1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 3 * 4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 6 * Copyright (c) 2004 Intel Corporation. All rights reserved. 7 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 11 * 12 * This software is available to you under a choice of one of two 13 * licenses. You may choose to be licensed under the terms of the GNU 14 * General Public License (GPL) Version 2, available from the file 15 * COPYING in the main directory of this source tree, or the 16 * OpenIB.org BSD license below: 17 * 18 * Redistribution and use in source and binary forms, with or 19 * without modification, are permitted provided that the following 20 * conditions are met: 21 * 22 * - Redistributions of source code must retain the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer. 25 * 26 * - Redistributions in binary form must reproduce the above 27 * copyright notice, this list of conditions and the following 28 * disclaimer in the documentation and/or other materials 29 * provided with the distribution. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 * SOFTWARE. 39 * 40 * $FreeBSD$ 41 */ 42 43 #if !defined(IB_VERBS_H) 44 #define IB_VERBS_H 45 46 #include <linux/types.h> 47 #include <linux/device.h> 48 #include <linux/mm.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/kref.h> 51 #include <linux/list.h> 52 #include <linux/rwsem.h> 53 #include <linux/scatterlist.h> 54 #include <linux/workqueue.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <net/ipv6.h> 58 #include <net/ip.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <netinet/ip.h> 64 65 #include <asm/atomic.h> 66 #include <asm/uaccess.h> 67 68 struct ifla_vf_info; 69 struct ifla_vf_stats; 70 71 extern struct workqueue_struct *ib_wq; 72 extern struct workqueue_struct *ib_comp_wq; 73 74 union ib_gid { 75 u8 raw[16]; 76 struct { 77 __be64 subnet_prefix; 78 __be64 interface_id; 79 } global; 80 }; 81 82 extern union ib_gid zgid; 83 84 enum ib_gid_type { 85 /* If link layer is Ethernet, this is RoCE V1 */ 86 IB_GID_TYPE_IB = 0, 87 IB_GID_TYPE_ROCE = 0, 88 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 89 IB_GID_TYPE_SIZE 90 }; 91 92 #define ROCE_V2_UDP_DPORT 4791 93 struct ib_gid_attr { 94 enum ib_gid_type gid_type; 95 struct net_device *ndev; 96 }; 97 98 enum rdma_node_type { 99 /* IB values map to NodeInfo:NodeType. */ 100 RDMA_NODE_IB_CA = 1, 101 RDMA_NODE_IB_SWITCH, 102 RDMA_NODE_IB_ROUTER, 103 RDMA_NODE_RNIC, 104 RDMA_NODE_USNIC, 105 RDMA_NODE_USNIC_UDP, 106 }; 107 108 enum { 109 /* set the local administered indication */ 110 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 111 }; 112 113 enum rdma_transport_type { 114 RDMA_TRANSPORT_IB, 115 RDMA_TRANSPORT_IWARP, 116 RDMA_TRANSPORT_USNIC, 117 RDMA_TRANSPORT_USNIC_UDP 118 }; 119 120 enum rdma_protocol_type { 121 RDMA_PROTOCOL_IB, 122 RDMA_PROTOCOL_IBOE, 123 RDMA_PROTOCOL_IWARP, 124 RDMA_PROTOCOL_USNIC_UDP 125 }; 126 127 __attribute_const__ enum rdma_transport_type 128 rdma_node_get_transport(enum rdma_node_type node_type); 129 130 enum rdma_network_type { 131 RDMA_NETWORK_IB, 132 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 133 RDMA_NETWORK_IPV4, 134 RDMA_NETWORK_IPV6 135 }; 136 137 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 138 { 139 if (network_type == RDMA_NETWORK_IPV4 || 140 network_type == RDMA_NETWORK_IPV6) 141 return IB_GID_TYPE_ROCE_UDP_ENCAP; 142 143 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 144 return IB_GID_TYPE_IB; 145 } 146 147 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 148 union ib_gid *gid) 149 { 150 if (gid_type == IB_GID_TYPE_IB) 151 return RDMA_NETWORK_IB; 152 153 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 154 return RDMA_NETWORK_IPV4; 155 else 156 return RDMA_NETWORK_IPV6; 157 } 158 159 enum rdma_link_layer { 160 IB_LINK_LAYER_UNSPECIFIED, 161 IB_LINK_LAYER_INFINIBAND, 162 IB_LINK_LAYER_ETHERNET, 163 }; 164 165 enum ib_device_cap_flags { 166 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 167 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 168 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 169 IB_DEVICE_RAW_MULTI = (1 << 3), 170 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 171 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 172 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 173 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 174 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 175 IB_DEVICE_INIT_TYPE = (1 << 9), 176 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 177 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 178 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 179 IB_DEVICE_SRQ_RESIZE = (1 << 13), 180 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 181 182 /* 183 * This device supports a per-device lkey or stag that can be 184 * used without performing a memory registration for the local 185 * memory. Note that ULPs should never check this flag, but 186 * instead of use the local_dma_lkey flag in the ib_pd structure, 187 * which will always contain a usable lkey. 188 */ 189 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 190 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 191 IB_DEVICE_MEM_WINDOW = (1 << 17), 192 /* 193 * Devices should set IB_DEVICE_UD_IP_SUM if they support 194 * insertion of UDP and TCP checksum on outgoing UD IPoIB 195 * messages and can verify the validity of checksum for 196 * incoming messages. Setting this flag implies that the 197 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 198 */ 199 IB_DEVICE_UD_IP_CSUM = (1 << 18), 200 IB_DEVICE_UD_TSO = (1 << 19), 201 IB_DEVICE_XRC = (1 << 20), 202 203 /* 204 * This device supports the IB "base memory management extension", 205 * which includes support for fast registrations (IB_WR_REG_MR, 206 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 207 * also be set by any iWarp device which must support FRs to comply 208 * to the iWarp verbs spec. iWarp devices also support the 209 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 210 * stag. 211 */ 212 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 213 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 214 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 215 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 216 IB_DEVICE_RC_IP_CSUM = (1 << 25), 217 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 218 /* 219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 220 * support execution of WQEs that involve synchronization 221 * of I/O operations with single completion queue managed 222 * by hardware. 223 */ 224 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 231 }; 232 233 enum ib_signature_prot_cap { 234 IB_PROT_T10DIF_TYPE_1 = 1, 235 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 236 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 237 }; 238 239 enum ib_signature_guard_cap { 240 IB_GUARD_T10DIF_CRC = 1, 241 IB_GUARD_T10DIF_CSUM = 1 << 1, 242 }; 243 244 enum ib_atomic_cap { 245 IB_ATOMIC_NONE, 246 IB_ATOMIC_HCA, 247 IB_ATOMIC_GLOB 248 }; 249 250 enum ib_odp_general_cap_bits { 251 IB_ODP_SUPPORT = 1 << 0, 252 }; 253 254 enum ib_odp_transport_cap_bits { 255 IB_ODP_SUPPORT_SEND = 1 << 0, 256 IB_ODP_SUPPORT_RECV = 1 << 1, 257 IB_ODP_SUPPORT_WRITE = 1 << 2, 258 IB_ODP_SUPPORT_READ = 1 << 3, 259 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 260 }; 261 262 struct ib_odp_caps { 263 uint64_t general_caps; 264 struct { 265 uint32_t rc_odp_caps; 266 uint32_t uc_odp_caps; 267 uint32_t ud_odp_caps; 268 } per_transport_caps; 269 }; 270 271 struct ib_rss_caps { 272 /* Corresponding bit will be set if qp type from 273 * 'enum ib_qp_type' is supported, e.g. 274 * supported_qpts |= 1 << IB_QPT_UD 275 */ 276 u32 supported_qpts; 277 u32 max_rwq_indirection_tables; 278 u32 max_rwq_indirection_table_size; 279 }; 280 281 enum ib_cq_creation_flags { 282 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 283 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 284 }; 285 286 struct ib_cq_init_attr { 287 unsigned int cqe; 288 int comp_vector; 289 u32 flags; 290 }; 291 292 struct ib_device_attr { 293 u64 fw_ver; 294 __be64 sys_image_guid; 295 u64 max_mr_size; 296 u64 page_size_cap; 297 u32 vendor_id; 298 u32 vendor_part_id; 299 u32 hw_ver; 300 int max_qp; 301 int max_qp_wr; 302 u64 device_cap_flags; 303 int max_sge; 304 int max_sge_rd; 305 int max_cq; 306 int max_cqe; 307 int max_mr; 308 int max_pd; 309 int max_qp_rd_atom; 310 int max_ee_rd_atom; 311 int max_res_rd_atom; 312 int max_qp_init_rd_atom; 313 int max_ee_init_rd_atom; 314 enum ib_atomic_cap atomic_cap; 315 enum ib_atomic_cap masked_atomic_cap; 316 int max_ee; 317 int max_rdd; 318 int max_mw; 319 int max_raw_ipv6_qp; 320 int max_raw_ethy_qp; 321 int max_mcast_grp; 322 int max_mcast_qp_attach; 323 int max_total_mcast_qp_attach; 324 int max_ah; 325 int max_fmr; 326 int max_map_per_fmr; 327 int max_srq; 328 int max_srq_wr; 329 int max_srq_sge; 330 unsigned int max_fast_reg_page_list_len; 331 u16 max_pkeys; 332 u8 local_ca_ack_delay; 333 int sig_prot_cap; 334 int sig_guard_cap; 335 struct ib_odp_caps odp_caps; 336 uint64_t timestamp_mask; 337 uint64_t hca_core_clock; /* in KHZ */ 338 struct ib_rss_caps rss_caps; 339 u32 max_wq_type_rq; 340 }; 341 342 enum ib_mtu { 343 IB_MTU_256 = 1, 344 IB_MTU_512 = 2, 345 IB_MTU_1024 = 3, 346 IB_MTU_2048 = 4, 347 IB_MTU_4096 = 5 348 }; 349 350 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 351 { 352 switch (mtu) { 353 case IB_MTU_256: return 256; 354 case IB_MTU_512: return 512; 355 case IB_MTU_1024: return 1024; 356 case IB_MTU_2048: return 2048; 357 case IB_MTU_4096: return 4096; 358 default: return -1; 359 } 360 } 361 362 enum ib_port_state { 363 IB_PORT_NOP = 0, 364 IB_PORT_DOWN = 1, 365 IB_PORT_INIT = 2, 366 IB_PORT_ARMED = 3, 367 IB_PORT_ACTIVE = 4, 368 IB_PORT_ACTIVE_DEFER = 5, 369 IB_PORT_DUMMY = -1, /* force enum signed */ 370 }; 371 372 enum ib_port_cap_flags { 373 IB_PORT_SM = 1 << 1, 374 IB_PORT_NOTICE_SUP = 1 << 2, 375 IB_PORT_TRAP_SUP = 1 << 3, 376 IB_PORT_OPT_IPD_SUP = 1 << 4, 377 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 378 IB_PORT_SL_MAP_SUP = 1 << 6, 379 IB_PORT_MKEY_NVRAM = 1 << 7, 380 IB_PORT_PKEY_NVRAM = 1 << 8, 381 IB_PORT_LED_INFO_SUP = 1 << 9, 382 IB_PORT_SM_DISABLED = 1 << 10, 383 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 384 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 385 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 386 IB_PORT_CM_SUP = 1 << 16, 387 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 388 IB_PORT_REINIT_SUP = 1 << 18, 389 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 390 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 391 IB_PORT_DR_NOTICE_SUP = 1 << 21, 392 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 393 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 394 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 395 IB_PORT_CLIENT_REG_SUP = 1 << 25, 396 IB_PORT_IP_BASED_GIDS = 1 << 26, 397 }; 398 399 enum ib_port_width { 400 IB_WIDTH_1X = 1, 401 IB_WIDTH_4X = 2, 402 IB_WIDTH_8X = 4, 403 IB_WIDTH_12X = 8 404 }; 405 406 static inline int ib_width_enum_to_int(enum ib_port_width width) 407 { 408 switch (width) { 409 case IB_WIDTH_1X: return 1; 410 case IB_WIDTH_4X: return 4; 411 case IB_WIDTH_8X: return 8; 412 case IB_WIDTH_12X: return 12; 413 default: return -1; 414 } 415 } 416 417 enum ib_port_speed { 418 IB_SPEED_SDR = 1, 419 IB_SPEED_DDR = 2, 420 IB_SPEED_QDR = 4, 421 IB_SPEED_FDR10 = 8, 422 IB_SPEED_FDR = 16, 423 IB_SPEED_EDR = 32, 424 IB_SPEED_HDR = 64 425 }; 426 427 /** 428 * struct rdma_hw_stats 429 * @timestamp - Used by the core code to track when the last update was 430 * @lifespan - Used by the core code to determine how old the counters 431 * should be before being updated again. Stored in jiffies, defaults 432 * to 10 milliseconds, drivers can override the default be specifying 433 * their own value during their allocation routine. 434 * @name - Array of pointers to static names used for the counters in 435 * directory. 436 * @num_counters - How many hardware counters there are. If name is 437 * shorter than this number, a kernel oops will result. Driver authors 438 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 439 * in their code to prevent this. 440 * @value - Array of u64 counters that are accessed by the sysfs code and 441 * filled in by the drivers get_stats routine 442 */ 443 struct rdma_hw_stats { 444 unsigned long timestamp; 445 unsigned long lifespan; 446 const char * const *names; 447 int num_counters; 448 u64 value[]; 449 }; 450 451 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 452 /** 453 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 454 * for drivers. 455 * @names - Array of static const char * 456 * @num_counters - How many elements in array 457 * @lifespan - How many milliseconds between updates 458 */ 459 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 460 const char * const *names, int num_counters, 461 unsigned long lifespan) 462 { 463 struct rdma_hw_stats *stats; 464 465 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 466 GFP_KERNEL); 467 if (!stats) 468 return NULL; 469 stats->names = names; 470 stats->num_counters = num_counters; 471 stats->lifespan = msecs_to_jiffies(lifespan); 472 473 return stats; 474 } 475 476 477 /* Define bits for the various functionality this port needs to be supported by 478 * the core. 479 */ 480 /* Management 0x00000FFF */ 481 #define RDMA_CORE_CAP_IB_MAD 0x00000001 482 #define RDMA_CORE_CAP_IB_SMI 0x00000002 483 #define RDMA_CORE_CAP_IB_CM 0x00000004 484 #define RDMA_CORE_CAP_IW_CM 0x00000008 485 #define RDMA_CORE_CAP_IB_SA 0x00000010 486 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 487 488 /* Address format 0x000FF000 */ 489 #define RDMA_CORE_CAP_AF_IB 0x00001000 490 #define RDMA_CORE_CAP_ETH_AH 0x00002000 491 492 /* Protocol 0xFFF00000 */ 493 #define RDMA_CORE_CAP_PROT_IB 0x00100000 494 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 495 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 496 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 497 498 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 499 | RDMA_CORE_CAP_IB_MAD \ 500 | RDMA_CORE_CAP_IB_SMI \ 501 | RDMA_CORE_CAP_IB_CM \ 502 | RDMA_CORE_CAP_IB_SA \ 503 | RDMA_CORE_CAP_AF_IB) 504 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 505 | RDMA_CORE_CAP_IB_MAD \ 506 | RDMA_CORE_CAP_IB_CM \ 507 | RDMA_CORE_CAP_AF_IB \ 508 | RDMA_CORE_CAP_ETH_AH) 509 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 510 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 511 | RDMA_CORE_CAP_IB_MAD \ 512 | RDMA_CORE_CAP_IB_CM \ 513 | RDMA_CORE_CAP_AF_IB \ 514 | RDMA_CORE_CAP_ETH_AH) 515 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 516 | RDMA_CORE_CAP_IW_CM) 517 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 518 | RDMA_CORE_CAP_OPA_MAD) 519 520 struct ib_port_attr { 521 u64 subnet_prefix; 522 enum ib_port_state state; 523 enum ib_mtu max_mtu; 524 enum ib_mtu active_mtu; 525 int gid_tbl_len; 526 u32 port_cap_flags; 527 u32 max_msg_sz; 528 u32 bad_pkey_cntr; 529 u32 qkey_viol_cntr; 530 u16 pkey_tbl_len; 531 u16 lid; 532 u16 sm_lid; 533 u8 lmc; 534 u8 max_vl_num; 535 u8 sm_sl; 536 u8 subnet_timeout; 537 u8 init_type_reply; 538 u8 active_width; 539 u8 active_speed; 540 u8 phys_state; 541 bool grh_required; 542 }; 543 544 enum ib_device_modify_flags { 545 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 546 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 547 }; 548 549 #define IB_DEVICE_NODE_DESC_MAX 64 550 551 struct ib_device_modify { 552 u64 sys_image_guid; 553 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 554 }; 555 556 enum ib_port_modify_flags { 557 IB_PORT_SHUTDOWN = 1, 558 IB_PORT_INIT_TYPE = (1<<2), 559 IB_PORT_RESET_QKEY_CNTR = (1<<3) 560 }; 561 562 struct ib_port_modify { 563 u32 set_port_cap_mask; 564 u32 clr_port_cap_mask; 565 u8 init_type; 566 }; 567 568 enum ib_event_type { 569 IB_EVENT_CQ_ERR, 570 IB_EVENT_QP_FATAL, 571 IB_EVENT_QP_REQ_ERR, 572 IB_EVENT_QP_ACCESS_ERR, 573 IB_EVENT_COMM_EST, 574 IB_EVENT_SQ_DRAINED, 575 IB_EVENT_PATH_MIG, 576 IB_EVENT_PATH_MIG_ERR, 577 IB_EVENT_DEVICE_FATAL, 578 IB_EVENT_PORT_ACTIVE, 579 IB_EVENT_PORT_ERR, 580 IB_EVENT_LID_CHANGE, 581 IB_EVENT_PKEY_CHANGE, 582 IB_EVENT_SM_CHANGE, 583 IB_EVENT_SRQ_ERR, 584 IB_EVENT_SRQ_LIMIT_REACHED, 585 IB_EVENT_QP_LAST_WQE_REACHED, 586 IB_EVENT_CLIENT_REREGISTER, 587 IB_EVENT_GID_CHANGE, 588 IB_EVENT_WQ_FATAL, 589 }; 590 591 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 592 593 struct ib_event { 594 struct ib_device *device; 595 union { 596 struct ib_cq *cq; 597 struct ib_qp *qp; 598 struct ib_srq *srq; 599 struct ib_wq *wq; 600 u8 port_num; 601 } element; 602 enum ib_event_type event; 603 }; 604 605 struct ib_event_handler { 606 struct ib_device *device; 607 void (*handler)(struct ib_event_handler *, struct ib_event *); 608 struct list_head list; 609 }; 610 611 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 612 do { \ 613 (_ptr)->device = _device; \ 614 (_ptr)->handler = _handler; \ 615 INIT_LIST_HEAD(&(_ptr)->list); \ 616 } while (0) 617 618 struct ib_global_route { 619 union ib_gid dgid; 620 u32 flow_label; 621 u8 sgid_index; 622 u8 hop_limit; 623 u8 traffic_class; 624 }; 625 626 struct ib_grh { 627 __be32 version_tclass_flow; 628 __be16 paylen; 629 u8 next_hdr; 630 u8 hop_limit; 631 union ib_gid sgid; 632 union ib_gid dgid; 633 }; 634 635 union rdma_network_hdr { 636 struct ib_grh ibgrh; 637 struct { 638 /* The IB spec states that if it's IPv4, the header 639 * is located in the last 20 bytes of the header. 640 */ 641 u8 reserved[20]; 642 struct ip roce4grh; 643 }; 644 }; 645 646 enum { 647 IB_MULTICAST_QPN = 0xffffff 648 }; 649 650 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 651 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 652 653 enum ib_ah_flags { 654 IB_AH_GRH = 1 655 }; 656 657 enum ib_rate { 658 IB_RATE_PORT_CURRENT = 0, 659 IB_RATE_2_5_GBPS = 2, 660 IB_RATE_5_GBPS = 5, 661 IB_RATE_10_GBPS = 3, 662 IB_RATE_20_GBPS = 6, 663 IB_RATE_30_GBPS = 4, 664 IB_RATE_40_GBPS = 7, 665 IB_RATE_60_GBPS = 8, 666 IB_RATE_80_GBPS = 9, 667 IB_RATE_120_GBPS = 10, 668 IB_RATE_14_GBPS = 11, 669 IB_RATE_56_GBPS = 12, 670 IB_RATE_112_GBPS = 13, 671 IB_RATE_168_GBPS = 14, 672 IB_RATE_25_GBPS = 15, 673 IB_RATE_100_GBPS = 16, 674 IB_RATE_200_GBPS = 17, 675 IB_RATE_300_GBPS = 18 676 }; 677 678 /** 679 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 680 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 681 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 682 * @rate: rate to convert. 683 */ 684 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 685 686 /** 687 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 688 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 689 * @rate: rate to convert. 690 */ 691 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 692 693 694 /** 695 * enum ib_mr_type - memory region type 696 * @IB_MR_TYPE_MEM_REG: memory region that is used for 697 * normal registration 698 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 699 * signature operations (data-integrity 700 * capable regions) 701 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 702 * register any arbitrary sg lists (without 703 * the normal mr constraints - see 704 * ib_map_mr_sg) 705 */ 706 enum ib_mr_type { 707 IB_MR_TYPE_MEM_REG, 708 IB_MR_TYPE_SIGNATURE, 709 IB_MR_TYPE_SG_GAPS, 710 }; 711 712 /** 713 * Signature types 714 * IB_SIG_TYPE_NONE: Unprotected. 715 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 716 */ 717 enum ib_signature_type { 718 IB_SIG_TYPE_NONE, 719 IB_SIG_TYPE_T10_DIF, 720 }; 721 722 /** 723 * Signature T10-DIF block-guard types 724 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 725 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 726 */ 727 enum ib_t10_dif_bg_type { 728 IB_T10DIF_CRC, 729 IB_T10DIF_CSUM 730 }; 731 732 /** 733 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 734 * domain. 735 * @bg_type: T10-DIF block guard type (CRC|CSUM) 736 * @pi_interval: protection information interval. 737 * @bg: seed of guard computation. 738 * @app_tag: application tag of guard block 739 * @ref_tag: initial guard block reference tag. 740 * @ref_remap: Indicate wethear the reftag increments each block 741 * @app_escape: Indicate to skip block check if apptag=0xffff 742 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 743 * @apptag_check_mask: check bitmask of application tag. 744 */ 745 struct ib_t10_dif_domain { 746 enum ib_t10_dif_bg_type bg_type; 747 u16 pi_interval; 748 u16 bg; 749 u16 app_tag; 750 u32 ref_tag; 751 bool ref_remap; 752 bool app_escape; 753 bool ref_escape; 754 u16 apptag_check_mask; 755 }; 756 757 /** 758 * struct ib_sig_domain - Parameters for signature domain 759 * @sig_type: specific signauture type 760 * @sig: union of all signature domain attributes that may 761 * be used to set domain layout. 762 */ 763 struct ib_sig_domain { 764 enum ib_signature_type sig_type; 765 union { 766 struct ib_t10_dif_domain dif; 767 } sig; 768 }; 769 770 /** 771 * struct ib_sig_attrs - Parameters for signature handover operation 772 * @check_mask: bitmask for signature byte check (8 bytes) 773 * @mem: memory domain layout desciptor. 774 * @wire: wire domain layout desciptor. 775 */ 776 struct ib_sig_attrs { 777 u8 check_mask; 778 struct ib_sig_domain mem; 779 struct ib_sig_domain wire; 780 }; 781 782 enum ib_sig_err_type { 783 IB_SIG_BAD_GUARD, 784 IB_SIG_BAD_REFTAG, 785 IB_SIG_BAD_APPTAG, 786 }; 787 788 /** 789 * struct ib_sig_err - signature error descriptor 790 */ 791 struct ib_sig_err { 792 enum ib_sig_err_type err_type; 793 u32 expected; 794 u32 actual; 795 u64 sig_err_offset; 796 u32 key; 797 }; 798 799 enum ib_mr_status_check { 800 IB_MR_CHECK_SIG_STATUS = 1, 801 }; 802 803 /** 804 * struct ib_mr_status - Memory region status container 805 * 806 * @fail_status: Bitmask of MR checks status. For each 807 * failed check a corresponding status bit is set. 808 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 809 * failure. 810 */ 811 struct ib_mr_status { 812 u32 fail_status; 813 struct ib_sig_err sig_err; 814 }; 815 816 /** 817 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 818 * enum. 819 * @mult: multiple to convert. 820 */ 821 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 822 823 struct ib_ah_attr { 824 struct ib_global_route grh; 825 u16 dlid; 826 u8 sl; 827 u8 src_path_bits; 828 u8 static_rate; 829 u8 ah_flags; 830 u8 port_num; 831 u8 dmac[ETH_ALEN]; 832 }; 833 834 enum ib_wc_status { 835 IB_WC_SUCCESS, 836 IB_WC_LOC_LEN_ERR, 837 IB_WC_LOC_QP_OP_ERR, 838 IB_WC_LOC_EEC_OP_ERR, 839 IB_WC_LOC_PROT_ERR, 840 IB_WC_WR_FLUSH_ERR, 841 IB_WC_MW_BIND_ERR, 842 IB_WC_BAD_RESP_ERR, 843 IB_WC_LOC_ACCESS_ERR, 844 IB_WC_REM_INV_REQ_ERR, 845 IB_WC_REM_ACCESS_ERR, 846 IB_WC_REM_OP_ERR, 847 IB_WC_RETRY_EXC_ERR, 848 IB_WC_RNR_RETRY_EXC_ERR, 849 IB_WC_LOC_RDD_VIOL_ERR, 850 IB_WC_REM_INV_RD_REQ_ERR, 851 IB_WC_REM_ABORT_ERR, 852 IB_WC_INV_EECN_ERR, 853 IB_WC_INV_EEC_STATE_ERR, 854 IB_WC_FATAL_ERR, 855 IB_WC_RESP_TIMEOUT_ERR, 856 IB_WC_GENERAL_ERR 857 }; 858 859 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 860 861 enum ib_wc_opcode { 862 IB_WC_SEND, 863 IB_WC_RDMA_WRITE, 864 IB_WC_RDMA_READ, 865 IB_WC_COMP_SWAP, 866 IB_WC_FETCH_ADD, 867 IB_WC_LSO, 868 IB_WC_LOCAL_INV, 869 IB_WC_REG_MR, 870 IB_WC_MASKED_COMP_SWAP, 871 IB_WC_MASKED_FETCH_ADD, 872 /* 873 * Set value of IB_WC_RECV so consumers can test if a completion is a 874 * receive by testing (opcode & IB_WC_RECV). 875 */ 876 IB_WC_RECV = 1 << 7, 877 IB_WC_RECV_RDMA_WITH_IMM, 878 IB_WC_DUMMY = -1, /* force enum signed */ 879 }; 880 881 enum ib_wc_flags { 882 IB_WC_GRH = 1, 883 IB_WC_WITH_IMM = (1<<1), 884 IB_WC_WITH_INVALIDATE = (1<<2), 885 IB_WC_IP_CSUM_OK = (1<<3), 886 IB_WC_WITH_SMAC = (1<<4), 887 IB_WC_WITH_VLAN = (1<<5), 888 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 889 }; 890 891 struct ib_wc { 892 union { 893 u64 wr_id; 894 struct ib_cqe *wr_cqe; 895 }; 896 enum ib_wc_status status; 897 enum ib_wc_opcode opcode; 898 u32 vendor_err; 899 u32 byte_len; 900 struct ib_qp *qp; 901 union { 902 __be32 imm_data; 903 u32 invalidate_rkey; 904 } ex; 905 u32 src_qp; 906 int wc_flags; 907 u16 pkey_index; 908 u16 slid; 909 u8 sl; 910 u8 dlid_path_bits; 911 u8 port_num; /* valid only for DR SMPs on switches */ 912 u8 smac[ETH_ALEN]; 913 u16 vlan_id; 914 u8 network_hdr_type; 915 }; 916 917 enum ib_cq_notify_flags { 918 IB_CQ_SOLICITED = 1 << 0, 919 IB_CQ_NEXT_COMP = 1 << 1, 920 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 921 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 922 }; 923 924 enum ib_srq_type { 925 IB_SRQT_BASIC, 926 IB_SRQT_XRC 927 }; 928 929 enum ib_srq_attr_mask { 930 IB_SRQ_MAX_WR = 1 << 0, 931 IB_SRQ_LIMIT = 1 << 1, 932 }; 933 934 struct ib_srq_attr { 935 u32 max_wr; 936 u32 max_sge; 937 u32 srq_limit; 938 }; 939 940 struct ib_srq_init_attr { 941 void (*event_handler)(struct ib_event *, void *); 942 void *srq_context; 943 struct ib_srq_attr attr; 944 enum ib_srq_type srq_type; 945 946 union { 947 struct { 948 struct ib_xrcd *xrcd; 949 struct ib_cq *cq; 950 } xrc; 951 } ext; 952 }; 953 954 struct ib_qp_cap { 955 u32 max_send_wr; 956 u32 max_recv_wr; 957 u32 max_send_sge; 958 u32 max_recv_sge; 959 u32 max_inline_data; 960 961 /* 962 * Maximum number of rdma_rw_ctx structures in flight at a time. 963 * ib_create_qp() will calculate the right amount of neededed WRs 964 * and MRs based on this. 965 */ 966 u32 max_rdma_ctxs; 967 }; 968 969 enum ib_sig_type { 970 IB_SIGNAL_ALL_WR, 971 IB_SIGNAL_REQ_WR 972 }; 973 974 enum ib_qp_type { 975 /* 976 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 977 * here (and in that order) since the MAD layer uses them as 978 * indices into a 2-entry table. 979 */ 980 IB_QPT_SMI, 981 IB_QPT_GSI, 982 983 IB_QPT_RC, 984 IB_QPT_UC, 985 IB_QPT_UD, 986 IB_QPT_RAW_IPV6, 987 IB_QPT_RAW_ETHERTYPE, 988 IB_QPT_RAW_PACKET = 8, 989 IB_QPT_XRC_INI = 9, 990 IB_QPT_XRC_TGT, 991 IB_QPT_MAX, 992 /* Reserve a range for qp types internal to the low level driver. 993 * These qp types will not be visible at the IB core layer, so the 994 * IB_QPT_MAX usages should not be affected in the core layer 995 */ 996 IB_QPT_RESERVED1 = 0x1000, 997 IB_QPT_RESERVED2, 998 IB_QPT_RESERVED3, 999 IB_QPT_RESERVED4, 1000 IB_QPT_RESERVED5, 1001 IB_QPT_RESERVED6, 1002 IB_QPT_RESERVED7, 1003 IB_QPT_RESERVED8, 1004 IB_QPT_RESERVED9, 1005 IB_QPT_RESERVED10, 1006 }; 1007 1008 enum ib_qp_create_flags { 1009 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1010 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1011 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1012 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1013 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1014 IB_QP_CREATE_NETIF_QP = 1 << 5, 1015 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1016 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1017 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1018 /* reserve bits 26-31 for low level drivers' internal use */ 1019 IB_QP_CREATE_RESERVED_START = 1 << 26, 1020 IB_QP_CREATE_RESERVED_END = 1 << 31, 1021 }; 1022 1023 /* 1024 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1025 * callback to destroy the passed in QP. 1026 */ 1027 1028 struct ib_qp_init_attr { 1029 void (*event_handler)(struct ib_event *, void *); 1030 void *qp_context; 1031 struct ib_cq *send_cq; 1032 struct ib_cq *recv_cq; 1033 struct ib_srq *srq; 1034 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1035 struct ib_qp_cap cap; 1036 enum ib_sig_type sq_sig_type; 1037 enum ib_qp_type qp_type; 1038 enum ib_qp_create_flags create_flags; 1039 1040 /* 1041 * Only needed for special QP types, or when using the RW API. 1042 */ 1043 u8 port_num; 1044 struct ib_rwq_ind_table *rwq_ind_tbl; 1045 }; 1046 1047 struct ib_qp_open_attr { 1048 void (*event_handler)(struct ib_event *, void *); 1049 void *qp_context; 1050 u32 qp_num; 1051 enum ib_qp_type qp_type; 1052 }; 1053 1054 enum ib_rnr_timeout { 1055 IB_RNR_TIMER_655_36 = 0, 1056 IB_RNR_TIMER_000_01 = 1, 1057 IB_RNR_TIMER_000_02 = 2, 1058 IB_RNR_TIMER_000_03 = 3, 1059 IB_RNR_TIMER_000_04 = 4, 1060 IB_RNR_TIMER_000_06 = 5, 1061 IB_RNR_TIMER_000_08 = 6, 1062 IB_RNR_TIMER_000_12 = 7, 1063 IB_RNR_TIMER_000_16 = 8, 1064 IB_RNR_TIMER_000_24 = 9, 1065 IB_RNR_TIMER_000_32 = 10, 1066 IB_RNR_TIMER_000_48 = 11, 1067 IB_RNR_TIMER_000_64 = 12, 1068 IB_RNR_TIMER_000_96 = 13, 1069 IB_RNR_TIMER_001_28 = 14, 1070 IB_RNR_TIMER_001_92 = 15, 1071 IB_RNR_TIMER_002_56 = 16, 1072 IB_RNR_TIMER_003_84 = 17, 1073 IB_RNR_TIMER_005_12 = 18, 1074 IB_RNR_TIMER_007_68 = 19, 1075 IB_RNR_TIMER_010_24 = 20, 1076 IB_RNR_TIMER_015_36 = 21, 1077 IB_RNR_TIMER_020_48 = 22, 1078 IB_RNR_TIMER_030_72 = 23, 1079 IB_RNR_TIMER_040_96 = 24, 1080 IB_RNR_TIMER_061_44 = 25, 1081 IB_RNR_TIMER_081_92 = 26, 1082 IB_RNR_TIMER_122_88 = 27, 1083 IB_RNR_TIMER_163_84 = 28, 1084 IB_RNR_TIMER_245_76 = 29, 1085 IB_RNR_TIMER_327_68 = 30, 1086 IB_RNR_TIMER_491_52 = 31 1087 }; 1088 1089 enum ib_qp_attr_mask { 1090 IB_QP_STATE = 1, 1091 IB_QP_CUR_STATE = (1<<1), 1092 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1093 IB_QP_ACCESS_FLAGS = (1<<3), 1094 IB_QP_PKEY_INDEX = (1<<4), 1095 IB_QP_PORT = (1<<5), 1096 IB_QP_QKEY = (1<<6), 1097 IB_QP_AV = (1<<7), 1098 IB_QP_PATH_MTU = (1<<8), 1099 IB_QP_TIMEOUT = (1<<9), 1100 IB_QP_RETRY_CNT = (1<<10), 1101 IB_QP_RNR_RETRY = (1<<11), 1102 IB_QP_RQ_PSN = (1<<12), 1103 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1104 IB_QP_ALT_PATH = (1<<14), 1105 IB_QP_MIN_RNR_TIMER = (1<<15), 1106 IB_QP_SQ_PSN = (1<<16), 1107 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1108 IB_QP_PATH_MIG_STATE = (1<<18), 1109 IB_QP_CAP = (1<<19), 1110 IB_QP_DEST_QPN = (1<<20), 1111 IB_QP_RESERVED1 = (1<<21), 1112 IB_QP_RESERVED2 = (1<<22), 1113 IB_QP_RESERVED3 = (1<<23), 1114 IB_QP_RESERVED4 = (1<<24), 1115 }; 1116 1117 enum ib_qp_state { 1118 IB_QPS_RESET, 1119 IB_QPS_INIT, 1120 IB_QPS_RTR, 1121 IB_QPS_RTS, 1122 IB_QPS_SQD, 1123 IB_QPS_SQE, 1124 IB_QPS_ERR, 1125 IB_QPS_DUMMY = -1, /* force enum signed */ 1126 }; 1127 1128 enum ib_mig_state { 1129 IB_MIG_MIGRATED, 1130 IB_MIG_REARM, 1131 IB_MIG_ARMED 1132 }; 1133 1134 enum ib_mw_type { 1135 IB_MW_TYPE_1 = 1, 1136 IB_MW_TYPE_2 = 2 1137 }; 1138 1139 struct ib_qp_attr { 1140 enum ib_qp_state qp_state; 1141 enum ib_qp_state cur_qp_state; 1142 enum ib_mtu path_mtu; 1143 enum ib_mig_state path_mig_state; 1144 u32 qkey; 1145 u32 rq_psn; 1146 u32 sq_psn; 1147 u32 dest_qp_num; 1148 int qp_access_flags; 1149 struct ib_qp_cap cap; 1150 struct ib_ah_attr ah_attr; 1151 struct ib_ah_attr alt_ah_attr; 1152 u16 pkey_index; 1153 u16 alt_pkey_index; 1154 u8 en_sqd_async_notify; 1155 u8 sq_draining; 1156 u8 max_rd_atomic; 1157 u8 max_dest_rd_atomic; 1158 u8 min_rnr_timer; 1159 u8 port_num; 1160 u8 timeout; 1161 u8 retry_cnt; 1162 u8 rnr_retry; 1163 u8 alt_port_num; 1164 u8 alt_timeout; 1165 }; 1166 1167 enum ib_wr_opcode { 1168 IB_WR_RDMA_WRITE, 1169 IB_WR_RDMA_WRITE_WITH_IMM, 1170 IB_WR_SEND, 1171 IB_WR_SEND_WITH_IMM, 1172 IB_WR_RDMA_READ, 1173 IB_WR_ATOMIC_CMP_AND_SWP, 1174 IB_WR_ATOMIC_FETCH_AND_ADD, 1175 IB_WR_LSO, 1176 IB_WR_SEND_WITH_INV, 1177 IB_WR_RDMA_READ_WITH_INV, 1178 IB_WR_LOCAL_INV, 1179 IB_WR_REG_MR, 1180 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1181 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1182 IB_WR_REG_SIG_MR, 1183 /* reserve values for low level drivers' internal use. 1184 * These values will not be used at all in the ib core layer. 1185 */ 1186 IB_WR_RESERVED1 = 0xf0, 1187 IB_WR_RESERVED2, 1188 IB_WR_RESERVED3, 1189 IB_WR_RESERVED4, 1190 IB_WR_RESERVED5, 1191 IB_WR_RESERVED6, 1192 IB_WR_RESERVED7, 1193 IB_WR_RESERVED8, 1194 IB_WR_RESERVED9, 1195 IB_WR_RESERVED10, 1196 IB_WR_DUMMY = -1, /* force enum signed */ 1197 }; 1198 1199 enum ib_send_flags { 1200 IB_SEND_FENCE = 1, 1201 IB_SEND_SIGNALED = (1<<1), 1202 IB_SEND_SOLICITED = (1<<2), 1203 IB_SEND_INLINE = (1<<3), 1204 IB_SEND_IP_CSUM = (1<<4), 1205 1206 /* reserve bits 26-31 for low level drivers' internal use */ 1207 IB_SEND_RESERVED_START = (1 << 26), 1208 IB_SEND_RESERVED_END = (1 << 31), 1209 }; 1210 1211 struct ib_sge { 1212 u64 addr; 1213 u32 length; 1214 u32 lkey; 1215 }; 1216 1217 struct ib_cqe { 1218 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1219 }; 1220 1221 struct ib_send_wr { 1222 struct ib_send_wr *next; 1223 union { 1224 u64 wr_id; 1225 struct ib_cqe *wr_cqe; 1226 }; 1227 struct ib_sge *sg_list; 1228 int num_sge; 1229 enum ib_wr_opcode opcode; 1230 int send_flags; 1231 union { 1232 __be32 imm_data; 1233 u32 invalidate_rkey; 1234 } ex; 1235 }; 1236 1237 struct ib_rdma_wr { 1238 struct ib_send_wr wr; 1239 u64 remote_addr; 1240 u32 rkey; 1241 }; 1242 1243 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1244 { 1245 return container_of(wr, struct ib_rdma_wr, wr); 1246 } 1247 1248 struct ib_atomic_wr { 1249 struct ib_send_wr wr; 1250 u64 remote_addr; 1251 u64 compare_add; 1252 u64 swap; 1253 u64 compare_add_mask; 1254 u64 swap_mask; 1255 u32 rkey; 1256 }; 1257 1258 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1259 { 1260 return container_of(wr, struct ib_atomic_wr, wr); 1261 } 1262 1263 struct ib_ud_wr { 1264 struct ib_send_wr wr; 1265 struct ib_ah *ah; 1266 void *header; 1267 int hlen; 1268 int mss; 1269 u32 remote_qpn; 1270 u32 remote_qkey; 1271 u16 pkey_index; /* valid for GSI only */ 1272 u8 port_num; /* valid for DR SMPs on switch only */ 1273 }; 1274 1275 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1276 { 1277 return container_of(wr, struct ib_ud_wr, wr); 1278 } 1279 1280 struct ib_reg_wr { 1281 struct ib_send_wr wr; 1282 struct ib_mr *mr; 1283 u32 key; 1284 int access; 1285 }; 1286 1287 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1288 { 1289 return container_of(wr, struct ib_reg_wr, wr); 1290 } 1291 1292 struct ib_sig_handover_wr { 1293 struct ib_send_wr wr; 1294 struct ib_sig_attrs *sig_attrs; 1295 struct ib_mr *sig_mr; 1296 int access_flags; 1297 struct ib_sge *prot; 1298 }; 1299 1300 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1301 { 1302 return container_of(wr, struct ib_sig_handover_wr, wr); 1303 } 1304 1305 struct ib_recv_wr { 1306 struct ib_recv_wr *next; 1307 union { 1308 u64 wr_id; 1309 struct ib_cqe *wr_cqe; 1310 }; 1311 struct ib_sge *sg_list; 1312 int num_sge; 1313 }; 1314 1315 enum ib_access_flags { 1316 IB_ACCESS_LOCAL_WRITE = 1, 1317 IB_ACCESS_REMOTE_WRITE = (1<<1), 1318 IB_ACCESS_REMOTE_READ = (1<<2), 1319 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1320 IB_ACCESS_MW_BIND = (1<<4), 1321 IB_ZERO_BASED = (1<<5), 1322 IB_ACCESS_ON_DEMAND = (1<<6), 1323 }; 1324 1325 /* 1326 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1327 * are hidden here instead of a uapi header! 1328 */ 1329 enum ib_mr_rereg_flags { 1330 IB_MR_REREG_TRANS = 1, 1331 IB_MR_REREG_PD = (1<<1), 1332 IB_MR_REREG_ACCESS = (1<<2), 1333 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1334 }; 1335 1336 struct ib_fmr_attr { 1337 int max_pages; 1338 int max_maps; 1339 u8 page_shift; 1340 }; 1341 1342 struct ib_umem; 1343 1344 struct ib_ucontext { 1345 struct ib_device *device; 1346 struct list_head pd_list; 1347 struct list_head mr_list; 1348 struct list_head mw_list; 1349 struct list_head cq_list; 1350 struct list_head qp_list; 1351 struct list_head srq_list; 1352 struct list_head ah_list; 1353 struct list_head xrcd_list; 1354 struct list_head rule_list; 1355 struct list_head wq_list; 1356 struct list_head rwq_ind_tbl_list; 1357 int closing; 1358 1359 pid_t tgid; 1360 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1361 struct rb_root umem_tree; 1362 /* 1363 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1364 * mmu notifiers registration. 1365 */ 1366 struct rw_semaphore umem_rwsem; 1367 void (*invalidate_range)(struct ib_umem *umem, 1368 unsigned long start, unsigned long end); 1369 1370 struct mmu_notifier mn; 1371 atomic_t notifier_count; 1372 /* A list of umems that don't have private mmu notifier counters yet. */ 1373 struct list_head no_private_counters; 1374 int odp_mrs_count; 1375 #endif 1376 }; 1377 1378 struct ib_uobject { 1379 u64 user_handle; /* handle given to us by userspace */ 1380 struct ib_ucontext *context; /* associated user context */ 1381 void *object; /* containing object */ 1382 struct list_head list; /* link to context's list */ 1383 int id; /* index into kernel idr */ 1384 struct kref ref; 1385 struct rw_semaphore mutex; /* protects .live */ 1386 struct rcu_head rcu; /* kfree_rcu() overhead */ 1387 int live; 1388 }; 1389 1390 struct ib_udata { 1391 const void __user *inbuf; 1392 void __user *outbuf; 1393 size_t inlen; 1394 size_t outlen; 1395 }; 1396 1397 struct ib_pd { 1398 u32 local_dma_lkey; 1399 u32 flags; 1400 struct ib_device *device; 1401 struct ib_uobject *uobject; 1402 atomic_t usecnt; /* count all resources */ 1403 1404 u32 unsafe_global_rkey; 1405 1406 /* 1407 * Implementation details of the RDMA core, don't use in drivers: 1408 */ 1409 struct ib_mr *__internal_mr; 1410 }; 1411 1412 struct ib_xrcd { 1413 struct ib_device *device; 1414 atomic_t usecnt; /* count all exposed resources */ 1415 struct inode *inode; 1416 1417 struct mutex tgt_qp_mutex; 1418 struct list_head tgt_qp_list; 1419 }; 1420 1421 struct ib_ah { 1422 struct ib_device *device; 1423 struct ib_pd *pd; 1424 struct ib_uobject *uobject; 1425 }; 1426 1427 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1428 1429 enum ib_poll_context { 1430 IB_POLL_DIRECT, /* caller context, no hw completions */ 1431 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1432 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1433 }; 1434 1435 struct ib_cq { 1436 struct ib_device *device; 1437 struct ib_uobject *uobject; 1438 ib_comp_handler comp_handler; 1439 void (*event_handler)(struct ib_event *, void *); 1440 void *cq_context; 1441 int cqe; 1442 atomic_t usecnt; /* count number of work queues */ 1443 enum ib_poll_context poll_ctx; 1444 struct work_struct work; 1445 }; 1446 1447 struct ib_srq { 1448 struct ib_device *device; 1449 struct ib_pd *pd; 1450 struct ib_uobject *uobject; 1451 void (*event_handler)(struct ib_event *, void *); 1452 void *srq_context; 1453 enum ib_srq_type srq_type; 1454 atomic_t usecnt; 1455 1456 union { 1457 struct { 1458 struct ib_xrcd *xrcd; 1459 struct ib_cq *cq; 1460 u32 srq_num; 1461 } xrc; 1462 } ext; 1463 }; 1464 1465 enum ib_wq_type { 1466 IB_WQT_RQ 1467 }; 1468 1469 enum ib_wq_state { 1470 IB_WQS_RESET, 1471 IB_WQS_RDY, 1472 IB_WQS_ERR 1473 }; 1474 1475 struct ib_wq { 1476 struct ib_device *device; 1477 struct ib_uobject *uobject; 1478 void *wq_context; 1479 void (*event_handler)(struct ib_event *, void *); 1480 struct ib_pd *pd; 1481 struct ib_cq *cq; 1482 u32 wq_num; 1483 enum ib_wq_state state; 1484 enum ib_wq_type wq_type; 1485 atomic_t usecnt; 1486 }; 1487 1488 struct ib_wq_init_attr { 1489 void *wq_context; 1490 enum ib_wq_type wq_type; 1491 u32 max_wr; 1492 u32 max_sge; 1493 struct ib_cq *cq; 1494 void (*event_handler)(struct ib_event *, void *); 1495 }; 1496 1497 enum ib_wq_attr_mask { 1498 IB_WQ_STATE = 1 << 0, 1499 IB_WQ_CUR_STATE = 1 << 1, 1500 }; 1501 1502 struct ib_wq_attr { 1503 enum ib_wq_state wq_state; 1504 enum ib_wq_state curr_wq_state; 1505 }; 1506 1507 struct ib_rwq_ind_table { 1508 struct ib_device *device; 1509 struct ib_uobject *uobject; 1510 atomic_t usecnt; 1511 u32 ind_tbl_num; 1512 u32 log_ind_tbl_size; 1513 struct ib_wq **ind_tbl; 1514 }; 1515 1516 struct ib_rwq_ind_table_init_attr { 1517 u32 log_ind_tbl_size; 1518 /* Each entry is a pointer to Receive Work Queue */ 1519 struct ib_wq **ind_tbl; 1520 }; 1521 1522 /* 1523 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1524 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1525 */ 1526 struct ib_qp { 1527 struct ib_device *device; 1528 struct ib_pd *pd; 1529 struct ib_cq *send_cq; 1530 struct ib_cq *recv_cq; 1531 spinlock_t mr_lock; 1532 struct ib_srq *srq; 1533 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1534 struct list_head xrcd_list; 1535 1536 /* count times opened, mcast attaches, flow attaches */ 1537 atomic_t usecnt; 1538 struct list_head open_list; 1539 struct ib_qp *real_qp; 1540 struct ib_uobject *uobject; 1541 void (*event_handler)(struct ib_event *, void *); 1542 void *qp_context; 1543 u32 qp_num; 1544 u32 max_write_sge; 1545 u32 max_read_sge; 1546 enum ib_qp_type qp_type; 1547 struct ib_rwq_ind_table *rwq_ind_tbl; 1548 }; 1549 1550 struct ib_mr { 1551 struct ib_device *device; 1552 struct ib_pd *pd; 1553 u32 lkey; 1554 u32 rkey; 1555 u64 iova; 1556 u32 length; 1557 unsigned int page_size; 1558 bool need_inval; 1559 union { 1560 struct ib_uobject *uobject; /* user */ 1561 struct list_head qp_entry; /* FR */ 1562 }; 1563 }; 1564 1565 struct ib_mw { 1566 struct ib_device *device; 1567 struct ib_pd *pd; 1568 struct ib_uobject *uobject; 1569 u32 rkey; 1570 enum ib_mw_type type; 1571 }; 1572 1573 struct ib_fmr { 1574 struct ib_device *device; 1575 struct ib_pd *pd; 1576 struct list_head list; 1577 u32 lkey; 1578 u32 rkey; 1579 }; 1580 1581 /* Supported steering options */ 1582 enum ib_flow_attr_type { 1583 /* steering according to rule specifications */ 1584 IB_FLOW_ATTR_NORMAL = 0x0, 1585 /* default unicast and multicast rule - 1586 * receive all Eth traffic which isn't steered to any QP 1587 */ 1588 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1589 /* default multicast rule - 1590 * receive all Eth multicast traffic which isn't steered to any QP 1591 */ 1592 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1593 /* sniffer rule - receive all port traffic */ 1594 IB_FLOW_ATTR_SNIFFER = 0x3 1595 }; 1596 1597 /* Supported steering header types */ 1598 enum ib_flow_spec_type { 1599 /* L2 headers*/ 1600 IB_FLOW_SPEC_ETH = 0x20, 1601 IB_FLOW_SPEC_IB = 0x22, 1602 /* L3 header*/ 1603 IB_FLOW_SPEC_IPV4 = 0x30, 1604 IB_FLOW_SPEC_IPV6 = 0x31, 1605 /* L4 headers*/ 1606 IB_FLOW_SPEC_TCP = 0x40, 1607 IB_FLOW_SPEC_UDP = 0x41 1608 }; 1609 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1610 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1611 1612 /* Flow steering rule priority is set according to it's domain. 1613 * Lower domain value means higher priority. 1614 */ 1615 enum ib_flow_domain { 1616 IB_FLOW_DOMAIN_USER, 1617 IB_FLOW_DOMAIN_ETHTOOL, 1618 IB_FLOW_DOMAIN_RFS, 1619 IB_FLOW_DOMAIN_NIC, 1620 IB_FLOW_DOMAIN_NUM /* Must be last */ 1621 }; 1622 1623 enum ib_flow_flags { 1624 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1625 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1626 }; 1627 1628 struct ib_flow_eth_filter { 1629 u8 dst_mac[6]; 1630 u8 src_mac[6]; 1631 __be16 ether_type; 1632 __be16 vlan_tag; 1633 /* Must be last */ 1634 u8 real_sz[0]; 1635 }; 1636 1637 struct ib_flow_spec_eth { 1638 enum ib_flow_spec_type type; 1639 u16 size; 1640 struct ib_flow_eth_filter val; 1641 struct ib_flow_eth_filter mask; 1642 }; 1643 1644 struct ib_flow_ib_filter { 1645 __be16 dlid; 1646 __u8 sl; 1647 /* Must be last */ 1648 u8 real_sz[0]; 1649 }; 1650 1651 struct ib_flow_spec_ib { 1652 enum ib_flow_spec_type type; 1653 u16 size; 1654 struct ib_flow_ib_filter val; 1655 struct ib_flow_ib_filter mask; 1656 }; 1657 1658 /* IPv4 header flags */ 1659 enum ib_ipv4_flags { 1660 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1661 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1662 last have this flag set */ 1663 }; 1664 1665 struct ib_flow_ipv4_filter { 1666 __be32 src_ip; 1667 __be32 dst_ip; 1668 u8 proto; 1669 u8 tos; 1670 u8 ttl; 1671 u8 flags; 1672 /* Must be last */ 1673 u8 real_sz[0]; 1674 }; 1675 1676 struct ib_flow_spec_ipv4 { 1677 enum ib_flow_spec_type type; 1678 u16 size; 1679 struct ib_flow_ipv4_filter val; 1680 struct ib_flow_ipv4_filter mask; 1681 }; 1682 1683 struct ib_flow_ipv6_filter { 1684 u8 src_ip[16]; 1685 u8 dst_ip[16]; 1686 __be32 flow_label; 1687 u8 next_hdr; 1688 u8 traffic_class; 1689 u8 hop_limit; 1690 /* Must be last */ 1691 u8 real_sz[0]; 1692 }; 1693 1694 struct ib_flow_spec_ipv6 { 1695 enum ib_flow_spec_type type; 1696 u16 size; 1697 struct ib_flow_ipv6_filter val; 1698 struct ib_flow_ipv6_filter mask; 1699 }; 1700 1701 struct ib_flow_tcp_udp_filter { 1702 __be16 dst_port; 1703 __be16 src_port; 1704 /* Must be last */ 1705 u8 real_sz[0]; 1706 }; 1707 1708 struct ib_flow_spec_tcp_udp { 1709 enum ib_flow_spec_type type; 1710 u16 size; 1711 struct ib_flow_tcp_udp_filter val; 1712 struct ib_flow_tcp_udp_filter mask; 1713 }; 1714 1715 union ib_flow_spec { 1716 struct { 1717 enum ib_flow_spec_type type; 1718 u16 size; 1719 }; 1720 struct ib_flow_spec_eth eth; 1721 struct ib_flow_spec_ib ib; 1722 struct ib_flow_spec_ipv4 ipv4; 1723 struct ib_flow_spec_tcp_udp tcp_udp; 1724 struct ib_flow_spec_ipv6 ipv6; 1725 }; 1726 1727 struct ib_flow_attr { 1728 enum ib_flow_attr_type type; 1729 u16 size; 1730 u16 priority; 1731 u32 flags; 1732 u8 num_of_specs; 1733 u8 port; 1734 /* Following are the optional layers according to user request 1735 * struct ib_flow_spec_xxx 1736 * struct ib_flow_spec_yyy 1737 */ 1738 }; 1739 1740 struct ib_flow { 1741 struct ib_qp *qp; 1742 struct ib_uobject *uobject; 1743 }; 1744 1745 struct ib_mad_hdr; 1746 struct ib_grh; 1747 1748 enum ib_process_mad_flags { 1749 IB_MAD_IGNORE_MKEY = 1, 1750 IB_MAD_IGNORE_BKEY = 2, 1751 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1752 }; 1753 1754 enum ib_mad_result { 1755 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1756 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1757 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1758 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1759 }; 1760 1761 #define IB_DEVICE_NAME_MAX 64 1762 1763 struct ib_cache { 1764 rwlock_t lock; 1765 struct ib_event_handler event_handler; 1766 struct ib_pkey_cache **pkey_cache; 1767 struct ib_gid_table **gid_cache; 1768 u8 *lmc_cache; 1769 }; 1770 1771 struct ib_dma_mapping_ops { 1772 int (*mapping_error)(struct ib_device *dev, 1773 u64 dma_addr); 1774 u64 (*map_single)(struct ib_device *dev, 1775 void *ptr, size_t size, 1776 enum dma_data_direction direction); 1777 void (*unmap_single)(struct ib_device *dev, 1778 u64 addr, size_t size, 1779 enum dma_data_direction direction); 1780 u64 (*map_page)(struct ib_device *dev, 1781 struct page *page, unsigned long offset, 1782 size_t size, 1783 enum dma_data_direction direction); 1784 void (*unmap_page)(struct ib_device *dev, 1785 u64 addr, size_t size, 1786 enum dma_data_direction direction); 1787 int (*map_sg)(struct ib_device *dev, 1788 struct scatterlist *sg, int nents, 1789 enum dma_data_direction direction); 1790 void (*unmap_sg)(struct ib_device *dev, 1791 struct scatterlist *sg, int nents, 1792 enum dma_data_direction direction); 1793 int (*map_sg_attrs)(struct ib_device *dev, 1794 struct scatterlist *sg, int nents, 1795 enum dma_data_direction direction, 1796 struct dma_attrs *attrs); 1797 void (*unmap_sg_attrs)(struct ib_device *dev, 1798 struct scatterlist *sg, int nents, 1799 enum dma_data_direction direction, 1800 struct dma_attrs *attrs); 1801 void (*sync_single_for_cpu)(struct ib_device *dev, 1802 u64 dma_handle, 1803 size_t size, 1804 enum dma_data_direction dir); 1805 void (*sync_single_for_device)(struct ib_device *dev, 1806 u64 dma_handle, 1807 size_t size, 1808 enum dma_data_direction dir); 1809 void *(*alloc_coherent)(struct ib_device *dev, 1810 size_t size, 1811 u64 *dma_handle, 1812 gfp_t flag); 1813 void (*free_coherent)(struct ib_device *dev, 1814 size_t size, void *cpu_addr, 1815 u64 dma_handle); 1816 }; 1817 1818 struct iw_cm_verbs; 1819 1820 struct ib_port_immutable { 1821 int pkey_tbl_len; 1822 int gid_tbl_len; 1823 u32 core_cap_flags; 1824 u32 max_mad_size; 1825 }; 1826 1827 struct ib_device { 1828 struct device *dma_device; 1829 1830 char name[IB_DEVICE_NAME_MAX]; 1831 1832 struct list_head event_handler_list; 1833 spinlock_t event_handler_lock; 1834 1835 spinlock_t client_data_lock; 1836 struct list_head core_list; 1837 /* Access to the client_data_list is protected by the client_data_lock 1838 * spinlock and the lists_rwsem read-write semaphore */ 1839 struct list_head client_data_list; 1840 1841 struct ib_cache cache; 1842 /** 1843 * port_immutable is indexed by port number 1844 */ 1845 struct ib_port_immutable *port_immutable; 1846 1847 int num_comp_vectors; 1848 1849 struct iw_cm_verbs *iwcm; 1850 1851 /** 1852 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1853 * driver initialized data. The struct is kfree()'ed by the sysfs 1854 * core when the device is removed. A lifespan of -1 in the return 1855 * struct tells the core to set a default lifespan. 1856 */ 1857 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1858 u8 port_num); 1859 /** 1860 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1861 * @index - The index in the value array we wish to have updated, or 1862 * num_counters if we want all stats updated 1863 * Return codes - 1864 * < 0 - Error, no counters updated 1865 * index - Updated the single counter pointed to by index 1866 * num_counters - Updated all counters (will reset the timestamp 1867 * and prevent further calls for lifespan milliseconds) 1868 * Drivers are allowed to update all counters in leiu of just the 1869 * one given in index at their option 1870 */ 1871 int (*get_hw_stats)(struct ib_device *device, 1872 struct rdma_hw_stats *stats, 1873 u8 port, int index); 1874 int (*query_device)(struct ib_device *device, 1875 struct ib_device_attr *device_attr, 1876 struct ib_udata *udata); 1877 int (*query_port)(struct ib_device *device, 1878 u8 port_num, 1879 struct ib_port_attr *port_attr); 1880 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1881 u8 port_num); 1882 /* When calling get_netdev, the HW vendor's driver should return the 1883 * net device of device @device at port @port_num or NULL if such 1884 * a net device doesn't exist. The vendor driver should call dev_hold 1885 * on this net device. The HW vendor's device driver must guarantee 1886 * that this function returns NULL before the net device reaches 1887 * NETDEV_UNREGISTER_FINAL state. 1888 */ 1889 struct net_device *(*get_netdev)(struct ib_device *device, 1890 u8 port_num); 1891 int (*query_gid)(struct ib_device *device, 1892 u8 port_num, int index, 1893 union ib_gid *gid); 1894 /* When calling add_gid, the HW vendor's driver should 1895 * add the gid of device @device at gid index @index of 1896 * port @port_num to be @gid. Meta-info of that gid (for example, 1897 * the network device related to this gid is available 1898 * at @attr. @context allows the HW vendor driver to store extra 1899 * information together with a GID entry. The HW vendor may allocate 1900 * memory to contain this information and store it in @context when a 1901 * new GID entry is written to. Params are consistent until the next 1902 * call of add_gid or delete_gid. The function should return 0 on 1903 * success or error otherwise. The function could be called 1904 * concurrently for different ports. This function is only called 1905 * when roce_gid_table is used. 1906 */ 1907 int (*add_gid)(struct ib_device *device, 1908 u8 port_num, 1909 unsigned int index, 1910 const union ib_gid *gid, 1911 const struct ib_gid_attr *attr, 1912 void **context); 1913 /* When calling del_gid, the HW vendor's driver should delete the 1914 * gid of device @device at gid index @index of port @port_num. 1915 * Upon the deletion of a GID entry, the HW vendor must free any 1916 * allocated memory. The caller will clear @context afterwards. 1917 * This function is only called when roce_gid_table is used. 1918 */ 1919 int (*del_gid)(struct ib_device *device, 1920 u8 port_num, 1921 unsigned int index, 1922 void **context); 1923 int (*query_pkey)(struct ib_device *device, 1924 u8 port_num, u16 index, u16 *pkey); 1925 int (*modify_device)(struct ib_device *device, 1926 int device_modify_mask, 1927 struct ib_device_modify *device_modify); 1928 int (*modify_port)(struct ib_device *device, 1929 u8 port_num, int port_modify_mask, 1930 struct ib_port_modify *port_modify); 1931 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1932 struct ib_udata *udata); 1933 int (*dealloc_ucontext)(struct ib_ucontext *context); 1934 int (*mmap)(struct ib_ucontext *context, 1935 struct vm_area_struct *vma); 1936 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1937 struct ib_ucontext *context, 1938 struct ib_udata *udata); 1939 int (*dealloc_pd)(struct ib_pd *pd); 1940 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1941 struct ib_ah_attr *ah_attr, 1942 struct ib_udata *udata); 1943 int (*modify_ah)(struct ib_ah *ah, 1944 struct ib_ah_attr *ah_attr); 1945 int (*query_ah)(struct ib_ah *ah, 1946 struct ib_ah_attr *ah_attr); 1947 int (*destroy_ah)(struct ib_ah *ah); 1948 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1949 struct ib_srq_init_attr *srq_init_attr, 1950 struct ib_udata *udata); 1951 int (*modify_srq)(struct ib_srq *srq, 1952 struct ib_srq_attr *srq_attr, 1953 enum ib_srq_attr_mask srq_attr_mask, 1954 struct ib_udata *udata); 1955 int (*query_srq)(struct ib_srq *srq, 1956 struct ib_srq_attr *srq_attr); 1957 int (*destroy_srq)(struct ib_srq *srq); 1958 int (*post_srq_recv)(struct ib_srq *srq, 1959 struct ib_recv_wr *recv_wr, 1960 struct ib_recv_wr **bad_recv_wr); 1961 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1962 struct ib_qp_init_attr *qp_init_attr, 1963 struct ib_udata *udata); 1964 int (*modify_qp)(struct ib_qp *qp, 1965 struct ib_qp_attr *qp_attr, 1966 int qp_attr_mask, 1967 struct ib_udata *udata); 1968 int (*query_qp)(struct ib_qp *qp, 1969 struct ib_qp_attr *qp_attr, 1970 int qp_attr_mask, 1971 struct ib_qp_init_attr *qp_init_attr); 1972 int (*destroy_qp)(struct ib_qp *qp); 1973 int (*post_send)(struct ib_qp *qp, 1974 struct ib_send_wr *send_wr, 1975 struct ib_send_wr **bad_send_wr); 1976 int (*post_recv)(struct ib_qp *qp, 1977 struct ib_recv_wr *recv_wr, 1978 struct ib_recv_wr **bad_recv_wr); 1979 struct ib_cq * (*create_cq)(struct ib_device *device, 1980 const struct ib_cq_init_attr *attr, 1981 struct ib_ucontext *context, 1982 struct ib_udata *udata); 1983 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1984 u16 cq_period); 1985 int (*destroy_cq)(struct ib_cq *cq); 1986 int (*resize_cq)(struct ib_cq *cq, int cqe, 1987 struct ib_udata *udata); 1988 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1989 struct ib_wc *wc); 1990 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1991 int (*req_notify_cq)(struct ib_cq *cq, 1992 enum ib_cq_notify_flags flags); 1993 int (*req_ncomp_notif)(struct ib_cq *cq, 1994 int wc_cnt); 1995 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1996 int mr_access_flags); 1997 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1998 u64 start, u64 length, 1999 u64 virt_addr, 2000 int mr_access_flags, 2001 struct ib_udata *udata); 2002 int (*rereg_user_mr)(struct ib_mr *mr, 2003 int flags, 2004 u64 start, u64 length, 2005 u64 virt_addr, 2006 int mr_access_flags, 2007 struct ib_pd *pd, 2008 struct ib_udata *udata); 2009 int (*dereg_mr)(struct ib_mr *mr); 2010 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2011 enum ib_mr_type mr_type, 2012 u32 max_num_sg); 2013 int (*map_mr_sg)(struct ib_mr *mr, 2014 struct scatterlist *sg, 2015 int sg_nents, 2016 unsigned int *sg_offset); 2017 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2018 enum ib_mw_type type, 2019 struct ib_udata *udata); 2020 int (*dealloc_mw)(struct ib_mw *mw); 2021 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2022 int mr_access_flags, 2023 struct ib_fmr_attr *fmr_attr); 2024 int (*map_phys_fmr)(struct ib_fmr *fmr, 2025 u64 *page_list, int list_len, 2026 u64 iova); 2027 int (*unmap_fmr)(struct list_head *fmr_list); 2028 int (*dealloc_fmr)(struct ib_fmr *fmr); 2029 int (*attach_mcast)(struct ib_qp *qp, 2030 union ib_gid *gid, 2031 u16 lid); 2032 int (*detach_mcast)(struct ib_qp *qp, 2033 union ib_gid *gid, 2034 u16 lid); 2035 int (*process_mad)(struct ib_device *device, 2036 int process_mad_flags, 2037 u8 port_num, 2038 const struct ib_wc *in_wc, 2039 const struct ib_grh *in_grh, 2040 const struct ib_mad_hdr *in_mad, 2041 size_t in_mad_size, 2042 struct ib_mad_hdr *out_mad, 2043 size_t *out_mad_size, 2044 u16 *out_mad_pkey_index); 2045 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2046 struct ib_ucontext *ucontext, 2047 struct ib_udata *udata); 2048 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2049 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2050 struct ib_flow_attr 2051 *flow_attr, 2052 int domain); 2053 int (*destroy_flow)(struct ib_flow *flow_id); 2054 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2055 struct ib_mr_status *mr_status); 2056 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2057 void (*drain_rq)(struct ib_qp *qp); 2058 void (*drain_sq)(struct ib_qp *qp); 2059 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2060 int state); 2061 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2062 struct ifla_vf_info *ivf); 2063 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2064 struct ifla_vf_stats *stats); 2065 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2066 int type); 2067 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2068 struct ib_wq_init_attr *init_attr, 2069 struct ib_udata *udata); 2070 int (*destroy_wq)(struct ib_wq *wq); 2071 int (*modify_wq)(struct ib_wq *wq, 2072 struct ib_wq_attr *attr, 2073 u32 wq_attr_mask, 2074 struct ib_udata *udata); 2075 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2076 struct ib_rwq_ind_table_init_attr *init_attr, 2077 struct ib_udata *udata); 2078 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2079 struct ib_dma_mapping_ops *dma_ops; 2080 2081 struct module *owner; 2082 struct device dev; 2083 struct kobject *ports_parent; 2084 struct list_head port_list; 2085 2086 enum { 2087 IB_DEV_UNINITIALIZED, 2088 IB_DEV_REGISTERED, 2089 IB_DEV_UNREGISTERED 2090 } reg_state; 2091 2092 int uverbs_abi_ver; 2093 u64 uverbs_cmd_mask; 2094 u64 uverbs_ex_cmd_mask; 2095 2096 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2097 __be64 node_guid; 2098 u32 local_dma_lkey; 2099 u16 is_switch:1; 2100 u8 node_type; 2101 u8 phys_port_cnt; 2102 struct ib_device_attr attrs; 2103 struct attribute_group *hw_stats_ag; 2104 struct rdma_hw_stats *hw_stats; 2105 2106 /** 2107 * The following mandatory functions are used only at device 2108 * registration. Keep functions such as these at the end of this 2109 * structure to avoid cache line misses when accessing struct ib_device 2110 * in fast paths. 2111 */ 2112 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2113 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2114 }; 2115 2116 struct ib_client { 2117 char *name; 2118 void (*add) (struct ib_device *); 2119 void (*remove)(struct ib_device *, void *client_data); 2120 2121 /* Returns the net_dev belonging to this ib_client and matching the 2122 * given parameters. 2123 * @dev: An RDMA device that the net_dev use for communication. 2124 * @port: A physical port number on the RDMA device. 2125 * @pkey: P_Key that the net_dev uses if applicable. 2126 * @gid: A GID that the net_dev uses to communicate. 2127 * @addr: An IP address the net_dev is configured with. 2128 * @client_data: The device's client data set by ib_set_client_data(). 2129 * 2130 * An ib_client that implements a net_dev on top of RDMA devices 2131 * (such as IP over IB) should implement this callback, allowing the 2132 * rdma_cm module to find the right net_dev for a given request. 2133 * 2134 * The caller is responsible for calling dev_put on the returned 2135 * netdev. */ 2136 struct net_device *(*get_net_dev_by_params)( 2137 struct ib_device *dev, 2138 u8 port, 2139 u16 pkey, 2140 const union ib_gid *gid, 2141 const struct sockaddr *addr, 2142 void *client_data); 2143 struct list_head list; 2144 }; 2145 2146 struct ib_device *ib_alloc_device(size_t size); 2147 void ib_dealloc_device(struct ib_device *device); 2148 2149 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2150 2151 int ib_register_device(struct ib_device *device, 2152 int (*port_callback)(struct ib_device *, 2153 u8, struct kobject *)); 2154 void ib_unregister_device(struct ib_device *device); 2155 2156 int ib_register_client (struct ib_client *client); 2157 void ib_unregister_client(struct ib_client *client); 2158 2159 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2160 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2161 void *data); 2162 2163 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2164 { 2165 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2166 } 2167 2168 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2169 { 2170 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2171 } 2172 2173 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2174 size_t offset, 2175 size_t len) 2176 { 2177 const void __user *p = (const char __user *)udata->inbuf + offset; 2178 bool ret; 2179 u8 *buf; 2180 2181 if (len > USHRT_MAX) 2182 return false; 2183 2184 buf = memdup_user(p, len); 2185 if (IS_ERR(buf)) 2186 return false; 2187 2188 ret = !memchr_inv(buf, 0, len); 2189 kfree(buf); 2190 return ret; 2191 } 2192 2193 /** 2194 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2195 * contains all required attributes and no attributes not allowed for 2196 * the given QP state transition. 2197 * @cur_state: Current QP state 2198 * @next_state: Next QP state 2199 * @type: QP type 2200 * @mask: Mask of supplied QP attributes 2201 * @ll : link layer of port 2202 * 2203 * This function is a helper function that a low-level driver's 2204 * modify_qp method can use to validate the consumer's input. It 2205 * checks that cur_state and next_state are valid QP states, that a 2206 * transition from cur_state to next_state is allowed by the IB spec, 2207 * and that the attribute mask supplied is allowed for the transition. 2208 */ 2209 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2210 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2211 enum rdma_link_layer ll); 2212 2213 int ib_register_event_handler (struct ib_event_handler *event_handler); 2214 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2215 void ib_dispatch_event(struct ib_event *event); 2216 2217 int ib_query_port(struct ib_device *device, 2218 u8 port_num, struct ib_port_attr *port_attr); 2219 2220 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2221 u8 port_num); 2222 2223 /** 2224 * rdma_cap_ib_switch - Check if the device is IB switch 2225 * @device: Device to check 2226 * 2227 * Device driver is responsible for setting is_switch bit on 2228 * in ib_device structure at init time. 2229 * 2230 * Return: true if the device is IB switch. 2231 */ 2232 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2233 { 2234 return device->is_switch; 2235 } 2236 2237 /** 2238 * rdma_start_port - Return the first valid port number for the device 2239 * specified 2240 * 2241 * @device: Device to be checked 2242 * 2243 * Return start port number 2244 */ 2245 static inline u8 rdma_start_port(const struct ib_device *device) 2246 { 2247 return rdma_cap_ib_switch(device) ? 0 : 1; 2248 } 2249 2250 /** 2251 * rdma_end_port - Return the last valid port number for the device 2252 * specified 2253 * 2254 * @device: Device to be checked 2255 * 2256 * Return last port number 2257 */ 2258 static inline u8 rdma_end_port(const struct ib_device *device) 2259 { 2260 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2261 } 2262 2263 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2264 { 2265 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2266 } 2267 2268 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2269 { 2270 return device->port_immutable[port_num].core_cap_flags & 2271 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2272 } 2273 2274 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2275 { 2276 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2277 } 2278 2279 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2280 { 2281 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2282 } 2283 2284 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2285 { 2286 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2287 } 2288 2289 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2290 { 2291 return rdma_protocol_ib(device, port_num) || 2292 rdma_protocol_roce(device, port_num); 2293 } 2294 2295 /** 2296 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2297 * Management Datagrams. 2298 * @device: Device to check 2299 * @port_num: Port number to check 2300 * 2301 * Management Datagrams (MAD) are a required part of the InfiniBand 2302 * specification and are supported on all InfiniBand devices. A slightly 2303 * extended version are also supported on OPA interfaces. 2304 * 2305 * Return: true if the port supports sending/receiving of MAD packets. 2306 */ 2307 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2308 { 2309 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2310 } 2311 2312 /** 2313 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2314 * Management Datagrams. 2315 * @device: Device to check 2316 * @port_num: Port number to check 2317 * 2318 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2319 * datagrams with their own versions. These OPA MADs share many but not all of 2320 * the characteristics of InfiniBand MADs. 2321 * 2322 * OPA MADs differ in the following ways: 2323 * 2324 * 1) MADs are variable size up to 2K 2325 * IBTA defined MADs remain fixed at 256 bytes 2326 * 2) OPA SMPs must carry valid PKeys 2327 * 3) OPA SMP packets are a different format 2328 * 2329 * Return: true if the port supports OPA MAD packet formats. 2330 */ 2331 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2332 { 2333 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2334 == RDMA_CORE_CAP_OPA_MAD; 2335 } 2336 2337 /** 2338 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2339 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2340 * @device: Device to check 2341 * @port_num: Port number to check 2342 * 2343 * Each InfiniBand node is required to provide a Subnet Management Agent 2344 * that the subnet manager can access. Prior to the fabric being fully 2345 * configured by the subnet manager, the SMA is accessed via a well known 2346 * interface called the Subnet Management Interface (SMI). This interface 2347 * uses directed route packets to communicate with the SM to get around the 2348 * chicken and egg problem of the SM needing to know what's on the fabric 2349 * in order to configure the fabric, and needing to configure the fabric in 2350 * order to send packets to the devices on the fabric. These directed 2351 * route packets do not need the fabric fully configured in order to reach 2352 * their destination. The SMI is the only method allowed to send 2353 * directed route packets on an InfiniBand fabric. 2354 * 2355 * Return: true if the port provides an SMI. 2356 */ 2357 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2358 { 2359 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2360 } 2361 2362 /** 2363 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2364 * Communication Manager. 2365 * @device: Device to check 2366 * @port_num: Port number to check 2367 * 2368 * The InfiniBand Communication Manager is one of many pre-defined General 2369 * Service Agents (GSA) that are accessed via the General Service 2370 * Interface (GSI). It's role is to facilitate establishment of connections 2371 * between nodes as well as other management related tasks for established 2372 * connections. 2373 * 2374 * Return: true if the port supports an IB CM (this does not guarantee that 2375 * a CM is actually running however). 2376 */ 2377 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2378 { 2379 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2380 } 2381 2382 /** 2383 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2384 * Communication Manager. 2385 * @device: Device to check 2386 * @port_num: Port number to check 2387 * 2388 * Similar to above, but specific to iWARP connections which have a different 2389 * managment protocol than InfiniBand. 2390 * 2391 * Return: true if the port supports an iWARP CM (this does not guarantee that 2392 * a CM is actually running however). 2393 */ 2394 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2395 { 2396 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2397 } 2398 2399 /** 2400 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2401 * Subnet Administration. 2402 * @device: Device to check 2403 * @port_num: Port number to check 2404 * 2405 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2406 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2407 * fabrics, devices should resolve routes to other hosts by contacting the 2408 * SA to query the proper route. 2409 * 2410 * Return: true if the port should act as a client to the fabric Subnet 2411 * Administration interface. This does not imply that the SA service is 2412 * running locally. 2413 */ 2414 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2415 { 2416 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2417 } 2418 2419 /** 2420 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2421 * Multicast. 2422 * @device: Device to check 2423 * @port_num: Port number to check 2424 * 2425 * InfiniBand multicast registration is more complex than normal IPv4 or 2426 * IPv6 multicast registration. Each Host Channel Adapter must register 2427 * with the Subnet Manager when it wishes to join a multicast group. It 2428 * should do so only once regardless of how many queue pairs it subscribes 2429 * to this group. And it should leave the group only after all queue pairs 2430 * attached to the group have been detached. 2431 * 2432 * Return: true if the port must undertake the additional adminstrative 2433 * overhead of registering/unregistering with the SM and tracking of the 2434 * total number of queue pairs attached to the multicast group. 2435 */ 2436 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2437 { 2438 return rdma_cap_ib_sa(device, port_num); 2439 } 2440 2441 /** 2442 * rdma_cap_af_ib - Check if the port of device has the capability 2443 * Native Infiniband Address. 2444 * @device: Device to check 2445 * @port_num: Port number to check 2446 * 2447 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2448 * GID. RoCE uses a different mechanism, but still generates a GID via 2449 * a prescribed mechanism and port specific data. 2450 * 2451 * Return: true if the port uses a GID address to identify devices on the 2452 * network. 2453 */ 2454 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2455 { 2456 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2457 } 2458 2459 /** 2460 * rdma_cap_eth_ah - Check if the port of device has the capability 2461 * Ethernet Address Handle. 2462 * @device: Device to check 2463 * @port_num: Port number to check 2464 * 2465 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2466 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2467 * port. Normally, packet headers are generated by the sending host 2468 * adapter, but when sending connectionless datagrams, we must manually 2469 * inject the proper headers for the fabric we are communicating over. 2470 * 2471 * Return: true if we are running as a RoCE port and must force the 2472 * addition of a Global Route Header built from our Ethernet Address 2473 * Handle into our header list for connectionless packets. 2474 */ 2475 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2476 { 2477 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2478 } 2479 2480 /** 2481 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2482 * 2483 * @device: Device 2484 * @port_num: Port number 2485 * 2486 * This MAD size includes the MAD headers and MAD payload. No other headers 2487 * are included. 2488 * 2489 * Return the max MAD size required by the Port. Will return 0 if the port 2490 * does not support MADs 2491 */ 2492 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2493 { 2494 return device->port_immutable[port_num].max_mad_size; 2495 } 2496 2497 /** 2498 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2499 * @device: Device to check 2500 * @port_num: Port number to check 2501 * 2502 * RoCE GID table mechanism manages the various GIDs for a device. 2503 * 2504 * NOTE: if allocating the port's GID table has failed, this call will still 2505 * return true, but any RoCE GID table API will fail. 2506 * 2507 * Return: true if the port uses RoCE GID table mechanism in order to manage 2508 * its GIDs. 2509 */ 2510 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2511 u8 port_num) 2512 { 2513 return rdma_protocol_roce(device, port_num) && 2514 device->add_gid && device->del_gid; 2515 } 2516 2517 /* 2518 * Check if the device supports READ W/ INVALIDATE. 2519 */ 2520 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2521 { 2522 /* 2523 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2524 * has support for it yet. 2525 */ 2526 return rdma_protocol_iwarp(dev, port_num); 2527 } 2528 2529 int ib_query_gid(struct ib_device *device, 2530 u8 port_num, int index, union ib_gid *gid, 2531 struct ib_gid_attr *attr); 2532 2533 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2534 int state); 2535 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2536 struct ifla_vf_info *info); 2537 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2538 struct ifla_vf_stats *stats); 2539 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2540 int type); 2541 2542 int ib_query_pkey(struct ib_device *device, 2543 u8 port_num, u16 index, u16 *pkey); 2544 2545 int ib_modify_device(struct ib_device *device, 2546 int device_modify_mask, 2547 struct ib_device_modify *device_modify); 2548 2549 int ib_modify_port(struct ib_device *device, 2550 u8 port_num, int port_modify_mask, 2551 struct ib_port_modify *port_modify); 2552 2553 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2554 enum ib_gid_type gid_type, struct net_device *ndev, 2555 u8 *port_num, u16 *index); 2556 2557 int ib_find_pkey(struct ib_device *device, 2558 u8 port_num, u16 pkey, u16 *index); 2559 2560 enum ib_pd_flags { 2561 /* 2562 * Create a memory registration for all memory in the system and place 2563 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2564 * ULPs to avoid the overhead of dynamic MRs. 2565 * 2566 * This flag is generally considered unsafe and must only be used in 2567 * extremly trusted environments. Every use of it will log a warning 2568 * in the kernel log. 2569 */ 2570 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2571 }; 2572 2573 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2574 const char *caller); 2575 #define ib_alloc_pd(device, flags) \ 2576 __ib_alloc_pd((device), (flags), __func__) 2577 void ib_dealloc_pd(struct ib_pd *pd); 2578 2579 /** 2580 * ib_create_ah - Creates an address handle for the given address vector. 2581 * @pd: The protection domain associated with the address handle. 2582 * @ah_attr: The attributes of the address vector. 2583 * 2584 * The address handle is used to reference a local or global destination 2585 * in all UD QP post sends. 2586 */ 2587 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2588 2589 /** 2590 * ib_init_ah_from_wc - Initializes address handle attributes from a 2591 * work completion. 2592 * @device: Device on which the received message arrived. 2593 * @port_num: Port on which the received message arrived. 2594 * @wc: Work completion associated with the received message. 2595 * @grh: References the received global route header. This parameter is 2596 * ignored unless the work completion indicates that the GRH is valid. 2597 * @ah_attr: Returned attributes that can be used when creating an address 2598 * handle for replying to the message. 2599 */ 2600 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2601 const struct ib_wc *wc, const struct ib_grh *grh, 2602 struct ib_ah_attr *ah_attr); 2603 2604 /** 2605 * ib_create_ah_from_wc - Creates an address handle associated with the 2606 * sender of the specified work completion. 2607 * @pd: The protection domain associated with the address handle. 2608 * @wc: Work completion information associated with a received message. 2609 * @grh: References the received global route header. This parameter is 2610 * ignored unless the work completion indicates that the GRH is valid. 2611 * @port_num: The outbound port number to associate with the address. 2612 * 2613 * The address handle is used to reference a local or global destination 2614 * in all UD QP post sends. 2615 */ 2616 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2617 const struct ib_grh *grh, u8 port_num); 2618 2619 /** 2620 * ib_modify_ah - Modifies the address vector associated with an address 2621 * handle. 2622 * @ah: The address handle to modify. 2623 * @ah_attr: The new address vector attributes to associate with the 2624 * address handle. 2625 */ 2626 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2627 2628 /** 2629 * ib_query_ah - Queries the address vector associated with an address 2630 * handle. 2631 * @ah: The address handle to query. 2632 * @ah_attr: The address vector attributes associated with the address 2633 * handle. 2634 */ 2635 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2636 2637 /** 2638 * ib_destroy_ah - Destroys an address handle. 2639 * @ah: The address handle to destroy. 2640 */ 2641 int ib_destroy_ah(struct ib_ah *ah); 2642 2643 /** 2644 * ib_create_srq - Creates a SRQ associated with the specified protection 2645 * domain. 2646 * @pd: The protection domain associated with the SRQ. 2647 * @srq_init_attr: A list of initial attributes required to create the 2648 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2649 * the actual capabilities of the created SRQ. 2650 * 2651 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2652 * requested size of the SRQ, and set to the actual values allocated 2653 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2654 * will always be at least as large as the requested values. 2655 */ 2656 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2657 struct ib_srq_init_attr *srq_init_attr); 2658 2659 /** 2660 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2661 * @srq: The SRQ to modify. 2662 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2663 * the current values of selected SRQ attributes are returned. 2664 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2665 * are being modified. 2666 * 2667 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2668 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2669 * the number of receives queued drops below the limit. 2670 */ 2671 int ib_modify_srq(struct ib_srq *srq, 2672 struct ib_srq_attr *srq_attr, 2673 enum ib_srq_attr_mask srq_attr_mask); 2674 2675 /** 2676 * ib_query_srq - Returns the attribute list and current values for the 2677 * specified SRQ. 2678 * @srq: The SRQ to query. 2679 * @srq_attr: The attributes of the specified SRQ. 2680 */ 2681 int ib_query_srq(struct ib_srq *srq, 2682 struct ib_srq_attr *srq_attr); 2683 2684 /** 2685 * ib_destroy_srq - Destroys the specified SRQ. 2686 * @srq: The SRQ to destroy. 2687 */ 2688 int ib_destroy_srq(struct ib_srq *srq); 2689 2690 /** 2691 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2692 * @srq: The SRQ to post the work request on. 2693 * @recv_wr: A list of work requests to post on the receive queue. 2694 * @bad_recv_wr: On an immediate failure, this parameter will reference 2695 * the work request that failed to be posted on the QP. 2696 */ 2697 static inline int ib_post_srq_recv(struct ib_srq *srq, 2698 struct ib_recv_wr *recv_wr, 2699 struct ib_recv_wr **bad_recv_wr) 2700 { 2701 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2702 } 2703 2704 /** 2705 * ib_create_qp - Creates a QP associated with the specified protection 2706 * domain. 2707 * @pd: The protection domain associated with the QP. 2708 * @qp_init_attr: A list of initial attributes required to create the 2709 * QP. If QP creation succeeds, then the attributes are updated to 2710 * the actual capabilities of the created QP. 2711 */ 2712 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2713 struct ib_qp_init_attr *qp_init_attr); 2714 2715 /** 2716 * ib_modify_qp - Modifies the attributes for the specified QP and then 2717 * transitions the QP to the given state. 2718 * @qp: The QP to modify. 2719 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2720 * the current values of selected QP attributes are returned. 2721 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2722 * are being modified. 2723 */ 2724 int ib_modify_qp(struct ib_qp *qp, 2725 struct ib_qp_attr *qp_attr, 2726 int qp_attr_mask); 2727 2728 /** 2729 * ib_query_qp - Returns the attribute list and current values for the 2730 * specified QP. 2731 * @qp: The QP to query. 2732 * @qp_attr: The attributes of the specified QP. 2733 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2734 * @qp_init_attr: Additional attributes of the selected QP. 2735 * 2736 * The qp_attr_mask may be used to limit the query to gathering only the 2737 * selected attributes. 2738 */ 2739 int ib_query_qp(struct ib_qp *qp, 2740 struct ib_qp_attr *qp_attr, 2741 int qp_attr_mask, 2742 struct ib_qp_init_attr *qp_init_attr); 2743 2744 /** 2745 * ib_destroy_qp - Destroys the specified QP. 2746 * @qp: The QP to destroy. 2747 */ 2748 int ib_destroy_qp(struct ib_qp *qp); 2749 2750 /** 2751 * ib_open_qp - Obtain a reference to an existing sharable QP. 2752 * @xrcd - XRC domain 2753 * @qp_open_attr: Attributes identifying the QP to open. 2754 * 2755 * Returns a reference to a sharable QP. 2756 */ 2757 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2758 struct ib_qp_open_attr *qp_open_attr); 2759 2760 /** 2761 * ib_close_qp - Release an external reference to a QP. 2762 * @qp: The QP handle to release 2763 * 2764 * The opened QP handle is released by the caller. The underlying 2765 * shared QP is not destroyed until all internal references are released. 2766 */ 2767 int ib_close_qp(struct ib_qp *qp); 2768 2769 /** 2770 * ib_post_send - Posts a list of work requests to the send queue of 2771 * the specified QP. 2772 * @qp: The QP to post the work request on. 2773 * @send_wr: A list of work requests to post on the send queue. 2774 * @bad_send_wr: On an immediate failure, this parameter will reference 2775 * the work request that failed to be posted on the QP. 2776 * 2777 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2778 * error is returned, the QP state shall not be affected, 2779 * ib_post_send() will return an immediate error after queueing any 2780 * earlier work requests in the list. 2781 */ 2782 static inline int ib_post_send(struct ib_qp *qp, 2783 struct ib_send_wr *send_wr, 2784 struct ib_send_wr **bad_send_wr) 2785 { 2786 return qp->device->post_send(qp, send_wr, bad_send_wr); 2787 } 2788 2789 /** 2790 * ib_post_recv - Posts a list of work requests to the receive queue of 2791 * the specified QP. 2792 * @qp: The QP to post the work request on. 2793 * @recv_wr: A list of work requests to post on the receive queue. 2794 * @bad_recv_wr: On an immediate failure, this parameter will reference 2795 * the work request that failed to be posted on the QP. 2796 */ 2797 static inline int ib_post_recv(struct ib_qp *qp, 2798 struct ib_recv_wr *recv_wr, 2799 struct ib_recv_wr **bad_recv_wr) 2800 { 2801 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2802 } 2803 2804 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2805 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2806 void ib_free_cq(struct ib_cq *cq); 2807 2808 /** 2809 * ib_create_cq - Creates a CQ on the specified device. 2810 * @device: The device on which to create the CQ. 2811 * @comp_handler: A user-specified callback that is invoked when a 2812 * completion event occurs on the CQ. 2813 * @event_handler: A user-specified callback that is invoked when an 2814 * asynchronous event not associated with a completion occurs on the CQ. 2815 * @cq_context: Context associated with the CQ returned to the user via 2816 * the associated completion and event handlers. 2817 * @cq_attr: The attributes the CQ should be created upon. 2818 * 2819 * Users can examine the cq structure to determine the actual CQ size. 2820 */ 2821 struct ib_cq *ib_create_cq(struct ib_device *device, 2822 ib_comp_handler comp_handler, 2823 void (*event_handler)(struct ib_event *, void *), 2824 void *cq_context, 2825 const struct ib_cq_init_attr *cq_attr); 2826 2827 /** 2828 * ib_resize_cq - Modifies the capacity of the CQ. 2829 * @cq: The CQ to resize. 2830 * @cqe: The minimum size of the CQ. 2831 * 2832 * Users can examine the cq structure to determine the actual CQ size. 2833 */ 2834 int ib_resize_cq(struct ib_cq *cq, int cqe); 2835 2836 /** 2837 * ib_modify_cq - Modifies moderation params of the CQ 2838 * @cq: The CQ to modify. 2839 * @cq_count: number of CQEs that will trigger an event 2840 * @cq_period: max period of time in usec before triggering an event 2841 * 2842 */ 2843 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2844 2845 /** 2846 * ib_destroy_cq - Destroys the specified CQ. 2847 * @cq: The CQ to destroy. 2848 */ 2849 int ib_destroy_cq(struct ib_cq *cq); 2850 2851 /** 2852 * ib_poll_cq - poll a CQ for completion(s) 2853 * @cq:the CQ being polled 2854 * @num_entries:maximum number of completions to return 2855 * @wc:array of at least @num_entries &struct ib_wc where completions 2856 * will be returned 2857 * 2858 * Poll a CQ for (possibly multiple) completions. If the return value 2859 * is < 0, an error occurred. If the return value is >= 0, it is the 2860 * number of completions returned. If the return value is 2861 * non-negative and < num_entries, then the CQ was emptied. 2862 */ 2863 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2864 struct ib_wc *wc) 2865 { 2866 return cq->device->poll_cq(cq, num_entries, wc); 2867 } 2868 2869 /** 2870 * ib_peek_cq - Returns the number of unreaped completions currently 2871 * on the specified CQ. 2872 * @cq: The CQ to peek. 2873 * @wc_cnt: A minimum number of unreaped completions to check for. 2874 * 2875 * If the number of unreaped completions is greater than or equal to wc_cnt, 2876 * this function returns wc_cnt, otherwise, it returns the actual number of 2877 * unreaped completions. 2878 */ 2879 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2880 2881 /** 2882 * ib_req_notify_cq - Request completion notification on a CQ. 2883 * @cq: The CQ to generate an event for. 2884 * @flags: 2885 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2886 * to request an event on the next solicited event or next work 2887 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2888 * may also be |ed in to request a hint about missed events, as 2889 * described below. 2890 * 2891 * Return Value: 2892 * < 0 means an error occurred while requesting notification 2893 * == 0 means notification was requested successfully, and if 2894 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2895 * were missed and it is safe to wait for another event. In 2896 * this case is it guaranteed that any work completions added 2897 * to the CQ since the last CQ poll will trigger a completion 2898 * notification event. 2899 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2900 * in. It means that the consumer must poll the CQ again to 2901 * make sure it is empty to avoid missing an event because of a 2902 * race between requesting notification and an entry being 2903 * added to the CQ. This return value means it is possible 2904 * (but not guaranteed) that a work completion has been added 2905 * to the CQ since the last poll without triggering a 2906 * completion notification event. 2907 */ 2908 static inline int ib_req_notify_cq(struct ib_cq *cq, 2909 enum ib_cq_notify_flags flags) 2910 { 2911 return cq->device->req_notify_cq(cq, flags); 2912 } 2913 2914 /** 2915 * ib_req_ncomp_notif - Request completion notification when there are 2916 * at least the specified number of unreaped completions on the CQ. 2917 * @cq: The CQ to generate an event for. 2918 * @wc_cnt: The number of unreaped completions that should be on the 2919 * CQ before an event is generated. 2920 */ 2921 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2922 { 2923 return cq->device->req_ncomp_notif ? 2924 cq->device->req_ncomp_notif(cq, wc_cnt) : 2925 -ENOSYS; 2926 } 2927 2928 /** 2929 * ib_dma_mapping_error - check a DMA addr for error 2930 * @dev: The device for which the dma_addr was created 2931 * @dma_addr: The DMA address to check 2932 */ 2933 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2934 { 2935 if (dev->dma_ops) 2936 return dev->dma_ops->mapping_error(dev, dma_addr); 2937 return dma_mapping_error(dev->dma_device, dma_addr); 2938 } 2939 2940 /** 2941 * ib_dma_map_single - Map a kernel virtual address to DMA address 2942 * @dev: The device for which the dma_addr is to be created 2943 * @cpu_addr: The kernel virtual address 2944 * @size: The size of the region in bytes 2945 * @direction: The direction of the DMA 2946 */ 2947 static inline u64 ib_dma_map_single(struct ib_device *dev, 2948 void *cpu_addr, size_t size, 2949 enum dma_data_direction direction) 2950 { 2951 if (dev->dma_ops) 2952 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2953 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2954 } 2955 2956 /** 2957 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2958 * @dev: The device for which the DMA address was created 2959 * @addr: The DMA address 2960 * @size: The size of the region in bytes 2961 * @direction: The direction of the DMA 2962 */ 2963 static inline void ib_dma_unmap_single(struct ib_device *dev, 2964 u64 addr, size_t size, 2965 enum dma_data_direction direction) 2966 { 2967 if (dev->dma_ops) 2968 dev->dma_ops->unmap_single(dev, addr, size, direction); 2969 else 2970 dma_unmap_single(dev->dma_device, addr, size, direction); 2971 } 2972 2973 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2974 void *cpu_addr, size_t size, 2975 enum dma_data_direction direction, 2976 struct dma_attrs *dma_attrs) 2977 { 2978 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2979 direction, dma_attrs); 2980 } 2981 2982 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2983 u64 addr, size_t size, 2984 enum dma_data_direction direction, 2985 struct dma_attrs *dma_attrs) 2986 { 2987 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2988 direction, dma_attrs); 2989 } 2990 2991 /** 2992 * ib_dma_map_page - Map a physical page to DMA address 2993 * @dev: The device for which the dma_addr is to be created 2994 * @page: The page to be mapped 2995 * @offset: The offset within the page 2996 * @size: The size of the region in bytes 2997 * @direction: The direction of the DMA 2998 */ 2999 static inline u64 ib_dma_map_page(struct ib_device *dev, 3000 struct page *page, 3001 unsigned long offset, 3002 size_t size, 3003 enum dma_data_direction direction) 3004 { 3005 if (dev->dma_ops) 3006 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3007 return dma_map_page(dev->dma_device, page, offset, size, direction); 3008 } 3009 3010 /** 3011 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3012 * @dev: The device for which the DMA address was created 3013 * @addr: The DMA address 3014 * @size: The size of the region in bytes 3015 * @direction: The direction of the DMA 3016 */ 3017 static inline void ib_dma_unmap_page(struct ib_device *dev, 3018 u64 addr, size_t size, 3019 enum dma_data_direction direction) 3020 { 3021 if (dev->dma_ops) 3022 dev->dma_ops->unmap_page(dev, addr, size, direction); 3023 else 3024 dma_unmap_page(dev->dma_device, addr, size, direction); 3025 } 3026 3027 /** 3028 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3029 * @dev: The device for which the DMA addresses are to be created 3030 * @sg: The array of scatter/gather entries 3031 * @nents: The number of scatter/gather entries 3032 * @direction: The direction of the DMA 3033 */ 3034 static inline int ib_dma_map_sg(struct ib_device *dev, 3035 struct scatterlist *sg, int nents, 3036 enum dma_data_direction direction) 3037 { 3038 if (dev->dma_ops) 3039 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3040 return dma_map_sg(dev->dma_device, sg, nents, direction); 3041 } 3042 3043 /** 3044 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3045 * @dev: The device for which the DMA addresses were created 3046 * @sg: The array of scatter/gather entries 3047 * @nents: The number of scatter/gather entries 3048 * @direction: The direction of the DMA 3049 */ 3050 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3051 struct scatterlist *sg, int nents, 3052 enum dma_data_direction direction) 3053 { 3054 if (dev->dma_ops) 3055 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3056 else 3057 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3058 } 3059 3060 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3061 struct scatterlist *sg, int nents, 3062 enum dma_data_direction direction, 3063 struct dma_attrs *dma_attrs) 3064 { 3065 if (dev->dma_ops) 3066 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3067 dma_attrs); 3068 else 3069 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3070 dma_attrs); 3071 } 3072 3073 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3074 struct scatterlist *sg, int nents, 3075 enum dma_data_direction direction, 3076 struct dma_attrs *dma_attrs) 3077 { 3078 if (dev->dma_ops) 3079 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3080 dma_attrs); 3081 else 3082 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3083 dma_attrs); 3084 } 3085 /** 3086 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3087 * @dev: The device for which the DMA addresses were created 3088 * @sg: The scatter/gather entry 3089 * 3090 * Note: this function is obsolete. To do: change all occurrences of 3091 * ib_sg_dma_address() into sg_dma_address(). 3092 */ 3093 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3094 struct scatterlist *sg) 3095 { 3096 return sg_dma_address(sg); 3097 } 3098 3099 /** 3100 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3101 * @dev: The device for which the DMA addresses were created 3102 * @sg: The scatter/gather entry 3103 * 3104 * Note: this function is obsolete. To do: change all occurrences of 3105 * ib_sg_dma_len() into sg_dma_len(). 3106 */ 3107 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3108 struct scatterlist *sg) 3109 { 3110 return sg_dma_len(sg); 3111 } 3112 3113 /** 3114 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3115 * @dev: The device for which the DMA address was created 3116 * @addr: The DMA address 3117 * @size: The size of the region in bytes 3118 * @dir: The direction of the DMA 3119 */ 3120 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3121 u64 addr, 3122 size_t size, 3123 enum dma_data_direction dir) 3124 { 3125 if (dev->dma_ops) 3126 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3127 else 3128 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3129 } 3130 3131 /** 3132 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3133 * @dev: The device for which the DMA address was created 3134 * @addr: The DMA address 3135 * @size: The size of the region in bytes 3136 * @dir: The direction of the DMA 3137 */ 3138 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3139 u64 addr, 3140 size_t size, 3141 enum dma_data_direction dir) 3142 { 3143 if (dev->dma_ops) 3144 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3145 else 3146 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3147 } 3148 3149 /** 3150 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3151 * @dev: The device for which the DMA address is requested 3152 * @size: The size of the region to allocate in bytes 3153 * @dma_handle: A pointer for returning the DMA address of the region 3154 * @flag: memory allocator flags 3155 */ 3156 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3157 size_t size, 3158 u64 *dma_handle, 3159 gfp_t flag) 3160 { 3161 if (dev->dma_ops) 3162 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3163 else { 3164 dma_addr_t handle; 3165 void *ret; 3166 3167 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3168 *dma_handle = handle; 3169 return ret; 3170 } 3171 } 3172 3173 /** 3174 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3175 * @dev: The device for which the DMA addresses were allocated 3176 * @size: The size of the region 3177 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3178 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3179 */ 3180 static inline void ib_dma_free_coherent(struct ib_device *dev, 3181 size_t size, void *cpu_addr, 3182 u64 dma_handle) 3183 { 3184 if (dev->dma_ops) 3185 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3186 else 3187 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3188 } 3189 3190 /** 3191 * ib_dereg_mr - Deregisters a memory region and removes it from the 3192 * HCA translation table. 3193 * @mr: The memory region to deregister. 3194 * 3195 * This function can fail, if the memory region has memory windows bound to it. 3196 */ 3197 int ib_dereg_mr(struct ib_mr *mr); 3198 3199 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3200 enum ib_mr_type mr_type, 3201 u32 max_num_sg); 3202 3203 /** 3204 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3205 * R_Key and L_Key. 3206 * @mr - struct ib_mr pointer to be updated. 3207 * @newkey - new key to be used. 3208 */ 3209 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3210 { 3211 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3212 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3213 } 3214 3215 /** 3216 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3217 * for calculating a new rkey for type 2 memory windows. 3218 * @rkey - the rkey to increment. 3219 */ 3220 static inline u32 ib_inc_rkey(u32 rkey) 3221 { 3222 const u32 mask = 0x000000ff; 3223 return ((rkey + 1) & mask) | (rkey & ~mask); 3224 } 3225 3226 /** 3227 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3228 * @pd: The protection domain associated with the unmapped region. 3229 * @mr_access_flags: Specifies the memory access rights. 3230 * @fmr_attr: Attributes of the unmapped region. 3231 * 3232 * A fast memory region must be mapped before it can be used as part of 3233 * a work request. 3234 */ 3235 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3236 int mr_access_flags, 3237 struct ib_fmr_attr *fmr_attr); 3238 3239 /** 3240 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3241 * @fmr: The fast memory region to associate with the pages. 3242 * @page_list: An array of physical pages to map to the fast memory region. 3243 * @list_len: The number of pages in page_list. 3244 * @iova: The I/O virtual address to use with the mapped region. 3245 */ 3246 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3247 u64 *page_list, int list_len, 3248 u64 iova) 3249 { 3250 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3251 } 3252 3253 /** 3254 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3255 * @fmr_list: A linked list of fast memory regions to unmap. 3256 */ 3257 int ib_unmap_fmr(struct list_head *fmr_list); 3258 3259 /** 3260 * ib_dealloc_fmr - Deallocates a fast memory region. 3261 * @fmr: The fast memory region to deallocate. 3262 */ 3263 int ib_dealloc_fmr(struct ib_fmr *fmr); 3264 3265 /** 3266 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3267 * @qp: QP to attach to the multicast group. The QP must be type 3268 * IB_QPT_UD. 3269 * @gid: Multicast group GID. 3270 * @lid: Multicast group LID in host byte order. 3271 * 3272 * In order to send and receive multicast packets, subnet 3273 * administration must have created the multicast group and configured 3274 * the fabric appropriately. The port associated with the specified 3275 * QP must also be a member of the multicast group. 3276 */ 3277 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3278 3279 /** 3280 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3281 * @qp: QP to detach from the multicast group. 3282 * @gid: Multicast group GID. 3283 * @lid: Multicast group LID in host byte order. 3284 */ 3285 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3286 3287 /** 3288 * ib_alloc_xrcd - Allocates an XRC domain. 3289 * @device: The device on which to allocate the XRC domain. 3290 */ 3291 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3292 3293 /** 3294 * ib_dealloc_xrcd - Deallocates an XRC domain. 3295 * @xrcd: The XRC domain to deallocate. 3296 */ 3297 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3298 3299 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3300 struct ib_flow_attr *flow_attr, int domain); 3301 int ib_destroy_flow(struct ib_flow *flow_id); 3302 3303 static inline int ib_check_mr_access(int flags) 3304 { 3305 /* 3306 * Local write permission is required if remote write or 3307 * remote atomic permission is also requested. 3308 */ 3309 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3310 !(flags & IB_ACCESS_LOCAL_WRITE)) 3311 return -EINVAL; 3312 3313 return 0; 3314 } 3315 3316 /** 3317 * ib_check_mr_status: lightweight check of MR status. 3318 * This routine may provide status checks on a selected 3319 * ib_mr. first use is for signature status check. 3320 * 3321 * @mr: A memory region. 3322 * @check_mask: Bitmask of which checks to perform from 3323 * ib_mr_status_check enumeration. 3324 * @mr_status: The container of relevant status checks. 3325 * failed checks will be indicated in the status bitmask 3326 * and the relevant info shall be in the error item. 3327 */ 3328 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3329 struct ib_mr_status *mr_status); 3330 3331 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3332 u16 pkey, const union ib_gid *gid, 3333 const struct sockaddr *addr); 3334 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3335 struct ib_wq_init_attr *init_attr); 3336 int ib_destroy_wq(struct ib_wq *wq); 3337 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3338 u32 wq_attr_mask); 3339 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3340 struct ib_rwq_ind_table_init_attr* 3341 wq_ind_table_init_attr); 3342 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3343 3344 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3345 unsigned int *sg_offset, unsigned int page_size); 3346 3347 static inline int 3348 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3349 unsigned int *sg_offset, unsigned int page_size) 3350 { 3351 int n; 3352 3353 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3354 mr->iova = 0; 3355 3356 return n; 3357 } 3358 3359 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3360 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3361 3362 void ib_drain_rq(struct ib_qp *qp); 3363 void ib_drain_sq(struct ib_qp *qp); 3364 void ib_drain_qp(struct ib_qp *qp); 3365 3366 int ib_resolve_eth_dmac(struct ib_device *device, 3367 struct ib_ah_attr *ah_attr); 3368 #endif /* IB_VERBS_H */ 3369