1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2001 Niels Provos <provos@citi.umich.edu> 5 * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $ 29 */ 30 31 #include <sys/cdefs.h> 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_pf.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/refcount.h> 42 #include <sys/socket.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/vnet.h> 47 #include <net/pfvar.h> 48 #include <net/if_pflog.h> 49 50 #include <netinet/in.h> 51 #include <netinet/ip.h> 52 #include <netinet/ip_var.h> 53 #include <netinet6/in6_var.h> 54 #include <netinet6/nd6.h> 55 #include <netinet6/ip6_var.h> 56 #include <netinet6/scope6_var.h> 57 #include <netinet/tcp.h> 58 #include <netinet/tcp_fsm.h> 59 #include <netinet/tcp_seq.h> 60 #include <netinet/sctp_constants.h> 61 #include <netinet/sctp_header.h> 62 63 #ifdef INET6 64 #include <netinet/ip6.h> 65 #endif /* INET6 */ 66 67 struct pf_frent { 68 TAILQ_ENTRY(pf_frent) fr_next; 69 struct mbuf *fe_m; 70 uint16_t fe_hdrlen; /* ipv4 header length with ip options 71 ipv6, extension, fragment header */ 72 uint16_t fe_extoff; /* last extension header offset or 0 */ 73 uint16_t fe_len; /* fragment length */ 74 uint16_t fe_off; /* fragment offset */ 75 uint16_t fe_mff; /* more fragment flag */ 76 }; 77 78 struct pf_fragment_cmp { 79 struct pf_addr frc_src; 80 struct pf_addr frc_dst; 81 uint32_t frc_id; 82 sa_family_t frc_af; 83 uint8_t frc_proto; 84 }; 85 86 struct pf_fragment { 87 struct pf_fragment_cmp fr_key; 88 #define fr_src fr_key.frc_src 89 #define fr_dst fr_key.frc_dst 90 #define fr_id fr_key.frc_id 91 #define fr_af fr_key.frc_af 92 #define fr_proto fr_key.frc_proto 93 94 /* pointers to queue element */ 95 struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS]; 96 /* count entries between pointers */ 97 uint8_t fr_entries[PF_FRAG_ENTRY_POINTS]; 98 RB_ENTRY(pf_fragment) fr_entry; 99 TAILQ_ENTRY(pf_fragment) frag_next; 100 uint32_t fr_timeout; 101 TAILQ_HEAD(pf_fragq, pf_frent) fr_queue; 102 uint16_t fr_maxlen; /* maximum length of single fragment */ 103 u_int16_t fr_holes; /* number of holes in the queue */ 104 }; 105 106 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx); 107 #define V_pf_frag_mtx VNET(pf_frag_mtx) 108 #define PF_FRAG_LOCK() mtx_lock(&V_pf_frag_mtx) 109 #define PF_FRAG_UNLOCK() mtx_unlock(&V_pf_frag_mtx) 110 #define PF_FRAG_ASSERT() mtx_assert(&V_pf_frag_mtx, MA_OWNED) 111 112 VNET_DEFINE(uma_zone_t, pf_state_scrub_z); /* XXX: shared with pfsync */ 113 114 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z); 115 #define V_pf_frent_z VNET(pf_frent_z) 116 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z); 117 #define V_pf_frag_z VNET(pf_frag_z) 118 119 TAILQ_HEAD(pf_fragqueue, pf_fragment); 120 TAILQ_HEAD(pf_cachequeue, pf_fragment); 121 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue); 122 #define V_pf_fragqueue VNET(pf_fragqueue) 123 RB_HEAD(pf_frag_tree, pf_fragment); 124 VNET_DEFINE_STATIC(struct pf_frag_tree, pf_frag_tree); 125 #define V_pf_frag_tree VNET(pf_frag_tree) 126 static int pf_frag_compare(struct pf_fragment *, 127 struct pf_fragment *); 128 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 129 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 130 131 static void pf_flush_fragments(void); 132 static void pf_free_fragment(struct pf_fragment *); 133 134 static struct pf_frent *pf_create_fragment(u_short *); 135 static int pf_frent_holes(struct pf_frent *frent); 136 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key, 137 struct pf_frag_tree *tree); 138 static inline int pf_frent_index(struct pf_frent *); 139 static int pf_frent_insert(struct pf_fragment *, 140 struct pf_frent *, struct pf_frent *); 141 void pf_frent_remove(struct pf_fragment *, 142 struct pf_frent *); 143 struct pf_frent *pf_frent_previous(struct pf_fragment *, 144 struct pf_frent *); 145 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *, 146 struct pf_frent *, u_short *); 147 static struct mbuf *pf_join_fragment(struct pf_fragment *); 148 #ifdef INET 149 static int pf_reassemble(struct mbuf **, int, u_short *); 150 #endif /* INET */ 151 #ifdef INET6 152 static int pf_reassemble6(struct mbuf **, 153 struct ip6_frag *, uint16_t, uint16_t, u_short *); 154 #endif /* INET6 */ 155 156 #define DPFPRINTF(x) do { \ 157 if (V_pf_status.debug >= PF_DEBUG_MISC) { \ 158 printf("%s: ", __func__); \ 159 printf x ; \ 160 } \ 161 } while(0) 162 163 #ifdef INET 164 static void 165 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key) 166 { 167 168 key->frc_src.v4 = ip->ip_src; 169 key->frc_dst.v4 = ip->ip_dst; 170 key->frc_af = AF_INET; 171 key->frc_proto = ip->ip_p; 172 key->frc_id = ip->ip_id; 173 } 174 #endif /* INET */ 175 176 void 177 pf_normalize_init(void) 178 { 179 180 V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment), 181 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 182 V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent), 183 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 184 V_pf_state_scrub_z = uma_zcreate("pf state scrubs", 185 sizeof(struct pf_state_scrub), NULL, NULL, NULL, NULL, 186 UMA_ALIGN_PTR, 0); 187 188 mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF); 189 190 V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z; 191 V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT; 192 uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT); 193 uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached"); 194 195 TAILQ_INIT(&V_pf_fragqueue); 196 } 197 198 void 199 pf_normalize_cleanup(void) 200 { 201 202 uma_zdestroy(V_pf_state_scrub_z); 203 uma_zdestroy(V_pf_frent_z); 204 uma_zdestroy(V_pf_frag_z); 205 206 mtx_destroy(&V_pf_frag_mtx); 207 } 208 209 static int 210 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b) 211 { 212 int diff; 213 214 if ((diff = a->fr_id - b->fr_id) != 0) 215 return (diff); 216 if ((diff = a->fr_proto - b->fr_proto) != 0) 217 return (diff); 218 if ((diff = a->fr_af - b->fr_af) != 0) 219 return (diff); 220 if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0) 221 return (diff); 222 if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0) 223 return (diff); 224 return (0); 225 } 226 227 void 228 pf_purge_expired_fragments(void) 229 { 230 u_int32_t expire = time_uptime - 231 V_pf_default_rule.timeout[PFTM_FRAG]; 232 233 pf_purge_fragments(expire); 234 } 235 236 void 237 pf_purge_fragments(uint32_t expire) 238 { 239 struct pf_fragment *frag; 240 241 PF_FRAG_LOCK(); 242 while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) { 243 if (frag->fr_timeout > expire) 244 break; 245 246 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag)); 247 pf_free_fragment(frag); 248 } 249 250 PF_FRAG_UNLOCK(); 251 } 252 253 /* 254 * Try to flush old fragments to make space for new ones 255 */ 256 static void 257 pf_flush_fragments(void) 258 { 259 struct pf_fragment *frag; 260 int goal; 261 262 PF_FRAG_ASSERT(); 263 264 goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10; 265 DPFPRINTF(("trying to free %d frag entriess\n", goal)); 266 while (goal < uma_zone_get_cur(V_pf_frent_z)) { 267 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue); 268 if (frag) 269 pf_free_fragment(frag); 270 else 271 break; 272 } 273 } 274 275 /* 276 * Remove a fragment from the fragment queue, free its fragment entries, 277 * and free the fragment itself. 278 */ 279 static void 280 pf_free_fragment(struct pf_fragment *frag) 281 { 282 struct pf_frent *frent; 283 284 PF_FRAG_ASSERT(); 285 286 RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag); 287 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 288 289 /* Free all fragment entries */ 290 while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) { 291 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 292 293 m_freem(frent->fe_m); 294 uma_zfree(V_pf_frent_z, frent); 295 } 296 297 uma_zfree(V_pf_frag_z, frag); 298 } 299 300 static struct pf_fragment * 301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree) 302 { 303 struct pf_fragment *frag; 304 305 PF_FRAG_ASSERT(); 306 307 frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key); 308 if (frag != NULL) { 309 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 310 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 311 } 312 313 return (frag); 314 } 315 316 static struct pf_frent * 317 pf_create_fragment(u_short *reason) 318 { 319 struct pf_frent *frent; 320 321 PF_FRAG_ASSERT(); 322 323 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 324 if (frent == NULL) { 325 pf_flush_fragments(); 326 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 327 if (frent == NULL) { 328 REASON_SET(reason, PFRES_MEMORY); 329 return (NULL); 330 } 331 } 332 333 return (frent); 334 } 335 336 /* 337 * Calculate the additional holes that were created in the fragment 338 * queue by inserting this fragment. A fragment in the middle 339 * creates one more hole by splitting. For each connected side, 340 * it loses one hole. 341 * Fragment entry must be in the queue when calling this function. 342 */ 343 static int 344 pf_frent_holes(struct pf_frent *frent) 345 { 346 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 347 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 348 int holes = 1; 349 350 if (prev == NULL) { 351 if (frent->fe_off == 0) 352 holes--; 353 } else { 354 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0")); 355 if (frent->fe_off == prev->fe_off + prev->fe_len) 356 holes--; 357 } 358 if (next == NULL) { 359 if (!frent->fe_mff) 360 holes--; 361 } else { 362 KASSERT(frent->fe_mff, ("frent->fe_mff")); 363 if (next->fe_off == frent->fe_off + frent->fe_len) 364 holes--; 365 } 366 return holes; 367 } 368 369 static inline int 370 pf_frent_index(struct pf_frent *frent) 371 { 372 /* 373 * We have an array of 16 entry points to the queue. A full size 374 * 65535 octet IP packet can have 8192 fragments. So the queue 375 * traversal length is at most 512 and at most 16 entry points are 376 * checked. We need 128 additional bytes on a 64 bit architecture. 377 */ 378 CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) == 379 16 - 1); 380 CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1); 381 382 return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS); 383 } 384 385 static int 386 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent, 387 struct pf_frent *prev) 388 { 389 int index; 390 391 CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff); 392 393 /* 394 * A packet has at most 65536 octets. With 16 entry points, each one 395 * spawns 4096 octets. We limit these to 64 fragments each, which 396 * means on average every fragment must have at least 64 octets. 397 */ 398 index = pf_frent_index(frent); 399 if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT) 400 return ENOBUFS; 401 frag->fr_entries[index]++; 402 403 if (prev == NULL) { 404 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next); 405 } else { 406 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 407 ("overlapping fragment")); 408 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next); 409 } 410 411 if (frag->fr_firstoff[index] == NULL) { 412 KASSERT(prev == NULL || pf_frent_index(prev) < index, 413 ("prev == NULL || pf_frent_index(pref) < index")); 414 frag->fr_firstoff[index] = frent; 415 } else { 416 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) { 417 KASSERT(prev == NULL || pf_frent_index(prev) < index, 418 ("prev == NULL || pf_frent_index(pref) < index")); 419 frag->fr_firstoff[index] = frent; 420 } else { 421 KASSERT(prev != NULL, ("prev != NULL")); 422 KASSERT(pf_frent_index(prev) == index, 423 ("pf_frent_index(prev) == index")); 424 } 425 } 426 427 frag->fr_holes += pf_frent_holes(frent); 428 429 return 0; 430 } 431 432 void 433 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent) 434 { 435 #ifdef INVARIANTS 436 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 437 #endif 438 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 439 int index; 440 441 frag->fr_holes -= pf_frent_holes(frent); 442 443 index = pf_frent_index(frent); 444 KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found")); 445 if (frag->fr_firstoff[index]->fe_off == frent->fe_off) { 446 if (next == NULL) { 447 frag->fr_firstoff[index] = NULL; 448 } else { 449 KASSERT(frent->fe_off + frent->fe_len <= next->fe_off, 450 ("overlapping fragment")); 451 if (pf_frent_index(next) == index) { 452 frag->fr_firstoff[index] = next; 453 } else { 454 frag->fr_firstoff[index] = NULL; 455 } 456 } 457 } else { 458 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off, 459 ("frag->fr_firstoff[index]->fe_off < frent->fe_off")); 460 KASSERT(prev != NULL, ("prev != NULL")); 461 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 462 ("overlapping fragment")); 463 KASSERT(pf_frent_index(prev) == index, 464 ("pf_frent_index(prev) == index")); 465 } 466 467 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 468 469 KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining")); 470 frag->fr_entries[index]--; 471 } 472 473 struct pf_frent * 474 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent) 475 { 476 struct pf_frent *prev, *next; 477 int index; 478 479 /* 480 * If there are no fragments after frag, take the final one. Assume 481 * that the global queue is not empty. 482 */ 483 prev = TAILQ_LAST(&frag->fr_queue, pf_fragq); 484 KASSERT(prev != NULL, ("prev != NULL")); 485 if (prev->fe_off <= frent->fe_off) 486 return prev; 487 /* 488 * We want to find a fragment entry that is before frag, but still 489 * close to it. Find the first fragment entry that is in the same 490 * entry point or in the first entry point after that. As we have 491 * already checked that there are entries behind frag, this will 492 * succeed. 493 */ 494 for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS; 495 index++) { 496 prev = frag->fr_firstoff[index]; 497 if (prev != NULL) 498 break; 499 } 500 KASSERT(prev != NULL, ("prev != NULL")); 501 /* 502 * In prev we may have a fragment from the same entry point that is 503 * before frent, or one that is just one position behind frent. 504 * In the latter case, we go back one step and have the predecessor. 505 * There may be none if the new fragment will be the first one. 506 */ 507 if (prev->fe_off > frent->fe_off) { 508 prev = TAILQ_PREV(prev, pf_fragq, fr_next); 509 if (prev == NULL) 510 return NULL; 511 KASSERT(prev->fe_off <= frent->fe_off, 512 ("prev->fe_off <= frent->fe_off")); 513 return prev; 514 } 515 /* 516 * In prev is the first fragment of the entry point. The offset 517 * of frag is behind it. Find the closest previous fragment. 518 */ 519 for (next = TAILQ_NEXT(prev, fr_next); next != NULL; 520 next = TAILQ_NEXT(next, fr_next)) { 521 if (next->fe_off > frent->fe_off) 522 break; 523 prev = next; 524 } 525 return prev; 526 } 527 528 static struct pf_fragment * 529 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent, 530 u_short *reason) 531 { 532 struct pf_frent *after, *next, *prev; 533 struct pf_fragment *frag; 534 uint16_t total; 535 536 PF_FRAG_ASSERT(); 537 538 /* No empty fragments. */ 539 if (frent->fe_len == 0) { 540 DPFPRINTF(("bad fragment: len 0\n")); 541 goto bad_fragment; 542 } 543 544 /* All fragments are 8 byte aligned. */ 545 if (frent->fe_mff && (frent->fe_len & 0x7)) { 546 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len)); 547 goto bad_fragment; 548 } 549 550 /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */ 551 if (frent->fe_off + frent->fe_len > IP_MAXPACKET) { 552 DPFPRINTF(("bad fragment: max packet %d\n", 553 frent->fe_off + frent->fe_len)); 554 goto bad_fragment; 555 } 556 557 DPFPRINTF((key->frc_af == AF_INET ? 558 "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n", 559 key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len)); 560 561 /* Fully buffer all of the fragments in this fragment queue. */ 562 frag = pf_find_fragment(key, &V_pf_frag_tree); 563 564 /* Create a new reassembly queue for this packet. */ 565 if (frag == NULL) { 566 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 567 if (frag == NULL) { 568 pf_flush_fragments(); 569 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 570 if (frag == NULL) { 571 REASON_SET(reason, PFRES_MEMORY); 572 goto drop_fragment; 573 } 574 } 575 576 *(struct pf_fragment_cmp *)frag = *key; 577 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff)); 578 memset(frag->fr_entries, 0, sizeof(frag->fr_entries)); 579 frag->fr_timeout = time_uptime; 580 TAILQ_INIT(&frag->fr_queue); 581 frag->fr_maxlen = frent->fe_len; 582 frag->fr_holes = 1; 583 584 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag); 585 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 586 587 /* We do not have a previous fragment, cannot fail. */ 588 pf_frent_insert(frag, frent, NULL); 589 590 return (frag); 591 } 592 593 KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue")); 594 595 /* Remember maximum fragment len for refragmentation. */ 596 if (frent->fe_len > frag->fr_maxlen) 597 frag->fr_maxlen = frent->fe_len; 598 599 /* Maximum data we have seen already. */ 600 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 601 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 602 603 /* Non terminal fragments must have more fragments flag. */ 604 if (frent->fe_off + frent->fe_len < total && !frent->fe_mff) 605 goto bad_fragment; 606 607 /* Check if we saw the last fragment already. */ 608 if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) { 609 if (frent->fe_off + frent->fe_len > total || 610 (frent->fe_off + frent->fe_len == total && frent->fe_mff)) 611 goto bad_fragment; 612 } else { 613 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff) 614 goto bad_fragment; 615 } 616 617 /* Find neighbors for newly inserted fragment */ 618 prev = pf_frent_previous(frag, frent); 619 if (prev == NULL) { 620 after = TAILQ_FIRST(&frag->fr_queue); 621 KASSERT(after != NULL, ("after != NULL")); 622 } else { 623 after = TAILQ_NEXT(prev, fr_next); 624 } 625 626 if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) { 627 uint16_t precut; 628 629 if (frag->fr_af == AF_INET6) 630 goto free_fragment; 631 632 precut = prev->fe_off + prev->fe_len - frent->fe_off; 633 if (precut >= frent->fe_len) { 634 DPFPRINTF(("new frag overlapped\n")); 635 goto drop_fragment; 636 } 637 DPFPRINTF(("frag head overlap %d\n", precut)); 638 m_adj(frent->fe_m, precut); 639 frent->fe_off += precut; 640 frent->fe_len -= precut; 641 } 642 643 for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off; 644 after = next) { 645 uint16_t aftercut; 646 647 aftercut = frent->fe_off + frent->fe_len - after->fe_off; 648 if (aftercut < after->fe_len) { 649 DPFPRINTF(("frag tail overlap %d", aftercut)); 650 m_adj(after->fe_m, aftercut); 651 /* Fragment may switch queue as fe_off changes */ 652 pf_frent_remove(frag, after); 653 after->fe_off += aftercut; 654 after->fe_len -= aftercut; 655 /* Insert into correct queue */ 656 if (pf_frent_insert(frag, after, prev)) { 657 DPFPRINTF(("fragment requeue limit exceeded")); 658 m_freem(after->fe_m); 659 uma_zfree(V_pf_frent_z, after); 660 /* There is not way to recover */ 661 goto free_fragment; 662 } 663 break; 664 } 665 666 /* This fragment is completely overlapped, lose it. */ 667 DPFPRINTF(("old frag overlapped\n")); 668 next = TAILQ_NEXT(after, fr_next); 669 pf_frent_remove(frag, after); 670 m_freem(after->fe_m); 671 uma_zfree(V_pf_frent_z, after); 672 } 673 674 /* If part of the queue gets too long, there is not way to recover. */ 675 if (pf_frent_insert(frag, frent, prev)) { 676 DPFPRINTF(("fragment queue limit exceeded\n")); 677 goto bad_fragment; 678 } 679 680 return (frag); 681 682 free_fragment: 683 /* 684 * RFC 5722, Errata 3089: When reassembling an IPv6 datagram, if one 685 * or more its constituent fragments is determined to be an overlapping 686 * fragment, the entire datagram (and any constituent fragments) MUST 687 * be silently discarded. 688 */ 689 DPFPRINTF(("flush overlapping fragments\n")); 690 pf_free_fragment(frag); 691 692 bad_fragment: 693 REASON_SET(reason, PFRES_FRAG); 694 drop_fragment: 695 uma_zfree(V_pf_frent_z, frent); 696 return (NULL); 697 } 698 699 static struct mbuf * 700 pf_join_fragment(struct pf_fragment *frag) 701 { 702 struct mbuf *m, *m2; 703 struct pf_frent *frent; 704 705 frent = TAILQ_FIRST(&frag->fr_queue); 706 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 707 708 m = frent->fe_m; 709 m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len); 710 uma_zfree(V_pf_frent_z, frent); 711 while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) { 712 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 713 714 m2 = frent->fe_m; 715 /* Strip off ip header. */ 716 m_adj(m2, frent->fe_hdrlen); 717 /* Strip off any trailing bytes. */ 718 m_adj(m2, frent->fe_len - m2->m_pkthdr.len); 719 720 uma_zfree(V_pf_frent_z, frent); 721 m_cat(m, m2); 722 } 723 724 /* Remove from fragment queue. */ 725 pf_free_fragment(frag); 726 727 return (m); 728 } 729 730 #ifdef INET 731 static int 732 pf_reassemble(struct mbuf **m0, int dir, u_short *reason) 733 { 734 struct mbuf *m = *m0; 735 struct ip *ip = mtod(m, struct ip *); 736 struct pf_frent *frent; 737 struct pf_fragment *frag; 738 struct m_tag *mtag; 739 struct pf_fragment_tag *ftag; 740 struct pf_fragment_cmp key; 741 uint16_t total, hdrlen; 742 uint32_t frag_id; 743 uint16_t maxlen; 744 745 /* Get an entry for the fragment queue */ 746 if ((frent = pf_create_fragment(reason)) == NULL) 747 return (PF_DROP); 748 749 frent->fe_m = m; 750 frent->fe_hdrlen = ip->ip_hl << 2; 751 frent->fe_extoff = 0; 752 frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2); 753 frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; 754 frent->fe_mff = ntohs(ip->ip_off) & IP_MF; 755 756 pf_ip2key(ip, dir, &key); 757 758 if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) 759 return (PF_DROP); 760 761 /* The mbuf is part of the fragment entry, no direct free or access */ 762 m = *m0 = NULL; 763 764 if (frag->fr_holes) { 765 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes)); 766 return (PF_PASS); /* drop because *m0 is NULL, no error */ 767 } 768 769 /* We have all the data */ 770 frent = TAILQ_FIRST(&frag->fr_queue); 771 KASSERT(frent != NULL, ("frent != NULL")); 772 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 773 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 774 hdrlen = frent->fe_hdrlen; 775 776 maxlen = frag->fr_maxlen; 777 frag_id = frag->fr_id; 778 m = *m0 = pf_join_fragment(frag); 779 frag = NULL; 780 781 if (m->m_flags & M_PKTHDR) { 782 int plen = 0; 783 for (m = *m0; m; m = m->m_next) 784 plen += m->m_len; 785 m = *m0; 786 m->m_pkthdr.len = plen; 787 } 788 789 if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, 790 sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) { 791 REASON_SET(reason, PFRES_SHORT); 792 /* PF_DROP requires a valid mbuf *m0 in pf_test() */ 793 return (PF_DROP); 794 } 795 ftag = (struct pf_fragment_tag *)(mtag + 1); 796 ftag->ft_hdrlen = hdrlen; 797 ftag->ft_extoff = 0; 798 ftag->ft_maxlen = maxlen; 799 ftag->ft_id = frag_id; 800 m_tag_prepend(m, mtag); 801 802 ip = mtod(m, struct ip *); 803 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len, 804 htons(hdrlen + total), 0); 805 ip->ip_len = htons(hdrlen + total); 806 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off, 807 ip->ip_off & ~(IP_MF|IP_OFFMASK), 0); 808 ip->ip_off &= ~(IP_MF|IP_OFFMASK); 809 810 if (hdrlen + total > IP_MAXPACKET) { 811 DPFPRINTF(("drop: too big: %d\n", total)); 812 ip->ip_len = 0; 813 REASON_SET(reason, PFRES_SHORT); 814 /* PF_DROP requires a valid mbuf *m0 in pf_test() */ 815 return (PF_DROP); 816 } 817 818 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len))); 819 return (PF_PASS); 820 } 821 #endif /* INET */ 822 823 #ifdef INET6 824 static int 825 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr, 826 uint16_t hdrlen, uint16_t extoff, u_short *reason) 827 { 828 struct mbuf *m = *m0; 829 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 830 struct pf_frent *frent; 831 struct pf_fragment *frag; 832 struct pf_fragment_cmp key; 833 struct m_tag *mtag; 834 struct pf_fragment_tag *ftag; 835 int off; 836 uint32_t frag_id; 837 uint16_t total, maxlen; 838 uint8_t proto; 839 840 PF_FRAG_LOCK(); 841 842 /* Get an entry for the fragment queue. */ 843 if ((frent = pf_create_fragment(reason)) == NULL) { 844 PF_FRAG_UNLOCK(); 845 return (PF_DROP); 846 } 847 848 frent->fe_m = m; 849 frent->fe_hdrlen = hdrlen; 850 frent->fe_extoff = extoff; 851 frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen; 852 frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 853 frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG; 854 855 key.frc_src.v6 = ip6->ip6_src; 856 key.frc_dst.v6 = ip6->ip6_dst; 857 key.frc_af = AF_INET6; 858 /* Only the first fragment's protocol is relevant. */ 859 key.frc_proto = 0; 860 key.frc_id = fraghdr->ip6f_ident; 861 862 if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) { 863 PF_FRAG_UNLOCK(); 864 return (PF_DROP); 865 } 866 867 /* The mbuf is part of the fragment entry, no direct free or access. */ 868 m = *m0 = NULL; 869 870 if (frag->fr_holes) { 871 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, 872 frag->fr_holes)); 873 PF_FRAG_UNLOCK(); 874 return (PF_PASS); /* Drop because *m0 is NULL, no error. */ 875 } 876 877 /* We have all the data. */ 878 frent = TAILQ_FIRST(&frag->fr_queue); 879 KASSERT(frent != NULL, ("frent != NULL")); 880 extoff = frent->fe_extoff; 881 maxlen = frag->fr_maxlen; 882 frag_id = frag->fr_id; 883 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 884 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 885 hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag); 886 887 m = *m0 = pf_join_fragment(frag); 888 frag = NULL; 889 890 PF_FRAG_UNLOCK(); 891 892 /* Take protocol from first fragment header. */ 893 m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off); 894 KASSERT(m, ("%s: short mbuf chain", __func__)); 895 proto = *(mtod(m, uint8_t *) + off); 896 m = *m0; 897 898 /* Delete frag6 header */ 899 if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0) 900 goto fail; 901 902 if (m->m_flags & M_PKTHDR) { 903 int plen = 0; 904 for (m = *m0; m; m = m->m_next) 905 plen += m->m_len; 906 m = *m0; 907 m->m_pkthdr.len = plen; 908 } 909 910 if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, 911 sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) 912 goto fail; 913 ftag = (struct pf_fragment_tag *)(mtag + 1); 914 ftag->ft_hdrlen = hdrlen; 915 ftag->ft_extoff = extoff; 916 ftag->ft_maxlen = maxlen; 917 ftag->ft_id = frag_id; 918 m_tag_prepend(m, mtag); 919 920 ip6 = mtod(m, struct ip6_hdr *); 921 ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total); 922 if (extoff) { 923 /* Write protocol into next field of last extension header. */ 924 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 925 &off); 926 KASSERT(m, ("%s: short mbuf chain", __func__)); 927 *(mtod(m, char *) + off) = proto; 928 m = *m0; 929 } else 930 ip6->ip6_nxt = proto; 931 932 if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) { 933 DPFPRINTF(("drop: too big: %d\n", total)); 934 ip6->ip6_plen = 0; 935 REASON_SET(reason, PFRES_SHORT); 936 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */ 937 return (PF_DROP); 938 } 939 940 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen))); 941 return (PF_PASS); 942 943 fail: 944 REASON_SET(reason, PFRES_MEMORY); 945 /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */ 946 return (PF_DROP); 947 } 948 #endif /* INET6 */ 949 950 #ifdef INET6 951 int 952 pf_max_frag_size(struct mbuf *m) 953 { 954 struct m_tag *tag; 955 struct pf_fragment_tag *ftag; 956 957 tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL); 958 if (tag == NULL) 959 return (m->m_pkthdr.len); 960 961 ftag = (struct pf_fragment_tag *)(tag + 1); 962 963 return (ftag->ft_maxlen); 964 } 965 966 int 967 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag, 968 struct ifnet *rt, bool forward) 969 { 970 struct mbuf *m = *m0, *t; 971 struct ip6_hdr *hdr; 972 struct pf_fragment_tag *ftag = (struct pf_fragment_tag *)(mtag + 1); 973 struct pf_pdesc pd; 974 uint32_t frag_id; 975 uint16_t hdrlen, extoff, maxlen; 976 uint8_t proto; 977 int error, action; 978 979 hdrlen = ftag->ft_hdrlen; 980 extoff = ftag->ft_extoff; 981 maxlen = ftag->ft_maxlen; 982 frag_id = ftag->ft_id; 983 m_tag_delete(m, mtag); 984 mtag = NULL; 985 ftag = NULL; 986 987 if (extoff) { 988 int off; 989 990 /* Use protocol from next field of last extension header */ 991 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 992 &off); 993 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain")); 994 proto = *(mtod(m, uint8_t *) + off); 995 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT; 996 m = *m0; 997 } else { 998 hdr = mtod(m, struct ip6_hdr *); 999 proto = hdr->ip6_nxt; 1000 hdr->ip6_nxt = IPPROTO_FRAGMENT; 1001 } 1002 1003 /* In case of link-local traffic we'll need a scope set. */ 1004 hdr = mtod(m, struct ip6_hdr *); 1005 1006 in6_setscope(&hdr->ip6_src, ifp, NULL); 1007 in6_setscope(&hdr->ip6_dst, ifp, NULL); 1008 1009 /* The MTU must be a multiple of 8 bytes, or we risk doing the 1010 * fragmentation wrong. */ 1011 maxlen = maxlen & ~7; 1012 1013 /* 1014 * Maxlen may be less than 8 if there was only a single 1015 * fragment. As it was fragmented before, add a fragment 1016 * header also for a single fragment. If total or maxlen 1017 * is less than 8, ip6_fragment() will return EMSGSIZE and 1018 * we drop the packet. 1019 */ 1020 error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id); 1021 m = (*m0)->m_nextpkt; 1022 (*m0)->m_nextpkt = NULL; 1023 if (error == 0) { 1024 /* The first mbuf contains the unfragmented packet. */ 1025 m_freem(*m0); 1026 *m0 = NULL; 1027 action = PF_PASS; 1028 } else { 1029 /* Drop expects an mbuf to free. */ 1030 DPFPRINTF(("refragment error %d\n", error)); 1031 action = PF_DROP; 1032 } 1033 for (; m; m = t) { 1034 t = m->m_nextpkt; 1035 m->m_nextpkt = NULL; 1036 m->m_flags |= M_SKIP_FIREWALL; 1037 memset(&pd, 0, sizeof(pd)); 1038 pd.pf_mtag = pf_find_mtag(m); 1039 if (error != 0) { 1040 m_freem(m); 1041 continue; 1042 } 1043 if (rt != NULL) { 1044 struct sockaddr_in6 dst; 1045 hdr = mtod(m, struct ip6_hdr *); 1046 1047 bzero(&dst, sizeof(dst)); 1048 dst.sin6_family = AF_INET6; 1049 dst.sin6_len = sizeof(dst); 1050 dst.sin6_addr = hdr->ip6_dst; 1051 1052 nd6_output_ifp(rt, rt, m, &dst, NULL); 1053 } else if (forward) { 1054 MPASS(m->m_pkthdr.rcvif != NULL); 1055 ip6_forward(m, 0); 1056 } else { 1057 (void)ip6_output(m, NULL, NULL, 0, NULL, NULL, 1058 NULL); 1059 } 1060 } 1061 1062 return (action); 1063 } 1064 #endif /* INET6 */ 1065 1066 #ifdef INET 1067 int 1068 pf_normalize_ip(u_short *reason, struct pf_pdesc *pd) 1069 { 1070 struct pf_krule *r; 1071 struct ip *h = mtod(pd->m, struct ip *); 1072 int mff = (ntohs(h->ip_off) & IP_MF); 1073 int hlen = h->ip_hl << 2; 1074 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 1075 u_int16_t max; 1076 int ip_len; 1077 int tag = -1; 1078 int verdict; 1079 bool scrub_compat; 1080 1081 PF_RULES_RASSERT(); 1082 1083 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1084 /* 1085 * Check if there are any scrub rules, matching or not. 1086 * Lack of scrub rules means: 1087 * - enforced packet normalization operation just like in OpenBSD 1088 * - fragment reassembly depends on V_pf_status.reass 1089 * With scrub rules: 1090 * - packet normalization is performed if there is a matching scrub rule 1091 * - fragment reassembly is performed if the matching rule has no 1092 * PFRULE_FRAGMENT_NOREASS flag 1093 */ 1094 scrub_compat = (r != NULL); 1095 while (r != NULL) { 1096 pf_counter_u64_add(&r->evaluations, 1); 1097 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 1098 r = r->skip[PF_SKIP_IFP]; 1099 else if (r->direction && r->direction != pd->dir) 1100 r = r->skip[PF_SKIP_DIR]; 1101 else if (r->af && r->af != AF_INET) 1102 r = r->skip[PF_SKIP_AF]; 1103 else if (r->proto && r->proto != h->ip_p) 1104 r = r->skip[PF_SKIP_PROTO]; 1105 else if (PF_MISMATCHAW(&r->src.addr, 1106 (struct pf_addr *)&h->ip_src.s_addr, AF_INET, 1107 r->src.neg, pd->kif, M_GETFIB(pd->m))) 1108 r = r->skip[PF_SKIP_SRC_ADDR]; 1109 else if (PF_MISMATCHAW(&r->dst.addr, 1110 (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, 1111 r->dst.neg, NULL, M_GETFIB(pd->m))) 1112 r = r->skip[PF_SKIP_DST_ADDR]; 1113 else if (r->match_tag && !pf_match_tag(pd->m, r, &tag, 1114 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 1115 r = TAILQ_NEXT(r, entries); 1116 else 1117 break; 1118 } 1119 1120 if (scrub_compat) { 1121 /* With scrub rules present IPv4 normalization happens only 1122 * if one of rules has matched and it's not a "no scrub" rule */ 1123 if (r == NULL || r->action == PF_NOSCRUB) 1124 return (PF_PASS); 1125 1126 pf_counter_u64_critical_enter(); 1127 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1128 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1129 pf_counter_u64_critical_exit(); 1130 pf_rule_to_actions(r, &pd->act); 1131 } 1132 1133 /* Check for illegal packets */ 1134 if (hlen < (int)sizeof(struct ip)) { 1135 REASON_SET(reason, PFRES_NORM); 1136 goto drop; 1137 } 1138 1139 if (hlen > ntohs(h->ip_len)) { 1140 REASON_SET(reason, PFRES_NORM); 1141 goto drop; 1142 } 1143 1144 /* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */ 1145 if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) || 1146 (r != NULL && r->rule_flag & PFRULE_NODF)) && 1147 (h->ip_off & htons(IP_DF)) 1148 ) { 1149 u_int16_t ip_off = h->ip_off; 1150 1151 h->ip_off &= htons(~IP_DF); 1152 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1153 } 1154 1155 /* We will need other tests here */ 1156 if (!fragoff && !mff) 1157 goto no_fragment; 1158 1159 /* We're dealing with a fragment now. Don't allow fragments 1160 * with IP_DF to enter the cache. If the flag was cleared by 1161 * no-df above, fine. Otherwise drop it. 1162 */ 1163 if (h->ip_off & htons(IP_DF)) { 1164 DPFPRINTF(("IP_DF\n")); 1165 goto bad; 1166 } 1167 1168 ip_len = ntohs(h->ip_len) - hlen; 1169 1170 /* All fragments are 8 byte aligned */ 1171 if (mff && (ip_len & 0x7)) { 1172 DPFPRINTF(("mff and %d\n", ip_len)); 1173 goto bad; 1174 } 1175 1176 /* Respect maximum length */ 1177 if (fragoff + ip_len > IP_MAXPACKET) { 1178 DPFPRINTF(("max packet %d\n", fragoff + ip_len)); 1179 goto bad; 1180 } 1181 1182 if ((!scrub_compat && V_pf_status.reass) || 1183 (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS)) 1184 ) { 1185 max = fragoff + ip_len; 1186 1187 /* Fully buffer all of the fragments 1188 * Might return a completely reassembled mbuf, or NULL */ 1189 PF_FRAG_LOCK(); 1190 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max)); 1191 verdict = pf_reassemble(&pd->m, pd->dir, reason); 1192 PF_FRAG_UNLOCK(); 1193 1194 if (verdict != PF_PASS) 1195 return (PF_DROP); 1196 1197 if (pd->m == NULL) 1198 return (PF_DROP); 1199 1200 h = mtod(pd->m, struct ip *); 1201 pd->tot_len = htons(h->ip_len); 1202 1203 no_fragment: 1204 /* At this point, only IP_DF is allowed in ip_off */ 1205 if (h->ip_off & ~htons(IP_DF)) { 1206 u_int16_t ip_off = h->ip_off; 1207 1208 h->ip_off &= htons(IP_DF); 1209 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1210 } 1211 } 1212 1213 return (PF_PASS); 1214 1215 bad: 1216 DPFPRINTF(("dropping bad fragment\n")); 1217 REASON_SET(reason, PFRES_FRAG); 1218 drop: 1219 if (r != NULL && r->log) 1220 PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1); 1221 1222 return (PF_DROP); 1223 } 1224 #endif 1225 1226 #ifdef INET6 1227 int 1228 pf_normalize_ip6(int off, u_short *reason, 1229 struct pf_pdesc *pd) 1230 { 1231 struct pf_krule *r; 1232 struct ip6_hdr *h; 1233 struct ip6_frag frag; 1234 bool scrub_compat; 1235 1236 PF_RULES_RASSERT(); 1237 1238 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1239 /* 1240 * Check if there are any scrub rules, matching or not. 1241 * Lack of scrub rules means: 1242 * - enforced packet normalization operation just like in OpenBSD 1243 * With scrub rules: 1244 * - packet normalization is performed if there is a matching scrub rule 1245 * XXX: Fragment reassembly always performed for IPv6! 1246 */ 1247 scrub_compat = (r != NULL); 1248 while (r != NULL) { 1249 pf_counter_u64_add(&r->evaluations, 1); 1250 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 1251 r = r->skip[PF_SKIP_IFP]; 1252 else if (r->direction && r->direction != pd->dir) 1253 r = r->skip[PF_SKIP_DIR]; 1254 else if (r->af && r->af != AF_INET6) 1255 r = r->skip[PF_SKIP_AF]; 1256 else if (r->proto && r->proto != pd->proto) 1257 r = r->skip[PF_SKIP_PROTO]; 1258 else if (PF_MISMATCHAW(&r->src.addr, 1259 (struct pf_addr *)&pd->src, AF_INET6, 1260 r->src.neg, pd->kif, M_GETFIB(pd->m))) 1261 r = r->skip[PF_SKIP_SRC_ADDR]; 1262 else if (PF_MISMATCHAW(&r->dst.addr, 1263 (struct pf_addr *)&pd->dst, AF_INET6, 1264 r->dst.neg, NULL, M_GETFIB(pd->m))) 1265 r = r->skip[PF_SKIP_DST_ADDR]; 1266 else 1267 break; 1268 } 1269 1270 if (scrub_compat) { 1271 /* With scrub rules present IPv6 normalization happens only 1272 * if one of rules has matched and it's not a "no scrub" rule */ 1273 if (r == NULL || r->action == PF_NOSCRUB) 1274 return (PF_PASS); 1275 1276 pf_counter_u64_critical_enter(); 1277 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1278 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1279 pf_counter_u64_critical_exit(); 1280 pf_rule_to_actions(r, &pd->act); 1281 } 1282 1283 if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6)) 1284 return (PF_DROP); 1285 1286 /* Offset now points to data portion. */ 1287 off += sizeof(frag); 1288 1289 if (pd->virtual_proto == PF_VPROTO_FRAGMENT) { 1290 /* Returns PF_DROP or *m0 is NULL or completely reassembled 1291 * mbuf. */ 1292 if (pf_reassemble6(&pd->m, &frag, off, pd->extoff, reason) != PF_PASS) 1293 return (PF_DROP); 1294 if (pd->m == NULL) 1295 return (PF_DROP); 1296 h = mtod(pd->m, struct ip6_hdr *); 1297 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 1298 } 1299 1300 return (PF_PASS); 1301 } 1302 #endif /* INET6 */ 1303 1304 int 1305 pf_normalize_tcp(struct pf_pdesc *pd) 1306 { 1307 struct pf_krule *r, *rm = NULL; 1308 struct tcphdr *th = &pd->hdr.tcp; 1309 int rewrite = 0; 1310 u_short reason; 1311 u_int16_t flags; 1312 sa_family_t af = pd->af; 1313 int srs; 1314 1315 PF_RULES_RASSERT(); 1316 1317 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1318 /* Check if there any scrub rules. Lack of scrub rules means enforced 1319 * packet normalization operation just like in OpenBSD. */ 1320 srs = (r != NULL); 1321 while (r != NULL) { 1322 pf_counter_u64_add(&r->evaluations, 1); 1323 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 1324 r = r->skip[PF_SKIP_IFP]; 1325 else if (r->direction && r->direction != pd->dir) 1326 r = r->skip[PF_SKIP_DIR]; 1327 else if (r->af && r->af != af) 1328 r = r->skip[PF_SKIP_AF]; 1329 else if (r->proto && r->proto != pd->proto) 1330 r = r->skip[PF_SKIP_PROTO]; 1331 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 1332 r->src.neg, pd->kif, M_GETFIB(pd->m))) 1333 r = r->skip[PF_SKIP_SRC_ADDR]; 1334 else if (r->src.port_op && !pf_match_port(r->src.port_op, 1335 r->src.port[0], r->src.port[1], th->th_sport)) 1336 r = r->skip[PF_SKIP_SRC_PORT]; 1337 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 1338 r->dst.neg, NULL, M_GETFIB(pd->m))) 1339 r = r->skip[PF_SKIP_DST_ADDR]; 1340 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 1341 r->dst.port[0], r->dst.port[1], th->th_dport)) 1342 r = r->skip[PF_SKIP_DST_PORT]; 1343 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match( 1344 pf_osfp_fingerprint(pd, th), 1345 r->os_fingerprint)) 1346 r = TAILQ_NEXT(r, entries); 1347 else { 1348 rm = r; 1349 break; 1350 } 1351 } 1352 1353 if (srs) { 1354 /* With scrub rules present TCP normalization happens only 1355 * if one of rules has matched and it's not a "no scrub" rule */ 1356 if (rm == NULL || rm->action == PF_NOSCRUB) 1357 return (PF_PASS); 1358 1359 pf_counter_u64_critical_enter(); 1360 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1361 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1362 pf_counter_u64_critical_exit(); 1363 pf_rule_to_actions(rm, &pd->act); 1364 } 1365 1366 if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP) 1367 pd->flags |= PFDESC_TCP_NORM; 1368 1369 flags = tcp_get_flags(th); 1370 if (flags & TH_SYN) { 1371 /* Illegal packet */ 1372 if (flags & TH_RST) 1373 goto tcp_drop; 1374 1375 if (flags & TH_FIN) 1376 goto tcp_drop; 1377 } else { 1378 /* Illegal packet */ 1379 if (!(flags & (TH_ACK|TH_RST))) 1380 goto tcp_drop; 1381 } 1382 1383 if (!(flags & TH_ACK)) { 1384 /* These flags are only valid if ACK is set */ 1385 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG)) 1386 goto tcp_drop; 1387 } 1388 1389 /* Check for illegal header length */ 1390 if (th->th_off < (sizeof(struct tcphdr) >> 2)) 1391 goto tcp_drop; 1392 1393 /* If flags changed, or reserved data set, then adjust */ 1394 if (flags != tcp_get_flags(th) || 1395 (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) { 1396 u_int16_t ov, nv; 1397 1398 ov = *(u_int16_t *)(&th->th_ack + 1); 1399 flags &= ~(TH_RES1 | TH_RES2 | TH_RES3); 1400 tcp_set_flags(th, flags); 1401 nv = *(u_int16_t *)(&th->th_ack + 1); 1402 1403 th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0); 1404 rewrite = 1; 1405 } 1406 1407 /* Remove urgent pointer, if TH_URG is not set */ 1408 if (!(flags & TH_URG) && th->th_urp) { 1409 th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp, 1410 0, 0); 1411 th->th_urp = 0; 1412 rewrite = 1; 1413 } 1414 1415 /* copy back packet headers if we sanitized */ 1416 if (rewrite) 1417 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 1418 1419 return (PF_PASS); 1420 1421 tcp_drop: 1422 REASON_SET(&reason, PFRES_NORM); 1423 if (rm != NULL && r->log) 1424 PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1); 1425 return (PF_DROP); 1426 } 1427 1428 int 1429 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th, 1430 struct pf_state_peer *src, struct pf_state_peer *dst) 1431 { 1432 u_int32_t tsval, tsecr; 1433 u_int8_t hdr[60]; 1434 u_int8_t *opt; 1435 1436 KASSERT((src->scrub == NULL), 1437 ("pf_normalize_tcp_init: src->scrub != NULL")); 1438 1439 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1440 if (src->scrub == NULL) 1441 return (1); 1442 1443 switch (pd->af) { 1444 #ifdef INET 1445 case AF_INET: { 1446 struct ip *h = mtod(pd->m, struct ip *); 1447 src->scrub->pfss_ttl = h->ip_ttl; 1448 break; 1449 } 1450 #endif /* INET */ 1451 #ifdef INET6 1452 case AF_INET6: { 1453 struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *); 1454 src->scrub->pfss_ttl = h->ip6_hlim; 1455 break; 1456 } 1457 #endif /* INET6 */ 1458 } 1459 1460 /* 1461 * All normalizations below are only begun if we see the start of 1462 * the connections. They must all set an enabled bit in pfss_flags 1463 */ 1464 if ((tcp_get_flags(th) & TH_SYN) == 0) 1465 return (0); 1466 1467 if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub && 1468 pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) { 1469 /* Diddle with TCP options */ 1470 int hlen; 1471 opt = hdr + sizeof(struct tcphdr); 1472 hlen = (th->th_off << 2) - sizeof(struct tcphdr); 1473 while (hlen >= TCPOLEN_TIMESTAMP) { 1474 switch (*opt) { 1475 case TCPOPT_EOL: /* FALLTHROUGH */ 1476 case TCPOPT_NOP: 1477 opt++; 1478 hlen--; 1479 break; 1480 case TCPOPT_TIMESTAMP: 1481 if (opt[1] >= TCPOLEN_TIMESTAMP) { 1482 src->scrub->pfss_flags |= 1483 PFSS_TIMESTAMP; 1484 src->scrub->pfss_ts_mod = 1485 htonl(arc4random()); 1486 1487 /* note PFSS_PAWS not set yet */ 1488 memcpy(&tsval, &opt[2], 1489 sizeof(u_int32_t)); 1490 memcpy(&tsecr, &opt[6], 1491 sizeof(u_int32_t)); 1492 src->scrub->pfss_tsval0 = ntohl(tsval); 1493 src->scrub->pfss_tsval = ntohl(tsval); 1494 src->scrub->pfss_tsecr = ntohl(tsecr); 1495 getmicrouptime(&src->scrub->pfss_last); 1496 } 1497 /* FALLTHROUGH */ 1498 default: 1499 hlen -= MAX(opt[1], 2); 1500 opt += MAX(opt[1], 2); 1501 break; 1502 } 1503 } 1504 } 1505 1506 return (0); 1507 } 1508 1509 void 1510 pf_normalize_tcp_cleanup(struct pf_kstate *state) 1511 { 1512 /* XXX Note: this also cleans up SCTP. */ 1513 uma_zfree(V_pf_state_scrub_z, state->src.scrub); 1514 uma_zfree(V_pf_state_scrub_z, state->dst.scrub); 1515 1516 /* Someday... flush the TCP segment reassembly descriptors. */ 1517 } 1518 int 1519 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src, 1520 struct pf_state_peer *dst) 1521 { 1522 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1523 if (src->scrub == NULL) 1524 return (1); 1525 1526 dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1527 if (dst->scrub == NULL) { 1528 uma_zfree(V_pf_state_scrub_z, src); 1529 return (1); 1530 } 1531 1532 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 1533 1534 return (0); 1535 } 1536 1537 int 1538 pf_normalize_tcp_stateful(struct pf_pdesc *pd, 1539 u_short *reason, struct tcphdr *th, struct pf_kstate *state, 1540 struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback) 1541 { 1542 struct timeval uptime; 1543 u_int32_t tsval, tsecr; 1544 u_int tsval_from_last; 1545 u_int8_t hdr[60]; 1546 u_int8_t *opt; 1547 int copyback = 0; 1548 int got_ts = 0; 1549 size_t startoff; 1550 1551 KASSERT((src->scrub || dst->scrub), 1552 ("%s: src->scrub && dst->scrub!", __func__)); 1553 1554 /* 1555 * Enforce the minimum TTL seen for this connection. Negate a common 1556 * technique to evade an intrusion detection system and confuse 1557 * firewall state code. 1558 */ 1559 switch (pd->af) { 1560 #ifdef INET 1561 case AF_INET: { 1562 if (src->scrub) { 1563 struct ip *h = mtod(pd->m, struct ip *); 1564 if (h->ip_ttl > src->scrub->pfss_ttl) 1565 src->scrub->pfss_ttl = h->ip_ttl; 1566 h->ip_ttl = src->scrub->pfss_ttl; 1567 } 1568 break; 1569 } 1570 #endif /* INET */ 1571 #ifdef INET6 1572 case AF_INET6: { 1573 if (src->scrub) { 1574 struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *); 1575 if (h->ip6_hlim > src->scrub->pfss_ttl) 1576 src->scrub->pfss_ttl = h->ip6_hlim; 1577 h->ip6_hlim = src->scrub->pfss_ttl; 1578 } 1579 break; 1580 } 1581 #endif /* INET6 */ 1582 } 1583 1584 if (th->th_off > (sizeof(struct tcphdr) >> 2) && 1585 ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) || 1586 (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) && 1587 pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) { 1588 /* Diddle with TCP options */ 1589 int hlen; 1590 opt = hdr + sizeof(struct tcphdr); 1591 hlen = (th->th_off << 2) - sizeof(struct tcphdr); 1592 while (hlen >= TCPOLEN_TIMESTAMP) { 1593 startoff = opt - (hdr + sizeof(struct tcphdr)); 1594 switch (*opt) { 1595 case TCPOPT_EOL: /* FALLTHROUGH */ 1596 case TCPOPT_NOP: 1597 opt++; 1598 hlen--; 1599 break; 1600 case TCPOPT_TIMESTAMP: 1601 /* Modulate the timestamps. Can be used for 1602 * NAT detection, OS uptime determination or 1603 * reboot detection. 1604 */ 1605 1606 if (got_ts) { 1607 /* Huh? Multiple timestamps!? */ 1608 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1609 DPFPRINTF(("multiple TS??\n")); 1610 pf_print_state(state); 1611 printf("\n"); 1612 } 1613 REASON_SET(reason, PFRES_TS); 1614 return (PF_DROP); 1615 } 1616 if (opt[1] >= TCPOLEN_TIMESTAMP) { 1617 memcpy(&tsval, &opt[2], 1618 sizeof(u_int32_t)); 1619 if (tsval && src->scrub && 1620 (src->scrub->pfss_flags & 1621 PFSS_TIMESTAMP)) { 1622 tsval = ntohl(tsval); 1623 pf_patch_32_unaligned(pd->m, 1624 &th->th_sum, 1625 &opt[2], 1626 htonl(tsval + 1627 src->scrub->pfss_ts_mod), 1628 PF_ALGNMNT(startoff), 1629 0); 1630 copyback = 1; 1631 } 1632 1633 /* Modulate TS reply iff valid (!0) */ 1634 memcpy(&tsecr, &opt[6], 1635 sizeof(u_int32_t)); 1636 if (tsecr && dst->scrub && 1637 (dst->scrub->pfss_flags & 1638 PFSS_TIMESTAMP)) { 1639 tsecr = ntohl(tsecr) 1640 - dst->scrub->pfss_ts_mod; 1641 pf_patch_32_unaligned(pd->m, 1642 &th->th_sum, 1643 &opt[6], 1644 htonl(tsecr), 1645 PF_ALGNMNT(startoff), 1646 0); 1647 copyback = 1; 1648 } 1649 got_ts = 1; 1650 } 1651 /* FALLTHROUGH */ 1652 default: 1653 hlen -= MAX(opt[1], 2); 1654 opt += MAX(opt[1], 2); 1655 break; 1656 } 1657 } 1658 if (copyback) { 1659 /* Copyback the options, caller copys back header */ 1660 *writeback = 1; 1661 m_copyback(pd->m, pd->off + sizeof(struct tcphdr), 1662 (th->th_off << 2) - sizeof(struct tcphdr), hdr + 1663 sizeof(struct tcphdr)); 1664 } 1665 } 1666 1667 /* 1668 * Must invalidate PAWS checks on connections idle for too long. 1669 * The fastest allowed timestamp clock is 1ms. That turns out to 1670 * be about 24 days before it wraps. XXX Right now our lowerbound 1671 * TS echo check only works for the first 12 days of a connection 1672 * when the TS has exhausted half its 32bit space 1673 */ 1674 #define TS_MAX_IDLE (24*24*60*60) 1675 #define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */ 1676 1677 getmicrouptime(&uptime); 1678 if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && 1679 (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE || 1680 time_uptime - (state->creation / 1000) > TS_MAX_CONN)) { 1681 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1682 DPFPRINTF(("src idled out of PAWS\n")); 1683 pf_print_state(state); 1684 printf("\n"); 1685 } 1686 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS) 1687 | PFSS_PAWS_IDLED; 1688 } 1689 if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) && 1690 uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) { 1691 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1692 DPFPRINTF(("dst idled out of PAWS\n")); 1693 pf_print_state(state); 1694 printf("\n"); 1695 } 1696 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS) 1697 | PFSS_PAWS_IDLED; 1698 } 1699 1700 if (got_ts && src->scrub && dst->scrub && 1701 (src->scrub->pfss_flags & PFSS_PAWS) && 1702 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1703 /* Validate that the timestamps are "in-window". 1704 * RFC1323 describes TCP Timestamp options that allow 1705 * measurement of RTT (round trip time) and PAWS 1706 * (protection against wrapped sequence numbers). PAWS 1707 * gives us a set of rules for rejecting packets on 1708 * long fat pipes (packets that were somehow delayed 1709 * in transit longer than the time it took to send the 1710 * full TCP sequence space of 4Gb). We can use these 1711 * rules and infer a few others that will let us treat 1712 * the 32bit timestamp and the 32bit echoed timestamp 1713 * as sequence numbers to prevent a blind attacker from 1714 * inserting packets into a connection. 1715 * 1716 * RFC1323 tells us: 1717 * - The timestamp on this packet must be greater than 1718 * or equal to the last value echoed by the other 1719 * endpoint. The RFC says those will be discarded 1720 * since it is a dup that has already been acked. 1721 * This gives us a lowerbound on the timestamp. 1722 * timestamp >= other last echoed timestamp 1723 * - The timestamp will be less than or equal to 1724 * the last timestamp plus the time between the 1725 * last packet and now. The RFC defines the max 1726 * clock rate as 1ms. We will allow clocks to be 1727 * up to 10% fast and will allow a total difference 1728 * or 30 seconds due to a route change. And this 1729 * gives us an upperbound on the timestamp. 1730 * timestamp <= last timestamp + max ticks 1731 * We have to be careful here. Windows will send an 1732 * initial timestamp of zero and then initialize it 1733 * to a random value after the 3whs; presumably to 1734 * avoid a DoS by having to call an expensive RNG 1735 * during a SYN flood. Proof MS has at least one 1736 * good security geek. 1737 * 1738 * - The TCP timestamp option must also echo the other 1739 * endpoints timestamp. The timestamp echoed is the 1740 * one carried on the earliest unacknowledged segment 1741 * on the left edge of the sequence window. The RFC 1742 * states that the host will reject any echoed 1743 * timestamps that were larger than any ever sent. 1744 * This gives us an upperbound on the TS echo. 1745 * tescr <= largest_tsval 1746 * - The lowerbound on the TS echo is a little more 1747 * tricky to determine. The other endpoint's echoed 1748 * values will not decrease. But there may be 1749 * network conditions that re-order packets and 1750 * cause our view of them to decrease. For now the 1751 * only lowerbound we can safely determine is that 1752 * the TS echo will never be less than the original 1753 * TS. XXX There is probably a better lowerbound. 1754 * Remove TS_MAX_CONN with better lowerbound check. 1755 * tescr >= other original TS 1756 * 1757 * It is also important to note that the fastest 1758 * timestamp clock of 1ms will wrap its 32bit space in 1759 * 24 days. So we just disable TS checking after 24 1760 * days of idle time. We actually must use a 12d 1761 * connection limit until we can come up with a better 1762 * lowerbound to the TS echo check. 1763 */ 1764 struct timeval delta_ts; 1765 int ts_fudge; 1766 1767 /* 1768 * PFTM_TS_DIFF is how many seconds of leeway to allow 1769 * a host's timestamp. This can happen if the previous 1770 * packet got delayed in transit for much longer than 1771 * this packet. 1772 */ 1773 if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0) 1774 ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF]; 1775 1776 /* Calculate max ticks since the last timestamp */ 1777 #define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */ 1778 #define TS_MICROSECS 1000000 /* microseconds per second */ 1779 delta_ts = uptime; 1780 timevalsub(&delta_ts, &src->scrub->pfss_last); 1781 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ; 1782 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ); 1783 1784 if ((src->state >= TCPS_ESTABLISHED && 1785 dst->state >= TCPS_ESTABLISHED) && 1786 (SEQ_LT(tsval, dst->scrub->pfss_tsecr) || 1787 SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) || 1788 (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) || 1789 SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) { 1790 /* Bad RFC1323 implementation or an insertion attack. 1791 * 1792 * - Solaris 2.6 and 2.7 are known to send another ACK 1793 * after the FIN,FIN|ACK,ACK closing that carries 1794 * an old timestamp. 1795 */ 1796 1797 DPFPRINTF(("Timestamp failed %c%c%c%c\n", 1798 SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ', 1799 SEQ_GT(tsval, src->scrub->pfss_tsval + 1800 tsval_from_last) ? '1' : ' ', 1801 SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ', 1802 SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' ')); 1803 DPFPRINTF((" tsval: %u tsecr: %u +ticks: %u " 1804 "idle: %jus %lums\n", 1805 tsval, tsecr, tsval_from_last, 1806 (uintmax_t)delta_ts.tv_sec, 1807 delta_ts.tv_usec / 1000)); 1808 DPFPRINTF((" src->tsval: %u tsecr: %u\n", 1809 src->scrub->pfss_tsval, src->scrub->pfss_tsecr)); 1810 DPFPRINTF((" dst->tsval: %u tsecr: %u tsval0: %u" 1811 "\n", dst->scrub->pfss_tsval, 1812 dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0)); 1813 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1814 pf_print_state(state); 1815 pf_print_flags(tcp_get_flags(th)); 1816 printf("\n"); 1817 } 1818 REASON_SET(reason, PFRES_TS); 1819 return (PF_DROP); 1820 } 1821 1822 /* XXX I'd really like to require tsecr but it's optional */ 1823 1824 } else if (!got_ts && (tcp_get_flags(th) & TH_RST) == 0 && 1825 ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED) 1826 || pd->p_len > 0 || (tcp_get_flags(th) & TH_SYN)) && 1827 src->scrub && dst->scrub && 1828 (src->scrub->pfss_flags & PFSS_PAWS) && 1829 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1830 /* Didn't send a timestamp. Timestamps aren't really useful 1831 * when: 1832 * - connection opening or closing (often not even sent). 1833 * but we must not let an attacker to put a FIN on a 1834 * data packet to sneak it through our ESTABLISHED check. 1835 * - on a TCP reset. RFC suggests not even looking at TS. 1836 * - on an empty ACK. The TS will not be echoed so it will 1837 * probably not help keep the RTT calculation in sync and 1838 * there isn't as much danger when the sequence numbers 1839 * got wrapped. So some stacks don't include TS on empty 1840 * ACKs :-( 1841 * 1842 * To minimize the disruption to mostly RFC1323 conformant 1843 * stacks, we will only require timestamps on data packets. 1844 * 1845 * And what do ya know, we cannot require timestamps on data 1846 * packets. There appear to be devices that do legitimate 1847 * TCP connection hijacking. There are HTTP devices that allow 1848 * a 3whs (with timestamps) and then buffer the HTTP request. 1849 * If the intermediate device has the HTTP response cache, it 1850 * will spoof the response but not bother timestamping its 1851 * packets. So we can look for the presence of a timestamp in 1852 * the first data packet and if there, require it in all future 1853 * packets. 1854 */ 1855 1856 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) { 1857 /* 1858 * Hey! Someone tried to sneak a packet in. Or the 1859 * stack changed its RFC1323 behavior?!?! 1860 */ 1861 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1862 DPFPRINTF(("Did not receive expected RFC1323 " 1863 "timestamp\n")); 1864 pf_print_state(state); 1865 pf_print_flags(tcp_get_flags(th)); 1866 printf("\n"); 1867 } 1868 REASON_SET(reason, PFRES_TS); 1869 return (PF_DROP); 1870 } 1871 } 1872 1873 /* 1874 * We will note if a host sends his data packets with or without 1875 * timestamps. And require all data packets to contain a timestamp 1876 * if the first does. PAWS implicitly requires that all data packets be 1877 * timestamped. But I think there are middle-man devices that hijack 1878 * TCP streams immediately after the 3whs and don't timestamp their 1879 * packets (seen in a WWW accelerator or cache). 1880 */ 1881 if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags & 1882 (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) { 1883 if (got_ts) 1884 src->scrub->pfss_flags |= PFSS_DATA_TS; 1885 else { 1886 src->scrub->pfss_flags |= PFSS_DATA_NOTS; 1887 if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub && 1888 (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { 1889 /* Don't warn if other host rejected RFC1323 */ 1890 DPFPRINTF(("Broken RFC1323 stack did not " 1891 "timestamp data packet. Disabled PAWS " 1892 "security.\n")); 1893 pf_print_state(state); 1894 pf_print_flags(tcp_get_flags(th)); 1895 printf("\n"); 1896 } 1897 } 1898 } 1899 1900 /* 1901 * Update PAWS values 1902 */ 1903 if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags & 1904 (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) { 1905 getmicrouptime(&src->scrub->pfss_last); 1906 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) || 1907 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1908 src->scrub->pfss_tsval = tsval; 1909 1910 if (tsecr) { 1911 if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) || 1912 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1913 src->scrub->pfss_tsecr = tsecr; 1914 1915 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 && 1916 (SEQ_LT(tsval, src->scrub->pfss_tsval0) || 1917 src->scrub->pfss_tsval0 == 0)) { 1918 /* tsval0 MUST be the lowest timestamp */ 1919 src->scrub->pfss_tsval0 = tsval; 1920 } 1921 1922 /* Only fully initialized after a TS gets echoed */ 1923 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0) 1924 src->scrub->pfss_flags |= PFSS_PAWS; 1925 } 1926 } 1927 1928 /* I have a dream.... TCP segment reassembly.... */ 1929 return (0); 1930 } 1931 1932 int 1933 pf_normalize_mss(struct pf_pdesc *pd) 1934 { 1935 struct tcphdr *th = &pd->hdr.tcp; 1936 u_int16_t *mss; 1937 int thoff; 1938 int opt, cnt, optlen = 0; 1939 u_char opts[TCP_MAXOLEN]; 1940 u_char *optp = opts; 1941 size_t startoff; 1942 1943 thoff = th->th_off << 2; 1944 cnt = thoff - sizeof(struct tcphdr); 1945 1946 if (cnt <= 0 || cnt > MAX_TCPOPTLEN || !pf_pull_hdr(pd->m, 1947 pd->off + sizeof(*th), opts, cnt, NULL, NULL, pd->af)) 1948 return (0); 1949 1950 for (; cnt > 0; cnt -= optlen, optp += optlen) { 1951 startoff = optp - opts; 1952 opt = optp[0]; 1953 if (opt == TCPOPT_EOL) 1954 break; 1955 if (opt == TCPOPT_NOP) 1956 optlen = 1; 1957 else { 1958 if (cnt < 2) 1959 break; 1960 optlen = optp[1]; 1961 if (optlen < 2 || optlen > cnt) 1962 break; 1963 } 1964 switch (opt) { 1965 case TCPOPT_MAXSEG: 1966 mss = (u_int16_t *)(optp + 2); 1967 if ((ntohs(*mss)) > pd->act.max_mss) { 1968 pf_patch_16_unaligned(pd->m, 1969 &th->th_sum, 1970 mss, htons(pd->act.max_mss), 1971 PF_ALGNMNT(startoff), 1972 0); 1973 m_copyback(pd->m, pd->off + sizeof(*th), 1974 thoff - sizeof(*th), opts); 1975 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 1976 } 1977 break; 1978 default: 1979 break; 1980 } 1981 } 1982 1983 return (0); 1984 } 1985 1986 int 1987 pf_scan_sctp(struct pf_pdesc *pd) 1988 { 1989 struct sctp_chunkhdr ch = { }; 1990 int chunk_off = sizeof(struct sctphdr); 1991 int chunk_start; 1992 int ret; 1993 1994 while (pd->off + chunk_off < pd->tot_len) { 1995 if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL, 1996 NULL, pd->af)) 1997 return (PF_DROP); 1998 1999 /* Length includes the header, this must be at least 4. */ 2000 if (ntohs(ch.chunk_length) < 4) 2001 return (PF_DROP); 2002 2003 chunk_start = chunk_off; 2004 chunk_off += roundup(ntohs(ch.chunk_length), 4); 2005 2006 switch (ch.chunk_type) { 2007 case SCTP_INITIATION: 2008 case SCTP_INITIATION_ACK: { 2009 struct sctp_init_chunk init; 2010 2011 if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init, 2012 sizeof(init), NULL, NULL, pd->af)) 2013 return (PF_DROP); 2014 2015 /* 2016 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have 2017 * any value except 0." 2018 */ 2019 if (init.init.initiate_tag == 0) 2020 return (PF_DROP); 2021 if (init.init.num_inbound_streams == 0) 2022 return (PF_DROP); 2023 if (init.init.num_outbound_streams == 0) 2024 return (PF_DROP); 2025 if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND) 2026 return (PF_DROP); 2027 2028 /* 2029 * RFC 9260, Section 3.1, INIT chunks MUST have zero 2030 * verification tag. 2031 */ 2032 if (ch.chunk_type == SCTP_INITIATION && 2033 pd->hdr.sctp.v_tag != 0) 2034 return (PF_DROP); 2035 2036 pd->sctp_initiate_tag = init.init.initiate_tag; 2037 2038 if (ch.chunk_type == SCTP_INITIATION) 2039 pd->sctp_flags |= PFDESC_SCTP_INIT; 2040 else 2041 pd->sctp_flags |= PFDESC_SCTP_INIT_ACK; 2042 2043 ret = pf_multihome_scan_init(pd->off + chunk_start, 2044 ntohs(init.ch.chunk_length), pd); 2045 if (ret != PF_PASS) 2046 return (ret); 2047 2048 break; 2049 } 2050 case SCTP_ABORT_ASSOCIATION: 2051 pd->sctp_flags |= PFDESC_SCTP_ABORT; 2052 break; 2053 case SCTP_SHUTDOWN: 2054 case SCTP_SHUTDOWN_ACK: 2055 pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN; 2056 break; 2057 case SCTP_SHUTDOWN_COMPLETE: 2058 pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE; 2059 break; 2060 case SCTP_COOKIE_ECHO: 2061 pd->sctp_flags |= PFDESC_SCTP_COOKIE; 2062 break; 2063 case SCTP_COOKIE_ACK: 2064 pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK; 2065 break; 2066 case SCTP_DATA: 2067 pd->sctp_flags |= PFDESC_SCTP_DATA; 2068 break; 2069 case SCTP_HEARTBEAT_REQUEST: 2070 pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT; 2071 break; 2072 case SCTP_HEARTBEAT_ACK: 2073 pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK; 2074 break; 2075 case SCTP_ASCONF: 2076 pd->sctp_flags |= PFDESC_SCTP_ASCONF; 2077 2078 ret = pf_multihome_scan_asconf(pd->off + chunk_start, 2079 ntohs(ch.chunk_length), pd); 2080 if (ret != PF_PASS) 2081 return (ret); 2082 break; 2083 default: 2084 pd->sctp_flags |= PFDESC_SCTP_OTHER; 2085 break; 2086 } 2087 } 2088 2089 /* Validate chunk lengths vs. packet length. */ 2090 if (pd->off + chunk_off != pd->tot_len) 2091 return (PF_DROP); 2092 2093 /* 2094 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only 2095 * one in a packet. 2096 */ 2097 if ((pd->sctp_flags & PFDESC_SCTP_INIT) && 2098 (pd->sctp_flags & ~PFDESC_SCTP_INIT)) 2099 return (PF_DROP); 2100 if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) && 2101 (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK)) 2102 return (PF_DROP); 2103 if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) && 2104 (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE)) 2105 return (PF_DROP); 2106 if ((pd->sctp_flags & PFDESC_SCTP_ABORT) && 2107 (pd->sctp_flags & PFDESC_SCTP_DATA)) { 2108 /* 2109 * RFC4960 3.3.7: DATA chunks MUST NOT be 2110 * bundled with ABORT. 2111 */ 2112 return (PF_DROP); 2113 } 2114 2115 return (PF_PASS); 2116 } 2117 2118 int 2119 pf_normalize_sctp(struct pf_pdesc *pd) 2120 { 2121 struct pf_krule *r, *rm = NULL; 2122 struct sctphdr *sh = &pd->hdr.sctp; 2123 u_short reason; 2124 sa_family_t af = pd->af; 2125 int srs; 2126 2127 PF_RULES_RASSERT(); 2128 2129 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 2130 /* Check if there any scrub rules. Lack of scrub rules means enforced 2131 * packet normalization operation just like in OpenBSD. */ 2132 srs = (r != NULL); 2133 while (r != NULL) { 2134 pf_counter_u64_add(&r->evaluations, 1); 2135 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 2136 r = r->skip[PF_SKIP_IFP]; 2137 else if (r->direction && r->direction != pd->dir) 2138 r = r->skip[PF_SKIP_DIR]; 2139 else if (r->af && r->af != af) 2140 r = r->skip[PF_SKIP_AF]; 2141 else if (r->proto && r->proto != pd->proto) 2142 r = r->skip[PF_SKIP_PROTO]; 2143 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 2144 r->src.neg, pd->kif, M_GETFIB(pd->m))) 2145 r = r->skip[PF_SKIP_SRC_ADDR]; 2146 else if (r->src.port_op && !pf_match_port(r->src.port_op, 2147 r->src.port[0], r->src.port[1], sh->src_port)) 2148 r = r->skip[PF_SKIP_SRC_PORT]; 2149 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 2150 r->dst.neg, NULL, M_GETFIB(pd->m))) 2151 r = r->skip[PF_SKIP_DST_ADDR]; 2152 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 2153 r->dst.port[0], r->dst.port[1], sh->dest_port)) 2154 r = r->skip[PF_SKIP_DST_PORT]; 2155 else { 2156 rm = r; 2157 break; 2158 } 2159 } 2160 2161 if (srs) { 2162 /* With scrub rules present SCTP normalization happens only 2163 * if one of rules has matched and it's not a "no scrub" rule */ 2164 if (rm == NULL || rm->action == PF_NOSCRUB) 2165 return (PF_PASS); 2166 2167 pf_counter_u64_critical_enter(); 2168 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 2169 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 2170 pf_counter_u64_critical_exit(); 2171 } 2172 2173 /* Verify we're a multiple of 4 bytes long */ 2174 if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4) 2175 goto sctp_drop; 2176 2177 /* INIT chunk needs to be the only chunk */ 2178 if (pd->sctp_flags & PFDESC_SCTP_INIT) 2179 if (pd->sctp_flags & ~PFDESC_SCTP_INIT) 2180 goto sctp_drop; 2181 2182 return (PF_PASS); 2183 2184 sctp_drop: 2185 REASON_SET(&reason, PFRES_NORM); 2186 if (rm != NULL && r->log) 2187 PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 2188 1); 2189 2190 return (PF_DROP); 2191 } 2192 2193 #if defined(INET) || defined(INET6) 2194 void 2195 pf_scrub(struct pf_pdesc *pd) 2196 { 2197 2198 struct ip *h = mtod(pd->m, struct ip *); 2199 #ifdef INET6 2200 struct ip6_hdr *h6 = mtod(pd->m, struct ip6_hdr *); 2201 #endif 2202 2203 /* Clear IP_DF if no-df was requested */ 2204 if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF && 2205 h->ip_off & htons(IP_DF)) 2206 { 2207 u_int16_t ip_off = h->ip_off; 2208 2209 h->ip_off &= htons(~IP_DF); 2210 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 2211 } 2212 2213 /* Enforce a minimum ttl, may cause endless packet loops */ 2214 if (pd->af == AF_INET && pd->act.min_ttl && 2215 h->ip_ttl < pd->act.min_ttl) { 2216 u_int16_t ip_ttl = h->ip_ttl; 2217 2218 h->ip_ttl = pd->act.min_ttl; 2219 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0); 2220 } 2221 #ifdef INET6 2222 /* Enforce a minimum ttl, may cause endless packet loops */ 2223 if (pd->af == AF_INET6 && pd->act.min_ttl && 2224 h6->ip6_hlim < pd->act.min_ttl) 2225 h6->ip6_hlim = pd->act.min_ttl; 2226 #endif 2227 /* Enforce tos */ 2228 if (pd->act.flags & PFSTATE_SETTOS) { 2229 switch (pd->af) { 2230 case AF_INET: { 2231 u_int16_t ov, nv; 2232 2233 ov = *(u_int16_t *)h; 2234 h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK); 2235 nv = *(u_int16_t *)h; 2236 2237 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0); 2238 break; 2239 } 2240 #ifdef INET6 2241 case AF_INET6: 2242 h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK; 2243 h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20); 2244 break; 2245 #endif 2246 } 2247 } 2248 2249 /* random-id, but not for fragments */ 2250 #ifdef INET 2251 if (pd->af == AF_INET && 2252 pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) { 2253 uint16_t ip_id = h->ip_id; 2254 2255 ip_fillid(h); 2256 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0); 2257 } 2258 #endif 2259 } 2260 #endif 2261