1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2001 Niels Provos <provos@citi.umich.edu> 5 * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_pf.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/refcount.h> 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/vnet.h> 48 #include <net/pfvar.h> 49 #include <net/if_pflog.h> 50 51 #include <netinet/in.h> 52 #include <netinet/ip.h> 53 #include <netinet/ip_var.h> 54 #include <netinet6/ip6_var.h> 55 #include <netinet6/scope6_var.h> 56 #include <netinet/tcp.h> 57 #include <netinet/tcp_fsm.h> 58 #include <netinet/tcp_seq.h> 59 60 #ifdef INET6 61 #include <netinet/ip6.h> 62 #endif /* INET6 */ 63 64 struct pf_frent { 65 TAILQ_ENTRY(pf_frent) fr_next; 66 struct mbuf *fe_m; 67 uint16_t fe_hdrlen; /* ipv4 header length with ip options 68 ipv6, extension, fragment header */ 69 uint16_t fe_extoff; /* last extension header offset or 0 */ 70 uint16_t fe_len; /* fragment length */ 71 uint16_t fe_off; /* fragment offset */ 72 uint16_t fe_mff; /* more fragment flag */ 73 }; 74 75 struct pf_fragment_cmp { 76 struct pf_addr frc_src; 77 struct pf_addr frc_dst; 78 uint32_t frc_id; 79 sa_family_t frc_af; 80 uint8_t frc_proto; 81 }; 82 83 struct pf_fragment { 84 struct pf_fragment_cmp fr_key; 85 #define fr_src fr_key.frc_src 86 #define fr_dst fr_key.frc_dst 87 #define fr_id fr_key.frc_id 88 #define fr_af fr_key.frc_af 89 #define fr_proto fr_key.frc_proto 90 91 /* pointers to queue element */ 92 struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS]; 93 /* count entries between pointers */ 94 uint8_t fr_entries[PF_FRAG_ENTRY_POINTS]; 95 RB_ENTRY(pf_fragment) fr_entry; 96 TAILQ_ENTRY(pf_fragment) frag_next; 97 uint32_t fr_timeout; 98 uint16_t fr_maxlen; /* maximum length of single fragment */ 99 u_int16_t fr_holes; /* number of holes in the queue */ 100 TAILQ_HEAD(pf_fragq, pf_frent) fr_queue; 101 }; 102 103 struct pf_fragment_tag { 104 uint16_t ft_hdrlen; /* header length of reassembled pkt */ 105 uint16_t ft_extoff; /* last extension header offset or 0 */ 106 uint16_t ft_maxlen; /* maximum fragment payload length */ 107 uint32_t ft_id; /* fragment id */ 108 }; 109 110 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx); 111 #define V_pf_frag_mtx VNET(pf_frag_mtx) 112 #define PF_FRAG_LOCK() mtx_lock(&V_pf_frag_mtx) 113 #define PF_FRAG_UNLOCK() mtx_unlock(&V_pf_frag_mtx) 114 #define PF_FRAG_ASSERT() mtx_assert(&V_pf_frag_mtx, MA_OWNED) 115 116 VNET_DEFINE(uma_zone_t, pf_state_scrub_z); /* XXX: shared with pfsync */ 117 118 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z); 119 #define V_pf_frent_z VNET(pf_frent_z) 120 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z); 121 #define V_pf_frag_z VNET(pf_frag_z) 122 123 TAILQ_HEAD(pf_fragqueue, pf_fragment); 124 TAILQ_HEAD(pf_cachequeue, pf_fragment); 125 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue); 126 #define V_pf_fragqueue VNET(pf_fragqueue) 127 RB_HEAD(pf_frag_tree, pf_fragment); 128 VNET_DEFINE_STATIC(struct pf_frag_tree, pf_frag_tree); 129 #define V_pf_frag_tree VNET(pf_frag_tree) 130 static int pf_frag_compare(struct pf_fragment *, 131 struct pf_fragment *); 132 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 133 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 134 135 static void pf_flush_fragments(void); 136 static void pf_free_fragment(struct pf_fragment *); 137 static void pf_remove_fragment(struct pf_fragment *); 138 139 static struct pf_frent *pf_create_fragment(u_short *); 140 static int pf_frent_holes(struct pf_frent *frent); 141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key, 142 struct pf_frag_tree *tree); 143 static inline int pf_frent_index(struct pf_frent *); 144 static int pf_frent_insert(struct pf_fragment *, 145 struct pf_frent *, struct pf_frent *); 146 void pf_frent_remove(struct pf_fragment *, 147 struct pf_frent *); 148 struct pf_frent *pf_frent_previous(struct pf_fragment *, 149 struct pf_frent *); 150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *, 151 struct pf_frent *, u_short *); 152 static struct mbuf *pf_join_fragment(struct pf_fragment *); 153 #ifdef INET 154 static int pf_reassemble(struct mbuf **, struct ip *, int, u_short *); 155 #endif /* INET */ 156 #ifdef INET6 157 static int pf_reassemble6(struct mbuf **, struct ip6_hdr *, 158 struct ip6_frag *, uint16_t, uint16_t, u_short *); 159 #endif /* INET6 */ 160 161 #define DPFPRINTF(x) do { \ 162 if (V_pf_status.debug >= PF_DEBUG_MISC) { \ 163 printf("%s: ", __func__); \ 164 printf x ; \ 165 } \ 166 } while(0) 167 168 #ifdef INET 169 static void 170 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key) 171 { 172 173 key->frc_src.v4 = ip->ip_src; 174 key->frc_dst.v4 = ip->ip_dst; 175 key->frc_af = AF_INET; 176 key->frc_proto = ip->ip_p; 177 key->frc_id = ip->ip_id; 178 } 179 #endif /* INET */ 180 181 void 182 pf_normalize_init(void) 183 { 184 185 V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment), 186 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 187 V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent), 188 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 189 V_pf_state_scrub_z = uma_zcreate("pf state scrubs", 190 sizeof(struct pf_state_scrub), NULL, NULL, NULL, NULL, 191 UMA_ALIGN_PTR, 0); 192 193 mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF); 194 195 V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z; 196 V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT; 197 uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT); 198 uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached"); 199 200 TAILQ_INIT(&V_pf_fragqueue); 201 } 202 203 void 204 pf_normalize_cleanup(void) 205 { 206 207 uma_zdestroy(V_pf_state_scrub_z); 208 uma_zdestroy(V_pf_frent_z); 209 uma_zdestroy(V_pf_frag_z); 210 211 mtx_destroy(&V_pf_frag_mtx); 212 } 213 214 static int 215 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b) 216 { 217 int diff; 218 219 if ((diff = a->fr_id - b->fr_id) != 0) 220 return (diff); 221 if ((diff = a->fr_proto - b->fr_proto) != 0) 222 return (diff); 223 if ((diff = a->fr_af - b->fr_af) != 0) 224 return (diff); 225 if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0) 226 return (diff); 227 if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0) 228 return (diff); 229 return (0); 230 } 231 232 void 233 pf_purge_expired_fragments(void) 234 { 235 u_int32_t expire = time_uptime - 236 V_pf_default_rule.timeout[PFTM_FRAG]; 237 238 pf_purge_fragments(expire); 239 } 240 241 void 242 pf_purge_fragments(uint32_t expire) 243 { 244 struct pf_fragment *frag; 245 246 PF_FRAG_LOCK(); 247 while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) { 248 if (frag->fr_timeout > expire) 249 break; 250 251 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag)); 252 pf_free_fragment(frag); 253 } 254 255 PF_FRAG_UNLOCK(); 256 } 257 258 /* 259 * Try to flush old fragments to make space for new ones 260 */ 261 static void 262 pf_flush_fragments(void) 263 { 264 struct pf_fragment *frag; 265 int goal; 266 267 PF_FRAG_ASSERT(); 268 269 goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10; 270 DPFPRINTF(("trying to free %d frag entriess\n", goal)); 271 while (goal < uma_zone_get_cur(V_pf_frent_z)) { 272 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue); 273 if (frag) 274 pf_free_fragment(frag); 275 else 276 break; 277 } 278 } 279 280 /* Frees the fragments and all associated entries */ 281 static void 282 pf_free_fragment(struct pf_fragment *frag) 283 { 284 struct pf_frent *frent; 285 286 PF_FRAG_ASSERT(); 287 288 /* Free all fragments */ 289 for (frent = TAILQ_FIRST(&frag->fr_queue); frent; 290 frent = TAILQ_FIRST(&frag->fr_queue)) { 291 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 292 293 m_freem(frent->fe_m); 294 uma_zfree(V_pf_frent_z, frent); 295 } 296 297 pf_remove_fragment(frag); 298 } 299 300 static struct pf_fragment * 301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree) 302 { 303 struct pf_fragment *frag; 304 305 PF_FRAG_ASSERT(); 306 307 frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key); 308 if (frag != NULL) { 309 /* XXX Are we sure we want to update the timeout? */ 310 frag->fr_timeout = time_uptime; 311 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 312 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 313 } 314 315 return (frag); 316 } 317 318 /* Removes a fragment from the fragment queue and frees the fragment */ 319 static void 320 pf_remove_fragment(struct pf_fragment *frag) 321 { 322 323 PF_FRAG_ASSERT(); 324 KASSERT(frag, ("frag != NULL")); 325 326 RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag); 327 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 328 uma_zfree(V_pf_frag_z, frag); 329 } 330 331 static struct pf_frent * 332 pf_create_fragment(u_short *reason) 333 { 334 struct pf_frent *frent; 335 336 PF_FRAG_ASSERT(); 337 338 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 339 if (frent == NULL) { 340 pf_flush_fragments(); 341 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 342 if (frent == NULL) { 343 REASON_SET(reason, PFRES_MEMORY); 344 return (NULL); 345 } 346 } 347 348 return (frent); 349 } 350 351 /* 352 * Calculate the additional holes that were created in the fragment 353 * queue by inserting this fragment. A fragment in the middle 354 * creates one more hole by splitting. For each connected side, 355 * it loses one hole. 356 * Fragment entry must be in the queue when calling this function. 357 */ 358 static int 359 pf_frent_holes(struct pf_frent *frent) 360 { 361 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 362 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 363 int holes = 1; 364 365 if (prev == NULL) { 366 if (frent->fe_off == 0) 367 holes--; 368 } else { 369 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0")); 370 if (frent->fe_off == prev->fe_off + prev->fe_len) 371 holes--; 372 } 373 if (next == NULL) { 374 if (!frent->fe_mff) 375 holes--; 376 } else { 377 KASSERT(frent->fe_mff, ("frent->fe_mff")); 378 if (next->fe_off == frent->fe_off + frent->fe_len) 379 holes--; 380 } 381 return holes; 382 } 383 384 static inline int 385 pf_frent_index(struct pf_frent *frent) 386 { 387 /* 388 * We have an array of 16 entry points to the queue. A full size 389 * 65535 octet IP packet can have 8192 fragments. So the queue 390 * traversal length is at most 512 and at most 16 entry points are 391 * checked. We need 128 additional bytes on a 64 bit architecture. 392 */ 393 CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) == 394 16 - 1); 395 CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1); 396 397 return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS); 398 } 399 400 static int 401 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent, 402 struct pf_frent *prev) 403 { 404 int index; 405 406 CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff); 407 408 /* 409 * A packet has at most 65536 octets. With 16 entry points, each one 410 * spawns 4096 octets. We limit these to 64 fragments each, which 411 * means on average every fragment must have at least 64 octets. 412 */ 413 index = pf_frent_index(frent); 414 if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT) 415 return ENOBUFS; 416 frag->fr_entries[index]++; 417 418 if (prev == NULL) { 419 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next); 420 } else { 421 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 422 ("overlapping fragment")); 423 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next); 424 } 425 426 if (frag->fr_firstoff[index] == NULL) { 427 KASSERT(prev == NULL || pf_frent_index(prev) < index, 428 ("prev == NULL || pf_frent_index(pref) < index")); 429 frag->fr_firstoff[index] = frent; 430 } else { 431 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) { 432 KASSERT(prev == NULL || pf_frent_index(prev) < index, 433 ("prev == NULL || pf_frent_index(pref) < index")); 434 frag->fr_firstoff[index] = frent; 435 } else { 436 KASSERT(prev != NULL, ("prev != NULL")); 437 KASSERT(pf_frent_index(prev) == index, 438 ("pf_frent_index(prev) == index")); 439 } 440 } 441 442 frag->fr_holes += pf_frent_holes(frent); 443 444 return 0; 445 } 446 447 void 448 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent) 449 { 450 #ifdef INVARIANTS 451 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 452 #endif 453 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 454 int index; 455 456 frag->fr_holes -= pf_frent_holes(frent); 457 458 index = pf_frent_index(frent); 459 KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found")); 460 if (frag->fr_firstoff[index]->fe_off == frent->fe_off) { 461 if (next == NULL) { 462 frag->fr_firstoff[index] = NULL; 463 } else { 464 KASSERT(frent->fe_off + frent->fe_len <= next->fe_off, 465 ("overlapping fragment")); 466 if (pf_frent_index(next) == index) { 467 frag->fr_firstoff[index] = next; 468 } else { 469 frag->fr_firstoff[index] = NULL; 470 } 471 } 472 } else { 473 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off, 474 ("frag->fr_firstoff[index]->fe_off < frent->fe_off")); 475 KASSERT(prev != NULL, ("prev != NULL")); 476 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 477 ("overlapping fragment")); 478 KASSERT(pf_frent_index(prev) == index, 479 ("pf_frent_index(prev) == index")); 480 } 481 482 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 483 484 KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining")); 485 frag->fr_entries[index]--; 486 } 487 488 struct pf_frent * 489 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent) 490 { 491 struct pf_frent *prev, *next; 492 int index; 493 494 /* 495 * If there are no fragments after frag, take the final one. Assume 496 * that the global queue is not empty. 497 */ 498 prev = TAILQ_LAST(&frag->fr_queue, pf_fragq); 499 KASSERT(prev != NULL, ("prev != NULL")); 500 if (prev->fe_off <= frent->fe_off) 501 return prev; 502 /* 503 * We want to find a fragment entry that is before frag, but still 504 * close to it. Find the first fragment entry that is in the same 505 * entry point or in the first entry point after that. As we have 506 * already checked that there are entries behind frag, this will 507 * succeed. 508 */ 509 for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS; 510 index++) { 511 prev = frag->fr_firstoff[index]; 512 if (prev != NULL) 513 break; 514 } 515 KASSERT(prev != NULL, ("prev != NULL")); 516 /* 517 * In prev we may have a fragment from the same entry point that is 518 * before frent, or one that is just one position behind frent. 519 * In the latter case, we go back one step and have the predecessor. 520 * There may be none if the new fragment will be the first one. 521 */ 522 if (prev->fe_off > frent->fe_off) { 523 prev = TAILQ_PREV(prev, pf_fragq, fr_next); 524 if (prev == NULL) 525 return NULL; 526 KASSERT(prev->fe_off <= frent->fe_off, 527 ("prev->fe_off <= frent->fe_off")); 528 return prev; 529 } 530 /* 531 * In prev is the first fragment of the entry point. The offset 532 * of frag is behind it. Find the closest previous fragment. 533 */ 534 for (next = TAILQ_NEXT(prev, fr_next); next != NULL; 535 next = TAILQ_NEXT(next, fr_next)) { 536 if (next->fe_off > frent->fe_off) 537 break; 538 prev = next; 539 } 540 return prev; 541 } 542 543 static struct pf_fragment * 544 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent, 545 u_short *reason) 546 { 547 struct pf_frent *after, *next, *prev; 548 struct pf_fragment *frag; 549 uint16_t total; 550 int old_index, new_index; 551 552 PF_FRAG_ASSERT(); 553 554 /* No empty fragments. */ 555 if (frent->fe_len == 0) { 556 DPFPRINTF(("bad fragment: len 0\n")); 557 goto bad_fragment; 558 } 559 560 /* All fragments are 8 byte aligned. */ 561 if (frent->fe_mff && (frent->fe_len & 0x7)) { 562 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len)); 563 goto bad_fragment; 564 } 565 566 /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */ 567 if (frent->fe_off + frent->fe_len > IP_MAXPACKET) { 568 DPFPRINTF(("bad fragment: max packet %d\n", 569 frent->fe_off + frent->fe_len)); 570 goto bad_fragment; 571 } 572 573 DPFPRINTF((key->frc_af == AF_INET ? 574 "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n", 575 key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len)); 576 577 /* Fully buffer all of the fragments in this fragment queue. */ 578 frag = pf_find_fragment(key, &V_pf_frag_tree); 579 580 /* Create a new reassembly queue for this packet. */ 581 if (frag == NULL) { 582 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 583 if (frag == NULL) { 584 pf_flush_fragments(); 585 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 586 if (frag == NULL) { 587 REASON_SET(reason, PFRES_MEMORY); 588 goto drop_fragment; 589 } 590 } 591 592 *(struct pf_fragment_cmp *)frag = *key; 593 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff)); 594 memset(frag->fr_entries, 0, sizeof(frag->fr_entries)); 595 frag->fr_timeout = time_uptime; 596 frag->fr_maxlen = frent->fe_len; 597 frag->fr_holes = 1; 598 TAILQ_INIT(&frag->fr_queue); 599 600 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag); 601 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 602 603 /* We do not have a previous fragment, cannot fail. */ 604 pf_frent_insert(frag, frent, NULL); 605 606 return (frag); 607 } 608 609 KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue")); 610 611 /* Remember maximum fragment len for refragmentation. */ 612 if (frent->fe_len > frag->fr_maxlen) 613 frag->fr_maxlen = frent->fe_len; 614 615 /* Maximum data we have seen already. */ 616 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 617 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 618 619 /* Non terminal fragments must have more fragments flag. */ 620 if (frent->fe_off + frent->fe_len < total && !frent->fe_mff) 621 goto bad_fragment; 622 623 /* Check if we saw the last fragment already. */ 624 if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) { 625 if (frent->fe_off + frent->fe_len > total || 626 (frent->fe_off + frent->fe_len == total && frent->fe_mff)) 627 goto bad_fragment; 628 } else { 629 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff) 630 goto bad_fragment; 631 } 632 633 /* Find neighbors for newly inserted fragment */ 634 prev = pf_frent_previous(frag, frent); 635 if (prev == NULL) { 636 after = TAILQ_FIRST(&frag->fr_queue); 637 KASSERT(after != NULL, ("after != NULL")); 638 } else { 639 after = TAILQ_NEXT(prev, fr_next); 640 } 641 642 if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) { 643 uint16_t precut; 644 645 precut = prev->fe_off + prev->fe_len - frent->fe_off; 646 if (precut >= frent->fe_len) 647 goto bad_fragment; 648 DPFPRINTF(("overlap -%d\n", precut)); 649 m_adj(frent->fe_m, precut); 650 frent->fe_off += precut; 651 frent->fe_len -= precut; 652 } 653 654 for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off; 655 after = next) { 656 uint16_t aftercut; 657 658 aftercut = frent->fe_off + frent->fe_len - after->fe_off; 659 DPFPRINTF(("adjust overlap %d\n", aftercut)); 660 if (aftercut < after->fe_len) { 661 m_adj(after->fe_m, aftercut); 662 old_index = pf_frent_index(after); 663 after->fe_off += aftercut; 664 after->fe_len -= aftercut; 665 new_index = pf_frent_index(after); 666 if (old_index != new_index) { 667 DPFPRINTF(("frag index %d, new %d", 668 old_index, new_index)); 669 /* Fragment switched queue as fe_off changed */ 670 after->fe_off -= aftercut; 671 after->fe_len += aftercut; 672 /* Remove restored fragment from old queue */ 673 pf_frent_remove(frag, after); 674 after->fe_off += aftercut; 675 after->fe_len -= aftercut; 676 /* Insert into correct queue */ 677 if (pf_frent_insert(frag, after, prev)) { 678 DPFPRINTF( 679 ("fragment requeue limit exceeded")); 680 m_freem(after->fe_m); 681 uma_zfree(V_pf_frent_z, after); 682 /* There is not way to recover */ 683 goto bad_fragment; 684 } 685 } 686 break; 687 } 688 689 /* This fragment is completely overlapped, lose it. */ 690 next = TAILQ_NEXT(after, fr_next); 691 pf_frent_remove(frag, after); 692 m_freem(after->fe_m); 693 uma_zfree(V_pf_frent_z, after); 694 } 695 696 /* If part of the queue gets too long, there is not way to recover. */ 697 if (pf_frent_insert(frag, frent, prev)) { 698 DPFPRINTF(("fragment queue limit exceeded\n")); 699 goto bad_fragment; 700 } 701 702 return (frag); 703 704 bad_fragment: 705 REASON_SET(reason, PFRES_FRAG); 706 drop_fragment: 707 uma_zfree(V_pf_frent_z, frent); 708 return (NULL); 709 } 710 711 static struct mbuf * 712 pf_join_fragment(struct pf_fragment *frag) 713 { 714 struct mbuf *m, *m2; 715 struct pf_frent *frent, *next; 716 717 frent = TAILQ_FIRST(&frag->fr_queue); 718 next = TAILQ_NEXT(frent, fr_next); 719 720 m = frent->fe_m; 721 m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len); 722 uma_zfree(V_pf_frent_z, frent); 723 for (frent = next; frent != NULL; frent = next) { 724 next = TAILQ_NEXT(frent, fr_next); 725 726 m2 = frent->fe_m; 727 /* Strip off ip header. */ 728 m_adj(m2, frent->fe_hdrlen); 729 /* Strip off any trailing bytes. */ 730 m_adj(m2, frent->fe_len - m2->m_pkthdr.len); 731 732 uma_zfree(V_pf_frent_z, frent); 733 m_cat(m, m2); 734 } 735 736 /* Remove from fragment queue. */ 737 pf_remove_fragment(frag); 738 739 return (m); 740 } 741 742 #ifdef INET 743 static int 744 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason) 745 { 746 struct mbuf *m = *m0; 747 struct pf_frent *frent; 748 struct pf_fragment *frag; 749 struct pf_fragment_cmp key; 750 uint16_t total, hdrlen; 751 752 /* Get an entry for the fragment queue */ 753 if ((frent = pf_create_fragment(reason)) == NULL) 754 return (PF_DROP); 755 756 frent->fe_m = m; 757 frent->fe_hdrlen = ip->ip_hl << 2; 758 frent->fe_extoff = 0; 759 frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2); 760 frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; 761 frent->fe_mff = ntohs(ip->ip_off) & IP_MF; 762 763 pf_ip2key(ip, dir, &key); 764 765 if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) 766 return (PF_DROP); 767 768 /* The mbuf is part of the fragment entry, no direct free or access */ 769 m = *m0 = NULL; 770 771 if (frag->fr_holes) { 772 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes)); 773 return (PF_PASS); /* drop because *m0 is NULL, no error */ 774 } 775 776 /* We have all the data */ 777 frent = TAILQ_FIRST(&frag->fr_queue); 778 KASSERT(frent != NULL, ("frent != NULL")); 779 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 780 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 781 hdrlen = frent->fe_hdrlen; 782 783 m = *m0 = pf_join_fragment(frag); 784 frag = NULL; 785 786 if (m->m_flags & M_PKTHDR) { 787 int plen = 0; 788 for (m = *m0; m; m = m->m_next) 789 plen += m->m_len; 790 m = *m0; 791 m->m_pkthdr.len = plen; 792 } 793 794 ip = mtod(m, struct ip *); 795 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len, 796 htons(hdrlen + total), 0); 797 ip->ip_len = htons(hdrlen + total); 798 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off, 799 ip->ip_off & ~(IP_MF|IP_OFFMASK), 0); 800 ip->ip_off &= ~(IP_MF|IP_OFFMASK); 801 802 if (hdrlen + total > IP_MAXPACKET) { 803 DPFPRINTF(("drop: too big: %d\n", total)); 804 ip->ip_len = 0; 805 REASON_SET(reason, PFRES_SHORT); 806 /* PF_DROP requires a valid mbuf *m0 in pf_test() */ 807 return (PF_DROP); 808 } 809 810 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len))); 811 return (PF_PASS); 812 } 813 #endif /* INET */ 814 815 #ifdef INET6 816 static int 817 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr, 818 uint16_t hdrlen, uint16_t extoff, u_short *reason) 819 { 820 struct mbuf *m = *m0; 821 struct pf_frent *frent; 822 struct pf_fragment *frag; 823 struct pf_fragment_cmp key; 824 struct m_tag *mtag; 825 struct pf_fragment_tag *ftag; 826 int off; 827 uint32_t frag_id; 828 uint16_t total, maxlen; 829 uint8_t proto; 830 831 PF_FRAG_LOCK(); 832 833 /* Get an entry for the fragment queue. */ 834 if ((frent = pf_create_fragment(reason)) == NULL) { 835 PF_FRAG_UNLOCK(); 836 return (PF_DROP); 837 } 838 839 frent->fe_m = m; 840 frent->fe_hdrlen = hdrlen; 841 frent->fe_extoff = extoff; 842 frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen; 843 frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 844 frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG; 845 846 key.frc_src.v6 = ip6->ip6_src; 847 key.frc_dst.v6 = ip6->ip6_dst; 848 key.frc_af = AF_INET6; 849 /* Only the first fragment's protocol is relevant. */ 850 key.frc_proto = 0; 851 key.frc_id = fraghdr->ip6f_ident; 852 853 if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) { 854 PF_FRAG_UNLOCK(); 855 return (PF_DROP); 856 } 857 858 /* The mbuf is part of the fragment entry, no direct free or access. */ 859 m = *m0 = NULL; 860 861 if (frag->fr_holes) { 862 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, 863 frag->fr_holes)); 864 PF_FRAG_UNLOCK(); 865 return (PF_PASS); /* Drop because *m0 is NULL, no error. */ 866 } 867 868 /* We have all the data. */ 869 frent = TAILQ_FIRST(&frag->fr_queue); 870 KASSERT(frent != NULL, ("frent != NULL")); 871 extoff = frent->fe_extoff; 872 maxlen = frag->fr_maxlen; 873 frag_id = frag->fr_id; 874 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 875 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 876 hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag); 877 878 m = *m0 = pf_join_fragment(frag); 879 frag = NULL; 880 881 PF_FRAG_UNLOCK(); 882 883 /* Take protocol from first fragment header. */ 884 m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off); 885 KASSERT(m, ("%s: short mbuf chain", __func__)); 886 proto = *(mtod(m, uint8_t *) + off); 887 m = *m0; 888 889 /* Delete frag6 header */ 890 if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0) 891 goto fail; 892 893 if (m->m_flags & M_PKTHDR) { 894 int plen = 0; 895 for (m = *m0; m; m = m->m_next) 896 plen += m->m_len; 897 m = *m0; 898 m->m_pkthdr.len = plen; 899 } 900 901 if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, 902 sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) 903 goto fail; 904 ftag = (struct pf_fragment_tag *)(mtag + 1); 905 ftag->ft_hdrlen = hdrlen; 906 ftag->ft_extoff = extoff; 907 ftag->ft_maxlen = maxlen; 908 ftag->ft_id = frag_id; 909 m_tag_prepend(m, mtag); 910 911 ip6 = mtod(m, struct ip6_hdr *); 912 ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total); 913 if (extoff) { 914 /* Write protocol into next field of last extension header. */ 915 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 916 &off); 917 KASSERT(m, ("%s: short mbuf chain", __func__)); 918 *(mtod(m, char *) + off) = proto; 919 m = *m0; 920 } else 921 ip6->ip6_nxt = proto; 922 923 if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) { 924 DPFPRINTF(("drop: too big: %d\n", total)); 925 ip6->ip6_plen = 0; 926 REASON_SET(reason, PFRES_SHORT); 927 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */ 928 return (PF_DROP); 929 } 930 931 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen))); 932 return (PF_PASS); 933 934 fail: 935 REASON_SET(reason, PFRES_MEMORY); 936 /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */ 937 return (PF_DROP); 938 } 939 #endif /* INET6 */ 940 941 #ifdef INET6 942 int 943 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag, 944 bool forward) 945 { 946 struct mbuf *m = *m0, *t; 947 struct ip6_hdr *hdr; 948 struct pf_fragment_tag *ftag = (struct pf_fragment_tag *)(mtag + 1); 949 struct pf_pdesc pd; 950 uint32_t frag_id; 951 uint16_t hdrlen, extoff, maxlen; 952 uint8_t proto; 953 int error, action; 954 955 hdrlen = ftag->ft_hdrlen; 956 extoff = ftag->ft_extoff; 957 maxlen = ftag->ft_maxlen; 958 frag_id = ftag->ft_id; 959 m_tag_delete(m, mtag); 960 mtag = NULL; 961 ftag = NULL; 962 963 if (extoff) { 964 int off; 965 966 /* Use protocol from next field of last extension header */ 967 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 968 &off); 969 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain")); 970 proto = *(mtod(m, uint8_t *) + off); 971 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT; 972 m = *m0; 973 } else { 974 hdr = mtod(m, struct ip6_hdr *); 975 proto = hdr->ip6_nxt; 976 hdr->ip6_nxt = IPPROTO_FRAGMENT; 977 } 978 979 /* In case of link-local traffic we'll need a scope set. */ 980 hdr = mtod(m, struct ip6_hdr *); 981 982 in6_setscope(&hdr->ip6_src, ifp, NULL); 983 in6_setscope(&hdr->ip6_dst, ifp, NULL); 984 985 /* The MTU must be a multiple of 8 bytes, or we risk doing the 986 * fragmentation wrong. */ 987 maxlen = maxlen & ~7; 988 989 /* 990 * Maxlen may be less than 8 if there was only a single 991 * fragment. As it was fragmented before, add a fragment 992 * header also for a single fragment. If total or maxlen 993 * is less than 8, ip6_fragment() will return EMSGSIZE and 994 * we drop the packet. 995 */ 996 error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id); 997 m = (*m0)->m_nextpkt; 998 (*m0)->m_nextpkt = NULL; 999 if (error == 0) { 1000 /* The first mbuf contains the unfragmented packet. */ 1001 m_freem(*m0); 1002 *m0 = NULL; 1003 action = PF_PASS; 1004 } else { 1005 /* Drop expects an mbuf to free. */ 1006 DPFPRINTF(("refragment error %d\n", error)); 1007 action = PF_DROP; 1008 } 1009 for (; m; m = t) { 1010 t = m->m_nextpkt; 1011 m->m_nextpkt = NULL; 1012 m->m_flags |= M_SKIP_FIREWALL; 1013 memset(&pd, 0, sizeof(pd)); 1014 pd.pf_mtag = pf_find_mtag(m); 1015 if (error == 0) 1016 if (forward) { 1017 MPASS(m->m_pkthdr.rcvif != NULL); 1018 ip6_forward(m, 0); 1019 } else { 1020 (void)ip6_output(m, NULL, NULL, 0, NULL, NULL, 1021 NULL); 1022 } 1023 else 1024 m_freem(m); 1025 } 1026 1027 return (action); 1028 } 1029 #endif /* INET6 */ 1030 1031 #ifdef INET 1032 int 1033 pf_normalize_ip(struct mbuf **m0, struct pfi_kkif *kif, u_short *reason, 1034 struct pf_pdesc *pd) 1035 { 1036 struct mbuf *m = *m0; 1037 struct pf_krule *r; 1038 struct ip *h = mtod(m, struct ip *); 1039 int mff = (ntohs(h->ip_off) & IP_MF); 1040 int hlen = h->ip_hl << 2; 1041 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 1042 u_int16_t max; 1043 int ip_len; 1044 int tag = -1; 1045 int verdict; 1046 int srs; 1047 1048 PF_RULES_RASSERT(); 1049 1050 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1051 /* Check if there any scrub rules. Lack of scrub rules means enforced 1052 * packet normalization operation just like in OpenBSD. */ 1053 srs = (r != NULL); 1054 while (r != NULL) { 1055 pf_counter_u64_add(&r->evaluations, 1); 1056 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 1057 r = r->skip[PF_SKIP_IFP].ptr; 1058 else if (r->direction && r->direction != pd->dir) 1059 r = r->skip[PF_SKIP_DIR].ptr; 1060 else if (r->af && r->af != AF_INET) 1061 r = r->skip[PF_SKIP_AF].ptr; 1062 else if (r->proto && r->proto != h->ip_p) 1063 r = r->skip[PF_SKIP_PROTO].ptr; 1064 else if (PF_MISMATCHAW(&r->src.addr, 1065 (struct pf_addr *)&h->ip_src.s_addr, AF_INET, 1066 r->src.neg, kif, M_GETFIB(m))) 1067 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 1068 else if (PF_MISMATCHAW(&r->dst.addr, 1069 (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, 1070 r->dst.neg, NULL, M_GETFIB(m))) 1071 r = r->skip[PF_SKIP_DST_ADDR].ptr; 1072 else if (r->match_tag && !pf_match_tag(m, r, &tag, 1073 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 1074 r = TAILQ_NEXT(r, entries); 1075 else 1076 break; 1077 } 1078 1079 if (srs) { 1080 /* With scrub rules present IPv4 normalization happens only 1081 * if one of rules has matched and it's not a "no scrub" rule */ 1082 if (r == NULL || r->action == PF_NOSCRUB) 1083 return (PF_PASS); 1084 1085 pf_counter_u64_critical_enter(); 1086 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1087 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1088 pf_counter_u64_critical_exit(); 1089 pf_rule_to_actions(r, &pd->act); 1090 } else if ((!V_pf_status.reass && (h->ip_off & htons(IP_MF | IP_OFFMASK)))) { 1091 /* With no scrub rules IPv4 fragment reassembly depends on the 1092 * global switch. Fragments can be dropped early if reassembly 1093 * is disabled. */ 1094 REASON_SET(reason, PFRES_NORM); 1095 goto drop; 1096 } 1097 1098 /* Check for illegal packets */ 1099 if (hlen < (int)sizeof(struct ip)) { 1100 REASON_SET(reason, PFRES_NORM); 1101 goto drop; 1102 } 1103 1104 if (hlen > ntohs(h->ip_len)) { 1105 REASON_SET(reason, PFRES_NORM); 1106 goto drop; 1107 } 1108 1109 /* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */ 1110 if ((((r && r->rule_flag & PFRULE_NODF) || 1111 (V_pf_status.reass & PF_REASS_NODF)) && h->ip_off & htons(IP_DF) 1112 )) { 1113 u_int16_t ip_off = h->ip_off; 1114 1115 h->ip_off &= htons(~IP_DF); 1116 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1117 } 1118 1119 /* We will need other tests here */ 1120 if (!fragoff && !mff) 1121 goto no_fragment; 1122 1123 /* We're dealing with a fragment now. Don't allow fragments 1124 * with IP_DF to enter the cache. If the flag was cleared by 1125 * no-df above, fine. Otherwise drop it. 1126 */ 1127 if (h->ip_off & htons(IP_DF)) { 1128 DPFPRINTF(("IP_DF\n")); 1129 goto bad; 1130 } 1131 1132 ip_len = ntohs(h->ip_len) - hlen; 1133 1134 /* All fragments are 8 byte aligned */ 1135 if (mff && (ip_len & 0x7)) { 1136 DPFPRINTF(("mff and %d\n", ip_len)); 1137 goto bad; 1138 } 1139 1140 /* Respect maximum length */ 1141 if (fragoff + ip_len > IP_MAXPACKET) { 1142 DPFPRINTF(("max packet %d\n", fragoff + ip_len)); 1143 goto bad; 1144 } 1145 1146 if (r==NULL || !(r->rule_flag & PFRULE_FRAGMENT_NOREASS)) { 1147 max = fragoff + ip_len; 1148 1149 /* Fully buffer all of the fragments 1150 * Might return a completely reassembled mbuf, or NULL */ 1151 PF_FRAG_LOCK(); 1152 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max)); 1153 verdict = pf_reassemble(m0, h, pd->dir, reason); 1154 PF_FRAG_UNLOCK(); 1155 1156 if (verdict != PF_PASS) 1157 return (PF_DROP); 1158 1159 m = *m0; 1160 if (m == NULL) 1161 return (PF_DROP); 1162 1163 h = mtod(m, struct ip *); 1164 1165 no_fragment: 1166 /* At this point, only IP_DF is allowed in ip_off */ 1167 if (h->ip_off & ~htons(IP_DF)) { 1168 u_int16_t ip_off = h->ip_off; 1169 1170 h->ip_off &= htons(IP_DF); 1171 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1172 } 1173 } 1174 1175 return (PF_PASS); 1176 1177 bad: 1178 DPFPRINTF(("dropping bad fragment\n")); 1179 REASON_SET(reason, PFRES_FRAG); 1180 drop: 1181 if (r != NULL && r->log) 1182 PFLOG_PACKET(kif, m, AF_INET, *reason, r, NULL, NULL, pd, 1); 1183 1184 return (PF_DROP); 1185 } 1186 #endif 1187 1188 #ifdef INET6 1189 int 1190 pf_normalize_ip6(struct mbuf **m0, struct pfi_kkif *kif, 1191 u_short *reason, struct pf_pdesc *pd) 1192 { 1193 struct mbuf *m = *m0; 1194 struct pf_krule *r; 1195 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 1196 int extoff; 1197 int off; 1198 struct ip6_ext ext; 1199 struct ip6_opt opt; 1200 struct ip6_frag frag; 1201 u_int32_t plen; 1202 int optend; 1203 int ooff; 1204 u_int8_t proto; 1205 int terminal; 1206 int srs; 1207 1208 PF_RULES_RASSERT(); 1209 1210 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1211 /* Check if there any scrub rules. Lack of scrub rules means enforced 1212 * packet normalization operation just like in OpenBSD. */ 1213 srs = (r != NULL); 1214 while (r != NULL) { 1215 pf_counter_u64_add(&r->evaluations, 1); 1216 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 1217 r = r->skip[PF_SKIP_IFP].ptr; 1218 else if (r->direction && r->direction != pd->dir) 1219 r = r->skip[PF_SKIP_DIR].ptr; 1220 else if (r->af && r->af != AF_INET6) 1221 r = r->skip[PF_SKIP_AF].ptr; 1222 #if 0 /* header chain! */ 1223 else if (r->proto && r->proto != h->ip6_nxt) 1224 r = r->skip[PF_SKIP_PROTO].ptr; 1225 #endif 1226 else if (PF_MISMATCHAW(&r->src.addr, 1227 (struct pf_addr *)&h->ip6_src, AF_INET6, 1228 r->src.neg, kif, M_GETFIB(m))) 1229 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 1230 else if (PF_MISMATCHAW(&r->dst.addr, 1231 (struct pf_addr *)&h->ip6_dst, AF_INET6, 1232 r->dst.neg, NULL, M_GETFIB(m))) 1233 r = r->skip[PF_SKIP_DST_ADDR].ptr; 1234 else 1235 break; 1236 } 1237 1238 if (srs) { 1239 /* With scrub rules present IPv6 normalization happens only 1240 * if one of rules has matched and it's not a "no scrub" rule */ 1241 if (r == NULL || r->action == PF_NOSCRUB) 1242 return (PF_PASS); 1243 1244 pf_counter_u64_critical_enter(); 1245 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1246 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1247 pf_counter_u64_critical_exit(); 1248 pf_rule_to_actions(r, &pd->act); 1249 } 1250 1251 /* Check for illegal packets */ 1252 if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len) 1253 goto drop; 1254 1255 plen = ntohs(h->ip6_plen); 1256 /* jumbo payload option not supported */ 1257 if (plen == 0) 1258 goto drop; 1259 1260 extoff = 0; 1261 off = sizeof(struct ip6_hdr); 1262 proto = h->ip6_nxt; 1263 terminal = 0; 1264 do { 1265 switch (proto) { 1266 case IPPROTO_FRAGMENT: 1267 goto fragment; 1268 break; 1269 case IPPROTO_AH: 1270 case IPPROTO_ROUTING: 1271 case IPPROTO_DSTOPTS: 1272 if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL, 1273 NULL, AF_INET6)) 1274 goto shortpkt; 1275 extoff = off; 1276 if (proto == IPPROTO_AH) 1277 off += (ext.ip6e_len + 2) * 4; 1278 else 1279 off += (ext.ip6e_len + 1) * 8; 1280 proto = ext.ip6e_nxt; 1281 break; 1282 case IPPROTO_HOPOPTS: 1283 if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL, 1284 NULL, AF_INET6)) 1285 goto shortpkt; 1286 extoff = off; 1287 optend = off + (ext.ip6e_len + 1) * 8; 1288 ooff = off + sizeof(ext); 1289 do { 1290 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type, 1291 sizeof(opt.ip6o_type), NULL, NULL, 1292 AF_INET6)) 1293 goto shortpkt; 1294 if (opt.ip6o_type == IP6OPT_PAD1) { 1295 ooff++; 1296 continue; 1297 } 1298 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt), 1299 NULL, NULL, AF_INET6)) 1300 goto shortpkt; 1301 if (ooff + sizeof(opt) + opt.ip6o_len > optend) 1302 goto drop; 1303 if (opt.ip6o_type == IP6OPT_JUMBO) 1304 goto drop; 1305 ooff += sizeof(opt) + opt.ip6o_len; 1306 } while (ooff < optend); 1307 1308 off = optend; 1309 proto = ext.ip6e_nxt; 1310 break; 1311 default: 1312 terminal = 1; 1313 break; 1314 } 1315 } while (!terminal); 1316 1317 if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len) 1318 goto shortpkt; 1319 1320 return (PF_PASS); 1321 1322 fragment: 1323 if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len) 1324 goto shortpkt; 1325 1326 if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6)) 1327 goto shortpkt; 1328 1329 /* Offset now points to data portion. */ 1330 off += sizeof(frag); 1331 1332 /* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */ 1333 if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS) 1334 return (PF_DROP); 1335 m = *m0; 1336 if (m == NULL) 1337 return (PF_DROP); 1338 1339 pd->flags |= PFDESC_IP_REAS; 1340 return (PF_PASS); 1341 1342 shortpkt: 1343 REASON_SET(reason, PFRES_SHORT); 1344 if (r != NULL && r->log) 1345 PFLOG_PACKET(kif, m, AF_INET6, *reason, r, NULL, NULL, pd, 1); 1346 return (PF_DROP); 1347 1348 drop: 1349 REASON_SET(reason, PFRES_NORM); 1350 if (r != NULL && r->log) 1351 PFLOG_PACKET(kif, m, AF_INET6, *reason, r, NULL, NULL, pd, 1); 1352 return (PF_DROP); 1353 } 1354 #endif /* INET6 */ 1355 1356 int 1357 pf_normalize_tcp(struct pfi_kkif *kif, struct mbuf *m, int ipoff, 1358 int off, void *h, struct pf_pdesc *pd) 1359 { 1360 struct pf_krule *r, *rm = NULL; 1361 struct tcphdr *th = &pd->hdr.tcp; 1362 int rewrite = 0; 1363 u_short reason; 1364 u_int8_t flags; 1365 sa_family_t af = pd->af; 1366 int srs; 1367 1368 PF_RULES_RASSERT(); 1369 1370 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1371 /* Check if there any scrub rules. Lack of scrub rules means enforced 1372 * packet normalization operation just like in OpenBSD. */ 1373 srs = (r != NULL); 1374 while (r != NULL) { 1375 pf_counter_u64_add(&r->evaluations, 1); 1376 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 1377 r = r->skip[PF_SKIP_IFP].ptr; 1378 else if (r->direction && r->direction != pd->dir) 1379 r = r->skip[PF_SKIP_DIR].ptr; 1380 else if (r->af && r->af != af) 1381 r = r->skip[PF_SKIP_AF].ptr; 1382 else if (r->proto && r->proto != pd->proto) 1383 r = r->skip[PF_SKIP_PROTO].ptr; 1384 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 1385 r->src.neg, kif, M_GETFIB(m))) 1386 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 1387 else if (r->src.port_op && !pf_match_port(r->src.port_op, 1388 r->src.port[0], r->src.port[1], th->th_sport)) 1389 r = r->skip[PF_SKIP_SRC_PORT].ptr; 1390 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 1391 r->dst.neg, NULL, M_GETFIB(m))) 1392 r = r->skip[PF_SKIP_DST_ADDR].ptr; 1393 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 1394 r->dst.port[0], r->dst.port[1], th->th_dport)) 1395 r = r->skip[PF_SKIP_DST_PORT].ptr; 1396 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match( 1397 pf_osfp_fingerprint(pd, m, off, th), 1398 r->os_fingerprint)) 1399 r = TAILQ_NEXT(r, entries); 1400 else { 1401 rm = r; 1402 break; 1403 } 1404 } 1405 1406 if (srs) { 1407 /* With scrub rules present TCP normalization happens only 1408 * if one of rules has matched and it's not a "no scrub" rule */ 1409 if (rm == NULL || rm->action == PF_NOSCRUB) 1410 return (PF_PASS); 1411 1412 pf_counter_u64_critical_enter(); 1413 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1414 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1415 pf_counter_u64_critical_exit(); 1416 pf_rule_to_actions(rm, &pd->act); 1417 } 1418 1419 if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP) 1420 pd->flags |= PFDESC_TCP_NORM; 1421 1422 flags = th->th_flags; 1423 if (flags & TH_SYN) { 1424 /* Illegal packet */ 1425 if (flags & TH_RST) 1426 goto tcp_drop; 1427 1428 if (flags & TH_FIN) 1429 goto tcp_drop; 1430 } else { 1431 /* Illegal packet */ 1432 if (!(flags & (TH_ACK|TH_RST))) 1433 goto tcp_drop; 1434 } 1435 1436 if (!(flags & TH_ACK)) { 1437 /* These flags are only valid if ACK is set */ 1438 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG)) 1439 goto tcp_drop; 1440 } 1441 1442 /* Check for illegal header length */ 1443 if (th->th_off < (sizeof(struct tcphdr) >> 2)) 1444 goto tcp_drop; 1445 1446 /* If flags changed, or reserved data set, then adjust */ 1447 if (flags != th->th_flags || th->th_x2 != 0) { 1448 u_int16_t ov, nv; 1449 1450 ov = *(u_int16_t *)(&th->th_ack + 1); 1451 th->th_flags = flags; 1452 th->th_x2 = 0; 1453 nv = *(u_int16_t *)(&th->th_ack + 1); 1454 1455 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0); 1456 rewrite = 1; 1457 } 1458 1459 /* Remove urgent pointer, if TH_URG is not set */ 1460 if (!(flags & TH_URG) && th->th_urp) { 1461 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp, 1462 0, 0); 1463 th->th_urp = 0; 1464 rewrite = 1; 1465 } 1466 1467 /* copy back packet headers if we sanitized */ 1468 if (rewrite) 1469 m_copyback(m, off, sizeof(*th), (caddr_t)th); 1470 1471 return (PF_PASS); 1472 1473 tcp_drop: 1474 REASON_SET(&reason, PFRES_NORM); 1475 if (rm != NULL && r->log) 1476 PFLOG_PACKET(kif, m, AF_INET, reason, r, NULL, NULL, pd, 1); 1477 return (PF_DROP); 1478 } 1479 1480 int 1481 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd, 1482 struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst) 1483 { 1484 u_int32_t tsval, tsecr; 1485 u_int8_t hdr[60]; 1486 u_int8_t *opt; 1487 1488 KASSERT((src->scrub == NULL), 1489 ("pf_normalize_tcp_init: src->scrub != NULL")); 1490 1491 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1492 if (src->scrub == NULL) 1493 return (1); 1494 1495 switch (pd->af) { 1496 #ifdef INET 1497 case AF_INET: { 1498 struct ip *h = mtod(m, struct ip *); 1499 src->scrub->pfss_ttl = h->ip_ttl; 1500 break; 1501 } 1502 #endif /* INET */ 1503 #ifdef INET6 1504 case AF_INET6: { 1505 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 1506 src->scrub->pfss_ttl = h->ip6_hlim; 1507 break; 1508 } 1509 #endif /* INET6 */ 1510 } 1511 1512 /* 1513 * All normalizations below are only begun if we see the start of 1514 * the connections. They must all set an enabled bit in pfss_flags 1515 */ 1516 if ((th->th_flags & TH_SYN) == 0) 1517 return (0); 1518 1519 if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub && 1520 pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) { 1521 /* Diddle with TCP options */ 1522 int hlen; 1523 opt = hdr + sizeof(struct tcphdr); 1524 hlen = (th->th_off << 2) - sizeof(struct tcphdr); 1525 while (hlen >= TCPOLEN_TIMESTAMP) { 1526 switch (*opt) { 1527 case TCPOPT_EOL: /* FALLTHROUGH */ 1528 case TCPOPT_NOP: 1529 opt++; 1530 hlen--; 1531 break; 1532 case TCPOPT_TIMESTAMP: 1533 if (opt[1] >= TCPOLEN_TIMESTAMP) { 1534 src->scrub->pfss_flags |= 1535 PFSS_TIMESTAMP; 1536 src->scrub->pfss_ts_mod = 1537 htonl(arc4random()); 1538 1539 /* note PFSS_PAWS not set yet */ 1540 memcpy(&tsval, &opt[2], 1541 sizeof(u_int32_t)); 1542 memcpy(&tsecr, &opt[6], 1543 sizeof(u_int32_t)); 1544 src->scrub->pfss_tsval0 = ntohl(tsval); 1545 src->scrub->pfss_tsval = ntohl(tsval); 1546 src->scrub->pfss_tsecr = ntohl(tsecr); 1547 getmicrouptime(&src->scrub->pfss_last); 1548 } 1549 /* FALLTHROUGH */ 1550 default: 1551 hlen -= MAX(opt[1], 2); 1552 opt += MAX(opt[1], 2); 1553 break; 1554 } 1555 } 1556 } 1557 1558 return (0); 1559 } 1560 1561 void 1562 pf_normalize_tcp_cleanup(struct pf_kstate *state) 1563 { 1564 uma_zfree(V_pf_state_scrub_z, state->src.scrub); 1565 uma_zfree(V_pf_state_scrub_z, state->dst.scrub); 1566 1567 /* Someday... flush the TCP segment reassembly descriptors. */ 1568 } 1569 1570 int 1571 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd, 1572 u_short *reason, struct tcphdr *th, struct pf_kstate *state, 1573 struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback) 1574 { 1575 struct timeval uptime; 1576 u_int32_t tsval, tsecr; 1577 u_int tsval_from_last; 1578 u_int8_t hdr[60]; 1579 u_int8_t *opt; 1580 int copyback = 0; 1581 int got_ts = 0; 1582 size_t startoff; 1583 1584 KASSERT((src->scrub || dst->scrub), 1585 ("%s: src->scrub && dst->scrub!", __func__)); 1586 1587 /* 1588 * Enforce the minimum TTL seen for this connection. Negate a common 1589 * technique to evade an intrusion detection system and confuse 1590 * firewall state code. 1591 */ 1592 switch (pd->af) { 1593 #ifdef INET 1594 case AF_INET: { 1595 if (src->scrub) { 1596 struct ip *h = mtod(m, struct ip *); 1597 if (h->ip_ttl > src->scrub->pfss_ttl) 1598 src->scrub->pfss_ttl = h->ip_ttl; 1599 h->ip_ttl = src->scrub->pfss_ttl; 1600 } 1601 break; 1602 } 1603 #endif /* INET */ 1604 #ifdef INET6 1605 case AF_INET6: { 1606 if (src->scrub) { 1607 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 1608 if (h->ip6_hlim > src->scrub->pfss_ttl) 1609 src->scrub->pfss_ttl = h->ip6_hlim; 1610 h->ip6_hlim = src->scrub->pfss_ttl; 1611 } 1612 break; 1613 } 1614 #endif /* INET6 */ 1615 } 1616 1617 if (th->th_off > (sizeof(struct tcphdr) >> 2) && 1618 ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) || 1619 (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) && 1620 pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) { 1621 /* Diddle with TCP options */ 1622 int hlen; 1623 opt = hdr + sizeof(struct tcphdr); 1624 hlen = (th->th_off << 2) - sizeof(struct tcphdr); 1625 while (hlen >= TCPOLEN_TIMESTAMP) { 1626 startoff = opt - (hdr + sizeof(struct tcphdr)); 1627 switch (*opt) { 1628 case TCPOPT_EOL: /* FALLTHROUGH */ 1629 case TCPOPT_NOP: 1630 opt++; 1631 hlen--; 1632 break; 1633 case TCPOPT_TIMESTAMP: 1634 /* Modulate the timestamps. Can be used for 1635 * NAT detection, OS uptime determination or 1636 * reboot detection. 1637 */ 1638 1639 if (got_ts) { 1640 /* Huh? Multiple timestamps!? */ 1641 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1642 DPFPRINTF(("multiple TS??\n")); 1643 pf_print_state(state); 1644 printf("\n"); 1645 } 1646 REASON_SET(reason, PFRES_TS); 1647 return (PF_DROP); 1648 } 1649 if (opt[1] >= TCPOLEN_TIMESTAMP) { 1650 memcpy(&tsval, &opt[2], 1651 sizeof(u_int32_t)); 1652 if (tsval && src->scrub && 1653 (src->scrub->pfss_flags & 1654 PFSS_TIMESTAMP)) { 1655 tsval = ntohl(tsval); 1656 pf_patch_32_unaligned(m, 1657 &th->th_sum, 1658 &opt[2], 1659 htonl(tsval + 1660 src->scrub->pfss_ts_mod), 1661 PF_ALGNMNT(startoff), 1662 0); 1663 copyback = 1; 1664 } 1665 1666 /* Modulate TS reply iff valid (!0) */ 1667 memcpy(&tsecr, &opt[6], 1668 sizeof(u_int32_t)); 1669 if (tsecr && dst->scrub && 1670 (dst->scrub->pfss_flags & 1671 PFSS_TIMESTAMP)) { 1672 tsecr = ntohl(tsecr) 1673 - dst->scrub->pfss_ts_mod; 1674 pf_patch_32_unaligned(m, 1675 &th->th_sum, 1676 &opt[6], 1677 htonl(tsecr), 1678 PF_ALGNMNT(startoff), 1679 0); 1680 copyback = 1; 1681 } 1682 got_ts = 1; 1683 } 1684 /* FALLTHROUGH */ 1685 default: 1686 hlen -= MAX(opt[1], 2); 1687 opt += MAX(opt[1], 2); 1688 break; 1689 } 1690 } 1691 if (copyback) { 1692 /* Copyback the options, caller copys back header */ 1693 *writeback = 1; 1694 m_copyback(m, off + sizeof(struct tcphdr), 1695 (th->th_off << 2) - sizeof(struct tcphdr), hdr + 1696 sizeof(struct tcphdr)); 1697 } 1698 } 1699 1700 /* 1701 * Must invalidate PAWS checks on connections idle for too long. 1702 * The fastest allowed timestamp clock is 1ms. That turns out to 1703 * be about 24 days before it wraps. XXX Right now our lowerbound 1704 * TS echo check only works for the first 12 days of a connection 1705 * when the TS has exhausted half its 32bit space 1706 */ 1707 #define TS_MAX_IDLE (24*24*60*60) 1708 #define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */ 1709 1710 getmicrouptime(&uptime); 1711 if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && 1712 (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE || 1713 time_uptime - state->creation > TS_MAX_CONN)) { 1714 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1715 DPFPRINTF(("src idled out of PAWS\n")); 1716 pf_print_state(state); 1717 printf("\n"); 1718 } 1719 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS) 1720 | PFSS_PAWS_IDLED; 1721 } 1722 if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) && 1723 uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) { 1724 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1725 DPFPRINTF(("dst idled out of PAWS\n")); 1726 pf_print_state(state); 1727 printf("\n"); 1728 } 1729 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS) 1730 | PFSS_PAWS_IDLED; 1731 } 1732 1733 if (got_ts && src->scrub && dst->scrub && 1734 (src->scrub->pfss_flags & PFSS_PAWS) && 1735 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1736 /* Validate that the timestamps are "in-window". 1737 * RFC1323 describes TCP Timestamp options that allow 1738 * measurement of RTT (round trip time) and PAWS 1739 * (protection against wrapped sequence numbers). PAWS 1740 * gives us a set of rules for rejecting packets on 1741 * long fat pipes (packets that were somehow delayed 1742 * in transit longer than the time it took to send the 1743 * full TCP sequence space of 4Gb). We can use these 1744 * rules and infer a few others that will let us treat 1745 * the 32bit timestamp and the 32bit echoed timestamp 1746 * as sequence numbers to prevent a blind attacker from 1747 * inserting packets into a connection. 1748 * 1749 * RFC1323 tells us: 1750 * - The timestamp on this packet must be greater than 1751 * or equal to the last value echoed by the other 1752 * endpoint. The RFC says those will be discarded 1753 * since it is a dup that has already been acked. 1754 * This gives us a lowerbound on the timestamp. 1755 * timestamp >= other last echoed timestamp 1756 * - The timestamp will be less than or equal to 1757 * the last timestamp plus the time between the 1758 * last packet and now. The RFC defines the max 1759 * clock rate as 1ms. We will allow clocks to be 1760 * up to 10% fast and will allow a total difference 1761 * or 30 seconds due to a route change. And this 1762 * gives us an upperbound on the timestamp. 1763 * timestamp <= last timestamp + max ticks 1764 * We have to be careful here. Windows will send an 1765 * initial timestamp of zero and then initialize it 1766 * to a random value after the 3whs; presumably to 1767 * avoid a DoS by having to call an expensive RNG 1768 * during a SYN flood. Proof MS has at least one 1769 * good security geek. 1770 * 1771 * - The TCP timestamp option must also echo the other 1772 * endpoints timestamp. The timestamp echoed is the 1773 * one carried on the earliest unacknowledged segment 1774 * on the left edge of the sequence window. The RFC 1775 * states that the host will reject any echoed 1776 * timestamps that were larger than any ever sent. 1777 * This gives us an upperbound on the TS echo. 1778 * tescr <= largest_tsval 1779 * - The lowerbound on the TS echo is a little more 1780 * tricky to determine. The other endpoint's echoed 1781 * values will not decrease. But there may be 1782 * network conditions that re-order packets and 1783 * cause our view of them to decrease. For now the 1784 * only lowerbound we can safely determine is that 1785 * the TS echo will never be less than the original 1786 * TS. XXX There is probably a better lowerbound. 1787 * Remove TS_MAX_CONN with better lowerbound check. 1788 * tescr >= other original TS 1789 * 1790 * It is also important to note that the fastest 1791 * timestamp clock of 1ms will wrap its 32bit space in 1792 * 24 days. So we just disable TS checking after 24 1793 * days of idle time. We actually must use a 12d 1794 * connection limit until we can come up with a better 1795 * lowerbound to the TS echo check. 1796 */ 1797 struct timeval delta_ts; 1798 int ts_fudge; 1799 1800 /* 1801 * PFTM_TS_DIFF is how many seconds of leeway to allow 1802 * a host's timestamp. This can happen if the previous 1803 * packet got delayed in transit for much longer than 1804 * this packet. 1805 */ 1806 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0) 1807 ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF]; 1808 1809 /* Calculate max ticks since the last timestamp */ 1810 #define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */ 1811 #define TS_MICROSECS 1000000 /* microseconds per second */ 1812 delta_ts = uptime; 1813 timevalsub(&delta_ts, &src->scrub->pfss_last); 1814 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ; 1815 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ); 1816 1817 if ((src->state >= TCPS_ESTABLISHED && 1818 dst->state >= TCPS_ESTABLISHED) && 1819 (SEQ_LT(tsval, dst->scrub->pfss_tsecr) || 1820 SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) || 1821 (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) || 1822 SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) { 1823 /* Bad RFC1323 implementation or an insertion attack. 1824 * 1825 * - Solaris 2.6 and 2.7 are known to send another ACK 1826 * after the FIN,FIN|ACK,ACK closing that carries 1827 * an old timestamp. 1828 */ 1829 1830 DPFPRINTF(("Timestamp failed %c%c%c%c\n", 1831 SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ', 1832 SEQ_GT(tsval, src->scrub->pfss_tsval + 1833 tsval_from_last) ? '1' : ' ', 1834 SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ', 1835 SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' ')); 1836 DPFPRINTF((" tsval: %u tsecr: %u +ticks: %u " 1837 "idle: %jus %lums\n", 1838 tsval, tsecr, tsval_from_last, 1839 (uintmax_t)delta_ts.tv_sec, 1840 delta_ts.tv_usec / 1000)); 1841 DPFPRINTF((" src->tsval: %u tsecr: %u\n", 1842 src->scrub->pfss_tsval, src->scrub->pfss_tsecr)); 1843 DPFPRINTF((" dst->tsval: %u tsecr: %u tsval0: %u" 1844 "\n", dst->scrub->pfss_tsval, 1845 dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0)); 1846 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1847 pf_print_state(state); 1848 pf_print_flags(th->th_flags); 1849 printf("\n"); 1850 } 1851 REASON_SET(reason, PFRES_TS); 1852 return (PF_DROP); 1853 } 1854 1855 /* XXX I'd really like to require tsecr but it's optional */ 1856 1857 } else if (!got_ts && (th->th_flags & TH_RST) == 0 && 1858 ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED) 1859 || pd->p_len > 0 || (th->th_flags & TH_SYN)) && 1860 src->scrub && dst->scrub && 1861 (src->scrub->pfss_flags & PFSS_PAWS) && 1862 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1863 /* Didn't send a timestamp. Timestamps aren't really useful 1864 * when: 1865 * - connection opening or closing (often not even sent). 1866 * but we must not let an attacker to put a FIN on a 1867 * data packet to sneak it through our ESTABLISHED check. 1868 * - on a TCP reset. RFC suggests not even looking at TS. 1869 * - on an empty ACK. The TS will not be echoed so it will 1870 * probably not help keep the RTT calculation in sync and 1871 * there isn't as much danger when the sequence numbers 1872 * got wrapped. So some stacks don't include TS on empty 1873 * ACKs :-( 1874 * 1875 * To minimize the disruption to mostly RFC1323 conformant 1876 * stacks, we will only require timestamps on data packets. 1877 * 1878 * And what do ya know, we cannot require timestamps on data 1879 * packets. There appear to be devices that do legitimate 1880 * TCP connection hijacking. There are HTTP devices that allow 1881 * a 3whs (with timestamps) and then buffer the HTTP request. 1882 * If the intermediate device has the HTTP response cache, it 1883 * will spoof the response but not bother timestamping its 1884 * packets. So we can look for the presence of a timestamp in 1885 * the first data packet and if there, require it in all future 1886 * packets. 1887 */ 1888 1889 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) { 1890 /* 1891 * Hey! Someone tried to sneak a packet in. Or the 1892 * stack changed its RFC1323 behavior?!?! 1893 */ 1894 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1895 DPFPRINTF(("Did not receive expected RFC1323 " 1896 "timestamp\n")); 1897 pf_print_state(state); 1898 pf_print_flags(th->th_flags); 1899 printf("\n"); 1900 } 1901 REASON_SET(reason, PFRES_TS); 1902 return (PF_DROP); 1903 } 1904 } 1905 1906 /* 1907 * We will note if a host sends his data packets with or without 1908 * timestamps. And require all data packets to contain a timestamp 1909 * if the first does. PAWS implicitly requires that all data packets be 1910 * timestamped. But I think there are middle-man devices that hijack 1911 * TCP streams immediately after the 3whs and don't timestamp their 1912 * packets (seen in a WWW accelerator or cache). 1913 */ 1914 if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags & 1915 (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) { 1916 if (got_ts) 1917 src->scrub->pfss_flags |= PFSS_DATA_TS; 1918 else { 1919 src->scrub->pfss_flags |= PFSS_DATA_NOTS; 1920 if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub && 1921 (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { 1922 /* Don't warn if other host rejected RFC1323 */ 1923 DPFPRINTF(("Broken RFC1323 stack did not " 1924 "timestamp data packet. Disabled PAWS " 1925 "security.\n")); 1926 pf_print_state(state); 1927 pf_print_flags(th->th_flags); 1928 printf("\n"); 1929 } 1930 } 1931 } 1932 1933 /* 1934 * Update PAWS values 1935 */ 1936 if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags & 1937 (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) { 1938 getmicrouptime(&src->scrub->pfss_last); 1939 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) || 1940 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1941 src->scrub->pfss_tsval = tsval; 1942 1943 if (tsecr) { 1944 if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) || 1945 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1946 src->scrub->pfss_tsecr = tsecr; 1947 1948 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 && 1949 (SEQ_LT(tsval, src->scrub->pfss_tsval0) || 1950 src->scrub->pfss_tsval0 == 0)) { 1951 /* tsval0 MUST be the lowest timestamp */ 1952 src->scrub->pfss_tsval0 = tsval; 1953 } 1954 1955 /* Only fully initialized after a TS gets echoed */ 1956 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0) 1957 src->scrub->pfss_flags |= PFSS_PAWS; 1958 } 1959 } 1960 1961 /* I have a dream.... TCP segment reassembly.... */ 1962 return (0); 1963 } 1964 1965 int 1966 pf_normalize_mss(struct mbuf *m, int off, struct pf_pdesc *pd) 1967 { 1968 struct tcphdr *th = &pd->hdr.tcp; 1969 u_int16_t *mss; 1970 int thoff; 1971 int opt, cnt, optlen = 0; 1972 u_char opts[TCP_MAXOLEN]; 1973 u_char *optp = opts; 1974 size_t startoff; 1975 1976 thoff = th->th_off << 2; 1977 cnt = thoff - sizeof(struct tcphdr); 1978 1979 if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt, 1980 NULL, NULL, pd->af)) 1981 return (0); 1982 1983 for (; cnt > 0; cnt -= optlen, optp += optlen) { 1984 startoff = optp - opts; 1985 opt = optp[0]; 1986 if (opt == TCPOPT_EOL) 1987 break; 1988 if (opt == TCPOPT_NOP) 1989 optlen = 1; 1990 else { 1991 if (cnt < 2) 1992 break; 1993 optlen = optp[1]; 1994 if (optlen < 2 || optlen > cnt) 1995 break; 1996 } 1997 switch (opt) { 1998 case TCPOPT_MAXSEG: 1999 mss = (u_int16_t *)(optp + 2); 2000 if ((ntohs(*mss)) > pd->act.max_mss) { 2001 pf_patch_16_unaligned(m, 2002 &th->th_sum, 2003 mss, htons(pd->act.max_mss), 2004 PF_ALGNMNT(startoff), 2005 0); 2006 m_copyback(m, off + sizeof(*th), 2007 thoff - sizeof(*th), opts); 2008 m_copyback(m, off, sizeof(*th), (caddr_t)th); 2009 } 2010 break; 2011 default: 2012 break; 2013 } 2014 } 2015 2016 return (0); 2017 } 2018 2019 #ifdef INET 2020 void 2021 pf_scrub_ip(struct mbuf **m0, struct pf_pdesc *pd) 2022 { 2023 struct mbuf *m = *m0; 2024 struct ip *h = mtod(m, struct ip *); 2025 2026 /* Clear IP_DF if no-df was requested */ 2027 if (pd->act.flags & PFSTATE_NODF && h->ip_off & htons(IP_DF)) { 2028 u_int16_t ip_off = h->ip_off; 2029 2030 h->ip_off &= htons(~IP_DF); 2031 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 2032 } 2033 2034 /* Enforce a minimum ttl, may cause endless packet loops */ 2035 if (pd->act.min_ttl && h->ip_ttl < pd->act.min_ttl) { 2036 u_int16_t ip_ttl = h->ip_ttl; 2037 2038 h->ip_ttl = pd->act.min_ttl; 2039 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0); 2040 } 2041 2042 /* Enforce tos */ 2043 if (pd->act.flags & PFSTATE_SETTOS) { 2044 u_int16_t ov, nv; 2045 2046 ov = *(u_int16_t *)h; 2047 h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK); 2048 nv = *(u_int16_t *)h; 2049 2050 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0); 2051 } 2052 2053 /* random-id, but not for fragments */ 2054 if (pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) { 2055 uint16_t ip_id = h->ip_id; 2056 2057 ip_fillid(h); 2058 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0); 2059 } 2060 } 2061 #endif /* INET */ 2062 2063 #ifdef INET6 2064 void 2065 pf_scrub_ip6(struct mbuf **m0, struct pf_pdesc *pd) 2066 { 2067 struct mbuf *m = *m0; 2068 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 2069 2070 /* Enforce a minimum ttl, may cause endless packet loops */ 2071 if (pd->act.min_ttl && h->ip6_hlim < pd->act.min_ttl) 2072 h->ip6_hlim = pd->act.min_ttl; 2073 2074 /* Enforce tos. Set traffic class bits */ 2075 if (pd->act.flags & PFSTATE_SETTOS) { 2076 h->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK; 2077 h->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h)) << 20); 2078 } 2079 } 2080 #endif 2081