xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_pf.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/refcount.h>
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/vnet.h>
48 #include <net/pfvar.h>
49 #include <net/if_pflog.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet6/ip6_var.h>
55 #include <netinet/tcp.h>
56 #include <netinet/tcp_fsm.h>
57 #include <netinet/tcp_seq.h>
58 
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif /* INET6 */
62 
63 struct pf_frent {
64 	TAILQ_ENTRY(pf_frent)	fr_next;
65 	struct mbuf	*fe_m;
66 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
67 					   ipv6, extension, fragment header */
68 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
69 	uint16_t	fe_len;		/* fragment length */
70 	uint16_t	fe_off;		/* fragment offset */
71 	uint16_t	fe_mff;		/* more fragment flag */
72 };
73 
74 struct pf_fragment_cmp {
75 	struct pf_addr	frc_src;
76 	struct pf_addr	frc_dst;
77 	uint32_t	frc_id;
78 	sa_family_t	frc_af;
79 	uint8_t		frc_proto;
80 };
81 
82 struct pf_fragment {
83 	struct pf_fragment_cmp	fr_key;
84 #define fr_src	fr_key.frc_src
85 #define fr_dst	fr_key.frc_dst
86 #define fr_id	fr_key.frc_id
87 #define fr_af	fr_key.frc_af
88 #define fr_proto	fr_key.frc_proto
89 
90 	RB_ENTRY(pf_fragment) fr_entry;
91 	TAILQ_ENTRY(pf_fragment) frag_next;
92 	uint32_t	fr_timeout;
93 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
94 	uint16_t	fr_entries;	/* Total number of pf_fragment entries */
95 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
96 };
97 #define PF_MAX_FRENT_PER_FRAGMENT	64
98 
99 struct pf_fragment_tag {
100 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
101 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
102 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
103 	uint32_t	ft_id;		/* fragment id */
104 };
105 
106 static struct mtx pf_frag_mtx;
107 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
108 #define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
109 #define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
110 #define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
111 
112 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
113 
114 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
115 #define	V_pf_frent_z	VNET(pf_frent_z)
116 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
117 #define	V_pf_frag_z	VNET(pf_frag_z)
118 
119 TAILQ_HEAD(pf_fragqueue, pf_fragment);
120 TAILQ_HEAD(pf_cachequeue, pf_fragment);
121 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
122 #define	V_pf_fragqueue			VNET(pf_fragqueue)
123 RB_HEAD(pf_frag_tree, pf_fragment);
124 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
125 #define	V_pf_frag_tree			VNET(pf_frag_tree)
126 static int		 pf_frag_compare(struct pf_fragment *,
127 			    struct pf_fragment *);
128 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
129 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
130 
131 static void	pf_flush_fragments(void);
132 static void	pf_free_fragment(struct pf_fragment *);
133 static void	pf_remove_fragment(struct pf_fragment *);
134 static int	pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
135 		    struct tcphdr *, int, sa_family_t);
136 static struct pf_frent *pf_create_fragment(u_short *);
137 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
138 		    struct pf_frag_tree *tree);
139 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
140 		    struct pf_frent *, u_short *);
141 static int	pf_isfull_fragment(struct pf_fragment *);
142 static struct mbuf *pf_join_fragment(struct pf_fragment *);
143 #ifdef INET
144 static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
145 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
146 #endif	/* INET */
147 #ifdef INET6
148 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
149 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
150 static void	pf_scrub_ip6(struct mbuf **, uint8_t);
151 #endif	/* INET6 */
152 
153 #define	DPFPRINTF(x) do {				\
154 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
155 		printf("%s: ", __func__);		\
156 		printf x ;				\
157 	}						\
158 } while(0)
159 
160 #ifdef INET
161 static void
162 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
163 {
164 
165 	key->frc_src.v4 = ip->ip_src;
166 	key->frc_dst.v4 = ip->ip_dst;
167 	key->frc_af = AF_INET;
168 	key->frc_proto = ip->ip_p;
169 	key->frc_id = ip->ip_id;
170 }
171 #endif	/* INET */
172 
173 void
174 pf_normalize_init(void)
175 {
176 
177 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
178 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
179 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
180 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
181 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
182 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
183 	    UMA_ALIGN_PTR, 0);
184 
185 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
186 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
187 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
188 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
189 
190 	TAILQ_INIT(&V_pf_fragqueue);
191 }
192 
193 void
194 pf_normalize_cleanup(void)
195 {
196 
197 	uma_zdestroy(V_pf_state_scrub_z);
198 	uma_zdestroy(V_pf_frent_z);
199 	uma_zdestroy(V_pf_frag_z);
200 }
201 
202 static int
203 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
204 {
205 	int	diff;
206 
207 	if ((diff = a->fr_id - b->fr_id) != 0)
208 		return (diff);
209 	if ((diff = a->fr_proto - b->fr_proto) != 0)
210 		return (diff);
211 	if ((diff = a->fr_af - b->fr_af) != 0)
212 		return (diff);
213 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
214 		return (diff);
215 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
216 		return (diff);
217 	return (0);
218 }
219 
220 void
221 pf_purge_expired_fragments(void)
222 {
223 	u_int32_t	expire = time_uptime -
224 			    V_pf_default_rule.timeout[PFTM_FRAG];
225 
226 	pf_purge_fragments(expire);
227 }
228 
229 void
230 pf_purge_fragments(uint32_t expire)
231 {
232 	struct pf_fragment	*frag;
233 
234 	PF_FRAG_LOCK();
235 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
236 		if (frag->fr_timeout > expire)
237 			break;
238 
239 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
240 		pf_free_fragment(frag);
241 	}
242 
243 	PF_FRAG_UNLOCK();
244 }
245 
246 /*
247  * Try to flush old fragments to make space for new ones
248  */
249 static void
250 pf_flush_fragments(void)
251 {
252 	struct pf_fragment	*frag;
253 	int			 goal;
254 
255 	PF_FRAG_ASSERT();
256 
257 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
258 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
259 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
260 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
261 		if (frag)
262 			pf_free_fragment(frag);
263 		else
264 			break;
265 	}
266 }
267 
268 /* Frees the fragments and all associated entries */
269 static void
270 pf_free_fragment(struct pf_fragment *frag)
271 {
272 	struct pf_frent		*frent;
273 
274 	PF_FRAG_ASSERT();
275 
276 	/* Free all fragments */
277 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
278 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
279 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
280 
281 		m_freem(frent->fe_m);
282 		uma_zfree(V_pf_frent_z, frent);
283 	}
284 
285 	pf_remove_fragment(frag);
286 }
287 
288 static struct pf_fragment *
289 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
290 {
291 	struct pf_fragment	*frag;
292 
293 	PF_FRAG_ASSERT();
294 
295 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
296 	if (frag != NULL) {
297 		/* XXX Are we sure we want to update the timeout? */
298 		frag->fr_timeout = time_uptime;
299 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
300 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
301 	}
302 
303 	return (frag);
304 }
305 
306 /* Removes a fragment from the fragment queue and frees the fragment */
307 static void
308 pf_remove_fragment(struct pf_fragment *frag)
309 {
310 
311 	PF_FRAG_ASSERT();
312 
313 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
314 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
315 	uma_zfree(V_pf_frag_z, frag);
316 }
317 
318 static struct pf_frent *
319 pf_create_fragment(u_short *reason)
320 {
321 	struct pf_frent *frent;
322 
323 	PF_FRAG_ASSERT();
324 
325 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
326 	if (frent == NULL) {
327 		pf_flush_fragments();
328 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
329 		if (frent == NULL) {
330 			REASON_SET(reason, PFRES_MEMORY);
331 			return (NULL);
332 		}
333 	}
334 
335 	return (frent);
336 }
337 
338 static struct pf_fragment *
339 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
340 		u_short *reason)
341 {
342 	struct pf_frent		*after, *next, *prev;
343 	struct pf_fragment	*frag;
344 	uint16_t		total;
345 
346 	PF_FRAG_ASSERT();
347 
348 	/* No empty fragments. */
349 	if (frent->fe_len == 0) {
350 		DPFPRINTF(("bad fragment: len 0"));
351 		goto bad_fragment;
352 	}
353 
354 	/* All fragments are 8 byte aligned. */
355 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
356 		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
357 		goto bad_fragment;
358 	}
359 
360 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
361 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
362 		DPFPRINTF(("bad fragment: max packet %d",
363 		    frent->fe_off + frent->fe_len));
364 		goto bad_fragment;
365 	}
366 
367 	DPFPRINTF((key->frc_af == AF_INET ?
368 	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
369 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
370 
371 	/* Fully buffer all of the fragments in this fragment queue. */
372 	frag = pf_find_fragment(key, &V_pf_frag_tree);
373 
374 	/* Create a new reassembly queue for this packet. */
375 	if (frag == NULL) {
376 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
377 		if (frag == NULL) {
378 			pf_flush_fragments();
379 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
380 			if (frag == NULL) {
381 				REASON_SET(reason, PFRES_MEMORY);
382 				goto drop_fragment;
383 			}
384 		}
385 
386 		*(struct pf_fragment_cmp *)frag = *key;
387 		frag->fr_timeout = time_uptime;
388 		frag->fr_maxlen = frent->fe_len;
389 		frag->fr_entries = 0;
390 		TAILQ_INIT(&frag->fr_queue);
391 
392 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
393 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
394 
395 		/* We do not have a previous fragment. */
396 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
397 
398 		return (frag);
399 	}
400 
401 	if (frag->fr_entries >= PF_MAX_FRENT_PER_FRAGMENT)
402 		goto bad_fragment;
403 
404 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
405 
406 	/* Remember maximum fragment len for refragmentation. */
407 	if (frent->fe_len > frag->fr_maxlen)
408 		frag->fr_maxlen = frent->fe_len;
409 
410 	/* Maximum data we have seen already. */
411 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
412 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
413 
414 	/* Non terminal fragments must have more fragments flag. */
415 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
416 		goto bad_fragment;
417 
418 	/* Check if we saw the last fragment already. */
419 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
420 		if (frent->fe_off + frent->fe_len > total ||
421 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
422 			goto bad_fragment;
423 	} else {
424 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
425 			goto bad_fragment;
426 	}
427 
428 	/* Find a fragment after the current one. */
429 	prev = NULL;
430 	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
431 		if (after->fe_off > frent->fe_off)
432 			break;
433 		prev = after;
434 	}
435 
436 	KASSERT(prev != NULL || after != NULL,
437 	    ("prev != NULL || after != NULL"));
438 
439 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
440 		uint16_t precut;
441 
442 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
443 		if (precut >= frent->fe_len)
444 			goto bad_fragment;
445 		DPFPRINTF(("overlap -%d", precut));
446 		m_adj(frent->fe_m, precut);
447 		frent->fe_off += precut;
448 		frent->fe_len -= precut;
449 	}
450 
451 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
452 	    after = next) {
453 		uint16_t aftercut;
454 
455 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
456 		DPFPRINTF(("adjust overlap %d", aftercut));
457 		if (aftercut < after->fe_len) {
458 			m_adj(after->fe_m, aftercut);
459 			after->fe_off += aftercut;
460 			after->fe_len -= aftercut;
461 			break;
462 		}
463 
464 		/* This fragment is completely overlapped, lose it. */
465 		next = TAILQ_NEXT(after, fr_next);
466 		m_freem(after->fe_m);
467 		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
468 		uma_zfree(V_pf_frent_z, after);
469 	}
470 
471 	if (prev == NULL)
472 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
473 	else
474 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
475 
476 	frag->fr_entries++;
477 
478 	return (frag);
479 
480 bad_fragment:
481 	REASON_SET(reason, PFRES_FRAG);
482 drop_fragment:
483 	uma_zfree(V_pf_frent_z, frent);
484 	return (NULL);
485 }
486 
487 static int
488 pf_isfull_fragment(struct pf_fragment *frag)
489 {
490 	struct pf_frent	*frent, *next;
491 	uint16_t off, total;
492 
493 	/* Check if we are completely reassembled */
494 	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
495 		return (0);
496 
497 	/* Maximum data we have seen already */
498 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
499 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
500 
501 	/* Check if we have all the data */
502 	off = 0;
503 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
504 		next = TAILQ_NEXT(frent, fr_next);
505 
506 		off += frent->fe_len;
507 		if (off < total && (next == NULL || next->fe_off != off)) {
508 			DPFPRINTF(("missing fragment at %d, next %d, total %d",
509 			    off, next == NULL ? -1 : next->fe_off, total));
510 			return (0);
511 		}
512 	}
513 	DPFPRINTF(("%d < %d?", off, total));
514 	if (off < total)
515 		return (0);
516 	KASSERT(off == total, ("off == total"));
517 
518 	return (1);
519 }
520 
521 static struct mbuf *
522 pf_join_fragment(struct pf_fragment *frag)
523 {
524 	struct mbuf *m, *m2;
525 	struct pf_frent	*frent, *next;
526 
527 	frent = TAILQ_FIRST(&frag->fr_queue);
528 	next = TAILQ_NEXT(frent, fr_next);
529 
530 	m = frent->fe_m;
531 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
532 	uma_zfree(V_pf_frent_z, frent);
533 	for (frent = next; frent != NULL; frent = next) {
534 		next = TAILQ_NEXT(frent, fr_next);
535 
536 		m2 = frent->fe_m;
537 		/* Strip off ip header. */
538 		m_adj(m2, frent->fe_hdrlen);
539 		/* Strip off any trailing bytes. */
540 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
541 
542 		uma_zfree(V_pf_frent_z, frent);
543 		m_cat(m, m2);
544 	}
545 
546 	/* Remove from fragment queue. */
547 	pf_remove_fragment(frag);
548 
549 	return (m);
550 }
551 
552 #ifdef INET
553 static int
554 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
555 {
556 	struct mbuf		*m = *m0;
557 	struct pf_frent		*frent;
558 	struct pf_fragment	*frag;
559 	struct pf_fragment_cmp	key;
560 	uint16_t		total, hdrlen;
561 
562 	/* Get an entry for the fragment queue */
563 	if ((frent = pf_create_fragment(reason)) == NULL)
564 		return (PF_DROP);
565 
566 	frent->fe_m = m;
567 	frent->fe_hdrlen = ip->ip_hl << 2;
568 	frent->fe_extoff = 0;
569 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
570 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
571 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
572 
573 	pf_ip2key(ip, dir, &key);
574 
575 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
576 		return (PF_DROP);
577 
578 	/* The mbuf is part of the fragment entry, no direct free or access */
579 	m = *m0 = NULL;
580 
581 	if (!pf_isfull_fragment(frag))
582 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
583 
584 	/* We have all the data */
585 	frent = TAILQ_FIRST(&frag->fr_queue);
586 	KASSERT(frent != NULL, ("frent != NULL"));
587 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
588 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
589 	hdrlen = frent->fe_hdrlen;
590 
591 	m = *m0 = pf_join_fragment(frag);
592 	frag = NULL;
593 
594 	if (m->m_flags & M_PKTHDR) {
595 		int plen = 0;
596 		for (m = *m0; m; m = m->m_next)
597 			plen += m->m_len;
598 		m = *m0;
599 		m->m_pkthdr.len = plen;
600 	}
601 
602 	ip = mtod(m, struct ip *);
603 	ip->ip_len = htons(hdrlen + total);
604 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
605 
606 	if (hdrlen + total > IP_MAXPACKET) {
607 		DPFPRINTF(("drop: too big: %d", total));
608 		ip->ip_len = 0;
609 		REASON_SET(reason, PFRES_SHORT);
610 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
611 		return (PF_DROP);
612 	}
613 
614 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
615 	return (PF_PASS);
616 }
617 #endif	/* INET */
618 
619 #ifdef INET6
620 static int
621 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
622     uint16_t hdrlen, uint16_t extoff, u_short *reason)
623 {
624 	struct mbuf		*m = *m0;
625 	struct pf_frent		*frent;
626 	struct pf_fragment	*frag;
627 	struct pf_fragment_cmp	 key;
628 	struct m_tag		*mtag;
629 	struct pf_fragment_tag	*ftag;
630 	int			 off;
631 	uint32_t		 frag_id;
632 	uint16_t		 total, maxlen;
633 	uint8_t			 proto;
634 
635 	PF_FRAG_LOCK();
636 
637 	/* Get an entry for the fragment queue. */
638 	if ((frent = pf_create_fragment(reason)) == NULL) {
639 		PF_FRAG_UNLOCK();
640 		return (PF_DROP);
641 	}
642 
643 	frent->fe_m = m;
644 	frent->fe_hdrlen = hdrlen;
645 	frent->fe_extoff = extoff;
646 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
647 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
648 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
649 
650 	key.frc_src.v6 = ip6->ip6_src;
651 	key.frc_dst.v6 = ip6->ip6_dst;
652 	key.frc_af = AF_INET6;
653 	/* Only the first fragment's protocol is relevant. */
654 	key.frc_proto = 0;
655 	key.frc_id = fraghdr->ip6f_ident;
656 
657 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
658 		PF_FRAG_UNLOCK();
659 		return (PF_DROP);
660 	}
661 
662 	/* The mbuf is part of the fragment entry, no direct free or access. */
663 	m = *m0 = NULL;
664 
665 	if (!pf_isfull_fragment(frag)) {
666 		PF_FRAG_UNLOCK();
667 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
668 	}
669 
670 	/* We have all the data. */
671 	extoff = frent->fe_extoff;
672 	maxlen = frag->fr_maxlen;
673 	frag_id = frag->fr_id;
674 	frent = TAILQ_FIRST(&frag->fr_queue);
675 	KASSERT(frent != NULL, ("frent != NULL"));
676 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
677 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
678 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
679 
680 	m = *m0 = pf_join_fragment(frag);
681 	frag = NULL;
682 
683 	PF_FRAG_UNLOCK();
684 
685 	/* Take protocol from first fragment header. */
686 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
687 	KASSERT(m, ("%s: short mbuf chain", __func__));
688 	proto = *(mtod(m, caddr_t) + off);
689 	m = *m0;
690 
691 	/* Delete frag6 header */
692 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
693 		goto fail;
694 
695 	if (m->m_flags & M_PKTHDR) {
696 		int plen = 0;
697 		for (m = *m0; m; m = m->m_next)
698 			plen += m->m_len;
699 		m = *m0;
700 		m->m_pkthdr.len = plen;
701 	}
702 
703 	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
704 	    M_NOWAIT)) == NULL)
705 		goto fail;
706 	ftag = (struct pf_fragment_tag *)(mtag + 1);
707 	ftag->ft_hdrlen = hdrlen;
708 	ftag->ft_extoff = extoff;
709 	ftag->ft_maxlen = maxlen;
710 	ftag->ft_id = frag_id;
711 	m_tag_prepend(m, mtag);
712 
713 	ip6 = mtod(m, struct ip6_hdr *);
714 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
715 	if (extoff) {
716 		/* Write protocol into next field of last extension header. */
717 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
718 		    &off);
719 		KASSERT(m, ("%s: short mbuf chain", __func__));
720 		*(mtod(m, char *) + off) = proto;
721 		m = *m0;
722 	} else
723 		ip6->ip6_nxt = proto;
724 
725 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
726 		DPFPRINTF(("drop: too big: %d", total));
727 		ip6->ip6_plen = 0;
728 		REASON_SET(reason, PFRES_SHORT);
729 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
730 		return (PF_DROP);
731 	}
732 
733 	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
734 	return (PF_PASS);
735 
736 fail:
737 	REASON_SET(reason, PFRES_MEMORY);
738 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
739 	return (PF_DROP);
740 }
741 #endif	/* INET6 */
742 
743 #ifdef INET6
744 int
745 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
746 {
747 	struct mbuf		*m = *m0, *t;
748 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
749 	struct pf_pdesc		 pd;
750 	uint32_t		 frag_id;
751 	uint16_t		 hdrlen, extoff, maxlen;
752 	uint8_t			 proto;
753 	int			 error, action;
754 
755 	hdrlen = ftag->ft_hdrlen;
756 	extoff = ftag->ft_extoff;
757 	maxlen = ftag->ft_maxlen;
758 	frag_id = ftag->ft_id;
759 	m_tag_delete(m, mtag);
760 	mtag = NULL;
761 	ftag = NULL;
762 
763 	if (extoff) {
764 		int off;
765 
766 		/* Use protocol from next field of last extension header */
767 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
768 		    &off);
769 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
770 		proto = *(mtod(m, caddr_t) + off);
771 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
772 		m = *m0;
773 	} else {
774 		struct ip6_hdr *hdr;
775 
776 		hdr = mtod(m, struct ip6_hdr *);
777 		proto = hdr->ip6_nxt;
778 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
779 	}
780 
781 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
782 	 * fragmentation wrong. */
783 	maxlen = maxlen & ~7;
784 
785 	/*
786 	 * Maxlen may be less than 8 if there was only a single
787 	 * fragment.  As it was fragmented before, add a fragment
788 	 * header also for a single fragment.  If total or maxlen
789 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
790 	 * we drop the packet.
791 	 */
792 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
793 	m = (*m0)->m_nextpkt;
794 	(*m0)->m_nextpkt = NULL;
795 	if (error == 0) {
796 		/* The first mbuf contains the unfragmented packet. */
797 		m_freem(*m0);
798 		*m0 = NULL;
799 		action = PF_PASS;
800 	} else {
801 		/* Drop expects an mbuf to free. */
802 		DPFPRINTF(("refragment error %d", error));
803 		action = PF_DROP;
804 	}
805 	for (t = m; m; m = t) {
806 		t = m->m_nextpkt;
807 		m->m_nextpkt = NULL;
808 		m->m_flags |= M_SKIP_FIREWALL;
809 		memset(&pd, 0, sizeof(pd));
810 		pd.pf_mtag = pf_find_mtag(m);
811 		if (error == 0)
812 			ip6_forward(m, 0);
813 		else
814 			m_freem(m);
815 	}
816 
817 	return (action);
818 }
819 #endif /* INET6 */
820 
821 #ifdef INET
822 int
823 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
824     struct pf_pdesc *pd)
825 {
826 	struct mbuf		*m = *m0;
827 	struct pf_rule		*r;
828 	struct ip		*h = mtod(m, struct ip *);
829 	int			 mff = (ntohs(h->ip_off) & IP_MF);
830 	int			 hlen = h->ip_hl << 2;
831 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
832 	u_int16_t		 max;
833 	int			 ip_len;
834 	int			 ip_off;
835 	int			 tag = -1;
836 	int			 verdict;
837 
838 	PF_RULES_RASSERT();
839 
840 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
841 	while (r != NULL) {
842 		r->evaluations++;
843 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
844 			r = r->skip[PF_SKIP_IFP].ptr;
845 		else if (r->direction && r->direction != dir)
846 			r = r->skip[PF_SKIP_DIR].ptr;
847 		else if (r->af && r->af != AF_INET)
848 			r = r->skip[PF_SKIP_AF].ptr;
849 		else if (r->proto && r->proto != h->ip_p)
850 			r = r->skip[PF_SKIP_PROTO].ptr;
851 		else if (PF_MISMATCHAW(&r->src.addr,
852 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
853 		    r->src.neg, kif, M_GETFIB(m)))
854 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
855 		else if (PF_MISMATCHAW(&r->dst.addr,
856 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
857 		    r->dst.neg, NULL, M_GETFIB(m)))
858 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
859 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
860 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
861 			r = TAILQ_NEXT(r, entries);
862 		else
863 			break;
864 	}
865 
866 	if (r == NULL || r->action == PF_NOSCRUB)
867 		return (PF_PASS);
868 	else {
869 		r->packets[dir == PF_OUT]++;
870 		r->bytes[dir == PF_OUT] += pd->tot_len;
871 	}
872 
873 	/* Check for illegal packets */
874 	if (hlen < (int)sizeof(struct ip)) {
875 		REASON_SET(reason, PFRES_NORM);
876 		goto drop;
877 	}
878 
879 	if (hlen > ntohs(h->ip_len)) {
880 		REASON_SET(reason, PFRES_NORM);
881 		goto drop;
882 	}
883 
884 	/* Clear IP_DF if the rule uses the no-df option */
885 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
886 		u_int16_t ip_off = h->ip_off;
887 
888 		h->ip_off &= htons(~IP_DF);
889 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
890 	}
891 
892 	/* We will need other tests here */
893 	if (!fragoff && !mff)
894 		goto no_fragment;
895 
896 	/* We're dealing with a fragment now. Don't allow fragments
897 	 * with IP_DF to enter the cache. If the flag was cleared by
898 	 * no-df above, fine. Otherwise drop it.
899 	 */
900 	if (h->ip_off & htons(IP_DF)) {
901 		DPFPRINTF(("IP_DF\n"));
902 		goto bad;
903 	}
904 
905 	ip_len = ntohs(h->ip_len) - hlen;
906 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
907 
908 	/* All fragments are 8 byte aligned */
909 	if (mff && (ip_len & 0x7)) {
910 		DPFPRINTF(("mff and %d\n", ip_len));
911 		goto bad;
912 	}
913 
914 	/* Respect maximum length */
915 	if (fragoff + ip_len > IP_MAXPACKET) {
916 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
917 		goto bad;
918 	}
919 	max = fragoff + ip_len;
920 
921 	/* Fully buffer all of the fragments
922 	 * Might return a completely reassembled mbuf, or NULL */
923 	PF_FRAG_LOCK();
924 	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
925 	verdict = pf_reassemble(m0, h, dir, reason);
926 	PF_FRAG_UNLOCK();
927 
928 	if (verdict != PF_PASS)
929 		return (PF_DROP);
930 
931 	m = *m0;
932 	if (m == NULL)
933 		return (PF_DROP);
934 
935 	h = mtod(m, struct ip *);
936 
937  no_fragment:
938 	/* At this point, only IP_DF is allowed in ip_off */
939 	if (h->ip_off & ~htons(IP_DF)) {
940 		u_int16_t ip_off = h->ip_off;
941 
942 		h->ip_off &= htons(IP_DF);
943 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
944 	}
945 
946 	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
947 
948 	return (PF_PASS);
949 
950  bad:
951 	DPFPRINTF(("dropping bad fragment\n"));
952 	REASON_SET(reason, PFRES_FRAG);
953  drop:
954 	if (r != NULL && r->log)
955 		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
956 		    1);
957 
958 	return (PF_DROP);
959 }
960 #endif
961 
962 #ifdef INET6
963 int
964 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
965     u_short *reason, struct pf_pdesc *pd)
966 {
967 	struct mbuf		*m = *m0;
968 	struct pf_rule		*r;
969 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
970 	int			 extoff;
971 	int			 off;
972 	struct ip6_ext		 ext;
973 	struct ip6_opt		 opt;
974 	struct ip6_opt_jumbo	 jumbo;
975 	struct ip6_frag		 frag;
976 	u_int32_t		 jumbolen = 0, plen;
977 	int			 optend;
978 	int			 ooff;
979 	u_int8_t		 proto;
980 	int			 terminal;
981 
982 	PF_RULES_RASSERT();
983 
984 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
985 	while (r != NULL) {
986 		r->evaluations++;
987 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
988 			r = r->skip[PF_SKIP_IFP].ptr;
989 		else if (r->direction && r->direction != dir)
990 			r = r->skip[PF_SKIP_DIR].ptr;
991 		else if (r->af && r->af != AF_INET6)
992 			r = r->skip[PF_SKIP_AF].ptr;
993 #if 0 /* header chain! */
994 		else if (r->proto && r->proto != h->ip6_nxt)
995 			r = r->skip[PF_SKIP_PROTO].ptr;
996 #endif
997 		else if (PF_MISMATCHAW(&r->src.addr,
998 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
999 		    r->src.neg, kif, M_GETFIB(m)))
1000 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1001 		else if (PF_MISMATCHAW(&r->dst.addr,
1002 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1003 		    r->dst.neg, NULL, M_GETFIB(m)))
1004 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1005 		else
1006 			break;
1007 	}
1008 
1009 	if (r == NULL || r->action == PF_NOSCRUB)
1010 		return (PF_PASS);
1011 	else {
1012 		r->packets[dir == PF_OUT]++;
1013 		r->bytes[dir == PF_OUT] += pd->tot_len;
1014 	}
1015 
1016 	/* Check for illegal packets */
1017 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1018 		goto drop;
1019 
1020 	extoff = 0;
1021 	off = sizeof(struct ip6_hdr);
1022 	proto = h->ip6_nxt;
1023 	terminal = 0;
1024 	do {
1025 		switch (proto) {
1026 		case IPPROTO_FRAGMENT:
1027 			goto fragment;
1028 			break;
1029 		case IPPROTO_AH:
1030 		case IPPROTO_ROUTING:
1031 		case IPPROTO_DSTOPTS:
1032 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1033 			    NULL, AF_INET6))
1034 				goto shortpkt;
1035 			extoff = off;
1036 			if (proto == IPPROTO_AH)
1037 				off += (ext.ip6e_len + 2) * 4;
1038 			else
1039 				off += (ext.ip6e_len + 1) * 8;
1040 			proto = ext.ip6e_nxt;
1041 			break;
1042 		case IPPROTO_HOPOPTS:
1043 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1044 			    NULL, AF_INET6))
1045 				goto shortpkt;
1046 			extoff = off;
1047 			optend = off + (ext.ip6e_len + 1) * 8;
1048 			ooff = off + sizeof(ext);
1049 			do {
1050 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1051 				    sizeof(opt.ip6o_type), NULL, NULL,
1052 				    AF_INET6))
1053 					goto shortpkt;
1054 				if (opt.ip6o_type == IP6OPT_PAD1) {
1055 					ooff++;
1056 					continue;
1057 				}
1058 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1059 				    NULL, NULL, AF_INET6))
1060 					goto shortpkt;
1061 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1062 					goto drop;
1063 				switch (opt.ip6o_type) {
1064 				case IP6OPT_JUMBO:
1065 					if (h->ip6_plen != 0)
1066 						goto drop;
1067 					if (!pf_pull_hdr(m, ooff, &jumbo,
1068 					    sizeof(jumbo), NULL, NULL,
1069 					    AF_INET6))
1070 						goto shortpkt;
1071 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1072 					    sizeof(jumbolen));
1073 					jumbolen = ntohl(jumbolen);
1074 					if (jumbolen <= IPV6_MAXPACKET)
1075 						goto drop;
1076 					if (sizeof(struct ip6_hdr) + jumbolen !=
1077 					    m->m_pkthdr.len)
1078 						goto drop;
1079 					break;
1080 				default:
1081 					break;
1082 				}
1083 				ooff += sizeof(opt) + opt.ip6o_len;
1084 			} while (ooff < optend);
1085 
1086 			off = optend;
1087 			proto = ext.ip6e_nxt;
1088 			break;
1089 		default:
1090 			terminal = 1;
1091 			break;
1092 		}
1093 	} while (!terminal);
1094 
1095 	/* jumbo payload option must be present, or plen > 0 */
1096 	if (ntohs(h->ip6_plen) == 0)
1097 		plen = jumbolen;
1098 	else
1099 		plen = ntohs(h->ip6_plen);
1100 	if (plen == 0)
1101 		goto drop;
1102 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1103 		goto shortpkt;
1104 
1105 	pf_scrub_ip6(&m, r->min_ttl);
1106 
1107 	return (PF_PASS);
1108 
1109  fragment:
1110 	/* Jumbo payload packets cannot be fragmented. */
1111 	plen = ntohs(h->ip6_plen);
1112 	if (plen == 0 || jumbolen)
1113 		goto drop;
1114 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1115 		goto shortpkt;
1116 
1117 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1118 		goto shortpkt;
1119 
1120 	/* Offset now points to data portion. */
1121 	off += sizeof(frag);
1122 
1123 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1124 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1125 		return (PF_DROP);
1126 	m = *m0;
1127 	if (m == NULL)
1128 		return (PF_DROP);
1129 
1130 	pd->flags |= PFDESC_IP_REAS;
1131 	return (PF_PASS);
1132 
1133  shortpkt:
1134 	REASON_SET(reason, PFRES_SHORT);
1135 	if (r != NULL && r->log)
1136 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1137 		    1);
1138 	return (PF_DROP);
1139 
1140  drop:
1141 	REASON_SET(reason, PFRES_NORM);
1142 	if (r != NULL && r->log)
1143 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1144 		    1);
1145 	return (PF_DROP);
1146 }
1147 #endif /* INET6 */
1148 
1149 int
1150 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1151     int off, void *h, struct pf_pdesc *pd)
1152 {
1153 	struct pf_rule	*r, *rm = NULL;
1154 	struct tcphdr	*th = pd->hdr.tcp;
1155 	int		 rewrite = 0;
1156 	u_short		 reason;
1157 	u_int8_t	 flags;
1158 	sa_family_t	 af = pd->af;
1159 
1160 	PF_RULES_RASSERT();
1161 
1162 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1163 	while (r != NULL) {
1164 		r->evaluations++;
1165 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1166 			r = r->skip[PF_SKIP_IFP].ptr;
1167 		else if (r->direction && r->direction != dir)
1168 			r = r->skip[PF_SKIP_DIR].ptr;
1169 		else if (r->af && r->af != af)
1170 			r = r->skip[PF_SKIP_AF].ptr;
1171 		else if (r->proto && r->proto != pd->proto)
1172 			r = r->skip[PF_SKIP_PROTO].ptr;
1173 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1174 		    r->src.neg, kif, M_GETFIB(m)))
1175 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1176 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1177 			    r->src.port[0], r->src.port[1], th->th_sport))
1178 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1179 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1180 		    r->dst.neg, NULL, M_GETFIB(m)))
1181 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1182 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1183 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1184 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1185 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1186 			    pf_osfp_fingerprint(pd, m, off, th),
1187 			    r->os_fingerprint))
1188 			r = TAILQ_NEXT(r, entries);
1189 		else {
1190 			rm = r;
1191 			break;
1192 		}
1193 	}
1194 
1195 	if (rm == NULL || rm->action == PF_NOSCRUB)
1196 		return (PF_PASS);
1197 	else {
1198 		r->packets[dir == PF_OUT]++;
1199 		r->bytes[dir == PF_OUT] += pd->tot_len;
1200 	}
1201 
1202 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1203 		pd->flags |= PFDESC_TCP_NORM;
1204 
1205 	flags = th->th_flags;
1206 	if (flags & TH_SYN) {
1207 		/* Illegal packet */
1208 		if (flags & TH_RST)
1209 			goto tcp_drop;
1210 
1211 		if (flags & TH_FIN)
1212 			goto tcp_drop;
1213 	} else {
1214 		/* Illegal packet */
1215 		if (!(flags & (TH_ACK|TH_RST)))
1216 			goto tcp_drop;
1217 	}
1218 
1219 	if (!(flags & TH_ACK)) {
1220 		/* These flags are only valid if ACK is set */
1221 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1222 			goto tcp_drop;
1223 	}
1224 
1225 	/* Check for illegal header length */
1226 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1227 		goto tcp_drop;
1228 
1229 	/* If flags changed, or reserved data set, then adjust */
1230 	if (flags != th->th_flags || th->th_x2 != 0) {
1231 		u_int16_t	ov, nv;
1232 
1233 		ov = *(u_int16_t *)(&th->th_ack + 1);
1234 		th->th_flags = flags;
1235 		th->th_x2 = 0;
1236 		nv = *(u_int16_t *)(&th->th_ack + 1);
1237 
1238 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1239 		rewrite = 1;
1240 	}
1241 
1242 	/* Remove urgent pointer, if TH_URG is not set */
1243 	if (!(flags & TH_URG) && th->th_urp) {
1244 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1245 		    0, 0);
1246 		th->th_urp = 0;
1247 		rewrite = 1;
1248 	}
1249 
1250 	/* Process options */
1251 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1252 		rewrite = 1;
1253 
1254 	/* copy back packet headers if we sanitized */
1255 	if (rewrite)
1256 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1257 
1258 	return (PF_PASS);
1259 
1260  tcp_drop:
1261 	REASON_SET(&reason, PFRES_NORM);
1262 	if (rm != NULL && r->log)
1263 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1264 		    1);
1265 	return (PF_DROP);
1266 }
1267 
1268 int
1269 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1270     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1271 {
1272 	u_int32_t tsval, tsecr;
1273 	u_int8_t hdr[60];
1274 	u_int8_t *opt;
1275 
1276 	KASSERT((src->scrub == NULL),
1277 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1278 
1279 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1280 	if (src->scrub == NULL)
1281 		return (1);
1282 
1283 	switch (pd->af) {
1284 #ifdef INET
1285 	case AF_INET: {
1286 		struct ip *h = mtod(m, struct ip *);
1287 		src->scrub->pfss_ttl = h->ip_ttl;
1288 		break;
1289 	}
1290 #endif /* INET */
1291 #ifdef INET6
1292 	case AF_INET6: {
1293 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1294 		src->scrub->pfss_ttl = h->ip6_hlim;
1295 		break;
1296 	}
1297 #endif /* INET6 */
1298 	}
1299 
1300 
1301 	/*
1302 	 * All normalizations below are only begun if we see the start of
1303 	 * the connections.  They must all set an enabled bit in pfss_flags
1304 	 */
1305 	if ((th->th_flags & TH_SYN) == 0)
1306 		return (0);
1307 
1308 
1309 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1310 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1311 		/* Diddle with TCP options */
1312 		int hlen;
1313 		opt = hdr + sizeof(struct tcphdr);
1314 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1315 		while (hlen >= TCPOLEN_TIMESTAMP) {
1316 			switch (*opt) {
1317 			case TCPOPT_EOL:	/* FALLTHROUGH */
1318 			case TCPOPT_NOP:
1319 				opt++;
1320 				hlen--;
1321 				break;
1322 			case TCPOPT_TIMESTAMP:
1323 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1324 					src->scrub->pfss_flags |=
1325 					    PFSS_TIMESTAMP;
1326 					src->scrub->pfss_ts_mod =
1327 					    htonl(arc4random());
1328 
1329 					/* note PFSS_PAWS not set yet */
1330 					memcpy(&tsval, &opt[2],
1331 					    sizeof(u_int32_t));
1332 					memcpy(&tsecr, &opt[6],
1333 					    sizeof(u_int32_t));
1334 					src->scrub->pfss_tsval0 = ntohl(tsval);
1335 					src->scrub->pfss_tsval = ntohl(tsval);
1336 					src->scrub->pfss_tsecr = ntohl(tsecr);
1337 					getmicrouptime(&src->scrub->pfss_last);
1338 				}
1339 				/* FALLTHROUGH */
1340 			default:
1341 				hlen -= MAX(opt[1], 2);
1342 				opt += MAX(opt[1], 2);
1343 				break;
1344 			}
1345 		}
1346 	}
1347 
1348 	return (0);
1349 }
1350 
1351 void
1352 pf_normalize_tcp_cleanup(struct pf_state *state)
1353 {
1354 	if (state->src.scrub)
1355 		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1356 	if (state->dst.scrub)
1357 		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1358 
1359 	/* Someday... flush the TCP segment reassembly descriptors. */
1360 }
1361 
1362 int
1363 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1364     u_short *reason, struct tcphdr *th, struct pf_state *state,
1365     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1366 {
1367 	struct timeval uptime;
1368 	u_int32_t tsval, tsecr;
1369 	u_int tsval_from_last;
1370 	u_int8_t hdr[60];
1371 	u_int8_t *opt;
1372 	int copyback = 0;
1373 	int got_ts = 0;
1374 
1375 	KASSERT((src->scrub || dst->scrub),
1376 	    ("%s: src->scrub && dst->scrub!", __func__));
1377 
1378 	/*
1379 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1380 	 * technique to evade an intrusion detection system and confuse
1381 	 * firewall state code.
1382 	 */
1383 	switch (pd->af) {
1384 #ifdef INET
1385 	case AF_INET: {
1386 		if (src->scrub) {
1387 			struct ip *h = mtod(m, struct ip *);
1388 			if (h->ip_ttl > src->scrub->pfss_ttl)
1389 				src->scrub->pfss_ttl = h->ip_ttl;
1390 			h->ip_ttl = src->scrub->pfss_ttl;
1391 		}
1392 		break;
1393 	}
1394 #endif /* INET */
1395 #ifdef INET6
1396 	case AF_INET6: {
1397 		if (src->scrub) {
1398 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1399 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1400 				src->scrub->pfss_ttl = h->ip6_hlim;
1401 			h->ip6_hlim = src->scrub->pfss_ttl;
1402 		}
1403 		break;
1404 	}
1405 #endif /* INET6 */
1406 	}
1407 
1408 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1409 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1410 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1411 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1412 		/* Diddle with TCP options */
1413 		int hlen;
1414 		opt = hdr + sizeof(struct tcphdr);
1415 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1416 		while (hlen >= TCPOLEN_TIMESTAMP) {
1417 			switch (*opt) {
1418 			case TCPOPT_EOL:	/* FALLTHROUGH */
1419 			case TCPOPT_NOP:
1420 				opt++;
1421 				hlen--;
1422 				break;
1423 			case TCPOPT_TIMESTAMP:
1424 				/* Modulate the timestamps.  Can be used for
1425 				 * NAT detection, OS uptime determination or
1426 				 * reboot detection.
1427 				 */
1428 
1429 				if (got_ts) {
1430 					/* Huh?  Multiple timestamps!? */
1431 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1432 						DPFPRINTF(("multiple TS??"));
1433 						pf_print_state(state);
1434 						printf("\n");
1435 					}
1436 					REASON_SET(reason, PFRES_TS);
1437 					return (PF_DROP);
1438 				}
1439 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1440 					memcpy(&tsval, &opt[2],
1441 					    sizeof(u_int32_t));
1442 					if (tsval && src->scrub &&
1443 					    (src->scrub->pfss_flags &
1444 					    PFSS_TIMESTAMP)) {
1445 						tsval = ntohl(tsval);
1446 						pf_change_proto_a(m, &opt[2],
1447 						    &th->th_sum,
1448 						    htonl(tsval +
1449 						    src->scrub->pfss_ts_mod),
1450 						    0);
1451 						copyback = 1;
1452 					}
1453 
1454 					/* Modulate TS reply iff valid (!0) */
1455 					memcpy(&tsecr, &opt[6],
1456 					    sizeof(u_int32_t));
1457 					if (tsecr && dst->scrub &&
1458 					    (dst->scrub->pfss_flags &
1459 					    PFSS_TIMESTAMP)) {
1460 						tsecr = ntohl(tsecr)
1461 						    - dst->scrub->pfss_ts_mod;
1462 						pf_change_proto_a(m, &opt[6],
1463 						    &th->th_sum, htonl(tsecr),
1464 						    0);
1465 						copyback = 1;
1466 					}
1467 					got_ts = 1;
1468 				}
1469 				/* FALLTHROUGH */
1470 			default:
1471 				hlen -= MAX(opt[1], 2);
1472 				opt += MAX(opt[1], 2);
1473 				break;
1474 			}
1475 		}
1476 		if (copyback) {
1477 			/* Copyback the options, caller copys back header */
1478 			*writeback = 1;
1479 			m_copyback(m, off + sizeof(struct tcphdr),
1480 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1481 			    sizeof(struct tcphdr));
1482 		}
1483 	}
1484 
1485 
1486 	/*
1487 	 * Must invalidate PAWS checks on connections idle for too long.
1488 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1489 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1490 	 * TS echo check only works for the first 12 days of a connection
1491 	 * when the TS has exhausted half its 32bit space
1492 	 */
1493 #define TS_MAX_IDLE	(24*24*60*60)
1494 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1495 
1496 	getmicrouptime(&uptime);
1497 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1498 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1499 	    time_uptime - state->creation > TS_MAX_CONN))  {
1500 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1501 			DPFPRINTF(("src idled out of PAWS\n"));
1502 			pf_print_state(state);
1503 			printf("\n");
1504 		}
1505 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1506 		    | PFSS_PAWS_IDLED;
1507 	}
1508 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1509 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1510 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1511 			DPFPRINTF(("dst idled out of PAWS\n"));
1512 			pf_print_state(state);
1513 			printf("\n");
1514 		}
1515 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1516 		    | PFSS_PAWS_IDLED;
1517 	}
1518 
1519 	if (got_ts && src->scrub && dst->scrub &&
1520 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1521 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1522 		/* Validate that the timestamps are "in-window".
1523 		 * RFC1323 describes TCP Timestamp options that allow
1524 		 * measurement of RTT (round trip time) and PAWS
1525 		 * (protection against wrapped sequence numbers).  PAWS
1526 		 * gives us a set of rules for rejecting packets on
1527 		 * long fat pipes (packets that were somehow delayed
1528 		 * in transit longer than the time it took to send the
1529 		 * full TCP sequence space of 4Gb).  We can use these
1530 		 * rules and infer a few others that will let us treat
1531 		 * the 32bit timestamp and the 32bit echoed timestamp
1532 		 * as sequence numbers to prevent a blind attacker from
1533 		 * inserting packets into a connection.
1534 		 *
1535 		 * RFC1323 tells us:
1536 		 *  - The timestamp on this packet must be greater than
1537 		 *    or equal to the last value echoed by the other
1538 		 *    endpoint.  The RFC says those will be discarded
1539 		 *    since it is a dup that has already been acked.
1540 		 *    This gives us a lowerbound on the timestamp.
1541 		 *        timestamp >= other last echoed timestamp
1542 		 *  - The timestamp will be less than or equal to
1543 		 *    the last timestamp plus the time between the
1544 		 *    last packet and now.  The RFC defines the max
1545 		 *    clock rate as 1ms.  We will allow clocks to be
1546 		 *    up to 10% fast and will allow a total difference
1547 		 *    or 30 seconds due to a route change.  And this
1548 		 *    gives us an upperbound on the timestamp.
1549 		 *        timestamp <= last timestamp + max ticks
1550 		 *    We have to be careful here.  Windows will send an
1551 		 *    initial timestamp of zero and then initialize it
1552 		 *    to a random value after the 3whs; presumably to
1553 		 *    avoid a DoS by having to call an expensive RNG
1554 		 *    during a SYN flood.  Proof MS has at least one
1555 		 *    good security geek.
1556 		 *
1557 		 *  - The TCP timestamp option must also echo the other
1558 		 *    endpoints timestamp.  The timestamp echoed is the
1559 		 *    one carried on the earliest unacknowledged segment
1560 		 *    on the left edge of the sequence window.  The RFC
1561 		 *    states that the host will reject any echoed
1562 		 *    timestamps that were larger than any ever sent.
1563 		 *    This gives us an upperbound on the TS echo.
1564 		 *        tescr <= largest_tsval
1565 		 *  - The lowerbound on the TS echo is a little more
1566 		 *    tricky to determine.  The other endpoint's echoed
1567 		 *    values will not decrease.  But there may be
1568 		 *    network conditions that re-order packets and
1569 		 *    cause our view of them to decrease.  For now the
1570 		 *    only lowerbound we can safely determine is that
1571 		 *    the TS echo will never be less than the original
1572 		 *    TS.  XXX There is probably a better lowerbound.
1573 		 *    Remove TS_MAX_CONN with better lowerbound check.
1574 		 *        tescr >= other original TS
1575 		 *
1576 		 * It is also important to note that the fastest
1577 		 * timestamp clock of 1ms will wrap its 32bit space in
1578 		 * 24 days.  So we just disable TS checking after 24
1579 		 * days of idle time.  We actually must use a 12d
1580 		 * connection limit until we can come up with a better
1581 		 * lowerbound to the TS echo check.
1582 		 */
1583 		struct timeval delta_ts;
1584 		int ts_fudge;
1585 
1586 
1587 		/*
1588 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1589 		 * a host's timestamp.  This can happen if the previous
1590 		 * packet got delayed in transit for much longer than
1591 		 * this packet.
1592 		 */
1593 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1594 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1595 
1596 		/* Calculate max ticks since the last timestamp */
1597 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1598 #define TS_MICROSECS	1000000		/* microseconds per second */
1599 		delta_ts = uptime;
1600 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1601 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1602 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1603 
1604 		if ((src->state >= TCPS_ESTABLISHED &&
1605 		    dst->state >= TCPS_ESTABLISHED) &&
1606 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1607 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1608 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1609 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1610 			/* Bad RFC1323 implementation or an insertion attack.
1611 			 *
1612 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1613 			 *   after the FIN,FIN|ACK,ACK closing that carries
1614 			 *   an old timestamp.
1615 			 */
1616 
1617 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1618 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1619 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1620 			    tsval_from_last) ? '1' : ' ',
1621 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1622 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1623 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1624 			    "idle: %jus %lums\n",
1625 			    tsval, tsecr, tsval_from_last,
1626 			    (uintmax_t)delta_ts.tv_sec,
1627 			    delta_ts.tv_usec / 1000));
1628 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1629 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1630 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1631 			    "\n", dst->scrub->pfss_tsval,
1632 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1633 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1634 				pf_print_state(state);
1635 				pf_print_flags(th->th_flags);
1636 				printf("\n");
1637 			}
1638 			REASON_SET(reason, PFRES_TS);
1639 			return (PF_DROP);
1640 		}
1641 
1642 		/* XXX I'd really like to require tsecr but it's optional */
1643 
1644 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1645 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1646 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1647 	    src->scrub && dst->scrub &&
1648 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1649 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1650 		/* Didn't send a timestamp.  Timestamps aren't really useful
1651 		 * when:
1652 		 *  - connection opening or closing (often not even sent).
1653 		 *    but we must not let an attacker to put a FIN on a
1654 		 *    data packet to sneak it through our ESTABLISHED check.
1655 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1656 		 *  - on an empty ACK.  The TS will not be echoed so it will
1657 		 *    probably not help keep the RTT calculation in sync and
1658 		 *    there isn't as much danger when the sequence numbers
1659 		 *    got wrapped.  So some stacks don't include TS on empty
1660 		 *    ACKs :-(
1661 		 *
1662 		 * To minimize the disruption to mostly RFC1323 conformant
1663 		 * stacks, we will only require timestamps on data packets.
1664 		 *
1665 		 * And what do ya know, we cannot require timestamps on data
1666 		 * packets.  There appear to be devices that do legitimate
1667 		 * TCP connection hijacking.  There are HTTP devices that allow
1668 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1669 		 * If the intermediate device has the HTTP response cache, it
1670 		 * will spoof the response but not bother timestamping its
1671 		 * packets.  So we can look for the presence of a timestamp in
1672 		 * the first data packet and if there, require it in all future
1673 		 * packets.
1674 		 */
1675 
1676 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1677 			/*
1678 			 * Hey!  Someone tried to sneak a packet in.  Or the
1679 			 * stack changed its RFC1323 behavior?!?!
1680 			 */
1681 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1682 				DPFPRINTF(("Did not receive expected RFC1323 "
1683 				    "timestamp\n"));
1684 				pf_print_state(state);
1685 				pf_print_flags(th->th_flags);
1686 				printf("\n");
1687 			}
1688 			REASON_SET(reason, PFRES_TS);
1689 			return (PF_DROP);
1690 		}
1691 	}
1692 
1693 
1694 	/*
1695 	 * We will note if a host sends his data packets with or without
1696 	 * timestamps.  And require all data packets to contain a timestamp
1697 	 * if the first does.  PAWS implicitly requires that all data packets be
1698 	 * timestamped.  But I think there are middle-man devices that hijack
1699 	 * TCP streams immediately after the 3whs and don't timestamp their
1700 	 * packets (seen in a WWW accelerator or cache).
1701 	 */
1702 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1703 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1704 		if (got_ts)
1705 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1706 		else {
1707 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1708 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1709 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1710 				/* Don't warn if other host rejected RFC1323 */
1711 				DPFPRINTF(("Broken RFC1323 stack did not "
1712 				    "timestamp data packet. Disabled PAWS "
1713 				    "security.\n"));
1714 				pf_print_state(state);
1715 				pf_print_flags(th->th_flags);
1716 				printf("\n");
1717 			}
1718 		}
1719 	}
1720 
1721 
1722 	/*
1723 	 * Update PAWS values
1724 	 */
1725 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1726 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1727 		getmicrouptime(&src->scrub->pfss_last);
1728 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1729 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1730 			src->scrub->pfss_tsval = tsval;
1731 
1732 		if (tsecr) {
1733 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1734 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1735 				src->scrub->pfss_tsecr = tsecr;
1736 
1737 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1738 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1739 			    src->scrub->pfss_tsval0 == 0)) {
1740 				/* tsval0 MUST be the lowest timestamp */
1741 				src->scrub->pfss_tsval0 = tsval;
1742 			}
1743 
1744 			/* Only fully initialized after a TS gets echoed */
1745 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1746 				src->scrub->pfss_flags |= PFSS_PAWS;
1747 		}
1748 	}
1749 
1750 	/* I have a dream....  TCP segment reassembly.... */
1751 	return (0);
1752 }
1753 
1754 static int
1755 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1756     int off, sa_family_t af)
1757 {
1758 	u_int16_t	*mss;
1759 	int		 thoff;
1760 	int		 opt, cnt, optlen = 0;
1761 	int		 rewrite = 0;
1762 	u_char		 opts[TCP_MAXOLEN];
1763 	u_char		*optp = opts;
1764 
1765 	thoff = th->th_off << 2;
1766 	cnt = thoff - sizeof(struct tcphdr);
1767 
1768 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1769 	    NULL, NULL, af))
1770 		return (rewrite);
1771 
1772 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1773 		opt = optp[0];
1774 		if (opt == TCPOPT_EOL)
1775 			break;
1776 		if (opt == TCPOPT_NOP)
1777 			optlen = 1;
1778 		else {
1779 			if (cnt < 2)
1780 				break;
1781 			optlen = optp[1];
1782 			if (optlen < 2 || optlen > cnt)
1783 				break;
1784 		}
1785 		switch (opt) {
1786 		case TCPOPT_MAXSEG:
1787 			mss = (u_int16_t *)(optp + 2);
1788 			if ((ntohs(*mss)) > r->max_mss) {
1789 				th->th_sum = pf_proto_cksum_fixup(m,
1790 				    th->th_sum, *mss, htons(r->max_mss), 0);
1791 				*mss = htons(r->max_mss);
1792 				rewrite = 1;
1793 			}
1794 			break;
1795 		default:
1796 			break;
1797 		}
1798 	}
1799 
1800 	if (rewrite)
1801 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1802 
1803 	return (rewrite);
1804 }
1805 
1806 #ifdef INET
1807 static void
1808 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1809 {
1810 	struct mbuf		*m = *m0;
1811 	struct ip		*h = mtod(m, struct ip *);
1812 
1813 	/* Clear IP_DF if no-df was requested */
1814 	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1815 		u_int16_t ip_off = h->ip_off;
1816 
1817 		h->ip_off &= htons(~IP_DF);
1818 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1819 	}
1820 
1821 	/* Enforce a minimum ttl, may cause endless packet loops */
1822 	if (min_ttl && h->ip_ttl < min_ttl) {
1823 		u_int16_t ip_ttl = h->ip_ttl;
1824 
1825 		h->ip_ttl = min_ttl;
1826 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1827 	}
1828 
1829 	/* Enforce tos */
1830 	if (flags & PFRULE_SET_TOS) {
1831 		u_int16_t	ov, nv;
1832 
1833 		ov = *(u_int16_t *)h;
1834 		h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
1835 		nv = *(u_int16_t *)h;
1836 
1837 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1838 	}
1839 
1840 	/* random-id, but not for fragments */
1841 	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1842 		uint16_t ip_id = h->ip_id;
1843 
1844 		ip_fillid(h);
1845 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1846 	}
1847 }
1848 #endif /* INET */
1849 
1850 #ifdef INET6
1851 static void
1852 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1853 {
1854 	struct mbuf		*m = *m0;
1855 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1856 
1857 	/* Enforce a minimum ttl, may cause endless packet loops */
1858 	if (min_ttl && h->ip6_hlim < min_ttl)
1859 		h->ip6_hlim = min_ttl;
1860 }
1861 #endif
1862