xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_pf.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/refcount.h>
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/vnet.h>
48 #include <net/pfvar.h>
49 #include <net/if_pflog.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet6/ip6_var.h>
55 #include <netinet6/scope6_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #endif /* INET6 */
63 
64 struct pf_frent {
65 	TAILQ_ENTRY(pf_frent)	fr_next;
66 	struct mbuf	*fe_m;
67 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
68 					   ipv6, extension, fragment header */
69 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
70 	uint16_t	fe_len;		/* fragment length */
71 	uint16_t	fe_off;		/* fragment offset */
72 	uint16_t	fe_mff;		/* more fragment flag */
73 };
74 
75 struct pf_fragment_cmp {
76 	struct pf_addr	frc_src;
77 	struct pf_addr	frc_dst;
78 	uint32_t	frc_id;
79 	sa_family_t	frc_af;
80 	uint8_t		frc_proto;
81 };
82 
83 struct pf_fragment {
84 	struct pf_fragment_cmp	fr_key;
85 #define fr_src	fr_key.frc_src
86 #define fr_dst	fr_key.frc_dst
87 #define fr_id	fr_key.frc_id
88 #define fr_af	fr_key.frc_af
89 #define fr_proto	fr_key.frc_proto
90 
91 	/* pointers to queue element */
92 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
93 	/* count entries between pointers */
94 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
95 	RB_ENTRY(pf_fragment) fr_entry;
96 	TAILQ_ENTRY(pf_fragment) frag_next;
97 	uint32_t	fr_timeout;
98 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
99 	u_int16_t	fr_holes;	/* number of holes in the queue */
100 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
101 };
102 
103 struct pf_fragment_tag {
104 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
105 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
106 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
107 	uint32_t	ft_id;		/* fragment id */
108 };
109 
110 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
111 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
112 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
113 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
114 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
115 
116 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
117 
118 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
119 #define	V_pf_frent_z	VNET(pf_frent_z)
120 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
121 #define	V_pf_frag_z	VNET(pf_frag_z)
122 
123 TAILQ_HEAD(pf_fragqueue, pf_fragment);
124 TAILQ_HEAD(pf_cachequeue, pf_fragment);
125 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
126 #define	V_pf_fragqueue			VNET(pf_fragqueue)
127 RB_HEAD(pf_frag_tree, pf_fragment);
128 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
129 #define	V_pf_frag_tree			VNET(pf_frag_tree)
130 static int		 pf_frag_compare(struct pf_fragment *,
131 			    struct pf_fragment *);
132 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
133 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
134 
135 static void	pf_flush_fragments(void);
136 static void	pf_free_fragment(struct pf_fragment *);
137 static void	pf_remove_fragment(struct pf_fragment *);
138 
139 static struct pf_frent *pf_create_fragment(u_short *);
140 static int	pf_frent_holes(struct pf_frent *frent);
141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
142 		    struct pf_frag_tree *tree);
143 static inline int	pf_frent_index(struct pf_frent *);
144 static int	pf_frent_insert(struct pf_fragment *,
145 			    struct pf_frent *, struct pf_frent *);
146 void			pf_frent_remove(struct pf_fragment *,
147 			    struct pf_frent *);
148 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
149 			    struct pf_frent *);
150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
151 		    struct pf_frent *, u_short *);
152 static struct mbuf *pf_join_fragment(struct pf_fragment *);
153 #ifdef INET
154 static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
155 #endif	/* INET */
156 #ifdef INET6
157 static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
158 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
159 #endif	/* INET6 */
160 
161 #define	DPFPRINTF(x) do {				\
162 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
163 		printf("%s: ", __func__);		\
164 		printf x ;				\
165 	}						\
166 } while(0)
167 
168 #ifdef INET
169 static void
170 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
171 {
172 
173 	key->frc_src.v4 = ip->ip_src;
174 	key->frc_dst.v4 = ip->ip_dst;
175 	key->frc_af = AF_INET;
176 	key->frc_proto = ip->ip_p;
177 	key->frc_id = ip->ip_id;
178 }
179 #endif	/* INET */
180 
181 void
182 pf_normalize_init(void)
183 {
184 
185 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
186 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
187 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
188 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
189 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
190 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
191 	    UMA_ALIGN_PTR, 0);
192 
193 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
194 
195 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
196 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
197 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
198 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
199 
200 	TAILQ_INIT(&V_pf_fragqueue);
201 }
202 
203 void
204 pf_normalize_cleanup(void)
205 {
206 
207 	uma_zdestroy(V_pf_state_scrub_z);
208 	uma_zdestroy(V_pf_frent_z);
209 	uma_zdestroy(V_pf_frag_z);
210 
211 	mtx_destroy(&V_pf_frag_mtx);
212 }
213 
214 static int
215 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
216 {
217 	int	diff;
218 
219 	if ((diff = a->fr_id - b->fr_id) != 0)
220 		return (diff);
221 	if ((diff = a->fr_proto - b->fr_proto) != 0)
222 		return (diff);
223 	if ((diff = a->fr_af - b->fr_af) != 0)
224 		return (diff);
225 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
226 		return (diff);
227 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
228 		return (diff);
229 	return (0);
230 }
231 
232 void
233 pf_purge_expired_fragments(void)
234 {
235 	u_int32_t	expire = time_uptime -
236 			    V_pf_default_rule.timeout[PFTM_FRAG];
237 
238 	pf_purge_fragments(expire);
239 }
240 
241 void
242 pf_purge_fragments(uint32_t expire)
243 {
244 	struct pf_fragment	*frag;
245 
246 	PF_FRAG_LOCK();
247 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
248 		if (frag->fr_timeout > expire)
249 			break;
250 
251 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
252 		pf_free_fragment(frag);
253 	}
254 
255 	PF_FRAG_UNLOCK();
256 }
257 
258 /*
259  * Try to flush old fragments to make space for new ones
260  */
261 static void
262 pf_flush_fragments(void)
263 {
264 	struct pf_fragment	*frag;
265 	int			 goal;
266 
267 	PF_FRAG_ASSERT();
268 
269 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
270 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
271 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
272 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
273 		if (frag)
274 			pf_free_fragment(frag);
275 		else
276 			break;
277 	}
278 }
279 
280 /* Frees the fragments and all associated entries */
281 static void
282 pf_free_fragment(struct pf_fragment *frag)
283 {
284 	struct pf_frent		*frent;
285 
286 	PF_FRAG_ASSERT();
287 
288 	/* Free all fragments */
289 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
290 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
291 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
292 
293 		m_freem(frent->fe_m);
294 		uma_zfree(V_pf_frent_z, frent);
295 	}
296 
297 	pf_remove_fragment(frag);
298 }
299 
300 static struct pf_fragment *
301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
302 {
303 	struct pf_fragment	*frag;
304 
305 	PF_FRAG_ASSERT();
306 
307 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
308 	if (frag != NULL) {
309 		/* XXX Are we sure we want to update the timeout? */
310 		frag->fr_timeout = time_uptime;
311 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
312 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
313 	}
314 
315 	return (frag);
316 }
317 
318 /* Removes a fragment from the fragment queue and frees the fragment */
319 static void
320 pf_remove_fragment(struct pf_fragment *frag)
321 {
322 
323 	PF_FRAG_ASSERT();
324 	KASSERT(frag, ("frag != NULL"));
325 
326 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
327 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
328 	uma_zfree(V_pf_frag_z, frag);
329 }
330 
331 static struct pf_frent *
332 pf_create_fragment(u_short *reason)
333 {
334 	struct pf_frent *frent;
335 
336 	PF_FRAG_ASSERT();
337 
338 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
339 	if (frent == NULL) {
340 		pf_flush_fragments();
341 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
342 		if (frent == NULL) {
343 			REASON_SET(reason, PFRES_MEMORY);
344 			return (NULL);
345 		}
346 	}
347 
348 	return (frent);
349 }
350 
351 /*
352  * Calculate the additional holes that were created in the fragment
353  * queue by inserting this fragment.  A fragment in the middle
354  * creates one more hole by splitting.  For each connected side,
355  * it loses one hole.
356  * Fragment entry must be in the queue when calling this function.
357  */
358 static int
359 pf_frent_holes(struct pf_frent *frent)
360 {
361 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
362 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
363 	int holes = 1;
364 
365 	if (prev == NULL) {
366 		if (frent->fe_off == 0)
367 			holes--;
368 	} else {
369 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
370 		if (frent->fe_off == prev->fe_off + prev->fe_len)
371 			holes--;
372 	}
373 	if (next == NULL) {
374 		if (!frent->fe_mff)
375 			holes--;
376 	} else {
377 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
378 		if (next->fe_off == frent->fe_off + frent->fe_len)
379 			holes--;
380 	}
381 	return holes;
382 }
383 
384 static inline int
385 pf_frent_index(struct pf_frent *frent)
386 {
387 	/*
388 	 * We have an array of 16 entry points to the queue.  A full size
389 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
390 	 * traversal length is at most 512 and at most 16 entry points are
391 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
392 	 */
393 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
394 	    16 - 1);
395 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
396 
397 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
398 }
399 
400 static int
401 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
402     struct pf_frent *prev)
403 {
404 	int index;
405 
406 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
407 
408 	/*
409 	 * A packet has at most 65536 octets.  With 16 entry points, each one
410 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
411 	 * means on average every fragment must have at least 64 octets.
412 	 */
413 	index = pf_frent_index(frent);
414 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
415 		return ENOBUFS;
416 	frag->fr_entries[index]++;
417 
418 	if (prev == NULL) {
419 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
420 	} else {
421 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
422 		    ("overlapping fragment"));
423 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
424 	}
425 
426 	if (frag->fr_firstoff[index] == NULL) {
427 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
428 		    ("prev == NULL || pf_frent_index(pref) < index"));
429 		frag->fr_firstoff[index] = frent;
430 	} else {
431 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
432 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
433 			    ("prev == NULL || pf_frent_index(pref) < index"));
434 			frag->fr_firstoff[index] = frent;
435 		} else {
436 			KASSERT(prev != NULL, ("prev != NULL"));
437 			KASSERT(pf_frent_index(prev) == index,
438 			    ("pf_frent_index(prev) == index"));
439 		}
440 	}
441 
442 	frag->fr_holes += pf_frent_holes(frent);
443 
444 	return 0;
445 }
446 
447 void
448 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
449 {
450 #ifdef INVARIANTS
451 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
452 #endif
453 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
454 	int index;
455 
456 	frag->fr_holes -= pf_frent_holes(frent);
457 
458 	index = pf_frent_index(frent);
459 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
460 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
461 		if (next == NULL) {
462 			frag->fr_firstoff[index] = NULL;
463 		} else {
464 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
465 			    ("overlapping fragment"));
466 			if (pf_frent_index(next) == index) {
467 				frag->fr_firstoff[index] = next;
468 			} else {
469 				frag->fr_firstoff[index] = NULL;
470 			}
471 		}
472 	} else {
473 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
474 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
475 		KASSERT(prev != NULL, ("prev != NULL"));
476 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
477 		    ("overlapping fragment"));
478 		KASSERT(pf_frent_index(prev) == index,
479 		    ("pf_frent_index(prev) == index"));
480 	}
481 
482 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
483 
484 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
485 	frag->fr_entries[index]--;
486 }
487 
488 struct pf_frent *
489 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
490 {
491 	struct pf_frent *prev, *next;
492 	int index;
493 
494 	/*
495 	 * If there are no fragments after frag, take the final one.  Assume
496 	 * that the global queue is not empty.
497 	 */
498 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
499 	KASSERT(prev != NULL, ("prev != NULL"));
500 	if (prev->fe_off <= frent->fe_off)
501 		return prev;
502 	/*
503 	 * We want to find a fragment entry that is before frag, but still
504 	 * close to it.  Find the first fragment entry that is in the same
505 	 * entry point or in the first entry point after that.  As we have
506 	 * already checked that there are entries behind frag, this will
507 	 * succeed.
508 	 */
509 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
510 	    index++) {
511 		prev = frag->fr_firstoff[index];
512 		if (prev != NULL)
513 			break;
514 	}
515 	KASSERT(prev != NULL, ("prev != NULL"));
516 	/*
517 	 * In prev we may have a fragment from the same entry point that is
518 	 * before frent, or one that is just one position behind frent.
519 	 * In the latter case, we go back one step and have the predecessor.
520 	 * There may be none if the new fragment will be the first one.
521 	 */
522 	if (prev->fe_off > frent->fe_off) {
523 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
524 		if (prev == NULL)
525 			return NULL;
526 		KASSERT(prev->fe_off <= frent->fe_off,
527 		    ("prev->fe_off <= frent->fe_off"));
528 		return prev;
529 	}
530 	/*
531 	 * In prev is the first fragment of the entry point.  The offset
532 	 * of frag is behind it.  Find the closest previous fragment.
533 	 */
534 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
535 	    next = TAILQ_NEXT(next, fr_next)) {
536 		if (next->fe_off > frent->fe_off)
537 			break;
538 		prev = next;
539 	}
540 	return prev;
541 }
542 
543 static struct pf_fragment *
544 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
545     u_short *reason)
546 {
547 	struct pf_frent		*after, *next, *prev;
548 	struct pf_fragment	*frag;
549 	uint16_t		total;
550 	int			old_index, new_index;
551 
552 	PF_FRAG_ASSERT();
553 
554 	/* No empty fragments. */
555 	if (frent->fe_len == 0) {
556 		DPFPRINTF(("bad fragment: len 0\n"));
557 		goto bad_fragment;
558 	}
559 
560 	/* All fragments are 8 byte aligned. */
561 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
562 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
563 		goto bad_fragment;
564 	}
565 
566 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
567 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
568 		DPFPRINTF(("bad fragment: max packet %d\n",
569 		    frent->fe_off + frent->fe_len));
570 		goto bad_fragment;
571 	}
572 
573 	DPFPRINTF((key->frc_af == AF_INET ?
574 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
575 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
576 
577 	/* Fully buffer all of the fragments in this fragment queue. */
578 	frag = pf_find_fragment(key, &V_pf_frag_tree);
579 
580 	/* Create a new reassembly queue for this packet. */
581 	if (frag == NULL) {
582 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
583 		if (frag == NULL) {
584 			pf_flush_fragments();
585 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
586 			if (frag == NULL) {
587 				REASON_SET(reason, PFRES_MEMORY);
588 				goto drop_fragment;
589 			}
590 		}
591 
592 		*(struct pf_fragment_cmp *)frag = *key;
593 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
594 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
595 		frag->fr_timeout = time_uptime;
596 		frag->fr_maxlen = frent->fe_len;
597 		frag->fr_holes = 1;
598 		TAILQ_INIT(&frag->fr_queue);
599 
600 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
601 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
602 
603 		/* We do not have a previous fragment, cannot fail. */
604 		pf_frent_insert(frag, frent, NULL);
605 
606 		return (frag);
607 	}
608 
609 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
610 
611 	/* Remember maximum fragment len for refragmentation. */
612 	if (frent->fe_len > frag->fr_maxlen)
613 		frag->fr_maxlen = frent->fe_len;
614 
615 	/* Maximum data we have seen already. */
616 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
617 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
618 
619 	/* Non terminal fragments must have more fragments flag. */
620 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
621 		goto bad_fragment;
622 
623 	/* Check if we saw the last fragment already. */
624 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
625 		if (frent->fe_off + frent->fe_len > total ||
626 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
627 			goto bad_fragment;
628 	} else {
629 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
630 			goto bad_fragment;
631 	}
632 
633 	/* Find neighbors for newly inserted fragment */
634 	prev = pf_frent_previous(frag, frent);
635 	if (prev == NULL) {
636 		after = TAILQ_FIRST(&frag->fr_queue);
637 		KASSERT(after != NULL, ("after != NULL"));
638 	} else {
639 		after = TAILQ_NEXT(prev, fr_next);
640 	}
641 
642 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
643 		uint16_t precut;
644 
645 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
646 		if (precut >= frent->fe_len)
647 			goto bad_fragment;
648 		DPFPRINTF(("overlap -%d\n", precut));
649 		m_adj(frent->fe_m, precut);
650 		frent->fe_off += precut;
651 		frent->fe_len -= precut;
652 	}
653 
654 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
655 	    after = next) {
656 		uint16_t aftercut;
657 
658 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
659 		DPFPRINTF(("adjust overlap %d\n", aftercut));
660 		if (aftercut < after->fe_len) {
661 			m_adj(after->fe_m, aftercut);
662 			old_index = pf_frent_index(after);
663 			after->fe_off += aftercut;
664 			after->fe_len -= aftercut;
665 			new_index = pf_frent_index(after);
666 			if (old_index != new_index) {
667 				DPFPRINTF(("frag index %d, new %d",
668 				    old_index, new_index));
669 				/* Fragment switched queue as fe_off changed */
670 				after->fe_off -= aftercut;
671 				after->fe_len += aftercut;
672 				/* Remove restored fragment from old queue */
673 				pf_frent_remove(frag, after);
674 				after->fe_off += aftercut;
675 				after->fe_len -= aftercut;
676 				/* Insert into correct queue */
677 				if (pf_frent_insert(frag, after, prev)) {
678 					DPFPRINTF(
679 					    ("fragment requeue limit exceeded"));
680 					m_freem(after->fe_m);
681 					uma_zfree(V_pf_frent_z, after);
682 					/* There is not way to recover */
683 					goto bad_fragment;
684 				}
685 			}
686 			break;
687 		}
688 
689 		/* This fragment is completely overlapped, lose it. */
690 		next = TAILQ_NEXT(after, fr_next);
691 		pf_frent_remove(frag, after);
692 		m_freem(after->fe_m);
693 		uma_zfree(V_pf_frent_z, after);
694 	}
695 
696 	/* If part of the queue gets too long, there is not way to recover. */
697 	if (pf_frent_insert(frag, frent, prev)) {
698 		DPFPRINTF(("fragment queue limit exceeded\n"));
699 		goto bad_fragment;
700 	}
701 
702 	return (frag);
703 
704 bad_fragment:
705 	REASON_SET(reason, PFRES_FRAG);
706 drop_fragment:
707 	uma_zfree(V_pf_frent_z, frent);
708 	return (NULL);
709 }
710 
711 static struct mbuf *
712 pf_join_fragment(struct pf_fragment *frag)
713 {
714 	struct mbuf *m, *m2;
715 	struct pf_frent	*frent, *next;
716 
717 	frent = TAILQ_FIRST(&frag->fr_queue);
718 	next = TAILQ_NEXT(frent, fr_next);
719 
720 	m = frent->fe_m;
721 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
722 	uma_zfree(V_pf_frent_z, frent);
723 	for (frent = next; frent != NULL; frent = next) {
724 		next = TAILQ_NEXT(frent, fr_next);
725 
726 		m2 = frent->fe_m;
727 		/* Strip off ip header. */
728 		m_adj(m2, frent->fe_hdrlen);
729 		/* Strip off any trailing bytes. */
730 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
731 
732 		uma_zfree(V_pf_frent_z, frent);
733 		m_cat(m, m2);
734 	}
735 
736 	/* Remove from fragment queue. */
737 	pf_remove_fragment(frag);
738 
739 	return (m);
740 }
741 
742 #ifdef INET
743 static int
744 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
745 {
746 	struct mbuf		*m = *m0;
747 	struct pf_frent		*frent;
748 	struct pf_fragment	*frag;
749 	struct pf_fragment_cmp	key;
750 	uint16_t		total, hdrlen;
751 
752 	/* Get an entry for the fragment queue */
753 	if ((frent = pf_create_fragment(reason)) == NULL)
754 		return (PF_DROP);
755 
756 	frent->fe_m = m;
757 	frent->fe_hdrlen = ip->ip_hl << 2;
758 	frent->fe_extoff = 0;
759 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
760 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
761 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
762 
763 	pf_ip2key(ip, dir, &key);
764 
765 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
766 		return (PF_DROP);
767 
768 	/* The mbuf is part of the fragment entry, no direct free or access */
769 	m = *m0 = NULL;
770 
771 	if (frag->fr_holes) {
772 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
773 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
774 	}
775 
776 	/* We have all the data */
777 	frent = TAILQ_FIRST(&frag->fr_queue);
778 	KASSERT(frent != NULL, ("frent != NULL"));
779 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
780 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
781 	hdrlen = frent->fe_hdrlen;
782 
783 	m = *m0 = pf_join_fragment(frag);
784 	frag = NULL;
785 
786 	if (m->m_flags & M_PKTHDR) {
787 		int plen = 0;
788 		for (m = *m0; m; m = m->m_next)
789 			plen += m->m_len;
790 		m = *m0;
791 		m->m_pkthdr.len = plen;
792 	}
793 
794 	ip = mtod(m, struct ip *);
795 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
796 	    htons(hdrlen + total), 0);
797 	ip->ip_len = htons(hdrlen + total);
798 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
799 	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
800 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
801 
802 	if (hdrlen + total > IP_MAXPACKET) {
803 		DPFPRINTF(("drop: too big: %d\n", total));
804 		ip->ip_len = 0;
805 		REASON_SET(reason, PFRES_SHORT);
806 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
807 		return (PF_DROP);
808 	}
809 
810 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
811 	return (PF_PASS);
812 }
813 #endif	/* INET */
814 
815 #ifdef INET6
816 static int
817 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
818     uint16_t hdrlen, uint16_t extoff, u_short *reason)
819 {
820 	struct mbuf		*m = *m0;
821 	struct pf_frent		*frent;
822 	struct pf_fragment	*frag;
823 	struct pf_fragment_cmp	 key;
824 	struct m_tag		*mtag;
825 	struct pf_fragment_tag	*ftag;
826 	int			 off;
827 	uint32_t		 frag_id;
828 	uint16_t		 total, maxlen;
829 	uint8_t			 proto;
830 
831 	PF_FRAG_LOCK();
832 
833 	/* Get an entry for the fragment queue. */
834 	if ((frent = pf_create_fragment(reason)) == NULL) {
835 		PF_FRAG_UNLOCK();
836 		return (PF_DROP);
837 	}
838 
839 	frent->fe_m = m;
840 	frent->fe_hdrlen = hdrlen;
841 	frent->fe_extoff = extoff;
842 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
843 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
844 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
845 
846 	key.frc_src.v6 = ip6->ip6_src;
847 	key.frc_dst.v6 = ip6->ip6_dst;
848 	key.frc_af = AF_INET6;
849 	/* Only the first fragment's protocol is relevant. */
850 	key.frc_proto = 0;
851 	key.frc_id = fraghdr->ip6f_ident;
852 
853 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
854 		PF_FRAG_UNLOCK();
855 		return (PF_DROP);
856 	}
857 
858 	/* The mbuf is part of the fragment entry, no direct free or access. */
859 	m = *m0 = NULL;
860 
861 	if (frag->fr_holes) {
862 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
863 		    frag->fr_holes));
864 		PF_FRAG_UNLOCK();
865 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
866 	}
867 
868 	/* We have all the data. */
869 	frent = TAILQ_FIRST(&frag->fr_queue);
870 	KASSERT(frent != NULL, ("frent != NULL"));
871 	extoff = frent->fe_extoff;
872 	maxlen = frag->fr_maxlen;
873 	frag_id = frag->fr_id;
874 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
875 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
876 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
877 
878 	m = *m0 = pf_join_fragment(frag);
879 	frag = NULL;
880 
881 	PF_FRAG_UNLOCK();
882 
883 	/* Take protocol from first fragment header. */
884 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
885 	KASSERT(m, ("%s: short mbuf chain", __func__));
886 	proto = *(mtod(m, uint8_t *) + off);
887 	m = *m0;
888 
889 	/* Delete frag6 header */
890 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
891 		goto fail;
892 
893 	if (m->m_flags & M_PKTHDR) {
894 		int plen = 0;
895 		for (m = *m0; m; m = m->m_next)
896 			plen += m->m_len;
897 		m = *m0;
898 		m->m_pkthdr.len = plen;
899 	}
900 
901 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
902 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
903 		goto fail;
904 	ftag = (struct pf_fragment_tag *)(mtag + 1);
905 	ftag->ft_hdrlen = hdrlen;
906 	ftag->ft_extoff = extoff;
907 	ftag->ft_maxlen = maxlen;
908 	ftag->ft_id = frag_id;
909 	m_tag_prepend(m, mtag);
910 
911 	ip6 = mtod(m, struct ip6_hdr *);
912 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
913 	if (extoff) {
914 		/* Write protocol into next field of last extension header. */
915 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
916 		    &off);
917 		KASSERT(m, ("%s: short mbuf chain", __func__));
918 		*(mtod(m, char *) + off) = proto;
919 		m = *m0;
920 	} else
921 		ip6->ip6_nxt = proto;
922 
923 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
924 		DPFPRINTF(("drop: too big: %d\n", total));
925 		ip6->ip6_plen = 0;
926 		REASON_SET(reason, PFRES_SHORT);
927 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
928 		return (PF_DROP);
929 	}
930 
931 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
932 	return (PF_PASS);
933 
934 fail:
935 	REASON_SET(reason, PFRES_MEMORY);
936 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
937 	return (PF_DROP);
938 }
939 #endif	/* INET6 */
940 
941 #ifdef INET6
942 int
943 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
944     bool forward)
945 {
946 	struct mbuf		*m = *m0, *t;
947 	struct ip6_hdr		*hdr;
948 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
949 	struct pf_pdesc		 pd;
950 	uint32_t		 frag_id;
951 	uint16_t		 hdrlen, extoff, maxlen;
952 	uint8_t			 proto;
953 	int			 error, action;
954 
955 	hdrlen = ftag->ft_hdrlen;
956 	extoff = ftag->ft_extoff;
957 	maxlen = ftag->ft_maxlen;
958 	frag_id = ftag->ft_id;
959 	m_tag_delete(m, mtag);
960 	mtag = NULL;
961 	ftag = NULL;
962 
963 	if (extoff) {
964 		int off;
965 
966 		/* Use protocol from next field of last extension header */
967 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
968 		    &off);
969 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
970 		proto = *(mtod(m, uint8_t *) + off);
971 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
972 		m = *m0;
973 	} else {
974 		hdr = mtod(m, struct ip6_hdr *);
975 		proto = hdr->ip6_nxt;
976 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
977 	}
978 
979 	/* In case of link-local traffic we'll need a scope set. */
980 	hdr = mtod(m, struct ip6_hdr *);
981 
982 	in6_setscope(&hdr->ip6_src, ifp, NULL);
983 	in6_setscope(&hdr->ip6_dst, ifp, NULL);
984 
985 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
986 	 * fragmentation wrong. */
987 	maxlen = maxlen & ~7;
988 
989 	/*
990 	 * Maxlen may be less than 8 if there was only a single
991 	 * fragment.  As it was fragmented before, add a fragment
992 	 * header also for a single fragment.  If total or maxlen
993 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
994 	 * we drop the packet.
995 	 */
996 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
997 	m = (*m0)->m_nextpkt;
998 	(*m0)->m_nextpkt = NULL;
999 	if (error == 0) {
1000 		/* The first mbuf contains the unfragmented packet. */
1001 		m_freem(*m0);
1002 		*m0 = NULL;
1003 		action = PF_PASS;
1004 	} else {
1005 		/* Drop expects an mbuf to free. */
1006 		DPFPRINTF(("refragment error %d\n", error));
1007 		action = PF_DROP;
1008 	}
1009 	for (; m; m = t) {
1010 		t = m->m_nextpkt;
1011 		m->m_nextpkt = NULL;
1012 		m->m_flags |= M_SKIP_FIREWALL;
1013 		memset(&pd, 0, sizeof(pd));
1014 		pd.pf_mtag = pf_find_mtag(m);
1015 		if (error == 0)
1016 			if (forward) {
1017 				MPASS(m->m_pkthdr.rcvif != NULL);
1018 				ip6_forward(m, 0);
1019 			} else {
1020 				(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1021 				    NULL);
1022 			}
1023 		else
1024 			m_freem(m);
1025 	}
1026 
1027 	return (action);
1028 }
1029 #endif /* INET6 */
1030 
1031 #ifdef INET
1032 int
1033 pf_normalize_ip(struct mbuf **m0, struct pfi_kkif *kif, u_short *reason,
1034     struct pf_pdesc *pd)
1035 {
1036 	struct mbuf		*m = *m0;
1037 	struct pf_krule		*r;
1038 	struct ip		*h = mtod(m, struct ip *);
1039 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1040 	int			 hlen = h->ip_hl << 2;
1041 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1042 	u_int16_t		 max;
1043 	int			 ip_len;
1044 	int			 tag = -1;
1045 	int			 verdict;
1046 	int			 srs;
1047 
1048 	PF_RULES_RASSERT();
1049 
1050 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1051 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1052 	 * packet normalization operation just like in OpenBSD. */
1053 	srs = (r != NULL);
1054 	while (r != NULL) {
1055 		pf_counter_u64_add(&r->evaluations, 1);
1056 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1057 			r = r->skip[PF_SKIP_IFP].ptr;
1058 		else if (r->direction && r->direction != pd->dir)
1059 			r = r->skip[PF_SKIP_DIR].ptr;
1060 		else if (r->af && r->af != AF_INET)
1061 			r = r->skip[PF_SKIP_AF].ptr;
1062 		else if (r->proto && r->proto != h->ip_p)
1063 			r = r->skip[PF_SKIP_PROTO].ptr;
1064 		else if (PF_MISMATCHAW(&r->src.addr,
1065 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1066 		    r->src.neg, kif, M_GETFIB(m)))
1067 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1068 		else if (PF_MISMATCHAW(&r->dst.addr,
1069 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1070 		    r->dst.neg, NULL, M_GETFIB(m)))
1071 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1072 		else if (r->match_tag && !pf_match_tag(m, r, &tag,
1073 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1074 			r = TAILQ_NEXT(r, entries);
1075 		else
1076 			break;
1077 	}
1078 
1079 	if (srs) {
1080 		/* With scrub rules present IPv4 normalization happens only
1081 		 * if one of rules has matched and it's not a "no scrub" rule */
1082 		if (r == NULL || r->action == PF_NOSCRUB)
1083 			return (PF_PASS);
1084 
1085 		pf_counter_u64_critical_enter();
1086 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1087 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1088 		pf_counter_u64_critical_exit();
1089 		pf_rule_to_actions(r, &pd->act);
1090 	} else if ((!V_pf_status.reass && (h->ip_off & htons(IP_MF | IP_OFFMASK)))) {
1091 		/* With no scrub rules IPv4 fragment reassembly depends on the
1092 		 * global switch. Fragments can be dropped early if reassembly
1093 		 * is disabled. */
1094 		REASON_SET(reason, PFRES_NORM);
1095 		goto drop;
1096 	}
1097 
1098 	/* Check for illegal packets */
1099 	if (hlen < (int)sizeof(struct ip)) {
1100 		REASON_SET(reason, PFRES_NORM);
1101 		goto drop;
1102 	}
1103 
1104 	if (hlen > ntohs(h->ip_len)) {
1105 		REASON_SET(reason, PFRES_NORM);
1106 		goto drop;
1107 	}
1108 
1109 	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1110 	if ((((r && r->rule_flag & PFRULE_NODF) ||
1111 	    (V_pf_status.reass & PF_REASS_NODF)) && h->ip_off & htons(IP_DF)
1112 	)) {
1113 		u_int16_t ip_off = h->ip_off;
1114 
1115 		h->ip_off &= htons(~IP_DF);
1116 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1117 	}
1118 
1119 	/* We will need other tests here */
1120 	if (!fragoff && !mff)
1121 		goto no_fragment;
1122 
1123 	/* We're dealing with a fragment now. Don't allow fragments
1124 	 * with IP_DF to enter the cache. If the flag was cleared by
1125 	 * no-df above, fine. Otherwise drop it.
1126 	 */
1127 	if (h->ip_off & htons(IP_DF)) {
1128 		DPFPRINTF(("IP_DF\n"));
1129 		goto bad;
1130 	}
1131 
1132 	ip_len = ntohs(h->ip_len) - hlen;
1133 
1134 	/* All fragments are 8 byte aligned */
1135 	if (mff && (ip_len & 0x7)) {
1136 		DPFPRINTF(("mff and %d\n", ip_len));
1137 		goto bad;
1138 	}
1139 
1140 	/* Respect maximum length */
1141 	if (fragoff + ip_len > IP_MAXPACKET) {
1142 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1143 		goto bad;
1144 	}
1145 
1146 	if (r==NULL || !(r->rule_flag & PFRULE_FRAGMENT_NOREASS)) {
1147 		max = fragoff + ip_len;
1148 
1149 		/* Fully buffer all of the fragments
1150 		 * Might return a completely reassembled mbuf, or NULL */
1151 		PF_FRAG_LOCK();
1152 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1153 		verdict = pf_reassemble(m0, h, pd->dir, reason);
1154 		PF_FRAG_UNLOCK();
1155 
1156 		if (verdict != PF_PASS)
1157 			return (PF_DROP);
1158 
1159 		m = *m0;
1160 		if (m == NULL)
1161 			return (PF_DROP);
1162 
1163 		h = mtod(m, struct ip *);
1164 
1165  no_fragment:
1166 		/* At this point, only IP_DF is allowed in ip_off */
1167 		if (h->ip_off & ~htons(IP_DF)) {
1168 			u_int16_t ip_off = h->ip_off;
1169 
1170 			h->ip_off &= htons(IP_DF);
1171 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1172 		}
1173 	}
1174 
1175 	return (PF_PASS);
1176 
1177  bad:
1178 	DPFPRINTF(("dropping bad fragment\n"));
1179 	REASON_SET(reason, PFRES_FRAG);
1180  drop:
1181 	if (r != NULL && r->log)
1182 		PFLOG_PACKET(kif, m, AF_INET, *reason, r, NULL, NULL, pd, 1);
1183 
1184 	return (PF_DROP);
1185 }
1186 #endif
1187 
1188 #ifdef INET6
1189 int
1190 pf_normalize_ip6(struct mbuf **m0, struct pfi_kkif *kif,
1191     u_short *reason, struct pf_pdesc *pd)
1192 {
1193 	struct mbuf		*m = *m0;
1194 	struct pf_krule		*r;
1195 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1196 	int			 extoff;
1197 	int			 off;
1198 	struct ip6_ext		 ext;
1199 	struct ip6_opt		 opt;
1200 	struct ip6_frag		 frag;
1201 	u_int32_t		 plen;
1202 	int			 optend;
1203 	int			 ooff;
1204 	u_int8_t		 proto;
1205 	int			 terminal;
1206 	int			 srs;
1207 
1208 	PF_RULES_RASSERT();
1209 
1210 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1211 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1212 	 * packet normalization operation just like in OpenBSD. */
1213 	srs = (r != NULL);
1214 	while (r != NULL) {
1215 		pf_counter_u64_add(&r->evaluations, 1);
1216 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1217 			r = r->skip[PF_SKIP_IFP].ptr;
1218 		else if (r->direction && r->direction != pd->dir)
1219 			r = r->skip[PF_SKIP_DIR].ptr;
1220 		else if (r->af && r->af != AF_INET6)
1221 			r = r->skip[PF_SKIP_AF].ptr;
1222 #if 0 /* header chain! */
1223 		else if (r->proto && r->proto != h->ip6_nxt)
1224 			r = r->skip[PF_SKIP_PROTO].ptr;
1225 #endif
1226 		else if (PF_MISMATCHAW(&r->src.addr,
1227 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1228 		    r->src.neg, kif, M_GETFIB(m)))
1229 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1230 		else if (PF_MISMATCHAW(&r->dst.addr,
1231 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1232 		    r->dst.neg, NULL, M_GETFIB(m)))
1233 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1234 		else
1235 			break;
1236 	}
1237 
1238 	if (srs) {
1239 		/* With scrub rules present IPv6 normalization happens only
1240 		 * if one of rules has matched and it's not a "no scrub" rule */
1241 		if (r == NULL || r->action == PF_NOSCRUB)
1242 			return (PF_PASS);
1243 
1244 		pf_counter_u64_critical_enter();
1245 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1246 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1247 		pf_counter_u64_critical_exit();
1248 		pf_rule_to_actions(r, &pd->act);
1249 	}
1250 
1251 	/* Check for illegal packets */
1252 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1253 		goto drop;
1254 
1255 	plen = ntohs(h->ip6_plen);
1256 	/* jumbo payload option not supported */
1257 	if (plen == 0)
1258 		goto drop;
1259 
1260 	extoff = 0;
1261 	off = sizeof(struct ip6_hdr);
1262 	proto = h->ip6_nxt;
1263 	terminal = 0;
1264 	do {
1265 		switch (proto) {
1266 		case IPPROTO_FRAGMENT:
1267 			goto fragment;
1268 			break;
1269 		case IPPROTO_AH:
1270 		case IPPROTO_ROUTING:
1271 		case IPPROTO_DSTOPTS:
1272 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1273 			    NULL, AF_INET6))
1274 				goto shortpkt;
1275 			extoff = off;
1276 			if (proto == IPPROTO_AH)
1277 				off += (ext.ip6e_len + 2) * 4;
1278 			else
1279 				off += (ext.ip6e_len + 1) * 8;
1280 			proto = ext.ip6e_nxt;
1281 			break;
1282 		case IPPROTO_HOPOPTS:
1283 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1284 			    NULL, AF_INET6))
1285 				goto shortpkt;
1286 			extoff = off;
1287 			optend = off + (ext.ip6e_len + 1) * 8;
1288 			ooff = off + sizeof(ext);
1289 			do {
1290 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1291 				    sizeof(opt.ip6o_type), NULL, NULL,
1292 				    AF_INET6))
1293 					goto shortpkt;
1294 				if (opt.ip6o_type == IP6OPT_PAD1) {
1295 					ooff++;
1296 					continue;
1297 				}
1298 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1299 				    NULL, NULL, AF_INET6))
1300 					goto shortpkt;
1301 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1302 					goto drop;
1303 				if (opt.ip6o_type == IP6OPT_JUMBO)
1304 					goto drop;
1305 				ooff += sizeof(opt) + opt.ip6o_len;
1306 			} while (ooff < optend);
1307 
1308 			off = optend;
1309 			proto = ext.ip6e_nxt;
1310 			break;
1311 		default:
1312 			terminal = 1;
1313 			break;
1314 		}
1315 	} while (!terminal);
1316 
1317 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1318 		goto shortpkt;
1319 
1320 	return (PF_PASS);
1321 
1322  fragment:
1323 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1324 		goto shortpkt;
1325 
1326 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1327 		goto shortpkt;
1328 
1329 	/* Offset now points to data portion. */
1330 	off += sizeof(frag);
1331 
1332 	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1333 	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1334 		return (PF_DROP);
1335 	m = *m0;
1336 	if (m == NULL)
1337 		return (PF_DROP);
1338 
1339 	pd->flags |= PFDESC_IP_REAS;
1340 	return (PF_PASS);
1341 
1342  shortpkt:
1343 	REASON_SET(reason, PFRES_SHORT);
1344 	if (r != NULL && r->log)
1345 		PFLOG_PACKET(kif, m, AF_INET6, *reason, r, NULL, NULL, pd, 1);
1346 	return (PF_DROP);
1347 
1348  drop:
1349 	REASON_SET(reason, PFRES_NORM);
1350 	if (r != NULL && r->log)
1351 		PFLOG_PACKET(kif, m, AF_INET6, *reason, r, NULL, NULL, pd, 1);
1352 	return (PF_DROP);
1353 }
1354 #endif /* INET6 */
1355 
1356 int
1357 pf_normalize_tcp(struct pfi_kkif *kif, struct mbuf *m, int ipoff,
1358     int off, void *h, struct pf_pdesc *pd)
1359 {
1360 	struct pf_krule	*r, *rm = NULL;
1361 	struct tcphdr	*th = &pd->hdr.tcp;
1362 	int		 rewrite = 0;
1363 	u_short		 reason;
1364 	u_int8_t	 flags;
1365 	sa_family_t	 af = pd->af;
1366 	int		 srs;
1367 
1368 	PF_RULES_RASSERT();
1369 
1370 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1371 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1372 	 * packet normalization operation just like in OpenBSD. */
1373 	srs = (r != NULL);
1374 	while (r != NULL) {
1375 		pf_counter_u64_add(&r->evaluations, 1);
1376 		if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1377 			r = r->skip[PF_SKIP_IFP].ptr;
1378 		else if (r->direction && r->direction != pd->dir)
1379 			r = r->skip[PF_SKIP_DIR].ptr;
1380 		else if (r->af && r->af != af)
1381 			r = r->skip[PF_SKIP_AF].ptr;
1382 		else if (r->proto && r->proto != pd->proto)
1383 			r = r->skip[PF_SKIP_PROTO].ptr;
1384 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1385 		    r->src.neg, kif, M_GETFIB(m)))
1386 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1387 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1388 			    r->src.port[0], r->src.port[1], th->th_sport))
1389 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1390 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1391 		    r->dst.neg, NULL, M_GETFIB(m)))
1392 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1393 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1394 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1395 			r = r->skip[PF_SKIP_DST_PORT].ptr;
1396 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1397 			    pf_osfp_fingerprint(pd, m, off, th),
1398 			    r->os_fingerprint))
1399 			r = TAILQ_NEXT(r, entries);
1400 		else {
1401 			rm = r;
1402 			break;
1403 		}
1404 	}
1405 
1406 	if (srs) {
1407 		/* With scrub rules present TCP normalization happens only
1408 		 * if one of rules has matched and it's not a "no scrub" rule */
1409 		if (rm == NULL || rm->action == PF_NOSCRUB)
1410 			return (PF_PASS);
1411 
1412 		pf_counter_u64_critical_enter();
1413 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1414 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1415 		pf_counter_u64_critical_exit();
1416 		pf_rule_to_actions(rm, &pd->act);
1417 	}
1418 
1419 	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1420 		pd->flags |= PFDESC_TCP_NORM;
1421 
1422 	flags = th->th_flags;
1423 	if (flags & TH_SYN) {
1424 		/* Illegal packet */
1425 		if (flags & TH_RST)
1426 			goto tcp_drop;
1427 
1428 		if (flags & TH_FIN)
1429 			goto tcp_drop;
1430 	} else {
1431 		/* Illegal packet */
1432 		if (!(flags & (TH_ACK|TH_RST)))
1433 			goto tcp_drop;
1434 	}
1435 
1436 	if (!(flags & TH_ACK)) {
1437 		/* These flags are only valid if ACK is set */
1438 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1439 			goto tcp_drop;
1440 	}
1441 
1442 	/* Check for illegal header length */
1443 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1444 		goto tcp_drop;
1445 
1446 	/* If flags changed, or reserved data set, then adjust */
1447 	if (flags != th->th_flags || th->th_x2 != 0) {
1448 		u_int16_t	ov, nv;
1449 
1450 		ov = *(u_int16_t *)(&th->th_ack + 1);
1451 		th->th_flags = flags;
1452 		th->th_x2 = 0;
1453 		nv = *(u_int16_t *)(&th->th_ack + 1);
1454 
1455 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1456 		rewrite = 1;
1457 	}
1458 
1459 	/* Remove urgent pointer, if TH_URG is not set */
1460 	if (!(flags & TH_URG) && th->th_urp) {
1461 		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1462 		    0, 0);
1463 		th->th_urp = 0;
1464 		rewrite = 1;
1465 	}
1466 
1467 	/* copy back packet headers if we sanitized */
1468 	if (rewrite)
1469 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1470 
1471 	return (PF_PASS);
1472 
1473  tcp_drop:
1474 	REASON_SET(&reason, PFRES_NORM);
1475 	if (rm != NULL && r->log)
1476 		PFLOG_PACKET(kif, m, AF_INET, reason, r, NULL, NULL, pd, 1);
1477 	return (PF_DROP);
1478 }
1479 
1480 int
1481 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1482     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1483 {
1484 	u_int32_t tsval, tsecr;
1485 	u_int8_t hdr[60];
1486 	u_int8_t *opt;
1487 
1488 	KASSERT((src->scrub == NULL),
1489 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1490 
1491 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1492 	if (src->scrub == NULL)
1493 		return (1);
1494 
1495 	switch (pd->af) {
1496 #ifdef INET
1497 	case AF_INET: {
1498 		struct ip *h = mtod(m, struct ip *);
1499 		src->scrub->pfss_ttl = h->ip_ttl;
1500 		break;
1501 	}
1502 #endif /* INET */
1503 #ifdef INET6
1504 	case AF_INET6: {
1505 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1506 		src->scrub->pfss_ttl = h->ip6_hlim;
1507 		break;
1508 	}
1509 #endif /* INET6 */
1510 	}
1511 
1512 	/*
1513 	 * All normalizations below are only begun if we see the start of
1514 	 * the connections.  They must all set an enabled bit in pfss_flags
1515 	 */
1516 	if ((th->th_flags & TH_SYN) == 0)
1517 		return (0);
1518 
1519 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1520 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1521 		/* Diddle with TCP options */
1522 		int hlen;
1523 		opt = hdr + sizeof(struct tcphdr);
1524 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1525 		while (hlen >= TCPOLEN_TIMESTAMP) {
1526 			switch (*opt) {
1527 			case TCPOPT_EOL:	/* FALLTHROUGH */
1528 			case TCPOPT_NOP:
1529 				opt++;
1530 				hlen--;
1531 				break;
1532 			case TCPOPT_TIMESTAMP:
1533 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1534 					src->scrub->pfss_flags |=
1535 					    PFSS_TIMESTAMP;
1536 					src->scrub->pfss_ts_mod =
1537 					    htonl(arc4random());
1538 
1539 					/* note PFSS_PAWS not set yet */
1540 					memcpy(&tsval, &opt[2],
1541 					    sizeof(u_int32_t));
1542 					memcpy(&tsecr, &opt[6],
1543 					    sizeof(u_int32_t));
1544 					src->scrub->pfss_tsval0 = ntohl(tsval);
1545 					src->scrub->pfss_tsval = ntohl(tsval);
1546 					src->scrub->pfss_tsecr = ntohl(tsecr);
1547 					getmicrouptime(&src->scrub->pfss_last);
1548 				}
1549 				/* FALLTHROUGH */
1550 			default:
1551 				hlen -= MAX(opt[1], 2);
1552 				opt += MAX(opt[1], 2);
1553 				break;
1554 			}
1555 		}
1556 	}
1557 
1558 	return (0);
1559 }
1560 
1561 void
1562 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1563 {
1564 	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1565 	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1566 
1567 	/* Someday... flush the TCP segment reassembly descriptors. */
1568 }
1569 
1570 int
1571 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1572     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1573     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1574 {
1575 	struct timeval uptime;
1576 	u_int32_t tsval, tsecr;
1577 	u_int tsval_from_last;
1578 	u_int8_t hdr[60];
1579 	u_int8_t *opt;
1580 	int copyback = 0;
1581 	int got_ts = 0;
1582 	size_t startoff;
1583 
1584 	KASSERT((src->scrub || dst->scrub),
1585 	    ("%s: src->scrub && dst->scrub!", __func__));
1586 
1587 	/*
1588 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1589 	 * technique to evade an intrusion detection system and confuse
1590 	 * firewall state code.
1591 	 */
1592 	switch (pd->af) {
1593 #ifdef INET
1594 	case AF_INET: {
1595 		if (src->scrub) {
1596 			struct ip *h = mtod(m, struct ip *);
1597 			if (h->ip_ttl > src->scrub->pfss_ttl)
1598 				src->scrub->pfss_ttl = h->ip_ttl;
1599 			h->ip_ttl = src->scrub->pfss_ttl;
1600 		}
1601 		break;
1602 	}
1603 #endif /* INET */
1604 #ifdef INET6
1605 	case AF_INET6: {
1606 		if (src->scrub) {
1607 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1608 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1609 				src->scrub->pfss_ttl = h->ip6_hlim;
1610 			h->ip6_hlim = src->scrub->pfss_ttl;
1611 		}
1612 		break;
1613 	}
1614 #endif /* INET6 */
1615 	}
1616 
1617 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1618 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1619 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1620 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1621 		/* Diddle with TCP options */
1622 		int hlen;
1623 		opt = hdr + sizeof(struct tcphdr);
1624 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1625 		while (hlen >= TCPOLEN_TIMESTAMP) {
1626 			startoff = opt - (hdr + sizeof(struct tcphdr));
1627 			switch (*opt) {
1628 			case TCPOPT_EOL:	/* FALLTHROUGH */
1629 			case TCPOPT_NOP:
1630 				opt++;
1631 				hlen--;
1632 				break;
1633 			case TCPOPT_TIMESTAMP:
1634 				/* Modulate the timestamps.  Can be used for
1635 				 * NAT detection, OS uptime determination or
1636 				 * reboot detection.
1637 				 */
1638 
1639 				if (got_ts) {
1640 					/* Huh?  Multiple timestamps!? */
1641 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1642 						DPFPRINTF(("multiple TS??\n"));
1643 						pf_print_state(state);
1644 						printf("\n");
1645 					}
1646 					REASON_SET(reason, PFRES_TS);
1647 					return (PF_DROP);
1648 				}
1649 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1650 					memcpy(&tsval, &opt[2],
1651 					    sizeof(u_int32_t));
1652 					if (tsval && src->scrub &&
1653 					    (src->scrub->pfss_flags &
1654 					    PFSS_TIMESTAMP)) {
1655 						tsval = ntohl(tsval);
1656 						pf_patch_32_unaligned(m,
1657 						    &th->th_sum,
1658 						    &opt[2],
1659 						    htonl(tsval +
1660 						    src->scrub->pfss_ts_mod),
1661 						    PF_ALGNMNT(startoff),
1662 						    0);
1663 						copyback = 1;
1664 					}
1665 
1666 					/* Modulate TS reply iff valid (!0) */
1667 					memcpy(&tsecr, &opt[6],
1668 					    sizeof(u_int32_t));
1669 					if (tsecr && dst->scrub &&
1670 					    (dst->scrub->pfss_flags &
1671 					    PFSS_TIMESTAMP)) {
1672 						tsecr = ntohl(tsecr)
1673 						    - dst->scrub->pfss_ts_mod;
1674 						pf_patch_32_unaligned(m,
1675 						    &th->th_sum,
1676 						    &opt[6],
1677 						    htonl(tsecr),
1678 						    PF_ALGNMNT(startoff),
1679 						    0);
1680 						copyback = 1;
1681 					}
1682 					got_ts = 1;
1683 				}
1684 				/* FALLTHROUGH */
1685 			default:
1686 				hlen -= MAX(opt[1], 2);
1687 				opt += MAX(opt[1], 2);
1688 				break;
1689 			}
1690 		}
1691 		if (copyback) {
1692 			/* Copyback the options, caller copys back header */
1693 			*writeback = 1;
1694 			m_copyback(m, off + sizeof(struct tcphdr),
1695 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1696 			    sizeof(struct tcphdr));
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * Must invalidate PAWS checks on connections idle for too long.
1702 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1703 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1704 	 * TS echo check only works for the first 12 days of a connection
1705 	 * when the TS has exhausted half its 32bit space
1706 	 */
1707 #define TS_MAX_IDLE	(24*24*60*60)
1708 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1709 
1710 	getmicrouptime(&uptime);
1711 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1712 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1713 	    time_uptime - state->creation > TS_MAX_CONN))  {
1714 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1715 			DPFPRINTF(("src idled out of PAWS\n"));
1716 			pf_print_state(state);
1717 			printf("\n");
1718 		}
1719 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1720 		    | PFSS_PAWS_IDLED;
1721 	}
1722 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1723 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1724 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1725 			DPFPRINTF(("dst idled out of PAWS\n"));
1726 			pf_print_state(state);
1727 			printf("\n");
1728 		}
1729 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1730 		    | PFSS_PAWS_IDLED;
1731 	}
1732 
1733 	if (got_ts && src->scrub && dst->scrub &&
1734 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1735 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1736 		/* Validate that the timestamps are "in-window".
1737 		 * RFC1323 describes TCP Timestamp options that allow
1738 		 * measurement of RTT (round trip time) and PAWS
1739 		 * (protection against wrapped sequence numbers).  PAWS
1740 		 * gives us a set of rules for rejecting packets on
1741 		 * long fat pipes (packets that were somehow delayed
1742 		 * in transit longer than the time it took to send the
1743 		 * full TCP sequence space of 4Gb).  We can use these
1744 		 * rules and infer a few others that will let us treat
1745 		 * the 32bit timestamp and the 32bit echoed timestamp
1746 		 * as sequence numbers to prevent a blind attacker from
1747 		 * inserting packets into a connection.
1748 		 *
1749 		 * RFC1323 tells us:
1750 		 *  - The timestamp on this packet must be greater than
1751 		 *    or equal to the last value echoed by the other
1752 		 *    endpoint.  The RFC says those will be discarded
1753 		 *    since it is a dup that has already been acked.
1754 		 *    This gives us a lowerbound on the timestamp.
1755 		 *        timestamp >= other last echoed timestamp
1756 		 *  - The timestamp will be less than or equal to
1757 		 *    the last timestamp plus the time between the
1758 		 *    last packet and now.  The RFC defines the max
1759 		 *    clock rate as 1ms.  We will allow clocks to be
1760 		 *    up to 10% fast and will allow a total difference
1761 		 *    or 30 seconds due to a route change.  And this
1762 		 *    gives us an upperbound on the timestamp.
1763 		 *        timestamp <= last timestamp + max ticks
1764 		 *    We have to be careful here.  Windows will send an
1765 		 *    initial timestamp of zero and then initialize it
1766 		 *    to a random value after the 3whs; presumably to
1767 		 *    avoid a DoS by having to call an expensive RNG
1768 		 *    during a SYN flood.  Proof MS has at least one
1769 		 *    good security geek.
1770 		 *
1771 		 *  - The TCP timestamp option must also echo the other
1772 		 *    endpoints timestamp.  The timestamp echoed is the
1773 		 *    one carried on the earliest unacknowledged segment
1774 		 *    on the left edge of the sequence window.  The RFC
1775 		 *    states that the host will reject any echoed
1776 		 *    timestamps that were larger than any ever sent.
1777 		 *    This gives us an upperbound on the TS echo.
1778 		 *        tescr <= largest_tsval
1779 		 *  - The lowerbound on the TS echo is a little more
1780 		 *    tricky to determine.  The other endpoint's echoed
1781 		 *    values will not decrease.  But there may be
1782 		 *    network conditions that re-order packets and
1783 		 *    cause our view of them to decrease.  For now the
1784 		 *    only lowerbound we can safely determine is that
1785 		 *    the TS echo will never be less than the original
1786 		 *    TS.  XXX There is probably a better lowerbound.
1787 		 *    Remove TS_MAX_CONN with better lowerbound check.
1788 		 *        tescr >= other original TS
1789 		 *
1790 		 * It is also important to note that the fastest
1791 		 * timestamp clock of 1ms will wrap its 32bit space in
1792 		 * 24 days.  So we just disable TS checking after 24
1793 		 * days of idle time.  We actually must use a 12d
1794 		 * connection limit until we can come up with a better
1795 		 * lowerbound to the TS echo check.
1796 		 */
1797 		struct timeval delta_ts;
1798 		int ts_fudge;
1799 
1800 		/*
1801 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1802 		 * a host's timestamp.  This can happen if the previous
1803 		 * packet got delayed in transit for much longer than
1804 		 * this packet.
1805 		 */
1806 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1807 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1808 
1809 		/* Calculate max ticks since the last timestamp */
1810 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1811 #define TS_MICROSECS	1000000		/* microseconds per second */
1812 		delta_ts = uptime;
1813 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1814 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1815 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1816 
1817 		if ((src->state >= TCPS_ESTABLISHED &&
1818 		    dst->state >= TCPS_ESTABLISHED) &&
1819 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1820 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1821 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1822 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1823 			/* Bad RFC1323 implementation or an insertion attack.
1824 			 *
1825 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1826 			 *   after the FIN,FIN|ACK,ACK closing that carries
1827 			 *   an old timestamp.
1828 			 */
1829 
1830 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1831 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1832 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1833 			    tsval_from_last) ? '1' : ' ',
1834 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1835 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1836 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1837 			    "idle: %jus %lums\n",
1838 			    tsval, tsecr, tsval_from_last,
1839 			    (uintmax_t)delta_ts.tv_sec,
1840 			    delta_ts.tv_usec / 1000));
1841 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1842 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1843 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1844 			    "\n", dst->scrub->pfss_tsval,
1845 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1846 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1847 				pf_print_state(state);
1848 				pf_print_flags(th->th_flags);
1849 				printf("\n");
1850 			}
1851 			REASON_SET(reason, PFRES_TS);
1852 			return (PF_DROP);
1853 		}
1854 
1855 		/* XXX I'd really like to require tsecr but it's optional */
1856 
1857 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1858 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1859 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1860 	    src->scrub && dst->scrub &&
1861 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1862 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1863 		/* Didn't send a timestamp.  Timestamps aren't really useful
1864 		 * when:
1865 		 *  - connection opening or closing (often not even sent).
1866 		 *    but we must not let an attacker to put a FIN on a
1867 		 *    data packet to sneak it through our ESTABLISHED check.
1868 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1869 		 *  - on an empty ACK.  The TS will not be echoed so it will
1870 		 *    probably not help keep the RTT calculation in sync and
1871 		 *    there isn't as much danger when the sequence numbers
1872 		 *    got wrapped.  So some stacks don't include TS on empty
1873 		 *    ACKs :-(
1874 		 *
1875 		 * To minimize the disruption to mostly RFC1323 conformant
1876 		 * stacks, we will only require timestamps on data packets.
1877 		 *
1878 		 * And what do ya know, we cannot require timestamps on data
1879 		 * packets.  There appear to be devices that do legitimate
1880 		 * TCP connection hijacking.  There are HTTP devices that allow
1881 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1882 		 * If the intermediate device has the HTTP response cache, it
1883 		 * will spoof the response but not bother timestamping its
1884 		 * packets.  So we can look for the presence of a timestamp in
1885 		 * the first data packet and if there, require it in all future
1886 		 * packets.
1887 		 */
1888 
1889 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1890 			/*
1891 			 * Hey!  Someone tried to sneak a packet in.  Or the
1892 			 * stack changed its RFC1323 behavior?!?!
1893 			 */
1894 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1895 				DPFPRINTF(("Did not receive expected RFC1323 "
1896 				    "timestamp\n"));
1897 				pf_print_state(state);
1898 				pf_print_flags(th->th_flags);
1899 				printf("\n");
1900 			}
1901 			REASON_SET(reason, PFRES_TS);
1902 			return (PF_DROP);
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * We will note if a host sends his data packets with or without
1908 	 * timestamps.  And require all data packets to contain a timestamp
1909 	 * if the first does.  PAWS implicitly requires that all data packets be
1910 	 * timestamped.  But I think there are middle-man devices that hijack
1911 	 * TCP streams immediately after the 3whs and don't timestamp their
1912 	 * packets (seen in a WWW accelerator or cache).
1913 	 */
1914 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1915 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1916 		if (got_ts)
1917 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1918 		else {
1919 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1920 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1921 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1922 				/* Don't warn if other host rejected RFC1323 */
1923 				DPFPRINTF(("Broken RFC1323 stack did not "
1924 				    "timestamp data packet. Disabled PAWS "
1925 				    "security.\n"));
1926 				pf_print_state(state);
1927 				pf_print_flags(th->th_flags);
1928 				printf("\n");
1929 			}
1930 		}
1931 	}
1932 
1933 	/*
1934 	 * Update PAWS values
1935 	 */
1936 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1937 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1938 		getmicrouptime(&src->scrub->pfss_last);
1939 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1940 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1941 			src->scrub->pfss_tsval = tsval;
1942 
1943 		if (tsecr) {
1944 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1945 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1946 				src->scrub->pfss_tsecr = tsecr;
1947 
1948 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1949 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1950 			    src->scrub->pfss_tsval0 == 0)) {
1951 				/* tsval0 MUST be the lowest timestamp */
1952 				src->scrub->pfss_tsval0 = tsval;
1953 			}
1954 
1955 			/* Only fully initialized after a TS gets echoed */
1956 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1957 				src->scrub->pfss_flags |= PFSS_PAWS;
1958 		}
1959 	}
1960 
1961 	/* I have a dream....  TCP segment reassembly.... */
1962 	return (0);
1963 }
1964 
1965 int
1966 pf_normalize_mss(struct mbuf *m, int off, struct pf_pdesc *pd)
1967 {
1968 	struct tcphdr	*th = &pd->hdr.tcp;
1969 	u_int16_t	*mss;
1970 	int		 thoff;
1971 	int		 opt, cnt, optlen = 0;
1972 	u_char		 opts[TCP_MAXOLEN];
1973 	u_char		*optp = opts;
1974 	size_t		 startoff;
1975 
1976 	thoff = th->th_off << 2;
1977 	cnt = thoff - sizeof(struct tcphdr);
1978 
1979 	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1980 	    NULL, NULL, pd->af))
1981 		return (0);
1982 
1983 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1984 		startoff = optp - opts;
1985 		opt = optp[0];
1986 		if (opt == TCPOPT_EOL)
1987 			break;
1988 		if (opt == TCPOPT_NOP)
1989 			optlen = 1;
1990 		else {
1991 			if (cnt < 2)
1992 				break;
1993 			optlen = optp[1];
1994 			if (optlen < 2 || optlen > cnt)
1995 				break;
1996 		}
1997 		switch (opt) {
1998 		case TCPOPT_MAXSEG:
1999 			mss = (u_int16_t *)(optp + 2);
2000 			if ((ntohs(*mss)) > pd->act.max_mss) {
2001 				pf_patch_16_unaligned(m,
2002 				    &th->th_sum,
2003 				    mss, htons(pd->act.max_mss),
2004 				    PF_ALGNMNT(startoff),
2005 				    0);
2006 				m_copyback(m, off + sizeof(*th),
2007 				    thoff - sizeof(*th), opts);
2008 				m_copyback(m, off, sizeof(*th), (caddr_t)th);
2009 			}
2010 			break;
2011 		default:
2012 			break;
2013 		}
2014 	}
2015 
2016 	return (0);
2017 }
2018 
2019 #ifdef INET
2020 void
2021 pf_scrub_ip(struct mbuf **m0, struct pf_pdesc *pd)
2022 {
2023 	struct mbuf		*m = *m0;
2024 	struct ip		*h = mtod(m, struct ip *);
2025 
2026 	/* Clear IP_DF if no-df was requested */
2027 	if (pd->act.flags & PFSTATE_NODF && h->ip_off & htons(IP_DF)) {
2028 		u_int16_t ip_off = h->ip_off;
2029 
2030 		h->ip_off &= htons(~IP_DF);
2031 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2032 	}
2033 
2034 	/* Enforce a minimum ttl, may cause endless packet loops */
2035 	if (pd->act.min_ttl && h->ip_ttl < pd->act.min_ttl) {
2036 		u_int16_t ip_ttl = h->ip_ttl;
2037 
2038 		h->ip_ttl = pd->act.min_ttl;
2039 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2040 	}
2041 
2042 	/* Enforce tos */
2043 	if (pd->act.flags & PFSTATE_SETTOS) {
2044 		u_int16_t	ov, nv;
2045 
2046 		ov = *(u_int16_t *)h;
2047 		h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2048 		nv = *(u_int16_t *)h;
2049 
2050 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2051 	}
2052 
2053 	/* random-id, but not for fragments */
2054 	if (pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2055 		uint16_t ip_id = h->ip_id;
2056 
2057 		ip_fillid(h);
2058 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2059 	}
2060 }
2061 #endif /* INET */
2062 
2063 #ifdef INET6
2064 void
2065 pf_scrub_ip6(struct mbuf **m0, struct pf_pdesc *pd)
2066 {
2067 	struct mbuf		*m = *m0;
2068 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
2069 
2070 	/* Enforce a minimum ttl, may cause endless packet loops */
2071 	if (pd->act.min_ttl && h->ip6_hlim < pd->act.min_ttl)
2072 		h->ip6_hlim = pd->act.min_ttl;
2073 
2074 	/* Enforce tos. Set traffic class bits */
2075 	if (pd->act.flags & PFSTATE_SETTOS) {
2076 		h->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2077 		h->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h)) << 20);
2078 	}
2079 }
2080 #endif
2081