xref: /freebsd/sys/ofed/include/rdma/ib_addr.h (revision 991554f2c46fdbc7e9acbf87fc8da089618c3a19)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #if !defined(IB_ADDR_H)
35 #define IB_ADDR_H
36 
37 #include <linux/in.h>
38 #include <linux/in6.h>
39 #include <linux/if_arp.h>
40 #include <linux/netdevice.h>
41 #include <linux/socket.h>
42 #include <rdma/ib_verbs.h>
43 #include <rdma/ib_pack.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 
47 struct rdma_addr_client {
48 	atomic_t refcount;
49 	struct completion comp;
50 };
51 
52 /**
53  * rdma_addr_register_client - Register an address client.
54  */
55 void rdma_addr_register_client(struct rdma_addr_client *client);
56 
57 /**
58  * rdma_addr_unregister_client - Deregister an address client.
59  * @client: Client object to deregister.
60  */
61 void rdma_addr_unregister_client(struct rdma_addr_client *client);
62 
63 struct rdma_dev_addr {
64 	unsigned char src_dev_addr[MAX_ADDR_LEN];
65 	unsigned char dst_dev_addr[MAX_ADDR_LEN];
66 	unsigned char broadcast[MAX_ADDR_LEN];
67 	unsigned short dev_type;
68 	int bound_dev_if;
69 	enum rdma_transport_type transport;
70 };
71 
72 /**
73  * rdma_translate_ip - Translate a local IP address to an RDMA hardware
74  *   address.
75  */
76 int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr);
77 
78 /**
79  * rdma_resolve_ip - Resolve source and destination IP addresses to
80  *   RDMA hardware addresses.
81  * @client: Address client associated with request.
82  * @src_addr: An optional source address to use in the resolution.  If a
83  *   source address is not provided, a usable address will be returned via
84  *   the callback.
85  * @dst_addr: The destination address to resolve.
86  * @addr: A reference to a data location that will receive the resolved
87  *   addresses.  The data location must remain valid until the callback has
88  *   been invoked.
89  * @timeout_ms: Amount of time to wait for the address resolution to complete.
90  * @callback: Call invoked once address resolution has completed, timed out,
91  *   or been canceled.  A status of 0 indicates success.
92  * @context: User-specified context associated with the call.
93  */
94 int rdma_resolve_ip(struct rdma_addr_client *client,
95 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
96 		    struct rdma_dev_addr *addr, int timeout_ms,
97 		    void (*callback)(int status, struct sockaddr *src_addr,
98 				     struct rdma_dev_addr *addr, void *context),
99 		    void *context);
100 
101 void rdma_addr_cancel(struct rdma_dev_addr *addr);
102 
103 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
104 	      const unsigned char *dst_dev_addr);
105 
106 static inline int ip_addr_size(struct sockaddr *addr)
107 {
108 	return addr->sa_family == AF_INET6 ?
109 	       sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
110 }
111 
112 static inline u16 ib_addr_get_pkey(struct rdma_dev_addr *dev_addr)
113 {
114 	return ((u16)dev_addr->broadcast[8] << 8) | (u16)dev_addr->broadcast[9];
115 }
116 
117 static inline void ib_addr_set_pkey(struct rdma_dev_addr *dev_addr, u16 pkey)
118 {
119 	dev_addr->broadcast[8] = pkey >> 8;
120 	dev_addr->broadcast[9] = (unsigned char) pkey;
121 }
122 
123 static inline void ib_addr_get_mgid(struct rdma_dev_addr *dev_addr,
124 				    union ib_gid *gid)
125 {
126 	memcpy(gid, dev_addr->broadcast + 4, sizeof *gid);
127 }
128 
129 static inline int rdma_addr_gid_offset(struct rdma_dev_addr *dev_addr)
130 {
131 	return dev_addr->dev_type == ARPHRD_INFINIBAND ? 4 : 0;
132 }
133 
134 static inline void iboe_mac_vlan_to_ll(union ib_gid *gid, u8 *mac, u16 vid)
135 {
136 	memset(gid->raw, 0, 16);
137 	*((u32 *)gid->raw) = cpu_to_be32(0xfe800000);
138 	if (vid < 0x1000) {
139 		gid->raw[12] = vid & 0xff;
140 		gid->raw[11] = vid >> 8;
141 	} else {
142 		gid->raw[12] = 0xfe;
143 		gid->raw[11] = 0xff;
144 	}
145 
146 	memcpy(gid->raw + 13, mac + 3, 3);
147 	memcpy(gid->raw + 8, mac, 3);
148 	gid->raw[8] ^= 2;
149 }
150 
151 static inline u16 rdma_vlan_dev_vlan_id(const struct net_device *dev)
152 {
153 #ifdef __linux__
154 	return dev->priv_flags & IFF_802_1Q_VLAN ?
155 		vlan_dev_vlan_id(dev) : 0xffff;
156 #else
157 	uint16_t tag;
158 
159 	if (VLAN_TAG(__DECONST(struct ifnet *, dev), &tag) != 0)
160 		return 0xffff;
161 	return tag;
162 #endif
163 }
164 
165 static inline void iboe_addr_get_sgid(struct rdma_dev_addr *dev_addr,
166 				      union ib_gid *gid)
167 {
168 	struct net_device *dev;
169 	u16 vid = 0xffff;
170 
171 	dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
172 	if (dev) {
173 		vid = rdma_vlan_dev_vlan_id(dev);
174 		dev_put(dev);
175 	}
176 
177 	iboe_mac_vlan_to_ll(gid, dev_addr->src_dev_addr, vid);
178 }
179 
180 static inline void rdma_addr_get_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid)
181 {
182 	if (dev_addr->transport == RDMA_TRANSPORT_IB &&
183 	    dev_addr->dev_type != ARPHRD_INFINIBAND)
184 		iboe_addr_get_sgid(dev_addr, gid);
185 	else
186 		memcpy(gid, dev_addr->src_dev_addr +
187 		       rdma_addr_gid_offset(dev_addr), sizeof *gid);
188 }
189 
190 static inline void rdma_addr_set_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid)
191 {
192 	memcpy(dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), gid, sizeof *gid);
193 }
194 
195 static inline void rdma_addr_get_dgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid)
196 {
197 	memcpy(gid, dev_addr->dst_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof *gid);
198 }
199 
200 static inline void rdma_addr_set_dgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid)
201 {
202 	memcpy(dev_addr->dst_dev_addr + rdma_addr_gid_offset(dev_addr), gid, sizeof *gid);
203 }
204 
205 static inline enum ib_mtu iboe_get_mtu(int mtu)
206 {
207 	/*
208 	 * reduce IB headers from effective IBoE MTU. 28 stands for
209 	 * atomic header which is the biggest possible header after BTH
210 	 */
211 	mtu = mtu - IB_GRH_BYTES - IB_BTH_BYTES - 28;
212 
213 	if (mtu >= ib_mtu_enum_to_int(IB_MTU_4096))
214 		return IB_MTU_4096;
215 	else if (mtu >= ib_mtu_enum_to_int(IB_MTU_2048))
216 		return IB_MTU_2048;
217 	else if (mtu >= ib_mtu_enum_to_int(IB_MTU_1024))
218 		return IB_MTU_1024;
219 	else if (mtu >= ib_mtu_enum_to_int(IB_MTU_512))
220 		return IB_MTU_512;
221 	else if (mtu >= ib_mtu_enum_to_int(IB_MTU_256))
222 		return IB_MTU_256;
223 	else
224 		return 0;
225 }
226 
227 #ifdef __linux__
228 static inline int iboe_get_rate(struct net_device *dev)
229 {
230 	struct ethtool_cmd cmd;
231 
232 	if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings ||
233 	    dev->ethtool_ops->get_settings(dev, &cmd))
234 		return IB_RATE_PORT_CURRENT;
235 
236 	if (cmd.speed >= 40000)
237 		return IB_RATE_40_GBPS;
238 	else if (cmd.speed >= 30000)
239 		return IB_RATE_30_GBPS;
240 	else if (cmd.speed >= 20000)
241 		return IB_RATE_20_GBPS;
242 	else if (cmd.speed >= 10000)
243 		return IB_RATE_10_GBPS;
244 	else
245 		return IB_RATE_PORT_CURRENT;
246 }
247 #else
248 static inline int iboe_get_rate(struct net_device *dev)
249 {
250 	if (dev->if_baudrate >= IF_Gbps(40))
251 		return IB_RATE_40_GBPS;
252 	else if (dev->if_baudrate >= IF_Gbps(30))
253 		return IB_RATE_30_GBPS;
254 	else if (dev->if_baudrate >= IF_Gbps(20))
255 		return IB_RATE_20_GBPS;
256 	else if (dev->if_baudrate >= IF_Gbps(10))
257 		return IB_RATE_10_GBPS;
258 	else
259 		return IB_RATE_PORT_CURRENT;
260 }
261 #endif
262 
263 static inline int rdma_link_local_addr(struct in6_addr *addr)
264 {
265 	if (addr->s6_addr32[0] == cpu_to_be32(0xfe800000) &&
266 	    addr->s6_addr32[1] == 0)
267 		return 1;
268 
269 	return 0;
270 }
271 
272 static inline void rdma_get_ll_mac(struct in6_addr *addr, u8 *mac)
273 {
274 	memcpy(mac, &addr->s6_addr[8], 3);
275 	memcpy(mac + 3, &addr->s6_addr[13], 3);
276 	mac[0] ^= 2;
277 }
278 
279 static inline int rdma_is_multicast_addr(struct in6_addr *addr)
280 {
281 	return addr->s6_addr[0] == 0xff;
282 }
283 
284 static inline void rdma_get_mcast_mac(struct in6_addr *addr, u8 *mac)
285 {
286 	int i;
287 
288 	mac[0] = 0x33;
289 	mac[1] = 0x33;
290 	for (i = 2; i < 6; ++i)
291 		mac[i] = addr->s6_addr[i + 10];
292 }
293 
294 static inline u16 rdma_get_vlan_id(union ib_gid *dgid)
295 {
296 	u16 vid;
297 
298 	vid = dgid->raw[11] << 8 | dgid->raw[12];
299 	return vid < 0x1000 ? vid  : 0xffff;
300 }
301 
302 static inline struct net_device *rdma_vlan_dev_real_dev(const struct net_device *dev)
303 {
304 #ifdef __linux__
305 	return dev->priv_flags & IFF_802_1Q_VLAN ?
306 		vlan_dev_real_dev(dev) : 0;
307 #else
308 	return VLAN_TRUNKDEV(__DECONST(struct ifnet *, dev));
309 #endif
310 }
311 
312 #endif /* IB_ADDR_H */
313