1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <asm/uaccess.h> 53 #include <linux/rbtree.h> 54 #include <linux/mutex.h> 55 56 extern struct workqueue_struct *ib_wq; 57 58 union ib_gid { 59 u8 raw[16]; 60 struct { 61 __be64 subnet_prefix; 62 __be64 interface_id; 63 } global; 64 }; 65 66 enum rdma_node_type { 67 /* IB values map to NodeInfo:NodeType. */ 68 RDMA_NODE_IB_CA = 1, 69 RDMA_NODE_IB_SWITCH, 70 RDMA_NODE_IB_ROUTER, 71 RDMA_NODE_RNIC 72 }; 73 74 enum rdma_transport_type { 75 RDMA_TRANSPORT_IB, 76 RDMA_TRANSPORT_IWARP 77 }; 78 79 enum rdma_transport_type 80 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 81 82 enum rdma_link_layer { 83 IB_LINK_LAYER_UNSPECIFIED, 84 IB_LINK_LAYER_INFINIBAND, 85 IB_LINK_LAYER_ETHERNET, 86 }; 87 88 enum ib_device_cap_flags { 89 IB_DEVICE_RESIZE_MAX_WR = 1, 90 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 91 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 92 IB_DEVICE_RAW_MULTI = (1<<3), 93 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 94 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 95 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 96 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 97 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 98 IB_DEVICE_INIT_TYPE = (1<<9), 99 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 100 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 101 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 102 IB_DEVICE_SRQ_RESIZE = (1<<13), 103 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 104 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 105 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 106 IB_DEVICE_MEM_WINDOW = (1<<17), 107 /* 108 * Devices should set IB_DEVICE_UD_IP_SUM if they support 109 * insertion of UDP and TCP checksum on outgoing UD IPoIB 110 * messages and can verify the validity of checksum for 111 * incoming messages. Setting this flag implies that the 112 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 113 */ 114 IB_DEVICE_UD_IP_CSUM = (1<<18), 115 IB_DEVICE_UD_TSO = (1<<19), 116 IB_DEVICE_XRC = (1<<20), 117 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 118 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 119 IB_DEVICE_MR_ALLOCATE = (1<<23), 120 IB_DEVICE_SHARED_MR = (1<<24), 121 IB_DEVICE_QPG = (1<<25), 122 IB_DEVICE_UD_RSS = (1<<26), 123 IB_DEVICE_UD_TSS = (1<<27) 124 }; 125 126 enum ib_atomic_cap { 127 IB_ATOMIC_NONE, 128 IB_ATOMIC_HCA, 129 IB_ATOMIC_GLOB 130 }; 131 132 struct ib_device_attr { 133 u64 fw_ver; 134 __be64 sys_image_guid; 135 u64 max_mr_size; 136 u64 page_size_cap; 137 u32 vendor_id; 138 u32 vendor_part_id; 139 u32 hw_ver; 140 int max_qp; 141 int max_qp_wr; 142 int device_cap_flags; 143 int max_sge; 144 int max_sge_rd; 145 int max_cq; 146 int max_cqe; 147 int max_mr; 148 int max_pd; 149 int max_qp_rd_atom; 150 int max_ee_rd_atom; 151 int max_res_rd_atom; 152 int max_qp_init_rd_atom; 153 int max_ee_init_rd_atom; 154 enum ib_atomic_cap atomic_cap; 155 enum ib_atomic_cap masked_atomic_cap; 156 int max_ee; 157 int max_rdd; 158 int max_mw; 159 int max_raw_ipv6_qp; 160 int max_raw_ethy_qp; 161 int max_mcast_grp; 162 int max_mcast_qp_attach; 163 int max_total_mcast_qp_attach; 164 int max_ah; 165 int max_fmr; 166 int max_map_per_fmr; 167 int max_srq; 168 int max_srq_wr; 169 int max_srq_sge; 170 unsigned int max_fast_reg_page_list_len; 171 int max_rss_tbl_sz; 172 u16 max_pkeys; 173 u8 local_ca_ack_delay; 174 }; 175 176 enum ib_mtu { 177 IB_MTU_256 = 1, 178 IB_MTU_512 = 2, 179 IB_MTU_1024 = 3, 180 IB_MTU_2048 = 4, 181 IB_MTU_4096 = 5 182 }; 183 184 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 185 { 186 switch (mtu) { 187 case IB_MTU_256: return 256; 188 case IB_MTU_512: return 512; 189 case IB_MTU_1024: return 1024; 190 case IB_MTU_2048: return 2048; 191 case IB_MTU_4096: return 4096; 192 default: return -1; 193 } 194 } 195 196 enum ib_port_state { 197 IB_PORT_NOP = 0, 198 IB_PORT_DOWN = 1, 199 IB_PORT_INIT = 2, 200 IB_PORT_ARMED = 3, 201 IB_PORT_ACTIVE = 4, 202 IB_PORT_ACTIVE_DEFER = 5 203 }; 204 205 enum ib_port_cap_flags { 206 IB_PORT_SM = 1 << 1, 207 IB_PORT_NOTICE_SUP = 1 << 2, 208 IB_PORT_TRAP_SUP = 1 << 3, 209 IB_PORT_OPT_IPD_SUP = 1 << 4, 210 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 211 IB_PORT_SL_MAP_SUP = 1 << 6, 212 IB_PORT_MKEY_NVRAM = 1 << 7, 213 IB_PORT_PKEY_NVRAM = 1 << 8, 214 IB_PORT_LED_INFO_SUP = 1 << 9, 215 IB_PORT_SM_DISABLED = 1 << 10, 216 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 217 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 218 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 219 IB_PORT_CM_SUP = 1 << 16, 220 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 221 IB_PORT_REINIT_SUP = 1 << 18, 222 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 223 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 224 IB_PORT_DR_NOTICE_SUP = 1 << 21, 225 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 226 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 227 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 228 IB_PORT_CLIENT_REG_SUP = 1 << 25 229 }; 230 231 enum ib_port_width { 232 IB_WIDTH_1X = 1, 233 IB_WIDTH_4X = 2, 234 IB_WIDTH_8X = 4, 235 IB_WIDTH_12X = 8 236 }; 237 238 static inline int ib_width_enum_to_int(enum ib_port_width width) 239 { 240 switch (width) { 241 case IB_WIDTH_1X: return 1; 242 case IB_WIDTH_4X: return 4; 243 case IB_WIDTH_8X: return 8; 244 case IB_WIDTH_12X: return 12; 245 default: return -1; 246 } 247 } 248 249 enum ib_port_speed { 250 IB_SPEED_SDR = 1, 251 IB_SPEED_DDR = 2, 252 IB_SPEED_QDR = 4, 253 IB_SPEED_FDR10 = 8, 254 IB_SPEED_FDR = 16, 255 IB_SPEED_EDR = 32 256 }; 257 258 struct ib_protocol_stats { 259 /* TBD... */ 260 }; 261 262 struct iw_protocol_stats { 263 u64 ipInReceives; 264 u64 ipInHdrErrors; 265 u64 ipInTooBigErrors; 266 u64 ipInNoRoutes; 267 u64 ipInAddrErrors; 268 u64 ipInUnknownProtos; 269 u64 ipInTruncatedPkts; 270 u64 ipInDiscards; 271 u64 ipInDelivers; 272 u64 ipOutForwDatagrams; 273 u64 ipOutRequests; 274 u64 ipOutDiscards; 275 u64 ipOutNoRoutes; 276 u64 ipReasmTimeout; 277 u64 ipReasmReqds; 278 u64 ipReasmOKs; 279 u64 ipReasmFails; 280 u64 ipFragOKs; 281 u64 ipFragFails; 282 u64 ipFragCreates; 283 u64 ipInMcastPkts; 284 u64 ipOutMcastPkts; 285 u64 ipInBcastPkts; 286 u64 ipOutBcastPkts; 287 288 u64 tcpRtoAlgorithm; 289 u64 tcpRtoMin; 290 u64 tcpRtoMax; 291 u64 tcpMaxConn; 292 u64 tcpActiveOpens; 293 u64 tcpPassiveOpens; 294 u64 tcpAttemptFails; 295 u64 tcpEstabResets; 296 u64 tcpCurrEstab; 297 u64 tcpInSegs; 298 u64 tcpOutSegs; 299 u64 tcpRetransSegs; 300 u64 tcpInErrs; 301 u64 tcpOutRsts; 302 }; 303 304 union rdma_protocol_stats { 305 struct ib_protocol_stats ib; 306 struct iw_protocol_stats iw; 307 }; 308 309 struct ib_port_attr { 310 enum ib_port_state state; 311 enum ib_mtu max_mtu; 312 enum ib_mtu active_mtu; 313 int gid_tbl_len; 314 u32 port_cap_flags; 315 u32 max_msg_sz; 316 u32 bad_pkey_cntr; 317 u32 qkey_viol_cntr; 318 u16 pkey_tbl_len; 319 u16 lid; 320 u16 sm_lid; 321 u8 lmc; 322 u8 max_vl_num; 323 u8 sm_sl; 324 u8 subnet_timeout; 325 u8 init_type_reply; 326 u8 active_width; 327 u8 active_speed; 328 u8 phys_state; 329 enum rdma_link_layer link_layer; 330 }; 331 332 enum ib_device_modify_flags { 333 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 334 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 335 }; 336 337 struct ib_device_modify { 338 u64 sys_image_guid; 339 char node_desc[64]; 340 }; 341 342 enum ib_port_modify_flags { 343 IB_PORT_SHUTDOWN = 1, 344 IB_PORT_INIT_TYPE = (1<<2), 345 IB_PORT_RESET_QKEY_CNTR = (1<<3) 346 }; 347 348 struct ib_port_modify { 349 u32 set_port_cap_mask; 350 u32 clr_port_cap_mask; 351 u8 init_type; 352 }; 353 354 enum ib_event_type { 355 IB_EVENT_CQ_ERR, 356 IB_EVENT_QP_FATAL, 357 IB_EVENT_QP_REQ_ERR, 358 IB_EVENT_QP_ACCESS_ERR, 359 IB_EVENT_COMM_EST, 360 IB_EVENT_SQ_DRAINED, 361 IB_EVENT_PATH_MIG, 362 IB_EVENT_PATH_MIG_ERR, 363 IB_EVENT_DEVICE_FATAL, 364 IB_EVENT_PORT_ACTIVE, 365 IB_EVENT_PORT_ERR, 366 IB_EVENT_LID_CHANGE, 367 IB_EVENT_PKEY_CHANGE, 368 IB_EVENT_SM_CHANGE, 369 IB_EVENT_SRQ_ERR, 370 IB_EVENT_SRQ_LIMIT_REACHED, 371 IB_EVENT_QP_LAST_WQE_REACHED, 372 IB_EVENT_CLIENT_REREGISTER, 373 IB_EVENT_GID_CHANGE, 374 }; 375 376 enum ib_event_flags { 377 IB_XRC_QP_EVENT_FLAG = 0x80000000, 378 }; 379 380 struct ib_event { 381 struct ib_device *device; 382 union { 383 struct ib_cq *cq; 384 struct ib_qp *qp; 385 struct ib_srq *srq; 386 u8 port_num; 387 u32 xrc_qp_num; 388 } element; 389 enum ib_event_type event; 390 }; 391 392 struct ib_event_handler { 393 struct ib_device *device; 394 void (*handler)(struct ib_event_handler *, struct ib_event *); 395 struct list_head list; 396 }; 397 398 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 399 do { \ 400 (_ptr)->device = _device; \ 401 (_ptr)->handler = _handler; \ 402 INIT_LIST_HEAD(&(_ptr)->list); \ 403 } while (0) 404 405 struct ib_global_route { 406 union ib_gid dgid; 407 u32 flow_label; 408 u8 sgid_index; 409 u8 hop_limit; 410 u8 traffic_class; 411 }; 412 413 struct ib_grh { 414 __be32 version_tclass_flow; 415 __be16 paylen; 416 u8 next_hdr; 417 u8 hop_limit; 418 union ib_gid sgid; 419 union ib_gid dgid; 420 }; 421 422 enum { 423 IB_MULTICAST_QPN = 0xffffff 424 }; 425 426 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 427 428 enum ib_ah_flags { 429 IB_AH_GRH = 1 430 }; 431 432 enum ib_rate { 433 IB_RATE_PORT_CURRENT = 0, 434 IB_RATE_2_5_GBPS = 2, 435 IB_RATE_5_GBPS = 5, 436 IB_RATE_10_GBPS = 3, 437 IB_RATE_20_GBPS = 6, 438 IB_RATE_30_GBPS = 4, 439 IB_RATE_40_GBPS = 7, 440 IB_RATE_60_GBPS = 8, 441 IB_RATE_80_GBPS = 9, 442 IB_RATE_120_GBPS = 10, 443 IB_RATE_14_GBPS = 11, 444 IB_RATE_56_GBPS = 12, 445 IB_RATE_112_GBPS = 13, 446 IB_RATE_168_GBPS = 14, 447 IB_RATE_25_GBPS = 15, 448 IB_RATE_100_GBPS = 16, 449 IB_RATE_200_GBPS = 17, 450 IB_RATE_300_GBPS = 18 451 }; 452 453 /** 454 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 455 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 456 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 457 * @rate: rate to convert. 458 */ 459 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 460 461 /** 462 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 463 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 464 * @rate: rate to convert. 465 */ 466 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 467 468 /** 469 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 470 * enum. 471 * @mult: multiple to convert. 472 */ 473 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 474 475 struct ib_ah_attr { 476 struct ib_global_route grh; 477 u16 dlid; 478 u8 sl; 479 u8 src_path_bits; 480 u8 static_rate; 481 u8 ah_flags; 482 u8 port_num; 483 }; 484 485 enum ib_wc_status { 486 IB_WC_SUCCESS, 487 IB_WC_LOC_LEN_ERR, 488 IB_WC_LOC_QP_OP_ERR, 489 IB_WC_LOC_EEC_OP_ERR, 490 IB_WC_LOC_PROT_ERR, 491 IB_WC_WR_FLUSH_ERR, 492 IB_WC_MW_BIND_ERR, 493 IB_WC_BAD_RESP_ERR, 494 IB_WC_LOC_ACCESS_ERR, 495 IB_WC_REM_INV_REQ_ERR, 496 IB_WC_REM_ACCESS_ERR, 497 IB_WC_REM_OP_ERR, 498 IB_WC_RETRY_EXC_ERR, 499 IB_WC_RNR_RETRY_EXC_ERR, 500 IB_WC_LOC_RDD_VIOL_ERR, 501 IB_WC_REM_INV_RD_REQ_ERR, 502 IB_WC_REM_ABORT_ERR, 503 IB_WC_INV_EECN_ERR, 504 IB_WC_INV_EEC_STATE_ERR, 505 IB_WC_FATAL_ERR, 506 IB_WC_RESP_TIMEOUT_ERR, 507 IB_WC_GENERAL_ERR 508 }; 509 510 enum ib_wc_opcode { 511 IB_WC_SEND, 512 IB_WC_RDMA_WRITE, 513 IB_WC_RDMA_READ, 514 IB_WC_COMP_SWAP, 515 IB_WC_FETCH_ADD, 516 IB_WC_BIND_MW, 517 IB_WC_LSO, 518 IB_WC_LOCAL_INV, 519 IB_WC_FAST_REG_MR, 520 IB_WC_MASKED_COMP_SWAP, 521 IB_WC_MASKED_FETCH_ADD, 522 /* 523 * Set value of IB_WC_RECV so consumers can test if a completion is a 524 * receive by testing (opcode & IB_WC_RECV). 525 */ 526 IB_WC_RECV = 1 << 7, 527 IB_WC_RECV_RDMA_WITH_IMM 528 }; 529 530 enum ib_wc_flags { 531 IB_WC_GRH = 1, 532 IB_WC_WITH_IMM = (1<<1), 533 IB_WC_WITH_INVALIDATE = (1<<2), 534 IB_WC_IP_CSUM_OK = (1<<3), 535 }; 536 537 struct ib_wc { 538 u64 wr_id; 539 enum ib_wc_status status; 540 enum ib_wc_opcode opcode; 541 u32 vendor_err; 542 u32 byte_len; 543 struct ib_qp *qp; 544 union { 545 __be32 imm_data; 546 u32 invalidate_rkey; 547 } ex; 548 u32 src_qp; 549 int wc_flags; 550 u16 pkey_index; 551 u16 slid; 552 u8 sl; 553 u8 dlid_path_bits; 554 u8 port_num; /* valid only for DR SMPs on switches */ 555 int csum_ok; 556 }; 557 558 enum ib_cq_notify_flags { 559 IB_CQ_SOLICITED = 1 << 0, 560 IB_CQ_NEXT_COMP = 1 << 1, 561 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 562 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 563 }; 564 565 enum ib_srq_type { 566 IB_SRQT_BASIC, 567 IB_SRQT_XRC 568 }; 569 570 enum ib_srq_attr_mask { 571 IB_SRQ_MAX_WR = 1 << 0, 572 IB_SRQ_LIMIT = 1 << 1, 573 }; 574 575 struct ib_srq_attr { 576 u32 max_wr; 577 u32 max_sge; 578 u32 srq_limit; 579 }; 580 581 struct ib_srq_init_attr { 582 void (*event_handler)(struct ib_event *, void *); 583 void *srq_context; 584 struct ib_srq_attr attr; 585 enum ib_srq_type srq_type; 586 587 union { 588 struct { 589 struct ib_xrcd *xrcd; 590 struct ib_cq *cq; 591 } xrc; 592 } ext; 593 }; 594 595 struct ib_qp_cap { 596 u32 max_send_wr; 597 u32 max_recv_wr; 598 u32 max_send_sge; 599 u32 max_recv_sge; 600 u32 max_inline_data; 601 u32 qpg_tss_mask_sz; 602 }; 603 604 enum ib_sig_type { 605 IB_SIGNAL_ALL_WR, 606 IB_SIGNAL_REQ_WR 607 }; 608 609 enum ib_qp_type { 610 /* 611 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 612 * here (and in that order) since the MAD layer uses them as 613 * indices into a 2-entry table. 614 */ 615 IB_QPT_SMI, 616 IB_QPT_GSI, 617 618 IB_QPT_RC, 619 IB_QPT_UC, 620 IB_QPT_UD, 621 IB_QPT_XRC, 622 IB_QPT_RAW_IPV6, 623 IB_QPT_RAW_ETHERTYPE, 624 IB_QPT_RAW_PACKET = 8, 625 IB_QPT_XRC_INI = 9, 626 IB_QPT_XRC_TGT, 627 IB_QPT_MAX, 628 }; 629 630 enum ib_qp_create_flags { 631 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 632 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 633 IB_QP_CREATE_NETIF_QP = 1 << 2, 634 /* reserve bits 26-31 for low level drivers' internal use */ 635 IB_QP_CREATE_RESERVED_START = 1 << 26, 636 IB_QP_CREATE_RESERVED_END = 1 << 31, 637 }; 638 639 enum ib_qpg_type { 640 IB_QPG_NONE = 0, 641 IB_QPG_PARENT = (1<<0), 642 IB_QPG_CHILD_RX = (1<<1), 643 IB_QPG_CHILD_TX = (1<<2) 644 }; 645 646 struct ib_qpg_init_attrib { 647 u32 tss_child_count; 648 u32 rss_child_count; 649 }; 650 651 struct ib_qp_init_attr { 652 void (*event_handler)(struct ib_event *, void *); 653 void *qp_context; 654 struct ib_cq *send_cq; 655 struct ib_cq *recv_cq; 656 struct ib_srq *srq; 657 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 658 struct ib_qp_cap cap; 659 union { 660 struct ib_qp *qpg_parent; /* see qpg_type */ 661 struct ib_qpg_init_attrib parent_attrib; 662 } pp; 663 enum ib_sig_type sq_sig_type; 664 enum ib_qp_type qp_type; 665 enum ib_qp_create_flags create_flags; 666 enum ib_qpg_type qpg_type; 667 u8 port_num; /* special QP types only */ 668 }; 669 670 struct ib_qp_open_attr { 671 void (*event_handler)(struct ib_event *, void *); 672 void *qp_context; 673 u32 qp_num; 674 enum ib_qp_type qp_type; 675 }; 676 677 enum ib_rnr_timeout { 678 IB_RNR_TIMER_655_36 = 0, 679 IB_RNR_TIMER_000_01 = 1, 680 IB_RNR_TIMER_000_02 = 2, 681 IB_RNR_TIMER_000_03 = 3, 682 IB_RNR_TIMER_000_04 = 4, 683 IB_RNR_TIMER_000_06 = 5, 684 IB_RNR_TIMER_000_08 = 6, 685 IB_RNR_TIMER_000_12 = 7, 686 IB_RNR_TIMER_000_16 = 8, 687 IB_RNR_TIMER_000_24 = 9, 688 IB_RNR_TIMER_000_32 = 10, 689 IB_RNR_TIMER_000_48 = 11, 690 IB_RNR_TIMER_000_64 = 12, 691 IB_RNR_TIMER_000_96 = 13, 692 IB_RNR_TIMER_001_28 = 14, 693 IB_RNR_TIMER_001_92 = 15, 694 IB_RNR_TIMER_002_56 = 16, 695 IB_RNR_TIMER_003_84 = 17, 696 IB_RNR_TIMER_005_12 = 18, 697 IB_RNR_TIMER_007_68 = 19, 698 IB_RNR_TIMER_010_24 = 20, 699 IB_RNR_TIMER_015_36 = 21, 700 IB_RNR_TIMER_020_48 = 22, 701 IB_RNR_TIMER_030_72 = 23, 702 IB_RNR_TIMER_040_96 = 24, 703 IB_RNR_TIMER_061_44 = 25, 704 IB_RNR_TIMER_081_92 = 26, 705 IB_RNR_TIMER_122_88 = 27, 706 IB_RNR_TIMER_163_84 = 28, 707 IB_RNR_TIMER_245_76 = 29, 708 IB_RNR_TIMER_327_68 = 30, 709 IB_RNR_TIMER_491_52 = 31 710 }; 711 712 enum ib_qp_attr_mask { 713 IB_QP_STATE = 1, 714 IB_QP_CUR_STATE = (1<<1), 715 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 716 IB_QP_ACCESS_FLAGS = (1<<3), 717 IB_QP_PKEY_INDEX = (1<<4), 718 IB_QP_PORT = (1<<5), 719 IB_QP_QKEY = (1<<6), 720 IB_QP_AV = (1<<7), 721 IB_QP_PATH_MTU = (1<<8), 722 IB_QP_TIMEOUT = (1<<9), 723 IB_QP_RETRY_CNT = (1<<10), 724 IB_QP_RNR_RETRY = (1<<11), 725 IB_QP_RQ_PSN = (1<<12), 726 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 727 IB_QP_ALT_PATH = (1<<14), 728 IB_QP_MIN_RNR_TIMER = (1<<15), 729 IB_QP_SQ_PSN = (1<<16), 730 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 731 IB_QP_PATH_MIG_STATE = (1<<18), 732 IB_QP_CAP = (1<<19), 733 IB_QP_DEST_QPN = (1<<20), 734 IB_QP_GROUP_RSS = (1<<21) 735 }; 736 737 enum ib_qp_state { 738 IB_QPS_RESET, 739 IB_QPS_INIT, 740 IB_QPS_RTR, 741 IB_QPS_RTS, 742 IB_QPS_SQD, 743 IB_QPS_SQE, 744 IB_QPS_ERR 745 }; 746 747 enum ib_mig_state { 748 IB_MIG_MIGRATED, 749 IB_MIG_REARM, 750 IB_MIG_ARMED 751 }; 752 753 struct ib_qp_attr { 754 enum ib_qp_state qp_state; 755 enum ib_qp_state cur_qp_state; 756 enum ib_mtu path_mtu; 757 enum ib_mig_state path_mig_state; 758 u32 qkey; 759 u32 rq_psn; 760 u32 sq_psn; 761 u32 dest_qp_num; 762 int qp_access_flags; 763 struct ib_qp_cap cap; 764 struct ib_ah_attr ah_attr; 765 struct ib_ah_attr alt_ah_attr; 766 u16 pkey_index; 767 u16 alt_pkey_index; 768 u8 en_sqd_async_notify; 769 u8 sq_draining; 770 u8 max_rd_atomic; 771 u8 max_dest_rd_atomic; 772 u8 min_rnr_timer; 773 u8 port_num; 774 u8 timeout; 775 u8 retry_cnt; 776 u8 rnr_retry; 777 u8 alt_port_num; 778 u8 alt_timeout; 779 }; 780 781 enum ib_wr_opcode { 782 IB_WR_RDMA_WRITE, 783 IB_WR_RDMA_WRITE_WITH_IMM, 784 IB_WR_SEND, 785 IB_WR_SEND_WITH_IMM, 786 IB_WR_RDMA_READ, 787 IB_WR_ATOMIC_CMP_AND_SWP, 788 IB_WR_ATOMIC_FETCH_AND_ADD, 789 IB_WR_LSO, 790 IB_WR_BIG_LSO, 791 IB_WR_SEND_WITH_INV, 792 IB_WR_RDMA_READ_WITH_INV, 793 IB_WR_LOCAL_INV, 794 IB_WR_FAST_REG_MR, 795 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 796 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 797 }; 798 799 enum ib_send_flags { 800 IB_SEND_FENCE = 1, 801 IB_SEND_SIGNALED = (1<<1), 802 IB_SEND_SOLICITED = (1<<2), 803 IB_SEND_INLINE = (1<<3), 804 IB_SEND_IP_CSUM = (1<<4) 805 }; 806 807 enum ib_flow_types { 808 IB_FLOW_ETH = 0, 809 IB_FLOW_IB_UC = 1, 810 IB_FLOW_IB_MC_IPV4 = 2, 811 IB_FLOW_IB_MC_IPV6 = 3 812 }; 813 814 enum { 815 IB_FLOW_L4_NONE = 0, 816 IB_FLOW_L4_OTHER = 3, 817 IB_FLOW_L4_UDP = 5, 818 IB_FLOW_L4_TCP = 6 819 }; 820 821 struct ib_sge { 822 u64 addr; 823 u32 length; 824 u32 lkey; 825 }; 826 827 struct ib_fast_reg_page_list { 828 struct ib_device *device; 829 u64 *page_list; 830 unsigned int max_page_list_len; 831 }; 832 833 struct ib_send_wr { 834 struct ib_send_wr *next; 835 u64 wr_id; 836 struct ib_sge *sg_list; 837 int num_sge; 838 enum ib_wr_opcode opcode; 839 int send_flags; 840 union { 841 __be32 imm_data; 842 u32 invalidate_rkey; 843 } ex; 844 union { 845 struct { 846 u64 remote_addr; 847 u32 rkey; 848 } rdma; 849 struct { 850 u64 remote_addr; 851 u64 compare_add; 852 u64 swap; 853 u64 compare_add_mask; 854 u64 swap_mask; 855 u32 rkey; 856 } atomic; 857 struct { 858 struct ib_ah *ah; 859 void *header; 860 int hlen; 861 int mss; 862 u32 remote_qpn; 863 u32 remote_qkey; 864 u16 pkey_index; /* valid for GSI only */ 865 u8 port_num; /* valid for DR SMPs on switch only */ 866 } ud; 867 struct { 868 u64 iova_start; 869 struct ib_fast_reg_page_list *page_list; 870 unsigned int page_shift; 871 unsigned int page_list_len; 872 u32 length; 873 int access_flags; 874 u32 rkey; 875 } fast_reg; 876 struct { 877 struct ib_unpacked_lrh *lrh; 878 u32 eth_type; 879 u8 static_rate; 880 } raw_ety; 881 } wr; 882 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 883 }; 884 885 struct ib_recv_wr { 886 struct ib_recv_wr *next; 887 u64 wr_id; 888 struct ib_sge *sg_list; 889 int num_sge; 890 }; 891 892 enum ib_access_flags { 893 IB_ACCESS_LOCAL_WRITE = 1, 894 IB_ACCESS_REMOTE_WRITE = (1<<1), 895 IB_ACCESS_REMOTE_READ = (1<<2), 896 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 897 IB_ACCESS_MW_BIND = (1<<4), 898 IB_ACCESS_ALLOCATE_MR = (1<<5), 899 IB_ACCESS_SHARED_MR_USER_READ = (1<<6), 900 IB_ACCESS_SHARED_MR_USER_WRITE = (1<<7), 901 IB_ACCESS_SHARED_MR_GROUP_READ = (1<<8), 902 IB_ACCESS_SHARED_MR_GROUP_WRITE = (1<<9), 903 IB_ACCESS_SHARED_MR_OTHER_READ = (1<<10), 904 IB_ACCESS_SHARED_MR_OTHER_WRITE = (1<<11) 905 906 }; 907 908 struct ib_phys_buf { 909 u64 addr; 910 u64 size; 911 }; 912 913 struct ib_mr_attr { 914 struct ib_pd *pd; 915 u64 device_virt_addr; 916 u64 size; 917 int mr_access_flags; 918 u32 lkey; 919 u32 rkey; 920 }; 921 922 enum ib_mr_rereg_flags { 923 IB_MR_REREG_TRANS = 1, 924 IB_MR_REREG_PD = (1<<1), 925 IB_MR_REREG_ACCESS = (1<<2) 926 }; 927 928 struct ib_mw_bind { 929 struct ib_mr *mr; 930 u64 wr_id; 931 u64 addr; 932 u32 length; 933 int send_flags; 934 int mw_access_flags; 935 }; 936 937 struct ib_fmr_attr { 938 int max_pages; 939 int max_maps; 940 u8 page_shift; 941 }; 942 943 struct ib_ucontext { 944 struct ib_device *device; 945 struct list_head pd_list; 946 struct list_head mr_list; 947 struct list_head mw_list; 948 struct list_head cq_list; 949 struct list_head qp_list; 950 struct list_head srq_list; 951 struct list_head ah_list; 952 struct list_head xrcd_list; 953 int closing; 954 }; 955 956 struct ib_uobject { 957 u64 user_handle; /* handle given to us by userspace */ 958 struct ib_ucontext *context; /* associated user context */ 959 void *object; /* containing object */ 960 struct list_head list; /* link to context's list */ 961 int id; /* index into kernel idr */ 962 struct kref ref; 963 struct rw_semaphore mutex; /* protects .live */ 964 int live; 965 }; 966 967 struct ib_udata { 968 void __user *inbuf; 969 void __user *outbuf; 970 size_t inlen; 971 size_t outlen; 972 }; 973 974 struct ib_uxrc_rcv_object { 975 struct list_head list; /* link to context's list */ 976 u32 qp_num; 977 u32 domain_handle; 978 }; 979 980 struct ib_pd { 981 struct ib_device *device; 982 struct ib_uobject *uobject; 983 atomic_t usecnt; /* count all resources */ 984 }; 985 986 struct ib_xrcd { 987 struct ib_device *device; 988 struct ib_uobject *uobject; 989 atomic_t usecnt; /* count all exposed resources */ 990 struct inode *inode; 991 struct rb_node node; 992 993 struct mutex tgt_qp_mutex; 994 struct list_head tgt_qp_list; 995 }; 996 997 struct ib_ah { 998 struct ib_device *device; 999 struct ib_pd *pd; 1000 struct ib_uobject *uobject; 1001 }; 1002 1003 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1004 1005 struct ib_cq { 1006 struct ib_device *device; 1007 struct ib_uobject *uobject; 1008 ib_comp_handler comp_handler; 1009 void (*event_handler)(struct ib_event *, void *); 1010 void *cq_context; 1011 int cqe; 1012 atomic_t usecnt; /* count number of work queues */ 1013 }; 1014 1015 struct ib_srq { 1016 struct ib_device *device; 1017 struct ib_pd *pd; 1018 struct ib_uobject *uobject; 1019 void (*event_handler)(struct ib_event *, void *); 1020 void *srq_context; 1021 enum ib_srq_type srq_type; 1022 atomic_t usecnt; 1023 1024 union { 1025 struct { 1026 struct ib_xrcd *xrcd; 1027 struct ib_cq *cq; 1028 u32 srq_num; 1029 } xrc; 1030 } ext; 1031 }; 1032 1033 struct ib_qp { 1034 struct ib_device *device; 1035 struct ib_pd *pd; 1036 struct ib_cq *send_cq; 1037 struct ib_cq *recv_cq; 1038 struct ib_srq *srq; 1039 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1040 struct list_head xrcd_list; 1041 atomic_t usecnt; /* count times opened, mcast attaches */ 1042 struct list_head open_list; 1043 struct ib_qp *real_qp; 1044 struct ib_uobject *uobject; 1045 void (*event_handler)(struct ib_event *, void *); 1046 void *qp_context; 1047 u32 qp_num; 1048 enum ib_qp_type qp_type; 1049 enum ib_qpg_type qpg_type; 1050 }; 1051 1052 struct ib_mr { 1053 struct ib_device *device; 1054 struct ib_pd *pd; 1055 struct ib_uobject *uobject; 1056 u32 lkey; 1057 u32 rkey; 1058 atomic_t usecnt; /* count number of MWs */ 1059 }; 1060 1061 struct ib_mw { 1062 struct ib_device *device; 1063 struct ib_pd *pd; 1064 struct ib_uobject *uobject; 1065 u32 rkey; 1066 }; 1067 1068 struct ib_fmr { 1069 struct ib_device *device; 1070 struct ib_pd *pd; 1071 struct list_head list; 1072 u32 lkey; 1073 u32 rkey; 1074 }; 1075 1076 struct ib_flow_spec { 1077 enum ib_flow_types type; 1078 union { 1079 struct { 1080 __be16 ethertype; 1081 __be16 vlan; 1082 u8 vlan_present; 1083 u8 mac[6]; 1084 u8 port; 1085 } eth; 1086 struct { 1087 __be32 qpn; 1088 } ib_uc; 1089 struct { 1090 u8 mgid[16]; 1091 } ib_mc; 1092 } l2_id; 1093 __be32 src_ip; 1094 __be32 dst_ip; 1095 __be16 src_port; 1096 __be16 dst_port; 1097 u8 l4_protocol; 1098 u8 block_mc_loopback; 1099 u8 rule_type; 1100 }; 1101 1102 struct ib_mad; 1103 struct ib_grh; 1104 1105 enum ib_process_mad_flags { 1106 IB_MAD_IGNORE_MKEY = 1, 1107 IB_MAD_IGNORE_BKEY = 2, 1108 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1109 }; 1110 1111 enum ib_mad_result { 1112 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1113 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1114 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1115 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1116 }; 1117 1118 #define IB_DEVICE_NAME_MAX 64 1119 1120 struct ib_cache { 1121 rwlock_t lock; 1122 struct ib_event_handler event_handler; 1123 struct ib_pkey_cache **pkey_cache; 1124 struct ib_gid_cache **gid_cache; 1125 u8 *lmc_cache; 1126 }; 1127 1128 struct ib_dma_mapping_ops { 1129 int (*mapping_error)(struct ib_device *dev, 1130 u64 dma_addr); 1131 u64 (*map_single)(struct ib_device *dev, 1132 void *ptr, size_t size, 1133 enum dma_data_direction direction); 1134 void (*unmap_single)(struct ib_device *dev, 1135 u64 addr, size_t size, 1136 enum dma_data_direction direction); 1137 u64 (*map_page)(struct ib_device *dev, 1138 struct page *page, unsigned long offset, 1139 size_t size, 1140 enum dma_data_direction direction); 1141 void (*unmap_page)(struct ib_device *dev, 1142 u64 addr, size_t size, 1143 enum dma_data_direction direction); 1144 int (*map_sg)(struct ib_device *dev, 1145 struct scatterlist *sg, int nents, 1146 enum dma_data_direction direction); 1147 void (*unmap_sg)(struct ib_device *dev, 1148 struct scatterlist *sg, int nents, 1149 enum dma_data_direction direction); 1150 u64 (*dma_address)(struct ib_device *dev, 1151 struct scatterlist *sg); 1152 unsigned int (*dma_len)(struct ib_device *dev, 1153 struct scatterlist *sg); 1154 void (*sync_single_for_cpu)(struct ib_device *dev, 1155 u64 dma_handle, 1156 size_t size, 1157 enum dma_data_direction dir); 1158 void (*sync_single_for_device)(struct ib_device *dev, 1159 u64 dma_handle, 1160 size_t size, 1161 enum dma_data_direction dir); 1162 void *(*alloc_coherent)(struct ib_device *dev, 1163 size_t size, 1164 u64 *dma_handle, 1165 gfp_t flag); 1166 void (*free_coherent)(struct ib_device *dev, 1167 size_t size, void *cpu_addr, 1168 u64 dma_handle); 1169 }; 1170 1171 struct iw_cm_verbs; 1172 1173 struct ib_device { 1174 struct device *dma_device; 1175 1176 char name[IB_DEVICE_NAME_MAX]; 1177 1178 struct list_head event_handler_list; 1179 spinlock_t event_handler_lock; 1180 1181 spinlock_t client_data_lock; 1182 struct list_head core_list; 1183 struct list_head client_data_list; 1184 1185 struct ib_cache cache; 1186 int *pkey_tbl_len; 1187 int *gid_tbl_len; 1188 1189 int num_comp_vectors; 1190 1191 struct iw_cm_verbs *iwcm; 1192 1193 int (*get_protocol_stats)(struct ib_device *device, 1194 union rdma_protocol_stats *stats); 1195 int (*query_device)(struct ib_device *device, 1196 struct ib_device_attr *device_attr); 1197 int (*query_port)(struct ib_device *device, 1198 u8 port_num, 1199 struct ib_port_attr *port_attr); 1200 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1201 u8 port_num); 1202 int (*query_gid)(struct ib_device *device, 1203 u8 port_num, int index, 1204 union ib_gid *gid); 1205 int (*query_pkey)(struct ib_device *device, 1206 u8 port_num, u16 index, u16 *pkey); 1207 int (*modify_device)(struct ib_device *device, 1208 int device_modify_mask, 1209 struct ib_device_modify *device_modify); 1210 int (*modify_port)(struct ib_device *device, 1211 u8 port_num, int port_modify_mask, 1212 struct ib_port_modify *port_modify); 1213 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1214 struct ib_udata *udata); 1215 int (*dealloc_ucontext)(struct ib_ucontext *context); 1216 int (*mmap)(struct ib_ucontext *context, 1217 struct vm_area_struct *vma); 1218 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1219 struct ib_ucontext *context, 1220 struct ib_udata *udata); 1221 int (*dealloc_pd)(struct ib_pd *pd); 1222 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1223 struct ib_ah_attr *ah_attr); 1224 int (*modify_ah)(struct ib_ah *ah, 1225 struct ib_ah_attr *ah_attr); 1226 int (*query_ah)(struct ib_ah *ah, 1227 struct ib_ah_attr *ah_attr); 1228 int (*destroy_ah)(struct ib_ah *ah); 1229 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1230 struct ib_srq_init_attr *srq_init_attr, 1231 struct ib_udata *udata); 1232 int (*modify_srq)(struct ib_srq *srq, 1233 struct ib_srq_attr *srq_attr, 1234 enum ib_srq_attr_mask srq_attr_mask, 1235 struct ib_udata *udata); 1236 int (*query_srq)(struct ib_srq *srq, 1237 struct ib_srq_attr *srq_attr); 1238 int (*destroy_srq)(struct ib_srq *srq); 1239 int (*post_srq_recv)(struct ib_srq *srq, 1240 struct ib_recv_wr *recv_wr, 1241 struct ib_recv_wr **bad_recv_wr); 1242 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1243 struct ib_qp_init_attr *qp_init_attr, 1244 struct ib_udata *udata); 1245 int (*modify_qp)(struct ib_qp *qp, 1246 struct ib_qp_attr *qp_attr, 1247 int qp_attr_mask, 1248 struct ib_udata *udata); 1249 int (*query_qp)(struct ib_qp *qp, 1250 struct ib_qp_attr *qp_attr, 1251 int qp_attr_mask, 1252 struct ib_qp_init_attr *qp_init_attr); 1253 int (*destroy_qp)(struct ib_qp *qp); 1254 int (*post_send)(struct ib_qp *qp, 1255 struct ib_send_wr *send_wr, 1256 struct ib_send_wr **bad_send_wr); 1257 int (*post_recv)(struct ib_qp *qp, 1258 struct ib_recv_wr *recv_wr, 1259 struct ib_recv_wr **bad_recv_wr); 1260 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1261 int comp_vector, 1262 struct ib_ucontext *context, 1263 struct ib_udata *udata); 1264 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1265 u16 cq_period); 1266 int (*destroy_cq)(struct ib_cq *cq); 1267 int (*resize_cq)(struct ib_cq *cq, int cqe, 1268 struct ib_udata *udata); 1269 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1270 struct ib_wc *wc); 1271 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1272 int (*req_notify_cq)(struct ib_cq *cq, 1273 enum ib_cq_notify_flags flags); 1274 int (*req_ncomp_notif)(struct ib_cq *cq, 1275 int wc_cnt); 1276 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1277 int mr_access_flags); 1278 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1279 struct ib_phys_buf *phys_buf_array, 1280 int num_phys_buf, 1281 int mr_access_flags, 1282 u64 *iova_start); 1283 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1284 u64 start, u64 length, 1285 u64 virt_addr, 1286 int mr_access_flags, 1287 struct ib_udata *udata, 1288 int mr_id); 1289 int (*query_mr)(struct ib_mr *mr, 1290 struct ib_mr_attr *mr_attr); 1291 int (*dereg_mr)(struct ib_mr *mr); 1292 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1293 int max_page_list_len); 1294 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1295 int page_list_len); 1296 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1297 int (*rereg_phys_mr)(struct ib_mr *mr, 1298 int mr_rereg_mask, 1299 struct ib_pd *pd, 1300 struct ib_phys_buf *phys_buf_array, 1301 int num_phys_buf, 1302 int mr_access_flags, 1303 u64 *iova_start); 1304 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1305 int (*bind_mw)(struct ib_qp *qp, 1306 struct ib_mw *mw, 1307 struct ib_mw_bind *mw_bind); 1308 int (*dealloc_mw)(struct ib_mw *mw); 1309 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1310 int mr_access_flags, 1311 struct ib_fmr_attr *fmr_attr); 1312 int (*map_phys_fmr)(struct ib_fmr *fmr, 1313 u64 *page_list, int list_len, 1314 u64 iova); 1315 int (*unmap_fmr)(struct list_head *fmr_list); 1316 int (*dealloc_fmr)(struct ib_fmr *fmr); 1317 int (*attach_mcast)(struct ib_qp *qp, 1318 union ib_gid *gid, 1319 u16 lid); 1320 int (*detach_mcast)(struct ib_qp *qp, 1321 union ib_gid *gid, 1322 u16 lid); 1323 int (*process_mad)(struct ib_device *device, 1324 int process_mad_flags, 1325 u8 port_num, 1326 struct ib_wc *in_wc, 1327 struct ib_grh *in_grh, 1328 struct ib_mad *in_mad, 1329 struct ib_mad *out_mad); 1330 struct ib_srq * (*create_xrc_srq)(struct ib_pd *pd, 1331 struct ib_cq *xrc_cq, 1332 struct ib_xrcd *xrcd, 1333 struct ib_srq_init_attr *srq_init_attr, 1334 struct ib_udata *udata); 1335 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1336 struct ib_ucontext *ucontext, 1337 struct ib_udata *udata); 1338 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1339 int (*create_xrc_rcv_qp)(struct ib_qp_init_attr *init_attr, 1340 u32 *qp_num); 1341 int (*modify_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1342 u32 qp_num, 1343 struct ib_qp_attr *attr, 1344 int attr_mask); 1345 int (*query_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1346 u32 qp_num, 1347 struct ib_qp_attr *attr, 1348 int attr_mask, 1349 struct ib_qp_init_attr *init_attr); 1350 int (*reg_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1351 void *context, 1352 u32 qp_num); 1353 int (*unreg_xrc_rcv_qp)(struct ib_xrcd *xrcd, 1354 void *context, 1355 u32 qp_num); 1356 int (*attach_flow)(struct ib_qp *qp, 1357 struct ib_flow_spec *spec, 1358 int priority); 1359 int (*detach_flow)(struct ib_qp *qp, 1360 struct ib_flow_spec *spec, 1361 int priority); 1362 1363 unsigned long (*get_unmapped_area)(struct file *file, 1364 unsigned long addr, 1365 unsigned long len, unsigned long pgoff, 1366 unsigned long flags); 1367 struct ib_dma_mapping_ops *dma_ops; 1368 1369 struct module *owner; 1370 struct device dev; 1371 struct kobject *ports_parent; 1372 struct list_head port_list; 1373 1374 enum { 1375 IB_DEV_UNINITIALIZED, 1376 IB_DEV_REGISTERED, 1377 IB_DEV_UNREGISTERED 1378 } reg_state; 1379 1380 int uverbs_abi_ver; 1381 u64 uverbs_cmd_mask; 1382 1383 char node_desc[64]; 1384 __be64 node_guid; 1385 u32 local_dma_lkey; 1386 u8 node_type; 1387 u8 phys_port_cnt; 1388 struct rb_root ib_uverbs_xrcd_table; 1389 struct mutex xrcd_table_mutex; 1390 }; 1391 1392 struct ib_client { 1393 char *name; 1394 void (*add) (struct ib_device *); 1395 void (*remove)(struct ib_device *); 1396 1397 struct list_head list; 1398 }; 1399 1400 struct ib_device *ib_alloc_device(size_t size); 1401 void ib_dealloc_device(struct ib_device *device); 1402 1403 int ib_register_device(struct ib_device *device, 1404 int (*port_callback)(struct ib_device *, 1405 u8, struct kobject *)); 1406 void ib_unregister_device(struct ib_device *device); 1407 1408 int ib_register_client (struct ib_client *client); 1409 void ib_unregister_client(struct ib_client *client); 1410 1411 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1412 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1413 void *data); 1414 1415 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1416 { 1417 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1418 } 1419 1420 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1421 { 1422 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1423 } 1424 1425 /** 1426 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1427 * contains all required attributes and no attributes not allowed for 1428 * the given QP state transition. 1429 * @cur_state: Current QP state 1430 * @next_state: Next QP state 1431 * @type: QP type 1432 * @mask: Mask of supplied QP attributes 1433 * 1434 * This function is a helper function that a low-level driver's 1435 * modify_qp method can use to validate the consumer's input. It 1436 * checks that cur_state and next_state are valid QP states, that a 1437 * transition from cur_state to next_state is allowed by the IB spec, 1438 * and that the attribute mask supplied is allowed for the transition. 1439 */ 1440 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1441 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1442 1443 int ib_register_event_handler (struct ib_event_handler *event_handler); 1444 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1445 void ib_dispatch_event(struct ib_event *event); 1446 1447 int ib_query_device(struct ib_device *device, 1448 struct ib_device_attr *device_attr); 1449 1450 int ib_query_port(struct ib_device *device, 1451 u8 port_num, struct ib_port_attr *port_attr); 1452 1453 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1454 u8 port_num); 1455 1456 int ib_query_gid(struct ib_device *device, 1457 u8 port_num, int index, union ib_gid *gid); 1458 1459 int ib_query_pkey(struct ib_device *device, 1460 u8 port_num, u16 index, u16 *pkey); 1461 1462 int ib_modify_device(struct ib_device *device, 1463 int device_modify_mask, 1464 struct ib_device_modify *device_modify); 1465 1466 int ib_modify_port(struct ib_device *device, 1467 u8 port_num, int port_modify_mask, 1468 struct ib_port_modify *port_modify); 1469 1470 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1471 u8 *port_num, u16 *index); 1472 1473 int ib_find_pkey(struct ib_device *device, 1474 u8 port_num, u16 pkey, u16 *index); 1475 1476 /** 1477 * ib_alloc_pd - Allocates an unused protection domain. 1478 * @device: The device on which to allocate the protection domain. 1479 * 1480 * A protection domain object provides an association between QPs, shared 1481 * receive queues, address handles, memory regions, and memory windows. 1482 */ 1483 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1484 1485 /** 1486 * ib_dealloc_pd - Deallocates a protection domain. 1487 * @pd: The protection domain to deallocate. 1488 */ 1489 int ib_dealloc_pd(struct ib_pd *pd); 1490 1491 /** 1492 * ib_create_ah - Creates an address handle for the given address vector. 1493 * @pd: The protection domain associated with the address handle. 1494 * @ah_attr: The attributes of the address vector. 1495 * 1496 * The address handle is used to reference a local or global destination 1497 * in all UD QP post sends. 1498 */ 1499 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1500 1501 /** 1502 * ib_init_ah_from_wc - Initializes address handle attributes from a 1503 * work completion. 1504 * @device: Device on which the received message arrived. 1505 * @port_num: Port on which the received message arrived. 1506 * @wc: Work completion associated with the received message. 1507 * @grh: References the received global route header. This parameter is 1508 * ignored unless the work completion indicates that the GRH is valid. 1509 * @ah_attr: Returned attributes that can be used when creating an address 1510 * handle for replying to the message. 1511 */ 1512 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1513 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1514 1515 /** 1516 * ib_create_ah_from_wc - Creates an address handle associated with the 1517 * sender of the specified work completion. 1518 * @pd: The protection domain associated with the address handle. 1519 * @wc: Work completion information associated with a received message. 1520 * @grh: References the received global route header. This parameter is 1521 * ignored unless the work completion indicates that the GRH is valid. 1522 * @port_num: The outbound port number to associate with the address. 1523 * 1524 * The address handle is used to reference a local or global destination 1525 * in all UD QP post sends. 1526 */ 1527 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1528 struct ib_grh *grh, u8 port_num); 1529 1530 /** 1531 * ib_modify_ah - Modifies the address vector associated with an address 1532 * handle. 1533 * @ah: The address handle to modify. 1534 * @ah_attr: The new address vector attributes to associate with the 1535 * address handle. 1536 */ 1537 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1538 1539 /** 1540 * ib_query_ah - Queries the address vector associated with an address 1541 * handle. 1542 * @ah: The address handle to query. 1543 * @ah_attr: The address vector attributes associated with the address 1544 * handle. 1545 */ 1546 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1547 1548 /** 1549 * ib_destroy_ah - Destroys an address handle. 1550 * @ah: The address handle to destroy. 1551 */ 1552 int ib_destroy_ah(struct ib_ah *ah); 1553 1554 /** 1555 * ib_create_xrc_srq - Creates an XRC SRQ associated with the specified 1556 * protection domain, cq, and xrc domain. 1557 * @pd: The protection domain associated with the SRQ. 1558 * @xrc_cq: The cq to be associated with the XRC SRQ. 1559 * @xrcd: The XRC domain to be associated with the XRC SRQ. 1560 * @srq_init_attr: A list of initial attributes required to create the 1561 * XRC SRQ. If XRC SRQ creation succeeds, then the attributes are updated 1562 * to the actual capabilities of the created XRC SRQ. 1563 * 1564 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1565 * requested size of the XRC SRQ, and set to the actual values allocated 1566 * on return. If ib_create_xrc_srq() succeeds, then max_wr and max_sge 1567 * will always be at least as large as the requested values. 1568 */ 1569 struct ib_srq *ib_create_xrc_srq(struct ib_pd *pd, 1570 struct ib_cq *xrc_cq, 1571 struct ib_xrcd *xrcd, 1572 struct ib_srq_init_attr *srq_init_attr); 1573 1574 /** 1575 * ib_create_srq - Creates a SRQ associated with the specified protection 1576 * domain. 1577 * @pd: The protection domain associated with the SRQ. 1578 * @srq_init_attr: A list of initial attributes required to create the 1579 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1580 * the actual capabilities of the created SRQ. 1581 * 1582 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1583 * requested size of the SRQ, and set to the actual values allocated 1584 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1585 * will always be at least as large as the requested values. 1586 */ 1587 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1588 struct ib_srq_init_attr *srq_init_attr); 1589 1590 /** 1591 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1592 * @srq: The SRQ to modify. 1593 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1594 * the current values of selected SRQ attributes are returned. 1595 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1596 * are being modified. 1597 * 1598 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1599 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1600 * the number of receives queued drops below the limit. 1601 */ 1602 int ib_modify_srq(struct ib_srq *srq, 1603 struct ib_srq_attr *srq_attr, 1604 enum ib_srq_attr_mask srq_attr_mask); 1605 1606 /** 1607 * ib_query_srq - Returns the attribute list and current values for the 1608 * specified SRQ. 1609 * @srq: The SRQ to query. 1610 * @srq_attr: The attributes of the specified SRQ. 1611 */ 1612 int ib_query_srq(struct ib_srq *srq, 1613 struct ib_srq_attr *srq_attr); 1614 1615 /** 1616 * ib_destroy_srq - Destroys the specified SRQ. 1617 * @srq: The SRQ to destroy. 1618 */ 1619 int ib_destroy_srq(struct ib_srq *srq); 1620 1621 /** 1622 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1623 * @srq: The SRQ to post the work request on. 1624 * @recv_wr: A list of work requests to post on the receive queue. 1625 * @bad_recv_wr: On an immediate failure, this parameter will reference 1626 * the work request that failed to be posted on the QP. 1627 */ 1628 static inline int ib_post_srq_recv(struct ib_srq *srq, 1629 struct ib_recv_wr *recv_wr, 1630 struct ib_recv_wr **bad_recv_wr) 1631 { 1632 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1633 } 1634 1635 /** 1636 * ib_create_qp - Creates a QP associated with the specified protection 1637 * domain. 1638 * @pd: The protection domain associated with the QP. 1639 * @qp_init_attr: A list of initial attributes required to create the 1640 * QP. If QP creation succeeds, then the attributes are updated to 1641 * the actual capabilities of the created QP. 1642 */ 1643 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1644 struct ib_qp_init_attr *qp_init_attr); 1645 1646 /** 1647 * ib_modify_qp - Modifies the attributes for the specified QP and then 1648 * transitions the QP to the given state. 1649 * @qp: The QP to modify. 1650 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1651 * the current values of selected QP attributes are returned. 1652 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1653 * are being modified. 1654 */ 1655 int ib_modify_qp(struct ib_qp *qp, 1656 struct ib_qp_attr *qp_attr, 1657 int qp_attr_mask); 1658 1659 /** 1660 * ib_query_qp - Returns the attribute list and current values for the 1661 * specified QP. 1662 * @qp: The QP to query. 1663 * @qp_attr: The attributes of the specified QP. 1664 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1665 * @qp_init_attr: Additional attributes of the selected QP. 1666 * 1667 * The qp_attr_mask may be used to limit the query to gathering only the 1668 * selected attributes. 1669 */ 1670 int ib_query_qp(struct ib_qp *qp, 1671 struct ib_qp_attr *qp_attr, 1672 int qp_attr_mask, 1673 struct ib_qp_init_attr *qp_init_attr); 1674 1675 /** 1676 * ib_destroy_qp - Destroys the specified QP. 1677 * @qp: The QP to destroy. 1678 */ 1679 int ib_destroy_qp(struct ib_qp *qp); 1680 1681 /** 1682 * ib_open_qp - Obtain a reference to an existing sharable QP. 1683 * @xrcd - XRC domain 1684 * @qp_open_attr: Attributes identifying the QP to open. 1685 * 1686 * Returns a reference to a sharable QP. 1687 */ 1688 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1689 struct ib_qp_open_attr *qp_open_attr); 1690 1691 /** 1692 * ib_close_qp - Release an external reference to a QP. 1693 * @qp: The QP handle to release 1694 * 1695 * The opened QP handle is released by the caller. The underlying 1696 * shared QP is not destroyed until all internal references are released. 1697 */ 1698 int ib_close_qp(struct ib_qp *qp); 1699 1700 /** 1701 * ib_post_send - Posts a list of work requests to the send queue of 1702 * the specified QP. 1703 * @qp: The QP to post the work request on. 1704 * @send_wr: A list of work requests to post on the send queue. 1705 * @bad_send_wr: On an immediate failure, this parameter will reference 1706 * the work request that failed to be posted on the QP. 1707 * 1708 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1709 * error is returned, the QP state shall not be affected, 1710 * ib_post_send() will return an immediate error after queueing any 1711 * earlier work requests in the list. 1712 */ 1713 static inline int ib_post_send(struct ib_qp *qp, 1714 struct ib_send_wr *send_wr, 1715 struct ib_send_wr **bad_send_wr) 1716 { 1717 return qp->device->post_send(qp, send_wr, bad_send_wr); 1718 } 1719 1720 /** 1721 * ib_post_recv - Posts a list of work requests to the receive queue of 1722 * the specified QP. 1723 * @qp: The QP to post the work request on. 1724 * @recv_wr: A list of work requests to post on the receive queue. 1725 * @bad_recv_wr: On an immediate failure, this parameter will reference 1726 * the work request that failed to be posted on the QP. 1727 */ 1728 static inline int ib_post_recv(struct ib_qp *qp, 1729 struct ib_recv_wr *recv_wr, 1730 struct ib_recv_wr **bad_recv_wr) 1731 { 1732 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1733 } 1734 1735 /* 1736 * IB_CQ_VECTOR_LEAST_ATTACHED: The constant specifies that 1737 * the CQ will be attached to the completion vector that has 1738 * the least number of CQs already attached to it. 1739 */ 1740 #define IB_CQ_VECTOR_LEAST_ATTACHED 0xffffffff 1741 1742 /** 1743 * ib_create_cq - Creates a CQ on the specified device. 1744 * @device: The device on which to create the CQ. 1745 * @comp_handler: A user-specified callback that is invoked when a 1746 * completion event occurs on the CQ. 1747 * @event_handler: A user-specified callback that is invoked when an 1748 * asynchronous event not associated with a completion occurs on the CQ. 1749 * @cq_context: Context associated with the CQ returned to the user via 1750 * the associated completion and event handlers. 1751 * @cqe: The minimum size of the CQ. 1752 * @comp_vector - Completion vector used to signal completion events. 1753 * Must be >= 0 and < context->num_comp_vectors. 1754 * 1755 * Users can examine the cq structure to determine the actual CQ size. 1756 */ 1757 struct ib_cq *ib_create_cq(struct ib_device *device, 1758 ib_comp_handler comp_handler, 1759 void (*event_handler)(struct ib_event *, void *), 1760 void *cq_context, int cqe, int comp_vector); 1761 1762 /** 1763 * ib_resize_cq - Modifies the capacity of the CQ. 1764 * @cq: The CQ to resize. 1765 * @cqe: The minimum size of the CQ. 1766 * 1767 * Users can examine the cq structure to determine the actual CQ size. 1768 */ 1769 int ib_resize_cq(struct ib_cq *cq, int cqe); 1770 1771 /** 1772 * ib_modify_cq - Modifies moderation params of the CQ 1773 * @cq: The CQ to modify. 1774 * @cq_count: number of CQEs that will trigger an event 1775 * @cq_period: max period of time in usec before triggering an event 1776 * 1777 */ 1778 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1779 1780 /** 1781 * ib_destroy_cq - Destroys the specified CQ. 1782 * @cq: The CQ to destroy. 1783 */ 1784 int ib_destroy_cq(struct ib_cq *cq); 1785 1786 /** 1787 * ib_poll_cq - poll a CQ for completion(s) 1788 * @cq:the CQ being polled 1789 * @num_entries:maximum number of completions to return 1790 * @wc:array of at least @num_entries &struct ib_wc where completions 1791 * will be returned 1792 * 1793 * Poll a CQ for (possibly multiple) completions. If the return value 1794 * is < 0, an error occurred. If the return value is >= 0, it is the 1795 * number of completions returned. If the return value is 1796 * non-negative and < num_entries, then the CQ was emptied. 1797 */ 1798 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1799 struct ib_wc *wc) 1800 { 1801 return cq->device->poll_cq(cq, num_entries, wc); 1802 } 1803 1804 /** 1805 * ib_peek_cq - Returns the number of unreaped completions currently 1806 * on the specified CQ. 1807 * @cq: The CQ to peek. 1808 * @wc_cnt: A minimum number of unreaped completions to check for. 1809 * 1810 * If the number of unreaped completions is greater than or equal to wc_cnt, 1811 * this function returns wc_cnt, otherwise, it returns the actual number of 1812 * unreaped completions. 1813 */ 1814 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1815 1816 /** 1817 * ib_req_notify_cq - Request completion notification on a CQ. 1818 * @cq: The CQ to generate an event for. 1819 * @flags: 1820 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1821 * to request an event on the next solicited event or next work 1822 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1823 * may also be |ed in to request a hint about missed events, as 1824 * described below. 1825 * 1826 * Return Value: 1827 * < 0 means an error occurred while requesting notification 1828 * == 0 means notification was requested successfully, and if 1829 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1830 * were missed and it is safe to wait for another event. In 1831 * this case is it guaranteed that any work completions added 1832 * to the CQ since the last CQ poll will trigger a completion 1833 * notification event. 1834 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1835 * in. It means that the consumer must poll the CQ again to 1836 * make sure it is empty to avoid missing an event because of a 1837 * race between requesting notification and an entry being 1838 * added to the CQ. This return value means it is possible 1839 * (but not guaranteed) that a work completion has been added 1840 * to the CQ since the last poll without triggering a 1841 * completion notification event. 1842 */ 1843 static inline int ib_req_notify_cq(struct ib_cq *cq, 1844 enum ib_cq_notify_flags flags) 1845 { 1846 return cq->device->req_notify_cq(cq, flags); 1847 } 1848 1849 /** 1850 * ib_req_ncomp_notif - Request completion notification when there are 1851 * at least the specified number of unreaped completions on the CQ. 1852 * @cq: The CQ to generate an event for. 1853 * @wc_cnt: The number of unreaped completions that should be on the 1854 * CQ before an event is generated. 1855 */ 1856 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1857 { 1858 return cq->device->req_ncomp_notif ? 1859 cq->device->req_ncomp_notif(cq, wc_cnt) : 1860 -ENOSYS; 1861 } 1862 1863 /** 1864 * ib_get_dma_mr - Returns a memory region for system memory that is 1865 * usable for DMA. 1866 * @pd: The protection domain associated with the memory region. 1867 * @mr_access_flags: Specifies the memory access rights. 1868 * 1869 * Note that the ib_dma_*() functions defined below must be used 1870 * to create/destroy addresses used with the Lkey or Rkey returned 1871 * by ib_get_dma_mr(). 1872 */ 1873 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1874 1875 /** 1876 * ib_dma_mapping_error - check a DMA addr for error 1877 * @dev: The device for which the dma_addr was created 1878 * @dma_addr: The DMA address to check 1879 */ 1880 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1881 { 1882 if (dev->dma_ops) 1883 return dev->dma_ops->mapping_error(dev, dma_addr); 1884 return dma_mapping_error(dev->dma_device, dma_addr); 1885 } 1886 1887 /** 1888 * ib_dma_map_single - Map a kernel virtual address to DMA address 1889 * @dev: The device for which the dma_addr is to be created 1890 * @cpu_addr: The kernel virtual address 1891 * @size: The size of the region in bytes 1892 * @direction: The direction of the DMA 1893 */ 1894 static inline u64 ib_dma_map_single(struct ib_device *dev, 1895 void *cpu_addr, size_t size, 1896 enum dma_data_direction direction) 1897 { 1898 if (dev->dma_ops) 1899 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1900 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1901 } 1902 1903 /** 1904 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1905 * @dev: The device for which the DMA address was created 1906 * @addr: The DMA address 1907 * @size: The size of the region in bytes 1908 * @direction: The direction of the DMA 1909 */ 1910 static inline void ib_dma_unmap_single(struct ib_device *dev, 1911 u64 addr, size_t size, 1912 enum dma_data_direction direction) 1913 { 1914 if (dev->dma_ops) 1915 dev->dma_ops->unmap_single(dev, addr, size, direction); 1916 else 1917 dma_unmap_single(dev->dma_device, addr, size, direction); 1918 } 1919 1920 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1921 void *cpu_addr, size_t size, 1922 enum dma_data_direction direction, 1923 struct dma_attrs *attrs) 1924 { 1925 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1926 direction, attrs); 1927 } 1928 1929 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1930 u64 addr, size_t size, 1931 enum dma_data_direction direction, 1932 struct dma_attrs *attrs) 1933 { 1934 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1935 direction, attrs); 1936 } 1937 1938 /** 1939 * ib_dma_map_page - Map a physical page to DMA address 1940 * @dev: The device for which the dma_addr is to be created 1941 * @page: The page to be mapped 1942 * @offset: The offset within the page 1943 * @size: The size of the region in bytes 1944 * @direction: The direction of the DMA 1945 */ 1946 static inline u64 ib_dma_map_page(struct ib_device *dev, 1947 struct page *page, 1948 unsigned long offset, 1949 size_t size, 1950 enum dma_data_direction direction) 1951 { 1952 if (dev->dma_ops) 1953 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1954 return dma_map_page(dev->dma_device, page, offset, size, direction); 1955 } 1956 1957 /** 1958 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1959 * @dev: The device for which the DMA address was created 1960 * @addr: The DMA address 1961 * @size: The size of the region in bytes 1962 * @direction: The direction of the DMA 1963 */ 1964 static inline void ib_dma_unmap_page(struct ib_device *dev, 1965 u64 addr, size_t size, 1966 enum dma_data_direction direction) 1967 { 1968 if (dev->dma_ops) 1969 dev->dma_ops->unmap_page(dev, addr, size, direction); 1970 else 1971 dma_unmap_page(dev->dma_device, addr, size, direction); 1972 } 1973 1974 /** 1975 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1976 * @dev: The device for which the DMA addresses are to be created 1977 * @sg: The array of scatter/gather entries 1978 * @nents: The number of scatter/gather entries 1979 * @direction: The direction of the DMA 1980 */ 1981 static inline int ib_dma_map_sg(struct ib_device *dev, 1982 struct scatterlist *sg, int nents, 1983 enum dma_data_direction direction) 1984 { 1985 if (dev->dma_ops) 1986 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1987 return dma_map_sg(dev->dma_device, sg, nents, direction); 1988 } 1989 1990 /** 1991 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1992 * @dev: The device for which the DMA addresses were created 1993 * @sg: The array of scatter/gather entries 1994 * @nents: The number of scatter/gather entries 1995 * @direction: The direction of the DMA 1996 */ 1997 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1998 struct scatterlist *sg, int nents, 1999 enum dma_data_direction direction) 2000 { 2001 if (dev->dma_ops) 2002 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2003 else 2004 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2005 } 2006 2007 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2008 struct scatterlist *sg, int nents, 2009 enum dma_data_direction direction, 2010 struct dma_attrs *attrs) 2011 { 2012 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2013 } 2014 2015 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2016 struct scatterlist *sg, int nents, 2017 enum dma_data_direction direction, 2018 struct dma_attrs *attrs) 2019 { 2020 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2021 } 2022 /** 2023 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2024 * @dev: The device for which the DMA addresses were created 2025 * @sg: The scatter/gather entry 2026 */ 2027 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2028 struct scatterlist *sg) 2029 { 2030 if (dev->dma_ops) 2031 return dev->dma_ops->dma_address(dev, sg); 2032 return sg_dma_address(sg); 2033 } 2034 2035 /** 2036 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2037 * @dev: The device for which the DMA addresses were created 2038 * @sg: The scatter/gather entry 2039 */ 2040 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2041 struct scatterlist *sg) 2042 { 2043 if (dev->dma_ops) 2044 return dev->dma_ops->dma_len(dev, sg); 2045 return sg_dma_len(sg); 2046 } 2047 2048 /** 2049 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2050 * @dev: The device for which the DMA address was created 2051 * @addr: The DMA address 2052 * @size: The size of the region in bytes 2053 * @dir: The direction of the DMA 2054 */ 2055 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2056 u64 addr, 2057 size_t size, 2058 enum dma_data_direction dir) 2059 { 2060 if (dev->dma_ops) 2061 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2062 else 2063 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2064 } 2065 2066 /** 2067 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2068 * @dev: The device for which the DMA address was created 2069 * @addr: The DMA address 2070 * @size: The size of the region in bytes 2071 * @dir: The direction of the DMA 2072 */ 2073 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2074 u64 addr, 2075 size_t size, 2076 enum dma_data_direction dir) 2077 { 2078 if (dev->dma_ops) 2079 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2080 else 2081 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2082 } 2083 2084 /** 2085 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2086 * @dev: The device for which the DMA address is requested 2087 * @size: The size of the region to allocate in bytes 2088 * @dma_handle: A pointer for returning the DMA address of the region 2089 * @flag: memory allocator flags 2090 */ 2091 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2092 size_t size, 2093 u64 *dma_handle, 2094 gfp_t flag) 2095 { 2096 if (dev->dma_ops) 2097 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2098 else { 2099 dma_addr_t handle; 2100 void *ret; 2101 2102 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2103 *dma_handle = handle; 2104 return ret; 2105 } 2106 } 2107 2108 /** 2109 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2110 * @dev: The device for which the DMA addresses were allocated 2111 * @size: The size of the region 2112 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2113 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2114 */ 2115 static inline void ib_dma_free_coherent(struct ib_device *dev, 2116 size_t size, void *cpu_addr, 2117 u64 dma_handle) 2118 { 2119 if (dev->dma_ops) 2120 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2121 else 2122 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2123 } 2124 2125 /** 2126 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2127 * by an HCA. 2128 * @pd: The protection domain associated assigned to the registered region. 2129 * @phys_buf_array: Specifies a list of physical buffers to use in the 2130 * memory region. 2131 * @num_phys_buf: Specifies the size of the phys_buf_array. 2132 * @mr_access_flags: Specifies the memory access rights. 2133 * @iova_start: The offset of the region's starting I/O virtual address. 2134 */ 2135 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2136 struct ib_phys_buf *phys_buf_array, 2137 int num_phys_buf, 2138 int mr_access_flags, 2139 u64 *iova_start); 2140 2141 /** 2142 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2143 * Conceptually, this call performs the functions deregister memory region 2144 * followed by register physical memory region. Where possible, 2145 * resources are reused instead of deallocated and reallocated. 2146 * @mr: The memory region to modify. 2147 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2148 * properties of the memory region are being modified. 2149 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2150 * the new protection domain to associated with the memory region, 2151 * otherwise, this parameter is ignored. 2152 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2153 * field specifies a list of physical buffers to use in the new 2154 * translation, otherwise, this parameter is ignored. 2155 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2156 * field specifies the size of the phys_buf_array, otherwise, this 2157 * parameter is ignored. 2158 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2159 * field specifies the new memory access rights, otherwise, this 2160 * parameter is ignored. 2161 * @iova_start: The offset of the region's starting I/O virtual address. 2162 */ 2163 int ib_rereg_phys_mr(struct ib_mr *mr, 2164 int mr_rereg_mask, 2165 struct ib_pd *pd, 2166 struct ib_phys_buf *phys_buf_array, 2167 int num_phys_buf, 2168 int mr_access_flags, 2169 u64 *iova_start); 2170 2171 /** 2172 * ib_query_mr - Retrieves information about a specific memory region. 2173 * @mr: The memory region to retrieve information about. 2174 * @mr_attr: The attributes of the specified memory region. 2175 */ 2176 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2177 2178 /** 2179 * ib_dereg_mr - Deregisters a memory region and removes it from the 2180 * HCA translation table. 2181 * @mr: The memory region to deregister. 2182 */ 2183 int ib_dereg_mr(struct ib_mr *mr); 2184 2185 /** 2186 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2187 * IB_WR_FAST_REG_MR send work request. 2188 * @pd: The protection domain associated with the region. 2189 * @max_page_list_len: requested max physical buffer list length to be 2190 * used with fast register work requests for this MR. 2191 */ 2192 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2193 2194 /** 2195 * ib_alloc_fast_reg_page_list - Allocates a page list array 2196 * @device - ib device pointer. 2197 * @page_list_len - size of the page list array to be allocated. 2198 * 2199 * This allocates and returns a struct ib_fast_reg_page_list * and a 2200 * page_list array that is at least page_list_len in size. The actual 2201 * size is returned in max_page_list_len. The caller is responsible 2202 * for initializing the contents of the page_list array before posting 2203 * a send work request with the IB_WC_FAST_REG_MR opcode. 2204 * 2205 * The page_list array entries must be translated using one of the 2206 * ib_dma_*() functions just like the addresses passed to 2207 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2208 * ib_fast_reg_page_list must not be modified by the caller until the 2209 * IB_WC_FAST_REG_MR work request completes. 2210 */ 2211 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2212 struct ib_device *device, int page_list_len); 2213 2214 /** 2215 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2216 * page list array. 2217 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2218 */ 2219 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2220 2221 /** 2222 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2223 * R_Key and L_Key. 2224 * @mr - struct ib_mr pointer to be updated. 2225 * @newkey - new key to be used. 2226 */ 2227 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2228 { 2229 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2230 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2231 } 2232 2233 /** 2234 * ib_alloc_mw - Allocates a memory window. 2235 * @pd: The protection domain associated with the memory window. 2236 */ 2237 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 2238 2239 /** 2240 * ib_bind_mw - Posts a work request to the send queue of the specified 2241 * QP, which binds the memory window to the given address range and 2242 * remote access attributes. 2243 * @qp: QP to post the bind work request on. 2244 * @mw: The memory window to bind. 2245 * @mw_bind: Specifies information about the memory window, including 2246 * its address range, remote access rights, and associated memory region. 2247 */ 2248 static inline int ib_bind_mw(struct ib_qp *qp, 2249 struct ib_mw *mw, 2250 struct ib_mw_bind *mw_bind) 2251 { 2252 /* XXX reference counting in corresponding MR? */ 2253 return mw->device->bind_mw ? 2254 mw->device->bind_mw(qp, mw, mw_bind) : 2255 -ENOSYS; 2256 } 2257 2258 /** 2259 * ib_dealloc_mw - Deallocates a memory window. 2260 * @mw: The memory window to deallocate. 2261 */ 2262 int ib_dealloc_mw(struct ib_mw *mw); 2263 2264 /** 2265 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2266 * @pd: The protection domain associated with the unmapped region. 2267 * @mr_access_flags: Specifies the memory access rights. 2268 * @fmr_attr: Attributes of the unmapped region. 2269 * 2270 * A fast memory region must be mapped before it can be used as part of 2271 * a work request. 2272 */ 2273 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2274 int mr_access_flags, 2275 struct ib_fmr_attr *fmr_attr); 2276 2277 /** 2278 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2279 * @fmr: The fast memory region to associate with the pages. 2280 * @page_list: An array of physical pages to map to the fast memory region. 2281 * @list_len: The number of pages in page_list. 2282 * @iova: The I/O virtual address to use with the mapped region. 2283 */ 2284 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2285 u64 *page_list, int list_len, 2286 u64 iova) 2287 { 2288 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2289 } 2290 2291 /** 2292 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2293 * @fmr_list: A linked list of fast memory regions to unmap. 2294 */ 2295 int ib_unmap_fmr(struct list_head *fmr_list); 2296 2297 /** 2298 * ib_dealloc_fmr - Deallocates a fast memory region. 2299 * @fmr: The fast memory region to deallocate. 2300 */ 2301 int ib_dealloc_fmr(struct ib_fmr *fmr); 2302 2303 /** 2304 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2305 * @qp: QP to attach to the multicast group. The QP must be type 2306 * IB_QPT_UD. 2307 * @gid: Multicast group GID. 2308 * @lid: Multicast group LID in host byte order. 2309 * 2310 * In order to send and receive multicast packets, subnet 2311 * administration must have created the multicast group and configured 2312 * the fabric appropriately. The port associated with the specified 2313 * QP must also be a member of the multicast group. 2314 */ 2315 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2316 2317 /** 2318 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2319 * @qp: QP to detach from the multicast group. 2320 * @gid: Multicast group GID. 2321 * @lid: Multicast group LID in host byte order. 2322 */ 2323 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2324 2325 /** 2326 * ib_alloc_xrcd - Allocates an XRC domain. 2327 * @device: The device on which to allocate the XRC domain. 2328 */ 2329 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2330 2331 /** 2332 * ib_dealloc_xrcd - Deallocates an XRC domain. 2333 * @xrcd: The XRC domain to deallocate. 2334 */ 2335 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2336 2337 int ib_attach_flow(struct ib_qp *qp, struct ib_flow_spec *spec, int priority); 2338 int ib_detach_flow(struct ib_qp *qp, struct ib_flow_spec *spec, int priority); 2339 2340 #endif /* IB_VERBS_H */ 2341