xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/vnet.h>
47 #include <net/pfvar.h>
48 #include <net/if_pflog.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip_var.h>
53 #include <netinet6/in6_var.h>
54 #include <netinet6/nd6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/scope6_var.h>
57 #include <netinet/tcp.h>
58 #include <netinet/tcp_fsm.h>
59 #include <netinet/tcp_seq.h>
60 #include <netinet/sctp_constants.h>
61 #include <netinet/sctp_header.h>
62 
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #endif /* INET6 */
66 
67 struct pf_frent {
68 	TAILQ_ENTRY(pf_frent)	fr_next;
69 	struct mbuf	*fe_m;
70 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
71 					   ipv6, extension, fragment header */
72 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
73 	uint16_t	fe_len;		/* fragment length */
74 	uint16_t	fe_off;		/* fragment offset */
75 	uint16_t	fe_mff;		/* more fragment flag */
76 };
77 
78 struct pf_fragment_cmp {
79 	struct pf_addr	frc_src;
80 	struct pf_addr	frc_dst;
81 	uint32_t	frc_id;
82 	sa_family_t	frc_af;
83 	uint8_t		frc_proto;
84 };
85 
86 struct pf_fragment {
87 	struct pf_fragment_cmp	fr_key;
88 #define fr_src	fr_key.frc_src
89 #define fr_dst	fr_key.frc_dst
90 #define fr_id	fr_key.frc_id
91 #define fr_af	fr_key.frc_af
92 #define fr_proto	fr_key.frc_proto
93 
94 	/* pointers to queue element */
95 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
96 	/* count entries between pointers */
97 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
98 	RB_ENTRY(pf_fragment) fr_entry;
99 	TAILQ_ENTRY(pf_fragment) frag_next;
100 	uint32_t	fr_timeout;
101 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
102 	u_int16_t	fr_holes;	/* number of holes in the queue */
103 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
104 };
105 
106 struct pf_fragment_tag {
107 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
108 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
109 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
110 	uint32_t	ft_id;		/* fragment id */
111 };
112 
113 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
114 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
115 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
116 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
117 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
118 
119 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
120 
121 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
122 #define	V_pf_frent_z	VNET(pf_frent_z)
123 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
124 #define	V_pf_frag_z	VNET(pf_frag_z)
125 
126 TAILQ_HEAD(pf_fragqueue, pf_fragment);
127 TAILQ_HEAD(pf_cachequeue, pf_fragment);
128 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
129 #define	V_pf_fragqueue			VNET(pf_fragqueue)
130 RB_HEAD(pf_frag_tree, pf_fragment);
131 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
132 #define	V_pf_frag_tree			VNET(pf_frag_tree)
133 static int		 pf_frag_compare(struct pf_fragment *,
134 			    struct pf_fragment *);
135 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
136 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
137 
138 static void	pf_flush_fragments(void);
139 static void	pf_free_fragment(struct pf_fragment *);
140 static void	pf_remove_fragment(struct pf_fragment *);
141 
142 static struct pf_frent *pf_create_fragment(u_short *);
143 static int	pf_frent_holes(struct pf_frent *frent);
144 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
145 		    struct pf_frag_tree *tree);
146 static inline int	pf_frent_index(struct pf_frent *);
147 static int	pf_frent_insert(struct pf_fragment *,
148 			    struct pf_frent *, struct pf_frent *);
149 void			pf_frent_remove(struct pf_fragment *,
150 			    struct pf_frent *);
151 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
152 			    struct pf_frent *);
153 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
154 		    struct pf_frent *, u_short *);
155 static struct mbuf *pf_join_fragment(struct pf_fragment *);
156 #ifdef INET
157 static int	pf_reassemble(struct mbuf **, int, u_short *);
158 #endif	/* INET */
159 #ifdef INET6
160 static int	pf_reassemble6(struct mbuf **,
161 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
162 #endif	/* INET6 */
163 
164 #define	DPFPRINTF(x) do {				\
165 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
166 		printf("%s: ", __func__);		\
167 		printf x ;				\
168 	}						\
169 } while(0)
170 
171 #ifdef INET
172 static void
173 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
174 {
175 
176 	key->frc_src.v4 = ip->ip_src;
177 	key->frc_dst.v4 = ip->ip_dst;
178 	key->frc_af = AF_INET;
179 	key->frc_proto = ip->ip_p;
180 	key->frc_id = ip->ip_id;
181 }
182 #endif	/* INET */
183 
184 void
185 pf_normalize_init(void)
186 {
187 
188 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
189 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
190 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
191 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
193 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
194 	    UMA_ALIGN_PTR, 0);
195 
196 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
197 
198 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
199 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
200 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
201 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
202 
203 	TAILQ_INIT(&V_pf_fragqueue);
204 }
205 
206 void
207 pf_normalize_cleanup(void)
208 {
209 
210 	uma_zdestroy(V_pf_state_scrub_z);
211 	uma_zdestroy(V_pf_frent_z);
212 	uma_zdestroy(V_pf_frag_z);
213 
214 	mtx_destroy(&V_pf_frag_mtx);
215 }
216 
217 static int
218 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
219 {
220 	int	diff;
221 
222 	if ((diff = a->fr_id - b->fr_id) != 0)
223 		return (diff);
224 	if ((diff = a->fr_proto - b->fr_proto) != 0)
225 		return (diff);
226 	if ((diff = a->fr_af - b->fr_af) != 0)
227 		return (diff);
228 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
229 		return (diff);
230 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
231 		return (diff);
232 	return (0);
233 }
234 
235 void
236 pf_purge_expired_fragments(void)
237 {
238 	u_int32_t	expire = time_uptime -
239 			    V_pf_default_rule.timeout[PFTM_FRAG];
240 
241 	pf_purge_fragments(expire);
242 }
243 
244 void
245 pf_purge_fragments(uint32_t expire)
246 {
247 	struct pf_fragment	*frag;
248 
249 	PF_FRAG_LOCK();
250 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
251 		if (frag->fr_timeout > expire)
252 			break;
253 
254 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
255 		pf_free_fragment(frag);
256 	}
257 
258 	PF_FRAG_UNLOCK();
259 }
260 
261 /*
262  * Try to flush old fragments to make space for new ones
263  */
264 static void
265 pf_flush_fragments(void)
266 {
267 	struct pf_fragment	*frag;
268 	int			 goal;
269 
270 	PF_FRAG_ASSERT();
271 
272 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
273 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
274 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
275 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
276 		if (frag)
277 			pf_free_fragment(frag);
278 		else
279 			break;
280 	}
281 }
282 
283 /* Frees the fragments and all associated entries */
284 static void
285 pf_free_fragment(struct pf_fragment *frag)
286 {
287 	struct pf_frent		*frent;
288 
289 	PF_FRAG_ASSERT();
290 
291 	/* Free all fragments */
292 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
293 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
294 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
295 
296 		m_freem(frent->fe_m);
297 		uma_zfree(V_pf_frent_z, frent);
298 	}
299 
300 	pf_remove_fragment(frag);
301 }
302 
303 static struct pf_fragment *
304 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
305 {
306 	struct pf_fragment	*frag;
307 
308 	PF_FRAG_ASSERT();
309 
310 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
311 	if (frag != NULL) {
312 		/* XXX Are we sure we want to update the timeout? */
313 		frag->fr_timeout = time_uptime;
314 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
315 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
316 	}
317 
318 	return (frag);
319 }
320 
321 /* Removes a fragment from the fragment queue and frees the fragment */
322 static void
323 pf_remove_fragment(struct pf_fragment *frag)
324 {
325 
326 	PF_FRAG_ASSERT();
327 	KASSERT(frag, ("frag != NULL"));
328 
329 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
330 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
331 	uma_zfree(V_pf_frag_z, frag);
332 }
333 
334 static struct pf_frent *
335 pf_create_fragment(u_short *reason)
336 {
337 	struct pf_frent *frent;
338 
339 	PF_FRAG_ASSERT();
340 
341 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
342 	if (frent == NULL) {
343 		pf_flush_fragments();
344 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
345 		if (frent == NULL) {
346 			REASON_SET(reason, PFRES_MEMORY);
347 			return (NULL);
348 		}
349 	}
350 
351 	return (frent);
352 }
353 
354 /*
355  * Calculate the additional holes that were created in the fragment
356  * queue by inserting this fragment.  A fragment in the middle
357  * creates one more hole by splitting.  For each connected side,
358  * it loses one hole.
359  * Fragment entry must be in the queue when calling this function.
360  */
361 static int
362 pf_frent_holes(struct pf_frent *frent)
363 {
364 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
365 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
366 	int holes = 1;
367 
368 	if (prev == NULL) {
369 		if (frent->fe_off == 0)
370 			holes--;
371 	} else {
372 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
373 		if (frent->fe_off == prev->fe_off + prev->fe_len)
374 			holes--;
375 	}
376 	if (next == NULL) {
377 		if (!frent->fe_mff)
378 			holes--;
379 	} else {
380 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
381 		if (next->fe_off == frent->fe_off + frent->fe_len)
382 			holes--;
383 	}
384 	return holes;
385 }
386 
387 static inline int
388 pf_frent_index(struct pf_frent *frent)
389 {
390 	/*
391 	 * We have an array of 16 entry points to the queue.  A full size
392 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
393 	 * traversal length is at most 512 and at most 16 entry points are
394 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
395 	 */
396 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
397 	    16 - 1);
398 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
399 
400 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
401 }
402 
403 static int
404 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
405     struct pf_frent *prev)
406 {
407 	int index;
408 
409 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
410 
411 	/*
412 	 * A packet has at most 65536 octets.  With 16 entry points, each one
413 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
414 	 * means on average every fragment must have at least 64 octets.
415 	 */
416 	index = pf_frent_index(frent);
417 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
418 		return ENOBUFS;
419 	frag->fr_entries[index]++;
420 
421 	if (prev == NULL) {
422 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
423 	} else {
424 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
425 		    ("overlapping fragment"));
426 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
427 	}
428 
429 	if (frag->fr_firstoff[index] == NULL) {
430 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
431 		    ("prev == NULL || pf_frent_index(pref) < index"));
432 		frag->fr_firstoff[index] = frent;
433 	} else {
434 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
435 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
436 			    ("prev == NULL || pf_frent_index(pref) < index"));
437 			frag->fr_firstoff[index] = frent;
438 		} else {
439 			KASSERT(prev != NULL, ("prev != NULL"));
440 			KASSERT(pf_frent_index(prev) == index,
441 			    ("pf_frent_index(prev) == index"));
442 		}
443 	}
444 
445 	frag->fr_holes += pf_frent_holes(frent);
446 
447 	return 0;
448 }
449 
450 void
451 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
452 {
453 #ifdef INVARIANTS
454 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
455 #endif
456 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
457 	int index;
458 
459 	frag->fr_holes -= pf_frent_holes(frent);
460 
461 	index = pf_frent_index(frent);
462 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
463 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
464 		if (next == NULL) {
465 			frag->fr_firstoff[index] = NULL;
466 		} else {
467 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
468 			    ("overlapping fragment"));
469 			if (pf_frent_index(next) == index) {
470 				frag->fr_firstoff[index] = next;
471 			} else {
472 				frag->fr_firstoff[index] = NULL;
473 			}
474 		}
475 	} else {
476 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
477 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
478 		KASSERT(prev != NULL, ("prev != NULL"));
479 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
480 		    ("overlapping fragment"));
481 		KASSERT(pf_frent_index(prev) == index,
482 		    ("pf_frent_index(prev) == index"));
483 	}
484 
485 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
486 
487 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
488 	frag->fr_entries[index]--;
489 }
490 
491 struct pf_frent *
492 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
493 {
494 	struct pf_frent *prev, *next;
495 	int index;
496 
497 	/*
498 	 * If there are no fragments after frag, take the final one.  Assume
499 	 * that the global queue is not empty.
500 	 */
501 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
502 	KASSERT(prev != NULL, ("prev != NULL"));
503 	if (prev->fe_off <= frent->fe_off)
504 		return prev;
505 	/*
506 	 * We want to find a fragment entry that is before frag, but still
507 	 * close to it.  Find the first fragment entry that is in the same
508 	 * entry point or in the first entry point after that.  As we have
509 	 * already checked that there are entries behind frag, this will
510 	 * succeed.
511 	 */
512 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
513 	    index++) {
514 		prev = frag->fr_firstoff[index];
515 		if (prev != NULL)
516 			break;
517 	}
518 	KASSERT(prev != NULL, ("prev != NULL"));
519 	/*
520 	 * In prev we may have a fragment from the same entry point that is
521 	 * before frent, or one that is just one position behind frent.
522 	 * In the latter case, we go back one step and have the predecessor.
523 	 * There may be none if the new fragment will be the first one.
524 	 */
525 	if (prev->fe_off > frent->fe_off) {
526 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
527 		if (prev == NULL)
528 			return NULL;
529 		KASSERT(prev->fe_off <= frent->fe_off,
530 		    ("prev->fe_off <= frent->fe_off"));
531 		return prev;
532 	}
533 	/*
534 	 * In prev is the first fragment of the entry point.  The offset
535 	 * of frag is behind it.  Find the closest previous fragment.
536 	 */
537 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
538 	    next = TAILQ_NEXT(next, fr_next)) {
539 		if (next->fe_off > frent->fe_off)
540 			break;
541 		prev = next;
542 	}
543 	return prev;
544 }
545 
546 static struct pf_fragment *
547 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
548     u_short *reason)
549 {
550 	struct pf_frent		*after, *next, *prev;
551 	struct pf_fragment	*frag;
552 	uint16_t		total;
553 	int			old_index, new_index;
554 
555 	PF_FRAG_ASSERT();
556 
557 	/* No empty fragments. */
558 	if (frent->fe_len == 0) {
559 		DPFPRINTF(("bad fragment: len 0\n"));
560 		goto bad_fragment;
561 	}
562 
563 	/* All fragments are 8 byte aligned. */
564 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
565 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
566 		goto bad_fragment;
567 	}
568 
569 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
570 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
571 		DPFPRINTF(("bad fragment: max packet %d\n",
572 		    frent->fe_off + frent->fe_len));
573 		goto bad_fragment;
574 	}
575 
576 	DPFPRINTF((key->frc_af == AF_INET ?
577 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
578 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
579 
580 	/* Fully buffer all of the fragments in this fragment queue. */
581 	frag = pf_find_fragment(key, &V_pf_frag_tree);
582 
583 	/* Create a new reassembly queue for this packet. */
584 	if (frag == NULL) {
585 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
586 		if (frag == NULL) {
587 			pf_flush_fragments();
588 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
589 			if (frag == NULL) {
590 				REASON_SET(reason, PFRES_MEMORY);
591 				goto drop_fragment;
592 			}
593 		}
594 
595 		*(struct pf_fragment_cmp *)frag = *key;
596 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
597 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
598 		frag->fr_timeout = time_uptime;
599 		frag->fr_maxlen = frent->fe_len;
600 		frag->fr_holes = 1;
601 		TAILQ_INIT(&frag->fr_queue);
602 
603 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
604 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
605 
606 		/* We do not have a previous fragment, cannot fail. */
607 		pf_frent_insert(frag, frent, NULL);
608 
609 		return (frag);
610 	}
611 
612 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
613 
614 	/* Remember maximum fragment len for refragmentation. */
615 	if (frent->fe_len > frag->fr_maxlen)
616 		frag->fr_maxlen = frent->fe_len;
617 
618 	/* Maximum data we have seen already. */
619 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
620 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
621 
622 	/* Non terminal fragments must have more fragments flag. */
623 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
624 		goto bad_fragment;
625 
626 	/* Check if we saw the last fragment already. */
627 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
628 		if (frent->fe_off + frent->fe_len > total ||
629 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
630 			goto bad_fragment;
631 	} else {
632 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
633 			goto bad_fragment;
634 	}
635 
636 	/* Find neighbors for newly inserted fragment */
637 	prev = pf_frent_previous(frag, frent);
638 	if (prev == NULL) {
639 		after = TAILQ_FIRST(&frag->fr_queue);
640 		KASSERT(after != NULL, ("after != NULL"));
641 	} else {
642 		after = TAILQ_NEXT(prev, fr_next);
643 	}
644 
645 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
646 		uint16_t precut;
647 
648 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
649 		if (precut >= frent->fe_len)
650 			goto bad_fragment;
651 		DPFPRINTF(("overlap -%d\n", precut));
652 		m_adj(frent->fe_m, precut);
653 		frent->fe_off += precut;
654 		frent->fe_len -= precut;
655 	}
656 
657 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
658 	    after = next) {
659 		uint16_t aftercut;
660 
661 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
662 		DPFPRINTF(("adjust overlap %d\n", aftercut));
663 		if (aftercut < after->fe_len) {
664 			m_adj(after->fe_m, aftercut);
665 			old_index = pf_frent_index(after);
666 			after->fe_off += aftercut;
667 			after->fe_len -= aftercut;
668 			new_index = pf_frent_index(after);
669 			if (old_index != new_index) {
670 				DPFPRINTF(("frag index %d, new %d",
671 				    old_index, new_index));
672 				/* Fragment switched queue as fe_off changed */
673 				after->fe_off -= aftercut;
674 				after->fe_len += aftercut;
675 				/* Remove restored fragment from old queue */
676 				pf_frent_remove(frag, after);
677 				after->fe_off += aftercut;
678 				after->fe_len -= aftercut;
679 				/* Insert into correct queue */
680 				if (pf_frent_insert(frag, after, prev)) {
681 					DPFPRINTF(
682 					    ("fragment requeue limit exceeded"));
683 					m_freem(after->fe_m);
684 					uma_zfree(V_pf_frent_z, after);
685 					/* There is not way to recover */
686 					goto bad_fragment;
687 				}
688 			}
689 			break;
690 		}
691 
692 		/* This fragment is completely overlapped, lose it. */
693 		next = TAILQ_NEXT(after, fr_next);
694 		pf_frent_remove(frag, after);
695 		m_freem(after->fe_m);
696 		uma_zfree(V_pf_frent_z, after);
697 	}
698 
699 	/* If part of the queue gets too long, there is not way to recover. */
700 	if (pf_frent_insert(frag, frent, prev)) {
701 		DPFPRINTF(("fragment queue limit exceeded\n"));
702 		goto bad_fragment;
703 	}
704 
705 	return (frag);
706 
707 bad_fragment:
708 	REASON_SET(reason, PFRES_FRAG);
709 drop_fragment:
710 	uma_zfree(V_pf_frent_z, frent);
711 	return (NULL);
712 }
713 
714 static struct mbuf *
715 pf_join_fragment(struct pf_fragment *frag)
716 {
717 	struct mbuf *m, *m2;
718 	struct pf_frent	*frent, *next;
719 
720 	frent = TAILQ_FIRST(&frag->fr_queue);
721 	next = TAILQ_NEXT(frent, fr_next);
722 
723 	m = frent->fe_m;
724 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
725 	uma_zfree(V_pf_frent_z, frent);
726 	for (frent = next; frent != NULL; frent = next) {
727 		next = TAILQ_NEXT(frent, fr_next);
728 
729 		m2 = frent->fe_m;
730 		/* Strip off ip header. */
731 		m_adj(m2, frent->fe_hdrlen);
732 		/* Strip off any trailing bytes. */
733 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
734 
735 		uma_zfree(V_pf_frent_z, frent);
736 		m_cat(m, m2);
737 	}
738 
739 	/* Remove from fragment queue. */
740 	pf_remove_fragment(frag);
741 
742 	return (m);
743 }
744 
745 #ifdef INET
746 static int
747 pf_reassemble(struct mbuf **m0, int dir, u_short *reason)
748 {
749 	struct mbuf		*m = *m0;
750 	struct ip		*ip = mtod(m, struct ip *);
751 	struct pf_frent		*frent;
752 	struct pf_fragment	*frag;
753 	struct pf_fragment_cmp	key;
754 	uint16_t		total, hdrlen;
755 
756 	/* Get an entry for the fragment queue */
757 	if ((frent = pf_create_fragment(reason)) == NULL)
758 		return (PF_DROP);
759 
760 	frent->fe_m = m;
761 	frent->fe_hdrlen = ip->ip_hl << 2;
762 	frent->fe_extoff = 0;
763 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
764 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
765 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
766 
767 	pf_ip2key(ip, dir, &key);
768 
769 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
770 		return (PF_DROP);
771 
772 	/* The mbuf is part of the fragment entry, no direct free or access */
773 	m = *m0 = NULL;
774 
775 	if (frag->fr_holes) {
776 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
777 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
778 	}
779 
780 	/* We have all the data */
781 	frent = TAILQ_FIRST(&frag->fr_queue);
782 	KASSERT(frent != NULL, ("frent != NULL"));
783 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
784 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
785 	hdrlen = frent->fe_hdrlen;
786 
787 	m = *m0 = pf_join_fragment(frag);
788 	frag = NULL;
789 
790 	if (m->m_flags & M_PKTHDR) {
791 		int plen = 0;
792 		for (m = *m0; m; m = m->m_next)
793 			plen += m->m_len;
794 		m = *m0;
795 		m->m_pkthdr.len = plen;
796 	}
797 
798 	ip = mtod(m, struct ip *);
799 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
800 	    htons(hdrlen + total), 0);
801 	ip->ip_len = htons(hdrlen + total);
802 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
803 	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
804 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
805 
806 	if (hdrlen + total > IP_MAXPACKET) {
807 		DPFPRINTF(("drop: too big: %d\n", total));
808 		ip->ip_len = 0;
809 		REASON_SET(reason, PFRES_SHORT);
810 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
811 		return (PF_DROP);
812 	}
813 
814 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
815 	return (PF_PASS);
816 }
817 #endif	/* INET */
818 
819 #ifdef INET6
820 static int
821 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr,
822     uint16_t hdrlen, uint16_t extoff, u_short *reason)
823 {
824 	struct mbuf		*m = *m0;
825 	struct ip6_hdr		*ip6 = mtod(m, struct ip6_hdr *);
826 	struct pf_frent		*frent;
827 	struct pf_fragment	*frag;
828 	struct pf_fragment_cmp	 key;
829 	struct m_tag		*mtag;
830 	struct pf_fragment_tag	*ftag;
831 	int			 off;
832 	uint32_t		 frag_id;
833 	uint16_t		 total, maxlen;
834 	uint8_t			 proto;
835 
836 	PF_FRAG_LOCK();
837 
838 	/* Get an entry for the fragment queue. */
839 	if ((frent = pf_create_fragment(reason)) == NULL) {
840 		PF_FRAG_UNLOCK();
841 		return (PF_DROP);
842 	}
843 
844 	frent->fe_m = m;
845 	frent->fe_hdrlen = hdrlen;
846 	frent->fe_extoff = extoff;
847 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
848 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
849 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
850 
851 	key.frc_src.v6 = ip6->ip6_src;
852 	key.frc_dst.v6 = ip6->ip6_dst;
853 	key.frc_af = AF_INET6;
854 	/* Only the first fragment's protocol is relevant. */
855 	key.frc_proto = 0;
856 	key.frc_id = fraghdr->ip6f_ident;
857 
858 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
859 		PF_FRAG_UNLOCK();
860 		return (PF_DROP);
861 	}
862 
863 	/* The mbuf is part of the fragment entry, no direct free or access. */
864 	m = *m0 = NULL;
865 
866 	if (frag->fr_holes) {
867 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
868 		    frag->fr_holes));
869 		PF_FRAG_UNLOCK();
870 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
871 	}
872 
873 	/* We have all the data. */
874 	frent = TAILQ_FIRST(&frag->fr_queue);
875 	KASSERT(frent != NULL, ("frent != NULL"));
876 	extoff = frent->fe_extoff;
877 	maxlen = frag->fr_maxlen;
878 	frag_id = frag->fr_id;
879 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
880 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
881 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
882 
883 	m = *m0 = pf_join_fragment(frag);
884 	frag = NULL;
885 
886 	PF_FRAG_UNLOCK();
887 
888 	/* Take protocol from first fragment header. */
889 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
890 	KASSERT(m, ("%s: short mbuf chain", __func__));
891 	proto = *(mtod(m, uint8_t *) + off);
892 	m = *m0;
893 
894 	/* Delete frag6 header */
895 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
896 		goto fail;
897 
898 	if (m->m_flags & M_PKTHDR) {
899 		int plen = 0;
900 		for (m = *m0; m; m = m->m_next)
901 			plen += m->m_len;
902 		m = *m0;
903 		m->m_pkthdr.len = plen;
904 	}
905 
906 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
907 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
908 		goto fail;
909 	ftag = (struct pf_fragment_tag *)(mtag + 1);
910 	ftag->ft_hdrlen = hdrlen;
911 	ftag->ft_extoff = extoff;
912 	ftag->ft_maxlen = maxlen;
913 	ftag->ft_id = frag_id;
914 	m_tag_prepend(m, mtag);
915 
916 	ip6 = mtod(m, struct ip6_hdr *);
917 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
918 	if (extoff) {
919 		/* Write protocol into next field of last extension header. */
920 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
921 		    &off);
922 		KASSERT(m, ("%s: short mbuf chain", __func__));
923 		*(mtod(m, char *) + off) = proto;
924 		m = *m0;
925 	} else
926 		ip6->ip6_nxt = proto;
927 
928 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
929 		DPFPRINTF(("drop: too big: %d\n", total));
930 		ip6->ip6_plen = 0;
931 		REASON_SET(reason, PFRES_SHORT);
932 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
933 		return (PF_DROP);
934 	}
935 
936 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
937 	return (PF_PASS);
938 
939 fail:
940 	REASON_SET(reason, PFRES_MEMORY);
941 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
942 	return (PF_DROP);
943 }
944 #endif	/* INET6 */
945 
946 #ifdef INET6
947 int
948 pf_max_frag_size(struct mbuf *m)
949 {
950 	struct m_tag *tag;
951 	struct pf_fragment_tag *ftag;
952 
953 	tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL);
954 	if (tag == NULL)
955 		return (m->m_pkthdr.len);
956 
957 	ftag = (struct pf_fragment_tag *)(tag + 1);
958 
959 	return (ftag->ft_maxlen);
960 }
961 
962 int
963 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
964     struct ifnet *rt, bool forward)
965 {
966 	struct mbuf		*m = *m0, *t;
967 	struct ip6_hdr		*hdr;
968 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
969 	struct pf_pdesc		 pd;
970 	uint32_t		 frag_id;
971 	uint16_t		 hdrlen, extoff, maxlen;
972 	uint8_t			 proto;
973 	int			 error, action;
974 
975 	hdrlen = ftag->ft_hdrlen;
976 	extoff = ftag->ft_extoff;
977 	maxlen = ftag->ft_maxlen;
978 	frag_id = ftag->ft_id;
979 	m_tag_delete(m, mtag);
980 	mtag = NULL;
981 	ftag = NULL;
982 
983 	if (extoff) {
984 		int off;
985 
986 		/* Use protocol from next field of last extension header */
987 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
988 		    &off);
989 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
990 		proto = *(mtod(m, uint8_t *) + off);
991 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
992 		m = *m0;
993 	} else {
994 		hdr = mtod(m, struct ip6_hdr *);
995 		proto = hdr->ip6_nxt;
996 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
997 	}
998 
999 	/* In case of link-local traffic we'll need a scope set. */
1000 	hdr = mtod(m, struct ip6_hdr *);
1001 
1002 	in6_setscope(&hdr->ip6_src, ifp, NULL);
1003 	in6_setscope(&hdr->ip6_dst, ifp, NULL);
1004 
1005 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
1006 	 * fragmentation wrong. */
1007 	maxlen = maxlen & ~7;
1008 
1009 	/*
1010 	 * Maxlen may be less than 8 if there was only a single
1011 	 * fragment.  As it was fragmented before, add a fragment
1012 	 * header also for a single fragment.  If total or maxlen
1013 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1014 	 * we drop the packet.
1015 	 */
1016 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1017 	m = (*m0)->m_nextpkt;
1018 	(*m0)->m_nextpkt = NULL;
1019 	if (error == 0) {
1020 		/* The first mbuf contains the unfragmented packet. */
1021 		m_freem(*m0);
1022 		*m0 = NULL;
1023 		action = PF_PASS;
1024 	} else {
1025 		/* Drop expects an mbuf to free. */
1026 		DPFPRINTF(("refragment error %d\n", error));
1027 		action = PF_DROP;
1028 	}
1029 	for (; m; m = t) {
1030 		t = m->m_nextpkt;
1031 		m->m_nextpkt = NULL;
1032 		m->m_flags |= M_SKIP_FIREWALL;
1033 		memset(&pd, 0, sizeof(pd));
1034 		pd.pf_mtag = pf_find_mtag(m);
1035 		if (error != 0) {
1036 			m_freem(m);
1037 			continue;
1038 		}
1039 		if (rt != NULL) {
1040 			struct sockaddr_in6	dst;
1041 			hdr = mtod(m, struct ip6_hdr *);
1042 
1043 			bzero(&dst, sizeof(dst));
1044 			dst.sin6_family = AF_INET6;
1045 			dst.sin6_len = sizeof(dst);
1046 			dst.sin6_addr = hdr->ip6_dst;
1047 
1048 			nd6_output_ifp(rt, rt, m, &dst, NULL);
1049 		} else if (forward) {
1050 			MPASS(m->m_pkthdr.rcvif != NULL);
1051 			ip6_forward(m, 0);
1052 		} else {
1053 			(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1054 			    NULL);
1055 		}
1056 	}
1057 
1058 	return (action);
1059 }
1060 #endif /* INET6 */
1061 
1062 #ifdef INET
1063 int
1064 pf_normalize_ip(struct mbuf **m0, u_short *reason,
1065     struct pf_pdesc *pd)
1066 {
1067 	struct pf_krule		*r;
1068 	struct ip		*h = mtod(*m0, struct ip *);
1069 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1070 	int			 hlen = h->ip_hl << 2;
1071 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1072 	u_int16_t		 max;
1073 	int			 ip_len;
1074 	int			 tag = -1;
1075 	int			 verdict;
1076 	bool			 scrub_compat;
1077 
1078 	PF_RULES_RASSERT();
1079 
1080 	MPASS(pd->m == *m0);
1081 
1082 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1083 	/*
1084 	 * Check if there are any scrub rules, matching or not.
1085 	 * Lack of scrub rules means:
1086 	 *  - enforced packet normalization operation just like in OpenBSD
1087 	 *  - fragment reassembly depends on V_pf_status.reass
1088 	 * With scrub rules:
1089 	 *  - packet normalization is performed if there is a matching scrub rule
1090 	 *  - fragment reassembly is performed if the matching rule has no
1091 	 *    PFRULE_FRAGMENT_NOREASS flag
1092 	 */
1093 	scrub_compat = (r != NULL);
1094 	while (r != NULL) {
1095 		pf_counter_u64_add(&r->evaluations, 1);
1096 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1097 			r = r->skip[PF_SKIP_IFP];
1098 		else if (r->direction && r->direction != pd->dir)
1099 			r = r->skip[PF_SKIP_DIR];
1100 		else if (r->af && r->af != AF_INET)
1101 			r = r->skip[PF_SKIP_AF];
1102 		else if (r->proto && r->proto != h->ip_p)
1103 			r = r->skip[PF_SKIP_PROTO];
1104 		else if (PF_MISMATCHAW(&r->src.addr,
1105 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1106 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1107 			r = r->skip[PF_SKIP_SRC_ADDR];
1108 		else if (PF_MISMATCHAW(&r->dst.addr,
1109 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1110 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1111 			r = r->skip[PF_SKIP_DST_ADDR];
1112 		else if (r->match_tag && !pf_match_tag(pd->m, r, &tag,
1113 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1114 			r = TAILQ_NEXT(r, entries);
1115 		else
1116 			break;
1117 	}
1118 
1119 	if (scrub_compat) {
1120 		/* With scrub rules present IPv4 normalization happens only
1121 		 * if one of rules has matched and it's not a "no scrub" rule */
1122 		if (r == NULL || r->action == PF_NOSCRUB)
1123 			return (PF_PASS);
1124 
1125 		pf_counter_u64_critical_enter();
1126 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1127 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1128 		pf_counter_u64_critical_exit();
1129 		pf_rule_to_actions(r, &pd->act);
1130 	}
1131 
1132 	/* Check for illegal packets */
1133 	if (hlen < (int)sizeof(struct ip)) {
1134 		REASON_SET(reason, PFRES_NORM);
1135 		goto drop;
1136 	}
1137 
1138 	if (hlen > ntohs(h->ip_len)) {
1139 		REASON_SET(reason, PFRES_NORM);
1140 		goto drop;
1141 	}
1142 
1143 	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1144 	if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1145 	    (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1146 	    (h->ip_off & htons(IP_DF))
1147 	) {
1148 		u_int16_t ip_off = h->ip_off;
1149 
1150 		h->ip_off &= htons(~IP_DF);
1151 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1152 	}
1153 
1154 	/* We will need other tests here */
1155 	if (!fragoff && !mff)
1156 		goto no_fragment;
1157 
1158 	/* We're dealing with a fragment now. Don't allow fragments
1159 	 * with IP_DF to enter the cache. If the flag was cleared by
1160 	 * no-df above, fine. Otherwise drop it.
1161 	 */
1162 	if (h->ip_off & htons(IP_DF)) {
1163 		DPFPRINTF(("IP_DF\n"));
1164 		goto bad;
1165 	}
1166 
1167 	ip_len = ntohs(h->ip_len) - hlen;
1168 
1169 	/* All fragments are 8 byte aligned */
1170 	if (mff && (ip_len & 0x7)) {
1171 		DPFPRINTF(("mff and %d\n", ip_len));
1172 		goto bad;
1173 	}
1174 
1175 	/* Respect maximum length */
1176 	if (fragoff + ip_len > IP_MAXPACKET) {
1177 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1178 		goto bad;
1179 	}
1180 
1181 	if ((!scrub_compat && V_pf_status.reass) ||
1182 	    (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1183 	) {
1184 		max = fragoff + ip_len;
1185 
1186 		/* Fully buffer all of the fragments
1187 		 * Might return a completely reassembled mbuf, or NULL */
1188 		PF_FRAG_LOCK();
1189 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1190 		verdict = pf_reassemble(m0, pd->dir, reason);
1191 		PF_FRAG_UNLOCK();
1192 
1193 		if (verdict != PF_PASS)
1194 			return (PF_DROP);
1195 
1196 		pd->m = *m0;
1197 		if (pd->m == NULL)
1198 			return (PF_DROP);
1199 
1200 		h = mtod(pd->m, struct ip *);
1201 
1202  no_fragment:
1203 		/* At this point, only IP_DF is allowed in ip_off */
1204 		if (h->ip_off & ~htons(IP_DF)) {
1205 			u_int16_t ip_off = h->ip_off;
1206 
1207 			h->ip_off &= htons(IP_DF);
1208 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1209 		}
1210 	}
1211 
1212 	return (PF_PASS);
1213 
1214  bad:
1215 	DPFPRINTF(("dropping bad fragment\n"));
1216 	REASON_SET(reason, PFRES_FRAG);
1217  drop:
1218 	if (r != NULL && r->log)
1219 		PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1);
1220 
1221 	return (PF_DROP);
1222 }
1223 #endif
1224 
1225 #ifdef INET6
1226 int
1227 pf_normalize_ip6(struct mbuf **m0, int off, u_short *reason,
1228     struct pf_pdesc *pd)
1229 {
1230 	struct pf_krule		*r;
1231 	struct ip6_frag		 frag;
1232 	bool			 scrub_compat;
1233 
1234 	PF_RULES_RASSERT();
1235 
1236 	pd->m = *m0;
1237 
1238 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1239 	/*
1240 	 * Check if there are any scrub rules, matching or not.
1241 	 * Lack of scrub rules means:
1242 	 *  - enforced packet normalization operation just like in OpenBSD
1243 	 * With scrub rules:
1244 	 *  - packet normalization is performed if there is a matching scrub rule
1245 	 * XXX: Fragment reassembly always performed for IPv6!
1246 	 */
1247 	scrub_compat = (r != NULL);
1248 	while (r != NULL) {
1249 		pf_counter_u64_add(&r->evaluations, 1);
1250 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1251 			r = r->skip[PF_SKIP_IFP];
1252 		else if (r->direction && r->direction != pd->dir)
1253 			r = r->skip[PF_SKIP_DIR];
1254 		else if (r->af && r->af != AF_INET6)
1255 			r = r->skip[PF_SKIP_AF];
1256 		else if (r->proto && r->proto != pd->proto)
1257 			r = r->skip[PF_SKIP_PROTO];
1258 		else if (PF_MISMATCHAW(&r->src.addr,
1259 		    (struct pf_addr *)&pd->src, AF_INET6,
1260 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1261 			r = r->skip[PF_SKIP_SRC_ADDR];
1262 		else if (PF_MISMATCHAW(&r->dst.addr,
1263 		    (struct pf_addr *)&pd->dst, AF_INET6,
1264 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1265 			r = r->skip[PF_SKIP_DST_ADDR];
1266 		else
1267 			break;
1268 	}
1269 
1270 	if (scrub_compat) {
1271 		/* With scrub rules present IPv6 normalization happens only
1272 		 * if one of rules has matched and it's not a "no scrub" rule */
1273 		if (r == NULL || r->action == PF_NOSCRUB)
1274 			return (PF_PASS);
1275 
1276 		pf_counter_u64_critical_enter();
1277 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1278 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1279 		pf_counter_u64_critical_exit();
1280 		pf_rule_to_actions(r, &pd->act);
1281 	}
1282 
1283 	if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6))
1284 		return (PF_DROP);
1285 
1286 	/* Offset now points to data portion. */
1287 	off += sizeof(frag);
1288 
1289 	if (pd->virtual_proto == PF_VPROTO_FRAGMENT) {
1290 		/* Returns PF_DROP or *m0 is NULL or completely reassembled
1291 		 * mbuf. */
1292 		if (pf_reassemble6(m0, &frag, off, pd->extoff, reason) != PF_PASS)
1293 			return (PF_DROP);
1294 		pd->m = *m0;
1295 		if (pd->m == NULL)
1296 			return (PF_DROP);
1297 	}
1298 
1299 	return (PF_PASS);
1300 }
1301 #endif /* INET6 */
1302 
1303 int
1304 pf_normalize_tcp(struct pf_pdesc *pd)
1305 {
1306 	struct pf_krule	*r, *rm = NULL;
1307 	struct tcphdr	*th = &pd->hdr.tcp;
1308 	int		 rewrite = 0;
1309 	u_short		 reason;
1310 	u_int16_t	 flags;
1311 	sa_family_t	 af = pd->af;
1312 	int		 srs;
1313 
1314 	PF_RULES_RASSERT();
1315 
1316 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1317 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1318 	 * packet normalization operation just like in OpenBSD. */
1319 	srs = (r != NULL);
1320 	while (r != NULL) {
1321 		pf_counter_u64_add(&r->evaluations, 1);
1322 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1323 			r = r->skip[PF_SKIP_IFP];
1324 		else if (r->direction && r->direction != pd->dir)
1325 			r = r->skip[PF_SKIP_DIR];
1326 		else if (r->af && r->af != af)
1327 			r = r->skip[PF_SKIP_AF];
1328 		else if (r->proto && r->proto != pd->proto)
1329 			r = r->skip[PF_SKIP_PROTO];
1330 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1331 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1332 			r = r->skip[PF_SKIP_SRC_ADDR];
1333 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1334 			    r->src.port[0], r->src.port[1], th->th_sport))
1335 			r = r->skip[PF_SKIP_SRC_PORT];
1336 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1337 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1338 			r = r->skip[PF_SKIP_DST_ADDR];
1339 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1340 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1341 			r = r->skip[PF_SKIP_DST_PORT];
1342 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1343 			    pf_osfp_fingerprint(pd, th),
1344 			    r->os_fingerprint))
1345 			r = TAILQ_NEXT(r, entries);
1346 		else {
1347 			rm = r;
1348 			break;
1349 		}
1350 	}
1351 
1352 	if (srs) {
1353 		/* With scrub rules present TCP normalization happens only
1354 		 * if one of rules has matched and it's not a "no scrub" rule */
1355 		if (rm == NULL || rm->action == PF_NOSCRUB)
1356 			return (PF_PASS);
1357 
1358 		pf_counter_u64_critical_enter();
1359 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1360 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1361 		pf_counter_u64_critical_exit();
1362 		pf_rule_to_actions(rm, &pd->act);
1363 	}
1364 
1365 	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1366 		pd->flags |= PFDESC_TCP_NORM;
1367 
1368 	flags = tcp_get_flags(th);
1369 	if (flags & TH_SYN) {
1370 		/* Illegal packet */
1371 		if (flags & TH_RST)
1372 			goto tcp_drop;
1373 
1374 		if (flags & TH_FIN)
1375 			goto tcp_drop;
1376 	} else {
1377 		/* Illegal packet */
1378 		if (!(flags & (TH_ACK|TH_RST)))
1379 			goto tcp_drop;
1380 	}
1381 
1382 	if (!(flags & TH_ACK)) {
1383 		/* These flags are only valid if ACK is set */
1384 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1385 			goto tcp_drop;
1386 	}
1387 
1388 	/* Check for illegal header length */
1389 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1390 		goto tcp_drop;
1391 
1392 	/* If flags changed, or reserved data set, then adjust */
1393 	if (flags != tcp_get_flags(th) ||
1394 	    (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) {
1395 		u_int16_t	ov, nv;
1396 
1397 		ov = *(u_int16_t *)(&th->th_ack + 1);
1398 		flags &= ~(TH_RES1 | TH_RES2 | TH_RES3);
1399 		tcp_set_flags(th, flags);
1400 		nv = *(u_int16_t *)(&th->th_ack + 1);
1401 
1402 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0);
1403 		rewrite = 1;
1404 	}
1405 
1406 	/* Remove urgent pointer, if TH_URG is not set */
1407 	if (!(flags & TH_URG) && th->th_urp) {
1408 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp,
1409 		    0, 0);
1410 		th->th_urp = 0;
1411 		rewrite = 1;
1412 	}
1413 
1414 	/* copy back packet headers if we sanitized */
1415 	if (rewrite)
1416 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1417 
1418 	return (PF_PASS);
1419 
1420  tcp_drop:
1421 	REASON_SET(&reason, PFRES_NORM);
1422 	if (rm != NULL && r->log)
1423 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1);
1424 	return (PF_DROP);
1425 }
1426 
1427 int
1428 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th,
1429     struct pf_state_peer *src, struct pf_state_peer *dst)
1430 {
1431 	u_int32_t tsval, tsecr;
1432 	u_int8_t hdr[60];
1433 	u_int8_t *opt;
1434 
1435 	KASSERT((src->scrub == NULL),
1436 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1437 
1438 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1439 	if (src->scrub == NULL)
1440 		return (1);
1441 
1442 	switch (pd->af) {
1443 #ifdef INET
1444 	case AF_INET: {
1445 		struct ip *h = mtod(pd->m, struct ip *);
1446 		src->scrub->pfss_ttl = h->ip_ttl;
1447 		break;
1448 	}
1449 #endif /* INET */
1450 #ifdef INET6
1451 	case AF_INET6: {
1452 		struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1453 		src->scrub->pfss_ttl = h->ip6_hlim;
1454 		break;
1455 	}
1456 #endif /* INET6 */
1457 	}
1458 
1459 	/*
1460 	 * All normalizations below are only begun if we see the start of
1461 	 * the connections.  They must all set an enabled bit in pfss_flags
1462 	 */
1463 	if ((tcp_get_flags(th) & TH_SYN) == 0)
1464 		return (0);
1465 
1466 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1467 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1468 		/* Diddle with TCP options */
1469 		int hlen;
1470 		opt = hdr + sizeof(struct tcphdr);
1471 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1472 		while (hlen >= TCPOLEN_TIMESTAMP) {
1473 			switch (*opt) {
1474 			case TCPOPT_EOL:	/* FALLTHROUGH */
1475 			case TCPOPT_NOP:
1476 				opt++;
1477 				hlen--;
1478 				break;
1479 			case TCPOPT_TIMESTAMP:
1480 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1481 					src->scrub->pfss_flags |=
1482 					    PFSS_TIMESTAMP;
1483 					src->scrub->pfss_ts_mod =
1484 					    htonl(arc4random());
1485 
1486 					/* note PFSS_PAWS not set yet */
1487 					memcpy(&tsval, &opt[2],
1488 					    sizeof(u_int32_t));
1489 					memcpy(&tsecr, &opt[6],
1490 					    sizeof(u_int32_t));
1491 					src->scrub->pfss_tsval0 = ntohl(tsval);
1492 					src->scrub->pfss_tsval = ntohl(tsval);
1493 					src->scrub->pfss_tsecr = ntohl(tsecr);
1494 					getmicrouptime(&src->scrub->pfss_last);
1495 				}
1496 				/* FALLTHROUGH */
1497 			default:
1498 				hlen -= MAX(opt[1], 2);
1499 				opt += MAX(opt[1], 2);
1500 				break;
1501 			}
1502 		}
1503 	}
1504 
1505 	return (0);
1506 }
1507 
1508 void
1509 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1510 {
1511 	/* XXX Note: this also cleans up SCTP. */
1512 	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1513 	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1514 
1515 	/* Someday... flush the TCP segment reassembly descriptors. */
1516 }
1517 int
1518 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src,
1519     struct pf_state_peer *dst)
1520 {
1521 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1522 	if (src->scrub == NULL)
1523 		return (1);
1524 
1525 	dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1526 	if (dst->scrub == NULL) {
1527 		uma_zfree(V_pf_state_scrub_z, src);
1528 		return (1);
1529 	}
1530 
1531 	dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1532 
1533 	return (0);
1534 }
1535 
1536 int
1537 pf_normalize_tcp_stateful(struct pf_pdesc *pd,
1538     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1539     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1540 {
1541 	struct timeval uptime;
1542 	u_int32_t tsval, tsecr;
1543 	u_int tsval_from_last;
1544 	u_int8_t hdr[60];
1545 	u_int8_t *opt;
1546 	int copyback = 0;
1547 	int got_ts = 0;
1548 	size_t startoff;
1549 
1550 	KASSERT((src->scrub || dst->scrub),
1551 	    ("%s: src->scrub && dst->scrub!", __func__));
1552 
1553 	/*
1554 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1555 	 * technique to evade an intrusion detection system and confuse
1556 	 * firewall state code.
1557 	 */
1558 	switch (pd->af) {
1559 #ifdef INET
1560 	case AF_INET: {
1561 		if (src->scrub) {
1562 			struct ip *h = mtod(pd->m, struct ip *);
1563 			if (h->ip_ttl > src->scrub->pfss_ttl)
1564 				src->scrub->pfss_ttl = h->ip_ttl;
1565 			h->ip_ttl = src->scrub->pfss_ttl;
1566 		}
1567 		break;
1568 	}
1569 #endif /* INET */
1570 #ifdef INET6
1571 	case AF_INET6: {
1572 		if (src->scrub) {
1573 			struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1574 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1575 				src->scrub->pfss_ttl = h->ip6_hlim;
1576 			h->ip6_hlim = src->scrub->pfss_ttl;
1577 		}
1578 		break;
1579 	}
1580 #endif /* INET6 */
1581 	}
1582 
1583 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1584 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1585 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1586 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1587 		/* Diddle with TCP options */
1588 		int hlen;
1589 		opt = hdr + sizeof(struct tcphdr);
1590 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1591 		while (hlen >= TCPOLEN_TIMESTAMP) {
1592 			startoff = opt - (hdr + sizeof(struct tcphdr));
1593 			switch (*opt) {
1594 			case TCPOPT_EOL:	/* FALLTHROUGH */
1595 			case TCPOPT_NOP:
1596 				opt++;
1597 				hlen--;
1598 				break;
1599 			case TCPOPT_TIMESTAMP:
1600 				/* Modulate the timestamps.  Can be used for
1601 				 * NAT detection, OS uptime determination or
1602 				 * reboot detection.
1603 				 */
1604 
1605 				if (got_ts) {
1606 					/* Huh?  Multiple timestamps!? */
1607 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1608 						DPFPRINTF(("multiple TS??\n"));
1609 						pf_print_state(state);
1610 						printf("\n");
1611 					}
1612 					REASON_SET(reason, PFRES_TS);
1613 					return (PF_DROP);
1614 				}
1615 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1616 					memcpy(&tsval, &opt[2],
1617 					    sizeof(u_int32_t));
1618 					if (tsval && src->scrub &&
1619 					    (src->scrub->pfss_flags &
1620 					    PFSS_TIMESTAMP)) {
1621 						tsval = ntohl(tsval);
1622 						pf_patch_32_unaligned(pd->m,
1623 						    &th->th_sum,
1624 						    &opt[2],
1625 						    htonl(tsval +
1626 						    src->scrub->pfss_ts_mod),
1627 						    PF_ALGNMNT(startoff),
1628 						    0);
1629 						copyback = 1;
1630 					}
1631 
1632 					/* Modulate TS reply iff valid (!0) */
1633 					memcpy(&tsecr, &opt[6],
1634 					    sizeof(u_int32_t));
1635 					if (tsecr && dst->scrub &&
1636 					    (dst->scrub->pfss_flags &
1637 					    PFSS_TIMESTAMP)) {
1638 						tsecr = ntohl(tsecr)
1639 						    - dst->scrub->pfss_ts_mod;
1640 						pf_patch_32_unaligned(pd->m,
1641 						    &th->th_sum,
1642 						    &opt[6],
1643 						    htonl(tsecr),
1644 						    PF_ALGNMNT(startoff),
1645 						    0);
1646 						copyback = 1;
1647 					}
1648 					got_ts = 1;
1649 				}
1650 				/* FALLTHROUGH */
1651 			default:
1652 				hlen -= MAX(opt[1], 2);
1653 				opt += MAX(opt[1], 2);
1654 				break;
1655 			}
1656 		}
1657 		if (copyback) {
1658 			/* Copyback the options, caller copys back header */
1659 			*writeback = 1;
1660 			m_copyback(pd->m, pd->off + sizeof(struct tcphdr),
1661 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1662 			    sizeof(struct tcphdr));
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * Must invalidate PAWS checks on connections idle for too long.
1668 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1669 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1670 	 * TS echo check only works for the first 12 days of a connection
1671 	 * when the TS has exhausted half its 32bit space
1672 	 */
1673 #define TS_MAX_IDLE	(24*24*60*60)
1674 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1675 
1676 	getmicrouptime(&uptime);
1677 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1678 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1679 	    time_uptime - (state->creation / 1000) > TS_MAX_CONN))  {
1680 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1681 			DPFPRINTF(("src idled out of PAWS\n"));
1682 			pf_print_state(state);
1683 			printf("\n");
1684 		}
1685 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1686 		    | PFSS_PAWS_IDLED;
1687 	}
1688 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1689 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1690 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1691 			DPFPRINTF(("dst idled out of PAWS\n"));
1692 			pf_print_state(state);
1693 			printf("\n");
1694 		}
1695 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1696 		    | PFSS_PAWS_IDLED;
1697 	}
1698 
1699 	if (got_ts && src->scrub && dst->scrub &&
1700 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1701 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1702 		/* Validate that the timestamps are "in-window".
1703 		 * RFC1323 describes TCP Timestamp options that allow
1704 		 * measurement of RTT (round trip time) and PAWS
1705 		 * (protection against wrapped sequence numbers).  PAWS
1706 		 * gives us a set of rules for rejecting packets on
1707 		 * long fat pipes (packets that were somehow delayed
1708 		 * in transit longer than the time it took to send the
1709 		 * full TCP sequence space of 4Gb).  We can use these
1710 		 * rules and infer a few others that will let us treat
1711 		 * the 32bit timestamp and the 32bit echoed timestamp
1712 		 * as sequence numbers to prevent a blind attacker from
1713 		 * inserting packets into a connection.
1714 		 *
1715 		 * RFC1323 tells us:
1716 		 *  - The timestamp on this packet must be greater than
1717 		 *    or equal to the last value echoed by the other
1718 		 *    endpoint.  The RFC says those will be discarded
1719 		 *    since it is a dup that has already been acked.
1720 		 *    This gives us a lowerbound on the timestamp.
1721 		 *        timestamp >= other last echoed timestamp
1722 		 *  - The timestamp will be less than or equal to
1723 		 *    the last timestamp plus the time between the
1724 		 *    last packet and now.  The RFC defines the max
1725 		 *    clock rate as 1ms.  We will allow clocks to be
1726 		 *    up to 10% fast and will allow a total difference
1727 		 *    or 30 seconds due to a route change.  And this
1728 		 *    gives us an upperbound on the timestamp.
1729 		 *        timestamp <= last timestamp + max ticks
1730 		 *    We have to be careful here.  Windows will send an
1731 		 *    initial timestamp of zero and then initialize it
1732 		 *    to a random value after the 3whs; presumably to
1733 		 *    avoid a DoS by having to call an expensive RNG
1734 		 *    during a SYN flood.  Proof MS has at least one
1735 		 *    good security geek.
1736 		 *
1737 		 *  - The TCP timestamp option must also echo the other
1738 		 *    endpoints timestamp.  The timestamp echoed is the
1739 		 *    one carried on the earliest unacknowledged segment
1740 		 *    on the left edge of the sequence window.  The RFC
1741 		 *    states that the host will reject any echoed
1742 		 *    timestamps that were larger than any ever sent.
1743 		 *    This gives us an upperbound on the TS echo.
1744 		 *        tescr <= largest_tsval
1745 		 *  - The lowerbound on the TS echo is a little more
1746 		 *    tricky to determine.  The other endpoint's echoed
1747 		 *    values will not decrease.  But there may be
1748 		 *    network conditions that re-order packets and
1749 		 *    cause our view of them to decrease.  For now the
1750 		 *    only lowerbound we can safely determine is that
1751 		 *    the TS echo will never be less than the original
1752 		 *    TS.  XXX There is probably a better lowerbound.
1753 		 *    Remove TS_MAX_CONN with better lowerbound check.
1754 		 *        tescr >= other original TS
1755 		 *
1756 		 * It is also important to note that the fastest
1757 		 * timestamp clock of 1ms will wrap its 32bit space in
1758 		 * 24 days.  So we just disable TS checking after 24
1759 		 * days of idle time.  We actually must use a 12d
1760 		 * connection limit until we can come up with a better
1761 		 * lowerbound to the TS echo check.
1762 		 */
1763 		struct timeval delta_ts;
1764 		int ts_fudge;
1765 
1766 		/*
1767 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1768 		 * a host's timestamp.  This can happen if the previous
1769 		 * packet got delayed in transit for much longer than
1770 		 * this packet.
1771 		 */
1772 		if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0)
1773 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1774 
1775 		/* Calculate max ticks since the last timestamp */
1776 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1777 #define TS_MICROSECS	1000000		/* microseconds per second */
1778 		delta_ts = uptime;
1779 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1780 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1781 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1782 
1783 		if ((src->state >= TCPS_ESTABLISHED &&
1784 		    dst->state >= TCPS_ESTABLISHED) &&
1785 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1786 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1787 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1788 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1789 			/* Bad RFC1323 implementation or an insertion attack.
1790 			 *
1791 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1792 			 *   after the FIN,FIN|ACK,ACK closing that carries
1793 			 *   an old timestamp.
1794 			 */
1795 
1796 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1797 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1798 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1799 			    tsval_from_last) ? '1' : ' ',
1800 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1801 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1802 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1803 			    "idle: %jus %lums\n",
1804 			    tsval, tsecr, tsval_from_last,
1805 			    (uintmax_t)delta_ts.tv_sec,
1806 			    delta_ts.tv_usec / 1000));
1807 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1808 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1809 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1810 			    "\n", dst->scrub->pfss_tsval,
1811 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1812 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1813 				pf_print_state(state);
1814 				pf_print_flags(tcp_get_flags(th));
1815 				printf("\n");
1816 			}
1817 			REASON_SET(reason, PFRES_TS);
1818 			return (PF_DROP);
1819 		}
1820 
1821 		/* XXX I'd really like to require tsecr but it's optional */
1822 
1823 	} else if (!got_ts && (tcp_get_flags(th) & TH_RST) == 0 &&
1824 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1825 	    || pd->p_len > 0 || (tcp_get_flags(th) & TH_SYN)) &&
1826 	    src->scrub && dst->scrub &&
1827 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1828 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1829 		/* Didn't send a timestamp.  Timestamps aren't really useful
1830 		 * when:
1831 		 *  - connection opening or closing (often not even sent).
1832 		 *    but we must not let an attacker to put a FIN on a
1833 		 *    data packet to sneak it through our ESTABLISHED check.
1834 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1835 		 *  - on an empty ACK.  The TS will not be echoed so it will
1836 		 *    probably not help keep the RTT calculation in sync and
1837 		 *    there isn't as much danger when the sequence numbers
1838 		 *    got wrapped.  So some stacks don't include TS on empty
1839 		 *    ACKs :-(
1840 		 *
1841 		 * To minimize the disruption to mostly RFC1323 conformant
1842 		 * stacks, we will only require timestamps on data packets.
1843 		 *
1844 		 * And what do ya know, we cannot require timestamps on data
1845 		 * packets.  There appear to be devices that do legitimate
1846 		 * TCP connection hijacking.  There are HTTP devices that allow
1847 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1848 		 * If the intermediate device has the HTTP response cache, it
1849 		 * will spoof the response but not bother timestamping its
1850 		 * packets.  So we can look for the presence of a timestamp in
1851 		 * the first data packet and if there, require it in all future
1852 		 * packets.
1853 		 */
1854 
1855 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1856 			/*
1857 			 * Hey!  Someone tried to sneak a packet in.  Or the
1858 			 * stack changed its RFC1323 behavior?!?!
1859 			 */
1860 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1861 				DPFPRINTF(("Did not receive expected RFC1323 "
1862 				    "timestamp\n"));
1863 				pf_print_state(state);
1864 				pf_print_flags(tcp_get_flags(th));
1865 				printf("\n");
1866 			}
1867 			REASON_SET(reason, PFRES_TS);
1868 			return (PF_DROP);
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * We will note if a host sends his data packets with or without
1874 	 * timestamps.  And require all data packets to contain a timestamp
1875 	 * if the first does.  PAWS implicitly requires that all data packets be
1876 	 * timestamped.  But I think there are middle-man devices that hijack
1877 	 * TCP streams immediately after the 3whs and don't timestamp their
1878 	 * packets (seen in a WWW accelerator or cache).
1879 	 */
1880 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1881 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1882 		if (got_ts)
1883 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1884 		else {
1885 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1886 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1887 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1888 				/* Don't warn if other host rejected RFC1323 */
1889 				DPFPRINTF(("Broken RFC1323 stack did not "
1890 				    "timestamp data packet. Disabled PAWS "
1891 				    "security.\n"));
1892 				pf_print_state(state);
1893 				pf_print_flags(tcp_get_flags(th));
1894 				printf("\n");
1895 			}
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Update PAWS values
1901 	 */
1902 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1903 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1904 		getmicrouptime(&src->scrub->pfss_last);
1905 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1906 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1907 			src->scrub->pfss_tsval = tsval;
1908 
1909 		if (tsecr) {
1910 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1911 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1912 				src->scrub->pfss_tsecr = tsecr;
1913 
1914 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1915 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1916 			    src->scrub->pfss_tsval0 == 0)) {
1917 				/* tsval0 MUST be the lowest timestamp */
1918 				src->scrub->pfss_tsval0 = tsval;
1919 			}
1920 
1921 			/* Only fully initialized after a TS gets echoed */
1922 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1923 				src->scrub->pfss_flags |= PFSS_PAWS;
1924 		}
1925 	}
1926 
1927 	/* I have a dream....  TCP segment reassembly.... */
1928 	return (0);
1929 }
1930 
1931 int
1932 pf_normalize_mss(struct pf_pdesc *pd)
1933 {
1934 	struct tcphdr	*th = &pd->hdr.tcp;
1935 	u_int16_t	*mss;
1936 	int		 thoff;
1937 	int		 opt, cnt, optlen = 0;
1938 	u_char		 opts[TCP_MAXOLEN];
1939 	u_char		*optp = opts;
1940 	size_t		 startoff;
1941 
1942 	thoff = th->th_off << 2;
1943 	cnt = thoff - sizeof(struct tcphdr);
1944 
1945 	if (cnt > 0 && !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, cnt,
1946 	    NULL, NULL, pd->af))
1947 		return (0);
1948 
1949 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1950 		startoff = optp - opts;
1951 		opt = optp[0];
1952 		if (opt == TCPOPT_EOL)
1953 			break;
1954 		if (opt == TCPOPT_NOP)
1955 			optlen = 1;
1956 		else {
1957 			if (cnt < 2)
1958 				break;
1959 			optlen = optp[1];
1960 			if (optlen < 2 || optlen > cnt)
1961 				break;
1962 		}
1963 		switch (opt) {
1964 		case TCPOPT_MAXSEG:
1965 			mss = (u_int16_t *)(optp + 2);
1966 			if ((ntohs(*mss)) > pd->act.max_mss) {
1967 				pf_patch_16_unaligned(pd->m,
1968 				    &th->th_sum,
1969 				    mss, htons(pd->act.max_mss),
1970 				    PF_ALGNMNT(startoff),
1971 				    0);
1972 				m_copyback(pd->m, pd->off + sizeof(*th),
1973 				    thoff - sizeof(*th), opts);
1974 				m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1975 			}
1976 			break;
1977 		default:
1978 			break;
1979 		}
1980 	}
1981 
1982 	return (0);
1983 }
1984 
1985 int
1986 pf_scan_sctp(struct pf_pdesc *pd)
1987 {
1988 	struct sctp_chunkhdr ch = { };
1989 	int chunk_off = sizeof(struct sctphdr);
1990 	int chunk_start;
1991 	int ret;
1992 
1993 	while (pd->off + chunk_off < pd->tot_len) {
1994 		if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL,
1995 		    NULL, pd->af))
1996 			return (PF_DROP);
1997 
1998 		/* Length includes the header, this must be at least 4. */
1999 		if (ntohs(ch.chunk_length) < 4)
2000 			return (PF_DROP);
2001 
2002 		chunk_start = chunk_off;
2003 		chunk_off += roundup(ntohs(ch.chunk_length), 4);
2004 
2005 		switch (ch.chunk_type) {
2006 		case SCTP_INITIATION:
2007 		case SCTP_INITIATION_ACK: {
2008 			struct sctp_init_chunk init;
2009 
2010 			if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init,
2011 			    sizeof(init), NULL, NULL, pd->af))
2012 				return (PF_DROP);
2013 
2014 			/*
2015 			 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2016 			 * any value except 0."
2017 			 */
2018 			if (init.init.initiate_tag == 0)
2019 				return (PF_DROP);
2020 			if (init.init.num_inbound_streams == 0)
2021 				return (PF_DROP);
2022 			if (init.init.num_outbound_streams == 0)
2023 				return (PF_DROP);
2024 			if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2025 				return (PF_DROP);
2026 
2027 			/*
2028 			 * RFC 9260, Section 3.1, INIT chunks MUST have zero
2029 			 * verification tag.
2030 			 */
2031 			if (ch.chunk_type == SCTP_INITIATION &&
2032 			    pd->hdr.sctp.v_tag != 0)
2033 				return (PF_DROP);
2034 
2035 			pd->sctp_initiate_tag = init.init.initiate_tag;
2036 
2037 			if (ch.chunk_type == SCTP_INITIATION)
2038 				pd->sctp_flags |= PFDESC_SCTP_INIT;
2039 			else
2040 				pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2041 
2042 			ret = pf_multihome_scan_init(pd->off + chunk_start,
2043 			    ntohs(init.ch.chunk_length), pd);
2044 			if (ret != PF_PASS)
2045 				return (ret);
2046 
2047 			break;
2048 		}
2049 		case SCTP_ABORT_ASSOCIATION:
2050 			pd->sctp_flags |= PFDESC_SCTP_ABORT;
2051 			break;
2052 		case SCTP_SHUTDOWN:
2053 		case SCTP_SHUTDOWN_ACK:
2054 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2055 			break;
2056 		case SCTP_SHUTDOWN_COMPLETE:
2057 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2058 			break;
2059 		case SCTP_COOKIE_ECHO:
2060 			pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2061 			break;
2062 		case SCTP_COOKIE_ACK:
2063 			pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2064 			break;
2065 		case SCTP_DATA:
2066 			pd->sctp_flags |= PFDESC_SCTP_DATA;
2067 			break;
2068 		case SCTP_HEARTBEAT_REQUEST:
2069 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2070 			break;
2071 		case SCTP_HEARTBEAT_ACK:
2072 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2073 			break;
2074 		case SCTP_ASCONF:
2075 			pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2076 
2077 			ret = pf_multihome_scan_asconf(pd->off + chunk_start,
2078 			    ntohs(ch.chunk_length), pd);
2079 			if (ret != PF_PASS)
2080 				return (ret);
2081 			break;
2082 		default:
2083 			pd->sctp_flags |= PFDESC_SCTP_OTHER;
2084 			break;
2085 		}
2086 	}
2087 
2088 	/* Validate chunk lengths vs. packet length. */
2089 	if (pd->off + chunk_off != pd->tot_len)
2090 		return (PF_DROP);
2091 
2092 	/*
2093 	 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2094 	 * one in a packet.
2095 	 */
2096 	if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2097 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2098 		return (PF_DROP);
2099 	if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2100 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2101 		return (PF_DROP);
2102 	if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2103 	    (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2104 		return (PF_DROP);
2105 
2106 	return (PF_PASS);
2107 }
2108 
2109 int
2110 pf_normalize_sctp(struct pf_pdesc *pd)
2111 {
2112 	struct pf_krule	*r, *rm = NULL;
2113 	struct sctphdr	*sh = &pd->hdr.sctp;
2114 	u_short		 reason;
2115 	sa_family_t	 af = pd->af;
2116 	int		 srs;
2117 
2118 	PF_RULES_RASSERT();
2119 
2120 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2121 	/* Check if there any scrub rules. Lack of scrub rules means enforced
2122 	 * packet normalization operation just like in OpenBSD. */
2123 	srs = (r != NULL);
2124 	while (r != NULL) {
2125 		pf_counter_u64_add(&r->evaluations, 1);
2126 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
2127 			r = r->skip[PF_SKIP_IFP];
2128 		else if (r->direction && r->direction != pd->dir)
2129 			r = r->skip[PF_SKIP_DIR];
2130 		else if (r->af && r->af != af)
2131 			r = r->skip[PF_SKIP_AF];
2132 		else if (r->proto && r->proto != pd->proto)
2133 			r = r->skip[PF_SKIP_PROTO];
2134 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2135 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
2136 			r = r->skip[PF_SKIP_SRC_ADDR];
2137 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
2138 			    r->src.port[0], r->src.port[1], sh->src_port))
2139 			r = r->skip[PF_SKIP_SRC_PORT];
2140 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2141 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
2142 			r = r->skip[PF_SKIP_DST_ADDR];
2143 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2144 			    r->dst.port[0], r->dst.port[1], sh->dest_port))
2145 			r = r->skip[PF_SKIP_DST_PORT];
2146 		else {
2147 			rm = r;
2148 			break;
2149 		}
2150 	}
2151 
2152 	if (srs) {
2153 		/* With scrub rules present SCTP normalization happens only
2154 		 * if one of rules has matched and it's not a "no scrub" rule */
2155 		if (rm == NULL || rm->action == PF_NOSCRUB)
2156 			return (PF_PASS);
2157 
2158 		pf_counter_u64_critical_enter();
2159 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
2160 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
2161 		pf_counter_u64_critical_exit();
2162 	}
2163 
2164 	/* Verify we're a multiple of 4 bytes long */
2165 	if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4)
2166 		goto sctp_drop;
2167 
2168 	/* INIT chunk needs to be the only chunk */
2169 	if (pd->sctp_flags & PFDESC_SCTP_INIT)
2170 		if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2171 			goto sctp_drop;
2172 
2173 	return (PF_PASS);
2174 
2175 sctp_drop:
2176 	REASON_SET(&reason, PFRES_NORM);
2177 	if (rm != NULL && r->log)
2178 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd,
2179 		    1);
2180 
2181 	return (PF_DROP);
2182 }
2183 
2184 #if defined(INET) || defined(INET6)
2185 void
2186 pf_scrub(struct pf_pdesc *pd)
2187 {
2188 
2189 	struct ip		*h = mtod(pd->m, struct ip *);
2190 #ifdef INET6
2191 	struct ip6_hdr		*h6 = mtod(pd->m, struct ip6_hdr *);
2192 #endif
2193 
2194 	/* Clear IP_DF if no-df was requested */
2195 	if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF &&
2196 	    h->ip_off & htons(IP_DF))
2197 	{
2198 		u_int16_t ip_off = h->ip_off;
2199 
2200 		h->ip_off &= htons(~IP_DF);
2201 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2202 	}
2203 
2204 	/* Enforce a minimum ttl, may cause endless packet loops */
2205 	if (pd->af == AF_INET && pd->act.min_ttl &&
2206 	    h->ip_ttl < pd->act.min_ttl) {
2207 		u_int16_t ip_ttl = h->ip_ttl;
2208 
2209 		h->ip_ttl = pd->act.min_ttl;
2210 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2211 	}
2212 #ifdef INET6
2213 	/* Enforce a minimum ttl, may cause endless packet loops */
2214 	if (pd->af == AF_INET6 && pd->act.min_ttl &&
2215 	    h6->ip6_hlim < pd->act.min_ttl)
2216 		h6->ip6_hlim = pd->act.min_ttl;
2217 #endif
2218 	/* Enforce tos */
2219 	if (pd->act.flags & PFSTATE_SETTOS) {
2220 		switch (pd->af) {
2221 		case AF_INET: {
2222 			u_int16_t	ov, nv;
2223 
2224 			ov = *(u_int16_t *)h;
2225 			h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2226 			nv = *(u_int16_t *)h;
2227 
2228 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2229 			break;
2230 		}
2231 #ifdef INET6
2232 		case AF_INET6:
2233 			h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2234 			h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20);
2235 			break;
2236 #endif
2237 		}
2238 	}
2239 
2240 	/* random-id, but not for fragments */
2241 #ifdef INET
2242 	if (pd->af == AF_INET &&
2243 	    pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2244 		uint16_t ip_id = h->ip_id;
2245 
2246 		ip_fillid(h);
2247 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2248 	}
2249 #endif
2250 }
2251 #endif
2252