1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 3 * 4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 6 * Copyright (c) 2004 Intel Corporation. All rights reserved. 7 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 11 * 12 * This software is available to you under a choice of one of two 13 * licenses. You may choose to be licensed under the terms of the GNU 14 * General Public License (GPL) Version 2, available from the file 15 * COPYING in the main directory of this source tree, or the 16 * OpenIB.org BSD license below: 17 * 18 * Redistribution and use in source and binary forms, with or 19 * without modification, are permitted provided that the following 20 * conditions are met: 21 * 22 * - Redistributions of source code must retain the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer. 25 * 26 * - Redistributions in binary form must reproduce the above 27 * copyright notice, this list of conditions and the following 28 * disclaimer in the documentation and/or other materials 29 * provided with the distribution. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 * SOFTWARE. 39 * 40 * $FreeBSD$ 41 */ 42 43 #if !defined(IB_VERBS_H) 44 #define IB_VERBS_H 45 46 #include <linux/types.h> 47 #include <linux/device.h> 48 #include <linux/mm.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/kref.h> 51 #include <linux/list.h> 52 #include <linux/rwsem.h> 53 #include <linux/scatterlist.h> 54 #include <linux/workqueue.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <net/ipv6.h> 58 #include <net/ip.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <netinet/ip.h> 64 65 #include <asm/atomic.h> 66 #include <asm/uaccess.h> 67 68 struct ifla_vf_info; 69 struct ifla_vf_stats; 70 71 extern struct workqueue_struct *ib_wq; 72 extern struct workqueue_struct *ib_comp_wq; 73 74 union ib_gid { 75 u8 raw[16]; 76 struct { 77 __be64 subnet_prefix; 78 __be64 interface_id; 79 } global; 80 }; 81 82 extern union ib_gid zgid; 83 84 enum ib_gid_type { 85 /* If link layer is Ethernet, this is RoCE V1 */ 86 IB_GID_TYPE_IB = 0, 87 IB_GID_TYPE_ROCE = 0, 88 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 89 IB_GID_TYPE_SIZE 90 }; 91 92 #define ROCE_V2_UDP_DPORT 4791 93 struct ib_gid_attr { 94 enum ib_gid_type gid_type; 95 struct ifnet *ndev; 96 }; 97 98 enum rdma_node_type { 99 /* IB values map to NodeInfo:NodeType. */ 100 RDMA_NODE_IB_CA = 1, 101 RDMA_NODE_IB_SWITCH, 102 RDMA_NODE_IB_ROUTER, 103 RDMA_NODE_RNIC, 104 RDMA_NODE_USNIC, 105 RDMA_NODE_USNIC_UDP, 106 }; 107 108 enum { 109 /* set the local administered indication */ 110 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 111 }; 112 113 enum rdma_transport_type { 114 RDMA_TRANSPORT_IB, 115 RDMA_TRANSPORT_IWARP, 116 RDMA_TRANSPORT_USNIC, 117 RDMA_TRANSPORT_USNIC_UDP 118 }; 119 120 enum rdma_protocol_type { 121 RDMA_PROTOCOL_IB, 122 RDMA_PROTOCOL_IBOE, 123 RDMA_PROTOCOL_IWARP, 124 RDMA_PROTOCOL_USNIC_UDP 125 }; 126 127 __attribute_const__ enum rdma_transport_type 128 rdma_node_get_transport(enum rdma_node_type node_type); 129 130 enum rdma_network_type { 131 RDMA_NETWORK_IB, 132 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 133 RDMA_NETWORK_IPV4, 134 RDMA_NETWORK_IPV6 135 }; 136 137 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 138 { 139 if (network_type == RDMA_NETWORK_IPV4 || 140 network_type == RDMA_NETWORK_IPV6) 141 return IB_GID_TYPE_ROCE_UDP_ENCAP; 142 143 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 144 return IB_GID_TYPE_IB; 145 } 146 147 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 148 union ib_gid *gid) 149 { 150 if (gid_type == IB_GID_TYPE_IB) 151 return RDMA_NETWORK_IB; 152 153 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 154 return RDMA_NETWORK_IPV4; 155 else 156 return RDMA_NETWORK_IPV6; 157 } 158 159 enum rdma_link_layer { 160 IB_LINK_LAYER_UNSPECIFIED, 161 IB_LINK_LAYER_INFINIBAND, 162 IB_LINK_LAYER_ETHERNET, 163 }; 164 165 enum ib_device_cap_flags { 166 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 167 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 168 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 169 IB_DEVICE_RAW_MULTI = (1 << 3), 170 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 171 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 172 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 173 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 174 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 175 IB_DEVICE_INIT_TYPE = (1 << 9), 176 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 177 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 178 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 179 IB_DEVICE_SRQ_RESIZE = (1 << 13), 180 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 181 182 /* 183 * This device supports a per-device lkey or stag that can be 184 * used without performing a memory registration for the local 185 * memory. Note that ULPs should never check this flag, but 186 * instead of use the local_dma_lkey flag in the ib_pd structure, 187 * which will always contain a usable lkey. 188 */ 189 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 190 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 191 IB_DEVICE_MEM_WINDOW = (1 << 17), 192 /* 193 * Devices should set IB_DEVICE_UD_IP_SUM if they support 194 * insertion of UDP and TCP checksum on outgoing UD IPoIB 195 * messages and can verify the validity of checksum for 196 * incoming messages. Setting this flag implies that the 197 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 198 */ 199 IB_DEVICE_UD_IP_CSUM = (1 << 18), 200 IB_DEVICE_UD_TSO = (1 << 19), 201 IB_DEVICE_XRC = (1 << 20), 202 203 /* 204 * This device supports the IB "base memory management extension", 205 * which includes support for fast registrations (IB_WR_REG_MR, 206 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 207 * also be set by any iWarp device which must support FRs to comply 208 * to the iWarp verbs spec. iWarp devices also support the 209 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 210 * stag. 211 */ 212 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 213 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 214 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 215 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 216 IB_DEVICE_RC_IP_CSUM = (1 << 25), 217 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 218 /* 219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 220 * support execution of WQEs that involve synchronization 221 * of I/O operations with single completion queue managed 222 * by hardware. 223 */ 224 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 231 }; 232 233 enum ib_signature_prot_cap { 234 IB_PROT_T10DIF_TYPE_1 = 1, 235 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 236 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 237 }; 238 239 enum ib_signature_guard_cap { 240 IB_GUARD_T10DIF_CRC = 1, 241 IB_GUARD_T10DIF_CSUM = 1 << 1, 242 }; 243 244 enum ib_atomic_cap { 245 IB_ATOMIC_NONE, 246 IB_ATOMIC_HCA, 247 IB_ATOMIC_GLOB 248 }; 249 250 enum ib_odp_general_cap_bits { 251 IB_ODP_SUPPORT = 1 << 0, 252 }; 253 254 enum ib_odp_transport_cap_bits { 255 IB_ODP_SUPPORT_SEND = 1 << 0, 256 IB_ODP_SUPPORT_RECV = 1 << 1, 257 IB_ODP_SUPPORT_WRITE = 1 << 2, 258 IB_ODP_SUPPORT_READ = 1 << 3, 259 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 260 }; 261 262 struct ib_odp_caps { 263 uint64_t general_caps; 264 struct { 265 uint32_t rc_odp_caps; 266 uint32_t uc_odp_caps; 267 uint32_t ud_odp_caps; 268 } per_transport_caps; 269 }; 270 271 struct ib_rss_caps { 272 /* Corresponding bit will be set if qp type from 273 * 'enum ib_qp_type' is supported, e.g. 274 * supported_qpts |= 1 << IB_QPT_UD 275 */ 276 u32 supported_qpts; 277 u32 max_rwq_indirection_tables; 278 u32 max_rwq_indirection_table_size; 279 }; 280 281 enum ib_cq_creation_flags { 282 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 283 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 284 }; 285 286 struct ib_cq_init_attr { 287 unsigned int cqe; 288 u32 comp_vector; 289 u32 flags; 290 }; 291 292 struct ib_device_attr { 293 u64 fw_ver; 294 __be64 sys_image_guid; 295 u64 max_mr_size; 296 u64 page_size_cap; 297 u32 vendor_id; 298 u32 vendor_part_id; 299 u32 hw_ver; 300 int max_qp; 301 int max_qp_wr; 302 u64 device_cap_flags; 303 int max_sge; 304 int max_sge_rd; 305 int max_cq; 306 int max_cqe; 307 int max_mr; 308 int max_pd; 309 int max_qp_rd_atom; 310 int max_ee_rd_atom; 311 int max_res_rd_atom; 312 int max_qp_init_rd_atom; 313 int max_ee_init_rd_atom; 314 enum ib_atomic_cap atomic_cap; 315 enum ib_atomic_cap masked_atomic_cap; 316 int max_ee; 317 int max_rdd; 318 int max_mw; 319 int max_raw_ipv6_qp; 320 int max_raw_ethy_qp; 321 int max_mcast_grp; 322 int max_mcast_qp_attach; 323 int max_total_mcast_qp_attach; 324 int max_ah; 325 int max_fmr; 326 int max_map_per_fmr; 327 int max_srq; 328 int max_srq_wr; 329 int max_srq_sge; 330 unsigned int max_fast_reg_page_list_len; 331 u16 max_pkeys; 332 u8 local_ca_ack_delay; 333 int sig_prot_cap; 334 int sig_guard_cap; 335 struct ib_odp_caps odp_caps; 336 uint64_t timestamp_mask; 337 uint64_t hca_core_clock; /* in KHZ */ 338 struct ib_rss_caps rss_caps; 339 u32 max_wq_type_rq; 340 }; 341 342 enum ib_mtu { 343 IB_MTU_256 = 1, 344 IB_MTU_512 = 2, 345 IB_MTU_1024 = 3, 346 IB_MTU_2048 = 4, 347 IB_MTU_4096 = 5 348 }; 349 350 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 351 { 352 switch (mtu) { 353 case IB_MTU_256: return 256; 354 case IB_MTU_512: return 512; 355 case IB_MTU_1024: return 1024; 356 case IB_MTU_2048: return 2048; 357 case IB_MTU_4096: return 4096; 358 default: return -1; 359 } 360 } 361 362 enum ib_port_state { 363 IB_PORT_NOP = 0, 364 IB_PORT_DOWN = 1, 365 IB_PORT_INIT = 2, 366 IB_PORT_ARMED = 3, 367 IB_PORT_ACTIVE = 4, 368 IB_PORT_ACTIVE_DEFER = 5, 369 IB_PORT_DUMMY = -1, /* force enum signed */ 370 }; 371 372 enum ib_port_cap_flags { 373 IB_PORT_SM = 1 << 1, 374 IB_PORT_NOTICE_SUP = 1 << 2, 375 IB_PORT_TRAP_SUP = 1 << 3, 376 IB_PORT_OPT_IPD_SUP = 1 << 4, 377 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 378 IB_PORT_SL_MAP_SUP = 1 << 6, 379 IB_PORT_MKEY_NVRAM = 1 << 7, 380 IB_PORT_PKEY_NVRAM = 1 << 8, 381 IB_PORT_LED_INFO_SUP = 1 << 9, 382 IB_PORT_SM_DISABLED = 1 << 10, 383 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 384 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 385 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 386 IB_PORT_CM_SUP = 1 << 16, 387 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 388 IB_PORT_REINIT_SUP = 1 << 18, 389 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 390 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 391 IB_PORT_DR_NOTICE_SUP = 1 << 21, 392 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 393 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 394 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 395 IB_PORT_CLIENT_REG_SUP = 1 << 25, 396 IB_PORT_IP_BASED_GIDS = 1 << 26, 397 }; 398 399 enum ib_port_width { 400 IB_WIDTH_1X = 1, 401 IB_WIDTH_2X = 16, 402 IB_WIDTH_4X = 2, 403 IB_WIDTH_8X = 4, 404 IB_WIDTH_12X = 8 405 }; 406 407 static inline int ib_width_enum_to_int(enum ib_port_width width) 408 { 409 switch (width) { 410 case IB_WIDTH_1X: return 1; 411 case IB_WIDTH_2X: return 2; 412 case IB_WIDTH_4X: return 4; 413 case IB_WIDTH_8X: return 8; 414 case IB_WIDTH_12X: return 12; 415 default: return -1; 416 } 417 } 418 419 enum ib_port_speed { 420 IB_SPEED_SDR = 1, 421 IB_SPEED_DDR = 2, 422 IB_SPEED_QDR = 4, 423 IB_SPEED_FDR10 = 8, 424 IB_SPEED_FDR = 16, 425 IB_SPEED_EDR = 32, 426 IB_SPEED_HDR = 64 427 }; 428 429 /** 430 * struct rdma_hw_stats 431 * @timestamp - Used by the core code to track when the last update was 432 * @lifespan - Used by the core code to determine how old the counters 433 * should be before being updated again. Stored in jiffies, defaults 434 * to 10 milliseconds, drivers can override the default be specifying 435 * their own value during their allocation routine. 436 * @name - Array of pointers to static names used for the counters in 437 * directory. 438 * @num_counters - How many hardware counters there are. If name is 439 * shorter than this number, a kernel oops will result. Driver authors 440 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 441 * in their code to prevent this. 442 * @value - Array of u64 counters that are accessed by the sysfs code and 443 * filled in by the drivers get_stats routine 444 */ 445 struct rdma_hw_stats { 446 unsigned long timestamp; 447 unsigned long lifespan; 448 const char * const *names; 449 int num_counters; 450 u64 value[]; 451 }; 452 453 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 454 /** 455 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 456 * for drivers. 457 * @names - Array of static const char * 458 * @num_counters - How many elements in array 459 * @lifespan - How many milliseconds between updates 460 */ 461 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 462 const char * const *names, int num_counters, 463 unsigned long lifespan) 464 { 465 struct rdma_hw_stats *stats; 466 467 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 468 GFP_KERNEL); 469 if (!stats) 470 return NULL; 471 stats->names = names; 472 stats->num_counters = num_counters; 473 stats->lifespan = msecs_to_jiffies(lifespan); 474 475 return stats; 476 } 477 478 479 /* Define bits for the various functionality this port needs to be supported by 480 * the core. 481 */ 482 /* Management 0x00000FFF */ 483 #define RDMA_CORE_CAP_IB_MAD 0x00000001 484 #define RDMA_CORE_CAP_IB_SMI 0x00000002 485 #define RDMA_CORE_CAP_IB_CM 0x00000004 486 #define RDMA_CORE_CAP_IW_CM 0x00000008 487 #define RDMA_CORE_CAP_IB_SA 0x00000010 488 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 489 490 /* Address format 0x000FF000 */ 491 #define RDMA_CORE_CAP_AF_IB 0x00001000 492 #define RDMA_CORE_CAP_ETH_AH 0x00002000 493 494 /* Protocol 0xFFF00000 */ 495 #define RDMA_CORE_CAP_PROT_IB 0x00100000 496 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 497 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 498 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 499 500 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 501 | RDMA_CORE_CAP_IB_MAD \ 502 | RDMA_CORE_CAP_IB_SMI \ 503 | RDMA_CORE_CAP_IB_CM \ 504 | RDMA_CORE_CAP_IB_SA \ 505 | RDMA_CORE_CAP_AF_IB) 506 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 507 | RDMA_CORE_CAP_IB_MAD \ 508 | RDMA_CORE_CAP_IB_CM \ 509 | RDMA_CORE_CAP_AF_IB \ 510 | RDMA_CORE_CAP_ETH_AH) 511 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 512 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 513 | RDMA_CORE_CAP_IB_MAD \ 514 | RDMA_CORE_CAP_IB_CM \ 515 | RDMA_CORE_CAP_AF_IB \ 516 | RDMA_CORE_CAP_ETH_AH) 517 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 518 | RDMA_CORE_CAP_IW_CM) 519 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 520 | RDMA_CORE_CAP_OPA_MAD) 521 522 struct ib_port_attr { 523 u64 subnet_prefix; 524 enum ib_port_state state; 525 enum ib_mtu max_mtu; 526 enum ib_mtu active_mtu; 527 int gid_tbl_len; 528 u32 port_cap_flags; 529 u32 max_msg_sz; 530 u32 bad_pkey_cntr; 531 u32 qkey_viol_cntr; 532 u16 pkey_tbl_len; 533 u16 lid; 534 u16 sm_lid; 535 u8 lmc; 536 u8 max_vl_num; 537 u8 sm_sl; 538 u8 subnet_timeout; 539 u8 init_type_reply; 540 u8 active_width; 541 u8 active_speed; 542 u8 phys_state; 543 bool grh_required; 544 }; 545 546 enum ib_device_modify_flags { 547 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 548 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 549 }; 550 551 #define IB_DEVICE_NODE_DESC_MAX 64 552 553 struct ib_device_modify { 554 u64 sys_image_guid; 555 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 556 }; 557 558 enum ib_port_modify_flags { 559 IB_PORT_SHUTDOWN = 1, 560 IB_PORT_INIT_TYPE = (1<<2), 561 IB_PORT_RESET_QKEY_CNTR = (1<<3) 562 }; 563 564 struct ib_port_modify { 565 u32 set_port_cap_mask; 566 u32 clr_port_cap_mask; 567 u8 init_type; 568 }; 569 570 enum ib_event_type { 571 IB_EVENT_CQ_ERR, 572 IB_EVENT_QP_FATAL, 573 IB_EVENT_QP_REQ_ERR, 574 IB_EVENT_QP_ACCESS_ERR, 575 IB_EVENT_COMM_EST, 576 IB_EVENT_SQ_DRAINED, 577 IB_EVENT_PATH_MIG, 578 IB_EVENT_PATH_MIG_ERR, 579 IB_EVENT_DEVICE_FATAL, 580 IB_EVENT_PORT_ACTIVE, 581 IB_EVENT_PORT_ERR, 582 IB_EVENT_LID_CHANGE, 583 IB_EVENT_PKEY_CHANGE, 584 IB_EVENT_SM_CHANGE, 585 IB_EVENT_SRQ_ERR, 586 IB_EVENT_SRQ_LIMIT_REACHED, 587 IB_EVENT_QP_LAST_WQE_REACHED, 588 IB_EVENT_CLIENT_REREGISTER, 589 IB_EVENT_GID_CHANGE, 590 IB_EVENT_WQ_FATAL, 591 }; 592 593 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 594 595 struct ib_event { 596 struct ib_device *device; 597 union { 598 struct ib_cq *cq; 599 struct ib_qp *qp; 600 struct ib_srq *srq; 601 struct ib_wq *wq; 602 u8 port_num; 603 } element; 604 enum ib_event_type event; 605 }; 606 607 struct ib_event_handler { 608 struct ib_device *device; 609 void (*handler)(struct ib_event_handler *, struct ib_event *); 610 struct list_head list; 611 }; 612 613 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 614 do { \ 615 (_ptr)->device = _device; \ 616 (_ptr)->handler = _handler; \ 617 INIT_LIST_HEAD(&(_ptr)->list); \ 618 } while (0) 619 620 struct ib_global_route { 621 union ib_gid dgid; 622 u32 flow_label; 623 u8 sgid_index; 624 u8 hop_limit; 625 u8 traffic_class; 626 }; 627 628 struct ib_grh { 629 __be32 version_tclass_flow; 630 __be16 paylen; 631 u8 next_hdr; 632 u8 hop_limit; 633 union ib_gid sgid; 634 union ib_gid dgid; 635 }; 636 637 union rdma_network_hdr { 638 struct ib_grh ibgrh; 639 struct { 640 /* The IB spec states that if it's IPv4, the header 641 * is located in the last 20 bytes of the header. 642 */ 643 u8 reserved[20]; 644 struct ip roce4grh; 645 }; 646 }; 647 648 enum { 649 IB_MULTICAST_QPN = 0xffffff 650 }; 651 652 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 653 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 654 655 enum ib_ah_flags { 656 IB_AH_GRH = 1 657 }; 658 659 enum ib_rate { 660 IB_RATE_PORT_CURRENT = 0, 661 IB_RATE_2_5_GBPS = 2, 662 IB_RATE_5_GBPS = 5, 663 IB_RATE_10_GBPS = 3, 664 IB_RATE_20_GBPS = 6, 665 IB_RATE_30_GBPS = 4, 666 IB_RATE_40_GBPS = 7, 667 IB_RATE_60_GBPS = 8, 668 IB_RATE_80_GBPS = 9, 669 IB_RATE_120_GBPS = 10, 670 IB_RATE_14_GBPS = 11, 671 IB_RATE_56_GBPS = 12, 672 IB_RATE_112_GBPS = 13, 673 IB_RATE_168_GBPS = 14, 674 IB_RATE_25_GBPS = 15, 675 IB_RATE_100_GBPS = 16, 676 IB_RATE_200_GBPS = 17, 677 IB_RATE_300_GBPS = 18, 678 IB_RATE_28_GBPS = 19, 679 IB_RATE_50_GBPS = 20, 680 IB_RATE_400_GBPS = 21, 681 IB_RATE_600_GBPS = 22, 682 }; 683 684 /** 685 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 686 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 687 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 688 * @rate: rate to convert. 689 */ 690 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 691 692 /** 693 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 694 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 695 * @rate: rate to convert. 696 */ 697 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 698 699 700 /** 701 * enum ib_mr_type - memory region type 702 * @IB_MR_TYPE_MEM_REG: memory region that is used for 703 * normal registration 704 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 705 * signature operations (data-integrity 706 * capable regions) 707 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 708 * register any arbitrary sg lists (without 709 * the normal mr constraints - see 710 * ib_map_mr_sg) 711 */ 712 enum ib_mr_type { 713 IB_MR_TYPE_MEM_REG, 714 IB_MR_TYPE_SIGNATURE, 715 IB_MR_TYPE_SG_GAPS, 716 }; 717 718 /** 719 * Signature types 720 * IB_SIG_TYPE_NONE: Unprotected. 721 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 722 */ 723 enum ib_signature_type { 724 IB_SIG_TYPE_NONE, 725 IB_SIG_TYPE_T10_DIF, 726 }; 727 728 /** 729 * Signature T10-DIF block-guard types 730 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 731 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 732 */ 733 enum ib_t10_dif_bg_type { 734 IB_T10DIF_CRC, 735 IB_T10DIF_CSUM 736 }; 737 738 /** 739 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 740 * domain. 741 * @bg_type: T10-DIF block guard type (CRC|CSUM) 742 * @pi_interval: protection information interval. 743 * @bg: seed of guard computation. 744 * @app_tag: application tag of guard block 745 * @ref_tag: initial guard block reference tag. 746 * @ref_remap: Indicate wethear the reftag increments each block 747 * @app_escape: Indicate to skip block check if apptag=0xffff 748 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 749 * @apptag_check_mask: check bitmask of application tag. 750 */ 751 struct ib_t10_dif_domain { 752 enum ib_t10_dif_bg_type bg_type; 753 u16 pi_interval; 754 u16 bg; 755 u16 app_tag; 756 u32 ref_tag; 757 bool ref_remap; 758 bool app_escape; 759 bool ref_escape; 760 u16 apptag_check_mask; 761 }; 762 763 /** 764 * struct ib_sig_domain - Parameters for signature domain 765 * @sig_type: specific signauture type 766 * @sig: union of all signature domain attributes that may 767 * be used to set domain layout. 768 */ 769 struct ib_sig_domain { 770 enum ib_signature_type sig_type; 771 union { 772 struct ib_t10_dif_domain dif; 773 } sig; 774 }; 775 776 /** 777 * struct ib_sig_attrs - Parameters for signature handover operation 778 * @check_mask: bitmask for signature byte check (8 bytes) 779 * @mem: memory domain layout desciptor. 780 * @wire: wire domain layout desciptor. 781 */ 782 struct ib_sig_attrs { 783 u8 check_mask; 784 struct ib_sig_domain mem; 785 struct ib_sig_domain wire; 786 }; 787 788 enum ib_sig_err_type { 789 IB_SIG_BAD_GUARD, 790 IB_SIG_BAD_REFTAG, 791 IB_SIG_BAD_APPTAG, 792 }; 793 794 /** 795 * struct ib_sig_err - signature error descriptor 796 */ 797 struct ib_sig_err { 798 enum ib_sig_err_type err_type; 799 u32 expected; 800 u32 actual; 801 u64 sig_err_offset; 802 u32 key; 803 }; 804 805 enum ib_mr_status_check { 806 IB_MR_CHECK_SIG_STATUS = 1, 807 }; 808 809 /** 810 * struct ib_mr_status - Memory region status container 811 * 812 * @fail_status: Bitmask of MR checks status. For each 813 * failed check a corresponding status bit is set. 814 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 815 * failure. 816 */ 817 struct ib_mr_status { 818 u32 fail_status; 819 struct ib_sig_err sig_err; 820 }; 821 822 /** 823 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 824 * enum. 825 * @mult: multiple to convert. 826 */ 827 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 828 829 struct ib_ah_attr { 830 struct ib_global_route grh; 831 u16 dlid; 832 u8 sl; 833 u8 src_path_bits; 834 u8 static_rate; 835 u8 ah_flags; 836 u8 port_num; 837 u8 dmac[ETH_ALEN]; 838 }; 839 840 enum ib_wc_status { 841 IB_WC_SUCCESS, 842 IB_WC_LOC_LEN_ERR, 843 IB_WC_LOC_QP_OP_ERR, 844 IB_WC_LOC_EEC_OP_ERR, 845 IB_WC_LOC_PROT_ERR, 846 IB_WC_WR_FLUSH_ERR, 847 IB_WC_MW_BIND_ERR, 848 IB_WC_BAD_RESP_ERR, 849 IB_WC_LOC_ACCESS_ERR, 850 IB_WC_REM_INV_REQ_ERR, 851 IB_WC_REM_ACCESS_ERR, 852 IB_WC_REM_OP_ERR, 853 IB_WC_RETRY_EXC_ERR, 854 IB_WC_RNR_RETRY_EXC_ERR, 855 IB_WC_LOC_RDD_VIOL_ERR, 856 IB_WC_REM_INV_RD_REQ_ERR, 857 IB_WC_REM_ABORT_ERR, 858 IB_WC_INV_EECN_ERR, 859 IB_WC_INV_EEC_STATE_ERR, 860 IB_WC_FATAL_ERR, 861 IB_WC_RESP_TIMEOUT_ERR, 862 IB_WC_GENERAL_ERR 863 }; 864 865 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 866 867 enum ib_wc_opcode { 868 IB_WC_SEND, 869 IB_WC_RDMA_WRITE, 870 IB_WC_RDMA_READ, 871 IB_WC_COMP_SWAP, 872 IB_WC_FETCH_ADD, 873 IB_WC_LSO, 874 IB_WC_LOCAL_INV, 875 IB_WC_REG_MR, 876 IB_WC_MASKED_COMP_SWAP, 877 IB_WC_MASKED_FETCH_ADD, 878 /* 879 * Set value of IB_WC_RECV so consumers can test if a completion is a 880 * receive by testing (opcode & IB_WC_RECV). 881 */ 882 IB_WC_RECV = 1 << 7, 883 IB_WC_RECV_RDMA_WITH_IMM, 884 IB_WC_DUMMY = -1, /* force enum signed */ 885 }; 886 887 enum ib_wc_flags { 888 IB_WC_GRH = 1, 889 IB_WC_WITH_IMM = (1<<1), 890 IB_WC_WITH_INVALIDATE = (1<<2), 891 IB_WC_IP_CSUM_OK = (1<<3), 892 IB_WC_WITH_SMAC = (1<<4), 893 IB_WC_WITH_VLAN = (1<<5), 894 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 895 }; 896 897 struct ib_wc { 898 union { 899 u64 wr_id; 900 struct ib_cqe *wr_cqe; 901 }; 902 enum ib_wc_status status; 903 enum ib_wc_opcode opcode; 904 u32 vendor_err; 905 u32 byte_len; 906 struct ib_qp *qp; 907 union { 908 __be32 imm_data; 909 u32 invalidate_rkey; 910 } ex; 911 u32 src_qp; 912 int wc_flags; 913 u16 pkey_index; 914 u16 slid; 915 u8 sl; 916 u8 dlid_path_bits; 917 u8 port_num; /* valid only for DR SMPs on switches */ 918 u8 smac[ETH_ALEN]; 919 u16 vlan_id; 920 u8 network_hdr_type; 921 }; 922 923 enum ib_cq_notify_flags { 924 IB_CQ_SOLICITED = 1 << 0, 925 IB_CQ_NEXT_COMP = 1 << 1, 926 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 927 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 928 }; 929 930 enum ib_srq_type { 931 IB_SRQT_BASIC, 932 IB_SRQT_XRC 933 }; 934 935 enum ib_srq_attr_mask { 936 IB_SRQ_MAX_WR = 1 << 0, 937 IB_SRQ_LIMIT = 1 << 1, 938 }; 939 940 struct ib_srq_attr { 941 u32 max_wr; 942 u32 max_sge; 943 u32 srq_limit; 944 }; 945 946 struct ib_srq_init_attr { 947 void (*event_handler)(struct ib_event *, void *); 948 void *srq_context; 949 struct ib_srq_attr attr; 950 enum ib_srq_type srq_type; 951 952 union { 953 struct { 954 struct ib_xrcd *xrcd; 955 struct ib_cq *cq; 956 } xrc; 957 } ext; 958 }; 959 960 struct ib_qp_cap { 961 u32 max_send_wr; 962 u32 max_recv_wr; 963 u32 max_send_sge; 964 u32 max_recv_sge; 965 u32 max_inline_data; 966 967 /* 968 * Maximum number of rdma_rw_ctx structures in flight at a time. 969 * ib_create_qp() will calculate the right amount of neededed WRs 970 * and MRs based on this. 971 */ 972 u32 max_rdma_ctxs; 973 }; 974 975 enum ib_sig_type { 976 IB_SIGNAL_ALL_WR, 977 IB_SIGNAL_REQ_WR 978 }; 979 980 enum ib_qp_type { 981 /* 982 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 983 * here (and in that order) since the MAD layer uses them as 984 * indices into a 2-entry table. 985 */ 986 IB_QPT_SMI, 987 IB_QPT_GSI, 988 989 IB_QPT_RC, 990 IB_QPT_UC, 991 IB_QPT_UD, 992 IB_QPT_RAW_IPV6, 993 IB_QPT_RAW_ETHERTYPE, 994 IB_QPT_RAW_PACKET = 8, 995 IB_QPT_XRC_INI = 9, 996 IB_QPT_XRC_TGT, 997 IB_QPT_MAX, 998 /* Reserve a range for qp types internal to the low level driver. 999 * These qp types will not be visible at the IB core layer, so the 1000 * IB_QPT_MAX usages should not be affected in the core layer 1001 */ 1002 IB_QPT_RESERVED1 = 0x1000, 1003 IB_QPT_RESERVED2, 1004 IB_QPT_RESERVED3, 1005 IB_QPT_RESERVED4, 1006 IB_QPT_RESERVED5, 1007 IB_QPT_RESERVED6, 1008 IB_QPT_RESERVED7, 1009 IB_QPT_RESERVED8, 1010 IB_QPT_RESERVED9, 1011 IB_QPT_RESERVED10, 1012 }; 1013 1014 enum ib_qp_create_flags { 1015 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1016 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1017 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1018 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1019 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1020 IB_QP_CREATE_NETIF_QP = 1 << 5, 1021 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1022 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1023 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1024 /* reserve bits 26-31 for low level drivers' internal use */ 1025 IB_QP_CREATE_RESERVED_START = 1 << 26, 1026 IB_QP_CREATE_RESERVED_END = 1 << 31, 1027 }; 1028 1029 /* 1030 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1031 * callback to destroy the passed in QP. 1032 */ 1033 1034 struct ib_qp_init_attr { 1035 void (*event_handler)(struct ib_event *, void *); 1036 void *qp_context; 1037 struct ib_cq *send_cq; 1038 struct ib_cq *recv_cq; 1039 struct ib_srq *srq; 1040 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1041 struct ib_qp_cap cap; 1042 enum ib_sig_type sq_sig_type; 1043 enum ib_qp_type qp_type; 1044 enum ib_qp_create_flags create_flags; 1045 1046 /* 1047 * Only needed for special QP types, or when using the RW API. 1048 */ 1049 u8 port_num; 1050 struct ib_rwq_ind_table *rwq_ind_tbl; 1051 }; 1052 1053 struct ib_qp_open_attr { 1054 void (*event_handler)(struct ib_event *, void *); 1055 void *qp_context; 1056 u32 qp_num; 1057 enum ib_qp_type qp_type; 1058 }; 1059 1060 enum ib_rnr_timeout { 1061 IB_RNR_TIMER_655_36 = 0, 1062 IB_RNR_TIMER_000_01 = 1, 1063 IB_RNR_TIMER_000_02 = 2, 1064 IB_RNR_TIMER_000_03 = 3, 1065 IB_RNR_TIMER_000_04 = 4, 1066 IB_RNR_TIMER_000_06 = 5, 1067 IB_RNR_TIMER_000_08 = 6, 1068 IB_RNR_TIMER_000_12 = 7, 1069 IB_RNR_TIMER_000_16 = 8, 1070 IB_RNR_TIMER_000_24 = 9, 1071 IB_RNR_TIMER_000_32 = 10, 1072 IB_RNR_TIMER_000_48 = 11, 1073 IB_RNR_TIMER_000_64 = 12, 1074 IB_RNR_TIMER_000_96 = 13, 1075 IB_RNR_TIMER_001_28 = 14, 1076 IB_RNR_TIMER_001_92 = 15, 1077 IB_RNR_TIMER_002_56 = 16, 1078 IB_RNR_TIMER_003_84 = 17, 1079 IB_RNR_TIMER_005_12 = 18, 1080 IB_RNR_TIMER_007_68 = 19, 1081 IB_RNR_TIMER_010_24 = 20, 1082 IB_RNR_TIMER_015_36 = 21, 1083 IB_RNR_TIMER_020_48 = 22, 1084 IB_RNR_TIMER_030_72 = 23, 1085 IB_RNR_TIMER_040_96 = 24, 1086 IB_RNR_TIMER_061_44 = 25, 1087 IB_RNR_TIMER_081_92 = 26, 1088 IB_RNR_TIMER_122_88 = 27, 1089 IB_RNR_TIMER_163_84 = 28, 1090 IB_RNR_TIMER_245_76 = 29, 1091 IB_RNR_TIMER_327_68 = 30, 1092 IB_RNR_TIMER_491_52 = 31 1093 }; 1094 1095 enum ib_qp_attr_mask { 1096 IB_QP_STATE = 1, 1097 IB_QP_CUR_STATE = (1<<1), 1098 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1099 IB_QP_ACCESS_FLAGS = (1<<3), 1100 IB_QP_PKEY_INDEX = (1<<4), 1101 IB_QP_PORT = (1<<5), 1102 IB_QP_QKEY = (1<<6), 1103 IB_QP_AV = (1<<7), 1104 IB_QP_PATH_MTU = (1<<8), 1105 IB_QP_TIMEOUT = (1<<9), 1106 IB_QP_RETRY_CNT = (1<<10), 1107 IB_QP_RNR_RETRY = (1<<11), 1108 IB_QP_RQ_PSN = (1<<12), 1109 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1110 IB_QP_ALT_PATH = (1<<14), 1111 IB_QP_MIN_RNR_TIMER = (1<<15), 1112 IB_QP_SQ_PSN = (1<<16), 1113 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1114 IB_QP_PATH_MIG_STATE = (1<<18), 1115 IB_QP_CAP = (1<<19), 1116 IB_QP_DEST_QPN = (1<<20), 1117 IB_QP_RESERVED1 = (1<<21), 1118 IB_QP_RESERVED2 = (1<<22), 1119 IB_QP_RESERVED3 = (1<<23), 1120 IB_QP_RESERVED4 = (1<<24), 1121 }; 1122 1123 enum ib_qp_state { 1124 IB_QPS_RESET, 1125 IB_QPS_INIT, 1126 IB_QPS_RTR, 1127 IB_QPS_RTS, 1128 IB_QPS_SQD, 1129 IB_QPS_SQE, 1130 IB_QPS_ERR, 1131 IB_QPS_DUMMY = -1, /* force enum signed */ 1132 }; 1133 1134 enum ib_mig_state { 1135 IB_MIG_MIGRATED, 1136 IB_MIG_REARM, 1137 IB_MIG_ARMED 1138 }; 1139 1140 enum ib_mw_type { 1141 IB_MW_TYPE_1 = 1, 1142 IB_MW_TYPE_2 = 2 1143 }; 1144 1145 struct ib_qp_attr { 1146 enum ib_qp_state qp_state; 1147 enum ib_qp_state cur_qp_state; 1148 enum ib_mtu path_mtu; 1149 enum ib_mig_state path_mig_state; 1150 u32 qkey; 1151 u32 rq_psn; 1152 u32 sq_psn; 1153 u32 dest_qp_num; 1154 int qp_access_flags; 1155 struct ib_qp_cap cap; 1156 struct ib_ah_attr ah_attr; 1157 struct ib_ah_attr alt_ah_attr; 1158 u16 pkey_index; 1159 u16 alt_pkey_index; 1160 u8 en_sqd_async_notify; 1161 u8 sq_draining; 1162 u8 max_rd_atomic; 1163 u8 max_dest_rd_atomic; 1164 u8 min_rnr_timer; 1165 u8 port_num; 1166 u8 timeout; 1167 u8 retry_cnt; 1168 u8 rnr_retry; 1169 u8 alt_port_num; 1170 u8 alt_timeout; 1171 }; 1172 1173 enum ib_wr_opcode { 1174 IB_WR_RDMA_WRITE, 1175 IB_WR_RDMA_WRITE_WITH_IMM, 1176 IB_WR_SEND, 1177 IB_WR_SEND_WITH_IMM, 1178 IB_WR_RDMA_READ, 1179 IB_WR_ATOMIC_CMP_AND_SWP, 1180 IB_WR_ATOMIC_FETCH_AND_ADD, 1181 IB_WR_LSO, 1182 IB_WR_SEND_WITH_INV, 1183 IB_WR_RDMA_READ_WITH_INV, 1184 IB_WR_LOCAL_INV, 1185 IB_WR_REG_MR, 1186 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1187 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1188 IB_WR_REG_SIG_MR, 1189 /* reserve values for low level drivers' internal use. 1190 * These values will not be used at all in the ib core layer. 1191 */ 1192 IB_WR_RESERVED1 = 0xf0, 1193 IB_WR_RESERVED2, 1194 IB_WR_RESERVED3, 1195 IB_WR_RESERVED4, 1196 IB_WR_RESERVED5, 1197 IB_WR_RESERVED6, 1198 IB_WR_RESERVED7, 1199 IB_WR_RESERVED8, 1200 IB_WR_RESERVED9, 1201 IB_WR_RESERVED10, 1202 IB_WR_DUMMY = -1, /* force enum signed */ 1203 }; 1204 1205 enum ib_send_flags { 1206 IB_SEND_FENCE = 1, 1207 IB_SEND_SIGNALED = (1<<1), 1208 IB_SEND_SOLICITED = (1<<2), 1209 IB_SEND_INLINE = (1<<3), 1210 IB_SEND_IP_CSUM = (1<<4), 1211 1212 /* reserve bits 26-31 for low level drivers' internal use */ 1213 IB_SEND_RESERVED_START = (1 << 26), 1214 IB_SEND_RESERVED_END = (1 << 31), 1215 }; 1216 1217 struct ib_sge { 1218 u64 addr; 1219 u32 length; 1220 u32 lkey; 1221 }; 1222 1223 struct ib_cqe { 1224 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1225 }; 1226 1227 struct ib_send_wr { 1228 struct ib_send_wr *next; 1229 union { 1230 u64 wr_id; 1231 struct ib_cqe *wr_cqe; 1232 }; 1233 struct ib_sge *sg_list; 1234 int num_sge; 1235 enum ib_wr_opcode opcode; 1236 int send_flags; 1237 union { 1238 __be32 imm_data; 1239 u32 invalidate_rkey; 1240 } ex; 1241 }; 1242 1243 struct ib_rdma_wr { 1244 struct ib_send_wr wr; 1245 u64 remote_addr; 1246 u32 rkey; 1247 }; 1248 1249 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1250 { 1251 return container_of(wr, struct ib_rdma_wr, wr); 1252 } 1253 1254 struct ib_atomic_wr { 1255 struct ib_send_wr wr; 1256 u64 remote_addr; 1257 u64 compare_add; 1258 u64 swap; 1259 u64 compare_add_mask; 1260 u64 swap_mask; 1261 u32 rkey; 1262 }; 1263 1264 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1265 { 1266 return container_of(wr, struct ib_atomic_wr, wr); 1267 } 1268 1269 struct ib_ud_wr { 1270 struct ib_send_wr wr; 1271 struct ib_ah *ah; 1272 void *header; 1273 int hlen; 1274 int mss; 1275 u32 remote_qpn; 1276 u32 remote_qkey; 1277 u16 pkey_index; /* valid for GSI only */ 1278 u8 port_num; /* valid for DR SMPs on switch only */ 1279 }; 1280 1281 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1282 { 1283 return container_of(wr, struct ib_ud_wr, wr); 1284 } 1285 1286 struct ib_reg_wr { 1287 struct ib_send_wr wr; 1288 struct ib_mr *mr; 1289 u32 key; 1290 int access; 1291 }; 1292 1293 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1294 { 1295 return container_of(wr, struct ib_reg_wr, wr); 1296 } 1297 1298 struct ib_sig_handover_wr { 1299 struct ib_send_wr wr; 1300 struct ib_sig_attrs *sig_attrs; 1301 struct ib_mr *sig_mr; 1302 int access_flags; 1303 struct ib_sge *prot; 1304 }; 1305 1306 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1307 { 1308 return container_of(wr, struct ib_sig_handover_wr, wr); 1309 } 1310 1311 struct ib_recv_wr { 1312 struct ib_recv_wr *next; 1313 union { 1314 u64 wr_id; 1315 struct ib_cqe *wr_cqe; 1316 }; 1317 struct ib_sge *sg_list; 1318 int num_sge; 1319 }; 1320 1321 enum ib_access_flags { 1322 IB_ACCESS_LOCAL_WRITE = 1, 1323 IB_ACCESS_REMOTE_WRITE = (1<<1), 1324 IB_ACCESS_REMOTE_READ = (1<<2), 1325 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1326 IB_ACCESS_MW_BIND = (1<<4), 1327 IB_ZERO_BASED = (1<<5), 1328 IB_ACCESS_ON_DEMAND = (1<<6), 1329 }; 1330 1331 /* 1332 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1333 * are hidden here instead of a uapi header! 1334 */ 1335 enum ib_mr_rereg_flags { 1336 IB_MR_REREG_TRANS = 1, 1337 IB_MR_REREG_PD = (1<<1), 1338 IB_MR_REREG_ACCESS = (1<<2), 1339 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1340 }; 1341 1342 struct ib_fmr_attr { 1343 int max_pages; 1344 int max_maps; 1345 u8 page_shift; 1346 }; 1347 1348 struct ib_umem; 1349 1350 struct ib_ucontext { 1351 struct ib_device *device; 1352 struct list_head pd_list; 1353 struct list_head mr_list; 1354 struct list_head mw_list; 1355 struct list_head cq_list; 1356 struct list_head qp_list; 1357 struct list_head srq_list; 1358 struct list_head ah_list; 1359 struct list_head xrcd_list; 1360 struct list_head rule_list; 1361 struct list_head wq_list; 1362 struct list_head rwq_ind_tbl_list; 1363 int closing; 1364 1365 pid_t tgid; 1366 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1367 struct rb_root umem_tree; 1368 /* 1369 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1370 * mmu notifiers registration. 1371 */ 1372 struct rw_semaphore umem_rwsem; 1373 void (*invalidate_range)(struct ib_umem *umem, 1374 unsigned long start, unsigned long end); 1375 1376 struct mmu_notifier mn; 1377 atomic_t notifier_count; 1378 /* A list of umems that don't have private mmu notifier counters yet. */ 1379 struct list_head no_private_counters; 1380 int odp_mrs_count; 1381 #endif 1382 }; 1383 1384 struct ib_uobject { 1385 u64 user_handle; /* handle given to us by userspace */ 1386 struct ib_ucontext *context; /* associated user context */ 1387 void *object; /* containing object */ 1388 struct list_head list; /* link to context's list */ 1389 int id; /* index into kernel idr */ 1390 struct kref ref; 1391 struct rw_semaphore mutex; /* protects .live */ 1392 struct rcu_head rcu; /* kfree_rcu() overhead */ 1393 int live; 1394 }; 1395 1396 struct ib_udata { 1397 const void __user *inbuf; 1398 void __user *outbuf; 1399 size_t inlen; 1400 size_t outlen; 1401 }; 1402 1403 struct ib_pd { 1404 u32 local_dma_lkey; 1405 u32 flags; 1406 struct ib_device *device; 1407 struct ib_uobject *uobject; 1408 atomic_t usecnt; /* count all resources */ 1409 1410 u32 unsafe_global_rkey; 1411 1412 /* 1413 * Implementation details of the RDMA core, don't use in drivers: 1414 */ 1415 struct ib_mr *__internal_mr; 1416 }; 1417 1418 struct ib_xrcd { 1419 struct ib_device *device; 1420 atomic_t usecnt; /* count all exposed resources */ 1421 struct inode *inode; 1422 1423 struct mutex tgt_qp_mutex; 1424 struct list_head tgt_qp_list; 1425 }; 1426 1427 struct ib_ah { 1428 struct ib_device *device; 1429 struct ib_pd *pd; 1430 struct ib_uobject *uobject; 1431 }; 1432 1433 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1434 1435 enum ib_poll_context { 1436 IB_POLL_DIRECT, /* caller context, no hw completions */ 1437 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1438 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1439 }; 1440 1441 struct ib_cq { 1442 struct ib_device *device; 1443 struct ib_uobject *uobject; 1444 ib_comp_handler comp_handler; 1445 void (*event_handler)(struct ib_event *, void *); 1446 void *cq_context; 1447 int cqe; 1448 atomic_t usecnt; /* count number of work queues */ 1449 enum ib_poll_context poll_ctx; 1450 struct work_struct work; 1451 }; 1452 1453 struct ib_srq { 1454 struct ib_device *device; 1455 struct ib_pd *pd; 1456 struct ib_uobject *uobject; 1457 void (*event_handler)(struct ib_event *, void *); 1458 void *srq_context; 1459 enum ib_srq_type srq_type; 1460 atomic_t usecnt; 1461 1462 union { 1463 struct { 1464 struct ib_xrcd *xrcd; 1465 struct ib_cq *cq; 1466 u32 srq_num; 1467 } xrc; 1468 } ext; 1469 }; 1470 1471 enum ib_wq_type { 1472 IB_WQT_RQ 1473 }; 1474 1475 enum ib_wq_state { 1476 IB_WQS_RESET, 1477 IB_WQS_RDY, 1478 IB_WQS_ERR 1479 }; 1480 1481 struct ib_wq { 1482 struct ib_device *device; 1483 struct ib_uobject *uobject; 1484 void *wq_context; 1485 void (*event_handler)(struct ib_event *, void *); 1486 struct ib_pd *pd; 1487 struct ib_cq *cq; 1488 u32 wq_num; 1489 enum ib_wq_state state; 1490 enum ib_wq_type wq_type; 1491 atomic_t usecnt; 1492 }; 1493 1494 struct ib_wq_init_attr { 1495 void *wq_context; 1496 enum ib_wq_type wq_type; 1497 u32 max_wr; 1498 u32 max_sge; 1499 struct ib_cq *cq; 1500 void (*event_handler)(struct ib_event *, void *); 1501 }; 1502 1503 enum ib_wq_attr_mask { 1504 IB_WQ_STATE = 1 << 0, 1505 IB_WQ_CUR_STATE = 1 << 1, 1506 }; 1507 1508 struct ib_wq_attr { 1509 enum ib_wq_state wq_state; 1510 enum ib_wq_state curr_wq_state; 1511 }; 1512 1513 struct ib_rwq_ind_table { 1514 struct ib_device *device; 1515 struct ib_uobject *uobject; 1516 atomic_t usecnt; 1517 u32 ind_tbl_num; 1518 u32 log_ind_tbl_size; 1519 struct ib_wq **ind_tbl; 1520 }; 1521 1522 struct ib_rwq_ind_table_init_attr { 1523 u32 log_ind_tbl_size; 1524 /* Each entry is a pointer to Receive Work Queue */ 1525 struct ib_wq **ind_tbl; 1526 }; 1527 1528 /* 1529 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1530 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1531 */ 1532 struct ib_qp { 1533 struct ib_device *device; 1534 struct ib_pd *pd; 1535 struct ib_cq *send_cq; 1536 struct ib_cq *recv_cq; 1537 spinlock_t mr_lock; 1538 struct ib_srq *srq; 1539 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1540 struct list_head xrcd_list; 1541 1542 /* count times opened, mcast attaches, flow attaches */ 1543 atomic_t usecnt; 1544 struct list_head open_list; 1545 struct ib_qp *real_qp; 1546 struct ib_uobject *uobject; 1547 void (*event_handler)(struct ib_event *, void *); 1548 void *qp_context; 1549 u32 qp_num; 1550 u32 max_write_sge; 1551 u32 max_read_sge; 1552 enum ib_qp_type qp_type; 1553 struct ib_rwq_ind_table *rwq_ind_tbl; 1554 }; 1555 1556 struct ib_mr { 1557 struct ib_device *device; 1558 struct ib_pd *pd; 1559 u32 lkey; 1560 u32 rkey; 1561 u64 iova; 1562 u64 length; 1563 unsigned int page_size; 1564 bool need_inval; 1565 union { 1566 struct ib_uobject *uobject; /* user */ 1567 struct list_head qp_entry; /* FR */ 1568 }; 1569 }; 1570 1571 struct ib_mw { 1572 struct ib_device *device; 1573 struct ib_pd *pd; 1574 struct ib_uobject *uobject; 1575 u32 rkey; 1576 enum ib_mw_type type; 1577 }; 1578 1579 struct ib_fmr { 1580 struct ib_device *device; 1581 struct ib_pd *pd; 1582 struct list_head list; 1583 u32 lkey; 1584 u32 rkey; 1585 }; 1586 1587 /* Supported steering options */ 1588 enum ib_flow_attr_type { 1589 /* steering according to rule specifications */ 1590 IB_FLOW_ATTR_NORMAL = 0x0, 1591 /* default unicast and multicast rule - 1592 * receive all Eth traffic which isn't steered to any QP 1593 */ 1594 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1595 /* default multicast rule - 1596 * receive all Eth multicast traffic which isn't steered to any QP 1597 */ 1598 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1599 /* sniffer rule - receive all port traffic */ 1600 IB_FLOW_ATTR_SNIFFER = 0x3 1601 }; 1602 1603 /* Supported steering header types */ 1604 enum ib_flow_spec_type { 1605 /* L2 headers*/ 1606 IB_FLOW_SPEC_ETH = 0x20, 1607 IB_FLOW_SPEC_IB = 0x22, 1608 /* L3 header*/ 1609 IB_FLOW_SPEC_IPV4 = 0x30, 1610 IB_FLOW_SPEC_IPV6 = 0x31, 1611 /* L4 headers*/ 1612 IB_FLOW_SPEC_TCP = 0x40, 1613 IB_FLOW_SPEC_UDP = 0x41 1614 }; 1615 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1616 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1617 1618 /* Flow steering rule priority is set according to it's domain. 1619 * Lower domain value means higher priority. 1620 */ 1621 enum ib_flow_domain { 1622 IB_FLOW_DOMAIN_USER, 1623 IB_FLOW_DOMAIN_ETHTOOL, 1624 IB_FLOW_DOMAIN_RFS, 1625 IB_FLOW_DOMAIN_NIC, 1626 IB_FLOW_DOMAIN_NUM /* Must be last */ 1627 }; 1628 1629 enum ib_flow_flags { 1630 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1631 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1632 }; 1633 1634 struct ib_flow_eth_filter { 1635 u8 dst_mac[6]; 1636 u8 src_mac[6]; 1637 __be16 ether_type; 1638 __be16 vlan_tag; 1639 /* Must be last */ 1640 u8 real_sz[0]; 1641 }; 1642 1643 struct ib_flow_spec_eth { 1644 enum ib_flow_spec_type type; 1645 u16 size; 1646 struct ib_flow_eth_filter val; 1647 struct ib_flow_eth_filter mask; 1648 }; 1649 1650 struct ib_flow_ib_filter { 1651 __be16 dlid; 1652 __u8 sl; 1653 /* Must be last */ 1654 u8 real_sz[0]; 1655 }; 1656 1657 struct ib_flow_spec_ib { 1658 enum ib_flow_spec_type type; 1659 u16 size; 1660 struct ib_flow_ib_filter val; 1661 struct ib_flow_ib_filter mask; 1662 }; 1663 1664 /* IPv4 header flags */ 1665 enum ib_ipv4_flags { 1666 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1667 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1668 last have this flag set */ 1669 }; 1670 1671 struct ib_flow_ipv4_filter { 1672 __be32 src_ip; 1673 __be32 dst_ip; 1674 u8 proto; 1675 u8 tos; 1676 u8 ttl; 1677 u8 flags; 1678 /* Must be last */ 1679 u8 real_sz[0]; 1680 }; 1681 1682 struct ib_flow_spec_ipv4 { 1683 enum ib_flow_spec_type type; 1684 u16 size; 1685 struct ib_flow_ipv4_filter val; 1686 struct ib_flow_ipv4_filter mask; 1687 }; 1688 1689 struct ib_flow_ipv6_filter { 1690 u8 src_ip[16]; 1691 u8 dst_ip[16]; 1692 __be32 flow_label; 1693 u8 next_hdr; 1694 u8 traffic_class; 1695 u8 hop_limit; 1696 /* Must be last */ 1697 u8 real_sz[0]; 1698 }; 1699 1700 struct ib_flow_spec_ipv6 { 1701 enum ib_flow_spec_type type; 1702 u16 size; 1703 struct ib_flow_ipv6_filter val; 1704 struct ib_flow_ipv6_filter mask; 1705 }; 1706 1707 struct ib_flow_tcp_udp_filter { 1708 __be16 dst_port; 1709 __be16 src_port; 1710 /* Must be last */ 1711 u8 real_sz[0]; 1712 }; 1713 1714 struct ib_flow_spec_tcp_udp { 1715 enum ib_flow_spec_type type; 1716 u16 size; 1717 struct ib_flow_tcp_udp_filter val; 1718 struct ib_flow_tcp_udp_filter mask; 1719 }; 1720 1721 union ib_flow_spec { 1722 struct { 1723 enum ib_flow_spec_type type; 1724 u16 size; 1725 }; 1726 struct ib_flow_spec_eth eth; 1727 struct ib_flow_spec_ib ib; 1728 struct ib_flow_spec_ipv4 ipv4; 1729 struct ib_flow_spec_tcp_udp tcp_udp; 1730 struct ib_flow_spec_ipv6 ipv6; 1731 }; 1732 1733 struct ib_flow_attr { 1734 enum ib_flow_attr_type type; 1735 u16 size; 1736 u16 priority; 1737 u32 flags; 1738 u8 num_of_specs; 1739 u8 port; 1740 /* Following are the optional layers according to user request 1741 * struct ib_flow_spec_xxx 1742 * struct ib_flow_spec_yyy 1743 */ 1744 }; 1745 1746 struct ib_flow { 1747 struct ib_qp *qp; 1748 struct ib_uobject *uobject; 1749 }; 1750 1751 struct ib_mad_hdr; 1752 struct ib_grh; 1753 1754 enum ib_process_mad_flags { 1755 IB_MAD_IGNORE_MKEY = 1, 1756 IB_MAD_IGNORE_BKEY = 2, 1757 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1758 }; 1759 1760 enum ib_mad_result { 1761 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1762 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1763 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1764 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1765 }; 1766 1767 #define IB_DEVICE_NAME_MAX 64 1768 1769 struct ib_cache { 1770 rwlock_t lock; 1771 struct ib_event_handler event_handler; 1772 struct ib_pkey_cache **pkey_cache; 1773 struct ib_gid_table **gid_cache; 1774 u8 *lmc_cache; 1775 }; 1776 1777 struct ib_dma_mapping_ops { 1778 int (*mapping_error)(struct ib_device *dev, 1779 u64 dma_addr); 1780 u64 (*map_single)(struct ib_device *dev, 1781 void *ptr, size_t size, 1782 enum dma_data_direction direction); 1783 void (*unmap_single)(struct ib_device *dev, 1784 u64 addr, size_t size, 1785 enum dma_data_direction direction); 1786 u64 (*map_page)(struct ib_device *dev, 1787 struct page *page, unsigned long offset, 1788 size_t size, 1789 enum dma_data_direction direction); 1790 void (*unmap_page)(struct ib_device *dev, 1791 u64 addr, size_t size, 1792 enum dma_data_direction direction); 1793 int (*map_sg)(struct ib_device *dev, 1794 struct scatterlist *sg, int nents, 1795 enum dma_data_direction direction); 1796 void (*unmap_sg)(struct ib_device *dev, 1797 struct scatterlist *sg, int nents, 1798 enum dma_data_direction direction); 1799 int (*map_sg_attrs)(struct ib_device *dev, 1800 struct scatterlist *sg, int nents, 1801 enum dma_data_direction direction, 1802 struct dma_attrs *attrs); 1803 void (*unmap_sg_attrs)(struct ib_device *dev, 1804 struct scatterlist *sg, int nents, 1805 enum dma_data_direction direction, 1806 struct dma_attrs *attrs); 1807 void (*sync_single_for_cpu)(struct ib_device *dev, 1808 u64 dma_handle, 1809 size_t size, 1810 enum dma_data_direction dir); 1811 void (*sync_single_for_device)(struct ib_device *dev, 1812 u64 dma_handle, 1813 size_t size, 1814 enum dma_data_direction dir); 1815 void *(*alloc_coherent)(struct ib_device *dev, 1816 size_t size, 1817 u64 *dma_handle, 1818 gfp_t flag); 1819 void (*free_coherent)(struct ib_device *dev, 1820 size_t size, void *cpu_addr, 1821 u64 dma_handle); 1822 }; 1823 1824 struct iw_cm_verbs; 1825 1826 struct ib_port_immutable { 1827 int pkey_tbl_len; 1828 int gid_tbl_len; 1829 u32 core_cap_flags; 1830 u32 max_mad_size; 1831 }; 1832 1833 struct ib_device { 1834 struct device *dma_device; 1835 1836 char name[IB_DEVICE_NAME_MAX]; 1837 1838 struct list_head event_handler_list; 1839 spinlock_t event_handler_lock; 1840 1841 spinlock_t client_data_lock; 1842 struct list_head core_list; 1843 /* Access to the client_data_list is protected by the client_data_lock 1844 * spinlock and the lists_rwsem read-write semaphore */ 1845 struct list_head client_data_list; 1846 1847 struct ib_cache cache; 1848 /** 1849 * port_immutable is indexed by port number 1850 */ 1851 struct ib_port_immutable *port_immutable; 1852 1853 int num_comp_vectors; 1854 1855 struct iw_cm_verbs *iwcm; 1856 1857 /** 1858 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1859 * driver initialized data. The struct is kfree()'ed by the sysfs 1860 * core when the device is removed. A lifespan of -1 in the return 1861 * struct tells the core to set a default lifespan. 1862 */ 1863 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1864 u8 port_num); 1865 /** 1866 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1867 * @index - The index in the value array we wish to have updated, or 1868 * num_counters if we want all stats updated 1869 * Return codes - 1870 * < 0 - Error, no counters updated 1871 * index - Updated the single counter pointed to by index 1872 * num_counters - Updated all counters (will reset the timestamp 1873 * and prevent further calls for lifespan milliseconds) 1874 * Drivers are allowed to update all counters in leiu of just the 1875 * one given in index at their option 1876 */ 1877 int (*get_hw_stats)(struct ib_device *device, 1878 struct rdma_hw_stats *stats, 1879 u8 port, int index); 1880 int (*query_device)(struct ib_device *device, 1881 struct ib_device_attr *device_attr, 1882 struct ib_udata *udata); 1883 int (*query_port)(struct ib_device *device, 1884 u8 port_num, 1885 struct ib_port_attr *port_attr); 1886 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1887 u8 port_num); 1888 /* When calling get_netdev, the HW vendor's driver should return the 1889 * net device of device @device at port @port_num or NULL if such 1890 * a net device doesn't exist. The vendor driver should call dev_hold 1891 * on this net device. The HW vendor's device driver must guarantee 1892 * that this function returns NULL before the net device reaches 1893 * NETDEV_UNREGISTER_FINAL state. 1894 */ 1895 struct ifnet *(*get_netdev)(struct ib_device *device, 1896 u8 port_num); 1897 int (*query_gid)(struct ib_device *device, 1898 u8 port_num, int index, 1899 union ib_gid *gid); 1900 /* When calling add_gid, the HW vendor's driver should 1901 * add the gid of device @device at gid index @index of 1902 * port @port_num to be @gid. Meta-info of that gid (for example, 1903 * the network device related to this gid is available 1904 * at @attr. @context allows the HW vendor driver to store extra 1905 * information together with a GID entry. The HW vendor may allocate 1906 * memory to contain this information and store it in @context when a 1907 * new GID entry is written to. Params are consistent until the next 1908 * call of add_gid or delete_gid. The function should return 0 on 1909 * success or error otherwise. The function could be called 1910 * concurrently for different ports. This function is only called 1911 * when roce_gid_table is used. 1912 */ 1913 int (*add_gid)(struct ib_device *device, 1914 u8 port_num, 1915 unsigned int index, 1916 const union ib_gid *gid, 1917 const struct ib_gid_attr *attr, 1918 void **context); 1919 /* When calling del_gid, the HW vendor's driver should delete the 1920 * gid of device @device at gid index @index of port @port_num. 1921 * Upon the deletion of a GID entry, the HW vendor must free any 1922 * allocated memory. The caller will clear @context afterwards. 1923 * This function is only called when roce_gid_table is used. 1924 */ 1925 int (*del_gid)(struct ib_device *device, 1926 u8 port_num, 1927 unsigned int index, 1928 void **context); 1929 int (*query_pkey)(struct ib_device *device, 1930 u8 port_num, u16 index, u16 *pkey); 1931 int (*modify_device)(struct ib_device *device, 1932 int device_modify_mask, 1933 struct ib_device_modify *device_modify); 1934 int (*modify_port)(struct ib_device *device, 1935 u8 port_num, int port_modify_mask, 1936 struct ib_port_modify *port_modify); 1937 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1938 struct ib_udata *udata); 1939 int (*dealloc_ucontext)(struct ib_ucontext *context); 1940 int (*mmap)(struct ib_ucontext *context, 1941 struct vm_area_struct *vma); 1942 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1943 struct ib_ucontext *context, 1944 struct ib_udata *udata); 1945 int (*dealloc_pd)(struct ib_pd *pd); 1946 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1947 struct ib_ah_attr *ah_attr, 1948 struct ib_udata *udata); 1949 int (*modify_ah)(struct ib_ah *ah, 1950 struct ib_ah_attr *ah_attr); 1951 int (*query_ah)(struct ib_ah *ah, 1952 struct ib_ah_attr *ah_attr); 1953 int (*destroy_ah)(struct ib_ah *ah); 1954 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1955 struct ib_srq_init_attr *srq_init_attr, 1956 struct ib_udata *udata); 1957 int (*modify_srq)(struct ib_srq *srq, 1958 struct ib_srq_attr *srq_attr, 1959 enum ib_srq_attr_mask srq_attr_mask, 1960 struct ib_udata *udata); 1961 int (*query_srq)(struct ib_srq *srq, 1962 struct ib_srq_attr *srq_attr); 1963 int (*destroy_srq)(struct ib_srq *srq); 1964 int (*post_srq_recv)(struct ib_srq *srq, 1965 struct ib_recv_wr *recv_wr, 1966 struct ib_recv_wr **bad_recv_wr); 1967 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1968 struct ib_qp_init_attr *qp_init_attr, 1969 struct ib_udata *udata); 1970 int (*modify_qp)(struct ib_qp *qp, 1971 struct ib_qp_attr *qp_attr, 1972 int qp_attr_mask, 1973 struct ib_udata *udata); 1974 int (*query_qp)(struct ib_qp *qp, 1975 struct ib_qp_attr *qp_attr, 1976 int qp_attr_mask, 1977 struct ib_qp_init_attr *qp_init_attr); 1978 int (*destroy_qp)(struct ib_qp *qp); 1979 int (*post_send)(struct ib_qp *qp, 1980 struct ib_send_wr *send_wr, 1981 struct ib_send_wr **bad_send_wr); 1982 int (*post_recv)(struct ib_qp *qp, 1983 struct ib_recv_wr *recv_wr, 1984 struct ib_recv_wr **bad_recv_wr); 1985 struct ib_cq * (*create_cq)(struct ib_device *device, 1986 const struct ib_cq_init_attr *attr, 1987 struct ib_ucontext *context, 1988 struct ib_udata *udata); 1989 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1990 u16 cq_period); 1991 int (*destroy_cq)(struct ib_cq *cq); 1992 int (*resize_cq)(struct ib_cq *cq, int cqe, 1993 struct ib_udata *udata); 1994 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1995 struct ib_wc *wc); 1996 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1997 int (*req_notify_cq)(struct ib_cq *cq, 1998 enum ib_cq_notify_flags flags); 1999 int (*req_ncomp_notif)(struct ib_cq *cq, 2000 int wc_cnt); 2001 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2002 int mr_access_flags); 2003 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2004 u64 start, u64 length, 2005 u64 virt_addr, 2006 int mr_access_flags, 2007 struct ib_udata *udata); 2008 int (*rereg_user_mr)(struct ib_mr *mr, 2009 int flags, 2010 u64 start, u64 length, 2011 u64 virt_addr, 2012 int mr_access_flags, 2013 struct ib_pd *pd, 2014 struct ib_udata *udata); 2015 int (*dereg_mr)(struct ib_mr *mr); 2016 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2017 enum ib_mr_type mr_type, 2018 u32 max_num_sg); 2019 int (*map_mr_sg)(struct ib_mr *mr, 2020 struct scatterlist *sg, 2021 int sg_nents, 2022 unsigned int *sg_offset); 2023 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2024 enum ib_mw_type type, 2025 struct ib_udata *udata); 2026 int (*dealloc_mw)(struct ib_mw *mw); 2027 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2028 int mr_access_flags, 2029 struct ib_fmr_attr *fmr_attr); 2030 int (*map_phys_fmr)(struct ib_fmr *fmr, 2031 u64 *page_list, int list_len, 2032 u64 iova); 2033 int (*unmap_fmr)(struct list_head *fmr_list); 2034 int (*dealloc_fmr)(struct ib_fmr *fmr); 2035 int (*attach_mcast)(struct ib_qp *qp, 2036 union ib_gid *gid, 2037 u16 lid); 2038 int (*detach_mcast)(struct ib_qp *qp, 2039 union ib_gid *gid, 2040 u16 lid); 2041 int (*process_mad)(struct ib_device *device, 2042 int process_mad_flags, 2043 u8 port_num, 2044 const struct ib_wc *in_wc, 2045 const struct ib_grh *in_grh, 2046 const struct ib_mad_hdr *in_mad, 2047 size_t in_mad_size, 2048 struct ib_mad_hdr *out_mad, 2049 size_t *out_mad_size, 2050 u16 *out_mad_pkey_index); 2051 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2052 struct ib_ucontext *ucontext, 2053 struct ib_udata *udata); 2054 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2055 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2056 struct ib_flow_attr 2057 *flow_attr, 2058 int domain); 2059 int (*destroy_flow)(struct ib_flow *flow_id); 2060 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2061 struct ib_mr_status *mr_status); 2062 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2063 void (*drain_rq)(struct ib_qp *qp); 2064 void (*drain_sq)(struct ib_qp *qp); 2065 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2066 int state); 2067 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2068 struct ifla_vf_info *ivf); 2069 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2070 struct ifla_vf_stats *stats); 2071 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2072 int type); 2073 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2074 struct ib_wq_init_attr *init_attr, 2075 struct ib_udata *udata); 2076 int (*destroy_wq)(struct ib_wq *wq); 2077 int (*modify_wq)(struct ib_wq *wq, 2078 struct ib_wq_attr *attr, 2079 u32 wq_attr_mask, 2080 struct ib_udata *udata); 2081 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2082 struct ib_rwq_ind_table_init_attr *init_attr, 2083 struct ib_udata *udata); 2084 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2085 struct ib_dma_mapping_ops *dma_ops; 2086 2087 struct module *owner; 2088 struct device dev; 2089 struct kobject *ports_parent; 2090 struct list_head port_list; 2091 2092 enum { 2093 IB_DEV_UNINITIALIZED, 2094 IB_DEV_REGISTERED, 2095 IB_DEV_UNREGISTERED 2096 } reg_state; 2097 2098 int uverbs_abi_ver; 2099 u64 uverbs_cmd_mask; 2100 u64 uverbs_ex_cmd_mask; 2101 2102 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2103 __be64 node_guid; 2104 u32 local_dma_lkey; 2105 u16 is_switch:1; 2106 u8 node_type; 2107 u8 phys_port_cnt; 2108 struct ib_device_attr attrs; 2109 struct attribute_group *hw_stats_ag; 2110 struct rdma_hw_stats *hw_stats; 2111 2112 /** 2113 * The following mandatory functions are used only at device 2114 * registration. Keep functions such as these at the end of this 2115 * structure to avoid cache line misses when accessing struct ib_device 2116 * in fast paths. 2117 */ 2118 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2119 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2120 }; 2121 2122 struct ib_client { 2123 char *name; 2124 void (*add) (struct ib_device *); 2125 void (*remove)(struct ib_device *, void *client_data); 2126 2127 /* Returns the net_dev belonging to this ib_client and matching the 2128 * given parameters. 2129 * @dev: An RDMA device that the net_dev use for communication. 2130 * @port: A physical port number on the RDMA device. 2131 * @pkey: P_Key that the net_dev uses if applicable. 2132 * @gid: A GID that the net_dev uses to communicate. 2133 * @addr: An IP address the net_dev is configured with. 2134 * @client_data: The device's client data set by ib_set_client_data(). 2135 * 2136 * An ib_client that implements a net_dev on top of RDMA devices 2137 * (such as IP over IB) should implement this callback, allowing the 2138 * rdma_cm module to find the right net_dev for a given request. 2139 * 2140 * The caller is responsible for calling dev_put on the returned 2141 * netdev. */ 2142 struct ifnet *(*get_net_dev_by_params)( 2143 struct ib_device *dev, 2144 u8 port, 2145 u16 pkey, 2146 const union ib_gid *gid, 2147 const struct sockaddr *addr, 2148 void *client_data); 2149 struct list_head list; 2150 }; 2151 2152 struct ib_device *ib_alloc_device(size_t size); 2153 void ib_dealloc_device(struct ib_device *device); 2154 2155 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2156 2157 int ib_register_device(struct ib_device *device, 2158 int (*port_callback)(struct ib_device *, 2159 u8, struct kobject *)); 2160 void ib_unregister_device(struct ib_device *device); 2161 2162 int ib_register_client (struct ib_client *client); 2163 void ib_unregister_client(struct ib_client *client); 2164 2165 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2166 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2167 void *data); 2168 2169 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2170 { 2171 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2172 } 2173 2174 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2175 { 2176 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2177 } 2178 2179 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2180 size_t offset, 2181 size_t len) 2182 { 2183 const void __user *p = (const char __user *)udata->inbuf + offset; 2184 bool ret; 2185 u8 *buf; 2186 2187 if (len > USHRT_MAX) 2188 return false; 2189 2190 buf = memdup_user(p, len); 2191 if (IS_ERR(buf)) 2192 return false; 2193 2194 ret = !memchr_inv(buf, 0, len); 2195 kfree(buf); 2196 return ret; 2197 } 2198 2199 /** 2200 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2201 * contains all required attributes and no attributes not allowed for 2202 * the given QP state transition. 2203 * @cur_state: Current QP state 2204 * @next_state: Next QP state 2205 * @type: QP type 2206 * @mask: Mask of supplied QP attributes 2207 * @ll : link layer of port 2208 * 2209 * This function is a helper function that a low-level driver's 2210 * modify_qp method can use to validate the consumer's input. It 2211 * checks that cur_state and next_state are valid QP states, that a 2212 * transition from cur_state to next_state is allowed by the IB spec, 2213 * and that the attribute mask supplied is allowed for the transition. 2214 */ 2215 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2216 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2217 enum rdma_link_layer ll); 2218 2219 int ib_register_event_handler (struct ib_event_handler *event_handler); 2220 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2221 void ib_dispatch_event(struct ib_event *event); 2222 2223 int ib_query_port(struct ib_device *device, 2224 u8 port_num, struct ib_port_attr *port_attr); 2225 2226 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2227 u8 port_num); 2228 2229 /** 2230 * rdma_cap_ib_switch - Check if the device is IB switch 2231 * @device: Device to check 2232 * 2233 * Device driver is responsible for setting is_switch bit on 2234 * in ib_device structure at init time. 2235 * 2236 * Return: true if the device is IB switch. 2237 */ 2238 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2239 { 2240 return device->is_switch; 2241 } 2242 2243 /** 2244 * rdma_start_port - Return the first valid port number for the device 2245 * specified 2246 * 2247 * @device: Device to be checked 2248 * 2249 * Return start port number 2250 */ 2251 static inline u8 rdma_start_port(const struct ib_device *device) 2252 { 2253 return rdma_cap_ib_switch(device) ? 0 : 1; 2254 } 2255 2256 /** 2257 * rdma_end_port - Return the last valid port number for the device 2258 * specified 2259 * 2260 * @device: Device to be checked 2261 * 2262 * Return last port number 2263 */ 2264 static inline u8 rdma_end_port(const struct ib_device *device) 2265 { 2266 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2267 } 2268 2269 static inline int rdma_is_port_valid(const struct ib_device *device, 2270 unsigned int port) 2271 { 2272 return (port >= rdma_start_port(device) && 2273 port <= rdma_end_port(device)); 2274 } 2275 2276 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2277 { 2278 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2279 } 2280 2281 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2282 { 2283 return device->port_immutable[port_num].core_cap_flags & 2284 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2285 } 2286 2287 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2288 { 2289 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2290 } 2291 2292 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2293 { 2294 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2295 } 2296 2297 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2298 { 2299 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2300 } 2301 2302 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2303 { 2304 return rdma_protocol_ib(device, port_num) || 2305 rdma_protocol_roce(device, port_num); 2306 } 2307 2308 /** 2309 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2310 * Management Datagrams. 2311 * @device: Device to check 2312 * @port_num: Port number to check 2313 * 2314 * Management Datagrams (MAD) are a required part of the InfiniBand 2315 * specification and are supported on all InfiniBand devices. A slightly 2316 * extended version are also supported on OPA interfaces. 2317 * 2318 * Return: true if the port supports sending/receiving of MAD packets. 2319 */ 2320 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2321 { 2322 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2323 } 2324 2325 /** 2326 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2327 * Management Datagrams. 2328 * @device: Device to check 2329 * @port_num: Port number to check 2330 * 2331 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2332 * datagrams with their own versions. These OPA MADs share many but not all of 2333 * the characteristics of InfiniBand MADs. 2334 * 2335 * OPA MADs differ in the following ways: 2336 * 2337 * 1) MADs are variable size up to 2K 2338 * IBTA defined MADs remain fixed at 256 bytes 2339 * 2) OPA SMPs must carry valid PKeys 2340 * 3) OPA SMP packets are a different format 2341 * 2342 * Return: true if the port supports OPA MAD packet formats. 2343 */ 2344 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2345 { 2346 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2347 == RDMA_CORE_CAP_OPA_MAD; 2348 } 2349 2350 /** 2351 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2352 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2353 * @device: Device to check 2354 * @port_num: Port number to check 2355 * 2356 * Each InfiniBand node is required to provide a Subnet Management Agent 2357 * that the subnet manager can access. Prior to the fabric being fully 2358 * configured by the subnet manager, the SMA is accessed via a well known 2359 * interface called the Subnet Management Interface (SMI). This interface 2360 * uses directed route packets to communicate with the SM to get around the 2361 * chicken and egg problem of the SM needing to know what's on the fabric 2362 * in order to configure the fabric, and needing to configure the fabric in 2363 * order to send packets to the devices on the fabric. These directed 2364 * route packets do not need the fabric fully configured in order to reach 2365 * their destination. The SMI is the only method allowed to send 2366 * directed route packets on an InfiniBand fabric. 2367 * 2368 * Return: true if the port provides an SMI. 2369 */ 2370 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2371 { 2372 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2373 } 2374 2375 /** 2376 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2377 * Communication Manager. 2378 * @device: Device to check 2379 * @port_num: Port number to check 2380 * 2381 * The InfiniBand Communication Manager is one of many pre-defined General 2382 * Service Agents (GSA) that are accessed via the General Service 2383 * Interface (GSI). It's role is to facilitate establishment of connections 2384 * between nodes as well as other management related tasks for established 2385 * connections. 2386 * 2387 * Return: true if the port supports an IB CM (this does not guarantee that 2388 * a CM is actually running however). 2389 */ 2390 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2391 { 2392 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2393 } 2394 2395 /** 2396 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2397 * Communication Manager. 2398 * @device: Device to check 2399 * @port_num: Port number to check 2400 * 2401 * Similar to above, but specific to iWARP connections which have a different 2402 * managment protocol than InfiniBand. 2403 * 2404 * Return: true if the port supports an iWARP CM (this does not guarantee that 2405 * a CM is actually running however). 2406 */ 2407 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2408 { 2409 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2410 } 2411 2412 /** 2413 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2414 * Subnet Administration. 2415 * @device: Device to check 2416 * @port_num: Port number to check 2417 * 2418 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2419 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2420 * fabrics, devices should resolve routes to other hosts by contacting the 2421 * SA to query the proper route. 2422 * 2423 * Return: true if the port should act as a client to the fabric Subnet 2424 * Administration interface. This does not imply that the SA service is 2425 * running locally. 2426 */ 2427 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2428 { 2429 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2430 } 2431 2432 /** 2433 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2434 * Multicast. 2435 * @device: Device to check 2436 * @port_num: Port number to check 2437 * 2438 * InfiniBand multicast registration is more complex than normal IPv4 or 2439 * IPv6 multicast registration. Each Host Channel Adapter must register 2440 * with the Subnet Manager when it wishes to join a multicast group. It 2441 * should do so only once regardless of how many queue pairs it subscribes 2442 * to this group. And it should leave the group only after all queue pairs 2443 * attached to the group have been detached. 2444 * 2445 * Return: true if the port must undertake the additional adminstrative 2446 * overhead of registering/unregistering with the SM and tracking of the 2447 * total number of queue pairs attached to the multicast group. 2448 */ 2449 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2450 { 2451 return rdma_cap_ib_sa(device, port_num); 2452 } 2453 2454 /** 2455 * rdma_cap_af_ib - Check if the port of device has the capability 2456 * Native Infiniband Address. 2457 * @device: Device to check 2458 * @port_num: Port number to check 2459 * 2460 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2461 * GID. RoCE uses a different mechanism, but still generates a GID via 2462 * a prescribed mechanism and port specific data. 2463 * 2464 * Return: true if the port uses a GID address to identify devices on the 2465 * network. 2466 */ 2467 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2468 { 2469 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2470 } 2471 2472 /** 2473 * rdma_cap_eth_ah - Check if the port of device has the capability 2474 * Ethernet Address Handle. 2475 * @device: Device to check 2476 * @port_num: Port number to check 2477 * 2478 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2479 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2480 * port. Normally, packet headers are generated by the sending host 2481 * adapter, but when sending connectionless datagrams, we must manually 2482 * inject the proper headers for the fabric we are communicating over. 2483 * 2484 * Return: true if we are running as a RoCE port and must force the 2485 * addition of a Global Route Header built from our Ethernet Address 2486 * Handle into our header list for connectionless packets. 2487 */ 2488 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2489 { 2490 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2491 } 2492 2493 /** 2494 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2495 * 2496 * @device: Device 2497 * @port_num: Port number 2498 * 2499 * This MAD size includes the MAD headers and MAD payload. No other headers 2500 * are included. 2501 * 2502 * Return the max MAD size required by the Port. Will return 0 if the port 2503 * does not support MADs 2504 */ 2505 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2506 { 2507 return device->port_immutable[port_num].max_mad_size; 2508 } 2509 2510 /** 2511 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2512 * @device: Device to check 2513 * @port_num: Port number to check 2514 * 2515 * RoCE GID table mechanism manages the various GIDs for a device. 2516 * 2517 * NOTE: if allocating the port's GID table has failed, this call will still 2518 * return true, but any RoCE GID table API will fail. 2519 * 2520 * Return: true if the port uses RoCE GID table mechanism in order to manage 2521 * its GIDs. 2522 */ 2523 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2524 u8 port_num) 2525 { 2526 return rdma_protocol_roce(device, port_num) && 2527 device->add_gid && device->del_gid; 2528 } 2529 2530 /* 2531 * Check if the device supports READ W/ INVALIDATE. 2532 */ 2533 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2534 { 2535 /* 2536 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2537 * has support for it yet. 2538 */ 2539 return rdma_protocol_iwarp(dev, port_num); 2540 } 2541 2542 int ib_query_gid(struct ib_device *device, 2543 u8 port_num, int index, union ib_gid *gid, 2544 struct ib_gid_attr *attr); 2545 2546 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2547 int state); 2548 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2549 struct ifla_vf_info *info); 2550 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2551 struct ifla_vf_stats *stats); 2552 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2553 int type); 2554 2555 int ib_query_pkey(struct ib_device *device, 2556 u8 port_num, u16 index, u16 *pkey); 2557 2558 int ib_modify_device(struct ib_device *device, 2559 int device_modify_mask, 2560 struct ib_device_modify *device_modify); 2561 2562 int ib_modify_port(struct ib_device *device, 2563 u8 port_num, int port_modify_mask, 2564 struct ib_port_modify *port_modify); 2565 2566 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2567 enum ib_gid_type gid_type, struct ifnet *ndev, 2568 u8 *port_num, u16 *index); 2569 2570 int ib_find_pkey(struct ib_device *device, 2571 u8 port_num, u16 pkey, u16 *index); 2572 2573 enum ib_pd_flags { 2574 /* 2575 * Create a memory registration for all memory in the system and place 2576 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2577 * ULPs to avoid the overhead of dynamic MRs. 2578 * 2579 * This flag is generally considered unsafe and must only be used in 2580 * extremly trusted environments. Every use of it will log a warning 2581 * in the kernel log. 2582 */ 2583 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2584 }; 2585 2586 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2587 const char *caller); 2588 #define ib_alloc_pd(device, flags) \ 2589 __ib_alloc_pd((device), (flags), __func__) 2590 void ib_dealloc_pd(struct ib_pd *pd); 2591 2592 /** 2593 * ib_create_ah - Creates an address handle for the given address vector. 2594 * @pd: The protection domain associated with the address handle. 2595 * @ah_attr: The attributes of the address vector. 2596 * 2597 * The address handle is used to reference a local or global destination 2598 * in all UD QP post sends. 2599 */ 2600 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2601 2602 /** 2603 * ib_init_ah_from_wc - Initializes address handle attributes from a 2604 * work completion. 2605 * @device: Device on which the received message arrived. 2606 * @port_num: Port on which the received message arrived. 2607 * @wc: Work completion associated with the received message. 2608 * @grh: References the received global route header. This parameter is 2609 * ignored unless the work completion indicates that the GRH is valid. 2610 * @ah_attr: Returned attributes that can be used when creating an address 2611 * handle for replying to the message. 2612 */ 2613 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2614 const struct ib_wc *wc, const struct ib_grh *grh, 2615 struct ib_ah_attr *ah_attr); 2616 2617 /** 2618 * ib_create_ah_from_wc - Creates an address handle associated with the 2619 * sender of the specified work completion. 2620 * @pd: The protection domain associated with the address handle. 2621 * @wc: Work completion information associated with a received message. 2622 * @grh: References the received global route header. This parameter is 2623 * ignored unless the work completion indicates that the GRH is valid. 2624 * @port_num: The outbound port number to associate with the address. 2625 * 2626 * The address handle is used to reference a local or global destination 2627 * in all UD QP post sends. 2628 */ 2629 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2630 const struct ib_grh *grh, u8 port_num); 2631 2632 /** 2633 * ib_modify_ah - Modifies the address vector associated with an address 2634 * handle. 2635 * @ah: The address handle to modify. 2636 * @ah_attr: The new address vector attributes to associate with the 2637 * address handle. 2638 */ 2639 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2640 2641 /** 2642 * ib_query_ah - Queries the address vector associated with an address 2643 * handle. 2644 * @ah: The address handle to query. 2645 * @ah_attr: The address vector attributes associated with the address 2646 * handle. 2647 */ 2648 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2649 2650 /** 2651 * ib_destroy_ah - Destroys an address handle. 2652 * @ah: The address handle to destroy. 2653 */ 2654 int ib_destroy_ah(struct ib_ah *ah); 2655 2656 /** 2657 * ib_create_srq - Creates a SRQ associated with the specified protection 2658 * domain. 2659 * @pd: The protection domain associated with the SRQ. 2660 * @srq_init_attr: A list of initial attributes required to create the 2661 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2662 * the actual capabilities of the created SRQ. 2663 * 2664 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2665 * requested size of the SRQ, and set to the actual values allocated 2666 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2667 * will always be at least as large as the requested values. 2668 */ 2669 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2670 struct ib_srq_init_attr *srq_init_attr); 2671 2672 /** 2673 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2674 * @srq: The SRQ to modify. 2675 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2676 * the current values of selected SRQ attributes are returned. 2677 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2678 * are being modified. 2679 * 2680 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2681 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2682 * the number of receives queued drops below the limit. 2683 */ 2684 int ib_modify_srq(struct ib_srq *srq, 2685 struct ib_srq_attr *srq_attr, 2686 enum ib_srq_attr_mask srq_attr_mask); 2687 2688 /** 2689 * ib_query_srq - Returns the attribute list and current values for the 2690 * specified SRQ. 2691 * @srq: The SRQ to query. 2692 * @srq_attr: The attributes of the specified SRQ. 2693 */ 2694 int ib_query_srq(struct ib_srq *srq, 2695 struct ib_srq_attr *srq_attr); 2696 2697 /** 2698 * ib_destroy_srq - Destroys the specified SRQ. 2699 * @srq: The SRQ to destroy. 2700 */ 2701 int ib_destroy_srq(struct ib_srq *srq); 2702 2703 /** 2704 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2705 * @srq: The SRQ to post the work request on. 2706 * @recv_wr: A list of work requests to post on the receive queue. 2707 * @bad_recv_wr: On an immediate failure, this parameter will reference 2708 * the work request that failed to be posted on the QP. 2709 */ 2710 static inline int ib_post_srq_recv(struct ib_srq *srq, 2711 struct ib_recv_wr *recv_wr, 2712 struct ib_recv_wr **bad_recv_wr) 2713 { 2714 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2715 } 2716 2717 /** 2718 * ib_create_qp - Creates a QP associated with the specified protection 2719 * domain. 2720 * @pd: The protection domain associated with the QP. 2721 * @qp_init_attr: A list of initial attributes required to create the 2722 * QP. If QP creation succeeds, then the attributes are updated to 2723 * the actual capabilities of the created QP. 2724 */ 2725 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2726 struct ib_qp_init_attr *qp_init_attr); 2727 2728 /** 2729 * ib_modify_qp - Modifies the attributes for the specified QP and then 2730 * transitions the QP to the given state. 2731 * @qp: The QP to modify. 2732 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2733 * the current values of selected QP attributes are returned. 2734 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2735 * are being modified. 2736 */ 2737 int ib_modify_qp(struct ib_qp *qp, 2738 struct ib_qp_attr *qp_attr, 2739 int qp_attr_mask); 2740 2741 /** 2742 * ib_query_qp - Returns the attribute list and current values for the 2743 * specified QP. 2744 * @qp: The QP to query. 2745 * @qp_attr: The attributes of the specified QP. 2746 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2747 * @qp_init_attr: Additional attributes of the selected QP. 2748 * 2749 * The qp_attr_mask may be used to limit the query to gathering only the 2750 * selected attributes. 2751 */ 2752 int ib_query_qp(struct ib_qp *qp, 2753 struct ib_qp_attr *qp_attr, 2754 int qp_attr_mask, 2755 struct ib_qp_init_attr *qp_init_attr); 2756 2757 /** 2758 * ib_destroy_qp - Destroys the specified QP. 2759 * @qp: The QP to destroy. 2760 */ 2761 int ib_destroy_qp(struct ib_qp *qp); 2762 2763 /** 2764 * ib_open_qp - Obtain a reference to an existing sharable QP. 2765 * @xrcd - XRC domain 2766 * @qp_open_attr: Attributes identifying the QP to open. 2767 * 2768 * Returns a reference to a sharable QP. 2769 */ 2770 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2771 struct ib_qp_open_attr *qp_open_attr); 2772 2773 /** 2774 * ib_close_qp - Release an external reference to a QP. 2775 * @qp: The QP handle to release 2776 * 2777 * The opened QP handle is released by the caller. The underlying 2778 * shared QP is not destroyed until all internal references are released. 2779 */ 2780 int ib_close_qp(struct ib_qp *qp); 2781 2782 /** 2783 * ib_post_send - Posts a list of work requests to the send queue of 2784 * the specified QP. 2785 * @qp: The QP to post the work request on. 2786 * @send_wr: A list of work requests to post on the send queue. 2787 * @bad_send_wr: On an immediate failure, this parameter will reference 2788 * the work request that failed to be posted on the QP. 2789 * 2790 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2791 * error is returned, the QP state shall not be affected, 2792 * ib_post_send() will return an immediate error after queueing any 2793 * earlier work requests in the list. 2794 */ 2795 static inline int ib_post_send(struct ib_qp *qp, 2796 struct ib_send_wr *send_wr, 2797 struct ib_send_wr **bad_send_wr) 2798 { 2799 return qp->device->post_send(qp, send_wr, bad_send_wr); 2800 } 2801 2802 /** 2803 * ib_post_recv - Posts a list of work requests to the receive queue of 2804 * the specified QP. 2805 * @qp: The QP to post the work request on. 2806 * @recv_wr: A list of work requests to post on the receive queue. 2807 * @bad_recv_wr: On an immediate failure, this parameter will reference 2808 * the work request that failed to be posted on the QP. 2809 */ 2810 static inline int ib_post_recv(struct ib_qp *qp, 2811 struct ib_recv_wr *recv_wr, 2812 struct ib_recv_wr **bad_recv_wr) 2813 { 2814 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2815 } 2816 2817 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2818 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2819 void ib_free_cq(struct ib_cq *cq); 2820 2821 /** 2822 * ib_create_cq - Creates a CQ on the specified device. 2823 * @device: The device on which to create the CQ. 2824 * @comp_handler: A user-specified callback that is invoked when a 2825 * completion event occurs on the CQ. 2826 * @event_handler: A user-specified callback that is invoked when an 2827 * asynchronous event not associated with a completion occurs on the CQ. 2828 * @cq_context: Context associated with the CQ returned to the user via 2829 * the associated completion and event handlers. 2830 * @cq_attr: The attributes the CQ should be created upon. 2831 * 2832 * Users can examine the cq structure to determine the actual CQ size. 2833 */ 2834 struct ib_cq *ib_create_cq(struct ib_device *device, 2835 ib_comp_handler comp_handler, 2836 void (*event_handler)(struct ib_event *, void *), 2837 void *cq_context, 2838 const struct ib_cq_init_attr *cq_attr); 2839 2840 /** 2841 * ib_resize_cq - Modifies the capacity of the CQ. 2842 * @cq: The CQ to resize. 2843 * @cqe: The minimum size of the CQ. 2844 * 2845 * Users can examine the cq structure to determine the actual CQ size. 2846 */ 2847 int ib_resize_cq(struct ib_cq *cq, int cqe); 2848 2849 /** 2850 * ib_modify_cq - Modifies moderation params of the CQ 2851 * @cq: The CQ to modify. 2852 * @cq_count: number of CQEs that will trigger an event 2853 * @cq_period: max period of time in usec before triggering an event 2854 * 2855 */ 2856 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2857 2858 /** 2859 * ib_destroy_cq - Destroys the specified CQ. 2860 * @cq: The CQ to destroy. 2861 */ 2862 int ib_destroy_cq(struct ib_cq *cq); 2863 2864 /** 2865 * ib_poll_cq - poll a CQ for completion(s) 2866 * @cq:the CQ being polled 2867 * @num_entries:maximum number of completions to return 2868 * @wc:array of at least @num_entries &struct ib_wc where completions 2869 * will be returned 2870 * 2871 * Poll a CQ for (possibly multiple) completions. If the return value 2872 * is < 0, an error occurred. If the return value is >= 0, it is the 2873 * number of completions returned. If the return value is 2874 * non-negative and < num_entries, then the CQ was emptied. 2875 */ 2876 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2877 struct ib_wc *wc) 2878 { 2879 return cq->device->poll_cq(cq, num_entries, wc); 2880 } 2881 2882 /** 2883 * ib_peek_cq - Returns the number of unreaped completions currently 2884 * on the specified CQ. 2885 * @cq: The CQ to peek. 2886 * @wc_cnt: A minimum number of unreaped completions to check for. 2887 * 2888 * If the number of unreaped completions is greater than or equal to wc_cnt, 2889 * this function returns wc_cnt, otherwise, it returns the actual number of 2890 * unreaped completions. 2891 */ 2892 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2893 2894 /** 2895 * ib_req_notify_cq - Request completion notification on a CQ. 2896 * @cq: The CQ to generate an event for. 2897 * @flags: 2898 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2899 * to request an event on the next solicited event or next work 2900 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2901 * may also be |ed in to request a hint about missed events, as 2902 * described below. 2903 * 2904 * Return Value: 2905 * < 0 means an error occurred while requesting notification 2906 * == 0 means notification was requested successfully, and if 2907 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2908 * were missed and it is safe to wait for another event. In 2909 * this case is it guaranteed that any work completions added 2910 * to the CQ since the last CQ poll will trigger a completion 2911 * notification event. 2912 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2913 * in. It means that the consumer must poll the CQ again to 2914 * make sure it is empty to avoid missing an event because of a 2915 * race between requesting notification and an entry being 2916 * added to the CQ. This return value means it is possible 2917 * (but not guaranteed) that a work completion has been added 2918 * to the CQ since the last poll without triggering a 2919 * completion notification event. 2920 */ 2921 static inline int ib_req_notify_cq(struct ib_cq *cq, 2922 enum ib_cq_notify_flags flags) 2923 { 2924 return cq->device->req_notify_cq(cq, flags); 2925 } 2926 2927 /** 2928 * ib_req_ncomp_notif - Request completion notification when there are 2929 * at least the specified number of unreaped completions on the CQ. 2930 * @cq: The CQ to generate an event for. 2931 * @wc_cnt: The number of unreaped completions that should be on the 2932 * CQ before an event is generated. 2933 */ 2934 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2935 { 2936 return cq->device->req_ncomp_notif ? 2937 cq->device->req_ncomp_notif(cq, wc_cnt) : 2938 -ENOSYS; 2939 } 2940 2941 /** 2942 * ib_dma_mapping_error - check a DMA addr for error 2943 * @dev: The device for which the dma_addr was created 2944 * @dma_addr: The DMA address to check 2945 */ 2946 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2947 { 2948 if (dev->dma_ops) 2949 return dev->dma_ops->mapping_error(dev, dma_addr); 2950 return dma_mapping_error(dev->dma_device, dma_addr); 2951 } 2952 2953 /** 2954 * ib_dma_map_single - Map a kernel virtual address to DMA address 2955 * @dev: The device for which the dma_addr is to be created 2956 * @cpu_addr: The kernel virtual address 2957 * @size: The size of the region in bytes 2958 * @direction: The direction of the DMA 2959 */ 2960 static inline u64 ib_dma_map_single(struct ib_device *dev, 2961 void *cpu_addr, size_t size, 2962 enum dma_data_direction direction) 2963 { 2964 if (dev->dma_ops) 2965 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2966 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2967 } 2968 2969 /** 2970 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2971 * @dev: The device for which the DMA address was created 2972 * @addr: The DMA address 2973 * @size: The size of the region in bytes 2974 * @direction: The direction of the DMA 2975 */ 2976 static inline void ib_dma_unmap_single(struct ib_device *dev, 2977 u64 addr, size_t size, 2978 enum dma_data_direction direction) 2979 { 2980 if (dev->dma_ops) 2981 dev->dma_ops->unmap_single(dev, addr, size, direction); 2982 else 2983 dma_unmap_single(dev->dma_device, addr, size, direction); 2984 } 2985 2986 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2987 void *cpu_addr, size_t size, 2988 enum dma_data_direction direction, 2989 struct dma_attrs *dma_attrs) 2990 { 2991 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2992 direction, dma_attrs); 2993 } 2994 2995 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2996 u64 addr, size_t size, 2997 enum dma_data_direction direction, 2998 struct dma_attrs *dma_attrs) 2999 { 3000 return dma_unmap_single_attrs(dev->dma_device, addr, size, 3001 direction, dma_attrs); 3002 } 3003 3004 /** 3005 * ib_dma_map_page - Map a physical page to DMA address 3006 * @dev: The device for which the dma_addr is to be created 3007 * @page: The page to be mapped 3008 * @offset: The offset within the page 3009 * @size: The size of the region in bytes 3010 * @direction: The direction of the DMA 3011 */ 3012 static inline u64 ib_dma_map_page(struct ib_device *dev, 3013 struct page *page, 3014 unsigned long offset, 3015 size_t size, 3016 enum dma_data_direction direction) 3017 { 3018 if (dev->dma_ops) 3019 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3020 return dma_map_page(dev->dma_device, page, offset, size, direction); 3021 } 3022 3023 /** 3024 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3025 * @dev: The device for which the DMA address was created 3026 * @addr: The DMA address 3027 * @size: The size of the region in bytes 3028 * @direction: The direction of the DMA 3029 */ 3030 static inline void ib_dma_unmap_page(struct ib_device *dev, 3031 u64 addr, size_t size, 3032 enum dma_data_direction direction) 3033 { 3034 if (dev->dma_ops) 3035 dev->dma_ops->unmap_page(dev, addr, size, direction); 3036 else 3037 dma_unmap_page(dev->dma_device, addr, size, direction); 3038 } 3039 3040 /** 3041 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3042 * @dev: The device for which the DMA addresses are to be created 3043 * @sg: The array of scatter/gather entries 3044 * @nents: The number of scatter/gather entries 3045 * @direction: The direction of the DMA 3046 */ 3047 static inline int ib_dma_map_sg(struct ib_device *dev, 3048 struct scatterlist *sg, int nents, 3049 enum dma_data_direction direction) 3050 { 3051 if (dev->dma_ops) 3052 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3053 return dma_map_sg(dev->dma_device, sg, nents, direction); 3054 } 3055 3056 /** 3057 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3058 * @dev: The device for which the DMA addresses were created 3059 * @sg: The array of scatter/gather entries 3060 * @nents: The number of scatter/gather entries 3061 * @direction: The direction of the DMA 3062 */ 3063 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3064 struct scatterlist *sg, int nents, 3065 enum dma_data_direction direction) 3066 { 3067 if (dev->dma_ops) 3068 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3069 else 3070 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3071 } 3072 3073 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3074 struct scatterlist *sg, int nents, 3075 enum dma_data_direction direction, 3076 struct dma_attrs *dma_attrs) 3077 { 3078 if (dev->dma_ops) 3079 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3080 dma_attrs); 3081 else 3082 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3083 dma_attrs); 3084 } 3085 3086 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3087 struct scatterlist *sg, int nents, 3088 enum dma_data_direction direction, 3089 struct dma_attrs *dma_attrs) 3090 { 3091 if (dev->dma_ops) 3092 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3093 dma_attrs); 3094 else 3095 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3096 dma_attrs); 3097 } 3098 /** 3099 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3100 * @dev: The device for which the DMA addresses were created 3101 * @sg: The scatter/gather entry 3102 * 3103 * Note: this function is obsolete. To do: change all occurrences of 3104 * ib_sg_dma_address() into sg_dma_address(). 3105 */ 3106 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3107 struct scatterlist *sg) 3108 { 3109 return sg_dma_address(sg); 3110 } 3111 3112 /** 3113 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3114 * @dev: The device for which the DMA addresses were created 3115 * @sg: The scatter/gather entry 3116 * 3117 * Note: this function is obsolete. To do: change all occurrences of 3118 * ib_sg_dma_len() into sg_dma_len(). 3119 */ 3120 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3121 struct scatterlist *sg) 3122 { 3123 return sg_dma_len(sg); 3124 } 3125 3126 /** 3127 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3128 * @dev: The device for which the DMA address was created 3129 * @addr: The DMA address 3130 * @size: The size of the region in bytes 3131 * @dir: The direction of the DMA 3132 */ 3133 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3134 u64 addr, 3135 size_t size, 3136 enum dma_data_direction dir) 3137 { 3138 if (dev->dma_ops) 3139 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3140 else 3141 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3142 } 3143 3144 /** 3145 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3146 * @dev: The device for which the DMA address was created 3147 * @addr: The DMA address 3148 * @size: The size of the region in bytes 3149 * @dir: The direction of the DMA 3150 */ 3151 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3152 u64 addr, 3153 size_t size, 3154 enum dma_data_direction dir) 3155 { 3156 if (dev->dma_ops) 3157 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3158 else 3159 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3160 } 3161 3162 /** 3163 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3164 * @dev: The device for which the DMA address is requested 3165 * @size: The size of the region to allocate in bytes 3166 * @dma_handle: A pointer for returning the DMA address of the region 3167 * @flag: memory allocator flags 3168 */ 3169 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3170 size_t size, 3171 u64 *dma_handle, 3172 gfp_t flag) 3173 { 3174 if (dev->dma_ops) 3175 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3176 else { 3177 dma_addr_t handle; 3178 void *ret; 3179 3180 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3181 *dma_handle = handle; 3182 return ret; 3183 } 3184 } 3185 3186 /** 3187 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3188 * @dev: The device for which the DMA addresses were allocated 3189 * @size: The size of the region 3190 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3191 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3192 */ 3193 static inline void ib_dma_free_coherent(struct ib_device *dev, 3194 size_t size, void *cpu_addr, 3195 u64 dma_handle) 3196 { 3197 if (dev->dma_ops) 3198 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3199 else 3200 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3201 } 3202 3203 /** 3204 * ib_dereg_mr - Deregisters a memory region and removes it from the 3205 * HCA translation table. 3206 * @mr: The memory region to deregister. 3207 * 3208 * This function can fail, if the memory region has memory windows bound to it. 3209 */ 3210 int ib_dereg_mr(struct ib_mr *mr); 3211 3212 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3213 enum ib_mr_type mr_type, 3214 u32 max_num_sg); 3215 3216 /** 3217 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3218 * R_Key and L_Key. 3219 * @mr - struct ib_mr pointer to be updated. 3220 * @newkey - new key to be used. 3221 */ 3222 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3223 { 3224 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3225 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3226 } 3227 3228 /** 3229 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3230 * for calculating a new rkey for type 2 memory windows. 3231 * @rkey - the rkey to increment. 3232 */ 3233 static inline u32 ib_inc_rkey(u32 rkey) 3234 { 3235 const u32 mask = 0x000000ff; 3236 return ((rkey + 1) & mask) | (rkey & ~mask); 3237 } 3238 3239 /** 3240 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3241 * @pd: The protection domain associated with the unmapped region. 3242 * @mr_access_flags: Specifies the memory access rights. 3243 * @fmr_attr: Attributes of the unmapped region. 3244 * 3245 * A fast memory region must be mapped before it can be used as part of 3246 * a work request. 3247 */ 3248 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3249 int mr_access_flags, 3250 struct ib_fmr_attr *fmr_attr); 3251 3252 /** 3253 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3254 * @fmr: The fast memory region to associate with the pages. 3255 * @page_list: An array of physical pages to map to the fast memory region. 3256 * @list_len: The number of pages in page_list. 3257 * @iova: The I/O virtual address to use with the mapped region. 3258 */ 3259 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3260 u64 *page_list, int list_len, 3261 u64 iova) 3262 { 3263 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3264 } 3265 3266 /** 3267 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3268 * @fmr_list: A linked list of fast memory regions to unmap. 3269 */ 3270 int ib_unmap_fmr(struct list_head *fmr_list); 3271 3272 /** 3273 * ib_dealloc_fmr - Deallocates a fast memory region. 3274 * @fmr: The fast memory region to deallocate. 3275 */ 3276 int ib_dealloc_fmr(struct ib_fmr *fmr); 3277 3278 /** 3279 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3280 * @qp: QP to attach to the multicast group. The QP must be type 3281 * IB_QPT_UD. 3282 * @gid: Multicast group GID. 3283 * @lid: Multicast group LID in host byte order. 3284 * 3285 * In order to send and receive multicast packets, subnet 3286 * administration must have created the multicast group and configured 3287 * the fabric appropriately. The port associated with the specified 3288 * QP must also be a member of the multicast group. 3289 */ 3290 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3291 3292 /** 3293 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3294 * @qp: QP to detach from the multicast group. 3295 * @gid: Multicast group GID. 3296 * @lid: Multicast group LID in host byte order. 3297 */ 3298 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3299 3300 /** 3301 * ib_alloc_xrcd - Allocates an XRC domain. 3302 * @device: The device on which to allocate the XRC domain. 3303 */ 3304 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3305 3306 /** 3307 * ib_dealloc_xrcd - Deallocates an XRC domain. 3308 * @xrcd: The XRC domain to deallocate. 3309 */ 3310 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3311 3312 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3313 struct ib_flow_attr *flow_attr, int domain); 3314 int ib_destroy_flow(struct ib_flow *flow_id); 3315 3316 static inline int ib_check_mr_access(int flags) 3317 { 3318 /* 3319 * Local write permission is required if remote write or 3320 * remote atomic permission is also requested. 3321 */ 3322 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3323 !(flags & IB_ACCESS_LOCAL_WRITE)) 3324 return -EINVAL; 3325 3326 return 0; 3327 } 3328 3329 /** 3330 * ib_check_mr_status: lightweight check of MR status. 3331 * This routine may provide status checks on a selected 3332 * ib_mr. first use is for signature status check. 3333 * 3334 * @mr: A memory region. 3335 * @check_mask: Bitmask of which checks to perform from 3336 * ib_mr_status_check enumeration. 3337 * @mr_status: The container of relevant status checks. 3338 * failed checks will be indicated in the status bitmask 3339 * and the relevant info shall be in the error item. 3340 */ 3341 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3342 struct ib_mr_status *mr_status); 3343 3344 struct ifnet *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3345 u16 pkey, const union ib_gid *gid, 3346 const struct sockaddr *addr); 3347 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3348 struct ib_wq_init_attr *init_attr); 3349 int ib_destroy_wq(struct ib_wq *wq); 3350 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3351 u32 wq_attr_mask); 3352 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3353 struct ib_rwq_ind_table_init_attr* 3354 wq_ind_table_init_attr); 3355 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3356 3357 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3358 unsigned int *sg_offset, unsigned int page_size); 3359 3360 static inline int 3361 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3362 unsigned int *sg_offset, unsigned int page_size) 3363 { 3364 int n; 3365 3366 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3367 mr->iova = 0; 3368 3369 return n; 3370 } 3371 3372 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3373 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3374 3375 void ib_drain_rq(struct ib_qp *qp); 3376 void ib_drain_sq(struct ib_qp *qp); 3377 void ib_drain_qp(struct ib_qp *qp); 3378 3379 int ib_resolve_eth_dmac(struct ib_device *device, 3380 struct ib_ah_attr *ah_attr); 3381 #endif /* IB_VERBS_H */ 3382