 2207 * ib_dma_*() functions just like the addresses passed to 2208 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2209 * ib_fast_reg_page_list must not be modified by the caller until the 2210 * IB_WC_FAST_REG_MR work request completes. 2211 */ 2212 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2213 struct ib_device *device, int page_list_len); 2214 2215 /** 2216 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2217 * page list array. 2218 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2219 */ 2220 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2221 2222 /** 2223 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2224 * R_Key and L_Key. 2225 * @mr - struct ib_mr pointer to be updated. 2226 * @newkey - new key to be used. 2227 */ 2228 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2229 { 2230 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2231 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2232 } 2233 2234 /** 2235 * ib_alloc_mw - Allocates a memory window. 2236 * @pd: The protection domain associated with the memory window. 2237 */ 2238 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 2239 2240 /** 2241 * ib_bind_mw - Posts a work request to the send queue of the specified 2242 * QP, which binds the memory window to the given address range and 2243 * remote access attributes. 2244 * @qp: QP to post the bind work request on. 2245 * @mw: The memory window to bind. 2246 * @mw_bind: Specifies information about the memory window, including 2247 * its address range, remote access rights, and associated memory region. 2248 */ 2249 static inline int ib_bind_mw(struct ib_qp *qp, 2250 struct ib_mw *mw, 2251 struct ib_mw_bind *mw_bind) 2252 { 2253 /* XXX reference counting in corresponding MR? */ 2254 return mw->device->bind_mw ? 2255 mw->device->bind_mw(qp, mw, mw_bind) : 2256 -ENOSYS; 2257 } 2258 2259 /** 2260 * ib_dealloc_mw - Deallocates a memory window. 2261 * @mw: The memory window to deallocate. 2262 */ 2263 int ib_dealloc_mw(struct ib_mw *mw); 2264 2265 /** 2266 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2267 * @pd: The protection domain associated with the unmapped region. 2268 * @mr_access_flags: Specifies the memory access rights. 2269 * @fmr_attr: Attributes of the unmapped region. 2270 * 2271 * A fast memory region must be mapped before it can be used as part of 2272 * a work request. 2273 */ 2274 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2275 int mr_access_flags, 2276 struct ib_fmr_attr *fmr_attr); 2277 2278 /** 2279 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2280 * @fmr: The fast memory region to associate with the pages. 2281 * @page_list: An array of physical pages to map to the fast memory region. 2282 * @list_len: The number of pages in page_list. 2283 * @iova: The I/O virtual address to use with the mapped region. 2284 */ 2285 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2286 u64 *page_list, int list_len, 2287 u64 iova) 2288 { 2289 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2290 } 2291 2292 /** 2293 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2294 * @fmr_list: A linked list of fast memory regions to unmap. 2295 */ 2296 int ib_unmap_fmr(struct list_head *fmr_list); 2297 2298 /** 2299 * ib_dealloc_fmr - Deallocates a fast memory region. 2300 * @fmr: The fast memory region to deallocate. 2301 */ 2302 int ib_dealloc_fmr(struct ib_fmr *fmr); 2303 2304 /** 2305 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2306 * @qp: QP to attach to the multicast group. The QP must be type 2307 * IB_QPT_UD. 2308 * @gid: Multicast group GID. 2309 * @lid: Multicast group LID in host byte order. 2310 * 2311 * In order to send and receive multicast packets, subnet 2312 * administration must have created the multicast group and configured 2313 * the fabric appropriately. The port associated with the specified 2314 * QP must also be a member of the multicast group. 2315 */ 2316 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2317 2318 /** 2319 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2320 * @qp: QP to detach from the multicast group. 2321 * @gid: Multicast group GID. 2322 * @lid: Multicast group LID in host byte order. 2323 */ 2324 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2325 2326 /** 2327 * ib_alloc_xrcd - Allocates an XRC domain. 2328 * @device: The device on which to allocate the XRC domain. 2329 */ 2330 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2331 2332 /** 2333 * ib_dealloc_xrcd - Deallocates an XRC domain. 2334 * @xrcd: The XRC domain to deallocate. 2335 */ 2336 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2337 2338 int ib_attach_flow(struct ib_qp *qp, struct ib_flow_spec *spec, int priority); 2339 int ib_detach_flow(struct ib_qp *qp, struct ib_flow_spec *spec, int priority); 2340 2341 #endif /* IB_VERBS_H */ 2342