1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 3 * 4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 6 * Copyright (c) 2004 Intel Corporation. All rights reserved. 7 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 11 * 12 * This software is available to you under a choice of one of two 13 * licenses. You may choose to be licensed under the terms of the GNU 14 * General Public License (GPL) Version 2, available from the file 15 * COPYING in the main directory of this source tree, or the 16 * OpenIB.org BSD license below: 17 * 18 * Redistribution and use in source and binary forms, with or 19 * without modification, are permitted provided that the following 20 * conditions are met: 21 * 22 * - Redistributions of source code must retain the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer. 25 * 26 * - Redistributions in binary form must reproduce the above 27 * copyright notice, this list of conditions and the following 28 * disclaimer in the documentation and/or other materials 29 * provided with the distribution. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 * SOFTWARE. 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 #include <linux/list.h> 50 #include <linux/rwsem.h> 51 #include <linux/scatterlist.h> 52 #include <linux/workqueue.h> 53 #include <linux/socket.h> 54 #include <linux/if_ether.h> 55 #include <net/ipv6.h> 56 #include <net/ip.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/rcupdate.h> 60 #include <linux/netdevice.h> 61 #include <linux/xarray.h> 62 #include <netinet/ip.h> 63 #include <uapi/rdma/ib_user_verbs.h> 64 #include <rdma/signature.h> 65 #include <uapi/rdma/rdma_user_ioctl.h> 66 #include <uapi/rdma/ib_user_ioctl_verbs.h> 67 68 #include <asm/atomic.h> 69 #include <asm/uaccess.h> 70 71 struct ib_uqp_object; 72 struct ib_usrq_object; 73 struct ib_uwq_object; 74 struct ifla_vf_info; 75 struct ifla_vf_stats; 76 struct ib_uverbs_file; 77 struct uverbs_attr_bundle; 78 79 enum ib_uverbs_advise_mr_advice; 80 81 extern struct workqueue_struct *ib_wq; 82 extern struct workqueue_struct *ib_comp_wq; 83 84 struct ib_ucq_object; 85 86 union ib_gid { 87 u8 raw[16]; 88 struct { 89 __be64 subnet_prefix; 90 __be64 interface_id; 91 } global; 92 }; 93 94 extern union ib_gid zgid; 95 96 enum ib_gid_type { 97 /* If link layer is Ethernet, this is RoCE V1 */ 98 IB_GID_TYPE_IB = 0, 99 IB_GID_TYPE_ROCE = 0, 100 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 101 IB_GID_TYPE_SIZE 102 }; 103 104 #define ROCE_V2_UDP_DPORT 4791 105 struct ib_gid_attr { 106 enum ib_gid_type gid_type; 107 if_t ndev; 108 }; 109 110 enum rdma_node_type { 111 /* IB values map to NodeInfo:NodeType. */ 112 RDMA_NODE_IB_CA = 1, 113 RDMA_NODE_IB_SWITCH, 114 RDMA_NODE_IB_ROUTER, 115 RDMA_NODE_RNIC, 116 RDMA_NODE_USNIC, 117 RDMA_NODE_USNIC_UDP, 118 }; 119 120 enum { 121 /* set the local administered indication */ 122 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 123 }; 124 125 enum rdma_transport_type { 126 RDMA_TRANSPORT_IB, 127 RDMA_TRANSPORT_IWARP, 128 RDMA_TRANSPORT_USNIC, 129 RDMA_TRANSPORT_USNIC_UDP 130 }; 131 132 enum rdma_protocol_type { 133 RDMA_PROTOCOL_IB, 134 RDMA_PROTOCOL_IBOE, 135 RDMA_PROTOCOL_IWARP, 136 RDMA_PROTOCOL_USNIC_UDP 137 }; 138 139 __attribute_const__ enum rdma_transport_type 140 rdma_node_get_transport(enum rdma_node_type node_type); 141 142 enum rdma_network_type { 143 RDMA_NETWORK_IB, 144 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 145 RDMA_NETWORK_IPV4, 146 RDMA_NETWORK_IPV6 147 }; 148 149 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 150 { 151 if (network_type == RDMA_NETWORK_IPV4 || 152 network_type == RDMA_NETWORK_IPV6) 153 return IB_GID_TYPE_ROCE_UDP_ENCAP; 154 155 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 156 return IB_GID_TYPE_IB; 157 } 158 159 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 160 union ib_gid *gid) 161 { 162 if (gid_type == IB_GID_TYPE_IB) 163 return RDMA_NETWORK_IB; 164 165 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 166 return RDMA_NETWORK_IPV4; 167 else 168 return RDMA_NETWORK_IPV6; 169 } 170 171 enum rdma_link_layer { 172 IB_LINK_LAYER_UNSPECIFIED, 173 IB_LINK_LAYER_INFINIBAND, 174 IB_LINK_LAYER_ETHERNET, 175 }; 176 177 enum ib_device_cap_flags { 178 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 179 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 180 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 181 IB_DEVICE_RAW_MULTI = (1 << 3), 182 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 183 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 184 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 185 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 186 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 187 IB_DEVICE_INIT_TYPE = (1 << 9), 188 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 189 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 190 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 191 IB_DEVICE_SRQ_RESIZE = (1 << 13), 192 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 193 194 /* 195 * This device supports a per-device lkey or stag that can be 196 * used without performing a memory registration for the local 197 * memory. Note that ULPs should never check this flag, but 198 * instead of use the local_dma_lkey flag in the ib_pd structure, 199 * which will always contain a usable lkey. 200 */ 201 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 202 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 203 IB_DEVICE_MEM_WINDOW = (1 << 17), 204 /* 205 * Devices should set IB_DEVICE_UD_IP_SUM if they support 206 * insertion of UDP and TCP checksum on outgoing UD IPoIB 207 * messages and can verify the validity of checksum for 208 * incoming messages. Setting this flag implies that the 209 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 210 */ 211 IB_DEVICE_UD_IP_CSUM = (1 << 18), 212 IB_DEVICE_UD_TSO = (1 << 19), 213 IB_DEVICE_XRC = (1 << 20), 214 215 /* 216 * This device supports the IB "base memory management extension", 217 * which includes support for fast registrations (IB_WR_REG_MR, 218 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 219 * also be set by any iWarp device which must support FRs to comply 220 * to the iWarp verbs spec. iWarp devices also support the 221 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 222 * stag. 223 */ 224 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 225 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 226 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 227 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 228 IB_DEVICE_RC_IP_CSUM = (1 << 25), 229 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 230 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 231 /* 232 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 233 * support execution of WQEs that involve synchronization 234 * of I/O operations with single completion queue managed 235 * by hardware. 236 */ 237 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 238 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 239 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 240 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 241 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 242 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 243 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 244 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 245 IB_DEVICE_KNOWSEPOCH = (1ULL << 35), 246 }; 247 248 enum ib_atomic_cap { 249 IB_ATOMIC_NONE, 250 IB_ATOMIC_HCA, 251 IB_ATOMIC_GLOB 252 }; 253 254 enum ib_odp_general_cap_bits { 255 IB_ODP_SUPPORT = 1 << 0, 256 }; 257 258 enum ib_odp_transport_cap_bits { 259 IB_ODP_SUPPORT_SEND = 1 << 0, 260 IB_ODP_SUPPORT_RECV = 1 << 1, 261 IB_ODP_SUPPORT_WRITE = 1 << 2, 262 IB_ODP_SUPPORT_READ = 1 << 3, 263 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 264 }; 265 266 struct ib_odp_caps { 267 uint64_t general_caps; 268 struct { 269 uint32_t rc_odp_caps; 270 uint32_t uc_odp_caps; 271 uint32_t ud_odp_caps; 272 uint32_t xrc_odp_caps; 273 } per_transport_caps; 274 }; 275 276 struct ib_rss_caps { 277 /* Corresponding bit will be set if qp type from 278 * 'enum ib_qp_type' is supported, e.g. 279 * supported_qpts |= 1 << IB_QPT_UD 280 */ 281 u32 supported_qpts; 282 u32 max_rwq_indirection_tables; 283 u32 max_rwq_indirection_table_size; 284 }; 285 286 enum ib_tm_cap_flags { 287 /* Support tag matching with rendezvous offload for RC transport */ 288 IB_TM_CAP_RNDV_RC = 1 << 0, 289 }; 290 291 struct ib_tm_caps { 292 /* Max size of RNDV header */ 293 u32 max_rndv_hdr_size; 294 /* Max number of entries in tag matching list */ 295 u32 max_num_tags; 296 /* From enum ib_tm_cap_flags */ 297 u32 flags; 298 /* Max number of outstanding list operations */ 299 u32 max_ops; 300 /* Max number of SGE in tag matching entry */ 301 u32 max_sge; 302 }; 303 304 enum ib_cq_creation_flags { 305 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 306 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 307 }; 308 309 struct ib_cq_init_attr { 310 unsigned int cqe; 311 u32 comp_vector; 312 u32 flags; 313 }; 314 315 enum ib_cq_attr_mask { 316 IB_CQ_MODERATE = 1 << 0, 317 }; 318 319 struct ib_cq_caps { 320 u16 max_cq_moderation_count; 321 u16 max_cq_moderation_period; 322 }; 323 324 struct ib_dm_mr_attr { 325 u64 length; 326 u64 offset; 327 u32 access_flags; 328 }; 329 330 struct ib_dm_alloc_attr { 331 u64 length; 332 u32 alignment; 333 u32 flags; 334 }; 335 336 struct ib_device_attr { 337 u64 fw_ver; 338 __be64 sys_image_guid; 339 u64 max_mr_size; 340 u64 page_size_cap; 341 u32 vendor_id; 342 u32 vendor_part_id; 343 u32 hw_ver; 344 int max_qp; 345 int max_qp_wr; 346 u64 device_cap_flags; 347 int max_sge; 348 int max_sge_rd; 349 int max_cq; 350 int max_cqe; 351 int max_mr; 352 int max_pd; 353 int max_qp_rd_atom; 354 int max_ee_rd_atom; 355 int max_res_rd_atom; 356 int max_qp_init_rd_atom; 357 int max_ee_init_rd_atom; 358 enum ib_atomic_cap atomic_cap; 359 enum ib_atomic_cap masked_atomic_cap; 360 int max_ee; 361 int max_rdd; 362 int max_mw; 363 int max_raw_ipv6_qp; 364 int max_raw_ethy_qp; 365 int max_mcast_grp; 366 int max_mcast_qp_attach; 367 int max_total_mcast_qp_attach; 368 int max_ah; 369 int max_fmr; 370 int max_map_per_fmr; 371 int max_srq; 372 int max_srq_wr; 373 union { 374 int max_srq_sge; 375 int max_send_sge; 376 int max_recv_sge; 377 }; 378 unsigned int max_fast_reg_page_list_len; 379 u16 max_pkeys; 380 u8 local_ca_ack_delay; 381 int sig_prot_cap; 382 int sig_guard_cap; 383 struct ib_odp_caps odp_caps; 384 uint64_t timestamp_mask; 385 uint64_t hca_core_clock; /* in KHZ */ 386 struct ib_rss_caps rss_caps; 387 u32 max_wq_type_rq; 388 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 389 struct ib_tm_caps tm_caps; 390 struct ib_cq_caps cq_caps; 391 u64 max_dm_size; 392 /* Max entries for sgl for optimized performance per READ */ 393 u32 max_sgl_rd; 394 }; 395 396 enum ib_mtu { 397 IB_MTU_256 = 1, 398 IB_MTU_512 = 2, 399 IB_MTU_1024 = 3, 400 IB_MTU_2048 = 4, 401 IB_MTU_4096 = 5 402 }; 403 404 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 405 { 406 switch (mtu) { 407 case IB_MTU_256: return 256; 408 case IB_MTU_512: return 512; 409 case IB_MTU_1024: return 1024; 410 case IB_MTU_2048: return 2048; 411 case IB_MTU_4096: return 4096; 412 default: return -1; 413 } 414 } 415 416 enum ib_port_state { 417 IB_PORT_NOP = 0, 418 IB_PORT_DOWN = 1, 419 IB_PORT_INIT = 2, 420 IB_PORT_ARMED = 3, 421 IB_PORT_ACTIVE = 4, 422 IB_PORT_ACTIVE_DEFER = 5, 423 IB_PORT_DUMMY = -1, /* force enum signed */ 424 }; 425 426 enum ib_port_cap_flags { 427 IB_PORT_SM = 1 << 1, 428 IB_PORT_NOTICE_SUP = 1 << 2, 429 IB_PORT_TRAP_SUP = 1 << 3, 430 IB_PORT_OPT_IPD_SUP = 1 << 4, 431 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 432 IB_PORT_SL_MAP_SUP = 1 << 6, 433 IB_PORT_MKEY_NVRAM = 1 << 7, 434 IB_PORT_PKEY_NVRAM = 1 << 8, 435 IB_PORT_LED_INFO_SUP = 1 << 9, 436 IB_PORT_SM_DISABLED = 1 << 10, 437 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 438 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 439 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 440 IB_PORT_CM_SUP = 1 << 16, 441 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 442 IB_PORT_REINIT_SUP = 1 << 18, 443 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 444 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 445 IB_PORT_DR_NOTICE_SUP = 1 << 21, 446 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 447 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 448 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 449 IB_PORT_CLIENT_REG_SUP = 1 << 25, 450 IB_PORT_IP_BASED_GIDS = 1 << 26, 451 }; 452 453 enum ib_port_phys_state { 454 IB_PORT_PHYS_STATE_SLEEP = 1, 455 IB_PORT_PHYS_STATE_POLLING = 2, 456 IB_PORT_PHYS_STATE_DISABLED = 3, 457 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 458 IB_PORT_PHYS_STATE_LINK_UP = 5, 459 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 460 IB_PORT_PHYS_STATE_PHY_TEST = 7, 461 }; 462 463 enum ib_port_width { 464 IB_WIDTH_1X = 1, 465 IB_WIDTH_2X = 16, 466 IB_WIDTH_4X = 2, 467 IB_WIDTH_8X = 4, 468 IB_WIDTH_12X = 8 469 }; 470 471 static inline int ib_width_enum_to_int(enum ib_port_width width) 472 { 473 switch (width) { 474 case IB_WIDTH_1X: return 1; 475 case IB_WIDTH_2X: return 2; 476 case IB_WIDTH_4X: return 4; 477 case IB_WIDTH_8X: return 8; 478 case IB_WIDTH_12X: return 12; 479 default: return -1; 480 } 481 } 482 483 enum ib_port_speed { 484 IB_SPEED_SDR = 1, 485 IB_SPEED_DDR = 2, 486 IB_SPEED_QDR = 4, 487 IB_SPEED_FDR10 = 8, 488 IB_SPEED_FDR = 16, 489 IB_SPEED_EDR = 32, 490 IB_SPEED_HDR = 64, 491 IB_SPEED_NDR = 128 492 }; 493 494 /** 495 * struct rdma_hw_stats 496 * @lock - Mutex to protect parallel write access to lifespan and values 497 * of counters, which are 64bits and not guaranteeed to be written 498 * atomicaly on 32bits systems. 499 * @timestamp - Used by the core code to track when the last update was 500 * @lifespan - Used by the core code to determine how old the counters 501 * should be before being updated again. Stored in jiffies, defaults 502 * to 10 milliseconds, drivers can override the default be specifying 503 * their own value during their allocation routine. 504 * @name - Array of pointers to static names used for the counters in 505 * directory. 506 * @num_counters - How many hardware counters there are. If name is 507 * shorter than this number, a kernel oops will result. Driver authors 508 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 509 * in their code to prevent this. 510 * @value - Array of u64 counters that are accessed by the sysfs code and 511 * filled in by the drivers get_stats routine 512 */ 513 struct rdma_hw_stats { 514 struct mutex lock; /* Protect lifespan and values[] */ 515 unsigned long timestamp; 516 unsigned long lifespan; 517 const char * const *names; 518 int num_counters; 519 u64 value[]; 520 }; 521 522 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 523 /** 524 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 525 * for drivers. 526 * @names - Array of static const char * 527 * @num_counters - How many elements in array 528 * @lifespan - How many milliseconds between updates 529 */ 530 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 531 const char * const *names, int num_counters, 532 unsigned long lifespan) 533 { 534 struct rdma_hw_stats *stats; 535 536 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 537 GFP_KERNEL); 538 if (!stats) 539 return NULL; 540 stats->names = names; 541 stats->num_counters = num_counters; 542 stats->lifespan = msecs_to_jiffies(lifespan); 543 544 return stats; 545 } 546 547 548 /* Define bits for the various functionality this port needs to be supported by 549 * the core. 550 */ 551 /* Management 0x00000FFF */ 552 #define RDMA_CORE_CAP_IB_MAD 0x00000001 553 #define RDMA_CORE_CAP_IB_SMI 0x00000002 554 #define RDMA_CORE_CAP_IB_CM 0x00000004 555 #define RDMA_CORE_CAP_IW_CM 0x00000008 556 #define RDMA_CORE_CAP_IB_SA 0x00000010 557 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 558 559 /* Address format 0x000FF000 */ 560 #define RDMA_CORE_CAP_AF_IB 0x00001000 561 #define RDMA_CORE_CAP_ETH_AH 0x00002000 562 563 /* Protocol 0xFFF00000 */ 564 #define RDMA_CORE_CAP_PROT_IB 0x00100000 565 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 566 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 567 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 568 569 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 570 | RDMA_CORE_CAP_IB_MAD \ 571 | RDMA_CORE_CAP_IB_SMI \ 572 | RDMA_CORE_CAP_IB_CM \ 573 | RDMA_CORE_CAP_IB_SA \ 574 | RDMA_CORE_CAP_AF_IB) 575 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 576 | RDMA_CORE_CAP_IB_MAD \ 577 | RDMA_CORE_CAP_IB_CM \ 578 | RDMA_CORE_CAP_AF_IB \ 579 | RDMA_CORE_CAP_ETH_AH) 580 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 581 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 582 | RDMA_CORE_CAP_IB_MAD \ 583 | RDMA_CORE_CAP_IB_CM \ 584 | RDMA_CORE_CAP_AF_IB \ 585 | RDMA_CORE_CAP_ETH_AH) 586 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 587 | RDMA_CORE_CAP_IW_CM) 588 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 589 | RDMA_CORE_CAP_OPA_MAD) 590 591 struct ib_port_attr { 592 u64 subnet_prefix; 593 enum ib_port_state state; 594 enum ib_mtu max_mtu; 595 enum ib_mtu active_mtu; 596 int gid_tbl_len; 597 unsigned int ip_gids:1; 598 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 599 u32 port_cap_flags; 600 u32 max_msg_sz; 601 u32 bad_pkey_cntr; 602 u32 qkey_viol_cntr; 603 u16 pkey_tbl_len; 604 u16 lid; 605 u16 sm_lid; 606 u8 lmc; 607 u8 max_vl_num; 608 u8 sm_sl; 609 u8 subnet_timeout; 610 u8 init_type_reply; 611 u8 active_width; 612 u8 active_speed; 613 u8 phys_state; 614 bool grh_required; 615 }; 616 617 enum ib_device_modify_flags { 618 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 619 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 620 }; 621 622 #define IB_DEVICE_NODE_DESC_MAX 64 623 624 struct ib_device_modify { 625 u64 sys_image_guid; 626 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 627 }; 628 629 enum ib_port_modify_flags { 630 IB_PORT_SHUTDOWN = 1, 631 IB_PORT_INIT_TYPE = (1<<2), 632 IB_PORT_RESET_QKEY_CNTR = (1<<3) 633 }; 634 635 struct ib_port_modify { 636 u32 set_port_cap_mask; 637 u32 clr_port_cap_mask; 638 u8 init_type; 639 }; 640 641 enum ib_event_type { 642 IB_EVENT_CQ_ERR, 643 IB_EVENT_QP_FATAL, 644 IB_EVENT_QP_REQ_ERR, 645 IB_EVENT_QP_ACCESS_ERR, 646 IB_EVENT_COMM_EST, 647 IB_EVENT_SQ_DRAINED, 648 IB_EVENT_PATH_MIG, 649 IB_EVENT_PATH_MIG_ERR, 650 IB_EVENT_DEVICE_FATAL, 651 IB_EVENT_PORT_ACTIVE, 652 IB_EVENT_PORT_ERR, 653 IB_EVENT_LID_CHANGE, 654 IB_EVENT_PKEY_CHANGE, 655 IB_EVENT_SM_CHANGE, 656 IB_EVENT_SRQ_ERR, 657 IB_EVENT_SRQ_LIMIT_REACHED, 658 IB_EVENT_QP_LAST_WQE_REACHED, 659 IB_EVENT_CLIENT_REREGISTER, 660 IB_EVENT_GID_CHANGE, 661 IB_EVENT_WQ_FATAL, 662 }; 663 664 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 665 666 struct ib_event { 667 struct ib_device *device; 668 union { 669 struct ib_cq *cq; 670 struct ib_qp *qp; 671 struct ib_srq *srq; 672 struct ib_wq *wq; 673 u8 port_num; 674 } element; 675 enum ib_event_type event; 676 }; 677 678 struct ib_event_handler { 679 struct ib_device *device; 680 void (*handler)(struct ib_event_handler *, struct ib_event *); 681 struct list_head list; 682 }; 683 684 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 685 do { \ 686 (_ptr)->device = _device; \ 687 (_ptr)->handler = _handler; \ 688 INIT_LIST_HEAD(&(_ptr)->list); \ 689 } while (0) 690 691 struct ib_global_route { 692 union ib_gid dgid; 693 u32 flow_label; 694 u8 sgid_index; 695 u8 hop_limit; 696 u8 traffic_class; 697 }; 698 699 struct ib_grh { 700 __be32 version_tclass_flow; 701 __be16 paylen; 702 u8 next_hdr; 703 u8 hop_limit; 704 union ib_gid sgid; 705 union ib_gid dgid; 706 }; 707 708 union rdma_network_hdr { 709 struct ib_grh ibgrh; 710 struct { 711 /* The IB spec states that if it's IPv4, the header 712 * is located in the last 20 bytes of the header. 713 */ 714 u8 reserved[20]; 715 struct ip roce4grh; 716 }; 717 }; 718 719 enum { 720 IB_MULTICAST_QPN = 0xffffff 721 }; 722 723 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 724 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 725 726 enum ib_ah_flags { 727 IB_AH_GRH = 1 728 }; 729 730 enum ib_rate { 731 IB_RATE_PORT_CURRENT = 0, 732 IB_RATE_2_5_GBPS = 2, 733 IB_RATE_5_GBPS = 5, 734 IB_RATE_10_GBPS = 3, 735 IB_RATE_20_GBPS = 6, 736 IB_RATE_30_GBPS = 4, 737 IB_RATE_40_GBPS = 7, 738 IB_RATE_60_GBPS = 8, 739 IB_RATE_80_GBPS = 9, 740 IB_RATE_120_GBPS = 10, 741 IB_RATE_14_GBPS = 11, 742 IB_RATE_56_GBPS = 12, 743 IB_RATE_112_GBPS = 13, 744 IB_RATE_168_GBPS = 14, 745 IB_RATE_25_GBPS = 15, 746 IB_RATE_100_GBPS = 16, 747 IB_RATE_200_GBPS = 17, 748 IB_RATE_300_GBPS = 18, 749 IB_RATE_28_GBPS = 19, 750 IB_RATE_50_GBPS = 20, 751 IB_RATE_400_GBPS = 21, 752 IB_RATE_600_GBPS = 22, 753 }; 754 755 /** 756 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 757 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 758 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 759 * @rate: rate to convert. 760 */ 761 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 762 763 /** 764 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 765 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 766 * @rate: rate to convert. 767 */ 768 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 769 770 771 /** 772 * enum ib_mr_type - memory region type 773 * @IB_MR_TYPE_MEM_REG: memory region that is used for 774 * normal registration 775 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 776 * register any arbitrary sg lists (without 777 * the normal mr constraints - see 778 * ib_map_mr_sg) 779 * @IB_MR_TYPE_DM: memory region that is used for device 780 * memory registration 781 * @IB_MR_TYPE_USER: memory region that is used for the user-space 782 * application 783 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 784 * without address translations (VA=PA) 785 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 786 * data integrity operations 787 */ 788 enum ib_mr_type { 789 IB_MR_TYPE_MEM_REG, 790 IB_MR_TYPE_SG_GAPS, 791 IB_MR_TYPE_DM, 792 IB_MR_TYPE_USER, 793 IB_MR_TYPE_DMA, 794 IB_MR_TYPE_INTEGRITY, 795 }; 796 797 enum ib_mr_status_check { 798 IB_MR_CHECK_SIG_STATUS = 1, 799 }; 800 801 /** 802 * struct ib_mr_status - Memory region status container 803 * 804 * @fail_status: Bitmask of MR checks status. For each 805 * failed check a corresponding status bit is set. 806 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 807 * failure. 808 */ 809 struct ib_mr_status { 810 u32 fail_status; 811 struct ib_sig_err sig_err; 812 }; 813 814 /** 815 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 816 * enum. 817 * @mult: multiple to convert. 818 */ 819 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 820 821 struct ib_ah_attr { 822 struct ib_global_route grh; 823 u16 dlid; 824 u8 sl; 825 u8 src_path_bits; 826 u8 static_rate; 827 u8 ah_flags; 828 u8 port_num; 829 u8 dmac[ETH_ALEN]; 830 }; 831 832 enum ib_wc_status { 833 IB_WC_SUCCESS, 834 IB_WC_LOC_LEN_ERR, 835 IB_WC_LOC_QP_OP_ERR, 836 IB_WC_LOC_EEC_OP_ERR, 837 IB_WC_LOC_PROT_ERR, 838 IB_WC_WR_FLUSH_ERR, 839 IB_WC_MW_BIND_ERR, 840 IB_WC_BAD_RESP_ERR, 841 IB_WC_LOC_ACCESS_ERR, 842 IB_WC_REM_INV_REQ_ERR, 843 IB_WC_REM_ACCESS_ERR, 844 IB_WC_REM_OP_ERR, 845 IB_WC_RETRY_EXC_ERR, 846 IB_WC_RNR_RETRY_EXC_ERR, 847 IB_WC_LOC_RDD_VIOL_ERR, 848 IB_WC_REM_INV_RD_REQ_ERR, 849 IB_WC_REM_ABORT_ERR, 850 IB_WC_INV_EECN_ERR, 851 IB_WC_INV_EEC_STATE_ERR, 852 IB_WC_FATAL_ERR, 853 IB_WC_RESP_TIMEOUT_ERR, 854 IB_WC_GENERAL_ERR 855 }; 856 857 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 858 859 enum ib_wc_opcode { 860 IB_WC_SEND, 861 IB_WC_RDMA_WRITE, 862 IB_WC_RDMA_READ, 863 IB_WC_COMP_SWAP, 864 IB_WC_FETCH_ADD, 865 IB_WC_LSO, 866 IB_WC_LOCAL_INV, 867 IB_WC_REG_MR, 868 IB_WC_MASKED_COMP_SWAP, 869 IB_WC_MASKED_FETCH_ADD, 870 /* 871 * Set value of IB_WC_RECV so consumers can test if a completion is a 872 * receive by testing (opcode & IB_WC_RECV). 873 */ 874 IB_WC_RECV = 1 << 7, 875 IB_WC_RECV_RDMA_WITH_IMM, 876 IB_WC_DUMMY = -1, /* force enum signed */ 877 }; 878 879 enum ib_wc_flags { 880 IB_WC_GRH = 1, 881 IB_WC_WITH_IMM = (1<<1), 882 IB_WC_WITH_INVALIDATE = (1<<2), 883 IB_WC_IP_CSUM_OK = (1<<3), 884 IB_WC_WITH_SMAC = (1<<4), 885 IB_WC_WITH_VLAN = (1<<5), 886 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 887 }; 888 889 struct ib_wc { 890 union { 891 u64 wr_id; 892 struct ib_cqe *wr_cqe; 893 }; 894 enum ib_wc_status status; 895 enum ib_wc_opcode opcode; 896 u32 vendor_err; 897 u32 byte_len; 898 struct ib_qp *qp; 899 union { 900 __be32 imm_data; 901 u32 invalidate_rkey; 902 } ex; 903 u32 src_qp; 904 int wc_flags; 905 u16 pkey_index; 906 u16 slid; 907 u8 sl; 908 u8 dlid_path_bits; 909 u8 port_num; /* valid only for DR SMPs on switches */ 910 u8 smac[ETH_ALEN]; 911 u16 vlan_id; 912 u8 network_hdr_type; 913 }; 914 915 enum ib_cq_notify_flags { 916 IB_CQ_SOLICITED = 1 << 0, 917 IB_CQ_NEXT_COMP = 1 << 1, 918 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 919 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 920 }; 921 922 enum ib_srq_type { 923 IB_SRQT_BASIC, 924 IB_SRQT_XRC, 925 IB_SRQT_TM, 926 }; 927 928 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 929 { 930 return srq_type == IB_SRQT_XRC || 931 srq_type == IB_SRQT_TM; 932 } 933 934 enum ib_srq_attr_mask { 935 IB_SRQ_MAX_WR = 1 << 0, 936 IB_SRQ_LIMIT = 1 << 1, 937 }; 938 939 struct ib_srq_attr { 940 u32 max_wr; 941 u32 max_sge; 942 u32 srq_limit; 943 }; 944 945 struct ib_srq_init_attr { 946 void (*event_handler)(struct ib_event *, void *); 947 void *srq_context; 948 struct ib_srq_attr attr; 949 enum ib_srq_type srq_type; 950 951 struct { 952 struct ib_cq *cq; 953 union { 954 struct { 955 struct ib_xrcd *xrcd; 956 } xrc; 957 958 struct { 959 u32 max_num_tags; 960 } tag_matching; 961 }; 962 } ext; 963 }; 964 965 struct ib_qp_cap { 966 u32 max_send_wr; 967 u32 max_recv_wr; 968 u32 max_send_sge; 969 u32 max_recv_sge; 970 u32 max_inline_data; 971 972 /* 973 * Maximum number of rdma_rw_ctx structures in flight at a time. 974 * ib_create_qp() will calculate the right amount of neededed WRs 975 * and MRs based on this. 976 */ 977 u32 max_rdma_ctxs; 978 }; 979 980 enum ib_sig_type { 981 IB_SIGNAL_ALL_WR, 982 IB_SIGNAL_REQ_WR 983 }; 984 985 enum ib_qp_type { 986 /* 987 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 988 * here (and in that order) since the MAD layer uses them as 989 * indices into a 2-entry table. 990 */ 991 IB_QPT_SMI, 992 IB_QPT_GSI, 993 994 IB_QPT_RC, 995 IB_QPT_UC, 996 IB_QPT_UD, 997 IB_QPT_RAW_IPV6, 998 IB_QPT_RAW_ETHERTYPE, 999 IB_QPT_RAW_PACKET = 8, 1000 IB_QPT_XRC_INI = 9, 1001 IB_QPT_XRC_TGT, 1002 IB_QPT_MAX, 1003 IB_QPT_DRIVER = 0xFF, 1004 /* Reserve a range for qp types internal to the low level driver. 1005 * These qp types will not be visible at the IB core layer, so the 1006 * IB_QPT_MAX usages should not be affected in the core layer 1007 */ 1008 IB_QPT_RESERVED1 = 0x1000, 1009 IB_QPT_RESERVED2, 1010 IB_QPT_RESERVED3, 1011 IB_QPT_RESERVED4, 1012 IB_QPT_RESERVED5, 1013 IB_QPT_RESERVED6, 1014 IB_QPT_RESERVED7, 1015 IB_QPT_RESERVED8, 1016 IB_QPT_RESERVED9, 1017 IB_QPT_RESERVED10, 1018 }; 1019 1020 enum ib_qp_create_flags { 1021 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1022 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1023 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1024 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1025 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1026 IB_QP_CREATE_NETIF_QP = 1 << 5, 1027 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1028 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1029 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1030 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1031 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1032 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1033 /* reserve bits 26-31 for low level drivers' internal use */ 1034 IB_QP_CREATE_RESERVED_START = 1 << 26, 1035 IB_QP_CREATE_RESERVED_END = 1 << 31, 1036 }; 1037 1038 /* 1039 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1040 * callback to destroy the passed in QP. 1041 */ 1042 1043 struct ib_qp_init_attr { 1044 void (*event_handler)(struct ib_event *, void *); 1045 void *qp_context; 1046 struct ib_cq *send_cq; 1047 struct ib_cq *recv_cq; 1048 struct ib_srq *srq; 1049 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1050 struct ib_qp_cap cap; 1051 enum ib_sig_type sq_sig_type; 1052 enum ib_qp_type qp_type; 1053 enum ib_qp_create_flags create_flags; 1054 1055 /* 1056 * Only needed for special QP types, or when using the RW API. 1057 */ 1058 u8 port_num; 1059 struct ib_rwq_ind_table *rwq_ind_tbl; 1060 u32 source_qpn; 1061 }; 1062 1063 struct ib_qp_open_attr { 1064 void (*event_handler)(struct ib_event *, void *); 1065 void *qp_context; 1066 u32 qp_num; 1067 enum ib_qp_type qp_type; 1068 }; 1069 1070 enum ib_rnr_timeout { 1071 IB_RNR_TIMER_655_36 = 0, 1072 IB_RNR_TIMER_000_01 = 1, 1073 IB_RNR_TIMER_000_02 = 2, 1074 IB_RNR_TIMER_000_03 = 3, 1075 IB_RNR_TIMER_000_04 = 4, 1076 IB_RNR_TIMER_000_06 = 5, 1077 IB_RNR_TIMER_000_08 = 6, 1078 IB_RNR_TIMER_000_12 = 7, 1079 IB_RNR_TIMER_000_16 = 8, 1080 IB_RNR_TIMER_000_24 = 9, 1081 IB_RNR_TIMER_000_32 = 10, 1082 IB_RNR_TIMER_000_48 = 11, 1083 IB_RNR_TIMER_000_64 = 12, 1084 IB_RNR_TIMER_000_96 = 13, 1085 IB_RNR_TIMER_001_28 = 14, 1086 IB_RNR_TIMER_001_92 = 15, 1087 IB_RNR_TIMER_002_56 = 16, 1088 IB_RNR_TIMER_003_84 = 17, 1089 IB_RNR_TIMER_005_12 = 18, 1090 IB_RNR_TIMER_007_68 = 19, 1091 IB_RNR_TIMER_010_24 = 20, 1092 IB_RNR_TIMER_015_36 = 21, 1093 IB_RNR_TIMER_020_48 = 22, 1094 IB_RNR_TIMER_030_72 = 23, 1095 IB_RNR_TIMER_040_96 = 24, 1096 IB_RNR_TIMER_061_44 = 25, 1097 IB_RNR_TIMER_081_92 = 26, 1098 IB_RNR_TIMER_122_88 = 27, 1099 IB_RNR_TIMER_163_84 = 28, 1100 IB_RNR_TIMER_245_76 = 29, 1101 IB_RNR_TIMER_327_68 = 30, 1102 IB_RNR_TIMER_491_52 = 31 1103 }; 1104 1105 enum ib_qp_attr_mask { 1106 IB_QP_STATE = 1, 1107 IB_QP_CUR_STATE = (1<<1), 1108 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1109 IB_QP_ACCESS_FLAGS = (1<<3), 1110 IB_QP_PKEY_INDEX = (1<<4), 1111 IB_QP_PORT = (1<<5), 1112 IB_QP_QKEY = (1<<6), 1113 IB_QP_AV = (1<<7), 1114 IB_QP_PATH_MTU = (1<<8), 1115 IB_QP_TIMEOUT = (1<<9), 1116 IB_QP_RETRY_CNT = (1<<10), 1117 IB_QP_RNR_RETRY = (1<<11), 1118 IB_QP_RQ_PSN = (1<<12), 1119 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1120 IB_QP_ALT_PATH = (1<<14), 1121 IB_QP_MIN_RNR_TIMER = (1<<15), 1122 IB_QP_SQ_PSN = (1<<16), 1123 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1124 IB_QP_PATH_MIG_STATE = (1<<18), 1125 IB_QP_CAP = (1<<19), 1126 IB_QP_DEST_QPN = (1<<20), 1127 IB_QP_RESERVED1 = (1<<21), 1128 IB_QP_RESERVED2 = (1<<22), 1129 IB_QP_RESERVED3 = (1<<23), 1130 IB_QP_RESERVED4 = (1<<24), 1131 IB_QP_RATE_LIMIT = (1<<25), 1132 }; 1133 1134 enum ib_qp_state { 1135 IB_QPS_RESET, 1136 IB_QPS_INIT, 1137 IB_QPS_RTR, 1138 IB_QPS_RTS, 1139 IB_QPS_SQD, 1140 IB_QPS_SQE, 1141 IB_QPS_ERR, 1142 IB_QPS_DUMMY = -1, /* force enum signed */ 1143 }; 1144 1145 enum ib_mig_state { 1146 IB_MIG_MIGRATED, 1147 IB_MIG_REARM, 1148 IB_MIG_ARMED 1149 }; 1150 1151 enum ib_mw_type { 1152 IB_MW_TYPE_1 = 1, 1153 IB_MW_TYPE_2 = 2 1154 }; 1155 1156 struct ib_qp_attr { 1157 enum ib_qp_state qp_state; 1158 enum ib_qp_state cur_qp_state; 1159 enum ib_mtu path_mtu; 1160 enum ib_mig_state path_mig_state; 1161 u32 qkey; 1162 u32 rq_psn; 1163 u32 sq_psn; 1164 u32 dest_qp_num; 1165 int qp_access_flags; 1166 struct ib_qp_cap cap; 1167 struct ib_ah_attr ah_attr; 1168 struct ib_ah_attr alt_ah_attr; 1169 u16 pkey_index; 1170 u16 alt_pkey_index; 1171 u8 en_sqd_async_notify; 1172 u8 sq_draining; 1173 u8 max_rd_atomic; 1174 u8 max_dest_rd_atomic; 1175 u8 min_rnr_timer; 1176 u8 port_num; 1177 u8 timeout; 1178 u8 retry_cnt; 1179 u8 rnr_retry; 1180 u8 alt_port_num; 1181 u8 alt_timeout; 1182 u32 rate_limit; 1183 }; 1184 1185 enum ib_wr_opcode { 1186 IB_WR_RDMA_WRITE, 1187 IB_WR_RDMA_WRITE_WITH_IMM, 1188 IB_WR_SEND, 1189 IB_WR_SEND_WITH_IMM, 1190 IB_WR_RDMA_READ, 1191 IB_WR_ATOMIC_CMP_AND_SWP, 1192 IB_WR_ATOMIC_FETCH_AND_ADD, 1193 IB_WR_LSO, 1194 IB_WR_SEND_WITH_INV, 1195 IB_WR_RDMA_READ_WITH_INV, 1196 IB_WR_LOCAL_INV, 1197 IB_WR_REG_MR, 1198 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1199 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1200 IB_WR_REG_SIG_MR, 1201 /* reserve values for low level drivers' internal use. 1202 * These values will not be used at all in the ib core layer. 1203 */ 1204 IB_WR_RESERVED1 = 0xf0, 1205 IB_WR_RESERVED2, 1206 IB_WR_RESERVED3, 1207 IB_WR_RESERVED4, 1208 IB_WR_RESERVED5, 1209 IB_WR_RESERVED6, 1210 IB_WR_RESERVED7, 1211 IB_WR_RESERVED8, 1212 IB_WR_RESERVED9, 1213 IB_WR_RESERVED10, 1214 IB_WR_DUMMY = -1, /* force enum signed */ 1215 }; 1216 1217 enum ib_send_flags { 1218 IB_SEND_FENCE = 1, 1219 IB_SEND_SIGNALED = (1<<1), 1220 IB_SEND_SOLICITED = (1<<2), 1221 IB_SEND_INLINE = (1<<3), 1222 IB_SEND_IP_CSUM = (1<<4), 1223 1224 /* reserve bits 26-31 for low level drivers' internal use */ 1225 IB_SEND_RESERVED_START = (1 << 26), 1226 IB_SEND_RESERVED_END = (1 << 31), 1227 }; 1228 1229 struct ib_sge { 1230 u64 addr; 1231 u32 length; 1232 u32 lkey; 1233 }; 1234 1235 struct ib_cqe { 1236 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1237 }; 1238 1239 struct ib_send_wr { 1240 struct ib_send_wr *next; 1241 union { 1242 u64 wr_id; 1243 struct ib_cqe *wr_cqe; 1244 }; 1245 struct ib_sge *sg_list; 1246 int num_sge; 1247 enum ib_wr_opcode opcode; 1248 int send_flags; 1249 union { 1250 __be32 imm_data; 1251 u32 invalidate_rkey; 1252 } ex; 1253 }; 1254 1255 struct ib_rdma_wr { 1256 struct ib_send_wr wr; 1257 u64 remote_addr; 1258 u32 rkey; 1259 }; 1260 1261 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1262 { 1263 return container_of(wr, struct ib_rdma_wr, wr); 1264 } 1265 1266 struct ib_atomic_wr { 1267 struct ib_send_wr wr; 1268 u64 remote_addr; 1269 u64 compare_add; 1270 u64 swap; 1271 u64 compare_add_mask; 1272 u64 swap_mask; 1273 u32 rkey; 1274 }; 1275 1276 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1277 { 1278 return container_of(wr, struct ib_atomic_wr, wr); 1279 } 1280 1281 struct ib_ud_wr { 1282 struct ib_send_wr wr; 1283 struct ib_ah *ah; 1284 void *header; 1285 int hlen; 1286 int mss; 1287 u32 remote_qpn; 1288 u32 remote_qkey; 1289 u16 pkey_index; /* valid for GSI only */ 1290 u8 port_num; /* valid for DR SMPs on switch only */ 1291 }; 1292 1293 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1294 { 1295 return container_of(wr, struct ib_ud_wr, wr); 1296 } 1297 1298 struct ib_reg_wr { 1299 struct ib_send_wr wr; 1300 struct ib_mr *mr; 1301 u32 key; 1302 int access; 1303 }; 1304 1305 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1306 { 1307 return container_of(wr, struct ib_reg_wr, wr); 1308 } 1309 1310 struct ib_sig_handover_wr { 1311 struct ib_send_wr wr; 1312 struct ib_sig_attrs *sig_attrs; 1313 struct ib_mr *sig_mr; 1314 int access_flags; 1315 struct ib_sge *prot; 1316 }; 1317 1318 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr) 1319 { 1320 return container_of(wr, struct ib_sig_handover_wr, wr); 1321 } 1322 1323 struct ib_recv_wr { 1324 struct ib_recv_wr *next; 1325 union { 1326 u64 wr_id; 1327 struct ib_cqe *wr_cqe; 1328 }; 1329 struct ib_sge *sg_list; 1330 int num_sge; 1331 }; 1332 1333 enum ib_access_flags { 1334 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1335 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1336 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1337 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1338 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1339 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1340 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1341 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1342 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1343 1344 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1345 IB_ACCESS_SUPPORTED = 1346 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1347 }; 1348 1349 /* 1350 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1351 * are hidden here instead of a uapi header! 1352 */ 1353 enum ib_mr_rereg_flags { 1354 IB_MR_REREG_TRANS = 1, 1355 IB_MR_REREG_PD = (1<<1), 1356 IB_MR_REREG_ACCESS = (1<<2), 1357 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1358 }; 1359 1360 struct ib_fmr_attr { 1361 int max_pages; 1362 int max_maps; 1363 u8 page_shift; 1364 }; 1365 1366 struct ib_umem; 1367 1368 enum rdma_remove_reason { 1369 /* 1370 * Userspace requested uobject deletion or initial try 1371 * to remove uobject via cleanup. Call could fail 1372 */ 1373 RDMA_REMOVE_DESTROY, 1374 /* Context deletion. This call should delete the actual object itself */ 1375 RDMA_REMOVE_CLOSE, 1376 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1377 RDMA_REMOVE_DRIVER_REMOVE, 1378 /* uobj is being cleaned-up before being committed */ 1379 RDMA_REMOVE_ABORT, 1380 }; 1381 1382 struct ib_rdmacg_object { 1383 }; 1384 1385 struct ib_ucontext { 1386 struct ib_device *device; 1387 struct ib_uverbs_file *ufile; 1388 /* 1389 * 'closing' can be read by the driver only during a destroy callback, 1390 * it is set when we are closing the file descriptor and indicates 1391 * that mm_sem may be locked. 1392 */ 1393 bool closing; 1394 1395 bool cleanup_retryable; 1396 1397 struct ib_rdmacg_object cg_obj; 1398 /* 1399 * Implementation details of the RDMA core, don't use in drivers: 1400 */ 1401 struct xarray mmap_xa; 1402 }; 1403 1404 struct ib_uobject { 1405 u64 user_handle; /* handle given to us by userspace */ 1406 /* ufile & ucontext owning this object */ 1407 struct ib_uverbs_file *ufile; 1408 /* FIXME, save memory: ufile->context == context */ 1409 struct ib_ucontext *context; /* associated user context */ 1410 void *object; /* containing object */ 1411 struct list_head list; /* link to context's list */ 1412 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1413 int id; /* index into kernel idr */ 1414 struct kref ref; 1415 atomic_t usecnt; /* protects exclusive access */ 1416 struct rcu_head rcu; /* kfree_rcu() overhead */ 1417 1418 const struct uverbs_api_object *uapi_object; 1419 }; 1420 1421 struct ib_udata { 1422 const u8 __user *inbuf; 1423 u8 __user *outbuf; 1424 size_t inlen; 1425 size_t outlen; 1426 }; 1427 1428 struct ib_pd { 1429 u32 local_dma_lkey; 1430 u32 flags; 1431 struct ib_device *device; 1432 struct ib_uobject *uobject; 1433 atomic_t usecnt; /* count all resources */ 1434 1435 u32 unsafe_global_rkey; 1436 1437 /* 1438 * Implementation details of the RDMA core, don't use in drivers: 1439 */ 1440 struct ib_mr *__internal_mr; 1441 }; 1442 1443 struct ib_xrcd { 1444 struct ib_device *device; 1445 atomic_t usecnt; /* count all exposed resources */ 1446 struct inode *inode; 1447 1448 struct mutex tgt_qp_mutex; 1449 struct list_head tgt_qp_list; 1450 }; 1451 1452 struct ib_ah { 1453 struct ib_device *device; 1454 struct ib_pd *pd; 1455 struct ib_uobject *uobject; 1456 }; 1457 1458 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1459 1460 enum ib_poll_context { 1461 IB_POLL_DIRECT, /* caller context, no hw completions */ 1462 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1463 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1464 }; 1465 1466 struct ib_cq { 1467 struct ib_device *device; 1468 struct ib_ucq_object *uobject; 1469 ib_comp_handler comp_handler; 1470 void (*event_handler)(struct ib_event *, void *); 1471 void *cq_context; 1472 int cqe; 1473 atomic_t usecnt; /* count number of work queues */ 1474 enum ib_poll_context poll_ctx; 1475 struct work_struct work; 1476 }; 1477 1478 struct ib_srq { 1479 struct ib_device *device; 1480 struct ib_pd *pd; 1481 struct ib_usrq_object *uobject; 1482 void (*event_handler)(struct ib_event *, void *); 1483 void *srq_context; 1484 enum ib_srq_type srq_type; 1485 atomic_t usecnt; 1486 1487 struct { 1488 struct ib_cq *cq; 1489 union { 1490 struct { 1491 struct ib_xrcd *xrcd; 1492 u32 srq_num; 1493 } xrc; 1494 }; 1495 } ext; 1496 }; 1497 1498 enum ib_raw_packet_caps { 1499 /* Strip cvlan from incoming packet and report it in the matching work 1500 * completion is supported. 1501 */ 1502 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1503 /* Scatter FCS field of an incoming packet to host memory is supported. 1504 */ 1505 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1506 /* Checksum offloads are supported (for both send and receive). */ 1507 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1508 }; 1509 1510 enum ib_wq_type { 1511 IB_WQT_RQ 1512 }; 1513 1514 enum ib_wq_state { 1515 IB_WQS_RESET, 1516 IB_WQS_RDY, 1517 IB_WQS_ERR 1518 }; 1519 1520 struct ib_wq { 1521 struct ib_device *device; 1522 struct ib_uwq_object *uobject; 1523 void *wq_context; 1524 void (*event_handler)(struct ib_event *, void *); 1525 struct ib_pd *pd; 1526 struct ib_cq *cq; 1527 u32 wq_num; 1528 enum ib_wq_state state; 1529 enum ib_wq_type wq_type; 1530 atomic_t usecnt; 1531 }; 1532 1533 enum ib_wq_flags { 1534 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1535 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1536 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1537 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1538 }; 1539 1540 struct ib_wq_init_attr { 1541 void *wq_context; 1542 enum ib_wq_type wq_type; 1543 u32 max_wr; 1544 u32 max_sge; 1545 struct ib_cq *cq; 1546 void (*event_handler)(struct ib_event *, void *); 1547 u32 create_flags; /* Use enum ib_wq_flags */ 1548 }; 1549 1550 enum ib_wq_attr_mask { 1551 IB_WQ_STATE = 1 << 0, 1552 IB_WQ_CUR_STATE = 1 << 1, 1553 IB_WQ_FLAGS = 1 << 2, 1554 }; 1555 1556 struct ib_wq_attr { 1557 enum ib_wq_state wq_state; 1558 enum ib_wq_state curr_wq_state; 1559 u32 flags; /* Use enum ib_wq_flags */ 1560 u32 flags_mask; /* Use enum ib_wq_flags */ 1561 }; 1562 1563 struct ib_rwq_ind_table { 1564 struct ib_device *device; 1565 struct ib_uobject *uobject; 1566 atomic_t usecnt; 1567 u32 ind_tbl_num; 1568 u32 log_ind_tbl_size; 1569 struct ib_wq **ind_tbl; 1570 }; 1571 1572 struct ib_rwq_ind_table_init_attr { 1573 u32 log_ind_tbl_size; 1574 /* Each entry is a pointer to Receive Work Queue */ 1575 struct ib_wq **ind_tbl; 1576 }; 1577 1578 /* 1579 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1580 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1581 */ 1582 struct ib_qp { 1583 struct ib_device *device; 1584 struct ib_pd *pd; 1585 struct ib_cq *send_cq; 1586 struct ib_cq *recv_cq; 1587 spinlock_t mr_lock; 1588 struct ib_srq *srq; 1589 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1590 struct list_head xrcd_list; 1591 1592 /* count times opened, mcast attaches, flow attaches */ 1593 atomic_t usecnt; 1594 struct list_head open_list; 1595 struct ib_qp *real_qp; 1596 struct ib_uqp_object *uobject; 1597 void (*event_handler)(struct ib_event *, void *); 1598 void *qp_context; 1599 u32 qp_num; 1600 u32 max_write_sge; 1601 u32 max_read_sge; 1602 enum ib_qp_type qp_type; 1603 struct ib_rwq_ind_table *rwq_ind_tbl; 1604 u8 port; 1605 }; 1606 1607 struct ib_dm { 1608 struct ib_device *device; 1609 u32 length; 1610 u32 flags; 1611 struct ib_uobject *uobject; 1612 atomic_t usecnt; 1613 }; 1614 1615 struct ib_mr { 1616 struct ib_device *device; 1617 struct ib_pd *pd; 1618 u32 lkey; 1619 u32 rkey; 1620 u64 iova; 1621 u64 length; 1622 unsigned int page_size; 1623 enum ib_mr_type type; 1624 bool need_inval; 1625 union { 1626 struct ib_uobject *uobject; /* user */ 1627 struct list_head qp_entry; /* FR */ 1628 }; 1629 1630 struct ib_dm *dm; 1631 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1632 }; 1633 1634 struct ib_mw { 1635 struct ib_device *device; 1636 struct ib_pd *pd; 1637 struct ib_uobject *uobject; 1638 u32 rkey; 1639 enum ib_mw_type type; 1640 }; 1641 1642 struct ib_fmr { 1643 struct ib_device *device; 1644 struct ib_pd *pd; 1645 struct list_head list; 1646 u32 lkey; 1647 u32 rkey; 1648 }; 1649 1650 /* Supported steering options */ 1651 enum ib_flow_attr_type { 1652 /* steering according to rule specifications */ 1653 IB_FLOW_ATTR_NORMAL = 0x0, 1654 /* default unicast and multicast rule - 1655 * receive all Eth traffic which isn't steered to any QP 1656 */ 1657 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1658 /* default multicast rule - 1659 * receive all Eth multicast traffic which isn't steered to any QP 1660 */ 1661 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1662 /* sniffer rule - receive all port traffic */ 1663 IB_FLOW_ATTR_SNIFFER = 0x3 1664 }; 1665 1666 /* Supported steering header types */ 1667 enum ib_flow_spec_type { 1668 /* L2 headers*/ 1669 IB_FLOW_SPEC_ETH = 0x20, 1670 IB_FLOW_SPEC_IB = 0x22, 1671 /* L3 header*/ 1672 IB_FLOW_SPEC_IPV4 = 0x30, 1673 IB_FLOW_SPEC_IPV6 = 0x31, 1674 IB_FLOW_SPEC_ESP = 0x34, 1675 /* L4 headers*/ 1676 IB_FLOW_SPEC_TCP = 0x40, 1677 IB_FLOW_SPEC_UDP = 0x41, 1678 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1679 IB_FLOW_SPEC_GRE = 0x51, 1680 IB_FLOW_SPEC_MPLS = 0x60, 1681 IB_FLOW_SPEC_INNER = 0x100, 1682 /* Actions */ 1683 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1684 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1685 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1686 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1687 }; 1688 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1689 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1690 1691 /* Flow steering rule priority is set according to it's domain. 1692 * Lower domain value means higher priority. 1693 */ 1694 enum ib_flow_domain { 1695 IB_FLOW_DOMAIN_USER, 1696 IB_FLOW_DOMAIN_ETHTOOL, 1697 IB_FLOW_DOMAIN_RFS, 1698 IB_FLOW_DOMAIN_NIC, 1699 IB_FLOW_DOMAIN_NUM /* Must be last */ 1700 }; 1701 1702 enum ib_flow_flags { 1703 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1704 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1705 }; 1706 1707 struct ib_flow_eth_filter { 1708 u8 dst_mac[6]; 1709 u8 src_mac[6]; 1710 __be16 ether_type; 1711 __be16 vlan_tag; 1712 /* Must be last */ 1713 u8 real_sz[0]; 1714 }; 1715 1716 struct ib_flow_spec_eth { 1717 enum ib_flow_spec_type type; 1718 u16 size; 1719 struct ib_flow_eth_filter val; 1720 struct ib_flow_eth_filter mask; 1721 }; 1722 1723 struct ib_flow_ib_filter { 1724 __be16 dlid; 1725 __u8 sl; 1726 /* Must be last */ 1727 u8 real_sz[0]; 1728 }; 1729 1730 struct ib_flow_spec_ib { 1731 enum ib_flow_spec_type type; 1732 u16 size; 1733 struct ib_flow_ib_filter val; 1734 struct ib_flow_ib_filter mask; 1735 }; 1736 1737 /* IPv4 header flags */ 1738 enum ib_ipv4_flags { 1739 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1740 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1741 last have this flag set */ 1742 }; 1743 1744 struct ib_flow_ipv4_filter { 1745 __be32 src_ip; 1746 __be32 dst_ip; 1747 u8 proto; 1748 u8 tos; 1749 u8 ttl; 1750 u8 flags; 1751 /* Must be last */ 1752 u8 real_sz[0]; 1753 }; 1754 1755 struct ib_flow_spec_ipv4 { 1756 enum ib_flow_spec_type type; 1757 u16 size; 1758 struct ib_flow_ipv4_filter val; 1759 struct ib_flow_ipv4_filter mask; 1760 }; 1761 1762 struct ib_flow_ipv6_filter { 1763 u8 src_ip[16]; 1764 u8 dst_ip[16]; 1765 __be32 flow_label; 1766 u8 next_hdr; 1767 u8 traffic_class; 1768 u8 hop_limit; 1769 /* Must be last */ 1770 u8 real_sz[0]; 1771 }; 1772 1773 struct ib_flow_spec_ipv6 { 1774 enum ib_flow_spec_type type; 1775 u16 size; 1776 struct ib_flow_ipv6_filter val; 1777 struct ib_flow_ipv6_filter mask; 1778 }; 1779 1780 struct ib_flow_tcp_udp_filter { 1781 __be16 dst_port; 1782 __be16 src_port; 1783 /* Must be last */ 1784 u8 real_sz[0]; 1785 }; 1786 1787 struct ib_flow_spec_tcp_udp { 1788 enum ib_flow_spec_type type; 1789 u16 size; 1790 struct ib_flow_tcp_udp_filter val; 1791 struct ib_flow_tcp_udp_filter mask; 1792 }; 1793 1794 struct ib_flow_tunnel_filter { 1795 __be32 tunnel_id; 1796 u8 real_sz[0]; 1797 }; 1798 1799 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1800 * the tunnel_id from val has the vni value 1801 */ 1802 struct ib_flow_spec_tunnel { 1803 u32 type; 1804 u16 size; 1805 struct ib_flow_tunnel_filter val; 1806 struct ib_flow_tunnel_filter mask; 1807 }; 1808 1809 struct ib_flow_esp_filter { 1810 __be32 spi; 1811 __be32 seq; 1812 /* Must be last */ 1813 u8 real_sz[0]; 1814 }; 1815 1816 struct ib_flow_spec_esp { 1817 u32 type; 1818 u16 size; 1819 struct ib_flow_esp_filter val; 1820 struct ib_flow_esp_filter mask; 1821 }; 1822 1823 struct ib_flow_gre_filter { 1824 __be16 c_ks_res0_ver; 1825 __be16 protocol; 1826 __be32 key; 1827 /* Must be last */ 1828 u8 real_sz[0]; 1829 }; 1830 1831 struct ib_flow_spec_gre { 1832 u32 type; 1833 u16 size; 1834 struct ib_flow_gre_filter val; 1835 struct ib_flow_gre_filter mask; 1836 }; 1837 1838 struct ib_flow_mpls_filter { 1839 __be32 tag; 1840 /* Must be last */ 1841 u8 real_sz[0]; 1842 }; 1843 1844 struct ib_flow_spec_mpls { 1845 u32 type; 1846 u16 size; 1847 struct ib_flow_mpls_filter val; 1848 struct ib_flow_mpls_filter mask; 1849 }; 1850 1851 struct ib_flow_spec_action_tag { 1852 enum ib_flow_spec_type type; 1853 u16 size; 1854 u32 tag_id; 1855 }; 1856 1857 struct ib_flow_spec_action_drop { 1858 enum ib_flow_spec_type type; 1859 u16 size; 1860 }; 1861 1862 struct ib_flow_spec_action_handle { 1863 enum ib_flow_spec_type type; 1864 u16 size; 1865 struct ib_flow_action *act; 1866 }; 1867 1868 enum ib_counters_description { 1869 IB_COUNTER_PACKETS, 1870 IB_COUNTER_BYTES, 1871 }; 1872 1873 struct ib_flow_spec_action_count { 1874 enum ib_flow_spec_type type; 1875 u16 size; 1876 struct ib_counters *counters; 1877 }; 1878 1879 union ib_flow_spec { 1880 struct { 1881 u32 type; 1882 u16 size; 1883 }; 1884 struct ib_flow_spec_eth eth; 1885 struct ib_flow_spec_ib ib; 1886 struct ib_flow_spec_ipv4 ipv4; 1887 struct ib_flow_spec_tcp_udp tcp_udp; 1888 struct ib_flow_spec_ipv6 ipv6; 1889 struct ib_flow_spec_tunnel tunnel; 1890 struct ib_flow_spec_esp esp; 1891 struct ib_flow_spec_gre gre; 1892 struct ib_flow_spec_mpls mpls; 1893 struct ib_flow_spec_action_tag flow_tag; 1894 struct ib_flow_spec_action_drop drop; 1895 struct ib_flow_spec_action_handle action; 1896 struct ib_flow_spec_action_count flow_count; 1897 }; 1898 1899 struct ib_flow_attr { 1900 enum ib_flow_attr_type type; 1901 u16 size; 1902 u16 priority; 1903 u32 flags; 1904 u8 num_of_specs; 1905 u8 port; 1906 union ib_flow_spec flows[0]; 1907 }; 1908 1909 struct ib_flow { 1910 struct ib_qp *qp; 1911 struct ib_device *device; 1912 struct ib_uobject *uobject; 1913 }; 1914 1915 enum ib_flow_action_type { 1916 IB_FLOW_ACTION_UNSPECIFIED, 1917 IB_FLOW_ACTION_ESP = 1, 1918 }; 1919 1920 struct ib_flow_action_attrs_esp_keymats { 1921 enum ib_uverbs_flow_action_esp_keymat protocol; 1922 union { 1923 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 1924 } keymat; 1925 }; 1926 1927 struct ib_flow_action_attrs_esp_replays { 1928 enum ib_uverbs_flow_action_esp_replay protocol; 1929 union { 1930 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 1931 } replay; 1932 }; 1933 1934 enum ib_flow_action_attrs_esp_flags { 1935 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 1936 * This is done in order to share the same flags between user-space and 1937 * kernel and spare an unnecessary translation. 1938 */ 1939 1940 /* Kernel flags */ 1941 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 1942 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 1943 }; 1944 1945 struct ib_flow_spec_list { 1946 struct ib_flow_spec_list *next; 1947 union ib_flow_spec spec; 1948 }; 1949 1950 struct ib_flow_action_attrs_esp { 1951 struct ib_flow_action_attrs_esp_keymats *keymat; 1952 struct ib_flow_action_attrs_esp_replays *replay; 1953 struct ib_flow_spec_list *encap; 1954 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 1955 * Value of 0 is a valid value. 1956 */ 1957 u32 esn; 1958 u32 spi; 1959 u32 seq; 1960 u32 tfc_pad; 1961 /* Use enum ib_flow_action_attrs_esp_flags */ 1962 u64 flags; 1963 u64 hard_limit_pkts; 1964 }; 1965 1966 struct ib_flow_action { 1967 struct ib_device *device; 1968 struct ib_uobject *uobject; 1969 enum ib_flow_action_type type; 1970 atomic_t usecnt; 1971 }; 1972 1973 1974 struct ib_mad_hdr; 1975 struct ib_grh; 1976 1977 enum ib_process_mad_flags { 1978 IB_MAD_IGNORE_MKEY = 1, 1979 IB_MAD_IGNORE_BKEY = 2, 1980 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1981 }; 1982 1983 enum ib_mad_result { 1984 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1985 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1986 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1987 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1988 }; 1989 1990 #define IB_DEVICE_NAME_MAX 64 1991 1992 struct ib_cache { 1993 rwlock_t lock; 1994 struct ib_event_handler event_handler; 1995 struct ib_pkey_cache **pkey_cache; 1996 struct ib_gid_table **gid_cache; 1997 u8 *lmc_cache; 1998 }; 1999 2000 struct ib_dma_mapping_ops { 2001 int (*mapping_error)(struct ib_device *dev, 2002 u64 dma_addr); 2003 u64 (*map_single)(struct ib_device *dev, 2004 void *ptr, size_t size, 2005 enum dma_data_direction direction); 2006 void (*unmap_single)(struct ib_device *dev, 2007 u64 addr, size_t size, 2008 enum dma_data_direction direction); 2009 u64 (*map_page)(struct ib_device *dev, 2010 struct page *page, unsigned long offset, 2011 size_t size, 2012 enum dma_data_direction direction); 2013 void (*unmap_page)(struct ib_device *dev, 2014 u64 addr, size_t size, 2015 enum dma_data_direction direction); 2016 int (*map_sg)(struct ib_device *dev, 2017 struct scatterlist *sg, int nents, 2018 enum dma_data_direction direction); 2019 void (*unmap_sg)(struct ib_device *dev, 2020 struct scatterlist *sg, int nents, 2021 enum dma_data_direction direction); 2022 int (*map_sg_attrs)(struct ib_device *dev, 2023 struct scatterlist *sg, int nents, 2024 enum dma_data_direction direction, 2025 struct dma_attrs *attrs); 2026 void (*unmap_sg_attrs)(struct ib_device *dev, 2027 struct scatterlist *sg, int nents, 2028 enum dma_data_direction direction, 2029 struct dma_attrs *attrs); 2030 void (*sync_single_for_cpu)(struct ib_device *dev, 2031 u64 dma_handle, 2032 size_t size, 2033 enum dma_data_direction dir); 2034 void (*sync_single_for_device)(struct ib_device *dev, 2035 u64 dma_handle, 2036 size_t size, 2037 enum dma_data_direction dir); 2038 void *(*alloc_coherent)(struct ib_device *dev, 2039 size_t size, 2040 u64 *dma_handle, 2041 gfp_t flag); 2042 void (*free_coherent)(struct ib_device *dev, 2043 size_t size, void *cpu_addr, 2044 u64 dma_handle); 2045 }; 2046 2047 struct iw_cm_verbs; 2048 2049 struct ib_port_immutable { 2050 int pkey_tbl_len; 2051 int gid_tbl_len; 2052 u32 core_cap_flags; 2053 u32 max_mad_size; 2054 }; 2055 2056 struct ib_counters { 2057 struct ib_device *device; 2058 struct ib_uobject *uobject; 2059 /* num of objects attached */ 2060 atomic_t usecnt; 2061 }; 2062 2063 struct ib_counters_read_attr { 2064 u64 *counters_buff; 2065 u32 ncounters; 2066 u32 flags; /* use enum ib_read_counters_flags */ 2067 }; 2068 2069 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2070 .size_##ib_struct = \ 2071 (sizeof(struct drv_struct) + \ 2072 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2073 BUILD_BUG_ON_ZERO( \ 2074 !__same_type(((struct drv_struct *)NULL)->member, \ 2075 struct ib_struct))) 2076 2077 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2078 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2079 2080 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2081 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2082 2083 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2084 2085 struct rdma_user_mmap_entry { 2086 struct kref ref; 2087 struct ib_ucontext *ucontext; 2088 unsigned long start_pgoff; 2089 size_t npages; 2090 bool driver_removed; 2091 }; 2092 2093 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2094 static inline u64 2095 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2096 { 2097 return (u64)entry->start_pgoff << PAGE_SHIFT; 2098 } 2099 2100 struct ib_device_ops { 2101 enum rdma_driver_id driver_id; 2102 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2103 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2104 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2105 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2106 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2107 }; 2108 2109 #define INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do { \ 2110 (pop)[0] .driver_id = RDMA_DRIVER_##DRIVER; \ 2111 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah); \ 2112 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq); \ 2113 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd); \ 2114 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq); \ 2115 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \ 2116 } while (0) 2117 2118 struct ib_device { 2119 struct device *dma_device; 2120 struct ib_device_ops ops; 2121 2122 char name[IB_DEVICE_NAME_MAX]; 2123 2124 struct list_head event_handler_list; 2125 spinlock_t event_handler_lock; 2126 2127 spinlock_t client_data_lock; 2128 struct list_head core_list; 2129 /* Access to the client_data_list is protected by the client_data_lock 2130 * spinlock and the lists_rwsem read-write semaphore */ 2131 struct list_head client_data_list; 2132 2133 struct ib_cache cache; 2134 /** 2135 * port_immutable is indexed by port number 2136 */ 2137 struct ib_port_immutable *port_immutable; 2138 2139 int num_comp_vectors; 2140 2141 struct iw_cm_verbs *iwcm; 2142 2143 /** 2144 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2145 * driver initialized data. The struct is kfree()'ed by the sysfs 2146 * core when the device is removed. A lifespan of -1 in the return 2147 * struct tells the core to set a default lifespan. 2148 */ 2149 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2150 u8 port_num); 2151 /** 2152 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2153 * @index - The index in the value array we wish to have updated, or 2154 * num_counters if we want all stats updated 2155 * Return codes - 2156 * < 0 - Error, no counters updated 2157 * index - Updated the single counter pointed to by index 2158 * num_counters - Updated all counters (will reset the timestamp 2159 * and prevent further calls for lifespan milliseconds) 2160 * Drivers are allowed to update all counters in leiu of just the 2161 * one given in index at their option 2162 */ 2163 int (*get_hw_stats)(struct ib_device *device, 2164 struct rdma_hw_stats *stats, 2165 u8 port, int index); 2166 int (*query_device)(struct ib_device *device, 2167 struct ib_device_attr *device_attr, 2168 struct ib_udata *udata); 2169 int (*query_port)(struct ib_device *device, 2170 u8 port_num, 2171 struct ib_port_attr *port_attr); 2172 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2173 u8 port_num); 2174 /* When calling get_netdev, the HW vendor's driver should return the 2175 * net device of device @device at port @port_num or NULL if such 2176 * a net device doesn't exist. The vendor driver should call dev_hold 2177 * on this net device. The HW vendor's device driver must guarantee 2178 * that this function returns NULL before the net device reaches 2179 * NETDEV_UNREGISTER_FINAL state. 2180 */ 2181 if_t (*get_netdev)(struct ib_device *device, 2182 u8 port_num); 2183 int (*query_gid)(struct ib_device *device, 2184 u8 port_num, int index, 2185 union ib_gid *gid); 2186 /* When calling add_gid, the HW vendor's driver should 2187 * add the gid of device @device at gid index @index of 2188 * port @port_num to be @gid. Meta-info of that gid (for example, 2189 * the network device related to this gid is available 2190 * at @attr. @context allows the HW vendor driver to store extra 2191 * information together with a GID entry. The HW vendor may allocate 2192 * memory to contain this information and store it in @context when a 2193 * new GID entry is written to. Params are consistent until the next 2194 * call of add_gid or delete_gid. The function should return 0 on 2195 * success or error otherwise. The function could be called 2196 * concurrently for different ports. This function is only called 2197 * when roce_gid_table is used. 2198 */ 2199 int (*add_gid)(struct ib_device *device, 2200 u8 port_num, 2201 unsigned int index, 2202 const union ib_gid *gid, 2203 const struct ib_gid_attr *attr, 2204 void **context); 2205 /* When calling del_gid, the HW vendor's driver should delete the 2206 * gid of device @device at gid index @index of port @port_num. 2207 * Upon the deletion of a GID entry, the HW vendor must free any 2208 * allocated memory. The caller will clear @context afterwards. 2209 * This function is only called when roce_gid_table is used. 2210 */ 2211 int (*del_gid)(struct ib_device *device, 2212 u8 port_num, 2213 unsigned int index, 2214 void **context); 2215 int (*query_pkey)(struct ib_device *device, 2216 u8 port_num, u16 index, u16 *pkey); 2217 int (*modify_device)(struct ib_device *device, 2218 int device_modify_mask, 2219 struct ib_device_modify *device_modify); 2220 int (*modify_port)(struct ib_device *device, 2221 u8 port_num, int port_modify_mask, 2222 struct ib_port_modify *port_modify); 2223 int (*alloc_ucontext)(struct ib_ucontext *uctx, 2224 struct ib_udata *udata); 2225 void (*dealloc_ucontext)(struct ib_ucontext *context); 2226 int (*mmap)(struct ib_ucontext *context, 2227 struct vm_area_struct *vma); 2228 int (*alloc_pd)(struct ib_pd *pd, 2229 struct ib_udata *udata); 2230 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2231 int (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr, 2232 u32 flags, struct ib_udata *udata); 2233 int (*modify_ah)(struct ib_ah *ah, 2234 struct ib_ah_attr *ah_attr); 2235 int (*query_ah)(struct ib_ah *ah, 2236 struct ib_ah_attr *ah_attr); 2237 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2238 int (*create_srq)(struct ib_srq *srq, 2239 struct ib_srq_init_attr *srq_init_attr, 2240 struct ib_udata *udata); 2241 int (*modify_srq)(struct ib_srq *srq, 2242 struct ib_srq_attr *srq_attr, 2243 enum ib_srq_attr_mask srq_attr_mask, 2244 struct ib_udata *udata); 2245 int (*query_srq)(struct ib_srq *srq, 2246 struct ib_srq_attr *srq_attr); 2247 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2248 int (*post_srq_recv)(struct ib_srq *srq, 2249 const struct ib_recv_wr *recv_wr, 2250 const struct ib_recv_wr **bad_recv_wr); 2251 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2252 struct ib_qp_init_attr *qp_init_attr, 2253 struct ib_udata *udata); 2254 int (*modify_qp)(struct ib_qp *qp, 2255 struct ib_qp_attr *qp_attr, 2256 int qp_attr_mask, 2257 struct ib_udata *udata); 2258 int (*query_qp)(struct ib_qp *qp, 2259 struct ib_qp_attr *qp_attr, 2260 int qp_attr_mask, 2261 struct ib_qp_init_attr *qp_init_attr); 2262 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2263 int (*post_send)(struct ib_qp *qp, 2264 const struct ib_send_wr *send_wr, 2265 const struct ib_send_wr **bad_send_wr); 2266 int (*post_recv)(struct ib_qp *qp, 2267 const struct ib_recv_wr *recv_wr, 2268 const struct ib_recv_wr **bad_recv_wr); 2269 int (*create_cq)(struct ib_cq *, 2270 const struct ib_cq_init_attr *attr, 2271 struct ib_udata *udata); 2272 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2273 u16 cq_period); 2274 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2275 int (*resize_cq)(struct ib_cq *cq, int cqe, 2276 struct ib_udata *udata); 2277 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2278 struct ib_wc *wc); 2279 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2280 int (*req_notify_cq)(struct ib_cq *cq, 2281 enum ib_cq_notify_flags flags); 2282 int (*req_ncomp_notif)(struct ib_cq *cq, 2283 int wc_cnt); 2284 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2285 int mr_access_flags); 2286 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2287 u64 start, u64 length, 2288 u64 virt_addr, 2289 int mr_access_flags, 2290 struct ib_udata *udata); 2291 int (*rereg_user_mr)(struct ib_mr *mr, 2292 int flags, 2293 u64 start, u64 length, 2294 u64 virt_addr, 2295 int mr_access_flags, 2296 struct ib_pd *pd, 2297 struct ib_udata *udata); 2298 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2299 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2300 u32 max_num_sg, struct ib_udata *udata); 2301 int (*advise_mr)(struct ib_pd *pd, 2302 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2303 const struct ib_sge *sg_list, u32 num_sge, 2304 struct uverbs_attr_bundle *attrs); 2305 int (*map_mr_sg)(struct ib_mr *mr, 2306 struct scatterlist *sg, 2307 int sg_nents, 2308 unsigned int *sg_offset); 2309 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2310 enum ib_mw_type type, 2311 struct ib_udata *udata); 2312 int (*dealloc_mw)(struct ib_mw *mw); 2313 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2314 int mr_access_flags, 2315 struct ib_fmr_attr *fmr_attr); 2316 int (*map_phys_fmr)(struct ib_fmr *fmr, 2317 u64 *page_list, int list_len, 2318 u64 iova); 2319 int (*unmap_fmr)(struct list_head *fmr_list); 2320 int (*dealloc_fmr)(struct ib_fmr *fmr); 2321 int (*attach_mcast)(struct ib_qp *qp, 2322 union ib_gid *gid, 2323 u16 lid); 2324 int (*detach_mcast)(struct ib_qp *qp, 2325 union ib_gid *gid, 2326 u16 lid); 2327 int (*process_mad)(struct ib_device *device, 2328 int process_mad_flags, 2329 u8 port_num, 2330 const struct ib_wc *in_wc, 2331 const struct ib_grh *in_grh, 2332 const struct ib_mad_hdr *in_mad, 2333 size_t in_mad_size, 2334 struct ib_mad_hdr *out_mad, 2335 size_t *out_mad_size, 2336 u16 *out_mad_pkey_index); 2337 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2338 struct ib_udata *udata); 2339 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2340 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2341 struct ib_flow_attr 2342 *flow_attr, 2343 int domain, struct ib_udata *udata); 2344 int (*destroy_flow)(struct ib_flow *flow_id); 2345 struct ib_flow_action *(*create_flow_action_esp)( 2346 struct ib_device *device, 2347 const struct ib_flow_action_attrs_esp *attr, 2348 struct uverbs_attr_bundle *attrs); 2349 int (*destroy_flow_action)(struct ib_flow_action *action); 2350 int (*modify_flow_action_esp)( 2351 struct ib_flow_action *action, 2352 const struct ib_flow_action_attrs_esp *attr, 2353 struct uverbs_attr_bundle *attrs); 2354 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2355 struct ib_mr_status *mr_status); 2356 /** 2357 * This will be called once refcount of an entry in mmap_xa reaches 2358 * zero. The type of the memory that was mapped may differ between 2359 * entries and is opaque to the rdma_user_mmap interface. 2360 * Therefore needs to be implemented by the driver in mmap_free. 2361 */ 2362 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2363 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2364 void (*drain_rq)(struct ib_qp *qp); 2365 void (*drain_sq)(struct ib_qp *qp); 2366 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2367 int state); 2368 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2369 struct ifla_vf_info *ivf); 2370 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2371 struct ifla_vf_stats *stats); 2372 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2373 int type); 2374 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2375 struct ib_wq_init_attr *init_attr, 2376 struct ib_udata *udata); 2377 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2378 int (*modify_wq)(struct ib_wq *wq, 2379 struct ib_wq_attr *attr, 2380 u32 wq_attr_mask, 2381 struct ib_udata *udata); 2382 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2383 struct ib_rwq_ind_table_init_attr *init_attr, 2384 struct ib_udata *udata); 2385 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2386 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2387 struct ib_ucontext *context, 2388 struct ib_dm_alloc_attr *attr, 2389 struct uverbs_attr_bundle *attrs); 2390 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2391 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2392 struct ib_dm_mr_attr *attr, 2393 struct uverbs_attr_bundle *attrs); 2394 struct ib_counters *(*create_counters)( 2395 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2396 int (*destroy_counters)(struct ib_counters *counters); 2397 int (*read_counters)(struct ib_counters *counters, 2398 struct ib_counters_read_attr *counters_read_attr, 2399 struct uverbs_attr_bundle *attrs); 2400 struct ib_dma_mapping_ops *dma_ops; 2401 2402 struct module *owner; 2403 struct device dev; 2404 struct kobject *ports_parent; 2405 struct list_head port_list; 2406 2407 enum { 2408 IB_DEV_UNINITIALIZED, 2409 IB_DEV_REGISTERED, 2410 IB_DEV_UNREGISTERED 2411 } reg_state; 2412 2413 int uverbs_abi_ver; 2414 u64 uverbs_cmd_mask; 2415 u64 uverbs_ex_cmd_mask; 2416 2417 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2418 __be64 node_guid; 2419 u32 local_dma_lkey; 2420 u16 is_switch:1; 2421 u8 node_type; 2422 u8 phys_port_cnt; 2423 struct ib_device_attr attrs; 2424 struct attribute_group *hw_stats_ag; 2425 struct rdma_hw_stats *hw_stats; 2426 2427 const struct uapi_definition *driver_def; 2428 2429 /** 2430 * The following mandatory functions are used only at device 2431 * registration. Keep functions such as these at the end of this 2432 * structure to avoid cache line misses when accessing struct ib_device 2433 * in fast paths. 2434 */ 2435 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2436 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2437 }; 2438 2439 struct ib_client { 2440 char *name; 2441 void (*add) (struct ib_device *); 2442 void (*remove)(struct ib_device *, void *client_data); 2443 2444 /* Returns the net_dev belonging to this ib_client and matching the 2445 * given parameters. 2446 * @dev: An RDMA device that the net_dev use for communication. 2447 * @port: A physical port number on the RDMA device. 2448 * @pkey: P_Key that the net_dev uses if applicable. 2449 * @gid: A GID that the net_dev uses to communicate. 2450 * @addr: An IP address the net_dev is configured with. 2451 * @client_data: The device's client data set by ib_set_client_data(). 2452 * 2453 * An ib_client that implements a net_dev on top of RDMA devices 2454 * (such as IP over IB) should implement this callback, allowing the 2455 * rdma_cm module to find the right net_dev for a given request. 2456 * 2457 * The caller is responsible for calling dev_put on the returned 2458 * netdev. */ 2459 if_t (*get_net_dev_by_params)( 2460 struct ib_device *dev, 2461 u8 port, 2462 u16 pkey, 2463 const union ib_gid *gid, 2464 const struct sockaddr *addr, 2465 void *client_data); 2466 struct list_head list; 2467 }; 2468 2469 struct ib_device *ib_alloc_device(size_t size); 2470 void ib_dealloc_device(struct ib_device *device); 2471 2472 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2473 2474 int ib_register_device(struct ib_device *device, 2475 int (*port_callback)(struct ib_device *, 2476 u8, struct kobject *)); 2477 void ib_unregister_device(struct ib_device *device); 2478 2479 int ib_register_client (struct ib_client *client); 2480 void ib_unregister_client(struct ib_client *client); 2481 2482 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2483 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2484 void *data); 2485 2486 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2487 unsigned long pfn, unsigned long size, pgprot_t prot, 2488 struct rdma_user_mmap_entry *entry); 2489 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2490 struct rdma_user_mmap_entry *entry, 2491 size_t length); 2492 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2493 struct rdma_user_mmap_entry *entry, 2494 size_t length, u32 min_pgoff, 2495 u32 max_pgoff); 2496 2497 struct rdma_user_mmap_entry * 2498 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2499 unsigned long pgoff); 2500 struct rdma_user_mmap_entry * 2501 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2502 struct vm_area_struct *vma); 2503 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2504 2505 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2506 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2507 { 2508 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2509 } 2510 2511 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2512 { 2513 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2514 } 2515 2516 static inline bool ib_is_buffer_cleared(const void __user *p, 2517 size_t len) 2518 { 2519 bool ret; 2520 u8 *buf; 2521 2522 if (len > USHRT_MAX) 2523 return false; 2524 2525 buf = memdup_user(p, len); 2526 if (IS_ERR(buf)) 2527 return false; 2528 2529 ret = !memchr_inv(buf, 0, len); 2530 kfree(buf); 2531 return ret; 2532 } 2533 2534 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2535 size_t offset, 2536 size_t len) 2537 { 2538 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2539 } 2540 2541 /** 2542 * ib_is_destroy_retryable - Check whether the uobject destruction 2543 * is retryable. 2544 * @ret: The initial destruction return code 2545 * @why: remove reason 2546 * @uobj: The uobject that is destroyed 2547 * 2548 * This function is a helper function that IB layer and low-level drivers 2549 * can use to consider whether the destruction of the given uobject is 2550 * retry-able. 2551 * It checks the original return code, if it wasn't success the destruction 2552 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2553 * the remove reason. (i.e. why). 2554 * Must be called with the object locked for destroy. 2555 */ 2556 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2557 struct ib_uobject *uobj) 2558 { 2559 return ret && (why == RDMA_REMOVE_DESTROY || 2560 uobj->context->cleanup_retryable); 2561 } 2562 2563 /** 2564 * ib_destroy_usecnt - Called during destruction to check the usecnt 2565 * @usecnt: The usecnt atomic 2566 * @why: remove reason 2567 * @uobj: The uobject that is destroyed 2568 * 2569 * Non-zero usecnts will block destruction unless destruction was triggered by 2570 * a ucontext cleanup. 2571 */ 2572 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2573 enum rdma_remove_reason why, 2574 struct ib_uobject *uobj) 2575 { 2576 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2577 return -EBUSY; 2578 return 0; 2579 } 2580 2581 /** 2582 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2583 * contains all required attributes and no attributes not allowed for 2584 * the given QP state transition. 2585 * @cur_state: Current QP state 2586 * @next_state: Next QP state 2587 * @type: QP type 2588 * @mask: Mask of supplied QP attributes 2589 * 2590 * This function is a helper function that a low-level driver's 2591 * modify_qp method can use to validate the consumer's input. It 2592 * checks that cur_state and next_state are valid QP states, that a 2593 * transition from cur_state to next_state is allowed by the IB spec, 2594 * and that the attribute mask supplied is allowed for the transition. 2595 */ 2596 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2597 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2598 2599 int ib_register_event_handler (struct ib_event_handler *event_handler); 2600 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2601 void ib_dispatch_event(struct ib_event *event); 2602 2603 int ib_query_port(struct ib_device *device, 2604 u8 port_num, struct ib_port_attr *port_attr); 2605 2606 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2607 u8 port_num); 2608 2609 /** 2610 * rdma_cap_ib_switch - Check if the device is IB switch 2611 * @device: Device to check 2612 * 2613 * Device driver is responsible for setting is_switch bit on 2614 * in ib_device structure at init time. 2615 * 2616 * Return: true if the device is IB switch. 2617 */ 2618 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2619 { 2620 return device->is_switch; 2621 } 2622 2623 /** 2624 * rdma_start_port - Return the first valid port number for the device 2625 * specified 2626 * 2627 * @device: Device to be checked 2628 * 2629 * Return start port number 2630 */ 2631 static inline u8 rdma_start_port(const struct ib_device *device) 2632 { 2633 return rdma_cap_ib_switch(device) ? 0 : 1; 2634 } 2635 2636 /** 2637 * rdma_end_port - Return the last valid port number for the device 2638 * specified 2639 * 2640 * @device: Device to be checked 2641 * 2642 * Return last port number 2643 */ 2644 static inline u8 rdma_end_port(const struct ib_device *device) 2645 { 2646 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2647 } 2648 2649 static inline int rdma_is_port_valid(const struct ib_device *device, 2650 unsigned int port) 2651 { 2652 return (port >= rdma_start_port(device) && 2653 port <= rdma_end_port(device)); 2654 } 2655 2656 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2657 { 2658 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2659 } 2660 2661 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2662 { 2663 return device->port_immutable[port_num].core_cap_flags & 2664 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2665 } 2666 2667 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2668 { 2669 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2670 } 2671 2672 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2673 { 2674 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2675 } 2676 2677 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2678 { 2679 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2680 } 2681 2682 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2683 { 2684 return rdma_protocol_ib(device, port_num) || 2685 rdma_protocol_roce(device, port_num); 2686 } 2687 2688 /** 2689 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2690 * Management Datagrams. 2691 * @device: Device to check 2692 * @port_num: Port number to check 2693 * 2694 * Management Datagrams (MAD) are a required part of the InfiniBand 2695 * specification and are supported on all InfiniBand devices. A slightly 2696 * extended version are also supported on OPA interfaces. 2697 * 2698 * Return: true if the port supports sending/receiving of MAD packets. 2699 */ 2700 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2701 { 2702 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2703 } 2704 2705 /** 2706 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2707 * Management Datagrams. 2708 * @device: Device to check 2709 * @port_num: Port number to check 2710 * 2711 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2712 * datagrams with their own versions. These OPA MADs share many but not all of 2713 * the characteristics of InfiniBand MADs. 2714 * 2715 * OPA MADs differ in the following ways: 2716 * 2717 * 1) MADs are variable size up to 2K 2718 * IBTA defined MADs remain fixed at 256 bytes 2719 * 2) OPA SMPs must carry valid PKeys 2720 * 3) OPA SMP packets are a different format 2721 * 2722 * Return: true if the port supports OPA MAD packet formats. 2723 */ 2724 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2725 { 2726 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2727 == RDMA_CORE_CAP_OPA_MAD; 2728 } 2729 2730 /** 2731 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2732 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2733 * @device: Device to check 2734 * @port_num: Port number to check 2735 * 2736 * Each InfiniBand node is required to provide a Subnet Management Agent 2737 * that the subnet manager can access. Prior to the fabric being fully 2738 * configured by the subnet manager, the SMA is accessed via a well known 2739 * interface called the Subnet Management Interface (SMI). This interface 2740 * uses directed route packets to communicate with the SM to get around the 2741 * chicken and egg problem of the SM needing to know what's on the fabric 2742 * in order to configure the fabric, and needing to configure the fabric in 2743 * order to send packets to the devices on the fabric. These directed 2744 * route packets do not need the fabric fully configured in order to reach 2745 * their destination. The SMI is the only method allowed to send 2746 * directed route packets on an InfiniBand fabric. 2747 * 2748 * Return: true if the port provides an SMI. 2749 */ 2750 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2751 { 2752 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2753 } 2754 2755 /** 2756 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2757 * Communication Manager. 2758 * @device: Device to check 2759 * @port_num: Port number to check 2760 * 2761 * The InfiniBand Communication Manager is one of many pre-defined General 2762 * Service Agents (GSA) that are accessed via the General Service 2763 * Interface (GSI). It's role is to facilitate establishment of connections 2764 * between nodes as well as other management related tasks for established 2765 * connections. 2766 * 2767 * Return: true if the port supports an IB CM (this does not guarantee that 2768 * a CM is actually running however). 2769 */ 2770 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2771 { 2772 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2773 } 2774 2775 /** 2776 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2777 * Communication Manager. 2778 * @device: Device to check 2779 * @port_num: Port number to check 2780 * 2781 * Similar to above, but specific to iWARP connections which have a different 2782 * managment protocol than InfiniBand. 2783 * 2784 * Return: true if the port supports an iWARP CM (this does not guarantee that 2785 * a CM is actually running however). 2786 */ 2787 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2788 { 2789 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2790 } 2791 2792 /** 2793 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2794 * Subnet Administration. 2795 * @device: Device to check 2796 * @port_num: Port number to check 2797 * 2798 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2799 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2800 * fabrics, devices should resolve routes to other hosts by contacting the 2801 * SA to query the proper route. 2802 * 2803 * Return: true if the port should act as a client to the fabric Subnet 2804 * Administration interface. This does not imply that the SA service is 2805 * running locally. 2806 */ 2807 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2808 { 2809 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2810 } 2811 2812 /** 2813 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2814 * Multicast. 2815 * @device: Device to check 2816 * @port_num: Port number to check 2817 * 2818 * InfiniBand multicast registration is more complex than normal IPv4 or 2819 * IPv6 multicast registration. Each Host Channel Adapter must register 2820 * with the Subnet Manager when it wishes to join a multicast group. It 2821 * should do so only once regardless of how many queue pairs it subscribes 2822 * to this group. And it should leave the group only after all queue pairs 2823 * attached to the group have been detached. 2824 * 2825 * Return: true if the port must undertake the additional adminstrative 2826 * overhead of registering/unregistering with the SM and tracking of the 2827 * total number of queue pairs attached to the multicast group. 2828 */ 2829 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2830 { 2831 return rdma_cap_ib_sa(device, port_num); 2832 } 2833 2834 /** 2835 * rdma_cap_af_ib - Check if the port of device has the capability 2836 * Native Infiniband Address. 2837 * @device: Device to check 2838 * @port_num: Port number to check 2839 * 2840 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2841 * GID. RoCE uses a different mechanism, but still generates a GID via 2842 * a prescribed mechanism and port specific data. 2843 * 2844 * Return: true if the port uses a GID address to identify devices on the 2845 * network. 2846 */ 2847 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2848 { 2849 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2850 } 2851 2852 /** 2853 * rdma_cap_eth_ah - Check if the port of device has the capability 2854 * Ethernet Address Handle. 2855 * @device: Device to check 2856 * @port_num: Port number to check 2857 * 2858 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2859 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2860 * port. Normally, packet headers are generated by the sending host 2861 * adapter, but when sending connectionless datagrams, we must manually 2862 * inject the proper headers for the fabric we are communicating over. 2863 * 2864 * Return: true if we are running as a RoCE port and must force the 2865 * addition of a Global Route Header built from our Ethernet Address 2866 * Handle into our header list for connectionless packets. 2867 */ 2868 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2869 { 2870 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2871 } 2872 2873 /** 2874 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2875 * 2876 * @device: Device 2877 * @port_num: Port number 2878 * 2879 * This MAD size includes the MAD headers and MAD payload. No other headers 2880 * are included. 2881 * 2882 * Return the max MAD size required by the Port. Will return 0 if the port 2883 * does not support MADs 2884 */ 2885 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2886 { 2887 return device->port_immutable[port_num].max_mad_size; 2888 } 2889 2890 /** 2891 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2892 * @device: Device to check 2893 * @port_num: Port number to check 2894 * 2895 * RoCE GID table mechanism manages the various GIDs for a device. 2896 * 2897 * NOTE: if allocating the port's GID table has failed, this call will still 2898 * return true, but any RoCE GID table API will fail. 2899 * 2900 * Return: true if the port uses RoCE GID table mechanism in order to manage 2901 * its GIDs. 2902 */ 2903 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2904 u8 port_num) 2905 { 2906 return rdma_protocol_roce(device, port_num) && 2907 device->add_gid && device->del_gid; 2908 } 2909 2910 /* 2911 * Check if the device supports READ W/ INVALIDATE. 2912 */ 2913 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2914 { 2915 /* 2916 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2917 * has support for it yet. 2918 */ 2919 return rdma_protocol_iwarp(dev, port_num); 2920 } 2921 2922 int ib_query_gid(struct ib_device *device, 2923 u8 port_num, int index, union ib_gid *gid, 2924 struct ib_gid_attr *attr); 2925 2926 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2927 int state); 2928 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2929 struct ifla_vf_info *info); 2930 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2931 struct ifla_vf_stats *stats); 2932 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2933 int type); 2934 2935 int ib_query_pkey(struct ib_device *device, 2936 u8 port_num, u16 index, u16 *pkey); 2937 2938 int ib_modify_device(struct ib_device *device, 2939 int device_modify_mask, 2940 struct ib_device_modify *device_modify); 2941 2942 int ib_modify_port(struct ib_device *device, 2943 u8 port_num, int port_modify_mask, 2944 struct ib_port_modify *port_modify); 2945 2946 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2947 enum ib_gid_type gid_type, if_t ndev, 2948 u8 *port_num, u16 *index); 2949 2950 int ib_find_pkey(struct ib_device *device, 2951 u8 port_num, u16 pkey, u16 *index); 2952 2953 enum ib_pd_flags { 2954 /* 2955 * Create a memory registration for all memory in the system and place 2956 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2957 * ULPs to avoid the overhead of dynamic MRs. 2958 * 2959 * This flag is generally considered unsafe and must only be used in 2960 * extremly trusted environments. Every use of it will log a warning 2961 * in the kernel log. 2962 */ 2963 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2964 }; 2965 2966 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2967 const char *caller); 2968 #define ib_alloc_pd(device, flags) \ 2969 __ib_alloc_pd((device), (flags), __func__) 2970 2971 /** 2972 * ib_dealloc_pd_user - Deallocate kernel/user PD 2973 * @pd: The protection domain 2974 * @udata: Valid user data or NULL for kernel objects 2975 */ 2976 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 2977 2978 /** 2979 * ib_dealloc_pd - Deallocate kernel PD 2980 * @pd: The protection domain 2981 * 2982 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 2983 */ 2984 static inline void ib_dealloc_pd(struct ib_pd *pd) 2985 { 2986 ib_dealloc_pd_user(pd, NULL); 2987 } 2988 2989 enum rdma_create_ah_flags { 2990 /* In a sleepable context */ 2991 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 2992 }; 2993 2994 /** 2995 * ib_create_ah - Creates an address handle for the given address vector. 2996 * @pd: The protection domain associated with the address handle. 2997 * @ah_attr: The attributes of the address vector. 2998 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 2999 * 3000 * The address handle is used to reference a local or global destination 3001 * in all UD QP post sends. 3002 */ 3003 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr, 3004 u32 flags); 3005 3006 /** 3007 * ib_create_user_ah - Creates an address handle for the given address vector. 3008 * It resolves destination mac address for ah attribute of RoCE type. 3009 * @pd: The protection domain associated with the address handle. 3010 * @ah_attr: The attributes of the address vector. 3011 * @udata: pointer to user's input output buffer information need by 3012 * provider driver. 3013 * 3014 * It returns 0 on success and returns appropriate error code on error. 3015 * The address handle is used to reference a local or global destination 3016 * in all UD QP post sends. 3017 */ 3018 struct ib_ah *ib_create_user_ah(struct ib_pd *pd, 3019 struct ib_ah_attr *ah_attr, 3020 struct ib_udata *udata); 3021 3022 /** 3023 * ib_init_ah_from_wc - Initializes address handle attributes from a 3024 * work completion. 3025 * @device: Device on which the received message arrived. 3026 * @port_num: Port on which the received message arrived. 3027 * @wc: Work completion associated with the received message. 3028 * @grh: References the received global route header. This parameter is 3029 * ignored unless the work completion indicates that the GRH is valid. 3030 * @ah_attr: Returned attributes that can be used when creating an address 3031 * handle for replying to the message. 3032 */ 3033 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 3034 const struct ib_wc *wc, const struct ib_grh *grh, 3035 struct ib_ah_attr *ah_attr); 3036 3037 /** 3038 * ib_create_ah_from_wc - Creates an address handle associated with the 3039 * sender of the specified work completion. 3040 * @pd: The protection domain associated with the address handle. 3041 * @wc: Work completion information associated with a received message. 3042 * @grh: References the received global route header. This parameter is 3043 * ignored unless the work completion indicates that the GRH is valid. 3044 * @port_num: The outbound port number to associate with the address. 3045 * 3046 * The address handle is used to reference a local or global destination 3047 * in all UD QP post sends. 3048 */ 3049 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3050 const struct ib_grh *grh, u8 port_num); 3051 3052 /** 3053 * ib_modify_ah - Modifies the address vector associated with an address 3054 * handle. 3055 * @ah: The address handle to modify. 3056 * @ah_attr: The new address vector attributes to associate with the 3057 * address handle. 3058 */ 3059 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 3060 3061 /** 3062 * ib_query_ah - Queries the address vector associated with an address 3063 * handle. 3064 * @ah: The address handle to query. 3065 * @ah_attr: The address vector attributes associated with the address 3066 * handle. 3067 */ 3068 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 3069 3070 enum rdma_destroy_ah_flags { 3071 /* In a sleepable context */ 3072 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3073 }; 3074 3075 /** 3076 * ib_destroy_ah_user - Destroys an address handle. 3077 * @ah: The address handle to destroy. 3078 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3079 * @udata: Valid user data or NULL for kernel objects 3080 */ 3081 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3082 3083 /** 3084 * rdma_destroy_ah - Destroys an kernel address handle. 3085 * @ah: The address handle to destroy. 3086 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3087 * 3088 * NOTE: for user ah use ib_destroy_ah_user with valid udata! 3089 */ 3090 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags) 3091 { 3092 return ib_destroy_ah_user(ah, flags, NULL); 3093 } 3094 3095 /** 3096 * ib_create_srq - Creates a SRQ associated with the specified protection 3097 * domain. 3098 * @pd: The protection domain associated with the SRQ. 3099 * @srq_init_attr: A list of initial attributes required to create the 3100 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3101 * the actual capabilities of the created SRQ. 3102 * 3103 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3104 * requested size of the SRQ, and set to the actual values allocated 3105 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3106 * will always be at least as large as the requested values. 3107 */ 3108 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3109 struct ib_srq_init_attr *srq_init_attr); 3110 3111 /** 3112 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3113 * @srq: The SRQ to modify. 3114 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3115 * the current values of selected SRQ attributes are returned. 3116 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3117 * are being modified. 3118 * 3119 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3120 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3121 * the number of receives queued drops below the limit. 3122 */ 3123 int ib_modify_srq(struct ib_srq *srq, 3124 struct ib_srq_attr *srq_attr, 3125 enum ib_srq_attr_mask srq_attr_mask); 3126 3127 /** 3128 * ib_query_srq - Returns the attribute list and current values for the 3129 * specified SRQ. 3130 * @srq: The SRQ to query. 3131 * @srq_attr: The attributes of the specified SRQ. 3132 */ 3133 int ib_query_srq(struct ib_srq *srq, 3134 struct ib_srq_attr *srq_attr); 3135 3136 /** 3137 * ib_destroy_srq_user - Destroys the specified SRQ. 3138 * @srq: The SRQ to destroy. 3139 * @udata: Valid user data or NULL for kernel objects 3140 */ 3141 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3142 3143 /** 3144 * ib_destroy_srq - Destroys the specified kernel SRQ. 3145 * @srq: The SRQ to destroy. 3146 * 3147 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3148 */ 3149 static inline int ib_destroy_srq(struct ib_srq *srq) 3150 { 3151 return ib_destroy_srq_user(srq, NULL); 3152 } 3153 3154 /** 3155 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3156 * @srq: The SRQ to post the work request on. 3157 * @recv_wr: A list of work requests to post on the receive queue. 3158 * @bad_recv_wr: On an immediate failure, this parameter will reference 3159 * the work request that failed to be posted on the QP. 3160 */ 3161 static inline int ib_post_srq_recv(struct ib_srq *srq, 3162 const struct ib_recv_wr *recv_wr, 3163 const struct ib_recv_wr **bad_recv_wr) 3164 { 3165 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 3166 } 3167 3168 /** 3169 * ib_create_qp - Creates a QP associated with the specified protection 3170 * domain. 3171 * @pd: The protection domain associated with the QP. 3172 * @qp_init_attr: A list of initial attributes required to create the 3173 * QP. If QP creation succeeds, then the attributes are updated to 3174 * the actual capabilities of the created QP. 3175 */ 3176 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3177 struct ib_qp_init_attr *qp_init_attr); 3178 3179 /** 3180 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3181 * @qp: The QP to modify. 3182 * @attr: On input, specifies the QP attributes to modify. On output, 3183 * the current values of selected QP attributes are returned. 3184 * @attr_mask: A bit-mask used to specify which attributes of the QP 3185 * are being modified. 3186 * @udata: pointer to user's input output buffer information 3187 * are being modified. 3188 * It returns 0 on success and returns appropriate error code on error. 3189 */ 3190 int ib_modify_qp_with_udata(struct ib_qp *qp, 3191 struct ib_qp_attr *attr, 3192 int attr_mask, 3193 struct ib_udata *udata); 3194 3195 /** 3196 * ib_modify_qp - Modifies the attributes for the specified QP and then 3197 * transitions the QP to the given state. 3198 * @qp: The QP to modify. 3199 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3200 * the current values of selected QP attributes are returned. 3201 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3202 * are being modified. 3203 */ 3204 int ib_modify_qp(struct ib_qp *qp, 3205 struct ib_qp_attr *qp_attr, 3206 int qp_attr_mask); 3207 3208 /** 3209 * ib_query_qp - Returns the attribute list and current values for the 3210 * specified QP. 3211 * @qp: The QP to query. 3212 * @qp_attr: The attributes of the specified QP. 3213 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3214 * @qp_init_attr: Additional attributes of the selected QP. 3215 * 3216 * The qp_attr_mask may be used to limit the query to gathering only the 3217 * selected attributes. 3218 */ 3219 int ib_query_qp(struct ib_qp *qp, 3220 struct ib_qp_attr *qp_attr, 3221 int qp_attr_mask, 3222 struct ib_qp_init_attr *qp_init_attr); 3223 3224 /** 3225 * ib_destroy_qp - Destroys the specified QP. 3226 * @qp: The QP to destroy. 3227 * @udata: Valid udata or NULL for kernel objects 3228 */ 3229 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3230 3231 /** 3232 * ib_destroy_qp - Destroys the specified kernel QP. 3233 * @qp: The QP to destroy. 3234 * 3235 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3236 */ 3237 static inline int ib_destroy_qp(struct ib_qp *qp) 3238 { 3239 return ib_destroy_qp_user(qp, NULL); 3240 } 3241 3242 /** 3243 * ib_open_qp - Obtain a reference to an existing sharable QP. 3244 * @xrcd - XRC domain 3245 * @qp_open_attr: Attributes identifying the QP to open. 3246 * 3247 * Returns a reference to a sharable QP. 3248 */ 3249 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3250 struct ib_qp_open_attr *qp_open_attr); 3251 3252 /** 3253 * ib_close_qp - Release an external reference to a QP. 3254 * @qp: The QP handle to release 3255 * 3256 * The opened QP handle is released by the caller. The underlying 3257 * shared QP is not destroyed until all internal references are released. 3258 */ 3259 int ib_close_qp(struct ib_qp *qp); 3260 3261 /** 3262 * ib_post_send - Posts a list of work requests to the send queue of 3263 * the specified QP. 3264 * @qp: The QP to post the work request on. 3265 * @send_wr: A list of work requests to post on the send queue. 3266 * @bad_send_wr: On an immediate failure, this parameter will reference 3267 * the work request that failed to be posted on the QP. 3268 * 3269 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3270 * error is returned, the QP state shall not be affected, 3271 * ib_post_send() will return an immediate error after queueing any 3272 * earlier work requests in the list. 3273 */ 3274 static inline int ib_post_send(struct ib_qp *qp, 3275 const struct ib_send_wr *send_wr, 3276 const struct ib_send_wr **bad_send_wr) 3277 { 3278 return qp->device->post_send(qp, send_wr, bad_send_wr); 3279 } 3280 3281 /** 3282 * ib_post_recv - Posts a list of work requests to the receive queue of 3283 * the specified QP. 3284 * @qp: The QP to post the work request on. 3285 * @recv_wr: A list of work requests to post on the receive queue. 3286 * @bad_recv_wr: On an immediate failure, this parameter will reference 3287 * the work request that failed to be posted on the QP. 3288 */ 3289 static inline int ib_post_recv(struct ib_qp *qp, 3290 const struct ib_recv_wr *recv_wr, 3291 const struct ib_recv_wr **bad_recv_wr) 3292 { 3293 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3294 } 3295 3296 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3297 int nr_cqe, int comp_vector, 3298 enum ib_poll_context poll_ctx, 3299 const char *caller, struct ib_udata *udata); 3300 3301 /** 3302 * ib_alloc_cq_user: Allocate kernel/user CQ 3303 * @dev: The IB device 3304 * @private: Private data attached to the CQE 3305 * @nr_cqe: Number of CQEs in the CQ 3306 * @comp_vector: Completion vector used for the IRQs 3307 * @poll_ctx: Context used for polling the CQ 3308 * @udata: Valid user data or NULL for kernel objects 3309 */ 3310 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3311 void *private, int nr_cqe, 3312 int comp_vector, 3313 enum ib_poll_context poll_ctx, 3314 struct ib_udata *udata) 3315 { 3316 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3317 "ibcore", udata); 3318 } 3319 3320 /** 3321 * ib_alloc_cq: Allocate kernel CQ 3322 * @dev: The IB device 3323 * @private: Private data attached to the CQE 3324 * @nr_cqe: Number of CQEs in the CQ 3325 * @comp_vector: Completion vector used for the IRQs 3326 * @poll_ctx: Context used for polling the CQ 3327 * 3328 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3329 */ 3330 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3331 int nr_cqe, int comp_vector, 3332 enum ib_poll_context poll_ctx) 3333 { 3334 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3335 NULL); 3336 } 3337 3338 /** 3339 * ib_free_cq_user - Free kernel/user CQ 3340 * @cq: The CQ to free 3341 * @udata: Valid user data or NULL for kernel objects 3342 */ 3343 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3344 3345 /** 3346 * ib_free_cq - Free kernel CQ 3347 * @cq: The CQ to free 3348 * 3349 * NOTE: for user cq use ib_free_cq_user with valid udata! 3350 */ 3351 static inline void ib_free_cq(struct ib_cq *cq) 3352 { 3353 ib_free_cq_user(cq, NULL); 3354 } 3355 3356 /** 3357 * ib_create_cq - Creates a CQ on the specified device. 3358 * @device: The device on which to create the CQ. 3359 * @comp_handler: A user-specified callback that is invoked when a 3360 * completion event occurs on the CQ. 3361 * @event_handler: A user-specified callback that is invoked when an 3362 * asynchronous event not associated with a completion occurs on the CQ. 3363 * @cq_context: Context associated with the CQ returned to the user via 3364 * the associated completion and event handlers. 3365 * @cq_attr: The attributes the CQ should be created upon. 3366 * 3367 * Users can examine the cq structure to determine the actual CQ size. 3368 */ 3369 struct ib_cq *__ib_create_cq(struct ib_device *device, 3370 ib_comp_handler comp_handler, 3371 void (*event_handler)(struct ib_event *, void *), 3372 void *cq_context, 3373 const struct ib_cq_init_attr *cq_attr, 3374 const char *caller); 3375 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3376 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore") 3377 3378 /** 3379 * ib_resize_cq - Modifies the capacity of the CQ. 3380 * @cq: The CQ to resize. 3381 * @cqe: The minimum size of the CQ. 3382 * 3383 * Users can examine the cq structure to determine the actual CQ size. 3384 */ 3385 int ib_resize_cq(struct ib_cq *cq, int cqe); 3386 3387 /** 3388 * ib_modify_cq - Modifies moderation params of the CQ 3389 * @cq: The CQ to modify. 3390 * @cq_count: number of CQEs that will trigger an event 3391 * @cq_period: max period of time in usec before triggering an event 3392 * 3393 */ 3394 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3395 3396 /** 3397 * ib_destroy_cq_user - Destroys the specified CQ. 3398 * @cq: The CQ to destroy. 3399 * @udata: Valid user data or NULL for kernel objects 3400 */ 3401 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3402 3403 /** 3404 * ib_destroy_cq - Destroys the specified kernel CQ. 3405 * @cq: The CQ to destroy. 3406 * 3407 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3408 */ 3409 static inline void ib_destroy_cq(struct ib_cq *cq) 3410 { 3411 ib_destroy_cq_user(cq, NULL); 3412 } 3413 3414 /** 3415 * ib_poll_cq - poll a CQ for completion(s) 3416 * @cq:the CQ being polled 3417 * @num_entries:maximum number of completions to return 3418 * @wc:array of at least @num_entries &struct ib_wc where completions 3419 * will be returned 3420 * 3421 * Poll a CQ for (possibly multiple) completions. If the return value 3422 * is < 0, an error occurred. If the return value is >= 0, it is the 3423 * number of completions returned. If the return value is 3424 * non-negative and < num_entries, then the CQ was emptied. 3425 */ 3426 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3427 struct ib_wc *wc) 3428 { 3429 return cq->device->poll_cq(cq, num_entries, wc); 3430 } 3431 3432 /** 3433 * ib_peek_cq - Returns the number of unreaped completions currently 3434 * on the specified CQ. 3435 * @cq: The CQ to peek. 3436 * @wc_cnt: A minimum number of unreaped completions to check for. 3437 * 3438 * If the number of unreaped completions is greater than or equal to wc_cnt, 3439 * this function returns wc_cnt, otherwise, it returns the actual number of 3440 * unreaped completions. 3441 */ 3442 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3443 3444 /** 3445 * ib_req_notify_cq - Request completion notification on a CQ. 3446 * @cq: The CQ to generate an event for. 3447 * @flags: 3448 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3449 * to request an event on the next solicited event or next work 3450 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3451 * may also be |ed in to request a hint about missed events, as 3452 * described below. 3453 * 3454 * Return Value: 3455 * < 0 means an error occurred while requesting notification 3456 * == 0 means notification was requested successfully, and if 3457 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3458 * were missed and it is safe to wait for another event. In 3459 * this case is it guaranteed that any work completions added 3460 * to the CQ since the last CQ poll will trigger a completion 3461 * notification event. 3462 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3463 * in. It means that the consumer must poll the CQ again to 3464 * make sure it is empty to avoid missing an event because of a 3465 * race between requesting notification and an entry being 3466 * added to the CQ. This return value means it is possible 3467 * (but not guaranteed) that a work completion has been added 3468 * to the CQ since the last poll without triggering a 3469 * completion notification event. 3470 */ 3471 static inline int ib_req_notify_cq(struct ib_cq *cq, 3472 enum ib_cq_notify_flags flags) 3473 { 3474 return cq->device->req_notify_cq(cq, flags); 3475 } 3476 3477 /** 3478 * ib_req_ncomp_notif - Request completion notification when there are 3479 * at least the specified number of unreaped completions on the CQ. 3480 * @cq: The CQ to generate an event for. 3481 * @wc_cnt: The number of unreaped completions that should be on the 3482 * CQ before an event is generated. 3483 */ 3484 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3485 { 3486 return cq->device->req_ncomp_notif ? 3487 cq->device->req_ncomp_notif(cq, wc_cnt) : 3488 -ENOSYS; 3489 } 3490 3491 /** 3492 * ib_dma_mapping_error - check a DMA addr for error 3493 * @dev: The device for which the dma_addr was created 3494 * @dma_addr: The DMA address to check 3495 */ 3496 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3497 { 3498 if (dev->dma_ops) 3499 return dev->dma_ops->mapping_error(dev, dma_addr); 3500 return dma_mapping_error(dev->dma_device, dma_addr); 3501 } 3502 3503 /** 3504 * ib_dma_map_single - Map a kernel virtual address to DMA address 3505 * @dev: The device for which the dma_addr is to be created 3506 * @cpu_addr: The kernel virtual address 3507 * @size: The size of the region in bytes 3508 * @direction: The direction of the DMA 3509 */ 3510 static inline u64 ib_dma_map_single(struct ib_device *dev, 3511 void *cpu_addr, size_t size, 3512 enum dma_data_direction direction) 3513 { 3514 if (dev->dma_ops) 3515 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 3516 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3517 } 3518 3519 /** 3520 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3521 * @dev: The device for which the DMA address was created 3522 * @addr: The DMA address 3523 * @size: The size of the region in bytes 3524 * @direction: The direction of the DMA 3525 */ 3526 static inline void ib_dma_unmap_single(struct ib_device *dev, 3527 u64 addr, size_t size, 3528 enum dma_data_direction direction) 3529 { 3530 if (dev->dma_ops) 3531 dev->dma_ops->unmap_single(dev, addr, size, direction); 3532 else 3533 dma_unmap_single(dev->dma_device, addr, size, direction); 3534 } 3535 3536 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 3537 void *cpu_addr, size_t size, 3538 enum dma_data_direction direction, 3539 struct dma_attrs *dma_attrs) 3540 { 3541 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 3542 direction, dma_attrs); 3543 } 3544 3545 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 3546 u64 addr, size_t size, 3547 enum dma_data_direction direction, 3548 struct dma_attrs *dma_attrs) 3549 { 3550 return dma_unmap_single_attrs(dev->dma_device, addr, size, 3551 direction, dma_attrs); 3552 } 3553 3554 /** 3555 * ib_dma_map_page - Map a physical page to DMA address 3556 * @dev: The device for which the dma_addr is to be created 3557 * @page: The page to be mapped 3558 * @offset: The offset within the page 3559 * @size: The size of the region in bytes 3560 * @direction: The direction of the DMA 3561 */ 3562 static inline u64 ib_dma_map_page(struct ib_device *dev, 3563 struct page *page, 3564 unsigned long offset, 3565 size_t size, 3566 enum dma_data_direction direction) 3567 { 3568 if (dev->dma_ops) 3569 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3570 return dma_map_page(dev->dma_device, page, offset, size, direction); 3571 } 3572 3573 /** 3574 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3575 * @dev: The device for which the DMA address was created 3576 * @addr: The DMA address 3577 * @size: The size of the region in bytes 3578 * @direction: The direction of the DMA 3579 */ 3580 static inline void ib_dma_unmap_page(struct ib_device *dev, 3581 u64 addr, size_t size, 3582 enum dma_data_direction direction) 3583 { 3584 if (dev->dma_ops) 3585 dev->dma_ops->unmap_page(dev, addr, size, direction); 3586 else 3587 dma_unmap_page(dev->dma_device, addr, size, direction); 3588 } 3589 3590 /** 3591 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3592 * @dev: The device for which the DMA addresses are to be created 3593 * @sg: The array of scatter/gather entries 3594 * @nents: The number of scatter/gather entries 3595 * @direction: The direction of the DMA 3596 */ 3597 static inline int ib_dma_map_sg(struct ib_device *dev, 3598 struct scatterlist *sg, int nents, 3599 enum dma_data_direction direction) 3600 { 3601 if (dev->dma_ops) 3602 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3603 return dma_map_sg(dev->dma_device, sg, nents, direction); 3604 } 3605 3606 /** 3607 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3608 * @dev: The device for which the DMA addresses were created 3609 * @sg: The array of scatter/gather entries 3610 * @nents: The number of scatter/gather entries 3611 * @direction: The direction of the DMA 3612 */ 3613 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3614 struct scatterlist *sg, int nents, 3615 enum dma_data_direction direction) 3616 { 3617 if (dev->dma_ops) 3618 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3619 else 3620 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3621 } 3622 3623 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3624 struct scatterlist *sg, int nents, 3625 enum dma_data_direction direction, 3626 struct dma_attrs *dma_attrs) 3627 { 3628 if (dev->dma_ops) 3629 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3630 dma_attrs); 3631 else 3632 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3633 dma_attrs); 3634 } 3635 3636 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3637 struct scatterlist *sg, int nents, 3638 enum dma_data_direction direction, 3639 struct dma_attrs *dma_attrs) 3640 { 3641 if (dev->dma_ops) 3642 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3643 dma_attrs); 3644 else 3645 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3646 dma_attrs); 3647 } 3648 /** 3649 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3650 * @dev: The device for which the DMA addresses were created 3651 * @sg: The scatter/gather entry 3652 * 3653 * Note: this function is obsolete. To do: change all occurrences of 3654 * ib_sg_dma_address() into sg_dma_address(). 3655 */ 3656 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3657 struct scatterlist *sg) 3658 { 3659 return sg_dma_address(sg); 3660 } 3661 3662 /** 3663 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3664 * @dev: The device for which the DMA addresses were created 3665 * @sg: The scatter/gather entry 3666 * 3667 * Note: this function is obsolete. To do: change all occurrences of 3668 * ib_sg_dma_len() into sg_dma_len(). 3669 */ 3670 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3671 struct scatterlist *sg) 3672 { 3673 return sg_dma_len(sg); 3674 } 3675 3676 /** 3677 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3678 * @dev: The device for which the DMA address was created 3679 * @addr: The DMA address 3680 * @size: The size of the region in bytes 3681 * @dir: The direction of the DMA 3682 */ 3683 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3684 u64 addr, 3685 size_t size, 3686 enum dma_data_direction dir) 3687 { 3688 if (dev->dma_ops) 3689 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3690 else 3691 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3692 } 3693 3694 /** 3695 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3696 * @dev: The device for which the DMA address was created 3697 * @addr: The DMA address 3698 * @size: The size of the region in bytes 3699 * @dir: The direction of the DMA 3700 */ 3701 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3702 u64 addr, 3703 size_t size, 3704 enum dma_data_direction dir) 3705 { 3706 if (dev->dma_ops) 3707 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3708 else 3709 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3710 } 3711 3712 /** 3713 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3714 * @dev: The device for which the DMA address is requested 3715 * @size: The size of the region to allocate in bytes 3716 * @dma_handle: A pointer for returning the DMA address of the region 3717 * @flag: memory allocator flags 3718 */ 3719 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3720 size_t size, 3721 u64 *dma_handle, 3722 gfp_t flag) 3723 { 3724 if (dev->dma_ops) 3725 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3726 else { 3727 dma_addr_t handle; 3728 void *ret; 3729 3730 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3731 *dma_handle = handle; 3732 return ret; 3733 } 3734 } 3735 3736 /** 3737 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3738 * @dev: The device for which the DMA addresses were allocated 3739 * @size: The size of the region 3740 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3741 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3742 */ 3743 static inline void ib_dma_free_coherent(struct ib_device *dev, 3744 size_t size, void *cpu_addr, 3745 u64 dma_handle) 3746 { 3747 if (dev->dma_ops) 3748 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3749 else 3750 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3751 } 3752 3753 /** 3754 * ib_dereg_mr - Deregisters a memory region and removes it from the 3755 * HCA translation table. 3756 * @mr: The memory region to deregister. 3757 * 3758 * This function can fail, if the memory region has memory windows bound to it. 3759 */ 3760 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 3761 3762 /** 3763 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 3764 * HCA translation table. 3765 * @mr: The memory region to deregister. 3766 * 3767 * This function can fail, if the memory region has memory windows bound to it. 3768 * 3769 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 3770 */ 3771 static inline int ib_dereg_mr(struct ib_mr *mr) 3772 { 3773 return ib_dereg_mr_user(mr, NULL); 3774 } 3775 3776 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 3777 u32 max_num_sg, struct ib_udata *udata); 3778 3779 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3780 enum ib_mr_type mr_type, u32 max_num_sg) 3781 { 3782 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 3783 } 3784 3785 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 3786 u32 max_num_data_sg, 3787 u32 max_num_meta_sg); 3788 3789 /** 3790 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3791 * R_Key and L_Key. 3792 * @mr - struct ib_mr pointer to be updated. 3793 * @newkey - new key to be used. 3794 */ 3795 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3796 { 3797 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3798 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3799 } 3800 3801 /** 3802 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3803 * for calculating a new rkey for type 2 memory windows. 3804 * @rkey - the rkey to increment. 3805 */ 3806 static inline u32 ib_inc_rkey(u32 rkey) 3807 { 3808 const u32 mask = 0x000000ff; 3809 return ((rkey + 1) & mask) | (rkey & ~mask); 3810 } 3811 3812 /** 3813 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3814 * @pd: The protection domain associated with the unmapped region. 3815 * @mr_access_flags: Specifies the memory access rights. 3816 * @fmr_attr: Attributes of the unmapped region. 3817 * 3818 * A fast memory region must be mapped before it can be used as part of 3819 * a work request. 3820 */ 3821 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3822 int mr_access_flags, 3823 struct ib_fmr_attr *fmr_attr); 3824 3825 /** 3826 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3827 * @fmr: The fast memory region to associate with the pages. 3828 * @page_list: An array of physical pages to map to the fast memory region. 3829 * @list_len: The number of pages in page_list. 3830 * @iova: The I/O virtual address to use with the mapped region. 3831 */ 3832 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3833 u64 *page_list, int list_len, 3834 u64 iova) 3835 { 3836 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3837 } 3838 3839 /** 3840 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3841 * @fmr_list: A linked list of fast memory regions to unmap. 3842 */ 3843 int ib_unmap_fmr(struct list_head *fmr_list); 3844 3845 /** 3846 * ib_dealloc_fmr - Deallocates a fast memory region. 3847 * @fmr: The fast memory region to deallocate. 3848 */ 3849 int ib_dealloc_fmr(struct ib_fmr *fmr); 3850 3851 /** 3852 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3853 * @qp: QP to attach to the multicast group. The QP must be type 3854 * IB_QPT_UD. 3855 * @gid: Multicast group GID. 3856 * @lid: Multicast group LID in host byte order. 3857 * 3858 * In order to send and receive multicast packets, subnet 3859 * administration must have created the multicast group and configured 3860 * the fabric appropriately. The port associated with the specified 3861 * QP must also be a member of the multicast group. 3862 */ 3863 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3864 3865 /** 3866 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3867 * @qp: QP to detach from the multicast group. 3868 * @gid: Multicast group GID. 3869 * @lid: Multicast group LID in host byte order. 3870 */ 3871 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3872 3873 /** 3874 * ib_alloc_xrcd - Allocates an XRC domain. 3875 * @device: The device on which to allocate the XRC domain. 3876 * @caller: Module name for kernel consumers 3877 */ 3878 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3879 #define ib_alloc_xrcd(device) \ 3880 __ib_alloc_xrcd((device), "ibcore") 3881 3882 /** 3883 * ib_dealloc_xrcd - Deallocates an XRC domain. 3884 * @xrcd: The XRC domain to deallocate. 3885 * @udata: Valid user data or NULL for kernel object 3886 */ 3887 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 3888 3889 static inline int ib_check_mr_access(int flags) 3890 { 3891 /* 3892 * Local write permission is required if remote write or 3893 * remote atomic permission is also requested. 3894 */ 3895 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3896 !(flags & IB_ACCESS_LOCAL_WRITE)) 3897 return -EINVAL; 3898 3899 if (flags & ~IB_ACCESS_SUPPORTED) 3900 return -EINVAL; 3901 3902 return 0; 3903 } 3904 3905 static inline bool ib_access_writable(int access_flags) 3906 { 3907 /* 3908 * We have writable memory backing the MR if any of the following 3909 * access flags are set. "Local write" and "remote write" obviously 3910 * require write access. "Remote atomic" can do things like fetch and 3911 * add, which will modify memory, and "MW bind" can change permissions 3912 * by binding a window. 3913 */ 3914 return access_flags & 3915 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 3916 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 3917 } 3918 3919 /** 3920 * ib_check_mr_status: lightweight check of MR status. 3921 * This routine may provide status checks on a selected 3922 * ib_mr. first use is for signature status check. 3923 * 3924 * @mr: A memory region. 3925 * @check_mask: Bitmask of which checks to perform from 3926 * ib_mr_status_check enumeration. 3927 * @mr_status: The container of relevant status checks. 3928 * failed checks will be indicated in the status bitmask 3929 * and the relevant info shall be in the error item. 3930 */ 3931 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3932 struct ib_mr_status *mr_status); 3933 3934 if_t ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3935 u16 pkey, const union ib_gid *gid, 3936 const struct sockaddr *addr); 3937 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3938 struct ib_wq_init_attr *init_attr); 3939 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 3940 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3941 u32 wq_attr_mask); 3942 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3943 struct ib_rwq_ind_table_init_attr* 3944 wq_ind_table_init_attr); 3945 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3946 3947 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3948 unsigned int *sg_offset, unsigned int page_size); 3949 3950 static inline int 3951 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3952 unsigned int *sg_offset, unsigned int page_size) 3953 { 3954 int n; 3955 3956 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3957 mr->iova = 0; 3958 3959 return n; 3960 } 3961 3962 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3963 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3964 3965 void ib_drain_rq(struct ib_qp *qp); 3966 void ib_drain_sq(struct ib_qp *qp); 3967 void ib_drain_qp(struct ib_qp *qp); 3968 3969 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 3970 3971 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 3972 3973 int ib_resolve_eth_dmac(struct ib_device *device, 3974 struct ib_ah_attr *ah_attr); 3975 #endif /* IB_VERBS_H */ 3976