xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision 6be3386466ab79a84b48429ae66244f21526d3df)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_pf.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/refcount.h>
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/vnet.h>
48 #include <net/pfvar.h>
49 #include <net/if_pflog.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet6/ip6_var.h>
55 #include <netinet/tcp.h>
56 #include <netinet/tcp_fsm.h>
57 #include <netinet/tcp_seq.h>
58 
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif /* INET6 */
62 
63 struct pf_frent {
64 	TAILQ_ENTRY(pf_frent)	fr_next;
65 	struct mbuf	*fe_m;
66 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
67 					   ipv6, extension, fragment header */
68 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
69 	uint16_t	fe_len;		/* fragment length */
70 	uint16_t	fe_off;		/* fragment offset */
71 	uint16_t	fe_mff;		/* more fragment flag */
72 };
73 
74 struct pf_fragment_cmp {
75 	struct pf_addr	frc_src;
76 	struct pf_addr	frc_dst;
77 	uint32_t	frc_id;
78 	sa_family_t	frc_af;
79 	uint8_t		frc_proto;
80 };
81 
82 struct pf_fragment {
83 	struct pf_fragment_cmp	fr_key;
84 #define fr_src	fr_key.frc_src
85 #define fr_dst	fr_key.frc_dst
86 #define fr_id	fr_key.frc_id
87 #define fr_af	fr_key.frc_af
88 #define fr_proto	fr_key.frc_proto
89 
90 	/* pointers to queue element */
91 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
92 	/* count entries between pointers */
93 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
94 	RB_ENTRY(pf_fragment) fr_entry;
95 	TAILQ_ENTRY(pf_fragment) frag_next;
96 	uint32_t	fr_timeout;
97 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
98 	u_int16_t	fr_holes;	/* number of holes in the queue */
99 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
100 };
101 
102 struct pf_fragment_tag {
103 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
104 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
105 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
106 	uint32_t	ft_id;		/* fragment id */
107 };
108 
109 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
110 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
111 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
112 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
113 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
114 
115 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
116 
117 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
118 #define	V_pf_frent_z	VNET(pf_frent_z)
119 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
120 #define	V_pf_frag_z	VNET(pf_frag_z)
121 
122 TAILQ_HEAD(pf_fragqueue, pf_fragment);
123 TAILQ_HEAD(pf_cachequeue, pf_fragment);
124 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
125 #define	V_pf_fragqueue			VNET(pf_fragqueue)
126 RB_HEAD(pf_frag_tree, pf_fragment);
127 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
128 #define	V_pf_frag_tree			VNET(pf_frag_tree)
129 static int		 pf_frag_compare(struct pf_fragment *,
130 			    struct pf_fragment *);
131 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
132 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
133 
134 static void	pf_flush_fragments(void);
135 static void	pf_free_fragment(struct pf_fragment *);
136 static void	pf_remove_fragment(struct pf_fragment *);
137 static int	pf_normalize_tcpopt(struct pf_krule *, struct mbuf *,
138 		    struct tcphdr *, int, sa_family_t);
139 static struct pf_frent *pf_create_fragment(u_short *);
140 static int	pf_frent_holes(struct pf_frent *frent);
141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
142 		    struct pf_frag_tree *tree);
143 static inline int	pf_frent_index(struct pf_frent *);
144 static int	pf_frent_insert(struct pf_fragment *,
145 			    struct pf_frent *, struct pf_frent *);
146 void			pf_frent_remove(struct pf_fragment *,
147 			    struct pf_frent *);
148 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
149 			    struct pf_frent *);
150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
151 		    struct pf_frent *, u_short *);
152 static struct mbuf *pf_join_fragment(struct pf_fragment *);
153 #ifdef INET
154 static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
155 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
156 #endif	/* INET */
157 #ifdef INET6
158 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
159 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
160 static void	pf_scrub_ip6(struct mbuf **, uint8_t);
161 #endif	/* INET6 */
162 
163 #define	DPFPRINTF(x) do {				\
164 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
165 		printf("%s: ", __func__);		\
166 		printf x ;				\
167 	}						\
168 } while(0)
169 
170 #ifdef INET
171 static void
172 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
173 {
174 
175 	key->frc_src.v4 = ip->ip_src;
176 	key->frc_dst.v4 = ip->ip_dst;
177 	key->frc_af = AF_INET;
178 	key->frc_proto = ip->ip_p;
179 	key->frc_id = ip->ip_id;
180 }
181 #endif	/* INET */
182 
183 void
184 pf_normalize_init(void)
185 {
186 
187 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
188 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
189 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
190 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
191 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
192 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
193 	    UMA_ALIGN_PTR, 0);
194 
195 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
196 
197 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
198 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
199 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
200 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
201 
202 	TAILQ_INIT(&V_pf_fragqueue);
203 }
204 
205 void
206 pf_normalize_cleanup(void)
207 {
208 
209 	uma_zdestroy(V_pf_state_scrub_z);
210 	uma_zdestroy(V_pf_frent_z);
211 	uma_zdestroy(V_pf_frag_z);
212 
213 	mtx_destroy(&V_pf_frag_mtx);
214 }
215 
216 static int
217 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
218 {
219 	int	diff;
220 
221 	if ((diff = a->fr_id - b->fr_id) != 0)
222 		return (diff);
223 	if ((diff = a->fr_proto - b->fr_proto) != 0)
224 		return (diff);
225 	if ((diff = a->fr_af - b->fr_af) != 0)
226 		return (diff);
227 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
228 		return (diff);
229 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
230 		return (diff);
231 	return (0);
232 }
233 
234 void
235 pf_purge_expired_fragments(void)
236 {
237 	u_int32_t	expire = time_uptime -
238 			    V_pf_default_rule.timeout[PFTM_FRAG];
239 
240 	pf_purge_fragments(expire);
241 }
242 
243 void
244 pf_purge_fragments(uint32_t expire)
245 {
246 	struct pf_fragment	*frag;
247 
248 	PF_FRAG_LOCK();
249 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
250 		if (frag->fr_timeout > expire)
251 			break;
252 
253 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
254 		pf_free_fragment(frag);
255 	}
256 
257 	PF_FRAG_UNLOCK();
258 }
259 
260 /*
261  * Try to flush old fragments to make space for new ones
262  */
263 static void
264 pf_flush_fragments(void)
265 {
266 	struct pf_fragment	*frag;
267 	int			 goal;
268 
269 	PF_FRAG_ASSERT();
270 
271 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
272 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
273 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
274 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
275 		if (frag)
276 			pf_free_fragment(frag);
277 		else
278 			break;
279 	}
280 }
281 
282 /* Frees the fragments and all associated entries */
283 static void
284 pf_free_fragment(struct pf_fragment *frag)
285 {
286 	struct pf_frent		*frent;
287 
288 	PF_FRAG_ASSERT();
289 
290 	/* Free all fragments */
291 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
292 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
293 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
294 
295 		m_freem(frent->fe_m);
296 		uma_zfree(V_pf_frent_z, frent);
297 	}
298 
299 	pf_remove_fragment(frag);
300 }
301 
302 static struct pf_fragment *
303 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
304 {
305 	struct pf_fragment	*frag;
306 
307 	PF_FRAG_ASSERT();
308 
309 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
310 	if (frag != NULL) {
311 		/* XXX Are we sure we want to update the timeout? */
312 		frag->fr_timeout = time_uptime;
313 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
314 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
315 	}
316 
317 	return (frag);
318 }
319 
320 /* Removes a fragment from the fragment queue and frees the fragment */
321 static void
322 pf_remove_fragment(struct pf_fragment *frag)
323 {
324 
325 	PF_FRAG_ASSERT();
326 	KASSERT(frag, ("frag != NULL"));
327 
328 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
329 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
330 	uma_zfree(V_pf_frag_z, frag);
331 }
332 
333 static struct pf_frent *
334 pf_create_fragment(u_short *reason)
335 {
336 	struct pf_frent *frent;
337 
338 	PF_FRAG_ASSERT();
339 
340 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
341 	if (frent == NULL) {
342 		pf_flush_fragments();
343 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
344 		if (frent == NULL) {
345 			REASON_SET(reason, PFRES_MEMORY);
346 			return (NULL);
347 		}
348 	}
349 
350 	return (frent);
351 }
352 
353 /*
354  * Calculate the additional holes that were created in the fragment
355  * queue by inserting this fragment.  A fragment in the middle
356  * creates one more hole by splitting.  For each connected side,
357  * it loses one hole.
358  * Fragment entry must be in the queue when calling this function.
359  */
360 static int
361 pf_frent_holes(struct pf_frent *frent)
362 {
363 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
364 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
365 	int holes = 1;
366 
367 	if (prev == NULL) {
368 		if (frent->fe_off == 0)
369 			holes--;
370 	} else {
371 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
372 		if (frent->fe_off == prev->fe_off + prev->fe_len)
373 			holes--;
374 	}
375 	if (next == NULL) {
376 		if (!frent->fe_mff)
377 			holes--;
378 	} else {
379 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
380 		if (next->fe_off == frent->fe_off + frent->fe_len)
381 			holes--;
382 	}
383 	return holes;
384 }
385 
386 static inline int
387 pf_frent_index(struct pf_frent *frent)
388 {
389 	/*
390 	 * We have an array of 16 entry points to the queue.  A full size
391 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
392 	 * traversal length is at most 512 and at most 16 entry points are
393 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
394 	 */
395 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
396 	    16 - 1);
397 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
398 
399 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
400 }
401 
402 static int
403 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
404     struct pf_frent *prev)
405 {
406 	int index;
407 
408 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
409 
410 	/*
411 	 * A packet has at most 65536 octets.  With 16 entry points, each one
412 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
413 	 * means on average every fragment must have at least 64 octets.
414 	 */
415 	index = pf_frent_index(frent);
416 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
417 		return ENOBUFS;
418 	frag->fr_entries[index]++;
419 
420 	if (prev == NULL) {
421 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
422 	} else {
423 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
424 		    ("overlapping fragment"));
425 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
426 	}
427 
428 	if (frag->fr_firstoff[index] == NULL) {
429 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
430 		    ("prev == NULL || pf_frent_index(pref) < index"));
431 		frag->fr_firstoff[index] = frent;
432 	} else {
433 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
434 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
435 			    ("prev == NULL || pf_frent_index(pref) < index"));
436 			frag->fr_firstoff[index] = frent;
437 		} else {
438 			KASSERT(prev != NULL, ("prev != NULL"));
439 			KASSERT(pf_frent_index(prev) == index,
440 			    ("pf_frent_index(prev) == index"));
441 		}
442 	}
443 
444 	frag->fr_holes += pf_frent_holes(frent);
445 
446 	return 0;
447 }
448 
449 void
450 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
451 {
452 #ifdef INVARIANTS
453 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
454 #endif
455 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
456 	int index;
457 
458 	frag->fr_holes -= pf_frent_holes(frent);
459 
460 	index = pf_frent_index(frent);
461 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
462 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
463 		if (next == NULL) {
464 			frag->fr_firstoff[index] = NULL;
465 		} else {
466 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
467 			    ("overlapping fragment"));
468 			if (pf_frent_index(next) == index) {
469 				frag->fr_firstoff[index] = next;
470 			} else {
471 				frag->fr_firstoff[index] = NULL;
472 			}
473 		}
474 	} else {
475 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
476 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
477 		KASSERT(prev != NULL, ("prev != NULL"));
478 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
479 		    ("overlapping fragment"));
480 		KASSERT(pf_frent_index(prev) == index,
481 		    ("pf_frent_index(prev) == index"));
482 	}
483 
484 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
485 
486 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
487 	frag->fr_entries[index]--;
488 }
489 
490 struct pf_frent *
491 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
492 {
493 	struct pf_frent *prev, *next;
494 	int index;
495 
496 	/*
497 	 * If there are no fragments after frag, take the final one.  Assume
498 	 * that the global queue is not empty.
499 	 */
500 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
501 	KASSERT(prev != NULL, ("prev != NULL"));
502 	if (prev->fe_off <= frent->fe_off)
503 		return prev;
504 	/*
505 	 * We want to find a fragment entry that is before frag, but still
506 	 * close to it.  Find the first fragment entry that is in the same
507 	 * entry point or in the first entry point after that.  As we have
508 	 * already checked that there are entries behind frag, this will
509 	 * succeed.
510 	 */
511 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
512 	    index++) {
513 		prev = frag->fr_firstoff[index];
514 		if (prev != NULL)
515 			break;
516 	}
517 	KASSERT(prev != NULL, ("prev != NULL"));
518 	/*
519 	 * In prev we may have a fragment from the same entry point that is
520 	 * before frent, or one that is just one position behind frent.
521 	 * In the latter case, we go back one step and have the predecessor.
522 	 * There may be none if the new fragment will be the first one.
523 	 */
524 	if (prev->fe_off > frent->fe_off) {
525 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
526 		if (prev == NULL)
527 			return NULL;
528 		KASSERT(prev->fe_off <= frent->fe_off,
529 		    ("prev->fe_off <= frent->fe_off"));
530 		return prev;
531 	}
532 	/*
533 	 * In prev is the first fragment of the entry point.  The offset
534 	 * of frag is behind it.  Find the closest previous fragment.
535 	 */
536 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
537 	    next = TAILQ_NEXT(next, fr_next)) {
538 		if (next->fe_off > frent->fe_off)
539 			break;
540 		prev = next;
541 	}
542 	return prev;
543 }
544 
545 static struct pf_fragment *
546 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
547     u_short *reason)
548 {
549 	struct pf_frent		*after, *next, *prev;
550 	struct pf_fragment	*frag;
551 	uint16_t		total;
552 	int			old_index, new_index;
553 
554 	PF_FRAG_ASSERT();
555 
556 	/* No empty fragments. */
557 	if (frent->fe_len == 0) {
558 		DPFPRINTF(("bad fragment: len 0\n"));
559 		goto bad_fragment;
560 	}
561 
562 	/* All fragments are 8 byte aligned. */
563 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
564 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
565 		goto bad_fragment;
566 	}
567 
568 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
569 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
570 		DPFPRINTF(("bad fragment: max packet %d\n",
571 		    frent->fe_off + frent->fe_len));
572 		goto bad_fragment;
573 	}
574 
575 	DPFPRINTF((key->frc_af == AF_INET ?
576 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
577 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
578 
579 	/* Fully buffer all of the fragments in this fragment queue. */
580 	frag = pf_find_fragment(key, &V_pf_frag_tree);
581 
582 	/* Create a new reassembly queue for this packet. */
583 	if (frag == NULL) {
584 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
585 		if (frag == NULL) {
586 			pf_flush_fragments();
587 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
588 			if (frag == NULL) {
589 				REASON_SET(reason, PFRES_MEMORY);
590 				goto drop_fragment;
591 			}
592 		}
593 
594 		*(struct pf_fragment_cmp *)frag = *key;
595 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
596 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
597 		frag->fr_timeout = time_uptime;
598 		frag->fr_maxlen = frent->fe_len;
599 		frag->fr_holes = 1;
600 		TAILQ_INIT(&frag->fr_queue);
601 
602 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
603 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
604 
605 		/* We do not have a previous fragment, cannot fail. */
606 		pf_frent_insert(frag, frent, NULL);
607 
608 		return (frag);
609 	}
610 
611 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
612 
613 	/* Remember maximum fragment len for refragmentation. */
614 	if (frent->fe_len > frag->fr_maxlen)
615 		frag->fr_maxlen = frent->fe_len;
616 
617 	/* Maximum data we have seen already. */
618 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
619 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
620 
621 	/* Non terminal fragments must have more fragments flag. */
622 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
623 		goto bad_fragment;
624 
625 	/* Check if we saw the last fragment already. */
626 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
627 		if (frent->fe_off + frent->fe_len > total ||
628 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
629 			goto bad_fragment;
630 	} else {
631 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
632 			goto bad_fragment;
633 	}
634 
635 	/* Find neighbors for newly inserted fragment */
636 	prev = pf_frent_previous(frag, frent);
637 	if (prev == NULL) {
638 		after = TAILQ_FIRST(&frag->fr_queue);
639 		KASSERT(after != NULL, ("after != NULL"));
640 	} else {
641 		after = TAILQ_NEXT(prev, fr_next);
642 	}
643 
644 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
645 		uint16_t precut;
646 
647 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
648 		if (precut >= frent->fe_len)
649 			goto bad_fragment;
650 		DPFPRINTF(("overlap -%d\n", precut));
651 		m_adj(frent->fe_m, precut);
652 		frent->fe_off += precut;
653 		frent->fe_len -= precut;
654 	}
655 
656 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
657 	    after = next) {
658 		uint16_t aftercut;
659 
660 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
661 		DPFPRINTF(("adjust overlap %d\n", aftercut));
662 		if (aftercut < after->fe_len) {
663 			m_adj(after->fe_m, aftercut);
664 			old_index = pf_frent_index(after);
665 			after->fe_off += aftercut;
666 			after->fe_len -= aftercut;
667 			new_index = pf_frent_index(after);
668 			if (old_index != new_index) {
669 				DPFPRINTF(("frag index %d, new %d",
670 				    old_index, new_index));
671 				/* Fragment switched queue as fe_off changed */
672 				after->fe_off -= aftercut;
673 				after->fe_len += aftercut;
674 				/* Remove restored fragment from old queue */
675 				pf_frent_remove(frag, after);
676 				after->fe_off += aftercut;
677 				after->fe_len -= aftercut;
678 				/* Insert into correct queue */
679 				if (pf_frent_insert(frag, after, prev)) {
680 					DPFPRINTF(
681 					    ("fragment requeue limit exceeded"));
682 					m_freem(after->fe_m);
683 					uma_zfree(V_pf_frent_z, after);
684 					/* There is not way to recover */
685 					goto bad_fragment;
686 				}
687 			}
688 			break;
689 		}
690 
691 		/* This fragment is completely overlapped, lose it. */
692 		next = TAILQ_NEXT(after, fr_next);
693 		pf_frent_remove(frag, after);
694 		m_freem(after->fe_m);
695 		uma_zfree(V_pf_frent_z, after);
696 	}
697 
698 	/* If part of the queue gets too long, there is not way to recover. */
699 	if (pf_frent_insert(frag, frent, prev)) {
700 		DPFPRINTF(("fragment queue limit exceeded\n"));
701 		goto bad_fragment;
702 	}
703 
704 	return (frag);
705 
706 bad_fragment:
707 	REASON_SET(reason, PFRES_FRAG);
708 drop_fragment:
709 	uma_zfree(V_pf_frent_z, frent);
710 	return (NULL);
711 }
712 
713 static struct mbuf *
714 pf_join_fragment(struct pf_fragment *frag)
715 {
716 	struct mbuf *m, *m2;
717 	struct pf_frent	*frent, *next;
718 
719 	frent = TAILQ_FIRST(&frag->fr_queue);
720 	next = TAILQ_NEXT(frent, fr_next);
721 
722 	m = frent->fe_m;
723 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
724 	uma_zfree(V_pf_frent_z, frent);
725 	for (frent = next; frent != NULL; frent = next) {
726 		next = TAILQ_NEXT(frent, fr_next);
727 
728 		m2 = frent->fe_m;
729 		/* Strip off ip header. */
730 		m_adj(m2, frent->fe_hdrlen);
731 		/* Strip off any trailing bytes. */
732 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
733 
734 		uma_zfree(V_pf_frent_z, frent);
735 		m_cat(m, m2);
736 	}
737 
738 	/* Remove from fragment queue. */
739 	pf_remove_fragment(frag);
740 
741 	return (m);
742 }
743 
744 #ifdef INET
745 static int
746 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
747 {
748 	struct mbuf		*m = *m0;
749 	struct pf_frent		*frent;
750 	struct pf_fragment	*frag;
751 	struct pf_fragment_cmp	key;
752 	uint16_t		total, hdrlen;
753 
754 	/* Get an entry for the fragment queue */
755 	if ((frent = pf_create_fragment(reason)) == NULL)
756 		return (PF_DROP);
757 
758 	frent->fe_m = m;
759 	frent->fe_hdrlen = ip->ip_hl << 2;
760 	frent->fe_extoff = 0;
761 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
762 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
763 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
764 
765 	pf_ip2key(ip, dir, &key);
766 
767 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
768 		return (PF_DROP);
769 
770 	/* The mbuf is part of the fragment entry, no direct free or access */
771 	m = *m0 = NULL;
772 
773 	if (frag->fr_holes) {
774 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
775 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
776 	}
777 
778 	/* We have all the data */
779 	frent = TAILQ_FIRST(&frag->fr_queue);
780 	KASSERT(frent != NULL, ("frent != NULL"));
781 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
782 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
783 	hdrlen = frent->fe_hdrlen;
784 
785 	m = *m0 = pf_join_fragment(frag);
786 	frag = NULL;
787 
788 	if (m->m_flags & M_PKTHDR) {
789 		int plen = 0;
790 		for (m = *m0; m; m = m->m_next)
791 			plen += m->m_len;
792 		m = *m0;
793 		m->m_pkthdr.len = plen;
794 	}
795 
796 	ip = mtod(m, struct ip *);
797 	ip->ip_len = htons(hdrlen + total);
798 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
799 
800 	if (hdrlen + total > IP_MAXPACKET) {
801 		DPFPRINTF(("drop: too big: %d\n", total));
802 		ip->ip_len = 0;
803 		REASON_SET(reason, PFRES_SHORT);
804 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
805 		return (PF_DROP);
806 	}
807 
808 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
809 	return (PF_PASS);
810 }
811 #endif	/* INET */
812 
813 #ifdef INET6
814 static int
815 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
816     uint16_t hdrlen, uint16_t extoff, u_short *reason)
817 {
818 	struct mbuf		*m = *m0;
819 	struct pf_frent		*frent;
820 	struct pf_fragment	*frag;
821 	struct pf_fragment_cmp	 key;
822 	struct m_tag		*mtag;
823 	struct pf_fragment_tag	*ftag;
824 	int			 off;
825 	uint32_t		 frag_id;
826 	uint16_t		 total, maxlen;
827 	uint8_t			 proto;
828 
829 	PF_FRAG_LOCK();
830 
831 	/* Get an entry for the fragment queue. */
832 	if ((frent = pf_create_fragment(reason)) == NULL) {
833 		PF_FRAG_UNLOCK();
834 		return (PF_DROP);
835 	}
836 
837 	frent->fe_m = m;
838 	frent->fe_hdrlen = hdrlen;
839 	frent->fe_extoff = extoff;
840 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
841 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
842 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
843 
844 	key.frc_src.v6 = ip6->ip6_src;
845 	key.frc_dst.v6 = ip6->ip6_dst;
846 	key.frc_af = AF_INET6;
847 	/* Only the first fragment's protocol is relevant. */
848 	key.frc_proto = 0;
849 	key.frc_id = fraghdr->ip6f_ident;
850 
851 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
852 		PF_FRAG_UNLOCK();
853 		return (PF_DROP);
854 	}
855 
856 	/* The mbuf is part of the fragment entry, no direct free or access. */
857 	m = *m0 = NULL;
858 
859 	if (frag->fr_holes) {
860 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
861 		    frag->fr_holes));
862 		PF_FRAG_UNLOCK();
863 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
864 	}
865 
866 	/* We have all the data. */
867 	frent = TAILQ_FIRST(&frag->fr_queue);
868 	KASSERT(frent != NULL, ("frent != NULL"));
869 	extoff = frent->fe_extoff;
870 	maxlen = frag->fr_maxlen;
871 	frag_id = frag->fr_id;
872 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
873 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
874 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
875 
876 	m = *m0 = pf_join_fragment(frag);
877 	frag = NULL;
878 
879 	PF_FRAG_UNLOCK();
880 
881 	/* Take protocol from first fragment header. */
882 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
883 	KASSERT(m, ("%s: short mbuf chain", __func__));
884 	proto = *(mtod(m, caddr_t) + off);
885 	m = *m0;
886 
887 	/* Delete frag6 header */
888 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
889 		goto fail;
890 
891 	if (m->m_flags & M_PKTHDR) {
892 		int plen = 0;
893 		for (m = *m0; m; m = m->m_next)
894 			plen += m->m_len;
895 		m = *m0;
896 		m->m_pkthdr.len = plen;
897 	}
898 
899 	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
900 	    M_NOWAIT)) == NULL)
901 		goto fail;
902 	ftag = (struct pf_fragment_tag *)(mtag + 1);
903 	ftag->ft_hdrlen = hdrlen;
904 	ftag->ft_extoff = extoff;
905 	ftag->ft_maxlen = maxlen;
906 	ftag->ft_id = frag_id;
907 	m_tag_prepend(m, mtag);
908 
909 	ip6 = mtod(m, struct ip6_hdr *);
910 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
911 	if (extoff) {
912 		/* Write protocol into next field of last extension header. */
913 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
914 		    &off);
915 		KASSERT(m, ("%s: short mbuf chain", __func__));
916 		*(mtod(m, char *) + off) = proto;
917 		m = *m0;
918 	} else
919 		ip6->ip6_nxt = proto;
920 
921 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
922 		DPFPRINTF(("drop: too big: %d\n", total));
923 		ip6->ip6_plen = 0;
924 		REASON_SET(reason, PFRES_SHORT);
925 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
926 		return (PF_DROP);
927 	}
928 
929 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
930 	return (PF_PASS);
931 
932 fail:
933 	REASON_SET(reason, PFRES_MEMORY);
934 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
935 	return (PF_DROP);
936 }
937 #endif	/* INET6 */
938 
939 #ifdef INET6
940 int
941 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
942 {
943 	struct mbuf		*m = *m0, *t;
944 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
945 	struct pf_pdesc		 pd;
946 	uint32_t		 frag_id;
947 	uint16_t		 hdrlen, extoff, maxlen;
948 	uint8_t			 proto;
949 	int			 error, action;
950 
951 	hdrlen = ftag->ft_hdrlen;
952 	extoff = ftag->ft_extoff;
953 	maxlen = ftag->ft_maxlen;
954 	frag_id = ftag->ft_id;
955 	m_tag_delete(m, mtag);
956 	mtag = NULL;
957 	ftag = NULL;
958 
959 	if (extoff) {
960 		int off;
961 
962 		/* Use protocol from next field of last extension header */
963 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
964 		    &off);
965 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
966 		proto = *(mtod(m, caddr_t) + off);
967 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
968 		m = *m0;
969 	} else {
970 		struct ip6_hdr *hdr;
971 
972 		hdr = mtod(m, struct ip6_hdr *);
973 		proto = hdr->ip6_nxt;
974 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
975 	}
976 
977 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
978 	 * fragmentation wrong. */
979 	maxlen = maxlen & ~7;
980 
981 	/*
982 	 * Maxlen may be less than 8 if there was only a single
983 	 * fragment.  As it was fragmented before, add a fragment
984 	 * header also for a single fragment.  If total or maxlen
985 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
986 	 * we drop the packet.
987 	 */
988 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
989 	m = (*m0)->m_nextpkt;
990 	(*m0)->m_nextpkt = NULL;
991 	if (error == 0) {
992 		/* The first mbuf contains the unfragmented packet. */
993 		m_freem(*m0);
994 		*m0 = NULL;
995 		action = PF_PASS;
996 	} else {
997 		/* Drop expects an mbuf to free. */
998 		DPFPRINTF(("refragment error %d\n", error));
999 		action = PF_DROP;
1000 	}
1001 	for (t = m; m; m = t) {
1002 		t = m->m_nextpkt;
1003 		m->m_nextpkt = NULL;
1004 		m->m_flags |= M_SKIP_FIREWALL;
1005 		memset(&pd, 0, sizeof(pd));
1006 		pd.pf_mtag = pf_find_mtag(m);
1007 		if (error == 0)
1008 			ip6_forward(m, 0);
1009 		else
1010 			m_freem(m);
1011 	}
1012 
1013 	return (action);
1014 }
1015 #endif /* INET6 */
1016 
1017 #ifdef INET
1018 int
1019 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kkif *kif, u_short *reason,
1020     struct pf_pdesc *pd)
1021 {
1022 	struct mbuf		*m = *m0;
1023 	struct pf_krule		*r;
1024 	struct ip		*h = mtod(m, struct ip *);
1025 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1026 	int			 hlen = h->ip_hl << 2;
1027 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1028 	u_int16_t		 max;
1029 	int			 ip_len;
1030 	int			 ip_off;
1031 	int			 tag = -1;
1032 	int			 verdict;
1033 
1034 	PF_RULES_RASSERT();
1035 
1036 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1037 	while (r != NULL) {
1038 		counter_u64_add(r->evaluations, 1);
1039 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1040 			r = r->skip[PF_SKIP_IFP].ptr;
1041 		else if (r->direction && r->direction != dir)
1042 			r = r->skip[PF_SKIP_DIR].ptr;
1043 		else if (r->af && r->af != AF_INET)
1044 			r = r->skip[PF_SKIP_AF].ptr;
1045 		else if (r->proto && r->proto != h->ip_p)
1046 			r = r->skip[PF_SKIP_PROTO].ptr;
1047 		else if (PF_MISMATCHAW(&r->src.addr,
1048 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1049 		    r->src.neg, kif, M_GETFIB(m)))
1050 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1051 		else if (PF_MISMATCHAW(&r->dst.addr,
1052 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1053 		    r->dst.neg, NULL, M_GETFIB(m)))
1054 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1055 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
1056 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1057 			r = TAILQ_NEXT(r, entries);
1058 		else
1059 			break;
1060 	}
1061 
1062 	if (r == NULL || r->action == PF_NOSCRUB)
1063 		return (PF_PASS);
1064 	else {
1065 		counter_u64_add(r->packets[dir == PF_OUT], 1);
1066 		counter_u64_add(r->bytes[dir == PF_OUT], pd->tot_len);
1067 	}
1068 
1069 	/* Check for illegal packets */
1070 	if (hlen < (int)sizeof(struct ip)) {
1071 		REASON_SET(reason, PFRES_NORM);
1072 		goto drop;
1073 	}
1074 
1075 	if (hlen > ntohs(h->ip_len)) {
1076 		REASON_SET(reason, PFRES_NORM);
1077 		goto drop;
1078 	}
1079 
1080 	/* Clear IP_DF if the rule uses the no-df option */
1081 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1082 		u_int16_t ip_off = h->ip_off;
1083 
1084 		h->ip_off &= htons(~IP_DF);
1085 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1086 	}
1087 
1088 	/* We will need other tests here */
1089 	if (!fragoff && !mff)
1090 		goto no_fragment;
1091 
1092 	/* We're dealing with a fragment now. Don't allow fragments
1093 	 * with IP_DF to enter the cache. If the flag was cleared by
1094 	 * no-df above, fine. Otherwise drop it.
1095 	 */
1096 	if (h->ip_off & htons(IP_DF)) {
1097 		DPFPRINTF(("IP_DF\n"));
1098 		goto bad;
1099 	}
1100 
1101 	ip_len = ntohs(h->ip_len) - hlen;
1102 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1103 
1104 	/* All fragments are 8 byte aligned */
1105 	if (mff && (ip_len & 0x7)) {
1106 		DPFPRINTF(("mff and %d\n", ip_len));
1107 		goto bad;
1108 	}
1109 
1110 	/* Respect maximum length */
1111 	if (fragoff + ip_len > IP_MAXPACKET) {
1112 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1113 		goto bad;
1114 	}
1115 	max = fragoff + ip_len;
1116 
1117 	/* Fully buffer all of the fragments
1118 	 * Might return a completely reassembled mbuf, or NULL */
1119 	PF_FRAG_LOCK();
1120 	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1121 	verdict = pf_reassemble(m0, h, dir, reason);
1122 	PF_FRAG_UNLOCK();
1123 
1124 	if (verdict != PF_PASS)
1125 		return (PF_DROP);
1126 
1127 	m = *m0;
1128 	if (m == NULL)
1129 		return (PF_DROP);
1130 
1131 	h = mtod(m, struct ip *);
1132 
1133  no_fragment:
1134 	/* At this point, only IP_DF is allowed in ip_off */
1135 	if (h->ip_off & ~htons(IP_DF)) {
1136 		u_int16_t ip_off = h->ip_off;
1137 
1138 		h->ip_off &= htons(IP_DF);
1139 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1140 	}
1141 
1142 	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
1143 
1144 	return (PF_PASS);
1145 
1146  bad:
1147 	DPFPRINTF(("dropping bad fragment\n"));
1148 	REASON_SET(reason, PFRES_FRAG);
1149  drop:
1150 	if (r != NULL && r->log)
1151 		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1152 		    1);
1153 
1154 	return (PF_DROP);
1155 }
1156 #endif
1157 
1158 #ifdef INET6
1159 int
1160 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kkif *kif,
1161     u_short *reason, struct pf_pdesc *pd)
1162 {
1163 	struct mbuf		*m = *m0;
1164 	struct pf_krule		*r;
1165 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1166 	int			 extoff;
1167 	int			 off;
1168 	struct ip6_ext		 ext;
1169 	struct ip6_opt		 opt;
1170 	struct ip6_frag		 frag;
1171 	u_int32_t		 plen;
1172 	int			 optend;
1173 	int			 ooff;
1174 	u_int8_t		 proto;
1175 	int			 terminal;
1176 
1177 	PF_RULES_RASSERT();
1178 
1179 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1180 	while (r != NULL) {
1181 		counter_u64_add(r->evaluations, 1);
1182 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1183 			r = r->skip[PF_SKIP_IFP].ptr;
1184 		else if (r->direction && r->direction != dir)
1185 			r = r->skip[PF_SKIP_DIR].ptr;
1186 		else if (r->af && r->af != AF_INET6)
1187 			r = r->skip[PF_SKIP_AF].ptr;
1188 #if 0 /* header chain! */
1189 		else if (r->proto && r->proto != h->ip6_nxt)
1190 			r = r->skip[PF_SKIP_PROTO].ptr;
1191 #endif
1192 		else if (PF_MISMATCHAW(&r->src.addr,
1193 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1194 		    r->src.neg, kif, M_GETFIB(m)))
1195 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1196 		else if (PF_MISMATCHAW(&r->dst.addr,
1197 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1198 		    r->dst.neg, NULL, M_GETFIB(m)))
1199 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1200 		else
1201 			break;
1202 	}
1203 
1204 	if (r == NULL || r->action == PF_NOSCRUB)
1205 		return (PF_PASS);
1206 	else {
1207 		counter_u64_add(r->packets[dir == PF_OUT], 1);
1208 		counter_u64_add(r->bytes[dir == PF_OUT], pd->tot_len);
1209 	}
1210 
1211 	/* Check for illegal packets */
1212 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1213 		goto drop;
1214 
1215 	plen = ntohs(h->ip6_plen);
1216 	/* jumbo payload option not supported */
1217 	if (plen == 0)
1218 		goto drop;
1219 
1220 	extoff = 0;
1221 	off = sizeof(struct ip6_hdr);
1222 	proto = h->ip6_nxt;
1223 	terminal = 0;
1224 	do {
1225 		switch (proto) {
1226 		case IPPROTO_FRAGMENT:
1227 			goto fragment;
1228 			break;
1229 		case IPPROTO_AH:
1230 		case IPPROTO_ROUTING:
1231 		case IPPROTO_DSTOPTS:
1232 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1233 			    NULL, AF_INET6))
1234 				goto shortpkt;
1235 			extoff = off;
1236 			if (proto == IPPROTO_AH)
1237 				off += (ext.ip6e_len + 2) * 4;
1238 			else
1239 				off += (ext.ip6e_len + 1) * 8;
1240 			proto = ext.ip6e_nxt;
1241 			break;
1242 		case IPPROTO_HOPOPTS:
1243 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1244 			    NULL, AF_INET6))
1245 				goto shortpkt;
1246 			extoff = off;
1247 			optend = off + (ext.ip6e_len + 1) * 8;
1248 			ooff = off + sizeof(ext);
1249 			do {
1250 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1251 				    sizeof(opt.ip6o_type), NULL, NULL,
1252 				    AF_INET6))
1253 					goto shortpkt;
1254 				if (opt.ip6o_type == IP6OPT_PAD1) {
1255 					ooff++;
1256 					continue;
1257 				}
1258 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1259 				    NULL, NULL, AF_INET6))
1260 					goto shortpkt;
1261 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1262 					goto drop;
1263 				if (opt.ip6o_type == IP6OPT_JUMBO)
1264 					goto drop;
1265 				ooff += sizeof(opt) + opt.ip6o_len;
1266 			} while (ooff < optend);
1267 
1268 			off = optend;
1269 			proto = ext.ip6e_nxt;
1270 			break;
1271 		default:
1272 			terminal = 1;
1273 			break;
1274 		}
1275 	} while (!terminal);
1276 
1277 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1278 		goto shortpkt;
1279 
1280 	pf_scrub_ip6(&m, r->min_ttl);
1281 
1282 	return (PF_PASS);
1283 
1284  fragment:
1285 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1286 		goto shortpkt;
1287 
1288 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1289 		goto shortpkt;
1290 
1291 	/* Offset now points to data portion. */
1292 	off += sizeof(frag);
1293 
1294 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1295 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1296 		return (PF_DROP);
1297 	m = *m0;
1298 	if (m == NULL)
1299 		return (PF_DROP);
1300 
1301 	pd->flags |= PFDESC_IP_REAS;
1302 	return (PF_PASS);
1303 
1304  shortpkt:
1305 	REASON_SET(reason, PFRES_SHORT);
1306 	if (r != NULL && r->log)
1307 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1308 		    1);
1309 	return (PF_DROP);
1310 
1311  drop:
1312 	REASON_SET(reason, PFRES_NORM);
1313 	if (r != NULL && r->log)
1314 		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1315 		    1);
1316 	return (PF_DROP);
1317 }
1318 #endif /* INET6 */
1319 
1320 int
1321 pf_normalize_tcp(int dir, struct pfi_kkif *kif, struct mbuf *m, int ipoff,
1322     int off, void *h, struct pf_pdesc *pd)
1323 {
1324 	struct pf_krule	*r, *rm = NULL;
1325 	struct tcphdr	*th = pd->hdr.tcp;
1326 	int		 rewrite = 0;
1327 	u_short		 reason;
1328 	u_int8_t	 flags;
1329 	sa_family_t	 af = pd->af;
1330 
1331 	PF_RULES_RASSERT();
1332 
1333 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1334 	while (r != NULL) {
1335 		counter_u64_add(r->evaluations, 1);
1336 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1337 			r = r->skip[PF_SKIP_IFP].ptr;
1338 		else if (r->direction && r->direction != dir)
1339 			r = r->skip[PF_SKIP_DIR].ptr;
1340 		else if (r->af && r->af != af)
1341 			r = r->skip[PF_SKIP_AF].ptr;
1342 		else if (r->proto && r->proto != pd->proto)
1343 			r = r->skip[PF_SKIP_PROTO].ptr;
1344 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1345 		    r->src.neg, kif, M_GETFIB(m)))
1346 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1347 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1348 			    r->src.port[0], r->src.port[1], th->th_sport))
1349 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1350 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1351 		    r->dst.neg, NULL, M_GETFIB(m)))
1352 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1353 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1354 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1355 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1356 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1357 			    pf_osfp_fingerprint(pd, m, off, th),
1358 			    r->os_fingerprint))
1359 			r = TAILQ_NEXT(r, entries);
1360 		else {
1361 			rm = r;
1362 			break;
1363 		}
1364 	}
1365 
1366 	if (rm == NULL || rm->action == PF_NOSCRUB)
1367 		return (PF_PASS);
1368 	else {
1369 		counter_u64_add(r->packets[dir == PF_OUT], 1);
1370 		counter_u64_add(r->bytes[dir == PF_OUT], pd->tot_len);
1371 	}
1372 
1373 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1374 		pd->flags |= PFDESC_TCP_NORM;
1375 
1376 	flags = th->th_flags;
1377 	if (flags & TH_SYN) {
1378 		/* Illegal packet */
1379 		if (flags & TH_RST)
1380 			goto tcp_drop;
1381 
1382 		if (flags & TH_FIN)
1383 			goto tcp_drop;
1384 	} else {
1385 		/* Illegal packet */
1386 		if (!(flags & (TH_ACK|TH_RST)))
1387 			goto tcp_drop;
1388 	}
1389 
1390 	if (!(flags & TH_ACK)) {
1391 		/* These flags are only valid if ACK is set */
1392 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1393 			goto tcp_drop;
1394 	}
1395 
1396 	/* Check for illegal header length */
1397 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1398 		goto tcp_drop;
1399 
1400 	/* If flags changed, or reserved data set, then adjust */
1401 	if (flags != th->th_flags || th->th_x2 != 0) {
1402 		u_int16_t	ov, nv;
1403 
1404 		ov = *(u_int16_t *)(&th->th_ack + 1);
1405 		th->th_flags = flags;
1406 		th->th_x2 = 0;
1407 		nv = *(u_int16_t *)(&th->th_ack + 1);
1408 
1409 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1410 		rewrite = 1;
1411 	}
1412 
1413 	/* Remove urgent pointer, if TH_URG is not set */
1414 	if (!(flags & TH_URG) && th->th_urp) {
1415 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1416 		    0, 0);
1417 		th->th_urp = 0;
1418 		rewrite = 1;
1419 	}
1420 
1421 	/* Process options */
1422 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1423 		rewrite = 1;
1424 
1425 	/* copy back packet headers if we sanitized */
1426 	if (rewrite)
1427 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1428 
1429 	return (PF_PASS);
1430 
1431  tcp_drop:
1432 	REASON_SET(&reason, PFRES_NORM);
1433 	if (rm != NULL && r->log)
1434 		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1435 		    1);
1436 	return (PF_DROP);
1437 }
1438 
1439 int
1440 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1441     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1442 {
1443 	u_int32_t tsval, tsecr;
1444 	u_int8_t hdr[60];
1445 	u_int8_t *opt;
1446 
1447 	KASSERT((src->scrub == NULL),
1448 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1449 
1450 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1451 	if (src->scrub == NULL)
1452 		return (1);
1453 
1454 	switch (pd->af) {
1455 #ifdef INET
1456 	case AF_INET: {
1457 		struct ip *h = mtod(m, struct ip *);
1458 		src->scrub->pfss_ttl = h->ip_ttl;
1459 		break;
1460 	}
1461 #endif /* INET */
1462 #ifdef INET6
1463 	case AF_INET6: {
1464 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1465 		src->scrub->pfss_ttl = h->ip6_hlim;
1466 		break;
1467 	}
1468 #endif /* INET6 */
1469 	}
1470 
1471 	/*
1472 	 * All normalizations below are only begun if we see the start of
1473 	 * the connections.  They must all set an enabled bit in pfss_flags
1474 	 */
1475 	if ((th->th_flags & TH_SYN) == 0)
1476 		return (0);
1477 
1478 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1479 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1480 		/* Diddle with TCP options */
1481 		int hlen;
1482 		opt = hdr + sizeof(struct tcphdr);
1483 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1484 		while (hlen >= TCPOLEN_TIMESTAMP) {
1485 			switch (*opt) {
1486 			case TCPOPT_EOL:	/* FALLTHROUGH */
1487 			case TCPOPT_NOP:
1488 				opt++;
1489 				hlen--;
1490 				break;
1491 			case TCPOPT_TIMESTAMP:
1492 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1493 					src->scrub->pfss_flags |=
1494 					    PFSS_TIMESTAMP;
1495 					src->scrub->pfss_ts_mod =
1496 					    htonl(arc4random());
1497 
1498 					/* note PFSS_PAWS not set yet */
1499 					memcpy(&tsval, &opt[2],
1500 					    sizeof(u_int32_t));
1501 					memcpy(&tsecr, &opt[6],
1502 					    sizeof(u_int32_t));
1503 					src->scrub->pfss_tsval0 = ntohl(tsval);
1504 					src->scrub->pfss_tsval = ntohl(tsval);
1505 					src->scrub->pfss_tsecr = ntohl(tsecr);
1506 					getmicrouptime(&src->scrub->pfss_last);
1507 				}
1508 				/* FALLTHROUGH */
1509 			default:
1510 				hlen -= MAX(opt[1], 2);
1511 				opt += MAX(opt[1], 2);
1512 				break;
1513 			}
1514 		}
1515 	}
1516 
1517 	return (0);
1518 }
1519 
1520 void
1521 pf_normalize_tcp_cleanup(struct pf_state *state)
1522 {
1523 	if (state->src.scrub)
1524 		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1525 	if (state->dst.scrub)
1526 		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1527 
1528 	/* Someday... flush the TCP segment reassembly descriptors. */
1529 }
1530 
1531 int
1532 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1533     u_short *reason, struct tcphdr *th, struct pf_state *state,
1534     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1535 {
1536 	struct timeval uptime;
1537 	u_int32_t tsval, tsecr;
1538 	u_int tsval_from_last;
1539 	u_int8_t hdr[60];
1540 	u_int8_t *opt;
1541 	int copyback = 0;
1542 	int got_ts = 0;
1543 	size_t startoff;
1544 
1545 	KASSERT((src->scrub || dst->scrub),
1546 	    ("%s: src->scrub && dst->scrub!", __func__));
1547 
1548 	/*
1549 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1550 	 * technique to evade an intrusion detection system and confuse
1551 	 * firewall state code.
1552 	 */
1553 	switch (pd->af) {
1554 #ifdef INET
1555 	case AF_INET: {
1556 		if (src->scrub) {
1557 			struct ip *h = mtod(m, struct ip *);
1558 			if (h->ip_ttl > src->scrub->pfss_ttl)
1559 				src->scrub->pfss_ttl = h->ip_ttl;
1560 			h->ip_ttl = src->scrub->pfss_ttl;
1561 		}
1562 		break;
1563 	}
1564 #endif /* INET */
1565 #ifdef INET6
1566 	case AF_INET6: {
1567 		if (src->scrub) {
1568 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1569 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1570 				src->scrub->pfss_ttl = h->ip6_hlim;
1571 			h->ip6_hlim = src->scrub->pfss_ttl;
1572 		}
1573 		break;
1574 	}
1575 #endif /* INET6 */
1576 	}
1577 
1578 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1579 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1580 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1581 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1582 		/* Diddle with TCP options */
1583 		int hlen;
1584 		opt = hdr + sizeof(struct tcphdr);
1585 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1586 		while (hlen >= TCPOLEN_TIMESTAMP) {
1587 			startoff = opt - (hdr + sizeof(struct tcphdr));
1588 			switch (*opt) {
1589 			case TCPOPT_EOL:	/* FALLTHROUGH */
1590 			case TCPOPT_NOP:
1591 				opt++;
1592 				hlen--;
1593 				break;
1594 			case TCPOPT_TIMESTAMP:
1595 				/* Modulate the timestamps.  Can be used for
1596 				 * NAT detection, OS uptime determination or
1597 				 * reboot detection.
1598 				 */
1599 
1600 				if (got_ts) {
1601 					/* Huh?  Multiple timestamps!? */
1602 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1603 						DPFPRINTF(("multiple TS??\n"));
1604 						pf_print_state(state);
1605 						printf("\n");
1606 					}
1607 					REASON_SET(reason, PFRES_TS);
1608 					return (PF_DROP);
1609 				}
1610 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1611 					memcpy(&tsval, &opt[2],
1612 					    sizeof(u_int32_t));
1613 					if (tsval && src->scrub &&
1614 					    (src->scrub->pfss_flags &
1615 					    PFSS_TIMESTAMP)) {
1616 						tsval = ntohl(tsval);
1617 						pf_patch_32_unaligned(m,
1618 						    &th->th_sum,
1619 						    &opt[2],
1620 						    htonl(tsval +
1621 						    src->scrub->pfss_ts_mod),
1622 						    PF_ALGNMNT(startoff),
1623 						    0);
1624 						copyback = 1;
1625 					}
1626 
1627 					/* Modulate TS reply iff valid (!0) */
1628 					memcpy(&tsecr, &opt[6],
1629 					    sizeof(u_int32_t));
1630 					if (tsecr && dst->scrub &&
1631 					    (dst->scrub->pfss_flags &
1632 					    PFSS_TIMESTAMP)) {
1633 						tsecr = ntohl(tsecr)
1634 						    - dst->scrub->pfss_ts_mod;
1635 						pf_patch_32_unaligned(m,
1636 						    &th->th_sum,
1637 						    &opt[6],
1638 						    htonl(tsecr),
1639 						    PF_ALGNMNT(startoff),
1640 						    0);
1641 						copyback = 1;
1642 					}
1643 					got_ts = 1;
1644 				}
1645 				/* FALLTHROUGH */
1646 			default:
1647 				hlen -= MAX(opt[1], 2);
1648 				opt += MAX(opt[1], 2);
1649 				break;
1650 			}
1651 		}
1652 		if (copyback) {
1653 			/* Copyback the options, caller copys back header */
1654 			*writeback = 1;
1655 			m_copyback(m, off + sizeof(struct tcphdr),
1656 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1657 			    sizeof(struct tcphdr));
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * Must invalidate PAWS checks on connections idle for too long.
1663 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1664 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1665 	 * TS echo check only works for the first 12 days of a connection
1666 	 * when the TS has exhausted half its 32bit space
1667 	 */
1668 #define TS_MAX_IDLE	(24*24*60*60)
1669 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1670 
1671 	getmicrouptime(&uptime);
1672 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1673 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1674 	    time_uptime - state->creation > TS_MAX_CONN))  {
1675 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1676 			DPFPRINTF(("src idled out of PAWS\n"));
1677 			pf_print_state(state);
1678 			printf("\n");
1679 		}
1680 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1681 		    | PFSS_PAWS_IDLED;
1682 	}
1683 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1684 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1685 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1686 			DPFPRINTF(("dst idled out of PAWS\n"));
1687 			pf_print_state(state);
1688 			printf("\n");
1689 		}
1690 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1691 		    | PFSS_PAWS_IDLED;
1692 	}
1693 
1694 	if (got_ts && src->scrub && dst->scrub &&
1695 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1696 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1697 		/* Validate that the timestamps are "in-window".
1698 		 * RFC1323 describes TCP Timestamp options that allow
1699 		 * measurement of RTT (round trip time) and PAWS
1700 		 * (protection against wrapped sequence numbers).  PAWS
1701 		 * gives us a set of rules for rejecting packets on
1702 		 * long fat pipes (packets that were somehow delayed
1703 		 * in transit longer than the time it took to send the
1704 		 * full TCP sequence space of 4Gb).  We can use these
1705 		 * rules and infer a few others that will let us treat
1706 		 * the 32bit timestamp and the 32bit echoed timestamp
1707 		 * as sequence numbers to prevent a blind attacker from
1708 		 * inserting packets into a connection.
1709 		 *
1710 		 * RFC1323 tells us:
1711 		 *  - The timestamp on this packet must be greater than
1712 		 *    or equal to the last value echoed by the other
1713 		 *    endpoint.  The RFC says those will be discarded
1714 		 *    since it is a dup that has already been acked.
1715 		 *    This gives us a lowerbound on the timestamp.
1716 		 *        timestamp >= other last echoed timestamp
1717 		 *  - The timestamp will be less than or equal to
1718 		 *    the last timestamp plus the time between the
1719 		 *    last packet and now.  The RFC defines the max
1720 		 *    clock rate as 1ms.  We will allow clocks to be
1721 		 *    up to 10% fast and will allow a total difference
1722 		 *    or 30 seconds due to a route change.  And this
1723 		 *    gives us an upperbound on the timestamp.
1724 		 *        timestamp <= last timestamp + max ticks
1725 		 *    We have to be careful here.  Windows will send an
1726 		 *    initial timestamp of zero and then initialize it
1727 		 *    to a random value after the 3whs; presumably to
1728 		 *    avoid a DoS by having to call an expensive RNG
1729 		 *    during a SYN flood.  Proof MS has at least one
1730 		 *    good security geek.
1731 		 *
1732 		 *  - The TCP timestamp option must also echo the other
1733 		 *    endpoints timestamp.  The timestamp echoed is the
1734 		 *    one carried on the earliest unacknowledged segment
1735 		 *    on the left edge of the sequence window.  The RFC
1736 		 *    states that the host will reject any echoed
1737 		 *    timestamps that were larger than any ever sent.
1738 		 *    This gives us an upperbound on the TS echo.
1739 		 *        tescr <= largest_tsval
1740 		 *  - The lowerbound on the TS echo is a little more
1741 		 *    tricky to determine.  The other endpoint's echoed
1742 		 *    values will not decrease.  But there may be
1743 		 *    network conditions that re-order packets and
1744 		 *    cause our view of them to decrease.  For now the
1745 		 *    only lowerbound we can safely determine is that
1746 		 *    the TS echo will never be less than the original
1747 		 *    TS.  XXX There is probably a better lowerbound.
1748 		 *    Remove TS_MAX_CONN with better lowerbound check.
1749 		 *        tescr >= other original TS
1750 		 *
1751 		 * It is also important to note that the fastest
1752 		 * timestamp clock of 1ms will wrap its 32bit space in
1753 		 * 24 days.  So we just disable TS checking after 24
1754 		 * days of idle time.  We actually must use a 12d
1755 		 * connection limit until we can come up with a better
1756 		 * lowerbound to the TS echo check.
1757 		 */
1758 		struct timeval delta_ts;
1759 		int ts_fudge;
1760 
1761 		/*
1762 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1763 		 * a host's timestamp.  This can happen if the previous
1764 		 * packet got delayed in transit for much longer than
1765 		 * this packet.
1766 		 */
1767 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1768 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1769 
1770 		/* Calculate max ticks since the last timestamp */
1771 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1772 #define TS_MICROSECS	1000000		/* microseconds per second */
1773 		delta_ts = uptime;
1774 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1775 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1776 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1777 
1778 		if ((src->state >= TCPS_ESTABLISHED &&
1779 		    dst->state >= TCPS_ESTABLISHED) &&
1780 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1781 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1782 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1783 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1784 			/* Bad RFC1323 implementation or an insertion attack.
1785 			 *
1786 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1787 			 *   after the FIN,FIN|ACK,ACK closing that carries
1788 			 *   an old timestamp.
1789 			 */
1790 
1791 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1792 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1793 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1794 			    tsval_from_last) ? '1' : ' ',
1795 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1796 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1797 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1798 			    "idle: %jus %lums\n",
1799 			    tsval, tsecr, tsval_from_last,
1800 			    (uintmax_t)delta_ts.tv_sec,
1801 			    delta_ts.tv_usec / 1000));
1802 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1803 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1804 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1805 			    "\n", dst->scrub->pfss_tsval,
1806 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1807 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1808 				pf_print_state(state);
1809 				pf_print_flags(th->th_flags);
1810 				printf("\n");
1811 			}
1812 			REASON_SET(reason, PFRES_TS);
1813 			return (PF_DROP);
1814 		}
1815 
1816 		/* XXX I'd really like to require tsecr but it's optional */
1817 
1818 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1819 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1820 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1821 	    src->scrub && dst->scrub &&
1822 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1823 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1824 		/* Didn't send a timestamp.  Timestamps aren't really useful
1825 		 * when:
1826 		 *  - connection opening or closing (often not even sent).
1827 		 *    but we must not let an attacker to put a FIN on a
1828 		 *    data packet to sneak it through our ESTABLISHED check.
1829 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1830 		 *  - on an empty ACK.  The TS will not be echoed so it will
1831 		 *    probably not help keep the RTT calculation in sync and
1832 		 *    there isn't as much danger when the sequence numbers
1833 		 *    got wrapped.  So some stacks don't include TS on empty
1834 		 *    ACKs :-(
1835 		 *
1836 		 * To minimize the disruption to mostly RFC1323 conformant
1837 		 * stacks, we will only require timestamps on data packets.
1838 		 *
1839 		 * And what do ya know, we cannot require timestamps on data
1840 		 * packets.  There appear to be devices that do legitimate
1841 		 * TCP connection hijacking.  There are HTTP devices that allow
1842 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1843 		 * If the intermediate device has the HTTP response cache, it
1844 		 * will spoof the response but not bother timestamping its
1845 		 * packets.  So we can look for the presence of a timestamp in
1846 		 * the first data packet and if there, require it in all future
1847 		 * packets.
1848 		 */
1849 
1850 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1851 			/*
1852 			 * Hey!  Someone tried to sneak a packet in.  Or the
1853 			 * stack changed its RFC1323 behavior?!?!
1854 			 */
1855 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1856 				DPFPRINTF(("Did not receive expected RFC1323 "
1857 				    "timestamp\n"));
1858 				pf_print_state(state);
1859 				pf_print_flags(th->th_flags);
1860 				printf("\n");
1861 			}
1862 			REASON_SET(reason, PFRES_TS);
1863 			return (PF_DROP);
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * We will note if a host sends his data packets with or without
1869 	 * timestamps.  And require all data packets to contain a timestamp
1870 	 * if the first does.  PAWS implicitly requires that all data packets be
1871 	 * timestamped.  But I think there are middle-man devices that hijack
1872 	 * TCP streams immediately after the 3whs and don't timestamp their
1873 	 * packets (seen in a WWW accelerator or cache).
1874 	 */
1875 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1876 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1877 		if (got_ts)
1878 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1879 		else {
1880 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1881 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1882 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1883 				/* Don't warn if other host rejected RFC1323 */
1884 				DPFPRINTF(("Broken RFC1323 stack did not "
1885 				    "timestamp data packet. Disabled PAWS "
1886 				    "security.\n"));
1887 				pf_print_state(state);
1888 				pf_print_flags(th->th_flags);
1889 				printf("\n");
1890 			}
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * Update PAWS values
1896 	 */
1897 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1898 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1899 		getmicrouptime(&src->scrub->pfss_last);
1900 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1901 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1902 			src->scrub->pfss_tsval = tsval;
1903 
1904 		if (tsecr) {
1905 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1906 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1907 				src->scrub->pfss_tsecr = tsecr;
1908 
1909 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1910 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1911 			    src->scrub->pfss_tsval0 == 0)) {
1912 				/* tsval0 MUST be the lowest timestamp */
1913 				src->scrub->pfss_tsval0 = tsval;
1914 			}
1915 
1916 			/* Only fully initialized after a TS gets echoed */
1917 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1918 				src->scrub->pfss_flags |= PFSS_PAWS;
1919 		}
1920 	}
1921 
1922 	/* I have a dream....  TCP segment reassembly.... */
1923 	return (0);
1924 }
1925 
1926 static int
1927 pf_normalize_tcpopt(struct pf_krule *r, struct mbuf *m, struct tcphdr *th,
1928     int off, sa_family_t af)
1929 {
1930 	u_int16_t	*mss;
1931 	int		 thoff;
1932 	int		 opt, cnt, optlen = 0;
1933 	int		 rewrite = 0;
1934 	u_char		 opts[TCP_MAXOLEN];
1935 	u_char		*optp = opts;
1936 	size_t		 startoff;
1937 
1938 	thoff = th->th_off << 2;
1939 	cnt = thoff - sizeof(struct tcphdr);
1940 
1941 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1942 	    NULL, NULL, af))
1943 		return (rewrite);
1944 
1945 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1946 		startoff = optp - opts;
1947 		opt = optp[0];
1948 		if (opt == TCPOPT_EOL)
1949 			break;
1950 		if (opt == TCPOPT_NOP)
1951 			optlen = 1;
1952 		else {
1953 			if (cnt < 2)
1954 				break;
1955 			optlen = optp[1];
1956 			if (optlen < 2 || optlen > cnt)
1957 				break;
1958 		}
1959 		switch (opt) {
1960 		case TCPOPT_MAXSEG:
1961 			mss = (u_int16_t *)(optp + 2);
1962 			if ((ntohs(*mss)) > r->max_mss) {
1963 				pf_patch_16_unaligned(m,
1964 				    &th->th_sum,
1965 				    mss, htons(r->max_mss),
1966 				    PF_ALGNMNT(startoff),
1967 				    0);
1968 				rewrite = 1;
1969 			}
1970 			break;
1971 		default:
1972 			break;
1973 		}
1974 	}
1975 
1976 	if (rewrite)
1977 		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1978 
1979 	return (rewrite);
1980 }
1981 
1982 #ifdef INET
1983 static void
1984 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1985 {
1986 	struct mbuf		*m = *m0;
1987 	struct ip		*h = mtod(m, struct ip *);
1988 
1989 	/* Clear IP_DF if no-df was requested */
1990 	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1991 		u_int16_t ip_off = h->ip_off;
1992 
1993 		h->ip_off &= htons(~IP_DF);
1994 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1995 	}
1996 
1997 	/* Enforce a minimum ttl, may cause endless packet loops */
1998 	if (min_ttl && h->ip_ttl < min_ttl) {
1999 		u_int16_t ip_ttl = h->ip_ttl;
2000 
2001 		h->ip_ttl = min_ttl;
2002 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2003 	}
2004 
2005 	/* Enforce tos */
2006 	if (flags & PFRULE_SET_TOS) {
2007 		u_int16_t	ov, nv;
2008 
2009 		ov = *(u_int16_t *)h;
2010 		h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
2011 		nv = *(u_int16_t *)h;
2012 
2013 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2014 	}
2015 
2016 	/* random-id, but not for fragments */
2017 	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2018 		uint16_t ip_id = h->ip_id;
2019 
2020 		ip_fillid(h);
2021 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2022 	}
2023 }
2024 #endif /* INET */
2025 
2026 #ifdef INET6
2027 static void
2028 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
2029 {
2030 	struct mbuf		*m = *m0;
2031 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
2032 
2033 	/* Enforce a minimum ttl, may cause endless packet loops */
2034 	if (min_ttl && h->ip6_hlim < min_ttl)
2035 		h->ip6_hlim = min_ttl;
2036 }
2037 #endif
2038