xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision def7fe87e9b28032572ca6f820a260677fd0c2d5)
1 /*-
2  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
3  * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/rwlock.h>
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/vnet.h>
47 #include <net/pfvar.h>
48 #include <net/if_pflog.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip_var.h>
53 #include <netinet6/ip6_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_fsm.h>
56 #include <netinet/tcp_seq.h>
57 
58 #ifdef INET6
59 #include <netinet/ip6.h>
60 #endif /* INET6 */
61 
62 struct pf_frent {
63 	TAILQ_ENTRY(pf_frent)	fr_next;
64 	struct mbuf	*fe_m;
65 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
66 					   ipv6, extension, fragment header */
67 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
68 	uint16_t	fe_len;		/* fragment length */
69 	uint16_t	fe_off;		/* fragment offset */
70 	uint16_t	fe_mff;		/* more fragment flag */
71 };
72 
73 struct pf_fragment_cmp {
74 	struct pf_addr	frc_src;
75 	struct pf_addr	frc_dst;
76 	uint32_t	frc_id;
77 	sa_family_t	frc_af;
78 	uint8_t		frc_proto;
79 };
80 
81 struct pf_fragment {
82 	struct pf_fragment_cmp	fr_key;
83 #define fr_src	fr_key.frc_src
84 #define fr_dst	fr_key.frc_dst
85 #define fr_id	fr_key.frc_id
86 #define fr_af	fr_key.frc_af
87 #define fr_proto	fr_key.frc_proto
88 
89 	RB_ENTRY(pf_fragment) fr_entry;
90 	TAILQ_ENTRY(pf_fragment) frag_next;
91 	uint32_t	fr_timeout;
92 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
93 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
94 };
95 
96 struct pf_fragment_tag {
97 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
98 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
99 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
100 	uint32_t	ft_id;		/* fragment id */
101 };
102 
103 static struct mtx pf_frag_mtx;
104 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
105 #define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
106 #define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
107 #define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
108 
109 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
110 
111 static VNET_DEFINE(uma_zone_t, pf_frent_z);
112 #define	V_pf_frent_z	VNET(pf_frent_z)
113 static VNET_DEFINE(uma_zone_t, pf_frag_z);
114 #define	V_pf_frag_z	VNET(pf_frag_z)
115 
116 TAILQ_HEAD(pf_fragqueue, pf_fragment);
117 TAILQ_HEAD(pf_cachequeue, pf_fragment);
118 static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
119 #define	V_pf_fragqueue			VNET(pf_fragqueue)
120 RB_HEAD(pf_frag_tree, pf_fragment);
121 static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
122 #define	V_pf_frag_tree			VNET(pf_frag_tree)
123 static int		 pf_frag_compare(struct pf_fragment *,
124 			    struct pf_fragment *);
125 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
126 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
127 
128 static void	pf_flush_fragments(void);
129 static void	pf_free_fragment(struct pf_fragment *);
130 static void	pf_remove_fragment(struct pf_fragment *);
131 static int	pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
132 		    struct tcphdr *, int, sa_family_t);
133 static struct pf_frent *pf_create_fragment(u_short *);
134 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
135 		    struct pf_frag_tree *tree);
136 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
137 		    struct pf_frent *, u_short *);
138 static int	pf_isfull_fragment(struct pf_fragment *);
139 static struct mbuf *pf_join_fragment(struct pf_fragment *);
140 #ifdef INET
141 static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
142 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
143 #endif	/* INET */
144 #ifdef INET6
145 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
146 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
147 static void	pf_scrub_ip6(struct mbuf **, uint8_t);
148 #endif	/* INET6 */
149 
150 #define	DPFPRINTF(x) do {				\
151 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
152 		printf("%s: ", __func__);		\
153 		printf x ;				\
154 	}						\
155 } while(0)
156 
157 #ifdef INET
158 static void
159 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
160 {
161 
162 	key->frc_src.v4 = ip->ip_src;
163 	key->frc_dst.v4 = ip->ip_dst;
164 	key->frc_af = AF_INET;
165 	key->frc_proto = ip->ip_p;
166 	key->frc_id = ip->ip_id;
167 }
168 #endif	/* INET */
169 
170 void
171 pf_normalize_init(void)
172 {
173 
174 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
175 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
176 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
177 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
178 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
179 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
180 	    UMA_ALIGN_PTR, 0);
181 
182 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
183 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
184 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
185 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
186 
187 	TAILQ_INIT(&V_pf_fragqueue);
188 }
189 
190 void
191 pf_normalize_cleanup(void)
192 {
193 
194 	uma_zdestroy(V_pf_state_scrub_z);
195 	uma_zdestroy(V_pf_frent_z);
196 	uma_zdestroy(V_pf_frag_z);
197 }
198 
199 static int
200 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
201 {
202 	int	diff;
203 
204 	if ((diff = a->fr_id - b->fr_id) != 0)
205 		return (diff);
206 	if ((diff = a->fr_proto - b->fr_proto) != 0)
207 		return (diff);
208 	if ((diff = a->fr_af - b->fr_af) != 0)
209 		return (diff);
210 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
211 		return (diff);
212 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
213 		return (diff);
214 	return (0);
215 }
216 
217 void
218 pf_purge_expired_fragments(void)
219 {
220 	struct pf_fragment	*frag;
221 	u_int32_t		 expire = time_uptime -
222 				    V_pf_default_rule.timeout[PFTM_FRAG];
223 
224 	PF_FRAG_LOCK();
225 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
226 		if (frag->fr_timeout > expire)
227 			break;
228 
229 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
230 		pf_free_fragment(frag);
231 	}
232 
233 	PF_FRAG_UNLOCK();
234 }
235 
236 /*
237  * Try to flush old fragments to make space for new ones
238  */
239 static void
240 pf_flush_fragments(void)
241 {
242 	struct pf_fragment	*frag;
243 	int			 goal;
244 
245 	PF_FRAG_ASSERT();
246 
247 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
248 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
249 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
250 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
251 		if (frag)
252 			pf_free_fragment(frag);
253 		else
254 			break;
255 	}
256 }
257 
258 /* Frees the fragments and all associated entries */
259 static void
260 pf_free_fragment(struct pf_fragment *frag)
261 {
262 	struct pf_frent		*frent;
263 
264 	PF_FRAG_ASSERT();
265 
266 	/* Free all fragments */
267 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
268 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
269 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
270 
271 		m_freem(frent->fe_m);
272 		uma_zfree(V_pf_frent_z, frent);
273 	}
274 
275 	pf_remove_fragment(frag);
276 }
277 
278 static struct pf_fragment *
279 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
280 {
281 	struct pf_fragment	*frag;
282 
283 	PF_FRAG_ASSERT();
284 
285 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
286 	if (frag != NULL) {
287 		/* XXX Are we sure we want to update the timeout? */
288 		frag->fr_timeout = time_uptime;
289 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
290 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
291 	}
292 
293 	return (frag);
294 }
295 
296 /* Removes a fragment from the fragment queue and frees the fragment */
297 static void
298 pf_remove_fragment(struct pf_fragment *frag)
299 {
300 
301 	PF_FRAG_ASSERT();
302 
303 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
304 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
305 	uma_zfree(V_pf_frag_z, frag);
306 }
307 
308 static struct pf_frent *
309 pf_create_fragment(u_short *reason)
310 {
311 	struct pf_frent *frent;
312 
313 	PF_FRAG_ASSERT();
314 
315 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
316 	if (frent == NULL) {
317 		pf_flush_fragments();
318 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
319 		if (frent == NULL) {
320 			REASON_SET(reason, PFRES_MEMORY);
321 			return (NULL);
322 		}
323 	}
324 
325 	return (frent);
326 }
327 
328 static struct pf_fragment *
329 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
330 		u_short *reason)
331 {
332 	struct pf_frent		*after, *next, *prev;
333 	struct pf_fragment	*frag;
334 	uint16_t		total;
335 
336 	PF_FRAG_ASSERT();
337 
338 	/* No empty fragments. */
339 	if (frent->fe_len == 0) {
340 		DPFPRINTF(("bad fragment: len 0"));
341 		goto bad_fragment;
342 	}
343 
344 	/* All fragments are 8 byte aligned. */
345 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
346 		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
347 		goto bad_fragment;
348 	}
349 
350 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
351 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
352 		DPFPRINTF(("bad fragment: max packet %d",
353 		    frent->fe_off + frent->fe_len));
354 		goto bad_fragment;
355 	}
356 
357 	DPFPRINTF((key->frc_af == AF_INET ?
358 	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
359 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
360 
361 	/* Fully buffer all of the fragments in this fragment queue. */
362 	frag = pf_find_fragment(key, &V_pf_frag_tree);
363 
364 	/* Create a new reassembly queue for this packet. */
365 	if (frag == NULL) {
366 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
367 		if (frag == NULL) {
368 			pf_flush_fragments();
369 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
370 			if (frag == NULL) {
371 				REASON_SET(reason, PFRES_MEMORY);
372 				goto drop_fragment;
373 			}
374 		}
375 
376 		*(struct pf_fragment_cmp *)frag = *key;
377 		frag->fr_timeout = time_uptime;
378 		frag->fr_maxlen = frent->fe_len;
379 		TAILQ_INIT(&frag->fr_queue);
380 
381 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
382 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
383 
384 		/* We do not have a previous fragment. */
385 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
386 
387 		return (frag);
388 	}
389 
390 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
391 
392 	/* Remember maximum fragment len for refragmentation. */
393 	if (frent->fe_len > frag->fr_maxlen)
394 		frag->fr_maxlen = frent->fe_len;
395 
396 	/* Maximum data we have seen already. */
397 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
398 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
399 
400 	/* Non terminal fragments must have more fragments flag. */
401 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
402 		goto bad_fragment;
403 
404 	/* Check if we saw the last fragment already. */
405 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
406 		if (frent->fe_off + frent->fe_len > total ||
407 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
408 			goto bad_fragment;
409 	} else {
410 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
411 			goto bad_fragment;
412 	}
413 
414 	/* Find a fragment after the current one. */
415 	prev = NULL;
416 	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
417 		if (after->fe_off > frent->fe_off)
418 			break;
419 		prev = after;
420 	}
421 
422 	KASSERT(prev != NULL || after != NULL,
423 	    ("prev != NULL || after != NULL"));
424 
425 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
426 		uint16_t precut;
427 
428 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
429 		if (precut >= frent->fe_len)
430 			goto bad_fragment;
431 		DPFPRINTF(("overlap -%d", precut));
432 		m_adj(frent->fe_m, precut);
433 		frent->fe_off += precut;
434 		frent->fe_len -= precut;
435 	}
436 
437 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
438 	    after = next) {
439 		uint16_t aftercut;
440 
441 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
442 		DPFPRINTF(("adjust overlap %d", aftercut));
443 		if (aftercut < after->fe_len) {
444 			m_adj(after->fe_m, aftercut);
445 			after->fe_off += aftercut;
446 			after->fe_len -= aftercut;
447 			break;
448 		}
449 
450 		/* This fragment is completely overlapped, lose it. */
451 		next = TAILQ_NEXT(after, fr_next);
452 		m_freem(after->fe_m);
453 		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
454 		uma_zfree(V_pf_frent_z, after);
455 	}
456 
457 	if (prev == NULL)
458 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
459 	else
460 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
461 
462 	return (frag);
463 
464 bad_fragment:
465 	REASON_SET(reason, PFRES_FRAG);
466 drop_fragment:
467 	uma_zfree(V_pf_frent_z, frent);
468 	return (NULL);
469 }
470 
471 static int
472 pf_isfull_fragment(struct pf_fragment *frag)
473 {
474 	struct pf_frent	*frent, *next;
475 	uint16_t off, total;
476 
477 	/* Check if we are completely reassembled */
478 	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
479 		return (0);
480 
481 	/* Maximum data we have seen already */
482 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
483 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
484 
485 	/* Check if we have all the data */
486 	off = 0;
487 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
488 		next = TAILQ_NEXT(frent, fr_next);
489 
490 		off += frent->fe_len;
491 		if (off < total && (next == NULL || next->fe_off != off)) {
492 			DPFPRINTF(("missing fragment at %d, next %d, total %d",
493 			    off, next == NULL ? -1 : next->fe_off, total));
494 			return (0);
495 		}
496 	}
497 	DPFPRINTF(("%d < %d?", off, total));
498 	if (off < total)
499 		return (0);
500 	KASSERT(off == total, ("off == total"));
501 
502 	return (1);
503 }
504 
505 static struct mbuf *
506 pf_join_fragment(struct pf_fragment *frag)
507 {
508 	struct mbuf *m, *m2;
509 	struct pf_frent	*frent, *next;
510 
511 	frent = TAILQ_FIRST(&frag->fr_queue);
512 	next = TAILQ_NEXT(frent, fr_next);
513 
514 	m = frent->fe_m;
515 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
516 	uma_zfree(V_pf_frent_z, frent);
517 	for (frent = next; frent != NULL; frent = next) {
518 		next = TAILQ_NEXT(frent, fr_next);
519 
520 		m2 = frent->fe_m;
521 		/* Strip off ip header. */
522 		m_adj(m2, frent->fe_hdrlen);
523 		/* Strip off any trailing bytes. */
524 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
525 
526 		uma_zfree(V_pf_frent_z, frent);
527 		m_cat(m, m2);
528 	}
529 
530 	/* Remove from fragment queue. */
531 	pf_remove_fragment(frag);
532 
533 	return (m);
534 }
535 
536 #ifdef INET
537 static int
538 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
539 {
540 	struct mbuf		*m = *m0;
541 	struct pf_frent		*frent;
542 	struct pf_fragment	*frag;
543 	struct pf_fragment_cmp	key;
544 	uint16_t		total, hdrlen;
545 
546 	/* Get an entry for the fragment queue */
547 	if ((frent = pf_create_fragment(reason)) == NULL)
548 		return (PF_DROP);
549 
550 	frent->fe_m = m;
551 	frent->fe_hdrlen = ip->ip_hl << 2;
552 	frent->fe_extoff = 0;
553 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
554 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
555 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
556 
557 	pf_ip2key(ip, dir, &key);
558 
559 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
560 		return (PF_DROP);
561 
562 	/* The mbuf is part of the fragment entry, no direct free or access */
563 	m = *m0 = NULL;
564 
565 	if (!pf_isfull_fragment(frag))
566 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
567 
568 	/* We have all the data */
569 	frent = TAILQ_FIRST(&frag->fr_queue);
570 	KASSERT(frent != NULL, ("frent != NULL"));
571 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
572 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
573 	hdrlen = frent->fe_hdrlen;
574 
575 	m = *m0 = pf_join_fragment(frag);
576 	frag = NULL;
577 
578 	if (m->m_flags & M_PKTHDR) {
579 		int plen = 0;
580 		for (m = *m0; m; m = m->m_next)
581 			plen += m->m_len;
582 		m = *m0;
583 		m->m_pkthdr.len = plen;
584 	}
585 
586 	ip = mtod(m, struct ip *);
587 	ip->ip_len = htons(hdrlen + total);
588 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
589 
590 	if (hdrlen + total > IP_MAXPACKET) {
591 		DPFPRINTF(("drop: too big: %d", total));
592 		ip->ip_len = 0;
593 		REASON_SET(reason, PFRES_SHORT);
594 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
595 		return (PF_DROP);
596 	}
597 
598 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
599 	return (PF_PASS);
600 }
601 #endif	/* INET */
602 
603 #ifdef INET6
604 static int
605 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
606     uint16_t hdrlen, uint16_t extoff, u_short *reason)
607 {
608 	struct mbuf		*m = *m0;
609 	struct pf_frent		*frent;
610 	struct pf_fragment	*frag;
611 	struct pf_fragment_cmp	 key;
612 	struct m_tag		*mtag;
613 	struct pf_fragment_tag	*ftag;
614 	int			 off;
615 	uint32_t		 frag_id;
616 	uint16_t		 total, maxlen;
617 	uint8_t			 proto;
618 
619 	PF_FRAG_LOCK();
620 
621 	/* Get an entry for the fragment queue. */
622 	if ((frent = pf_create_fragment(reason)) == NULL) {
623 		PF_FRAG_UNLOCK();
624 		return (PF_DROP);
625 	}
626 
627 	frent->fe_m = m;
628 	frent->fe_hdrlen = hdrlen;
629 	frent->fe_extoff = extoff;
630 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
631 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
632 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
633 
634 	key.frc_src.v6 = ip6->ip6_src;
635 	key.frc_dst.v6 = ip6->ip6_dst;
636 	key.frc_af = AF_INET6;
637 	/* Only the first fragment's protocol is relevant. */
638 	key.frc_proto = 0;
639 	key.frc_id = fraghdr->ip6f_ident;
640 
641 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
642 		PF_FRAG_UNLOCK();
643 		return (PF_DROP);
644 	}
645 
646 	/* The mbuf is part of the fragment entry, no direct free or access. */
647 	m = *m0 = NULL;
648 
649 	if (!pf_isfull_fragment(frag)) {
650 		PF_FRAG_UNLOCK();
651 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
652 	}
653 
654 	/* We have all the data. */
655 	extoff = frent->fe_extoff;
656 	maxlen = frag->fr_maxlen;
657 	frag_id = frag->fr_id;
658 	frent = TAILQ_FIRST(&frag->fr_queue);
659 	KASSERT(frent != NULL, ("frent != NULL"));
660 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
661 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
662 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
663 
664 	m = *m0 = pf_join_fragment(frag);
665 	frag = NULL;
666 
667 	PF_FRAG_UNLOCK();
668 
669 	/* Take protocol from first fragment header. */
670 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
671 	KASSERT(m, ("%s: short mbuf chain", __func__));
672 	proto = *(mtod(m, caddr_t) + off);
673 	m = *m0;
674 
675 	/* Delete frag6 header */
676 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
677 		goto fail;
678 
679 	if (m->m_flags & M_PKTHDR) {
680 		int plen = 0;
681 		for (m = *m0; m; m = m->m_next)
682 			plen += m->m_len;
683 		m = *m0;
684 		m->m_pkthdr.len = plen;
685 	}
686 
687 	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
688 	    M_NOWAIT)) == NULL)
689 		goto fail;
690 	ftag = (struct pf_fragment_tag *)(mtag + 1);
691 	ftag->ft_hdrlen = hdrlen;
692 	ftag->ft_extoff = extoff;
693 	ftag->ft_maxlen = maxlen;
694 	ftag->ft_id = frag_id;
695 	m_tag_prepend(m, mtag);
696 
697 	ip6 = mtod(m, struct ip6_hdr *);
698 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
699 	if (extoff) {
700 		/* Write protocol into next field of last extension header. */
701 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
702 		    &off);
703 		KASSERT(m, ("%s: short mbuf chain", __func__));
704 		*(mtod(m, char *) + off) = proto;
705 		m = *m0;
706 	} else
707 		ip6->ip6_nxt = proto;
708 
709 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
710 		DPFPRINTF(("drop: too big: %d", total));
711 		ip6->ip6_plen = 0;
712 		REASON_SET(reason, PFRES_SHORT);
713 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
714 		return (PF_DROP);
715 	}
716 
717 	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
718 	return (PF_PASS);
719 
720 fail:
721 	REASON_SET(reason, PFRES_MEMORY);
722 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
723 	return (PF_DROP);
724 }
725 #endif	/* INET6 */
726 
727 #ifdef INET6
728 int
729 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
730 {
731 	struct mbuf		*m = *m0, *t;
732 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
733 	struct pf_pdesc		 pd;
734 	uint32_t		 frag_id;
735 	uint16_t		 hdrlen, extoff, maxlen;
736 	uint8_t			 proto;
737 	int			 error, action;
738 
739 	hdrlen = ftag->ft_hdrlen;
740 	extoff = ftag->ft_extoff;
741 	maxlen = ftag->ft_maxlen;
742 	frag_id = ftag->ft_id;
743 	m_tag_delete(m, mtag);
744 	mtag = NULL;
745 	ftag = NULL;
746 
747 	if (extoff) {
748 		int off;
749 
750 		/* Use protocol from next field of last extension header */
751 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
752 		    &off);
753 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
754 		proto = *(mtod(m, caddr_t) + off);
755 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
756 		m = *m0;
757 	} else {
758 		struct ip6_hdr *hdr;
759 
760 		hdr = mtod(m, struct ip6_hdr *);
761 		proto = hdr->ip6_nxt;
762 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
763 	}
764 
765 	/*
766 	 * Maxlen may be less than 8 if there was only a single
767 	 * fragment.  As it was fragmented before, add a fragment
768 	 * header also for a single fragment.  If total or maxlen
769 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
770 	 * we drop the packet.
771 	 */
772 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
773 	m = (*m0)->m_nextpkt;
774 	(*m0)->m_nextpkt = NULL;
775 	if (error == 0) {
776 		/* The first mbuf contains the unfragmented packet. */
777 		m_freem(*m0);
778 		*m0 = NULL;
779 		action = PF_PASS;
780 	} else {
781 		/* Drop expects an mbuf to free. */
782 		DPFPRINTF(("refragment error %d", error));
783 		action = PF_DROP;
784 	}
785 	for (t = m; m; m = t) {
786 		t = m->m_nextpkt;
787 		m->m_nextpkt = NULL;
788 		m->m_flags |= M_SKIP_FIREWALL;
789 		memset(&pd, 0, sizeof(pd));
790 		pd.pf_mtag = pf_find_mtag(m);
791 		if (error == 0)
792 			ip6_forward(m, 0);
793 		else
794 			m_freem(m);
795 	}
796 
797 	return (action);
798 }
799 #endif /* INET6 */
800 
801 #ifdef INET
802 int
803 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
804     struct pf_pdesc *pd)
805 {
806 	struct mbuf		*m = *m0;
807 	struct pf_rule		*r;
808 	struct ip		*h = mtod(m, struct ip *);
809 	int			 mff = (ntohs(h->ip_off) & IP_MF);
810 	int			 hlen = h->ip_hl << 2;
811 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
812 	u_int16_t		 max;
813 	int			 ip_len;
814 	int			 ip_off;
815 	int			 tag = -1;
816 	int			 verdict;
817 
818 	PF_RULES_RASSERT();
819 
820 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
821 	while (r != NULL) {
822 		r->evaluations++;
823 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
824 			r = r->skip[PF_SKIP_IFP].ptr;
825 		else if (r->direction && r->direction != dir)
826 			r = r->skip[PF_SKIP_DIR].ptr;
827 		else if (r->af && r->af != AF_INET)
828 			r = r->skip[PF_SKIP_AF].ptr;
829 		else if (r->proto && r->proto != h->ip_p)
830 			r = r->skip[PF_SKIP_PROTO].ptr;
831 		else if (PF_MISMATCHAW(&r->src.addr,
832 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
833 		    r->src.neg, kif, M_GETFIB(m)))
834 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
835 		else if (PF_MISMATCHAW(&r->dst.addr,
836 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
837 		    r->dst.neg, NULL, M_GETFIB(m)))
838 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
839 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
840 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
841 			r = TAILQ_NEXT(r, entries);
842 		else
843 			break;
844 	}
845 
846 	if (r == NULL || r->action == PF_NOSCRUB)
847 		return (PF_PASS);
848 	else {
849 		r->packets[dir == PF_OUT]++;
850 		r->bytes[dir == PF_OUT] += pd->tot_len;
851 	}
852 
853 	/* Check for illegal packets */
854 	if (hlen < (int)sizeof(struct ip)) {
855 		REASON_SET(reason, PFRES_NORM);
856 		goto drop;
857 	}
858 
859 	if (hlen > ntohs(h->ip_len)) {
860 		REASON_SET(reason, PFRES_NORM);
861 		goto drop;
862 	}
863 
864 	/* Clear IP_DF if the rule uses the no-df option */
865 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
866 		u_int16_t ip_off = h->ip_off;
867 
868 		h->ip_off &= htons(~IP_DF);
869 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
870 	}
871 
872 	/* We will need other tests here */
873 	if (!fragoff && !mff)
874 		goto no_fragment;
875 
876 	/* We're dealing with a fragment now. Don't allow fragments
877 	 * with IP_DF to enter the cache. If the flag was cleared by
878 	 * no-df above, fine. Otherwise drop it.
879 	 */
880 	if (h->ip_off & htons(IP_DF)) {
881 		DPFPRINTF(("IP_DF\n"));
882 		goto bad;
883 	}
884 
885 	ip_len = ntohs(h->ip_len) - hlen;
886 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
887 
888 	/* All fragments are 8 byte aligned */
889 	if (mff && (ip_len & 0x7)) {
890 		DPFPRINTF(("mff and %d\n", ip_len));
891 		goto bad;
892 	}
893 
894 	/* Respect maximum length */
895 	if (fragoff + ip_len > IP_MAXPACKET) {
896 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
897 		goto bad;
898 	}
899 	max = fragoff + ip_len;
900 
901 	/* Fully buffer all of the fragments
902 	 * Might return a completely reassembled mbuf, or NULL */
903 	PF_FRAG_LOCK();
904 	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
905 	verdict = pf_reassemble(m0, h, dir, reason);
906 	PF_FRAG_UNLOCK();
907 
908 	if (verdict != PF_PASS)
909 		return (PF_DROP);
910 
911 	m = *m0;
912 	if (m == NULL)
913 		return (PF_DROP);
914 
915 	h = mtod(m, struct ip *);
916 
917  no_fragment:
918 	/* At this point, only IP_DF is allowed in ip_off */
919 	if (h->ip_off & ~htons(IP_DF)) {
920 		u_int16_t ip_off = h->ip_off;
921 
922 		h->ip_off &= htons(IP_DF);
923 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
924 	}
925 
926 	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
927 
928 	return (PF_PASS);
929 
930  bad:
931 	DPFPRINTF(("dropping bad fragment\n"));
932 	REASON_SET(reason, PFRES_FRAG);
933  drop:
934 	if (r != NULL && r->log)
935 		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
936 		    1);
937 
938 	return (PF_DROP);
939 }
940 #endif
941 
942 #ifdef INET6
943 int
944 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
945     u_short *reason, struct pf_pdesc *pd)
946 {
947 	struct mbuf		*m = *m0;
948 	struct pf_rule		*r;
949 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
950 	int			 extoff;
951 	int			 off;
952 	struct ip6_ext		 ext;
953 	struct ip6_opt		 opt;
954 	struct ip6_opt_jumbo	 jumbo;
955 	struct ip6_frag		 frag;
956 	u_int32_t		 jumbolen = 0, plen;
957 	int			 optend;
958 	int			 ooff;
959 	u_int8_t		 proto;
960 	int			 terminal;
961 
962 	PF_RULES_RASSERT();
963 
964 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
965 	while (r != NULL) {
966 		r->evaluations++;
967 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
968 			r = r->skip[PF_SKIP_IFP].ptr;
969 		else if (r->direction && r->direction != dir)
970 			r = r->skip[PF_SKIP_DIR].ptr;
971 		else if (r->af && r->af != AF_INET6)
972 			r = r->skip[PF_SKIP_AF].ptr;
973 #if 0 /* header chain! */
974 		else if (r->proto && r->proto != h->ip6_nxt)
975 			r = r->skip[PF_SKIP_PROTO].ptr;
976 #endif
977 		else if (PF_MISMATCHAW(&r->src.addr,
978 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
979 		    r->src.neg, kif, M_GETFIB(m)))
980 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
981 		else if (PF_MISMATCHAW(&r->dst.addr,
982 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
983 		    r->dst.neg, NULL, M_GETFIB(m)))
984 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
985 		else
986 			break;
987 	}
988 
989 	if (r == NULL || r->action == PF_NOSCRUB)
990 		return (PF_PASS);
991 	else {
992 		r->packets[dir == PF_OUT]++;
993 		r->bytes[dir == PF_OUT] += pd->tot_len;
994 	}
995 
996 	/* Check for illegal packets */
997 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
998 		goto drop;
999 
1000 	extoff = 0;
1001 	off = sizeof(struct ip6_hdr);
1002 	proto = h->ip6_nxt;
1003 	terminal = 0;
1004 	do {
1005 		switch (proto) {
1006 		case IPPROTO_FRAGMENT:
1007 			goto fragment;
1008 			break;
1009 		case IPPROTO_AH:
1010 		case IPPROTO_ROUTING:
1011 		case IPPROTO_DSTOPTS:
1012 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1013 			    NULL, AF_INET6))
1014 				goto shortpkt;
1015 			extoff = off;
1016 			if (proto == IPPROTO_AH)
1017 				off += (ext.ip6e_len + 2) * 4;
1018 			else
1019 				off += (ext.ip6e_len + 1) * 8;
1020 			proto = ext.ip6e_nxt;
1021 			break;
1022 		case IPPROTO_HOPOPTS:
1023 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1024 			    NULL, AF_INET6))
1025 				goto shortpkt;
1026 			extoff = off;
1027 			optend = off + (ext.ip6e_len + 1) * 8;
1028 			ooff = off + sizeof(ext);
1029 			do {
1030 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1031 				    sizeof(opt.ip6o_type), NULL, NULL,
1032 				    AF_INET6))
1033 					goto shortpkt;
1034 				if (opt.ip6o_type == IP6OPT_PAD1) {
1035 					ooff++;
1036 					continue;
1037 				}
1038 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1039 				    NULL, NULL, AF_INET6))
1040 					goto shortpkt;
1041 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1042 					goto drop;
1043 				switch (opt.ip6o_type) {
1044 				case IP6OPT_JUMBO:
1045 					if (h->ip6_plen != 0)
1046 						goto drop;
1047 					if (!pf_pull_hdr(m, ooff, &jumbo,
1048 					    sizeof(jumbo), NULL, NULL,
1049 					    AF_INET6))
1050 						goto shortpkt;
1051 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1052 					    sizeof(jumbolen));
1053 					jumbolen = ntohl(jumbolen);
1054 					if (jumbolen <= IPV6_MAXPACKET)
1055 						goto drop;
1056 					if (sizeof(struct ip6_hdr) + jumbolen !=
1057 					    m->m_pkthdr.len)
1058 						goto drop;
1059 					break;
1060 				default:
1061 					break;
1062 				}
1063 				ooff += sizeof(opt) + opt.ip6o_len;
1064 			} while (ooff < optend);
1065 
1066 			off = optend;
1067 			proto = ext.ip6e_nxt;
1068 			break;
1069 		default:
1070 			terminal = 1;
1071 			break;
1072 		}
1073 	} while (!terminal);
1074 
1075 	/* jumbo payload option must be present, or plen > 0 */
1076 	if (ntohs(h->ip6_plen) == 0)
1077 		plen = jumbolen;
1078 	else
1079 		plen = ntohs(h->ip6_plen);
1080 	if (plen == 0)
1081 		goto drop;
1082 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1083 		goto shortpkt;
1084 
1085 	pf_scrub_ip6(&m, r->min_ttl);
1086 
1087 	return (PF_PASS);
1088 
1089  fragment:
1090 	/* Jumbo payload packets cannot be fragmented. */
1091 	plen = ntohs(h->ip6_plen);
1092 	if (plen == 0 || jumbolen)
1093 		goto drop;
1094 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1095 		goto shortpkt;
1096 
1097 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1098 		goto shortpkt;
1099 
1100 	/* Offset now points to data portion. */
1101 	off += sizeof(frag);
1102 
1103 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1104 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1105 		return (PF_DROP);
1106 	m = *m0;
1107 	if (m == NULL)
1108 		return (PF_DROP);
1109 
1110 	pd->flags |= PFDESC_IP_REAS;
1111 	return (PF_PASS);
1112 
1113  shortpkt:
1114 	REASON_SET(reason, PFRES_SHORT);
1115 	if (r != NULL && r->log)
1116 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1117 		    1);
1118 	return (PF_DROP);
1119 
1120  drop:
1121 	REASON_SET(reason, PFRES_NORM);
1122 	if (r != NULL && r->log)
1123 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1124 		    1);
1125 	return (PF_DROP);
1126 }
1127 #endif /* INET6 */
1128 
1129 int
1130 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1131     int off, void *h, struct pf_pdesc *pd)
1132 {
1133 	struct pf_rule	*r, *rm = NULL;
1134 	struct tcphdr	*th = pd->hdr.tcp;
1135 	int		 rewrite = 0;
1136 	u_short		 reason;
1137 	u_int8_t	 flags;
1138 	sa_family_t	 af = pd->af;
1139 
1140 	PF_RULES_RASSERT();
1141 
1142 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1143 	while (r != NULL) {
1144 		r->evaluations++;
1145 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1146 			r = r->skip[PF_SKIP_IFP].ptr;
1147 		else if (r->direction && r->direction != dir)
1148 			r = r->skip[PF_SKIP_DIR].ptr;
1149 		else if (r->af && r->af != af)
1150 			r = r->skip[PF_SKIP_AF].ptr;
1151 		else if (r->proto && r->proto != pd->proto)
1152 			r = r->skip[PF_SKIP_PROTO].ptr;
1153 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1154 		    r->src.neg, kif, M_GETFIB(m)))
1155 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1156 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1157 			    r->src.port[0], r->src.port[1], th->th_sport))
1158 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1159 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1160 		    r->dst.neg, NULL, M_GETFIB(m)))
1161 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1162 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1163 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1164 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1165 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1166 			    pf_osfp_fingerprint(pd, m, off, th),
1167 			    r->os_fingerprint))
1168 			r = TAILQ_NEXT(r, entries);
1169 		else {
1170 			rm = r;
1171 			break;
1172 		}
1173 	}
1174 
1175 	if (rm == NULL || rm->action == PF_NOSCRUB)
1176 		return (PF_PASS);
1177 	else {
1178 		r->packets[dir == PF_OUT]++;
1179 		r->bytes[dir == PF_OUT] += pd->tot_len;
1180 	}
1181 
1182 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1183 		pd->flags |= PFDESC_TCP_NORM;
1184 
1185 	flags = th->th_flags;
1186 	if (flags & TH_SYN) {
1187 		/* Illegal packet */
1188 		if (flags & TH_RST)
1189 			goto tcp_drop;
1190 
1191 		if (flags & TH_FIN)
1192 			goto tcp_drop;
1193 	} else {
1194 		/* Illegal packet */
1195 		if (!(flags & (TH_ACK|TH_RST)))
1196 			goto tcp_drop;
1197 	}
1198 
1199 	if (!(flags & TH_ACK)) {
1200 		/* These flags are only valid if ACK is set */
1201 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1202 			goto tcp_drop;
1203 	}
1204 
1205 	/* Check for illegal header length */
1206 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1207 		goto tcp_drop;
1208 
1209 	/* If flags changed, or reserved data set, then adjust */
1210 	if (flags != th->th_flags || th->th_x2 != 0) {
1211 		u_int16_t	ov, nv;
1212 
1213 		ov = *(u_int16_t *)(&th->th_ack + 1);
1214 		th->th_flags = flags;
1215 		th->th_x2 = 0;
1216 		nv = *(u_int16_t *)(&th->th_ack + 1);
1217 
1218 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1219 		rewrite = 1;
1220 	}
1221 
1222 	/* Remove urgent pointer, if TH_URG is not set */
1223 	if (!(flags & TH_URG) && th->th_urp) {
1224 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1225 		    0, 0);
1226 		th->th_urp = 0;
1227 		rewrite = 1;
1228 	}
1229 
1230 	/* Process options */
1231 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1232 		rewrite = 1;
1233 
1234 	/* copy back packet headers if we sanitized */
1235 	if (rewrite)
1236 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1237 
1238 	return (PF_PASS);
1239 
1240  tcp_drop:
1241 	REASON_SET(&reason, PFRES_NORM);
1242 	if (rm != NULL && r->log)
1243 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1244 		    1);
1245 	return (PF_DROP);
1246 }
1247 
1248 int
1249 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1250     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1251 {
1252 	u_int32_t tsval, tsecr;
1253 	u_int8_t hdr[60];
1254 	u_int8_t *opt;
1255 
1256 	KASSERT((src->scrub == NULL),
1257 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1258 
1259 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1260 	if (src->scrub == NULL)
1261 		return (1);
1262 
1263 	switch (pd->af) {
1264 #ifdef INET
1265 	case AF_INET: {
1266 		struct ip *h = mtod(m, struct ip *);
1267 		src->scrub->pfss_ttl = h->ip_ttl;
1268 		break;
1269 	}
1270 #endif /* INET */
1271 #ifdef INET6
1272 	case AF_INET6: {
1273 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1274 		src->scrub->pfss_ttl = h->ip6_hlim;
1275 		break;
1276 	}
1277 #endif /* INET6 */
1278 	}
1279 
1280 
1281 	/*
1282 	 * All normalizations below are only begun if we see the start of
1283 	 * the connections.  They must all set an enabled bit in pfss_flags
1284 	 */
1285 	if ((th->th_flags & TH_SYN) == 0)
1286 		return (0);
1287 
1288 
1289 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1290 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1291 		/* Diddle with TCP options */
1292 		int hlen;
1293 		opt = hdr + sizeof(struct tcphdr);
1294 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1295 		while (hlen >= TCPOLEN_TIMESTAMP) {
1296 			switch (*opt) {
1297 			case TCPOPT_EOL:	/* FALLTHROUGH */
1298 			case TCPOPT_NOP:
1299 				opt++;
1300 				hlen--;
1301 				break;
1302 			case TCPOPT_TIMESTAMP:
1303 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1304 					src->scrub->pfss_flags |=
1305 					    PFSS_TIMESTAMP;
1306 					src->scrub->pfss_ts_mod =
1307 					    htonl(arc4random());
1308 
1309 					/* note PFSS_PAWS not set yet */
1310 					memcpy(&tsval, &opt[2],
1311 					    sizeof(u_int32_t));
1312 					memcpy(&tsecr, &opt[6],
1313 					    sizeof(u_int32_t));
1314 					src->scrub->pfss_tsval0 = ntohl(tsval);
1315 					src->scrub->pfss_tsval = ntohl(tsval);
1316 					src->scrub->pfss_tsecr = ntohl(tsecr);
1317 					getmicrouptime(&src->scrub->pfss_last);
1318 				}
1319 				/* FALLTHROUGH */
1320 			default:
1321 				hlen -= MAX(opt[1], 2);
1322 				opt += MAX(opt[1], 2);
1323 				break;
1324 			}
1325 		}
1326 	}
1327 
1328 	return (0);
1329 }
1330 
1331 void
1332 pf_normalize_tcp_cleanup(struct pf_state *state)
1333 {
1334 	if (state->src.scrub)
1335 		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1336 	if (state->dst.scrub)
1337 		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1338 
1339 	/* Someday... flush the TCP segment reassembly descriptors. */
1340 }
1341 
1342 int
1343 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1344     u_short *reason, struct tcphdr *th, struct pf_state *state,
1345     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1346 {
1347 	struct timeval uptime;
1348 	u_int32_t tsval, tsecr;
1349 	u_int tsval_from_last;
1350 	u_int8_t hdr[60];
1351 	u_int8_t *opt;
1352 	int copyback = 0;
1353 	int got_ts = 0;
1354 
1355 	KASSERT((src->scrub || dst->scrub),
1356 	    ("%s: src->scrub && dst->scrub!", __func__));
1357 
1358 	/*
1359 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1360 	 * technique to evade an intrusion detection system and confuse
1361 	 * firewall state code.
1362 	 */
1363 	switch (pd->af) {
1364 #ifdef INET
1365 	case AF_INET: {
1366 		if (src->scrub) {
1367 			struct ip *h = mtod(m, struct ip *);
1368 			if (h->ip_ttl > src->scrub->pfss_ttl)
1369 				src->scrub->pfss_ttl = h->ip_ttl;
1370 			h->ip_ttl = src->scrub->pfss_ttl;
1371 		}
1372 		break;
1373 	}
1374 #endif /* INET */
1375 #ifdef INET6
1376 	case AF_INET6: {
1377 		if (src->scrub) {
1378 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1379 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1380 				src->scrub->pfss_ttl = h->ip6_hlim;
1381 			h->ip6_hlim = src->scrub->pfss_ttl;
1382 		}
1383 		break;
1384 	}
1385 #endif /* INET6 */
1386 	}
1387 
1388 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1389 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1390 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1391 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1392 		/* Diddle with TCP options */
1393 		int hlen;
1394 		opt = hdr + sizeof(struct tcphdr);
1395 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1396 		while (hlen >= TCPOLEN_TIMESTAMP) {
1397 			switch (*opt) {
1398 			case TCPOPT_EOL:	/* FALLTHROUGH */
1399 			case TCPOPT_NOP:
1400 				opt++;
1401 				hlen--;
1402 				break;
1403 			case TCPOPT_TIMESTAMP:
1404 				/* Modulate the timestamps.  Can be used for
1405 				 * NAT detection, OS uptime determination or
1406 				 * reboot detection.
1407 				 */
1408 
1409 				if (got_ts) {
1410 					/* Huh?  Multiple timestamps!? */
1411 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1412 						DPFPRINTF(("multiple TS??"));
1413 						pf_print_state(state);
1414 						printf("\n");
1415 					}
1416 					REASON_SET(reason, PFRES_TS);
1417 					return (PF_DROP);
1418 				}
1419 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1420 					memcpy(&tsval, &opt[2],
1421 					    sizeof(u_int32_t));
1422 					if (tsval && src->scrub &&
1423 					    (src->scrub->pfss_flags &
1424 					    PFSS_TIMESTAMP)) {
1425 						tsval = ntohl(tsval);
1426 						pf_change_proto_a(m, &opt[2],
1427 						    &th->th_sum,
1428 						    htonl(tsval +
1429 						    src->scrub->pfss_ts_mod),
1430 						    0);
1431 						copyback = 1;
1432 					}
1433 
1434 					/* Modulate TS reply iff valid (!0) */
1435 					memcpy(&tsecr, &opt[6],
1436 					    sizeof(u_int32_t));
1437 					if (tsecr && dst->scrub &&
1438 					    (dst->scrub->pfss_flags &
1439 					    PFSS_TIMESTAMP)) {
1440 						tsecr = ntohl(tsecr)
1441 						    - dst->scrub->pfss_ts_mod;
1442 						pf_change_proto_a(m, &opt[6],
1443 						    &th->th_sum, htonl(tsecr),
1444 						    0);
1445 						copyback = 1;
1446 					}
1447 					got_ts = 1;
1448 				}
1449 				/* FALLTHROUGH */
1450 			default:
1451 				hlen -= MAX(opt[1], 2);
1452 				opt += MAX(opt[1], 2);
1453 				break;
1454 			}
1455 		}
1456 		if (copyback) {
1457 			/* Copyback the options, caller copys back header */
1458 			*writeback = 1;
1459 			m_copyback(m, off + sizeof(struct tcphdr),
1460 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1461 			    sizeof(struct tcphdr));
1462 		}
1463 	}
1464 
1465 
1466 	/*
1467 	 * Must invalidate PAWS checks on connections idle for too long.
1468 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1469 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1470 	 * TS echo check only works for the first 12 days of a connection
1471 	 * when the TS has exhausted half its 32bit space
1472 	 */
1473 #define TS_MAX_IDLE	(24*24*60*60)
1474 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1475 
1476 	getmicrouptime(&uptime);
1477 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1478 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1479 	    time_uptime - state->creation > TS_MAX_CONN))  {
1480 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1481 			DPFPRINTF(("src idled out of PAWS\n"));
1482 			pf_print_state(state);
1483 			printf("\n");
1484 		}
1485 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1486 		    | PFSS_PAWS_IDLED;
1487 	}
1488 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1489 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1490 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1491 			DPFPRINTF(("dst idled out of PAWS\n"));
1492 			pf_print_state(state);
1493 			printf("\n");
1494 		}
1495 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1496 		    | PFSS_PAWS_IDLED;
1497 	}
1498 
1499 	if (got_ts && src->scrub && dst->scrub &&
1500 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1501 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1502 		/* Validate that the timestamps are "in-window".
1503 		 * RFC1323 describes TCP Timestamp options that allow
1504 		 * measurement of RTT (round trip time) and PAWS
1505 		 * (protection against wrapped sequence numbers).  PAWS
1506 		 * gives us a set of rules for rejecting packets on
1507 		 * long fat pipes (packets that were somehow delayed
1508 		 * in transit longer than the time it took to send the
1509 		 * full TCP sequence space of 4Gb).  We can use these
1510 		 * rules and infer a few others that will let us treat
1511 		 * the 32bit timestamp and the 32bit echoed timestamp
1512 		 * as sequence numbers to prevent a blind attacker from
1513 		 * inserting packets into a connection.
1514 		 *
1515 		 * RFC1323 tells us:
1516 		 *  - The timestamp on this packet must be greater than
1517 		 *    or equal to the last value echoed by the other
1518 		 *    endpoint.  The RFC says those will be discarded
1519 		 *    since it is a dup that has already been acked.
1520 		 *    This gives us a lowerbound on the timestamp.
1521 		 *        timestamp >= other last echoed timestamp
1522 		 *  - The timestamp will be less than or equal to
1523 		 *    the last timestamp plus the time between the
1524 		 *    last packet and now.  The RFC defines the max
1525 		 *    clock rate as 1ms.  We will allow clocks to be
1526 		 *    up to 10% fast and will allow a total difference
1527 		 *    or 30 seconds due to a route change.  And this
1528 		 *    gives us an upperbound on the timestamp.
1529 		 *        timestamp <= last timestamp + max ticks
1530 		 *    We have to be careful here.  Windows will send an
1531 		 *    initial timestamp of zero and then initialize it
1532 		 *    to a random value after the 3whs; presumably to
1533 		 *    avoid a DoS by having to call an expensive RNG
1534 		 *    during a SYN flood.  Proof MS has at least one
1535 		 *    good security geek.
1536 		 *
1537 		 *  - The TCP timestamp option must also echo the other
1538 		 *    endpoints timestamp.  The timestamp echoed is the
1539 		 *    one carried on the earliest unacknowledged segment
1540 		 *    on the left edge of the sequence window.  The RFC
1541 		 *    states that the host will reject any echoed
1542 		 *    timestamps that were larger than any ever sent.
1543 		 *    This gives us an upperbound on the TS echo.
1544 		 *        tescr <= largest_tsval
1545 		 *  - The lowerbound on the TS echo is a little more
1546 		 *    tricky to determine.  The other endpoint's echoed
1547 		 *    values will not decrease.  But there may be
1548 		 *    network conditions that re-order packets and
1549 		 *    cause our view of them to decrease.  For now the
1550 		 *    only lowerbound we can safely determine is that
1551 		 *    the TS echo will never be less than the original
1552 		 *    TS.  XXX There is probably a better lowerbound.
1553 		 *    Remove TS_MAX_CONN with better lowerbound check.
1554 		 *        tescr >= other original TS
1555 		 *
1556 		 * It is also important to note that the fastest
1557 		 * timestamp clock of 1ms will wrap its 32bit space in
1558 		 * 24 days.  So we just disable TS checking after 24
1559 		 * days of idle time.  We actually must use a 12d
1560 		 * connection limit until we can come up with a better
1561 		 * lowerbound to the TS echo check.
1562 		 */
1563 		struct timeval delta_ts;
1564 		int ts_fudge;
1565 
1566 
1567 		/*
1568 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1569 		 * a host's timestamp.  This can happen if the previous
1570 		 * packet got delayed in transit for much longer than
1571 		 * this packet.
1572 		 */
1573 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1574 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1575 
1576 		/* Calculate max ticks since the last timestamp */
1577 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1578 #define TS_MICROSECS	1000000		/* microseconds per second */
1579 		delta_ts = uptime;
1580 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1581 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1582 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1583 
1584 		if ((src->state >= TCPS_ESTABLISHED &&
1585 		    dst->state >= TCPS_ESTABLISHED) &&
1586 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1587 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1588 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1589 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1590 			/* Bad RFC1323 implementation or an insertion attack.
1591 			 *
1592 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1593 			 *   after the FIN,FIN|ACK,ACK closing that carries
1594 			 *   an old timestamp.
1595 			 */
1596 
1597 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1598 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1599 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1600 			    tsval_from_last) ? '1' : ' ',
1601 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1602 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1603 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1604 			    "idle: %jus %lums\n",
1605 			    tsval, tsecr, tsval_from_last,
1606 			    (uintmax_t)delta_ts.tv_sec,
1607 			    delta_ts.tv_usec / 1000));
1608 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1609 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1610 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1611 			    "\n", dst->scrub->pfss_tsval,
1612 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1613 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1614 				pf_print_state(state);
1615 				pf_print_flags(th->th_flags);
1616 				printf("\n");
1617 			}
1618 			REASON_SET(reason, PFRES_TS);
1619 			return (PF_DROP);
1620 		}
1621 
1622 		/* XXX I'd really like to require tsecr but it's optional */
1623 
1624 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1625 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1626 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1627 	    src->scrub && dst->scrub &&
1628 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1629 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1630 		/* Didn't send a timestamp.  Timestamps aren't really useful
1631 		 * when:
1632 		 *  - connection opening or closing (often not even sent).
1633 		 *    but we must not let an attacker to put a FIN on a
1634 		 *    data packet to sneak it through our ESTABLISHED check.
1635 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1636 		 *  - on an empty ACK.  The TS will not be echoed so it will
1637 		 *    probably not help keep the RTT calculation in sync and
1638 		 *    there isn't as much danger when the sequence numbers
1639 		 *    got wrapped.  So some stacks don't include TS on empty
1640 		 *    ACKs :-(
1641 		 *
1642 		 * To minimize the disruption to mostly RFC1323 conformant
1643 		 * stacks, we will only require timestamps on data packets.
1644 		 *
1645 		 * And what do ya know, we cannot require timestamps on data
1646 		 * packets.  There appear to be devices that do legitimate
1647 		 * TCP connection hijacking.  There are HTTP devices that allow
1648 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1649 		 * If the intermediate device has the HTTP response cache, it
1650 		 * will spoof the response but not bother timestamping its
1651 		 * packets.  So we can look for the presence of a timestamp in
1652 		 * the first data packet and if there, require it in all future
1653 		 * packets.
1654 		 */
1655 
1656 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1657 			/*
1658 			 * Hey!  Someone tried to sneak a packet in.  Or the
1659 			 * stack changed its RFC1323 behavior?!?!
1660 			 */
1661 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1662 				DPFPRINTF(("Did not receive expected RFC1323 "
1663 				    "timestamp\n"));
1664 				pf_print_state(state);
1665 				pf_print_flags(th->th_flags);
1666 				printf("\n");
1667 			}
1668 			REASON_SET(reason, PFRES_TS);
1669 			return (PF_DROP);
1670 		}
1671 	}
1672 
1673 
1674 	/*
1675 	 * We will note if a host sends his data packets with or without
1676 	 * timestamps.  And require all data packets to contain a timestamp
1677 	 * if the first does.  PAWS implicitly requires that all data packets be
1678 	 * timestamped.  But I think there are middle-man devices that hijack
1679 	 * TCP streams immediately after the 3whs and don't timestamp their
1680 	 * packets (seen in a WWW accelerator or cache).
1681 	 */
1682 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1683 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1684 		if (got_ts)
1685 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1686 		else {
1687 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1688 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1689 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1690 				/* Don't warn if other host rejected RFC1323 */
1691 				DPFPRINTF(("Broken RFC1323 stack did not "
1692 				    "timestamp data packet. Disabled PAWS "
1693 				    "security.\n"));
1694 				pf_print_state(state);
1695 				pf_print_flags(th->th_flags);
1696 				printf("\n");
1697 			}
1698 		}
1699 	}
1700 
1701 
1702 	/*
1703 	 * Update PAWS values
1704 	 */
1705 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1706 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1707 		getmicrouptime(&src->scrub->pfss_last);
1708 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1709 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1710 			src->scrub->pfss_tsval = tsval;
1711 
1712 		if (tsecr) {
1713 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1714 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1715 				src->scrub->pfss_tsecr = tsecr;
1716 
1717 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1718 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1719 			    src->scrub->pfss_tsval0 == 0)) {
1720 				/* tsval0 MUST be the lowest timestamp */
1721 				src->scrub->pfss_tsval0 = tsval;
1722 			}
1723 
1724 			/* Only fully initialized after a TS gets echoed */
1725 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1726 				src->scrub->pfss_flags |= PFSS_PAWS;
1727 		}
1728 	}
1729 
1730 	/* I have a dream....  TCP segment reassembly.... */
1731 	return (0);
1732 }
1733 
1734 static int
1735 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1736     int off, sa_family_t af)
1737 {
1738 	u_int16_t	*mss;
1739 	int		 thoff;
1740 	int		 opt, cnt, optlen = 0;
1741 	int		 rewrite = 0;
1742 	u_char		 opts[TCP_MAXOLEN];
1743 	u_char		*optp = opts;
1744 
1745 	thoff = th->th_off << 2;
1746 	cnt = thoff - sizeof(struct tcphdr);
1747 
1748 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1749 	    NULL, NULL, af))
1750 		return (rewrite);
1751 
1752 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1753 		opt = optp[0];
1754 		if (opt == TCPOPT_EOL)
1755 			break;
1756 		if (opt == TCPOPT_NOP)
1757 			optlen = 1;
1758 		else {
1759 			if (cnt < 2)
1760 				break;
1761 			optlen = optp[1];
1762 			if (optlen < 2 || optlen > cnt)
1763 				break;
1764 		}
1765 		switch (opt) {
1766 		case TCPOPT_MAXSEG:
1767 			mss = (u_int16_t *)(optp + 2);
1768 			if ((ntohs(*mss)) > r->max_mss) {
1769 				th->th_sum = pf_proto_cksum_fixup(m,
1770 				    th->th_sum, *mss, htons(r->max_mss), 0);
1771 				*mss = htons(r->max_mss);
1772 				rewrite = 1;
1773 			}
1774 			break;
1775 		default:
1776 			break;
1777 		}
1778 	}
1779 
1780 	if (rewrite)
1781 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1782 
1783 	return (rewrite);
1784 }
1785 
1786 #ifdef INET
1787 static void
1788 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1789 {
1790 	struct mbuf		*m = *m0;
1791 	struct ip		*h = mtod(m, struct ip *);
1792 
1793 	/* Clear IP_DF if no-df was requested */
1794 	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1795 		u_int16_t ip_off = h->ip_off;
1796 
1797 		h->ip_off &= htons(~IP_DF);
1798 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1799 	}
1800 
1801 	/* Enforce a minimum ttl, may cause endless packet loops */
1802 	if (min_ttl && h->ip_ttl < min_ttl) {
1803 		u_int16_t ip_ttl = h->ip_ttl;
1804 
1805 		h->ip_ttl = min_ttl;
1806 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1807 	}
1808 
1809 	/* Enforce tos */
1810 	if (flags & PFRULE_SET_TOS) {
1811 		u_int16_t	ov, nv;
1812 
1813 		ov = *(u_int16_t *)h;
1814 		h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
1815 		nv = *(u_int16_t *)h;
1816 
1817 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1818 	}
1819 
1820 	/* random-id, but not for fragments */
1821 	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1822 		uint16_t ip_id = h->ip_id;
1823 
1824 		ip_fillid(h);
1825 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1826 	}
1827 }
1828 #endif /* INET */
1829 
1830 #ifdef INET6
1831 static void
1832 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1833 {
1834 	struct mbuf		*m = *m0;
1835 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1836 
1837 	/* Enforce a minimum ttl, may cause endless packet loops */
1838 	if (min_ttl && h->ip6_hlim < min_ttl)
1839 		h->ip6_hlim = min_ttl;
1840 }
1841 #endif
1842