xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
3  * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/rwlock.h>
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/vnet.h>
47 #include <net/pfvar.h>
48 #include <net/if_pflog.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip_var.h>
53 #include <netinet6/ip6_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_fsm.h>
56 #include <netinet/tcp_seq.h>
57 
58 #ifdef INET6
59 #include <netinet/ip6.h>
60 #endif /* INET6 */
61 
62 struct pf_frent {
63 	TAILQ_ENTRY(pf_frent)	fr_next;
64 	struct mbuf	*fe_m;
65 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
66 					   ipv6, extension, fragment header */
67 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
68 	uint16_t	fe_len;		/* fragment length */
69 	uint16_t	fe_off;		/* fragment offset */
70 	uint16_t	fe_mff;		/* more fragment flag */
71 };
72 
73 struct pf_fragment_cmp {
74 	struct pf_addr	frc_src;
75 	struct pf_addr	frc_dst;
76 	uint32_t	frc_id;
77 	sa_family_t	frc_af;
78 	uint8_t		frc_proto;
79 };
80 
81 struct pf_fragment {
82 	struct pf_fragment_cmp	fr_key;
83 #define fr_src	fr_key.frc_src
84 #define fr_dst	fr_key.frc_dst
85 #define fr_id	fr_key.frc_id
86 #define fr_af	fr_key.frc_af
87 #define fr_proto	fr_key.frc_proto
88 
89 	RB_ENTRY(pf_fragment) fr_entry;
90 	TAILQ_ENTRY(pf_fragment) frag_next;
91 	uint32_t	fr_timeout;
92 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
93 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
94 };
95 
96 struct pf_fragment_tag {
97 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
98 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
99 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
100 	uint32_t	ft_id;		/* fragment id */
101 };
102 
103 static struct mtx pf_frag_mtx;
104 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
105 #define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
106 #define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
107 #define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
108 
109 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
110 
111 static VNET_DEFINE(uma_zone_t, pf_frent_z);
112 #define	V_pf_frent_z	VNET(pf_frent_z)
113 static VNET_DEFINE(uma_zone_t, pf_frag_z);
114 #define	V_pf_frag_z	VNET(pf_frag_z)
115 
116 TAILQ_HEAD(pf_fragqueue, pf_fragment);
117 TAILQ_HEAD(pf_cachequeue, pf_fragment);
118 static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
119 #define	V_pf_fragqueue			VNET(pf_fragqueue)
120 RB_HEAD(pf_frag_tree, pf_fragment);
121 static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
122 #define	V_pf_frag_tree			VNET(pf_frag_tree)
123 static int		 pf_frag_compare(struct pf_fragment *,
124 			    struct pf_fragment *);
125 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
126 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
127 
128 static void	pf_flush_fragments(void);
129 static void	pf_free_fragment(struct pf_fragment *);
130 static void	pf_remove_fragment(struct pf_fragment *);
131 static int	pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
132 		    struct tcphdr *, int, sa_family_t);
133 static struct pf_frent *pf_create_fragment(u_short *);
134 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
135 		    struct pf_frag_tree *tree);
136 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
137 		    struct pf_frent *, u_short *);
138 static int	pf_isfull_fragment(struct pf_fragment *);
139 static struct mbuf *pf_join_fragment(struct pf_fragment *);
140 #ifdef INET
141 static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
142 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
143 #endif	/* INET */
144 #ifdef INET6
145 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
146 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
147 static void	pf_scrub_ip6(struct mbuf **, uint8_t);
148 #endif	/* INET6 */
149 
150 #define	DPFPRINTF(x) do {				\
151 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
152 		printf("%s: ", __func__);		\
153 		printf x ;				\
154 	}						\
155 } while(0)
156 
157 #ifdef INET
158 static void
159 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
160 {
161 
162 	key->frc_src.v4 = ip->ip_src;
163 	key->frc_dst.v4 = ip->ip_dst;
164 	key->frc_af = AF_INET;
165 	key->frc_proto = ip->ip_p;
166 	key->frc_id = ip->ip_id;
167 }
168 #endif	/* INET */
169 
170 void
171 pf_normalize_init(void)
172 {
173 
174 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
175 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
176 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
177 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
178 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
179 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
180 	    UMA_ALIGN_PTR, 0);
181 
182 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
183 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
184 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
185 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
186 
187 	TAILQ_INIT(&V_pf_fragqueue);
188 }
189 
190 void
191 pf_normalize_cleanup(void)
192 {
193 
194 	uma_zdestroy(V_pf_state_scrub_z);
195 	uma_zdestroy(V_pf_frent_z);
196 	uma_zdestroy(V_pf_frag_z);
197 }
198 
199 static int
200 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
201 {
202 	int	diff;
203 
204 	if ((diff = a->fr_id - b->fr_id) != 0)
205 		return (diff);
206 	if ((diff = a->fr_proto - b->fr_proto) != 0)
207 		return (diff);
208 	if ((diff = a->fr_af - b->fr_af) != 0)
209 		return (diff);
210 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
211 		return (diff);
212 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
213 		return (diff);
214 	return (0);
215 }
216 
217 void
218 pf_purge_expired_fragments(void)
219 {
220 	struct pf_fragment	*frag;
221 	u_int32_t		 expire = time_uptime -
222 				    V_pf_default_rule.timeout[PFTM_FRAG];
223 
224 	PF_FRAG_LOCK();
225 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
226 		if (frag->fr_timeout > expire)
227 			break;
228 
229 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
230 		pf_free_fragment(frag);
231 	}
232 
233 	PF_FRAG_UNLOCK();
234 }
235 
236 /*
237  * Try to flush old fragments to make space for new ones
238  */
239 static void
240 pf_flush_fragments(void)
241 {
242 	struct pf_fragment	*frag;
243 	int			 goal;
244 
245 	PF_FRAG_ASSERT();
246 
247 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
248 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
249 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
250 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
251 		if (frag)
252 			pf_free_fragment(frag);
253 		else
254 			break;
255 	}
256 }
257 
258 /* Frees the fragments and all associated entries */
259 static void
260 pf_free_fragment(struct pf_fragment *frag)
261 {
262 	struct pf_frent		*frent;
263 
264 	PF_FRAG_ASSERT();
265 
266 	/* Free all fragments */
267 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
268 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
269 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
270 
271 		m_freem(frent->fe_m);
272 		uma_zfree(V_pf_frent_z, frent);
273 	}
274 
275 	pf_remove_fragment(frag);
276 }
277 
278 static struct pf_fragment *
279 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
280 {
281 	struct pf_fragment	*frag;
282 
283 	PF_FRAG_ASSERT();
284 
285 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
286 	if (frag != NULL) {
287 		/* XXX Are we sure we want to update the timeout? */
288 		frag->fr_timeout = time_uptime;
289 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
290 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
291 	}
292 
293 	return (frag);
294 }
295 
296 /* Removes a fragment from the fragment queue and frees the fragment */
297 static void
298 pf_remove_fragment(struct pf_fragment *frag)
299 {
300 
301 	PF_FRAG_ASSERT();
302 
303 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
304 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
305 	uma_zfree(V_pf_frag_z, frag);
306 }
307 
308 static struct pf_frent *
309 pf_create_fragment(u_short *reason)
310 {
311 	struct pf_frent *frent;
312 
313 	PF_FRAG_ASSERT();
314 
315 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
316 	if (frent == NULL) {
317 		pf_flush_fragments();
318 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
319 		if (frent == NULL) {
320 			REASON_SET(reason, PFRES_MEMORY);
321 			return (NULL);
322 		}
323 	}
324 
325 	return (frent);
326 }
327 
328 static struct pf_fragment *
329 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
330 		u_short *reason)
331 {
332 	struct pf_frent		*after, *next, *prev;
333 	struct pf_fragment	*frag;
334 	uint16_t		total;
335 
336 	PF_FRAG_ASSERT();
337 
338 	/* No empty fragments. */
339 	if (frent->fe_len == 0) {
340 		DPFPRINTF(("bad fragment: len 0"));
341 		goto bad_fragment;
342 	}
343 
344 	/* All fragments are 8 byte aligned. */
345 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
346 		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
347 		goto bad_fragment;
348 	}
349 
350 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
351 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
352 		DPFPRINTF(("bad fragment: max packet %d",
353 		    frent->fe_off + frent->fe_len));
354 		goto bad_fragment;
355 	}
356 
357 	DPFPRINTF((key->frc_af == AF_INET ?
358 	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
359 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
360 
361 	/* Fully buffer all of the fragments in this fragment queue. */
362 	frag = pf_find_fragment(key, &V_pf_frag_tree);
363 
364 	/* Create a new reassembly queue for this packet. */
365 	if (frag == NULL) {
366 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
367 		if (frag == NULL) {
368 			pf_flush_fragments();
369 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
370 			if (frag == NULL) {
371 				REASON_SET(reason, PFRES_MEMORY);
372 				goto drop_fragment;
373 			}
374 		}
375 
376 		*(struct pf_fragment_cmp *)frag = *key;
377 		frag->fr_timeout = time_uptime;
378 		frag->fr_maxlen = frent->fe_len;
379 		TAILQ_INIT(&frag->fr_queue);
380 
381 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
382 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
383 
384 		/* We do not have a previous fragment. */
385 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
386 
387 		return (frag);
388 	}
389 
390 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
391 
392 	/* Remember maximum fragment len for refragmentation. */
393 	if (frent->fe_len > frag->fr_maxlen)
394 		frag->fr_maxlen = frent->fe_len;
395 
396 	/* Maximum data we have seen already. */
397 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
398 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
399 
400 	/* Non terminal fragments must have more fragments flag. */
401 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
402 		goto bad_fragment;
403 
404 	/* Check if we saw the last fragment already. */
405 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
406 		if (frent->fe_off + frent->fe_len > total ||
407 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
408 			goto bad_fragment;
409 	} else {
410 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
411 			goto bad_fragment;
412 	}
413 
414 	/* Find a fragment after the current one. */
415 	prev = NULL;
416 	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
417 		if (after->fe_off > frent->fe_off)
418 			break;
419 		prev = after;
420 	}
421 
422 	KASSERT(prev != NULL || after != NULL,
423 	    ("prev != NULL || after != NULL"));
424 
425 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
426 		uint16_t precut;
427 
428 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
429 		if (precut >= frent->fe_len)
430 			goto bad_fragment;
431 		DPFPRINTF(("overlap -%d", precut));
432 		m_adj(frent->fe_m, precut);
433 		frent->fe_off += precut;
434 		frent->fe_len -= precut;
435 	}
436 
437 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
438 	    after = next) {
439 		uint16_t aftercut;
440 
441 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
442 		DPFPRINTF(("adjust overlap %d", aftercut));
443 		if (aftercut < after->fe_len) {
444 			m_adj(after->fe_m, aftercut);
445 			after->fe_off += aftercut;
446 			after->fe_len -= aftercut;
447 			break;
448 		}
449 
450 		/* This fragment is completely overlapped, lose it. */
451 		next = TAILQ_NEXT(after, fr_next);
452 		m_freem(after->fe_m);
453 		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
454 		uma_zfree(V_pf_frent_z, after);
455 	}
456 
457 	if (prev == NULL)
458 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
459 	else
460 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
461 
462 	return (frag);
463 
464 bad_fragment:
465 	REASON_SET(reason, PFRES_FRAG);
466 drop_fragment:
467 	uma_zfree(V_pf_frent_z, frent);
468 	return (NULL);
469 }
470 
471 static int
472 pf_isfull_fragment(struct pf_fragment *frag)
473 {
474 	struct pf_frent	*frent, *next;
475 	uint16_t off, total;
476 
477 	/* Check if we are completely reassembled */
478 	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
479 		return (0);
480 
481 	/* Maximum data we have seen already */
482 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
483 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
484 
485 	/* Check if we have all the data */
486 	off = 0;
487 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
488 		next = TAILQ_NEXT(frent, fr_next);
489 
490 		off += frent->fe_len;
491 		if (off < total && (next == NULL || next->fe_off != off)) {
492 			DPFPRINTF(("missing fragment at %d, next %d, total %d",
493 			    off, next == NULL ? -1 : next->fe_off, total));
494 			return (0);
495 		}
496 	}
497 	DPFPRINTF(("%d < %d?", off, total));
498 	if (off < total)
499 		return (0);
500 	KASSERT(off == total, ("off == total"));
501 
502 	return (1);
503 }
504 
505 static struct mbuf *
506 pf_join_fragment(struct pf_fragment *frag)
507 {
508 	struct mbuf *m, *m2;
509 	struct pf_frent	*frent, *next;
510 
511 	frent = TAILQ_FIRST(&frag->fr_queue);
512 	next = TAILQ_NEXT(frent, fr_next);
513 
514 	m = frent->fe_m;
515 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
516 	uma_zfree(V_pf_frent_z, frent);
517 	for (frent = next; frent != NULL; frent = next) {
518 		next = TAILQ_NEXT(frent, fr_next);
519 
520 		m2 = frent->fe_m;
521 		/* Strip off ip header. */
522 		m_adj(m2, frent->fe_hdrlen);
523 		/* Strip off any trailing bytes. */
524 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
525 
526 		uma_zfree(V_pf_frent_z, frent);
527 		m_cat(m, m2);
528 	}
529 
530 	/* Remove from fragment queue. */
531 	pf_remove_fragment(frag);
532 
533 	return (m);
534 }
535 
536 #ifdef INET
537 static int
538 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
539 {
540 	struct mbuf		*m = *m0;
541 	struct pf_frent		*frent;
542 	struct pf_fragment	*frag;
543 	struct pf_fragment_cmp	key;
544 	uint16_t		total, hdrlen;
545 
546 	/* Get an entry for the fragment queue */
547 	if ((frent = pf_create_fragment(reason)) == NULL)
548 		return (PF_DROP);
549 
550 	frent->fe_m = m;
551 	frent->fe_hdrlen = ip->ip_hl << 2;
552 	frent->fe_extoff = 0;
553 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
554 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
555 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
556 
557 	pf_ip2key(ip, dir, &key);
558 
559 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
560 		return (PF_DROP);
561 
562 	/* The mbuf is part of the fragment entry, no direct free or access */
563 	m = *m0 = NULL;
564 
565 	if (!pf_isfull_fragment(frag))
566 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
567 
568 	/* We have all the data */
569 	frent = TAILQ_FIRST(&frag->fr_queue);
570 	KASSERT(frent != NULL, ("frent != NULL"));
571 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
572 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
573 	hdrlen = frent->fe_hdrlen;
574 
575 	m = *m0 = pf_join_fragment(frag);
576 	frag = NULL;
577 
578 	if (m->m_flags & M_PKTHDR) {
579 		int plen = 0;
580 		for (m = *m0; m; m = m->m_next)
581 			plen += m->m_len;
582 		m = *m0;
583 		m->m_pkthdr.len = plen;
584 	}
585 
586 	ip = mtod(m, struct ip *);
587 	ip->ip_len = htons(hdrlen + total);
588 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
589 
590 	if (hdrlen + total > IP_MAXPACKET) {
591 		DPFPRINTF(("drop: too big: %d", total));
592 		ip->ip_len = 0;
593 		REASON_SET(reason, PFRES_SHORT);
594 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
595 		return (PF_DROP);
596 	}
597 
598 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
599 	return (PF_PASS);
600 }
601 #endif	/* INET */
602 
603 #ifdef INET6
604 static int
605 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
606     uint16_t hdrlen, uint16_t extoff, u_short *reason)
607 {
608 	struct mbuf		*m = *m0;
609 	struct pf_frent		*frent;
610 	struct pf_fragment	*frag;
611 	struct pf_fragment_cmp	 key;
612 	struct m_tag		*mtag;
613 	struct pf_fragment_tag	*ftag;
614 	int			 off;
615 	uint32_t		 frag_id;
616 	uint16_t		 total, maxlen;
617 	uint8_t			 proto;
618 
619 	PF_FRAG_LOCK();
620 
621 	/* Get an entry for the fragment queue. */
622 	if ((frent = pf_create_fragment(reason)) == NULL) {
623 		PF_FRAG_UNLOCK();
624 		return (PF_DROP);
625 	}
626 
627 	frent->fe_m = m;
628 	frent->fe_hdrlen = hdrlen;
629 	frent->fe_extoff = extoff;
630 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
631 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
632 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
633 
634 	key.frc_src.v6 = ip6->ip6_src;
635 	key.frc_dst.v6 = ip6->ip6_dst;
636 	key.frc_af = AF_INET6;
637 	/* Only the first fragment's protocol is relevant. */
638 	key.frc_proto = 0;
639 	key.frc_id = fraghdr->ip6f_ident;
640 
641 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
642 		PF_FRAG_UNLOCK();
643 		return (PF_DROP);
644 	}
645 
646 	/* The mbuf is part of the fragment entry, no direct free or access. */
647 	m = *m0 = NULL;
648 
649 	if (!pf_isfull_fragment(frag)) {
650 		PF_FRAG_UNLOCK();
651 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
652 	}
653 
654 	/* We have all the data. */
655 	extoff = frent->fe_extoff;
656 	maxlen = frag->fr_maxlen;
657 	frag_id = frag->fr_id;
658 	frent = TAILQ_FIRST(&frag->fr_queue);
659 	KASSERT(frent != NULL, ("frent != NULL"));
660 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
661 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
662 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
663 
664 	m = *m0 = pf_join_fragment(frag);
665 	frag = NULL;
666 
667 	PF_FRAG_UNLOCK();
668 
669 	/* Take protocol from first fragment header. */
670 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
671 	KASSERT(m, ("%s: short mbuf chain", __func__));
672 	proto = *(mtod(m, caddr_t) + off);
673 	m = *m0;
674 
675 	/* Delete frag6 header */
676 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
677 		goto fail;
678 
679 	if (m->m_flags & M_PKTHDR) {
680 		int plen = 0;
681 		for (m = *m0; m; m = m->m_next)
682 			plen += m->m_len;
683 		m = *m0;
684 		m->m_pkthdr.len = plen;
685 	}
686 
687 	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
688 	    M_NOWAIT)) == NULL)
689 		goto fail;
690 	ftag = (struct pf_fragment_tag *)(mtag + 1);
691 	ftag->ft_hdrlen = hdrlen;
692 	ftag->ft_extoff = extoff;
693 	ftag->ft_maxlen = maxlen;
694 	ftag->ft_id = frag_id;
695 	m_tag_prepend(m, mtag);
696 
697 	ip6 = mtod(m, struct ip6_hdr *);
698 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
699 	if (extoff) {
700 		/* Write protocol into next field of last extension header. */
701 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
702 		    &off);
703 		KASSERT(m, ("%s: short mbuf chain", __func__));
704 		*(mtod(m, char *) + off) = proto;
705 		m = *m0;
706 	} else
707 		ip6->ip6_nxt = proto;
708 
709 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
710 		DPFPRINTF(("drop: too big: %d", total));
711 		ip6->ip6_plen = 0;
712 		REASON_SET(reason, PFRES_SHORT);
713 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
714 		return (PF_DROP);
715 	}
716 
717 	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
718 	return (PF_PASS);
719 
720 fail:
721 	REASON_SET(reason, PFRES_MEMORY);
722 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
723 	return (PF_DROP);
724 }
725 #endif	/* INET6 */
726 
727 #ifdef INET6
728 int
729 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
730 {
731 	struct mbuf		*m = *m0, *t;
732 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
733 	struct pf_pdesc		 pd;
734 	uint32_t		 frag_id;
735 	uint16_t		 hdrlen, extoff, maxlen;
736 	uint8_t			 proto;
737 	int			 error, action;
738 
739 	hdrlen = ftag->ft_hdrlen;
740 	extoff = ftag->ft_extoff;
741 	maxlen = ftag->ft_maxlen;
742 	frag_id = ftag->ft_id;
743 	m_tag_delete(m, mtag);
744 	mtag = NULL;
745 	ftag = NULL;
746 
747 	if (extoff) {
748 		int off;
749 
750 		/* Use protocol from next field of last extension header */
751 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
752 		    &off);
753 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
754 		proto = *(mtod(m, caddr_t) + off);
755 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
756 		m = *m0;
757 	} else {
758 		struct ip6_hdr *hdr;
759 
760 		hdr = mtod(m, struct ip6_hdr *);
761 		proto = hdr->ip6_nxt;
762 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
763 	}
764 
765 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
766 	 * fragmentation wrong. */
767 	maxlen = maxlen & ~7;
768 
769 	/*
770 	 * Maxlen may be less than 8 if there was only a single
771 	 * fragment.  As it was fragmented before, add a fragment
772 	 * header also for a single fragment.  If total or maxlen
773 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
774 	 * we drop the packet.
775 	 */
776 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
777 	m = (*m0)->m_nextpkt;
778 	(*m0)->m_nextpkt = NULL;
779 	if (error == 0) {
780 		/* The first mbuf contains the unfragmented packet. */
781 		m_freem(*m0);
782 		*m0 = NULL;
783 		action = PF_PASS;
784 	} else {
785 		/* Drop expects an mbuf to free. */
786 		DPFPRINTF(("refragment error %d", error));
787 		action = PF_DROP;
788 	}
789 	for (t = m; m; m = t) {
790 		t = m->m_nextpkt;
791 		m->m_nextpkt = NULL;
792 		m->m_flags |= M_SKIP_FIREWALL;
793 		memset(&pd, 0, sizeof(pd));
794 		pd.pf_mtag = pf_find_mtag(m);
795 		if (error == 0)
796 			ip6_forward(m, 0);
797 		else
798 			m_freem(m);
799 	}
800 
801 	return (action);
802 }
803 #endif /* INET6 */
804 
805 #ifdef INET
806 int
807 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
808     struct pf_pdesc *pd)
809 {
810 	struct mbuf		*m = *m0;
811 	struct pf_rule		*r;
812 	struct ip		*h = mtod(m, struct ip *);
813 	int			 mff = (ntohs(h->ip_off) & IP_MF);
814 	int			 hlen = h->ip_hl << 2;
815 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
816 	u_int16_t		 max;
817 	int			 ip_len;
818 	int			 ip_off;
819 	int			 tag = -1;
820 	int			 verdict;
821 
822 	PF_RULES_RASSERT();
823 
824 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
825 	while (r != NULL) {
826 		r->evaluations++;
827 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
828 			r = r->skip[PF_SKIP_IFP].ptr;
829 		else if (r->direction && r->direction != dir)
830 			r = r->skip[PF_SKIP_DIR].ptr;
831 		else if (r->af && r->af != AF_INET)
832 			r = r->skip[PF_SKIP_AF].ptr;
833 		else if (r->proto && r->proto != h->ip_p)
834 			r = r->skip[PF_SKIP_PROTO].ptr;
835 		else if (PF_MISMATCHAW(&r->src.addr,
836 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
837 		    r->src.neg, kif, M_GETFIB(m)))
838 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
839 		else if (PF_MISMATCHAW(&r->dst.addr,
840 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
841 		    r->dst.neg, NULL, M_GETFIB(m)))
842 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
843 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
844 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
845 			r = TAILQ_NEXT(r, entries);
846 		else
847 			break;
848 	}
849 
850 	if (r == NULL || r->action == PF_NOSCRUB)
851 		return (PF_PASS);
852 	else {
853 		r->packets[dir == PF_OUT]++;
854 		r->bytes[dir == PF_OUT] += pd->tot_len;
855 	}
856 
857 	/* Check for illegal packets */
858 	if (hlen < (int)sizeof(struct ip)) {
859 		REASON_SET(reason, PFRES_NORM);
860 		goto drop;
861 	}
862 
863 	if (hlen > ntohs(h->ip_len)) {
864 		REASON_SET(reason, PFRES_NORM);
865 		goto drop;
866 	}
867 
868 	/* Clear IP_DF if the rule uses the no-df option */
869 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
870 		u_int16_t ip_off = h->ip_off;
871 
872 		h->ip_off &= htons(~IP_DF);
873 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
874 	}
875 
876 	/* We will need other tests here */
877 	if (!fragoff && !mff)
878 		goto no_fragment;
879 
880 	/* We're dealing with a fragment now. Don't allow fragments
881 	 * with IP_DF to enter the cache. If the flag was cleared by
882 	 * no-df above, fine. Otherwise drop it.
883 	 */
884 	if (h->ip_off & htons(IP_DF)) {
885 		DPFPRINTF(("IP_DF\n"));
886 		goto bad;
887 	}
888 
889 	ip_len = ntohs(h->ip_len) - hlen;
890 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
891 
892 	/* All fragments are 8 byte aligned */
893 	if (mff && (ip_len & 0x7)) {
894 		DPFPRINTF(("mff and %d\n", ip_len));
895 		goto bad;
896 	}
897 
898 	/* Respect maximum length */
899 	if (fragoff + ip_len > IP_MAXPACKET) {
900 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
901 		goto bad;
902 	}
903 	max = fragoff + ip_len;
904 
905 	/* Fully buffer all of the fragments
906 	 * Might return a completely reassembled mbuf, or NULL */
907 	PF_FRAG_LOCK();
908 	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
909 	verdict = pf_reassemble(m0, h, dir, reason);
910 	PF_FRAG_UNLOCK();
911 
912 	if (verdict != PF_PASS)
913 		return (PF_DROP);
914 
915 	m = *m0;
916 	if (m == NULL)
917 		return (PF_DROP);
918 
919 	h = mtod(m, struct ip *);
920 
921  no_fragment:
922 	/* At this point, only IP_DF is allowed in ip_off */
923 	if (h->ip_off & ~htons(IP_DF)) {
924 		u_int16_t ip_off = h->ip_off;
925 
926 		h->ip_off &= htons(IP_DF);
927 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
928 	}
929 
930 	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
931 
932 	return (PF_PASS);
933 
934  bad:
935 	DPFPRINTF(("dropping bad fragment\n"));
936 	REASON_SET(reason, PFRES_FRAG);
937  drop:
938 	if (r != NULL && r->log)
939 		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
940 		    1);
941 
942 	return (PF_DROP);
943 }
944 #endif
945 
946 #ifdef INET6
947 int
948 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
949     u_short *reason, struct pf_pdesc *pd)
950 {
951 	struct mbuf		*m = *m0;
952 	struct pf_rule		*r;
953 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
954 	int			 extoff;
955 	int			 off;
956 	struct ip6_ext		 ext;
957 	struct ip6_opt		 opt;
958 	struct ip6_opt_jumbo	 jumbo;
959 	struct ip6_frag		 frag;
960 	u_int32_t		 jumbolen = 0, plen;
961 	int			 optend;
962 	int			 ooff;
963 	u_int8_t		 proto;
964 	int			 terminal;
965 
966 	PF_RULES_RASSERT();
967 
968 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
969 	while (r != NULL) {
970 		r->evaluations++;
971 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
972 			r = r->skip[PF_SKIP_IFP].ptr;
973 		else if (r->direction && r->direction != dir)
974 			r = r->skip[PF_SKIP_DIR].ptr;
975 		else if (r->af && r->af != AF_INET6)
976 			r = r->skip[PF_SKIP_AF].ptr;
977 #if 0 /* header chain! */
978 		else if (r->proto && r->proto != h->ip6_nxt)
979 			r = r->skip[PF_SKIP_PROTO].ptr;
980 #endif
981 		else if (PF_MISMATCHAW(&r->src.addr,
982 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
983 		    r->src.neg, kif, M_GETFIB(m)))
984 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
985 		else if (PF_MISMATCHAW(&r->dst.addr,
986 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
987 		    r->dst.neg, NULL, M_GETFIB(m)))
988 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
989 		else
990 			break;
991 	}
992 
993 	if (r == NULL || r->action == PF_NOSCRUB)
994 		return (PF_PASS);
995 	else {
996 		r->packets[dir == PF_OUT]++;
997 		r->bytes[dir == PF_OUT] += pd->tot_len;
998 	}
999 
1000 	/* Check for illegal packets */
1001 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1002 		goto drop;
1003 
1004 	extoff = 0;
1005 	off = sizeof(struct ip6_hdr);
1006 	proto = h->ip6_nxt;
1007 	terminal = 0;
1008 	do {
1009 		switch (proto) {
1010 		case IPPROTO_FRAGMENT:
1011 			goto fragment;
1012 			break;
1013 		case IPPROTO_AH:
1014 		case IPPROTO_ROUTING:
1015 		case IPPROTO_DSTOPTS:
1016 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1017 			    NULL, AF_INET6))
1018 				goto shortpkt;
1019 			extoff = off;
1020 			if (proto == IPPROTO_AH)
1021 				off += (ext.ip6e_len + 2) * 4;
1022 			else
1023 				off += (ext.ip6e_len + 1) * 8;
1024 			proto = ext.ip6e_nxt;
1025 			break;
1026 		case IPPROTO_HOPOPTS:
1027 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1028 			    NULL, AF_INET6))
1029 				goto shortpkt;
1030 			extoff = off;
1031 			optend = off + (ext.ip6e_len + 1) * 8;
1032 			ooff = off + sizeof(ext);
1033 			do {
1034 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1035 				    sizeof(opt.ip6o_type), NULL, NULL,
1036 				    AF_INET6))
1037 					goto shortpkt;
1038 				if (opt.ip6o_type == IP6OPT_PAD1) {
1039 					ooff++;
1040 					continue;
1041 				}
1042 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1043 				    NULL, NULL, AF_INET6))
1044 					goto shortpkt;
1045 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1046 					goto drop;
1047 				switch (opt.ip6o_type) {
1048 				case IP6OPT_JUMBO:
1049 					if (h->ip6_plen != 0)
1050 						goto drop;
1051 					if (!pf_pull_hdr(m, ooff, &jumbo,
1052 					    sizeof(jumbo), NULL, NULL,
1053 					    AF_INET6))
1054 						goto shortpkt;
1055 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1056 					    sizeof(jumbolen));
1057 					jumbolen = ntohl(jumbolen);
1058 					if (jumbolen <= IPV6_MAXPACKET)
1059 						goto drop;
1060 					if (sizeof(struct ip6_hdr) + jumbolen !=
1061 					    m->m_pkthdr.len)
1062 						goto drop;
1063 					break;
1064 				default:
1065 					break;
1066 				}
1067 				ooff += sizeof(opt) + opt.ip6o_len;
1068 			} while (ooff < optend);
1069 
1070 			off = optend;
1071 			proto = ext.ip6e_nxt;
1072 			break;
1073 		default:
1074 			terminal = 1;
1075 			break;
1076 		}
1077 	} while (!terminal);
1078 
1079 	/* jumbo payload option must be present, or plen > 0 */
1080 	if (ntohs(h->ip6_plen) == 0)
1081 		plen = jumbolen;
1082 	else
1083 		plen = ntohs(h->ip6_plen);
1084 	if (plen == 0)
1085 		goto drop;
1086 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1087 		goto shortpkt;
1088 
1089 	pf_scrub_ip6(&m, r->min_ttl);
1090 
1091 	return (PF_PASS);
1092 
1093  fragment:
1094 	/* Jumbo payload packets cannot be fragmented. */
1095 	plen = ntohs(h->ip6_plen);
1096 	if (plen == 0 || jumbolen)
1097 		goto drop;
1098 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1099 		goto shortpkt;
1100 
1101 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1102 		goto shortpkt;
1103 
1104 	/* Offset now points to data portion. */
1105 	off += sizeof(frag);
1106 
1107 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1108 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1109 		return (PF_DROP);
1110 	m = *m0;
1111 	if (m == NULL)
1112 		return (PF_DROP);
1113 
1114 	pd->flags |= PFDESC_IP_REAS;
1115 	return (PF_PASS);
1116 
1117  shortpkt:
1118 	REASON_SET(reason, PFRES_SHORT);
1119 	if (r != NULL && r->log)
1120 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1121 		    1);
1122 	return (PF_DROP);
1123 
1124  drop:
1125 	REASON_SET(reason, PFRES_NORM);
1126 	if (r != NULL && r->log)
1127 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1128 		    1);
1129 	return (PF_DROP);
1130 }
1131 #endif /* INET6 */
1132 
1133 int
1134 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1135     int off, void *h, struct pf_pdesc *pd)
1136 {
1137 	struct pf_rule	*r, *rm = NULL;
1138 	struct tcphdr	*th = pd->hdr.tcp;
1139 	int		 rewrite = 0;
1140 	u_short		 reason;
1141 	u_int8_t	 flags;
1142 	sa_family_t	 af = pd->af;
1143 
1144 	PF_RULES_RASSERT();
1145 
1146 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1147 	while (r != NULL) {
1148 		r->evaluations++;
1149 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1150 			r = r->skip[PF_SKIP_IFP].ptr;
1151 		else if (r->direction && r->direction != dir)
1152 			r = r->skip[PF_SKIP_DIR].ptr;
1153 		else if (r->af && r->af != af)
1154 			r = r->skip[PF_SKIP_AF].ptr;
1155 		else if (r->proto && r->proto != pd->proto)
1156 			r = r->skip[PF_SKIP_PROTO].ptr;
1157 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1158 		    r->src.neg, kif, M_GETFIB(m)))
1159 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1160 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1161 			    r->src.port[0], r->src.port[1], th->th_sport))
1162 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1163 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1164 		    r->dst.neg, NULL, M_GETFIB(m)))
1165 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1166 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1167 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1168 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1169 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1170 			    pf_osfp_fingerprint(pd, m, off, th),
1171 			    r->os_fingerprint))
1172 			r = TAILQ_NEXT(r, entries);
1173 		else {
1174 			rm = r;
1175 			break;
1176 		}
1177 	}
1178 
1179 	if (rm == NULL || rm->action == PF_NOSCRUB)
1180 		return (PF_PASS);
1181 	else {
1182 		r->packets[dir == PF_OUT]++;
1183 		r->bytes[dir == PF_OUT] += pd->tot_len;
1184 	}
1185 
1186 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1187 		pd->flags |= PFDESC_TCP_NORM;
1188 
1189 	flags = th->th_flags;
1190 	if (flags & TH_SYN) {
1191 		/* Illegal packet */
1192 		if (flags & TH_RST)
1193 			goto tcp_drop;
1194 
1195 		if (flags & TH_FIN)
1196 			goto tcp_drop;
1197 	} else {
1198 		/* Illegal packet */
1199 		if (!(flags & (TH_ACK|TH_RST)))
1200 			goto tcp_drop;
1201 	}
1202 
1203 	if (!(flags & TH_ACK)) {
1204 		/* These flags are only valid if ACK is set */
1205 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1206 			goto tcp_drop;
1207 	}
1208 
1209 	/* Check for illegal header length */
1210 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1211 		goto tcp_drop;
1212 
1213 	/* If flags changed, or reserved data set, then adjust */
1214 	if (flags != th->th_flags || th->th_x2 != 0) {
1215 		u_int16_t	ov, nv;
1216 
1217 		ov = *(u_int16_t *)(&th->th_ack + 1);
1218 		th->th_flags = flags;
1219 		th->th_x2 = 0;
1220 		nv = *(u_int16_t *)(&th->th_ack + 1);
1221 
1222 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1223 		rewrite = 1;
1224 	}
1225 
1226 	/* Remove urgent pointer, if TH_URG is not set */
1227 	if (!(flags & TH_URG) && th->th_urp) {
1228 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1229 		    0, 0);
1230 		th->th_urp = 0;
1231 		rewrite = 1;
1232 	}
1233 
1234 	/* Process options */
1235 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1236 		rewrite = 1;
1237 
1238 	/* copy back packet headers if we sanitized */
1239 	if (rewrite)
1240 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1241 
1242 	return (PF_PASS);
1243 
1244  tcp_drop:
1245 	REASON_SET(&reason, PFRES_NORM);
1246 	if (rm != NULL && r->log)
1247 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1248 		    1);
1249 	return (PF_DROP);
1250 }
1251 
1252 int
1253 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1254     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1255 {
1256 	u_int32_t tsval, tsecr;
1257 	u_int8_t hdr[60];
1258 	u_int8_t *opt;
1259 
1260 	KASSERT((src->scrub == NULL),
1261 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1262 
1263 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1264 	if (src->scrub == NULL)
1265 		return (1);
1266 
1267 	switch (pd->af) {
1268 #ifdef INET
1269 	case AF_INET: {
1270 		struct ip *h = mtod(m, struct ip *);
1271 		src->scrub->pfss_ttl = h->ip_ttl;
1272 		break;
1273 	}
1274 #endif /* INET */
1275 #ifdef INET6
1276 	case AF_INET6: {
1277 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1278 		src->scrub->pfss_ttl = h->ip6_hlim;
1279 		break;
1280 	}
1281 #endif /* INET6 */
1282 	}
1283 
1284 
1285 	/*
1286 	 * All normalizations below are only begun if we see the start of
1287 	 * the connections.  They must all set an enabled bit in pfss_flags
1288 	 */
1289 	if ((th->th_flags & TH_SYN) == 0)
1290 		return (0);
1291 
1292 
1293 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1294 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1295 		/* Diddle with TCP options */
1296 		int hlen;
1297 		opt = hdr + sizeof(struct tcphdr);
1298 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1299 		while (hlen >= TCPOLEN_TIMESTAMP) {
1300 			switch (*opt) {
1301 			case TCPOPT_EOL:	/* FALLTHROUGH */
1302 			case TCPOPT_NOP:
1303 				opt++;
1304 				hlen--;
1305 				break;
1306 			case TCPOPT_TIMESTAMP:
1307 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1308 					src->scrub->pfss_flags |=
1309 					    PFSS_TIMESTAMP;
1310 					src->scrub->pfss_ts_mod =
1311 					    htonl(arc4random());
1312 
1313 					/* note PFSS_PAWS not set yet */
1314 					memcpy(&tsval, &opt[2],
1315 					    sizeof(u_int32_t));
1316 					memcpy(&tsecr, &opt[6],
1317 					    sizeof(u_int32_t));
1318 					src->scrub->pfss_tsval0 = ntohl(tsval);
1319 					src->scrub->pfss_tsval = ntohl(tsval);
1320 					src->scrub->pfss_tsecr = ntohl(tsecr);
1321 					getmicrouptime(&src->scrub->pfss_last);
1322 				}
1323 				/* FALLTHROUGH */
1324 			default:
1325 				hlen -= MAX(opt[1], 2);
1326 				opt += MAX(opt[1], 2);
1327 				break;
1328 			}
1329 		}
1330 	}
1331 
1332 	return (0);
1333 }
1334 
1335 void
1336 pf_normalize_tcp_cleanup(struct pf_state *state)
1337 {
1338 	if (state->src.scrub)
1339 		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1340 	if (state->dst.scrub)
1341 		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1342 
1343 	/* Someday... flush the TCP segment reassembly descriptors. */
1344 }
1345 
1346 int
1347 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1348     u_short *reason, struct tcphdr *th, struct pf_state *state,
1349     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1350 {
1351 	struct timeval uptime;
1352 	u_int32_t tsval, tsecr;
1353 	u_int tsval_from_last;
1354 	u_int8_t hdr[60];
1355 	u_int8_t *opt;
1356 	int copyback = 0;
1357 	int got_ts = 0;
1358 
1359 	KASSERT((src->scrub || dst->scrub),
1360 	    ("%s: src->scrub && dst->scrub!", __func__));
1361 
1362 	/*
1363 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1364 	 * technique to evade an intrusion detection system and confuse
1365 	 * firewall state code.
1366 	 */
1367 	switch (pd->af) {
1368 #ifdef INET
1369 	case AF_INET: {
1370 		if (src->scrub) {
1371 			struct ip *h = mtod(m, struct ip *);
1372 			if (h->ip_ttl > src->scrub->pfss_ttl)
1373 				src->scrub->pfss_ttl = h->ip_ttl;
1374 			h->ip_ttl = src->scrub->pfss_ttl;
1375 		}
1376 		break;
1377 	}
1378 #endif /* INET */
1379 #ifdef INET6
1380 	case AF_INET6: {
1381 		if (src->scrub) {
1382 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1383 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1384 				src->scrub->pfss_ttl = h->ip6_hlim;
1385 			h->ip6_hlim = src->scrub->pfss_ttl;
1386 		}
1387 		break;
1388 	}
1389 #endif /* INET6 */
1390 	}
1391 
1392 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1393 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1394 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1395 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1396 		/* Diddle with TCP options */
1397 		int hlen;
1398 		opt = hdr + sizeof(struct tcphdr);
1399 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1400 		while (hlen >= TCPOLEN_TIMESTAMP) {
1401 			switch (*opt) {
1402 			case TCPOPT_EOL:	/* FALLTHROUGH */
1403 			case TCPOPT_NOP:
1404 				opt++;
1405 				hlen--;
1406 				break;
1407 			case TCPOPT_TIMESTAMP:
1408 				/* Modulate the timestamps.  Can be used for
1409 				 * NAT detection, OS uptime determination or
1410 				 * reboot detection.
1411 				 */
1412 
1413 				if (got_ts) {
1414 					/* Huh?  Multiple timestamps!? */
1415 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1416 						DPFPRINTF(("multiple TS??"));
1417 						pf_print_state(state);
1418 						printf("\n");
1419 					}
1420 					REASON_SET(reason, PFRES_TS);
1421 					return (PF_DROP);
1422 				}
1423 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1424 					memcpy(&tsval, &opt[2],
1425 					    sizeof(u_int32_t));
1426 					if (tsval && src->scrub &&
1427 					    (src->scrub->pfss_flags &
1428 					    PFSS_TIMESTAMP)) {
1429 						tsval = ntohl(tsval);
1430 						pf_change_proto_a(m, &opt[2],
1431 						    &th->th_sum,
1432 						    htonl(tsval +
1433 						    src->scrub->pfss_ts_mod),
1434 						    0);
1435 						copyback = 1;
1436 					}
1437 
1438 					/* Modulate TS reply iff valid (!0) */
1439 					memcpy(&tsecr, &opt[6],
1440 					    sizeof(u_int32_t));
1441 					if (tsecr && dst->scrub &&
1442 					    (dst->scrub->pfss_flags &
1443 					    PFSS_TIMESTAMP)) {
1444 						tsecr = ntohl(tsecr)
1445 						    - dst->scrub->pfss_ts_mod;
1446 						pf_change_proto_a(m, &opt[6],
1447 						    &th->th_sum, htonl(tsecr),
1448 						    0);
1449 						copyback = 1;
1450 					}
1451 					got_ts = 1;
1452 				}
1453 				/* FALLTHROUGH */
1454 			default:
1455 				hlen -= MAX(opt[1], 2);
1456 				opt += MAX(opt[1], 2);
1457 				break;
1458 			}
1459 		}
1460 		if (copyback) {
1461 			/* Copyback the options, caller copys back header */
1462 			*writeback = 1;
1463 			m_copyback(m, off + sizeof(struct tcphdr),
1464 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1465 			    sizeof(struct tcphdr));
1466 		}
1467 	}
1468 
1469 
1470 	/*
1471 	 * Must invalidate PAWS checks on connections idle for too long.
1472 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1473 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1474 	 * TS echo check only works for the first 12 days of a connection
1475 	 * when the TS has exhausted half its 32bit space
1476 	 */
1477 #define TS_MAX_IDLE	(24*24*60*60)
1478 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1479 
1480 	getmicrouptime(&uptime);
1481 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1482 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1483 	    time_uptime - state->creation > TS_MAX_CONN))  {
1484 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1485 			DPFPRINTF(("src idled out of PAWS\n"));
1486 			pf_print_state(state);
1487 			printf("\n");
1488 		}
1489 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1490 		    | PFSS_PAWS_IDLED;
1491 	}
1492 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1493 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1494 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1495 			DPFPRINTF(("dst idled out of PAWS\n"));
1496 			pf_print_state(state);
1497 			printf("\n");
1498 		}
1499 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1500 		    | PFSS_PAWS_IDLED;
1501 	}
1502 
1503 	if (got_ts && src->scrub && dst->scrub &&
1504 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1505 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1506 		/* Validate that the timestamps are "in-window".
1507 		 * RFC1323 describes TCP Timestamp options that allow
1508 		 * measurement of RTT (round trip time) and PAWS
1509 		 * (protection against wrapped sequence numbers).  PAWS
1510 		 * gives us a set of rules for rejecting packets on
1511 		 * long fat pipes (packets that were somehow delayed
1512 		 * in transit longer than the time it took to send the
1513 		 * full TCP sequence space of 4Gb).  We can use these
1514 		 * rules and infer a few others that will let us treat
1515 		 * the 32bit timestamp and the 32bit echoed timestamp
1516 		 * as sequence numbers to prevent a blind attacker from
1517 		 * inserting packets into a connection.
1518 		 *
1519 		 * RFC1323 tells us:
1520 		 *  - The timestamp on this packet must be greater than
1521 		 *    or equal to the last value echoed by the other
1522 		 *    endpoint.  The RFC says those will be discarded
1523 		 *    since it is a dup that has already been acked.
1524 		 *    This gives us a lowerbound on the timestamp.
1525 		 *        timestamp >= other last echoed timestamp
1526 		 *  - The timestamp will be less than or equal to
1527 		 *    the last timestamp plus the time between the
1528 		 *    last packet and now.  The RFC defines the max
1529 		 *    clock rate as 1ms.  We will allow clocks to be
1530 		 *    up to 10% fast and will allow a total difference
1531 		 *    or 30 seconds due to a route change.  And this
1532 		 *    gives us an upperbound on the timestamp.
1533 		 *        timestamp <= last timestamp + max ticks
1534 		 *    We have to be careful here.  Windows will send an
1535 		 *    initial timestamp of zero and then initialize it
1536 		 *    to a random value after the 3whs; presumably to
1537 		 *    avoid a DoS by having to call an expensive RNG
1538 		 *    during a SYN flood.  Proof MS has at least one
1539 		 *    good security geek.
1540 		 *
1541 		 *  - The TCP timestamp option must also echo the other
1542 		 *    endpoints timestamp.  The timestamp echoed is the
1543 		 *    one carried on the earliest unacknowledged segment
1544 		 *    on the left edge of the sequence window.  The RFC
1545 		 *    states that the host will reject any echoed
1546 		 *    timestamps that were larger than any ever sent.
1547 		 *    This gives us an upperbound on the TS echo.
1548 		 *        tescr <= largest_tsval
1549 		 *  - The lowerbound on the TS echo is a little more
1550 		 *    tricky to determine.  The other endpoint's echoed
1551 		 *    values will not decrease.  But there may be
1552 		 *    network conditions that re-order packets and
1553 		 *    cause our view of them to decrease.  For now the
1554 		 *    only lowerbound we can safely determine is that
1555 		 *    the TS echo will never be less than the original
1556 		 *    TS.  XXX There is probably a better lowerbound.
1557 		 *    Remove TS_MAX_CONN with better lowerbound check.
1558 		 *        tescr >= other original TS
1559 		 *
1560 		 * It is also important to note that the fastest
1561 		 * timestamp clock of 1ms will wrap its 32bit space in
1562 		 * 24 days.  So we just disable TS checking after 24
1563 		 * days of idle time.  We actually must use a 12d
1564 		 * connection limit until we can come up with a better
1565 		 * lowerbound to the TS echo check.
1566 		 */
1567 		struct timeval delta_ts;
1568 		int ts_fudge;
1569 
1570 
1571 		/*
1572 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1573 		 * a host's timestamp.  This can happen if the previous
1574 		 * packet got delayed in transit for much longer than
1575 		 * this packet.
1576 		 */
1577 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1578 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1579 
1580 		/* Calculate max ticks since the last timestamp */
1581 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1582 #define TS_MICROSECS	1000000		/* microseconds per second */
1583 		delta_ts = uptime;
1584 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1585 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1586 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1587 
1588 		if ((src->state >= TCPS_ESTABLISHED &&
1589 		    dst->state >= TCPS_ESTABLISHED) &&
1590 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1591 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1592 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1593 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1594 			/* Bad RFC1323 implementation or an insertion attack.
1595 			 *
1596 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1597 			 *   after the FIN,FIN|ACK,ACK closing that carries
1598 			 *   an old timestamp.
1599 			 */
1600 
1601 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1602 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1603 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1604 			    tsval_from_last) ? '1' : ' ',
1605 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1606 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1607 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1608 			    "idle: %jus %lums\n",
1609 			    tsval, tsecr, tsval_from_last,
1610 			    (uintmax_t)delta_ts.tv_sec,
1611 			    delta_ts.tv_usec / 1000));
1612 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1613 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1614 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1615 			    "\n", dst->scrub->pfss_tsval,
1616 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1617 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1618 				pf_print_state(state);
1619 				pf_print_flags(th->th_flags);
1620 				printf("\n");
1621 			}
1622 			REASON_SET(reason, PFRES_TS);
1623 			return (PF_DROP);
1624 		}
1625 
1626 		/* XXX I'd really like to require tsecr but it's optional */
1627 
1628 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1629 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1630 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1631 	    src->scrub && dst->scrub &&
1632 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1633 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1634 		/* Didn't send a timestamp.  Timestamps aren't really useful
1635 		 * when:
1636 		 *  - connection opening or closing (often not even sent).
1637 		 *    but we must not let an attacker to put a FIN on a
1638 		 *    data packet to sneak it through our ESTABLISHED check.
1639 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1640 		 *  - on an empty ACK.  The TS will not be echoed so it will
1641 		 *    probably not help keep the RTT calculation in sync and
1642 		 *    there isn't as much danger when the sequence numbers
1643 		 *    got wrapped.  So some stacks don't include TS on empty
1644 		 *    ACKs :-(
1645 		 *
1646 		 * To minimize the disruption to mostly RFC1323 conformant
1647 		 * stacks, we will only require timestamps on data packets.
1648 		 *
1649 		 * And what do ya know, we cannot require timestamps on data
1650 		 * packets.  There appear to be devices that do legitimate
1651 		 * TCP connection hijacking.  There are HTTP devices that allow
1652 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1653 		 * If the intermediate device has the HTTP response cache, it
1654 		 * will spoof the response but not bother timestamping its
1655 		 * packets.  So we can look for the presence of a timestamp in
1656 		 * the first data packet and if there, require it in all future
1657 		 * packets.
1658 		 */
1659 
1660 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1661 			/*
1662 			 * Hey!  Someone tried to sneak a packet in.  Or the
1663 			 * stack changed its RFC1323 behavior?!?!
1664 			 */
1665 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1666 				DPFPRINTF(("Did not receive expected RFC1323 "
1667 				    "timestamp\n"));
1668 				pf_print_state(state);
1669 				pf_print_flags(th->th_flags);
1670 				printf("\n");
1671 			}
1672 			REASON_SET(reason, PFRES_TS);
1673 			return (PF_DROP);
1674 		}
1675 	}
1676 
1677 
1678 	/*
1679 	 * We will note if a host sends his data packets with or without
1680 	 * timestamps.  And require all data packets to contain a timestamp
1681 	 * if the first does.  PAWS implicitly requires that all data packets be
1682 	 * timestamped.  But I think there are middle-man devices that hijack
1683 	 * TCP streams immediately after the 3whs and don't timestamp their
1684 	 * packets (seen in a WWW accelerator or cache).
1685 	 */
1686 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1687 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1688 		if (got_ts)
1689 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1690 		else {
1691 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1692 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1693 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1694 				/* Don't warn if other host rejected RFC1323 */
1695 				DPFPRINTF(("Broken RFC1323 stack did not "
1696 				    "timestamp data packet. Disabled PAWS "
1697 				    "security.\n"));
1698 				pf_print_state(state);
1699 				pf_print_flags(th->th_flags);
1700 				printf("\n");
1701 			}
1702 		}
1703 	}
1704 
1705 
1706 	/*
1707 	 * Update PAWS values
1708 	 */
1709 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1710 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1711 		getmicrouptime(&src->scrub->pfss_last);
1712 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1713 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1714 			src->scrub->pfss_tsval = tsval;
1715 
1716 		if (tsecr) {
1717 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1718 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1719 				src->scrub->pfss_tsecr = tsecr;
1720 
1721 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1722 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1723 			    src->scrub->pfss_tsval0 == 0)) {
1724 				/* tsval0 MUST be the lowest timestamp */
1725 				src->scrub->pfss_tsval0 = tsval;
1726 			}
1727 
1728 			/* Only fully initialized after a TS gets echoed */
1729 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1730 				src->scrub->pfss_flags |= PFSS_PAWS;
1731 		}
1732 	}
1733 
1734 	/* I have a dream....  TCP segment reassembly.... */
1735 	return (0);
1736 }
1737 
1738 static int
1739 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1740     int off, sa_family_t af)
1741 {
1742 	u_int16_t	*mss;
1743 	int		 thoff;
1744 	int		 opt, cnt, optlen = 0;
1745 	int		 rewrite = 0;
1746 	u_char		 opts[TCP_MAXOLEN];
1747 	u_char		*optp = opts;
1748 
1749 	thoff = th->th_off << 2;
1750 	cnt = thoff - sizeof(struct tcphdr);
1751 
1752 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1753 	    NULL, NULL, af))
1754 		return (rewrite);
1755 
1756 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1757 		opt = optp[0];
1758 		if (opt == TCPOPT_EOL)
1759 			break;
1760 		if (opt == TCPOPT_NOP)
1761 			optlen = 1;
1762 		else {
1763 			if (cnt < 2)
1764 				break;
1765 			optlen = optp[1];
1766 			if (optlen < 2 || optlen > cnt)
1767 				break;
1768 		}
1769 		switch (opt) {
1770 		case TCPOPT_MAXSEG:
1771 			mss = (u_int16_t *)(optp + 2);
1772 			if ((ntohs(*mss)) > r->max_mss) {
1773 				th->th_sum = pf_proto_cksum_fixup(m,
1774 				    th->th_sum, *mss, htons(r->max_mss), 0);
1775 				*mss = htons(r->max_mss);
1776 				rewrite = 1;
1777 			}
1778 			break;
1779 		default:
1780 			break;
1781 		}
1782 	}
1783 
1784 	if (rewrite)
1785 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1786 
1787 	return (rewrite);
1788 }
1789 
1790 #ifdef INET
1791 static void
1792 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1793 {
1794 	struct mbuf		*m = *m0;
1795 	struct ip		*h = mtod(m, struct ip *);
1796 
1797 	/* Clear IP_DF if no-df was requested */
1798 	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1799 		u_int16_t ip_off = h->ip_off;
1800 
1801 		h->ip_off &= htons(~IP_DF);
1802 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1803 	}
1804 
1805 	/* Enforce a minimum ttl, may cause endless packet loops */
1806 	if (min_ttl && h->ip_ttl < min_ttl) {
1807 		u_int16_t ip_ttl = h->ip_ttl;
1808 
1809 		h->ip_ttl = min_ttl;
1810 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1811 	}
1812 
1813 	/* Enforce tos */
1814 	if (flags & PFRULE_SET_TOS) {
1815 		u_int16_t	ov, nv;
1816 
1817 		ov = *(u_int16_t *)h;
1818 		h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
1819 		nv = *(u_int16_t *)h;
1820 
1821 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1822 	}
1823 
1824 	/* random-id, but not for fragments */
1825 	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1826 		uint16_t ip_id = h->ip_id;
1827 
1828 		ip_fillid(h);
1829 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1830 	}
1831 }
1832 #endif /* INET */
1833 
1834 #ifdef INET6
1835 static void
1836 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1837 {
1838 	struct mbuf		*m = *m0;
1839 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1840 
1841 	/* Enforce a minimum ttl, may cause endless packet loops */
1842 	if (min_ttl && h->ip6_hlim < min_ttl)
1843 		h->ip6_hlim = min_ttl;
1844 }
1845 #endif
1846