xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision d8a0fe102c0cfdfcd5b818f850eff09d8536c9bc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_pf.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/refcount.h>
44 #include <sys/rwlock.h>
45 #include <sys/socket.h>
46 
47 #include <net/if.h>
48 #include <net/vnet.h>
49 #include <net/pfvar.h>
50 #include <net/if_pflog.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip_var.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #endif /* INET6 */
63 
64 struct pf_frent {
65 	TAILQ_ENTRY(pf_frent)	fr_next;
66 	struct mbuf	*fe_m;
67 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
68 					   ipv6, extension, fragment header */
69 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
70 	uint16_t	fe_len;		/* fragment length */
71 	uint16_t	fe_off;		/* fragment offset */
72 	uint16_t	fe_mff;		/* more fragment flag */
73 };
74 
75 struct pf_fragment_cmp {
76 	struct pf_addr	frc_src;
77 	struct pf_addr	frc_dst;
78 	uint32_t	frc_id;
79 	sa_family_t	frc_af;
80 	uint8_t		frc_proto;
81 };
82 
83 struct pf_fragment {
84 	struct pf_fragment_cmp	fr_key;
85 #define fr_src	fr_key.frc_src
86 #define fr_dst	fr_key.frc_dst
87 #define fr_id	fr_key.frc_id
88 #define fr_af	fr_key.frc_af
89 #define fr_proto	fr_key.frc_proto
90 
91 	RB_ENTRY(pf_fragment) fr_entry;
92 	TAILQ_ENTRY(pf_fragment) frag_next;
93 	uint32_t	fr_timeout;
94 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
95 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
96 };
97 
98 struct pf_fragment_tag {
99 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
100 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
101 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
102 	uint32_t	ft_id;		/* fragment id */
103 };
104 
105 static struct mtx pf_frag_mtx;
106 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
107 #define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
108 #define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
109 #define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
110 
111 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
112 
113 static VNET_DEFINE(uma_zone_t, pf_frent_z);
114 #define	V_pf_frent_z	VNET(pf_frent_z)
115 static VNET_DEFINE(uma_zone_t, pf_frag_z);
116 #define	V_pf_frag_z	VNET(pf_frag_z)
117 
118 TAILQ_HEAD(pf_fragqueue, pf_fragment);
119 TAILQ_HEAD(pf_cachequeue, pf_fragment);
120 static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
121 #define	V_pf_fragqueue			VNET(pf_fragqueue)
122 RB_HEAD(pf_frag_tree, pf_fragment);
123 static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
124 #define	V_pf_frag_tree			VNET(pf_frag_tree)
125 static int		 pf_frag_compare(struct pf_fragment *,
126 			    struct pf_fragment *);
127 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
128 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
129 
130 static void	pf_flush_fragments(void);
131 static void	pf_free_fragment(struct pf_fragment *);
132 static void	pf_remove_fragment(struct pf_fragment *);
133 static int	pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
134 		    struct tcphdr *, int, sa_family_t);
135 static struct pf_frent *pf_create_fragment(u_short *);
136 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
137 		    struct pf_frag_tree *tree);
138 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
139 		    struct pf_frent *, u_short *);
140 static int	pf_isfull_fragment(struct pf_fragment *);
141 static struct mbuf *pf_join_fragment(struct pf_fragment *);
142 #ifdef INET
143 static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
144 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
145 #endif	/* INET */
146 #ifdef INET6
147 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
148 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
149 static void	pf_scrub_ip6(struct mbuf **, uint8_t);
150 #endif	/* INET6 */
151 
152 #define	DPFPRINTF(x) do {				\
153 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
154 		printf("%s: ", __func__);		\
155 		printf x ;				\
156 	}						\
157 } while(0)
158 
159 #ifdef INET
160 static void
161 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
162 {
163 
164 	key->frc_src.v4 = ip->ip_src;
165 	key->frc_dst.v4 = ip->ip_dst;
166 	key->frc_af = AF_INET;
167 	key->frc_proto = ip->ip_p;
168 	key->frc_id = ip->ip_id;
169 }
170 #endif	/* INET */
171 
172 void
173 pf_normalize_init(void)
174 {
175 
176 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
177 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
178 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
179 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
180 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
181 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
182 	    UMA_ALIGN_PTR, 0);
183 
184 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
185 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
186 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
187 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
188 
189 	TAILQ_INIT(&V_pf_fragqueue);
190 }
191 
192 void
193 pf_normalize_cleanup(void)
194 {
195 
196 	uma_zdestroy(V_pf_state_scrub_z);
197 	uma_zdestroy(V_pf_frent_z);
198 	uma_zdestroy(V_pf_frag_z);
199 }
200 
201 static int
202 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
203 {
204 	int	diff;
205 
206 	if ((diff = a->fr_id - b->fr_id) != 0)
207 		return (diff);
208 	if ((diff = a->fr_proto - b->fr_proto) != 0)
209 		return (diff);
210 	if ((diff = a->fr_af - b->fr_af) != 0)
211 		return (diff);
212 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
213 		return (diff);
214 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
215 		return (diff);
216 	return (0);
217 }
218 
219 void
220 pf_purge_expired_fragments(void)
221 {
222 	struct pf_fragment	*frag;
223 	u_int32_t		 expire = time_uptime -
224 				    V_pf_default_rule.timeout[PFTM_FRAG];
225 
226 	PF_FRAG_LOCK();
227 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
228 		if (frag->fr_timeout > expire)
229 			break;
230 
231 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
232 		pf_free_fragment(frag);
233 	}
234 
235 	PF_FRAG_UNLOCK();
236 }
237 
238 /*
239  * Try to flush old fragments to make space for new ones
240  */
241 static void
242 pf_flush_fragments(void)
243 {
244 	struct pf_fragment	*frag;
245 	int			 goal;
246 
247 	PF_FRAG_ASSERT();
248 
249 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
250 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
251 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
252 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
253 		if (frag)
254 			pf_free_fragment(frag);
255 		else
256 			break;
257 	}
258 }
259 
260 /* Frees the fragments and all associated entries */
261 static void
262 pf_free_fragment(struct pf_fragment *frag)
263 {
264 	struct pf_frent		*frent;
265 
266 	PF_FRAG_ASSERT();
267 
268 	/* Free all fragments */
269 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
270 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
271 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
272 
273 		m_freem(frent->fe_m);
274 		uma_zfree(V_pf_frent_z, frent);
275 	}
276 
277 	pf_remove_fragment(frag);
278 }
279 
280 static struct pf_fragment *
281 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
282 {
283 	struct pf_fragment	*frag;
284 
285 	PF_FRAG_ASSERT();
286 
287 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
288 	if (frag != NULL) {
289 		/* XXX Are we sure we want to update the timeout? */
290 		frag->fr_timeout = time_uptime;
291 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
292 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
293 	}
294 
295 	return (frag);
296 }
297 
298 /* Removes a fragment from the fragment queue and frees the fragment */
299 static void
300 pf_remove_fragment(struct pf_fragment *frag)
301 {
302 
303 	PF_FRAG_ASSERT();
304 
305 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
306 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
307 	uma_zfree(V_pf_frag_z, frag);
308 }
309 
310 static struct pf_frent *
311 pf_create_fragment(u_short *reason)
312 {
313 	struct pf_frent *frent;
314 
315 	PF_FRAG_ASSERT();
316 
317 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
318 	if (frent == NULL) {
319 		pf_flush_fragments();
320 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
321 		if (frent == NULL) {
322 			REASON_SET(reason, PFRES_MEMORY);
323 			return (NULL);
324 		}
325 	}
326 
327 	return (frent);
328 }
329 
330 static struct pf_fragment *
331 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
332 		u_short *reason)
333 {
334 	struct pf_frent		*after, *next, *prev;
335 	struct pf_fragment	*frag;
336 	uint16_t		total;
337 
338 	PF_FRAG_ASSERT();
339 
340 	/* No empty fragments. */
341 	if (frent->fe_len == 0) {
342 		DPFPRINTF(("bad fragment: len 0"));
343 		goto bad_fragment;
344 	}
345 
346 	/* All fragments are 8 byte aligned. */
347 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
348 		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
349 		goto bad_fragment;
350 	}
351 
352 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
353 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
354 		DPFPRINTF(("bad fragment: max packet %d",
355 		    frent->fe_off + frent->fe_len));
356 		goto bad_fragment;
357 	}
358 
359 	DPFPRINTF((key->frc_af == AF_INET ?
360 	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
361 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
362 
363 	/* Fully buffer all of the fragments in this fragment queue. */
364 	frag = pf_find_fragment(key, &V_pf_frag_tree);
365 
366 	/* Create a new reassembly queue for this packet. */
367 	if (frag == NULL) {
368 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
369 		if (frag == NULL) {
370 			pf_flush_fragments();
371 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
372 			if (frag == NULL) {
373 				REASON_SET(reason, PFRES_MEMORY);
374 				goto drop_fragment;
375 			}
376 		}
377 
378 		*(struct pf_fragment_cmp *)frag = *key;
379 		frag->fr_timeout = time_uptime;
380 		frag->fr_maxlen = frent->fe_len;
381 		TAILQ_INIT(&frag->fr_queue);
382 
383 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
384 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
385 
386 		/* We do not have a previous fragment. */
387 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
388 
389 		return (frag);
390 	}
391 
392 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
393 
394 	/* Remember maximum fragment len for refragmentation. */
395 	if (frent->fe_len > frag->fr_maxlen)
396 		frag->fr_maxlen = frent->fe_len;
397 
398 	/* Maximum data we have seen already. */
399 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
400 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
401 
402 	/* Non terminal fragments must have more fragments flag. */
403 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
404 		goto bad_fragment;
405 
406 	/* Check if we saw the last fragment already. */
407 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
408 		if (frent->fe_off + frent->fe_len > total ||
409 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
410 			goto bad_fragment;
411 	} else {
412 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
413 			goto bad_fragment;
414 	}
415 
416 	/* Find a fragment after the current one. */
417 	prev = NULL;
418 	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
419 		if (after->fe_off > frent->fe_off)
420 			break;
421 		prev = after;
422 	}
423 
424 	KASSERT(prev != NULL || after != NULL,
425 	    ("prev != NULL || after != NULL"));
426 
427 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
428 		uint16_t precut;
429 
430 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
431 		if (precut >= frent->fe_len)
432 			goto bad_fragment;
433 		DPFPRINTF(("overlap -%d", precut));
434 		m_adj(frent->fe_m, precut);
435 		frent->fe_off += precut;
436 		frent->fe_len -= precut;
437 	}
438 
439 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
440 	    after = next) {
441 		uint16_t aftercut;
442 
443 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
444 		DPFPRINTF(("adjust overlap %d", aftercut));
445 		if (aftercut < after->fe_len) {
446 			m_adj(after->fe_m, aftercut);
447 			after->fe_off += aftercut;
448 			after->fe_len -= aftercut;
449 			break;
450 		}
451 
452 		/* This fragment is completely overlapped, lose it. */
453 		next = TAILQ_NEXT(after, fr_next);
454 		m_freem(after->fe_m);
455 		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
456 		uma_zfree(V_pf_frent_z, after);
457 	}
458 
459 	if (prev == NULL)
460 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
461 	else
462 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
463 
464 	return (frag);
465 
466 bad_fragment:
467 	REASON_SET(reason, PFRES_FRAG);
468 drop_fragment:
469 	uma_zfree(V_pf_frent_z, frent);
470 	return (NULL);
471 }
472 
473 static int
474 pf_isfull_fragment(struct pf_fragment *frag)
475 {
476 	struct pf_frent	*frent, *next;
477 	uint16_t off, total;
478 
479 	/* Check if we are completely reassembled */
480 	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
481 		return (0);
482 
483 	/* Maximum data we have seen already */
484 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
485 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
486 
487 	/* Check if we have all the data */
488 	off = 0;
489 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
490 		next = TAILQ_NEXT(frent, fr_next);
491 
492 		off += frent->fe_len;
493 		if (off < total && (next == NULL || next->fe_off != off)) {
494 			DPFPRINTF(("missing fragment at %d, next %d, total %d",
495 			    off, next == NULL ? -1 : next->fe_off, total));
496 			return (0);
497 		}
498 	}
499 	DPFPRINTF(("%d < %d?", off, total));
500 	if (off < total)
501 		return (0);
502 	KASSERT(off == total, ("off == total"));
503 
504 	return (1);
505 }
506 
507 static struct mbuf *
508 pf_join_fragment(struct pf_fragment *frag)
509 {
510 	struct mbuf *m, *m2;
511 	struct pf_frent	*frent, *next;
512 
513 	frent = TAILQ_FIRST(&frag->fr_queue);
514 	next = TAILQ_NEXT(frent, fr_next);
515 
516 	m = frent->fe_m;
517 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
518 	uma_zfree(V_pf_frent_z, frent);
519 	for (frent = next; frent != NULL; frent = next) {
520 		next = TAILQ_NEXT(frent, fr_next);
521 
522 		m2 = frent->fe_m;
523 		/* Strip off ip header. */
524 		m_adj(m2, frent->fe_hdrlen);
525 		/* Strip off any trailing bytes. */
526 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
527 
528 		uma_zfree(V_pf_frent_z, frent);
529 		m_cat(m, m2);
530 	}
531 
532 	/* Remove from fragment queue. */
533 	pf_remove_fragment(frag);
534 
535 	return (m);
536 }
537 
538 #ifdef INET
539 static int
540 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
541 {
542 	struct mbuf		*m = *m0;
543 	struct pf_frent		*frent;
544 	struct pf_fragment	*frag;
545 	struct pf_fragment_cmp	key;
546 	uint16_t		total, hdrlen;
547 
548 	/* Get an entry for the fragment queue */
549 	if ((frent = pf_create_fragment(reason)) == NULL)
550 		return (PF_DROP);
551 
552 	frent->fe_m = m;
553 	frent->fe_hdrlen = ip->ip_hl << 2;
554 	frent->fe_extoff = 0;
555 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
556 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
557 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
558 
559 	pf_ip2key(ip, dir, &key);
560 
561 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
562 		return (PF_DROP);
563 
564 	/* The mbuf is part of the fragment entry, no direct free or access */
565 	m = *m0 = NULL;
566 
567 	if (!pf_isfull_fragment(frag))
568 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
569 
570 	/* We have all the data */
571 	frent = TAILQ_FIRST(&frag->fr_queue);
572 	KASSERT(frent != NULL, ("frent != NULL"));
573 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
574 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
575 	hdrlen = frent->fe_hdrlen;
576 
577 	m = *m0 = pf_join_fragment(frag);
578 	frag = NULL;
579 
580 	if (m->m_flags & M_PKTHDR) {
581 		int plen = 0;
582 		for (m = *m0; m; m = m->m_next)
583 			plen += m->m_len;
584 		m = *m0;
585 		m->m_pkthdr.len = plen;
586 	}
587 
588 	ip = mtod(m, struct ip *);
589 	ip->ip_len = htons(hdrlen + total);
590 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
591 
592 	if (hdrlen + total > IP_MAXPACKET) {
593 		DPFPRINTF(("drop: too big: %d", total));
594 		ip->ip_len = 0;
595 		REASON_SET(reason, PFRES_SHORT);
596 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
597 		return (PF_DROP);
598 	}
599 
600 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
601 	return (PF_PASS);
602 }
603 #endif	/* INET */
604 
605 #ifdef INET6
606 static int
607 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
608     uint16_t hdrlen, uint16_t extoff, u_short *reason)
609 {
610 	struct mbuf		*m = *m0;
611 	struct pf_frent		*frent;
612 	struct pf_fragment	*frag;
613 	struct pf_fragment_cmp	 key;
614 	struct m_tag		*mtag;
615 	struct pf_fragment_tag	*ftag;
616 	int			 off;
617 	uint32_t		 frag_id;
618 	uint16_t		 total, maxlen;
619 	uint8_t			 proto;
620 
621 	PF_FRAG_LOCK();
622 
623 	/* Get an entry for the fragment queue. */
624 	if ((frent = pf_create_fragment(reason)) == NULL) {
625 		PF_FRAG_UNLOCK();
626 		return (PF_DROP);
627 	}
628 
629 	frent->fe_m = m;
630 	frent->fe_hdrlen = hdrlen;
631 	frent->fe_extoff = extoff;
632 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
633 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
634 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
635 
636 	key.frc_src.v6 = ip6->ip6_src;
637 	key.frc_dst.v6 = ip6->ip6_dst;
638 	key.frc_af = AF_INET6;
639 	/* Only the first fragment's protocol is relevant. */
640 	key.frc_proto = 0;
641 	key.frc_id = fraghdr->ip6f_ident;
642 
643 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
644 		PF_FRAG_UNLOCK();
645 		return (PF_DROP);
646 	}
647 
648 	/* The mbuf is part of the fragment entry, no direct free or access. */
649 	m = *m0 = NULL;
650 
651 	if (!pf_isfull_fragment(frag)) {
652 		PF_FRAG_UNLOCK();
653 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
654 	}
655 
656 	/* We have all the data. */
657 	extoff = frent->fe_extoff;
658 	maxlen = frag->fr_maxlen;
659 	frag_id = frag->fr_id;
660 	frent = TAILQ_FIRST(&frag->fr_queue);
661 	KASSERT(frent != NULL, ("frent != NULL"));
662 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
663 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
664 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
665 
666 	m = *m0 = pf_join_fragment(frag);
667 	frag = NULL;
668 
669 	PF_FRAG_UNLOCK();
670 
671 	/* Take protocol from first fragment header. */
672 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
673 	KASSERT(m, ("%s: short mbuf chain", __func__));
674 	proto = *(mtod(m, caddr_t) + off);
675 	m = *m0;
676 
677 	/* Delete frag6 header */
678 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
679 		goto fail;
680 
681 	if (m->m_flags & M_PKTHDR) {
682 		int plen = 0;
683 		for (m = *m0; m; m = m->m_next)
684 			plen += m->m_len;
685 		m = *m0;
686 		m->m_pkthdr.len = plen;
687 	}
688 
689 	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
690 	    M_NOWAIT)) == NULL)
691 		goto fail;
692 	ftag = (struct pf_fragment_tag *)(mtag + 1);
693 	ftag->ft_hdrlen = hdrlen;
694 	ftag->ft_extoff = extoff;
695 	ftag->ft_maxlen = maxlen;
696 	ftag->ft_id = frag_id;
697 	m_tag_prepend(m, mtag);
698 
699 	ip6 = mtod(m, struct ip6_hdr *);
700 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
701 	if (extoff) {
702 		/* Write protocol into next field of last extension header. */
703 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
704 		    &off);
705 		KASSERT(m, ("%s: short mbuf chain", __func__));
706 		*(mtod(m, char *) + off) = proto;
707 		m = *m0;
708 	} else
709 		ip6->ip6_nxt = proto;
710 
711 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
712 		DPFPRINTF(("drop: too big: %d", total));
713 		ip6->ip6_plen = 0;
714 		REASON_SET(reason, PFRES_SHORT);
715 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
716 		return (PF_DROP);
717 	}
718 
719 	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
720 	return (PF_PASS);
721 
722 fail:
723 	REASON_SET(reason, PFRES_MEMORY);
724 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
725 	return (PF_DROP);
726 }
727 #endif	/* INET6 */
728 
729 #ifdef INET6
730 int
731 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
732 {
733 	struct mbuf		*m = *m0, *t;
734 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
735 	struct pf_pdesc		 pd;
736 	uint32_t		 frag_id;
737 	uint16_t		 hdrlen, extoff, maxlen;
738 	uint8_t			 proto;
739 	int			 error, action;
740 
741 	hdrlen = ftag->ft_hdrlen;
742 	extoff = ftag->ft_extoff;
743 	maxlen = ftag->ft_maxlen;
744 	frag_id = ftag->ft_id;
745 	m_tag_delete(m, mtag);
746 	mtag = NULL;
747 	ftag = NULL;
748 
749 	if (extoff) {
750 		int off;
751 
752 		/* Use protocol from next field of last extension header */
753 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
754 		    &off);
755 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
756 		proto = *(mtod(m, caddr_t) + off);
757 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
758 		m = *m0;
759 	} else {
760 		struct ip6_hdr *hdr;
761 
762 		hdr = mtod(m, struct ip6_hdr *);
763 		proto = hdr->ip6_nxt;
764 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
765 	}
766 
767 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
768 	 * fragmentation wrong. */
769 	maxlen = maxlen & ~7;
770 
771 	/*
772 	 * Maxlen may be less than 8 if there was only a single
773 	 * fragment.  As it was fragmented before, add a fragment
774 	 * header also for a single fragment.  If total or maxlen
775 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
776 	 * we drop the packet.
777 	 */
778 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
779 	m = (*m0)->m_nextpkt;
780 	(*m0)->m_nextpkt = NULL;
781 	if (error == 0) {
782 		/* The first mbuf contains the unfragmented packet. */
783 		m_freem(*m0);
784 		*m0 = NULL;
785 		action = PF_PASS;
786 	} else {
787 		/* Drop expects an mbuf to free. */
788 		DPFPRINTF(("refragment error %d", error));
789 		action = PF_DROP;
790 	}
791 	for (t = m; m; m = t) {
792 		t = m->m_nextpkt;
793 		m->m_nextpkt = NULL;
794 		m->m_flags |= M_SKIP_FIREWALL;
795 		memset(&pd, 0, sizeof(pd));
796 		pd.pf_mtag = pf_find_mtag(m);
797 		if (error == 0)
798 			ip6_forward(m, 0);
799 		else
800 			m_freem(m);
801 	}
802 
803 	return (action);
804 }
805 #endif /* INET6 */
806 
807 #ifdef INET
808 int
809 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
810     struct pf_pdesc *pd)
811 {
812 	struct mbuf		*m = *m0;
813 	struct pf_rule		*r;
814 	struct ip		*h = mtod(m, struct ip *);
815 	int			 mff = (ntohs(h->ip_off) & IP_MF);
816 	int			 hlen = h->ip_hl << 2;
817 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
818 	u_int16_t		 max;
819 	int			 ip_len;
820 	int			 ip_off;
821 	int			 tag = -1;
822 	int			 verdict;
823 
824 	PF_RULES_RASSERT();
825 
826 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
827 	while (r != NULL) {
828 		r->evaluations++;
829 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
830 			r = r->skip[PF_SKIP_IFP].ptr;
831 		else if (r->direction && r->direction != dir)
832 			r = r->skip[PF_SKIP_DIR].ptr;
833 		else if (r->af && r->af != AF_INET)
834 			r = r->skip[PF_SKIP_AF].ptr;
835 		else if (r->proto && r->proto != h->ip_p)
836 			r = r->skip[PF_SKIP_PROTO].ptr;
837 		else if (PF_MISMATCHAW(&r->src.addr,
838 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
839 		    r->src.neg, kif, M_GETFIB(m)))
840 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
841 		else if (PF_MISMATCHAW(&r->dst.addr,
842 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
843 		    r->dst.neg, NULL, M_GETFIB(m)))
844 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
845 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
846 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
847 			r = TAILQ_NEXT(r, entries);
848 		else
849 			break;
850 	}
851 
852 	if (r == NULL || r->action == PF_NOSCRUB)
853 		return (PF_PASS);
854 	else {
855 		r->packets[dir == PF_OUT]++;
856 		r->bytes[dir == PF_OUT] += pd->tot_len;
857 	}
858 
859 	/* Check for illegal packets */
860 	if (hlen < (int)sizeof(struct ip)) {
861 		REASON_SET(reason, PFRES_NORM);
862 		goto drop;
863 	}
864 
865 	if (hlen > ntohs(h->ip_len)) {
866 		REASON_SET(reason, PFRES_NORM);
867 		goto drop;
868 	}
869 
870 	/* Clear IP_DF if the rule uses the no-df option */
871 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
872 		u_int16_t ip_off = h->ip_off;
873 
874 		h->ip_off &= htons(~IP_DF);
875 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
876 	}
877 
878 	/* We will need other tests here */
879 	if (!fragoff && !mff)
880 		goto no_fragment;
881 
882 	/* We're dealing with a fragment now. Don't allow fragments
883 	 * with IP_DF to enter the cache. If the flag was cleared by
884 	 * no-df above, fine. Otherwise drop it.
885 	 */
886 	if (h->ip_off & htons(IP_DF)) {
887 		DPFPRINTF(("IP_DF\n"));
888 		goto bad;
889 	}
890 
891 	ip_len = ntohs(h->ip_len) - hlen;
892 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
893 
894 	/* All fragments are 8 byte aligned */
895 	if (mff && (ip_len & 0x7)) {
896 		DPFPRINTF(("mff and %d\n", ip_len));
897 		goto bad;
898 	}
899 
900 	/* Respect maximum length */
901 	if (fragoff + ip_len > IP_MAXPACKET) {
902 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
903 		goto bad;
904 	}
905 	max = fragoff + ip_len;
906 
907 	/* Fully buffer all of the fragments
908 	 * Might return a completely reassembled mbuf, or NULL */
909 	PF_FRAG_LOCK();
910 	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
911 	verdict = pf_reassemble(m0, h, dir, reason);
912 	PF_FRAG_UNLOCK();
913 
914 	if (verdict != PF_PASS)
915 		return (PF_DROP);
916 
917 	m = *m0;
918 	if (m == NULL)
919 		return (PF_DROP);
920 
921 	h = mtod(m, struct ip *);
922 
923  no_fragment:
924 	/* At this point, only IP_DF is allowed in ip_off */
925 	if (h->ip_off & ~htons(IP_DF)) {
926 		u_int16_t ip_off = h->ip_off;
927 
928 		h->ip_off &= htons(IP_DF);
929 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
930 	}
931 
932 	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
933 
934 	return (PF_PASS);
935 
936  bad:
937 	DPFPRINTF(("dropping bad fragment\n"));
938 	REASON_SET(reason, PFRES_FRAG);
939  drop:
940 	if (r != NULL && r->log)
941 		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
942 		    1);
943 
944 	return (PF_DROP);
945 }
946 #endif
947 
948 #ifdef INET6
949 int
950 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
951     u_short *reason, struct pf_pdesc *pd)
952 {
953 	struct mbuf		*m = *m0;
954 	struct pf_rule		*r;
955 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
956 	int			 extoff;
957 	int			 off;
958 	struct ip6_ext		 ext;
959 	struct ip6_opt		 opt;
960 	struct ip6_opt_jumbo	 jumbo;
961 	struct ip6_frag		 frag;
962 	u_int32_t		 jumbolen = 0, plen;
963 	int			 optend;
964 	int			 ooff;
965 	u_int8_t		 proto;
966 	int			 terminal;
967 
968 	PF_RULES_RASSERT();
969 
970 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
971 	while (r != NULL) {
972 		r->evaluations++;
973 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
974 			r = r->skip[PF_SKIP_IFP].ptr;
975 		else if (r->direction && r->direction != dir)
976 			r = r->skip[PF_SKIP_DIR].ptr;
977 		else if (r->af && r->af != AF_INET6)
978 			r = r->skip[PF_SKIP_AF].ptr;
979 #if 0 /* header chain! */
980 		else if (r->proto && r->proto != h->ip6_nxt)
981 			r = r->skip[PF_SKIP_PROTO].ptr;
982 #endif
983 		else if (PF_MISMATCHAW(&r->src.addr,
984 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
985 		    r->src.neg, kif, M_GETFIB(m)))
986 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
987 		else if (PF_MISMATCHAW(&r->dst.addr,
988 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
989 		    r->dst.neg, NULL, M_GETFIB(m)))
990 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
991 		else
992 			break;
993 	}
994 
995 	if (r == NULL || r->action == PF_NOSCRUB)
996 		return (PF_PASS);
997 	else {
998 		r->packets[dir == PF_OUT]++;
999 		r->bytes[dir == PF_OUT] += pd->tot_len;
1000 	}
1001 
1002 	/* Check for illegal packets */
1003 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1004 		goto drop;
1005 
1006 	extoff = 0;
1007 	off = sizeof(struct ip6_hdr);
1008 	proto = h->ip6_nxt;
1009 	terminal = 0;
1010 	do {
1011 		switch (proto) {
1012 		case IPPROTO_FRAGMENT:
1013 			goto fragment;
1014 			break;
1015 		case IPPROTO_AH:
1016 		case IPPROTO_ROUTING:
1017 		case IPPROTO_DSTOPTS:
1018 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1019 			    NULL, AF_INET6))
1020 				goto shortpkt;
1021 			extoff = off;
1022 			if (proto == IPPROTO_AH)
1023 				off += (ext.ip6e_len + 2) * 4;
1024 			else
1025 				off += (ext.ip6e_len + 1) * 8;
1026 			proto = ext.ip6e_nxt;
1027 			break;
1028 		case IPPROTO_HOPOPTS:
1029 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1030 			    NULL, AF_INET6))
1031 				goto shortpkt;
1032 			extoff = off;
1033 			optend = off + (ext.ip6e_len + 1) * 8;
1034 			ooff = off + sizeof(ext);
1035 			do {
1036 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1037 				    sizeof(opt.ip6o_type), NULL, NULL,
1038 				    AF_INET6))
1039 					goto shortpkt;
1040 				if (opt.ip6o_type == IP6OPT_PAD1) {
1041 					ooff++;
1042 					continue;
1043 				}
1044 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1045 				    NULL, NULL, AF_INET6))
1046 					goto shortpkt;
1047 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1048 					goto drop;
1049 				switch (opt.ip6o_type) {
1050 				case IP6OPT_JUMBO:
1051 					if (h->ip6_plen != 0)
1052 						goto drop;
1053 					if (!pf_pull_hdr(m, ooff, &jumbo,
1054 					    sizeof(jumbo), NULL, NULL,
1055 					    AF_INET6))
1056 						goto shortpkt;
1057 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1058 					    sizeof(jumbolen));
1059 					jumbolen = ntohl(jumbolen);
1060 					if (jumbolen <= IPV6_MAXPACKET)
1061 						goto drop;
1062 					if (sizeof(struct ip6_hdr) + jumbolen !=
1063 					    m->m_pkthdr.len)
1064 						goto drop;
1065 					break;
1066 				default:
1067 					break;
1068 				}
1069 				ooff += sizeof(opt) + opt.ip6o_len;
1070 			} while (ooff < optend);
1071 
1072 			off = optend;
1073 			proto = ext.ip6e_nxt;
1074 			break;
1075 		default:
1076 			terminal = 1;
1077 			break;
1078 		}
1079 	} while (!terminal);
1080 
1081 	/* jumbo payload option must be present, or plen > 0 */
1082 	if (ntohs(h->ip6_plen) == 0)
1083 		plen = jumbolen;
1084 	else
1085 		plen = ntohs(h->ip6_plen);
1086 	if (plen == 0)
1087 		goto drop;
1088 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1089 		goto shortpkt;
1090 
1091 	pf_scrub_ip6(&m, r->min_ttl);
1092 
1093 	return (PF_PASS);
1094 
1095  fragment:
1096 	/* Jumbo payload packets cannot be fragmented. */
1097 	plen = ntohs(h->ip6_plen);
1098 	if (plen == 0 || jumbolen)
1099 		goto drop;
1100 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1101 		goto shortpkt;
1102 
1103 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1104 		goto shortpkt;
1105 
1106 	/* Offset now points to data portion. */
1107 	off += sizeof(frag);
1108 
1109 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1110 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1111 		return (PF_DROP);
1112 	m = *m0;
1113 	if (m == NULL)
1114 		return (PF_DROP);
1115 
1116 	pd->flags |= PFDESC_IP_REAS;
1117 	return (PF_PASS);
1118 
1119  shortpkt:
1120 	REASON_SET(reason, PFRES_SHORT);
1121 	if (r != NULL && r->log)
1122 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1123 		    1);
1124 	return (PF_DROP);
1125 
1126  drop:
1127 	REASON_SET(reason, PFRES_NORM);
1128 	if (r != NULL && r->log)
1129 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1130 		    1);
1131 	return (PF_DROP);
1132 }
1133 #endif /* INET6 */
1134 
1135 int
1136 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1137     int off, void *h, struct pf_pdesc *pd)
1138 {
1139 	struct pf_rule	*r, *rm = NULL;
1140 	struct tcphdr	*th = pd->hdr.tcp;
1141 	int		 rewrite = 0;
1142 	u_short		 reason;
1143 	u_int8_t	 flags;
1144 	sa_family_t	 af = pd->af;
1145 
1146 	PF_RULES_RASSERT();
1147 
1148 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1149 	while (r != NULL) {
1150 		r->evaluations++;
1151 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1152 			r = r->skip[PF_SKIP_IFP].ptr;
1153 		else if (r->direction && r->direction != dir)
1154 			r = r->skip[PF_SKIP_DIR].ptr;
1155 		else if (r->af && r->af != af)
1156 			r = r->skip[PF_SKIP_AF].ptr;
1157 		else if (r->proto && r->proto != pd->proto)
1158 			r = r->skip[PF_SKIP_PROTO].ptr;
1159 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1160 		    r->src.neg, kif, M_GETFIB(m)))
1161 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1162 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1163 			    r->src.port[0], r->src.port[1], th->th_sport))
1164 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1165 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1166 		    r->dst.neg, NULL, M_GETFIB(m)))
1167 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1168 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1169 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1170 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1171 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1172 			    pf_osfp_fingerprint(pd, m, off, th),
1173 			    r->os_fingerprint))
1174 			r = TAILQ_NEXT(r, entries);
1175 		else {
1176 			rm = r;
1177 			break;
1178 		}
1179 	}
1180 
1181 	if (rm == NULL || rm->action == PF_NOSCRUB)
1182 		return (PF_PASS);
1183 	else {
1184 		r->packets[dir == PF_OUT]++;
1185 		r->bytes[dir == PF_OUT] += pd->tot_len;
1186 	}
1187 
1188 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1189 		pd->flags |= PFDESC_TCP_NORM;
1190 
1191 	flags = th->th_flags;
1192 	if (flags & TH_SYN) {
1193 		/* Illegal packet */
1194 		if (flags & TH_RST)
1195 			goto tcp_drop;
1196 
1197 		if (flags & TH_FIN)
1198 			goto tcp_drop;
1199 	} else {
1200 		/* Illegal packet */
1201 		if (!(flags & (TH_ACK|TH_RST)))
1202 			goto tcp_drop;
1203 	}
1204 
1205 	if (!(flags & TH_ACK)) {
1206 		/* These flags are only valid if ACK is set */
1207 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1208 			goto tcp_drop;
1209 	}
1210 
1211 	/* Check for illegal header length */
1212 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1213 		goto tcp_drop;
1214 
1215 	/* If flags changed, or reserved data set, then adjust */
1216 	if (flags != th->th_flags || th->th_x2 != 0) {
1217 		u_int16_t	ov, nv;
1218 
1219 		ov = *(u_int16_t *)(&th->th_ack + 1);
1220 		th->th_flags = flags;
1221 		th->th_x2 = 0;
1222 		nv = *(u_int16_t *)(&th->th_ack + 1);
1223 
1224 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1225 		rewrite = 1;
1226 	}
1227 
1228 	/* Remove urgent pointer, if TH_URG is not set */
1229 	if (!(flags & TH_URG) && th->th_urp) {
1230 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1231 		    0, 0);
1232 		th->th_urp = 0;
1233 		rewrite = 1;
1234 	}
1235 
1236 	/* Process options */
1237 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1238 		rewrite = 1;
1239 
1240 	/* copy back packet headers if we sanitized */
1241 	if (rewrite)
1242 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1243 
1244 	return (PF_PASS);
1245 
1246  tcp_drop:
1247 	REASON_SET(&reason, PFRES_NORM);
1248 	if (rm != NULL && r->log)
1249 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1250 		    1);
1251 	return (PF_DROP);
1252 }
1253 
1254 int
1255 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1256     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1257 {
1258 	u_int32_t tsval, tsecr;
1259 	u_int8_t hdr[60];
1260 	u_int8_t *opt;
1261 
1262 	KASSERT((src->scrub == NULL),
1263 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1264 
1265 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1266 	if (src->scrub == NULL)
1267 		return (1);
1268 
1269 	switch (pd->af) {
1270 #ifdef INET
1271 	case AF_INET: {
1272 		struct ip *h = mtod(m, struct ip *);
1273 		src->scrub->pfss_ttl = h->ip_ttl;
1274 		break;
1275 	}
1276 #endif /* INET */
1277 #ifdef INET6
1278 	case AF_INET6: {
1279 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1280 		src->scrub->pfss_ttl = h->ip6_hlim;
1281 		break;
1282 	}
1283 #endif /* INET6 */
1284 	}
1285 
1286 
1287 	/*
1288 	 * All normalizations below are only begun if we see the start of
1289 	 * the connections.  They must all set an enabled bit in pfss_flags
1290 	 */
1291 	if ((th->th_flags & TH_SYN) == 0)
1292 		return (0);
1293 
1294 
1295 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1296 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1297 		/* Diddle with TCP options */
1298 		int hlen;
1299 		opt = hdr + sizeof(struct tcphdr);
1300 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1301 		while (hlen >= TCPOLEN_TIMESTAMP) {
1302 			switch (*opt) {
1303 			case TCPOPT_EOL:	/* FALLTHROUGH */
1304 			case TCPOPT_NOP:
1305 				opt++;
1306 				hlen--;
1307 				break;
1308 			case TCPOPT_TIMESTAMP:
1309 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1310 					src->scrub->pfss_flags |=
1311 					    PFSS_TIMESTAMP;
1312 					src->scrub->pfss_ts_mod =
1313 					    htonl(arc4random());
1314 
1315 					/* note PFSS_PAWS not set yet */
1316 					memcpy(&tsval, &opt[2],
1317 					    sizeof(u_int32_t));
1318 					memcpy(&tsecr, &opt[6],
1319 					    sizeof(u_int32_t));
1320 					src->scrub->pfss_tsval0 = ntohl(tsval);
1321 					src->scrub->pfss_tsval = ntohl(tsval);
1322 					src->scrub->pfss_tsecr = ntohl(tsecr);
1323 					getmicrouptime(&src->scrub->pfss_last);
1324 				}
1325 				/* FALLTHROUGH */
1326 			default:
1327 				hlen -= MAX(opt[1], 2);
1328 				opt += MAX(opt[1], 2);
1329 				break;
1330 			}
1331 		}
1332 	}
1333 
1334 	return (0);
1335 }
1336 
1337 void
1338 pf_normalize_tcp_cleanup(struct pf_state *state)
1339 {
1340 	if (state->src.scrub)
1341 		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1342 	if (state->dst.scrub)
1343 		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1344 
1345 	/* Someday... flush the TCP segment reassembly descriptors. */
1346 }
1347 
1348 int
1349 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1350     u_short *reason, struct tcphdr *th, struct pf_state *state,
1351     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1352 {
1353 	struct timeval uptime;
1354 	u_int32_t tsval, tsecr;
1355 	u_int tsval_from_last;
1356 	u_int8_t hdr[60];
1357 	u_int8_t *opt;
1358 	int copyback = 0;
1359 	int got_ts = 0;
1360 
1361 	KASSERT((src->scrub || dst->scrub),
1362 	    ("%s: src->scrub && dst->scrub!", __func__));
1363 
1364 	/*
1365 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1366 	 * technique to evade an intrusion detection system and confuse
1367 	 * firewall state code.
1368 	 */
1369 	switch (pd->af) {
1370 #ifdef INET
1371 	case AF_INET: {
1372 		if (src->scrub) {
1373 			struct ip *h = mtod(m, struct ip *);
1374 			if (h->ip_ttl > src->scrub->pfss_ttl)
1375 				src->scrub->pfss_ttl = h->ip_ttl;
1376 			h->ip_ttl = src->scrub->pfss_ttl;
1377 		}
1378 		break;
1379 	}
1380 #endif /* INET */
1381 #ifdef INET6
1382 	case AF_INET6: {
1383 		if (src->scrub) {
1384 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1385 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1386 				src->scrub->pfss_ttl = h->ip6_hlim;
1387 			h->ip6_hlim = src->scrub->pfss_ttl;
1388 		}
1389 		break;
1390 	}
1391 #endif /* INET6 */
1392 	}
1393 
1394 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1395 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1396 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1397 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1398 		/* Diddle with TCP options */
1399 		int hlen;
1400 		opt = hdr + sizeof(struct tcphdr);
1401 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1402 		while (hlen >= TCPOLEN_TIMESTAMP) {
1403 			switch (*opt) {
1404 			case TCPOPT_EOL:	/* FALLTHROUGH */
1405 			case TCPOPT_NOP:
1406 				opt++;
1407 				hlen--;
1408 				break;
1409 			case TCPOPT_TIMESTAMP:
1410 				/* Modulate the timestamps.  Can be used for
1411 				 * NAT detection, OS uptime determination or
1412 				 * reboot detection.
1413 				 */
1414 
1415 				if (got_ts) {
1416 					/* Huh?  Multiple timestamps!? */
1417 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1418 						DPFPRINTF(("multiple TS??"));
1419 						pf_print_state(state);
1420 						printf("\n");
1421 					}
1422 					REASON_SET(reason, PFRES_TS);
1423 					return (PF_DROP);
1424 				}
1425 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1426 					memcpy(&tsval, &opt[2],
1427 					    sizeof(u_int32_t));
1428 					if (tsval && src->scrub &&
1429 					    (src->scrub->pfss_flags &
1430 					    PFSS_TIMESTAMP)) {
1431 						tsval = ntohl(tsval);
1432 						pf_change_proto_a(m, &opt[2],
1433 						    &th->th_sum,
1434 						    htonl(tsval +
1435 						    src->scrub->pfss_ts_mod),
1436 						    0);
1437 						copyback = 1;
1438 					}
1439 
1440 					/* Modulate TS reply iff valid (!0) */
1441 					memcpy(&tsecr, &opt[6],
1442 					    sizeof(u_int32_t));
1443 					if (tsecr && dst->scrub &&
1444 					    (dst->scrub->pfss_flags &
1445 					    PFSS_TIMESTAMP)) {
1446 						tsecr = ntohl(tsecr)
1447 						    - dst->scrub->pfss_ts_mod;
1448 						pf_change_proto_a(m, &opt[6],
1449 						    &th->th_sum, htonl(tsecr),
1450 						    0);
1451 						copyback = 1;
1452 					}
1453 					got_ts = 1;
1454 				}
1455 				/* FALLTHROUGH */
1456 			default:
1457 				hlen -= MAX(opt[1], 2);
1458 				opt += MAX(opt[1], 2);
1459 				break;
1460 			}
1461 		}
1462 		if (copyback) {
1463 			/* Copyback the options, caller copys back header */
1464 			*writeback = 1;
1465 			m_copyback(m, off + sizeof(struct tcphdr),
1466 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1467 			    sizeof(struct tcphdr));
1468 		}
1469 	}
1470 
1471 
1472 	/*
1473 	 * Must invalidate PAWS checks on connections idle for too long.
1474 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1475 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1476 	 * TS echo check only works for the first 12 days of a connection
1477 	 * when the TS has exhausted half its 32bit space
1478 	 */
1479 #define TS_MAX_IDLE	(24*24*60*60)
1480 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1481 
1482 	getmicrouptime(&uptime);
1483 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1484 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1485 	    time_uptime - state->creation > TS_MAX_CONN))  {
1486 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1487 			DPFPRINTF(("src idled out of PAWS\n"));
1488 			pf_print_state(state);
1489 			printf("\n");
1490 		}
1491 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1492 		    | PFSS_PAWS_IDLED;
1493 	}
1494 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1495 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1496 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1497 			DPFPRINTF(("dst idled out of PAWS\n"));
1498 			pf_print_state(state);
1499 			printf("\n");
1500 		}
1501 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1502 		    | PFSS_PAWS_IDLED;
1503 	}
1504 
1505 	if (got_ts && src->scrub && dst->scrub &&
1506 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1507 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1508 		/* Validate that the timestamps are "in-window".
1509 		 * RFC1323 describes TCP Timestamp options that allow
1510 		 * measurement of RTT (round trip time) and PAWS
1511 		 * (protection against wrapped sequence numbers).  PAWS
1512 		 * gives us a set of rules for rejecting packets on
1513 		 * long fat pipes (packets that were somehow delayed
1514 		 * in transit longer than the time it took to send the
1515 		 * full TCP sequence space of 4Gb).  We can use these
1516 		 * rules and infer a few others that will let us treat
1517 		 * the 32bit timestamp and the 32bit echoed timestamp
1518 		 * as sequence numbers to prevent a blind attacker from
1519 		 * inserting packets into a connection.
1520 		 *
1521 		 * RFC1323 tells us:
1522 		 *  - The timestamp on this packet must be greater than
1523 		 *    or equal to the last value echoed by the other
1524 		 *    endpoint.  The RFC says those will be discarded
1525 		 *    since it is a dup that has already been acked.
1526 		 *    This gives us a lowerbound on the timestamp.
1527 		 *        timestamp >= other last echoed timestamp
1528 		 *  - The timestamp will be less than or equal to
1529 		 *    the last timestamp plus the time between the
1530 		 *    last packet and now.  The RFC defines the max
1531 		 *    clock rate as 1ms.  We will allow clocks to be
1532 		 *    up to 10% fast and will allow a total difference
1533 		 *    or 30 seconds due to a route change.  And this
1534 		 *    gives us an upperbound on the timestamp.
1535 		 *        timestamp <= last timestamp + max ticks
1536 		 *    We have to be careful here.  Windows will send an
1537 		 *    initial timestamp of zero and then initialize it
1538 		 *    to a random value after the 3whs; presumably to
1539 		 *    avoid a DoS by having to call an expensive RNG
1540 		 *    during a SYN flood.  Proof MS has at least one
1541 		 *    good security geek.
1542 		 *
1543 		 *  - The TCP timestamp option must also echo the other
1544 		 *    endpoints timestamp.  The timestamp echoed is the
1545 		 *    one carried on the earliest unacknowledged segment
1546 		 *    on the left edge of the sequence window.  The RFC
1547 		 *    states that the host will reject any echoed
1548 		 *    timestamps that were larger than any ever sent.
1549 		 *    This gives us an upperbound on the TS echo.
1550 		 *        tescr <= largest_tsval
1551 		 *  - The lowerbound on the TS echo is a little more
1552 		 *    tricky to determine.  The other endpoint's echoed
1553 		 *    values will not decrease.  But there may be
1554 		 *    network conditions that re-order packets and
1555 		 *    cause our view of them to decrease.  For now the
1556 		 *    only lowerbound we can safely determine is that
1557 		 *    the TS echo will never be less than the original
1558 		 *    TS.  XXX There is probably a better lowerbound.
1559 		 *    Remove TS_MAX_CONN with better lowerbound check.
1560 		 *        tescr >= other original TS
1561 		 *
1562 		 * It is also important to note that the fastest
1563 		 * timestamp clock of 1ms will wrap its 32bit space in
1564 		 * 24 days.  So we just disable TS checking after 24
1565 		 * days of idle time.  We actually must use a 12d
1566 		 * connection limit until we can come up with a better
1567 		 * lowerbound to the TS echo check.
1568 		 */
1569 		struct timeval delta_ts;
1570 		int ts_fudge;
1571 
1572 
1573 		/*
1574 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1575 		 * a host's timestamp.  This can happen if the previous
1576 		 * packet got delayed in transit for much longer than
1577 		 * this packet.
1578 		 */
1579 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1580 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1581 
1582 		/* Calculate max ticks since the last timestamp */
1583 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1584 #define TS_MICROSECS	1000000		/* microseconds per second */
1585 		delta_ts = uptime;
1586 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1587 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1588 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1589 
1590 		if ((src->state >= TCPS_ESTABLISHED &&
1591 		    dst->state >= TCPS_ESTABLISHED) &&
1592 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1593 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1594 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1595 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1596 			/* Bad RFC1323 implementation or an insertion attack.
1597 			 *
1598 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1599 			 *   after the FIN,FIN|ACK,ACK closing that carries
1600 			 *   an old timestamp.
1601 			 */
1602 
1603 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1604 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1605 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1606 			    tsval_from_last) ? '1' : ' ',
1607 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1608 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1609 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1610 			    "idle: %jus %lums\n",
1611 			    tsval, tsecr, tsval_from_last,
1612 			    (uintmax_t)delta_ts.tv_sec,
1613 			    delta_ts.tv_usec / 1000));
1614 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1615 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1616 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1617 			    "\n", dst->scrub->pfss_tsval,
1618 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1619 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1620 				pf_print_state(state);
1621 				pf_print_flags(th->th_flags);
1622 				printf("\n");
1623 			}
1624 			REASON_SET(reason, PFRES_TS);
1625 			return (PF_DROP);
1626 		}
1627 
1628 		/* XXX I'd really like to require tsecr but it's optional */
1629 
1630 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1631 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1632 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1633 	    src->scrub && dst->scrub &&
1634 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1635 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1636 		/* Didn't send a timestamp.  Timestamps aren't really useful
1637 		 * when:
1638 		 *  - connection opening or closing (often not even sent).
1639 		 *    but we must not let an attacker to put a FIN on a
1640 		 *    data packet to sneak it through our ESTABLISHED check.
1641 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1642 		 *  - on an empty ACK.  The TS will not be echoed so it will
1643 		 *    probably not help keep the RTT calculation in sync and
1644 		 *    there isn't as much danger when the sequence numbers
1645 		 *    got wrapped.  So some stacks don't include TS on empty
1646 		 *    ACKs :-(
1647 		 *
1648 		 * To minimize the disruption to mostly RFC1323 conformant
1649 		 * stacks, we will only require timestamps on data packets.
1650 		 *
1651 		 * And what do ya know, we cannot require timestamps on data
1652 		 * packets.  There appear to be devices that do legitimate
1653 		 * TCP connection hijacking.  There are HTTP devices that allow
1654 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1655 		 * If the intermediate device has the HTTP response cache, it
1656 		 * will spoof the response but not bother timestamping its
1657 		 * packets.  So we can look for the presence of a timestamp in
1658 		 * the first data packet and if there, require it in all future
1659 		 * packets.
1660 		 */
1661 
1662 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1663 			/*
1664 			 * Hey!  Someone tried to sneak a packet in.  Or the
1665 			 * stack changed its RFC1323 behavior?!?!
1666 			 */
1667 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1668 				DPFPRINTF(("Did not receive expected RFC1323 "
1669 				    "timestamp\n"));
1670 				pf_print_state(state);
1671 				pf_print_flags(th->th_flags);
1672 				printf("\n");
1673 			}
1674 			REASON_SET(reason, PFRES_TS);
1675 			return (PF_DROP);
1676 		}
1677 	}
1678 
1679 
1680 	/*
1681 	 * We will note if a host sends his data packets with or without
1682 	 * timestamps.  And require all data packets to contain a timestamp
1683 	 * if the first does.  PAWS implicitly requires that all data packets be
1684 	 * timestamped.  But I think there are middle-man devices that hijack
1685 	 * TCP streams immediately after the 3whs and don't timestamp their
1686 	 * packets (seen in a WWW accelerator or cache).
1687 	 */
1688 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1689 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1690 		if (got_ts)
1691 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1692 		else {
1693 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1694 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1695 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1696 				/* Don't warn if other host rejected RFC1323 */
1697 				DPFPRINTF(("Broken RFC1323 stack did not "
1698 				    "timestamp data packet. Disabled PAWS "
1699 				    "security.\n"));
1700 				pf_print_state(state);
1701 				pf_print_flags(th->th_flags);
1702 				printf("\n");
1703 			}
1704 		}
1705 	}
1706 
1707 
1708 	/*
1709 	 * Update PAWS values
1710 	 */
1711 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1712 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1713 		getmicrouptime(&src->scrub->pfss_last);
1714 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1715 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1716 			src->scrub->pfss_tsval = tsval;
1717 
1718 		if (tsecr) {
1719 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1720 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1721 				src->scrub->pfss_tsecr = tsecr;
1722 
1723 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1724 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1725 			    src->scrub->pfss_tsval0 == 0)) {
1726 				/* tsval0 MUST be the lowest timestamp */
1727 				src->scrub->pfss_tsval0 = tsval;
1728 			}
1729 
1730 			/* Only fully initialized after a TS gets echoed */
1731 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1732 				src->scrub->pfss_flags |= PFSS_PAWS;
1733 		}
1734 	}
1735 
1736 	/* I have a dream....  TCP segment reassembly.... */
1737 	return (0);
1738 }
1739 
1740 static int
1741 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1742     int off, sa_family_t af)
1743 {
1744 	u_int16_t	*mss;
1745 	int		 thoff;
1746 	int		 opt, cnt, optlen = 0;
1747 	int		 rewrite = 0;
1748 	u_char		 opts[TCP_MAXOLEN];
1749 	u_char		*optp = opts;
1750 
1751 	thoff = th->th_off << 2;
1752 	cnt = thoff - sizeof(struct tcphdr);
1753 
1754 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1755 	    NULL, NULL, af))
1756 		return (rewrite);
1757 
1758 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1759 		opt = optp[0];
1760 		if (opt == TCPOPT_EOL)
1761 			break;
1762 		if (opt == TCPOPT_NOP)
1763 			optlen = 1;
1764 		else {
1765 			if (cnt < 2)
1766 				break;
1767 			optlen = optp[1];
1768 			if (optlen < 2 || optlen > cnt)
1769 				break;
1770 		}
1771 		switch (opt) {
1772 		case TCPOPT_MAXSEG:
1773 			mss = (u_int16_t *)(optp + 2);
1774 			if ((ntohs(*mss)) > r->max_mss) {
1775 				th->th_sum = pf_proto_cksum_fixup(m,
1776 				    th->th_sum, *mss, htons(r->max_mss), 0);
1777 				*mss = htons(r->max_mss);
1778 				rewrite = 1;
1779 			}
1780 			break;
1781 		default:
1782 			break;
1783 		}
1784 	}
1785 
1786 	if (rewrite)
1787 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1788 
1789 	return (rewrite);
1790 }
1791 
1792 #ifdef INET
1793 static void
1794 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1795 {
1796 	struct mbuf		*m = *m0;
1797 	struct ip		*h = mtod(m, struct ip *);
1798 
1799 	/* Clear IP_DF if no-df was requested */
1800 	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1801 		u_int16_t ip_off = h->ip_off;
1802 
1803 		h->ip_off &= htons(~IP_DF);
1804 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1805 	}
1806 
1807 	/* Enforce a minimum ttl, may cause endless packet loops */
1808 	if (min_ttl && h->ip_ttl < min_ttl) {
1809 		u_int16_t ip_ttl = h->ip_ttl;
1810 
1811 		h->ip_ttl = min_ttl;
1812 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1813 	}
1814 
1815 	/* Enforce tos */
1816 	if (flags & PFRULE_SET_TOS) {
1817 		u_int16_t	ov, nv;
1818 
1819 		ov = *(u_int16_t *)h;
1820 		h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
1821 		nv = *(u_int16_t *)h;
1822 
1823 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1824 	}
1825 
1826 	/* random-id, but not for fragments */
1827 	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1828 		uint16_t ip_id = h->ip_id;
1829 
1830 		ip_fillid(h);
1831 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1832 	}
1833 }
1834 #endif /* INET */
1835 
1836 #ifdef INET6
1837 static void
1838 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1839 {
1840 	struct mbuf		*m = *m0;
1841 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1842 
1843 	/* Enforce a minimum ttl, may cause endless packet loops */
1844 	if (min_ttl && h->ip6_hlim < min_ttl)
1845 		h->ip6_hlim = min_ttl;
1846 }
1847 #endif
1848