1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/radix_mpath.h> 68 #include <net/vnet.h> 69 70 #include <net/pfvar.h> 71 #include <net/if_pflog.h> 72 #include <net/if_pfsync.h> 73 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_var.h> 76 #include <netinet/ip.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/icmp_var.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp.h> 82 #include <netinet/tcp_fsm.h> 83 #include <netinet/tcp_seq.h> 84 #include <netinet/tcp_timer.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 89 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 90 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet/icmp6.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #endif /* INET6 */ 98 99 #include <machine/in_cksum.h> 100 #include <security/mac/mac_framework.h> 101 102 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 103 104 /* 105 * Global variables 106 */ 107 108 /* state tables */ 109 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 110 VNET_DEFINE(struct pf_palist, pf_pabuf); 111 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 112 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 113 VNET_DEFINE(struct pf_kstatus, pf_status); 114 115 VNET_DEFINE(u_int32_t, ticket_altqs_active); 116 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 117 VNET_DEFINE(int, altqs_inactive_open); 118 VNET_DEFINE(u_int32_t, ticket_pabuf); 119 120 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 121 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 122 VNET_DEFINE(u_char, pf_tcp_secret[16]); 123 #define V_pf_tcp_secret VNET(pf_tcp_secret) 124 VNET_DEFINE(int, pf_tcp_secret_init); 125 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 126 VNET_DEFINE(int, pf_tcp_iss_off); 127 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 128 129 /* 130 * Queue for pf_intr() sends. 131 */ 132 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 133 struct pf_send_entry { 134 STAILQ_ENTRY(pf_send_entry) pfse_next; 135 struct mbuf *pfse_m; 136 enum { 137 PFSE_IP, 138 PFSE_IP6, 139 PFSE_ICMP, 140 PFSE_ICMP6, 141 } pfse_type; 142 struct { 143 int type; 144 int code; 145 int mtu; 146 } icmpopts; 147 }; 148 149 STAILQ_HEAD(pf_send_head, pf_send_entry); 150 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 151 #define V_pf_sendqueue VNET(pf_sendqueue) 152 153 static struct mtx pf_sendqueue_mtx; 154 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 155 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 156 157 /* 158 * Queue for pf_overload_task() tasks. 159 */ 160 struct pf_overload_entry { 161 SLIST_ENTRY(pf_overload_entry) next; 162 struct pf_addr addr; 163 sa_family_t af; 164 uint8_t dir; 165 struct pf_rule *rule; 166 }; 167 168 SLIST_HEAD(pf_overload_head, pf_overload_entry); 169 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 170 #define V_pf_overloadqueue VNET(pf_overloadqueue) 171 static VNET_DEFINE(struct task, pf_overloadtask); 172 #define V_pf_overloadtask VNET(pf_overloadtask) 173 174 static struct mtx pf_overloadqueue_mtx; 175 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 176 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 177 178 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 179 struct mtx pf_unlnkdrules_mtx; 180 181 static VNET_DEFINE(uma_zone_t, pf_sources_z); 182 #define V_pf_sources_z VNET(pf_sources_z) 183 uma_zone_t pf_mtag_z; 184 VNET_DEFINE(uma_zone_t, pf_state_z); 185 VNET_DEFINE(uma_zone_t, pf_state_key_z); 186 187 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 188 #define PFID_CPUBITS 8 189 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 190 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 191 #define PFID_MAXID (~PFID_CPUMASK) 192 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 193 194 static void pf_src_tree_remove_state(struct pf_state *); 195 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 196 u_int32_t); 197 static void pf_add_threshold(struct pf_threshold *); 198 static int pf_check_threshold(struct pf_threshold *); 199 200 static void pf_change_ap(struct pf_addr *, u_int16_t *, 201 u_int16_t *, u_int16_t *, struct pf_addr *, 202 u_int16_t, u_int8_t, sa_family_t); 203 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 204 struct tcphdr *, struct pf_state_peer *); 205 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 206 struct pf_addr *, struct pf_addr *, u_int16_t, 207 u_int16_t *, u_int16_t *, u_int16_t *, 208 u_int16_t *, u_int8_t, sa_family_t); 209 static void pf_send_tcp(struct mbuf *, 210 const struct pf_rule *, sa_family_t, 211 const struct pf_addr *, const struct pf_addr *, 212 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 213 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 214 u_int16_t, struct ifnet *); 215 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 216 sa_family_t, struct pf_rule *); 217 static void pf_detach_state(struct pf_state *); 218 static int pf_state_key_attach(struct pf_state_key *, 219 struct pf_state_key *, struct pf_state *); 220 static void pf_state_key_detach(struct pf_state *, int); 221 static int pf_state_key_ctor(void *, int, void *, int); 222 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 223 static int pf_test_rule(struct pf_rule **, struct pf_state **, 224 int, struct pfi_kif *, struct mbuf *, int, 225 struct pf_pdesc *, struct pf_rule **, 226 struct pf_ruleset **, struct inpcb *); 227 static int pf_create_state(struct pf_rule *, struct pf_rule *, 228 struct pf_rule *, struct pf_pdesc *, 229 struct pf_src_node *, struct pf_state_key *, 230 struct pf_state_key *, struct mbuf *, int, 231 u_int16_t, u_int16_t, int *, struct pfi_kif *, 232 struct pf_state **, int, u_int16_t, u_int16_t, 233 int); 234 static int pf_test_fragment(struct pf_rule **, int, 235 struct pfi_kif *, struct mbuf *, void *, 236 struct pf_pdesc *, struct pf_rule **, 237 struct pf_ruleset **); 238 static int pf_tcp_track_full(struct pf_state_peer *, 239 struct pf_state_peer *, struct pf_state **, 240 struct pfi_kif *, struct mbuf *, int, 241 struct pf_pdesc *, u_short *, int *); 242 static int pf_tcp_track_sloppy(struct pf_state_peer *, 243 struct pf_state_peer *, struct pf_state **, 244 struct pf_pdesc *, u_short *); 245 static int pf_test_state_tcp(struct pf_state **, int, 246 struct pfi_kif *, struct mbuf *, int, 247 void *, struct pf_pdesc *, u_short *); 248 static int pf_test_state_udp(struct pf_state **, int, 249 struct pfi_kif *, struct mbuf *, int, 250 void *, struct pf_pdesc *); 251 static int pf_test_state_icmp(struct pf_state **, int, 252 struct pfi_kif *, struct mbuf *, int, 253 void *, struct pf_pdesc *, u_short *); 254 static int pf_test_state_other(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 256 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 257 sa_family_t); 258 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 259 sa_family_t); 260 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 261 int, u_int16_t); 262 static int pf_check_proto_cksum(struct mbuf *, int, int, 263 u_int8_t, sa_family_t); 264 static void pf_print_state_parts(struct pf_state *, 265 struct pf_state_key *, struct pf_state_key *); 266 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 267 struct pf_addr_wrap *); 268 static struct pf_state *pf_find_state(struct pfi_kif *, 269 struct pf_state_key_cmp *, u_int); 270 static int pf_src_connlimit(struct pf_state **); 271 static void pf_overload_task(void *v, int pending); 272 static int pf_insert_src_node(struct pf_src_node **, 273 struct pf_rule *, struct pf_addr *, sa_family_t); 274 static u_int pf_purge_expired_states(u_int, int); 275 static void pf_purge_unlinked_rules(void); 276 static int pf_mtag_uminit(void *, int, int); 277 static void pf_mtag_free(struct m_tag *); 278 #ifdef INET 279 static void pf_route(struct mbuf **, struct pf_rule *, int, 280 struct ifnet *, struct pf_state *, 281 struct pf_pdesc *); 282 #endif /* INET */ 283 #ifdef INET6 284 static void pf_change_a6(struct pf_addr *, u_int16_t *, 285 struct pf_addr *, u_int8_t); 286 static void pf_route6(struct mbuf **, struct pf_rule *, int, 287 struct ifnet *, struct pf_state *, 288 struct pf_pdesc *); 289 #endif /* INET6 */ 290 291 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 292 293 VNET_DECLARE(int, pf_end_threads); 294 295 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 296 297 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 298 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 299 300 #define STATE_LOOKUP(i, k, d, s, pd) \ 301 do { \ 302 (s) = pf_find_state((i), (k), (d)); \ 303 if ((s) == NULL) \ 304 return (PF_DROP); \ 305 if (PACKET_LOOPED(pd)) \ 306 return (PF_PASS); \ 307 if ((d) == PF_OUT && \ 308 (((s)->rule.ptr->rt == PF_ROUTETO && \ 309 (s)->rule.ptr->direction == PF_OUT) || \ 310 ((s)->rule.ptr->rt == PF_REPLYTO && \ 311 (s)->rule.ptr->direction == PF_IN)) && \ 312 (s)->rt_kif != NULL && \ 313 (s)->rt_kif != (i)) \ 314 return (PF_PASS); \ 315 } while (0) 316 317 #define BOUND_IFACE(r, k) \ 318 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 319 320 #define STATE_INC_COUNTERS(s) \ 321 do { \ 322 counter_u64_add(s->rule.ptr->states_cur, 1); \ 323 counter_u64_add(s->rule.ptr->states_tot, 1); \ 324 if (s->anchor.ptr != NULL) { \ 325 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 326 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 327 } \ 328 if (s->nat_rule.ptr != NULL) { \ 329 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 330 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 331 } \ 332 } while (0) 333 334 #define STATE_DEC_COUNTERS(s) \ 335 do { \ 336 if (s->nat_rule.ptr != NULL) \ 337 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 338 if (s->anchor.ptr != NULL) \ 339 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 340 counter_u64_add(s->rule.ptr->states_cur, -1); \ 341 } while (0) 342 343 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 344 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 345 VNET_DEFINE(struct pf_idhash *, pf_idhash); 346 VNET_DEFINE(struct pf_srchash *, pf_srchash); 347 348 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 349 350 u_long pf_hashmask; 351 u_long pf_srchashmask; 352 static u_long pf_hashsize; 353 static u_long pf_srchashsize; 354 355 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 356 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 357 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 358 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 359 360 VNET_DEFINE(void *, pf_swi_cookie); 361 362 VNET_DEFINE(uint32_t, pf_hashseed); 363 #define V_pf_hashseed VNET(pf_hashseed) 364 365 static __inline uint32_t 366 pf_hashkey(struct pf_state_key *sk) 367 { 368 uint32_t h; 369 370 h = murmur3_32_hash32((uint32_t *)sk, 371 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 372 V_pf_hashseed); 373 374 return (h & pf_hashmask); 375 } 376 377 static __inline uint32_t 378 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 379 { 380 uint32_t h; 381 382 switch (af) { 383 case AF_INET: 384 h = murmur3_32_hash32((uint32_t *)&addr->v4, 385 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 386 break; 387 case AF_INET6: 388 h = murmur3_32_hash32((uint32_t *)&addr->v6, 389 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 390 break; 391 default: 392 panic("%s: unknown address family %u", __func__, af); 393 } 394 395 return (h & pf_srchashmask); 396 } 397 398 #ifdef INET6 399 void 400 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 401 { 402 switch (af) { 403 #ifdef INET 404 case AF_INET: 405 dst->addr32[0] = src->addr32[0]; 406 break; 407 #endif /* INET */ 408 case AF_INET6: 409 dst->addr32[0] = src->addr32[0]; 410 dst->addr32[1] = src->addr32[1]; 411 dst->addr32[2] = src->addr32[2]; 412 dst->addr32[3] = src->addr32[3]; 413 break; 414 } 415 } 416 #endif /* INET6 */ 417 418 static void 419 pf_init_threshold(struct pf_threshold *threshold, 420 u_int32_t limit, u_int32_t seconds) 421 { 422 threshold->limit = limit * PF_THRESHOLD_MULT; 423 threshold->seconds = seconds; 424 threshold->count = 0; 425 threshold->last = time_uptime; 426 } 427 428 static void 429 pf_add_threshold(struct pf_threshold *threshold) 430 { 431 u_int32_t t = time_uptime, diff = t - threshold->last; 432 433 if (diff >= threshold->seconds) 434 threshold->count = 0; 435 else 436 threshold->count -= threshold->count * diff / 437 threshold->seconds; 438 threshold->count += PF_THRESHOLD_MULT; 439 threshold->last = t; 440 } 441 442 static int 443 pf_check_threshold(struct pf_threshold *threshold) 444 { 445 return (threshold->count > threshold->limit); 446 } 447 448 static int 449 pf_src_connlimit(struct pf_state **state) 450 { 451 struct pf_overload_entry *pfoe; 452 int bad = 0; 453 454 PF_STATE_LOCK_ASSERT(*state); 455 456 (*state)->src_node->conn++; 457 (*state)->src.tcp_est = 1; 458 pf_add_threshold(&(*state)->src_node->conn_rate); 459 460 if ((*state)->rule.ptr->max_src_conn && 461 (*state)->rule.ptr->max_src_conn < 462 (*state)->src_node->conn) { 463 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 464 bad++; 465 } 466 467 if ((*state)->rule.ptr->max_src_conn_rate.limit && 468 pf_check_threshold(&(*state)->src_node->conn_rate)) { 469 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 470 bad++; 471 } 472 473 if (!bad) 474 return (0); 475 476 /* Kill this state. */ 477 (*state)->timeout = PFTM_PURGE; 478 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 479 480 if ((*state)->rule.ptr->overload_tbl == NULL) 481 return (1); 482 483 /* Schedule overloading and flushing task. */ 484 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 485 if (pfoe == NULL) 486 return (1); /* too bad :( */ 487 488 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 489 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 490 pfoe->rule = (*state)->rule.ptr; 491 pfoe->dir = (*state)->direction; 492 PF_OVERLOADQ_LOCK(); 493 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 494 PF_OVERLOADQ_UNLOCK(); 495 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 496 497 return (1); 498 } 499 500 static void 501 pf_overload_task(void *v, int pending) 502 { 503 struct pf_overload_head queue; 504 struct pfr_addr p; 505 struct pf_overload_entry *pfoe, *pfoe1; 506 uint32_t killed = 0; 507 508 CURVNET_SET((struct vnet *)v); 509 510 PF_OVERLOADQ_LOCK(); 511 queue = V_pf_overloadqueue; 512 SLIST_INIT(&V_pf_overloadqueue); 513 PF_OVERLOADQ_UNLOCK(); 514 515 bzero(&p, sizeof(p)); 516 SLIST_FOREACH(pfoe, &queue, next) { 517 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 518 if (V_pf_status.debug >= PF_DEBUG_MISC) { 519 printf("%s: blocking address ", __func__); 520 pf_print_host(&pfoe->addr, 0, pfoe->af); 521 printf("\n"); 522 } 523 524 p.pfra_af = pfoe->af; 525 switch (pfoe->af) { 526 #ifdef INET 527 case AF_INET: 528 p.pfra_net = 32; 529 p.pfra_ip4addr = pfoe->addr.v4; 530 break; 531 #endif 532 #ifdef INET6 533 case AF_INET6: 534 p.pfra_net = 128; 535 p.pfra_ip6addr = pfoe->addr.v6; 536 break; 537 #endif 538 } 539 540 PF_RULES_WLOCK(); 541 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 542 PF_RULES_WUNLOCK(); 543 } 544 545 /* 546 * Remove those entries, that don't need flushing. 547 */ 548 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 549 if (pfoe->rule->flush == 0) { 550 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 551 free(pfoe, M_PFTEMP); 552 } else 553 counter_u64_add( 554 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 555 556 /* If nothing to flush, return. */ 557 if (SLIST_EMPTY(&queue)) { 558 CURVNET_RESTORE(); 559 return; 560 } 561 562 for (int i = 0; i <= pf_hashmask; i++) { 563 struct pf_idhash *ih = &V_pf_idhash[i]; 564 struct pf_state_key *sk; 565 struct pf_state *s; 566 567 PF_HASHROW_LOCK(ih); 568 LIST_FOREACH(s, &ih->states, entry) { 569 sk = s->key[PF_SK_WIRE]; 570 SLIST_FOREACH(pfoe, &queue, next) 571 if (sk->af == pfoe->af && 572 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 573 pfoe->rule == s->rule.ptr) && 574 ((pfoe->dir == PF_OUT && 575 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 576 (pfoe->dir == PF_IN && 577 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 578 s->timeout = PFTM_PURGE; 579 s->src.state = s->dst.state = TCPS_CLOSED; 580 killed++; 581 } 582 } 583 PF_HASHROW_UNLOCK(ih); 584 } 585 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 586 free(pfoe, M_PFTEMP); 587 if (V_pf_status.debug >= PF_DEBUG_MISC) 588 printf("%s: %u states killed", __func__, killed); 589 590 CURVNET_RESTORE(); 591 } 592 593 /* 594 * Can return locked on failure, so that we can consistently 595 * allocate and insert a new one. 596 */ 597 struct pf_src_node * 598 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 599 int returnlocked) 600 { 601 struct pf_srchash *sh; 602 struct pf_src_node *n; 603 604 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 605 606 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 607 PF_HASHROW_LOCK(sh); 608 LIST_FOREACH(n, &sh->nodes, entry) 609 if (n->rule.ptr == rule && n->af == af && 610 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 611 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 612 break; 613 if (n != NULL || returnlocked == 0) 614 PF_HASHROW_UNLOCK(sh); 615 616 return (n); 617 } 618 619 static int 620 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 621 struct pf_addr *src, sa_family_t af) 622 { 623 624 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 625 rule->rpool.opts & PF_POOL_STICKYADDR), 626 ("%s for non-tracking rule %p", __func__, rule)); 627 628 if (*sn == NULL) 629 *sn = pf_find_src_node(src, rule, af, 1); 630 631 if (*sn == NULL) { 632 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 633 634 PF_HASHROW_ASSERT(sh); 635 636 if (!rule->max_src_nodes || 637 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 638 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 639 else 640 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 641 1); 642 if ((*sn) == NULL) { 643 PF_HASHROW_UNLOCK(sh); 644 return (-1); 645 } 646 647 pf_init_threshold(&(*sn)->conn_rate, 648 rule->max_src_conn_rate.limit, 649 rule->max_src_conn_rate.seconds); 650 651 (*sn)->af = af; 652 (*sn)->rule.ptr = rule; 653 PF_ACPY(&(*sn)->addr, src, af); 654 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 655 (*sn)->creation = time_uptime; 656 (*sn)->ruletype = rule->action; 657 if ((*sn)->rule.ptr != NULL) 658 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 659 PF_HASHROW_UNLOCK(sh); 660 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 661 } else { 662 if (rule->max_src_states && 663 (*sn)->states >= rule->max_src_states) { 664 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 665 1); 666 return (-1); 667 } 668 } 669 return (0); 670 } 671 672 void 673 pf_unlink_src_node_locked(struct pf_src_node *src) 674 { 675 #ifdef INVARIANTS 676 struct pf_srchash *sh; 677 678 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 679 PF_HASHROW_ASSERT(sh); 680 #endif 681 LIST_REMOVE(src, entry); 682 if (src->rule.ptr) 683 counter_u64_add(src->rule.ptr->src_nodes, -1); 684 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 685 } 686 687 void 688 pf_unlink_src_node(struct pf_src_node *src) 689 { 690 struct pf_srchash *sh; 691 692 sh = &V_pf_srchash[pf_hashsrc(&src->addr, src->af)]; 693 PF_HASHROW_LOCK(sh); 694 pf_unlink_src_node_locked(src); 695 PF_HASHROW_UNLOCK(sh); 696 } 697 698 static void 699 pf_free_src_node(struct pf_src_node *sn) 700 { 701 702 KASSERT(sn->states == 0, ("%s: %p has refs", __func__, sn)); 703 uma_zfree(V_pf_sources_z, sn); 704 } 705 706 u_int 707 pf_free_src_nodes(struct pf_src_node_list *head) 708 { 709 struct pf_src_node *sn, *tmp; 710 u_int count = 0; 711 712 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 713 pf_free_src_node(sn); 714 count++; 715 } 716 717 return (count); 718 } 719 720 void 721 pf_mtag_initialize() 722 { 723 724 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 725 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 726 UMA_ALIGN_PTR, 0); 727 } 728 729 /* Per-vnet data storage structures initialization. */ 730 void 731 pf_initialize() 732 { 733 struct pf_keyhash *kh; 734 struct pf_idhash *ih; 735 struct pf_srchash *sh; 736 u_int i; 737 738 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 739 pf_hashsize = PF_HASHSIZ; 740 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 741 pf_srchashsize = PF_HASHSIZ / 4; 742 743 V_pf_hashseed = arc4random(); 744 745 /* States and state keys storage. */ 746 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 747 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 748 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 749 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 750 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 751 752 V_pf_state_key_z = uma_zcreate("pf state keys", 753 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 754 UMA_ALIGN_PTR, 0); 755 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 756 M_PFHASH, M_WAITOK | M_ZERO); 757 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 758 M_PFHASH, M_WAITOK | M_ZERO); 759 pf_hashmask = pf_hashsize - 1; 760 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 761 i++, kh++, ih++) { 762 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 763 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 764 } 765 766 /* Source nodes. */ 767 V_pf_sources_z = uma_zcreate("pf source nodes", 768 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 769 0); 770 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 771 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 772 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 773 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 774 M_PFHASH, M_WAITOK|M_ZERO); 775 pf_srchashmask = pf_srchashsize - 1; 776 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 777 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 778 779 /* ALTQ */ 780 TAILQ_INIT(&V_pf_altqs[0]); 781 TAILQ_INIT(&V_pf_altqs[1]); 782 TAILQ_INIT(&V_pf_pabuf); 783 V_pf_altqs_active = &V_pf_altqs[0]; 784 V_pf_altqs_inactive = &V_pf_altqs[1]; 785 786 787 /* Send & overload+flush queues. */ 788 STAILQ_INIT(&V_pf_sendqueue); 789 SLIST_INIT(&V_pf_overloadqueue); 790 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 791 mtx_init(&pf_sendqueue_mtx, "pf send queue", NULL, MTX_DEF); 792 mtx_init(&pf_overloadqueue_mtx, "pf overload/flush queue", NULL, 793 MTX_DEF); 794 795 /* Unlinked, but may be referenced rules. */ 796 TAILQ_INIT(&V_pf_unlinked_rules); 797 mtx_init(&pf_unlnkdrules_mtx, "pf unlinked rules", NULL, MTX_DEF); 798 } 799 800 void 801 pf_mtag_cleanup() 802 { 803 804 uma_zdestroy(pf_mtag_z); 805 } 806 807 void 808 pf_cleanup() 809 { 810 struct pf_keyhash *kh; 811 struct pf_idhash *ih; 812 struct pf_srchash *sh; 813 struct pf_send_entry *pfse, *next; 814 u_int i; 815 816 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 817 i++, kh++, ih++) { 818 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 819 __func__)); 820 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 821 __func__)); 822 mtx_destroy(&kh->lock); 823 mtx_destroy(&ih->lock); 824 } 825 free(V_pf_keyhash, M_PFHASH); 826 free(V_pf_idhash, M_PFHASH); 827 828 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 829 KASSERT(LIST_EMPTY(&sh->nodes), 830 ("%s: source node hash not empty", __func__)); 831 mtx_destroy(&sh->lock); 832 } 833 free(V_pf_srchash, M_PFHASH); 834 835 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 836 m_freem(pfse->pfse_m); 837 free(pfse, M_PFTEMP); 838 } 839 840 mtx_destroy(&pf_sendqueue_mtx); 841 mtx_destroy(&pf_overloadqueue_mtx); 842 mtx_destroy(&pf_unlnkdrules_mtx); 843 844 uma_zdestroy(V_pf_sources_z); 845 uma_zdestroy(V_pf_state_z); 846 uma_zdestroy(V_pf_state_key_z); 847 } 848 849 static int 850 pf_mtag_uminit(void *mem, int size, int how) 851 { 852 struct m_tag *t; 853 854 t = (struct m_tag *)mem; 855 t->m_tag_cookie = MTAG_ABI_COMPAT; 856 t->m_tag_id = PACKET_TAG_PF; 857 t->m_tag_len = sizeof(struct pf_mtag); 858 t->m_tag_free = pf_mtag_free; 859 860 return (0); 861 } 862 863 static void 864 pf_mtag_free(struct m_tag *t) 865 { 866 867 uma_zfree(pf_mtag_z, t); 868 } 869 870 struct pf_mtag * 871 pf_get_mtag(struct mbuf *m) 872 { 873 struct m_tag *mtag; 874 875 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 876 return ((struct pf_mtag *)(mtag + 1)); 877 878 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 879 if (mtag == NULL) 880 return (NULL); 881 bzero(mtag + 1, sizeof(struct pf_mtag)); 882 m_tag_prepend(m, mtag); 883 884 return ((struct pf_mtag *)(mtag + 1)); 885 } 886 887 static int 888 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 889 struct pf_state *s) 890 { 891 struct pf_keyhash *khs, *khw, *kh; 892 struct pf_state_key *sk, *cur; 893 struct pf_state *si, *olds = NULL; 894 int idx; 895 896 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 897 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 898 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 899 900 /* 901 * We need to lock hash slots of both keys. To avoid deadlock 902 * we always lock the slot with lower address first. Unlock order 903 * isn't important. 904 * 905 * We also need to lock ID hash slot before dropping key 906 * locks. On success we return with ID hash slot locked. 907 */ 908 909 if (skw == sks) { 910 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 911 PF_HASHROW_LOCK(khs); 912 } else { 913 khs = &V_pf_keyhash[pf_hashkey(sks)]; 914 khw = &V_pf_keyhash[pf_hashkey(skw)]; 915 if (khs == khw) { 916 PF_HASHROW_LOCK(khs); 917 } else if (khs < khw) { 918 PF_HASHROW_LOCK(khs); 919 PF_HASHROW_LOCK(khw); 920 } else { 921 PF_HASHROW_LOCK(khw); 922 PF_HASHROW_LOCK(khs); 923 } 924 } 925 926 #define KEYS_UNLOCK() do { \ 927 if (khs != khw) { \ 928 PF_HASHROW_UNLOCK(khs); \ 929 PF_HASHROW_UNLOCK(khw); \ 930 } else \ 931 PF_HASHROW_UNLOCK(khs); \ 932 } while (0) 933 934 /* 935 * First run: start with wire key. 936 */ 937 sk = skw; 938 kh = khw; 939 idx = PF_SK_WIRE; 940 941 keyattach: 942 LIST_FOREACH(cur, &kh->keys, entry) 943 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 944 break; 945 946 if (cur != NULL) { 947 /* Key exists. Check for same kif, if none, add to key. */ 948 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 949 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 950 951 PF_HASHROW_LOCK(ih); 952 if (si->kif == s->kif && 953 si->direction == s->direction) { 954 if (sk->proto == IPPROTO_TCP && 955 si->src.state >= TCPS_FIN_WAIT_2 && 956 si->dst.state >= TCPS_FIN_WAIT_2) { 957 /* 958 * New state matches an old >FIN_WAIT_2 959 * state. We can't drop key hash locks, 960 * thus we can't unlink it properly. 961 * 962 * As a workaround we drop it into 963 * TCPS_CLOSED state, schedule purge 964 * ASAP and push it into the very end 965 * of the slot TAILQ, so that it won't 966 * conflict with our new state. 967 */ 968 si->src.state = si->dst.state = 969 TCPS_CLOSED; 970 si->timeout = PFTM_PURGE; 971 olds = si; 972 } else { 973 if (V_pf_status.debug >= PF_DEBUG_MISC) { 974 printf("pf: %s key attach " 975 "failed on %s: ", 976 (idx == PF_SK_WIRE) ? 977 "wire" : "stack", 978 s->kif->pfik_name); 979 pf_print_state_parts(s, 980 (idx == PF_SK_WIRE) ? 981 sk : NULL, 982 (idx == PF_SK_STACK) ? 983 sk : NULL); 984 printf(", existing: "); 985 pf_print_state_parts(si, 986 (idx == PF_SK_WIRE) ? 987 sk : NULL, 988 (idx == PF_SK_STACK) ? 989 sk : NULL); 990 printf("\n"); 991 } 992 PF_HASHROW_UNLOCK(ih); 993 KEYS_UNLOCK(); 994 uma_zfree(V_pf_state_key_z, sk); 995 if (idx == PF_SK_STACK) 996 pf_detach_state(s); 997 return (EEXIST); /* collision! */ 998 } 999 } 1000 PF_HASHROW_UNLOCK(ih); 1001 } 1002 uma_zfree(V_pf_state_key_z, sk); 1003 s->key[idx] = cur; 1004 } else { 1005 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1006 s->key[idx] = sk; 1007 } 1008 1009 stateattach: 1010 /* List is sorted, if-bound states before floating. */ 1011 if (s->kif == V_pfi_all) 1012 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1013 else 1014 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1015 1016 if (olds) { 1017 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1018 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1019 key_list[idx]); 1020 olds = NULL; 1021 } 1022 1023 /* 1024 * Attach done. See how should we (or should not?) 1025 * attach a second key. 1026 */ 1027 if (sks == skw) { 1028 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1029 idx = PF_SK_STACK; 1030 sks = NULL; 1031 goto stateattach; 1032 } else if (sks != NULL) { 1033 /* 1034 * Continue attaching with stack key. 1035 */ 1036 sk = sks; 1037 kh = khs; 1038 idx = PF_SK_STACK; 1039 sks = NULL; 1040 goto keyattach; 1041 } 1042 1043 PF_STATE_LOCK(s); 1044 KEYS_UNLOCK(); 1045 1046 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1047 ("%s failure", __func__)); 1048 1049 return (0); 1050 #undef KEYS_UNLOCK 1051 } 1052 1053 static void 1054 pf_detach_state(struct pf_state *s) 1055 { 1056 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1057 struct pf_keyhash *kh; 1058 1059 if (sks != NULL) { 1060 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1061 PF_HASHROW_LOCK(kh); 1062 if (s->key[PF_SK_STACK] != NULL) 1063 pf_state_key_detach(s, PF_SK_STACK); 1064 /* 1065 * If both point to same key, then we are done. 1066 */ 1067 if (sks == s->key[PF_SK_WIRE]) { 1068 pf_state_key_detach(s, PF_SK_WIRE); 1069 PF_HASHROW_UNLOCK(kh); 1070 return; 1071 } 1072 PF_HASHROW_UNLOCK(kh); 1073 } 1074 1075 if (s->key[PF_SK_WIRE] != NULL) { 1076 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1077 PF_HASHROW_LOCK(kh); 1078 if (s->key[PF_SK_WIRE] != NULL) 1079 pf_state_key_detach(s, PF_SK_WIRE); 1080 PF_HASHROW_UNLOCK(kh); 1081 } 1082 } 1083 1084 static void 1085 pf_state_key_detach(struct pf_state *s, int idx) 1086 { 1087 struct pf_state_key *sk = s->key[idx]; 1088 #ifdef INVARIANTS 1089 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1090 1091 PF_HASHROW_ASSERT(kh); 1092 #endif 1093 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1094 s->key[idx] = NULL; 1095 1096 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1097 LIST_REMOVE(sk, entry); 1098 uma_zfree(V_pf_state_key_z, sk); 1099 } 1100 } 1101 1102 static int 1103 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1104 { 1105 struct pf_state_key *sk = mem; 1106 1107 bzero(sk, sizeof(struct pf_state_key_cmp)); 1108 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1109 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1110 1111 return (0); 1112 } 1113 1114 struct pf_state_key * 1115 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1116 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1117 { 1118 struct pf_state_key *sk; 1119 1120 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1121 if (sk == NULL) 1122 return (NULL); 1123 1124 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1125 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1126 sk->port[pd->sidx] = sport; 1127 sk->port[pd->didx] = dport; 1128 sk->proto = pd->proto; 1129 sk->af = pd->af; 1130 1131 return (sk); 1132 } 1133 1134 struct pf_state_key * 1135 pf_state_key_clone(struct pf_state_key *orig) 1136 { 1137 struct pf_state_key *sk; 1138 1139 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1140 if (sk == NULL) 1141 return (NULL); 1142 1143 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1144 1145 return (sk); 1146 } 1147 1148 int 1149 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1150 struct pf_state_key *sks, struct pf_state *s) 1151 { 1152 struct pf_idhash *ih; 1153 struct pf_state *cur; 1154 int error; 1155 1156 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1157 ("%s: sks not pristine", __func__)); 1158 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1159 ("%s: skw not pristine", __func__)); 1160 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1161 1162 s->kif = kif; 1163 1164 if (s->id == 0 && s->creatorid == 0) { 1165 /* XXX: should be atomic, but probability of collision low */ 1166 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1167 V_pf_stateid[curcpu] = 1; 1168 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1169 s->id = htobe64(s->id); 1170 s->creatorid = V_pf_status.hostid; 1171 } 1172 1173 /* Returns with ID locked on success. */ 1174 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1175 return (error); 1176 1177 ih = &V_pf_idhash[PF_IDHASH(s)]; 1178 PF_HASHROW_ASSERT(ih); 1179 LIST_FOREACH(cur, &ih->states, entry) 1180 if (cur->id == s->id && cur->creatorid == s->creatorid) 1181 break; 1182 1183 if (cur != NULL) { 1184 PF_HASHROW_UNLOCK(ih); 1185 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1186 printf("pf: state ID collision: " 1187 "id: %016llx creatorid: %08x\n", 1188 (unsigned long long)be64toh(s->id), 1189 ntohl(s->creatorid)); 1190 } 1191 pf_detach_state(s); 1192 return (EEXIST); 1193 } 1194 LIST_INSERT_HEAD(&ih->states, s, entry); 1195 /* One for keys, one for ID hash. */ 1196 refcount_init(&s->refs, 2); 1197 1198 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1199 if (pfsync_insert_state_ptr != NULL) 1200 pfsync_insert_state_ptr(s); 1201 1202 /* Returns locked. */ 1203 return (0); 1204 } 1205 1206 /* 1207 * Find state by ID: returns with locked row on success. 1208 */ 1209 struct pf_state * 1210 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1211 { 1212 struct pf_idhash *ih; 1213 struct pf_state *s; 1214 1215 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1216 1217 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1218 1219 PF_HASHROW_LOCK(ih); 1220 LIST_FOREACH(s, &ih->states, entry) 1221 if (s->id == id && s->creatorid == creatorid) 1222 break; 1223 1224 if (s == NULL) 1225 PF_HASHROW_UNLOCK(ih); 1226 1227 return (s); 1228 } 1229 1230 /* 1231 * Find state by key. 1232 * Returns with ID hash slot locked on success. 1233 */ 1234 static struct pf_state * 1235 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1236 { 1237 struct pf_keyhash *kh; 1238 struct pf_state_key *sk; 1239 struct pf_state *s; 1240 int idx; 1241 1242 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1243 1244 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1245 1246 PF_HASHROW_LOCK(kh); 1247 LIST_FOREACH(sk, &kh->keys, entry) 1248 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1249 break; 1250 if (sk == NULL) { 1251 PF_HASHROW_UNLOCK(kh); 1252 return (NULL); 1253 } 1254 1255 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1256 1257 /* List is sorted, if-bound states before floating ones. */ 1258 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1259 if (s->kif == V_pfi_all || s->kif == kif) { 1260 PF_STATE_LOCK(s); 1261 PF_HASHROW_UNLOCK(kh); 1262 if (s->timeout >= PFTM_MAX) { 1263 /* 1264 * State is either being processed by 1265 * pf_unlink_state() in an other thread, or 1266 * is scheduled for immediate expiry. 1267 */ 1268 PF_STATE_UNLOCK(s); 1269 return (NULL); 1270 } 1271 return (s); 1272 } 1273 PF_HASHROW_UNLOCK(kh); 1274 1275 return (NULL); 1276 } 1277 1278 struct pf_state * 1279 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1280 { 1281 struct pf_keyhash *kh; 1282 struct pf_state_key *sk; 1283 struct pf_state *s, *ret = NULL; 1284 int idx, inout = 0; 1285 1286 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1287 1288 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1289 1290 PF_HASHROW_LOCK(kh); 1291 LIST_FOREACH(sk, &kh->keys, entry) 1292 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1293 break; 1294 if (sk == NULL) { 1295 PF_HASHROW_UNLOCK(kh); 1296 return (NULL); 1297 } 1298 switch (dir) { 1299 case PF_IN: 1300 idx = PF_SK_WIRE; 1301 break; 1302 case PF_OUT: 1303 idx = PF_SK_STACK; 1304 break; 1305 case PF_INOUT: 1306 idx = PF_SK_WIRE; 1307 inout = 1; 1308 break; 1309 default: 1310 panic("%s: dir %u", __func__, dir); 1311 } 1312 second_run: 1313 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1314 if (more == NULL) { 1315 PF_HASHROW_UNLOCK(kh); 1316 return (s); 1317 } 1318 1319 if (ret) 1320 (*more)++; 1321 else 1322 ret = s; 1323 } 1324 if (inout == 1) { 1325 inout = 0; 1326 idx = PF_SK_STACK; 1327 goto second_run; 1328 } 1329 PF_HASHROW_UNLOCK(kh); 1330 1331 return (ret); 1332 } 1333 1334 /* END state table stuff */ 1335 1336 static void 1337 pf_send(struct pf_send_entry *pfse) 1338 { 1339 1340 PF_SENDQ_LOCK(); 1341 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1342 PF_SENDQ_UNLOCK(); 1343 swi_sched(V_pf_swi_cookie, 0); 1344 } 1345 1346 void 1347 pf_intr(void *v) 1348 { 1349 struct pf_send_head queue; 1350 struct pf_send_entry *pfse, *next; 1351 1352 CURVNET_SET((struct vnet *)v); 1353 1354 PF_SENDQ_LOCK(); 1355 queue = V_pf_sendqueue; 1356 STAILQ_INIT(&V_pf_sendqueue); 1357 PF_SENDQ_UNLOCK(); 1358 1359 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1360 switch (pfse->pfse_type) { 1361 #ifdef INET 1362 case PFSE_IP: 1363 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1364 break; 1365 case PFSE_ICMP: 1366 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1367 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1368 break; 1369 #endif /* INET */ 1370 #ifdef INET6 1371 case PFSE_IP6: 1372 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1373 NULL); 1374 break; 1375 case PFSE_ICMP6: 1376 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1377 pfse->icmpopts.code, pfse->icmpopts.mtu); 1378 break; 1379 #endif /* INET6 */ 1380 default: 1381 panic("%s: unknown type", __func__); 1382 } 1383 free(pfse, M_PFTEMP); 1384 } 1385 CURVNET_RESTORE(); 1386 } 1387 1388 void 1389 pf_purge_thread(void *v) 1390 { 1391 u_int idx = 0; 1392 1393 CURVNET_SET((struct vnet *)v); 1394 1395 for (;;) { 1396 PF_RULES_RLOCK(); 1397 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1398 1399 if (V_pf_end_threads) { 1400 /* 1401 * To cleanse up all kifs and rules we need 1402 * two runs: first one clears reference flags, 1403 * then pf_purge_expired_states() doesn't 1404 * raise them, and then second run frees. 1405 */ 1406 PF_RULES_RUNLOCK(); 1407 pf_purge_unlinked_rules(); 1408 pfi_kif_purge(); 1409 1410 /* 1411 * Now purge everything. 1412 */ 1413 pf_purge_expired_states(0, pf_hashmask); 1414 pf_purge_expired_fragments(); 1415 pf_purge_expired_src_nodes(); 1416 1417 /* 1418 * Now all kifs & rules should be unreferenced, 1419 * thus should be successfully freed. 1420 */ 1421 pf_purge_unlinked_rules(); 1422 pfi_kif_purge(); 1423 1424 /* 1425 * Announce success and exit. 1426 */ 1427 PF_RULES_RLOCK(); 1428 V_pf_end_threads++; 1429 PF_RULES_RUNLOCK(); 1430 wakeup(pf_purge_thread); 1431 kproc_exit(0); 1432 } 1433 PF_RULES_RUNLOCK(); 1434 1435 /* Process 1/interval fraction of the state table every run. */ 1436 idx = pf_purge_expired_states(idx, pf_hashmask / 1437 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1438 1439 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1440 if (idx == 0) { 1441 /* 1442 * Order is important: 1443 * - states and src nodes reference rules 1444 * - states and rules reference kifs 1445 */ 1446 pf_purge_expired_fragments(); 1447 pf_purge_expired_src_nodes(); 1448 pf_purge_unlinked_rules(); 1449 pfi_kif_purge(); 1450 } 1451 } 1452 /* not reached */ 1453 CURVNET_RESTORE(); 1454 } 1455 1456 u_int32_t 1457 pf_state_expires(const struct pf_state *state) 1458 { 1459 u_int32_t timeout; 1460 u_int32_t start; 1461 u_int32_t end; 1462 u_int32_t states; 1463 1464 /* handle all PFTM_* > PFTM_MAX here */ 1465 if (state->timeout == PFTM_PURGE) 1466 return (time_uptime); 1467 KASSERT(state->timeout != PFTM_UNLINKED, 1468 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1469 KASSERT((state->timeout < PFTM_MAX), 1470 ("pf_state_expires: timeout > PFTM_MAX")); 1471 timeout = state->rule.ptr->timeout[state->timeout]; 1472 if (!timeout) 1473 timeout = V_pf_default_rule.timeout[state->timeout]; 1474 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1475 if (start) { 1476 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1477 states = counter_u64_fetch(state->rule.ptr->states_cur); 1478 } else { 1479 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1480 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1481 states = V_pf_status.states; 1482 } 1483 if (end && states > start && start < end) { 1484 if (states < end) 1485 return (state->expire + timeout * (end - states) / 1486 (end - start)); 1487 else 1488 return (time_uptime); 1489 } 1490 return (state->expire + timeout); 1491 } 1492 1493 void 1494 pf_purge_expired_src_nodes() 1495 { 1496 struct pf_src_node_list freelist; 1497 struct pf_srchash *sh; 1498 struct pf_src_node *cur, *next; 1499 int i; 1500 1501 LIST_INIT(&freelist); 1502 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1503 PF_HASHROW_LOCK(sh); 1504 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1505 if (cur->states == 0 && cur->expire <= time_uptime) { 1506 pf_unlink_src_node_locked(cur); 1507 LIST_INSERT_HEAD(&freelist, cur, entry); 1508 } else if (cur->rule.ptr != NULL) 1509 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1510 PF_HASHROW_UNLOCK(sh); 1511 } 1512 1513 pf_free_src_nodes(&freelist); 1514 1515 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1516 } 1517 1518 static void 1519 pf_src_tree_remove_state(struct pf_state *s) 1520 { 1521 u_int32_t timeout; 1522 1523 if (s->src_node != NULL) { 1524 if (s->src.tcp_est) 1525 --s->src_node->conn; 1526 if (--s->src_node->states == 0) { 1527 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1528 if (!timeout) 1529 timeout = 1530 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1531 s->src_node->expire = time_uptime + timeout; 1532 } 1533 } 1534 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1535 if (--s->nat_src_node->states == 0) { 1536 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE]; 1537 if (!timeout) 1538 timeout = 1539 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1540 s->nat_src_node->expire = time_uptime + timeout; 1541 } 1542 } 1543 s->src_node = s->nat_src_node = NULL; 1544 } 1545 1546 /* 1547 * Unlink and potentilly free a state. Function may be 1548 * called with ID hash row locked, but always returns 1549 * unlocked, since it needs to go through key hash locking. 1550 */ 1551 int 1552 pf_unlink_state(struct pf_state *s, u_int flags) 1553 { 1554 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1555 1556 if ((flags & PF_ENTER_LOCKED) == 0) 1557 PF_HASHROW_LOCK(ih); 1558 else 1559 PF_HASHROW_ASSERT(ih); 1560 1561 if (s->timeout == PFTM_UNLINKED) { 1562 /* 1563 * State is being processed 1564 * by pf_unlink_state() in 1565 * an other thread. 1566 */ 1567 PF_HASHROW_UNLOCK(ih); 1568 return (0); /* XXXGL: undefined actually */ 1569 } 1570 1571 if (s->src.state == PF_TCPS_PROXY_DST) { 1572 /* XXX wire key the right one? */ 1573 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1574 &s->key[PF_SK_WIRE]->addr[1], 1575 &s->key[PF_SK_WIRE]->addr[0], 1576 s->key[PF_SK_WIRE]->port[1], 1577 s->key[PF_SK_WIRE]->port[0], 1578 s->src.seqhi, s->src.seqlo + 1, 1579 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1580 } 1581 1582 LIST_REMOVE(s, entry); 1583 pf_src_tree_remove_state(s); 1584 1585 if (pfsync_delete_state_ptr != NULL) 1586 pfsync_delete_state_ptr(s); 1587 1588 STATE_DEC_COUNTERS(s); 1589 1590 s->timeout = PFTM_UNLINKED; 1591 1592 PF_HASHROW_UNLOCK(ih); 1593 1594 pf_detach_state(s); 1595 refcount_release(&s->refs); 1596 1597 return (pf_release_state(s)); 1598 } 1599 1600 void 1601 pf_free_state(struct pf_state *cur) 1602 { 1603 1604 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1605 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1606 cur->timeout)); 1607 1608 pf_normalize_tcp_cleanup(cur); 1609 uma_zfree(V_pf_state_z, cur); 1610 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1611 } 1612 1613 /* 1614 * Called only from pf_purge_thread(), thus serialized. 1615 */ 1616 static u_int 1617 pf_purge_expired_states(u_int i, int maxcheck) 1618 { 1619 struct pf_idhash *ih; 1620 struct pf_state *s; 1621 1622 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1623 1624 /* 1625 * Go through hash and unlink states that expire now. 1626 */ 1627 while (maxcheck > 0) { 1628 1629 ih = &V_pf_idhash[i]; 1630 relock: 1631 PF_HASHROW_LOCK(ih); 1632 LIST_FOREACH(s, &ih->states, entry) { 1633 if (pf_state_expires(s) <= time_uptime) { 1634 V_pf_status.states -= 1635 pf_unlink_state(s, PF_ENTER_LOCKED); 1636 goto relock; 1637 } 1638 s->rule.ptr->rule_flag |= PFRULE_REFS; 1639 if (s->nat_rule.ptr != NULL) 1640 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1641 if (s->anchor.ptr != NULL) 1642 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1643 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1644 if (s->rt_kif) 1645 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1646 } 1647 PF_HASHROW_UNLOCK(ih); 1648 1649 /* Return when we hit end of hash. */ 1650 if (++i > pf_hashmask) { 1651 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1652 return (0); 1653 } 1654 1655 maxcheck--; 1656 } 1657 1658 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1659 1660 return (i); 1661 } 1662 1663 static void 1664 pf_purge_unlinked_rules() 1665 { 1666 struct pf_rulequeue tmpq; 1667 struct pf_rule *r, *r1; 1668 1669 /* 1670 * If we have overloading task pending, then we'd 1671 * better skip purging this time. There is a tiny 1672 * probability that overloading task references 1673 * an already unlinked rule. 1674 */ 1675 PF_OVERLOADQ_LOCK(); 1676 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1677 PF_OVERLOADQ_UNLOCK(); 1678 return; 1679 } 1680 PF_OVERLOADQ_UNLOCK(); 1681 1682 /* 1683 * Do naive mark-and-sweep garbage collecting of old rules. 1684 * Reference flag is raised by pf_purge_expired_states() 1685 * and pf_purge_expired_src_nodes(). 1686 * 1687 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1688 * use a temporary queue. 1689 */ 1690 TAILQ_INIT(&tmpq); 1691 PF_UNLNKDRULES_LOCK(); 1692 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1693 if (!(r->rule_flag & PFRULE_REFS)) { 1694 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1695 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1696 } else 1697 r->rule_flag &= ~PFRULE_REFS; 1698 } 1699 PF_UNLNKDRULES_UNLOCK(); 1700 1701 if (!TAILQ_EMPTY(&tmpq)) { 1702 PF_RULES_WLOCK(); 1703 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1704 TAILQ_REMOVE(&tmpq, r, entries); 1705 pf_free_rule(r); 1706 } 1707 PF_RULES_WUNLOCK(); 1708 } 1709 } 1710 1711 void 1712 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1713 { 1714 switch (af) { 1715 #ifdef INET 1716 case AF_INET: { 1717 u_int32_t a = ntohl(addr->addr32[0]); 1718 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1719 (a>>8)&255, a&255); 1720 if (p) { 1721 p = ntohs(p); 1722 printf(":%u", p); 1723 } 1724 break; 1725 } 1726 #endif /* INET */ 1727 #ifdef INET6 1728 case AF_INET6: { 1729 u_int16_t b; 1730 u_int8_t i, curstart, curend, maxstart, maxend; 1731 curstart = curend = maxstart = maxend = 255; 1732 for (i = 0; i < 8; i++) { 1733 if (!addr->addr16[i]) { 1734 if (curstart == 255) 1735 curstart = i; 1736 curend = i; 1737 } else { 1738 if ((curend - curstart) > 1739 (maxend - maxstart)) { 1740 maxstart = curstart; 1741 maxend = curend; 1742 } 1743 curstart = curend = 255; 1744 } 1745 } 1746 if ((curend - curstart) > 1747 (maxend - maxstart)) { 1748 maxstart = curstart; 1749 maxend = curend; 1750 } 1751 for (i = 0; i < 8; i++) { 1752 if (i >= maxstart && i <= maxend) { 1753 if (i == 0) 1754 printf(":"); 1755 if (i == maxend) 1756 printf(":"); 1757 } else { 1758 b = ntohs(addr->addr16[i]); 1759 printf("%x", b); 1760 if (i < 7) 1761 printf(":"); 1762 } 1763 } 1764 if (p) { 1765 p = ntohs(p); 1766 printf("[%u]", p); 1767 } 1768 break; 1769 } 1770 #endif /* INET6 */ 1771 } 1772 } 1773 1774 void 1775 pf_print_state(struct pf_state *s) 1776 { 1777 pf_print_state_parts(s, NULL, NULL); 1778 } 1779 1780 static void 1781 pf_print_state_parts(struct pf_state *s, 1782 struct pf_state_key *skwp, struct pf_state_key *sksp) 1783 { 1784 struct pf_state_key *skw, *sks; 1785 u_int8_t proto, dir; 1786 1787 /* Do our best to fill these, but they're skipped if NULL */ 1788 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1789 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1790 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1791 dir = s ? s->direction : 0; 1792 1793 switch (proto) { 1794 case IPPROTO_IPV4: 1795 printf("IPv4"); 1796 break; 1797 case IPPROTO_IPV6: 1798 printf("IPv6"); 1799 break; 1800 case IPPROTO_TCP: 1801 printf("TCP"); 1802 break; 1803 case IPPROTO_UDP: 1804 printf("UDP"); 1805 break; 1806 case IPPROTO_ICMP: 1807 printf("ICMP"); 1808 break; 1809 case IPPROTO_ICMPV6: 1810 printf("ICMPv6"); 1811 break; 1812 default: 1813 printf("%u", skw->proto); 1814 break; 1815 } 1816 switch (dir) { 1817 case PF_IN: 1818 printf(" in"); 1819 break; 1820 case PF_OUT: 1821 printf(" out"); 1822 break; 1823 } 1824 if (skw) { 1825 printf(" wire: "); 1826 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1827 printf(" "); 1828 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1829 } 1830 if (sks) { 1831 printf(" stack: "); 1832 if (sks != skw) { 1833 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1834 printf(" "); 1835 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1836 } else 1837 printf("-"); 1838 } 1839 if (s) { 1840 if (proto == IPPROTO_TCP) { 1841 printf(" [lo=%u high=%u win=%u modulator=%u", 1842 s->src.seqlo, s->src.seqhi, 1843 s->src.max_win, s->src.seqdiff); 1844 if (s->src.wscale && s->dst.wscale) 1845 printf(" wscale=%u", 1846 s->src.wscale & PF_WSCALE_MASK); 1847 printf("]"); 1848 printf(" [lo=%u high=%u win=%u modulator=%u", 1849 s->dst.seqlo, s->dst.seqhi, 1850 s->dst.max_win, s->dst.seqdiff); 1851 if (s->src.wscale && s->dst.wscale) 1852 printf(" wscale=%u", 1853 s->dst.wscale & PF_WSCALE_MASK); 1854 printf("]"); 1855 } 1856 printf(" %u:%u", s->src.state, s->dst.state); 1857 } 1858 } 1859 1860 void 1861 pf_print_flags(u_int8_t f) 1862 { 1863 if (f) 1864 printf(" "); 1865 if (f & TH_FIN) 1866 printf("F"); 1867 if (f & TH_SYN) 1868 printf("S"); 1869 if (f & TH_RST) 1870 printf("R"); 1871 if (f & TH_PUSH) 1872 printf("P"); 1873 if (f & TH_ACK) 1874 printf("A"); 1875 if (f & TH_URG) 1876 printf("U"); 1877 if (f & TH_ECE) 1878 printf("E"); 1879 if (f & TH_CWR) 1880 printf("W"); 1881 } 1882 1883 #define PF_SET_SKIP_STEPS(i) \ 1884 do { \ 1885 while (head[i] != cur) { \ 1886 head[i]->skip[i].ptr = cur; \ 1887 head[i] = TAILQ_NEXT(head[i], entries); \ 1888 } \ 1889 } while (0) 1890 1891 void 1892 pf_calc_skip_steps(struct pf_rulequeue *rules) 1893 { 1894 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1895 int i; 1896 1897 cur = TAILQ_FIRST(rules); 1898 prev = cur; 1899 for (i = 0; i < PF_SKIP_COUNT; ++i) 1900 head[i] = cur; 1901 while (cur != NULL) { 1902 1903 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1904 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1905 if (cur->direction != prev->direction) 1906 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1907 if (cur->af != prev->af) 1908 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1909 if (cur->proto != prev->proto) 1910 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1911 if (cur->src.neg != prev->src.neg || 1912 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1913 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1914 if (cur->src.port[0] != prev->src.port[0] || 1915 cur->src.port[1] != prev->src.port[1] || 1916 cur->src.port_op != prev->src.port_op) 1917 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1918 if (cur->dst.neg != prev->dst.neg || 1919 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1920 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1921 if (cur->dst.port[0] != prev->dst.port[0] || 1922 cur->dst.port[1] != prev->dst.port[1] || 1923 cur->dst.port_op != prev->dst.port_op) 1924 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1925 1926 prev = cur; 1927 cur = TAILQ_NEXT(cur, entries); 1928 } 1929 for (i = 0; i < PF_SKIP_COUNT; ++i) 1930 PF_SET_SKIP_STEPS(i); 1931 } 1932 1933 static int 1934 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1935 { 1936 if (aw1->type != aw2->type) 1937 return (1); 1938 switch (aw1->type) { 1939 case PF_ADDR_ADDRMASK: 1940 case PF_ADDR_RANGE: 1941 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, 0)) 1942 return (1); 1943 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, 0)) 1944 return (1); 1945 return (0); 1946 case PF_ADDR_DYNIFTL: 1947 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1948 case PF_ADDR_NOROUTE: 1949 case PF_ADDR_URPFFAILED: 1950 return (0); 1951 case PF_ADDR_TABLE: 1952 return (aw1->p.tbl != aw2->p.tbl); 1953 default: 1954 printf("invalid address type: %d\n", aw1->type); 1955 return (1); 1956 } 1957 } 1958 1959 u_int16_t 1960 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 1961 { 1962 u_int32_t l; 1963 1964 if (udp && !cksum) 1965 return (0x0000); 1966 l = cksum + old - new; 1967 l = (l >> 16) + (l & 65535); 1968 l = l & 65535; 1969 if (udp && !l) 1970 return (0xFFFF); 1971 return (l); 1972 } 1973 1974 static void 1975 pf_change_ap(struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, 1976 struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) 1977 { 1978 struct pf_addr ao; 1979 u_int16_t po = *p; 1980 1981 PF_ACPY(&ao, a, af); 1982 PF_ACPY(a, an, af); 1983 1984 *p = pn; 1985 1986 switch (af) { 1987 #ifdef INET 1988 case AF_INET: 1989 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 1990 ao.addr16[0], an->addr16[0], 0), 1991 ao.addr16[1], an->addr16[1], 0); 1992 *p = pn; 1993 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 1994 ao.addr16[0], an->addr16[0], u), 1995 ao.addr16[1], an->addr16[1], u), 1996 po, pn, u); 1997 break; 1998 #endif /* INET */ 1999 #ifdef INET6 2000 case AF_INET6: 2001 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2002 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2003 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 2004 ao.addr16[0], an->addr16[0], u), 2005 ao.addr16[1], an->addr16[1], u), 2006 ao.addr16[2], an->addr16[2], u), 2007 ao.addr16[3], an->addr16[3], u), 2008 ao.addr16[4], an->addr16[4], u), 2009 ao.addr16[5], an->addr16[5], u), 2010 ao.addr16[6], an->addr16[6], u), 2011 ao.addr16[7], an->addr16[7], u), 2012 po, pn, u); 2013 break; 2014 #endif /* INET6 */ 2015 } 2016 } 2017 2018 2019 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2020 void 2021 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2022 { 2023 u_int32_t ao; 2024 2025 memcpy(&ao, a, sizeof(ao)); 2026 memcpy(a, &an, sizeof(u_int32_t)); 2027 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2028 ao % 65536, an % 65536, u); 2029 } 2030 2031 #ifdef INET6 2032 static void 2033 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2034 { 2035 struct pf_addr ao; 2036 2037 PF_ACPY(&ao, a, AF_INET6); 2038 PF_ACPY(a, an, AF_INET6); 2039 2040 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2041 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2042 pf_cksum_fixup(pf_cksum_fixup(*c, 2043 ao.addr16[0], an->addr16[0], u), 2044 ao.addr16[1], an->addr16[1], u), 2045 ao.addr16[2], an->addr16[2], u), 2046 ao.addr16[3], an->addr16[3], u), 2047 ao.addr16[4], an->addr16[4], u), 2048 ao.addr16[5], an->addr16[5], u), 2049 ao.addr16[6], an->addr16[6], u), 2050 ao.addr16[7], an->addr16[7], u); 2051 } 2052 #endif /* INET6 */ 2053 2054 static void 2055 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2056 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2057 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2058 { 2059 struct pf_addr oia, ooa; 2060 2061 PF_ACPY(&oia, ia, af); 2062 if (oa) 2063 PF_ACPY(&ooa, oa, af); 2064 2065 /* Change inner protocol port, fix inner protocol checksum. */ 2066 if (ip != NULL) { 2067 u_int16_t oip = *ip; 2068 u_int32_t opc; 2069 2070 if (pc != NULL) 2071 opc = *pc; 2072 *ip = np; 2073 if (pc != NULL) 2074 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2075 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2076 if (pc != NULL) 2077 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2078 } 2079 /* Change inner ip address, fix inner ip and icmp checksums. */ 2080 PF_ACPY(ia, na, af); 2081 switch (af) { 2082 #ifdef INET 2083 case AF_INET: { 2084 u_int32_t oh2c = *h2c; 2085 2086 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2087 oia.addr16[0], ia->addr16[0], 0), 2088 oia.addr16[1], ia->addr16[1], 0); 2089 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2090 oia.addr16[0], ia->addr16[0], 0), 2091 oia.addr16[1], ia->addr16[1], 0); 2092 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2093 break; 2094 } 2095 #endif /* INET */ 2096 #ifdef INET6 2097 case AF_INET6: 2098 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2099 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2100 pf_cksum_fixup(pf_cksum_fixup(*ic, 2101 oia.addr16[0], ia->addr16[0], u), 2102 oia.addr16[1], ia->addr16[1], u), 2103 oia.addr16[2], ia->addr16[2], u), 2104 oia.addr16[3], ia->addr16[3], u), 2105 oia.addr16[4], ia->addr16[4], u), 2106 oia.addr16[5], ia->addr16[5], u), 2107 oia.addr16[6], ia->addr16[6], u), 2108 oia.addr16[7], ia->addr16[7], u); 2109 break; 2110 #endif /* INET6 */ 2111 } 2112 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2113 if (oa) { 2114 PF_ACPY(oa, na, af); 2115 switch (af) { 2116 #ifdef INET 2117 case AF_INET: 2118 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2119 ooa.addr16[0], oa->addr16[0], 0), 2120 ooa.addr16[1], oa->addr16[1], 0); 2121 break; 2122 #endif /* INET */ 2123 #ifdef INET6 2124 case AF_INET6: 2125 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2126 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2127 pf_cksum_fixup(pf_cksum_fixup(*ic, 2128 ooa.addr16[0], oa->addr16[0], u), 2129 ooa.addr16[1], oa->addr16[1], u), 2130 ooa.addr16[2], oa->addr16[2], u), 2131 ooa.addr16[3], oa->addr16[3], u), 2132 ooa.addr16[4], oa->addr16[4], u), 2133 ooa.addr16[5], oa->addr16[5], u), 2134 ooa.addr16[6], oa->addr16[6], u), 2135 ooa.addr16[7], oa->addr16[7], u); 2136 break; 2137 #endif /* INET6 */ 2138 } 2139 } 2140 } 2141 2142 2143 /* 2144 * Need to modulate the sequence numbers in the TCP SACK option 2145 * (credits to Krzysztof Pfaff for report and patch) 2146 */ 2147 static int 2148 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2149 struct tcphdr *th, struct pf_state_peer *dst) 2150 { 2151 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2152 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2153 int copyback = 0, i, olen; 2154 struct sackblk sack; 2155 2156 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2157 if (hlen < TCPOLEN_SACKLEN || 2158 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2159 return 0; 2160 2161 while (hlen >= TCPOLEN_SACKLEN) { 2162 olen = opt[1]; 2163 switch (*opt) { 2164 case TCPOPT_EOL: /* FALLTHROUGH */ 2165 case TCPOPT_NOP: 2166 opt++; 2167 hlen--; 2168 break; 2169 case TCPOPT_SACK: 2170 if (olen > hlen) 2171 olen = hlen; 2172 if (olen >= TCPOLEN_SACKLEN) { 2173 for (i = 2; i + TCPOLEN_SACK <= olen; 2174 i += TCPOLEN_SACK) { 2175 memcpy(&sack, &opt[i], sizeof(sack)); 2176 pf_change_a(&sack.start, &th->th_sum, 2177 htonl(ntohl(sack.start) - 2178 dst->seqdiff), 0); 2179 pf_change_a(&sack.end, &th->th_sum, 2180 htonl(ntohl(sack.end) - 2181 dst->seqdiff), 0); 2182 memcpy(&opt[i], &sack, sizeof(sack)); 2183 } 2184 copyback = 1; 2185 } 2186 /* FALLTHROUGH */ 2187 default: 2188 if (olen < 2) 2189 olen = 2; 2190 hlen -= olen; 2191 opt += olen; 2192 } 2193 } 2194 2195 if (copyback) 2196 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2197 return (copyback); 2198 } 2199 2200 static void 2201 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2202 const struct pf_addr *saddr, const struct pf_addr *daddr, 2203 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2204 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2205 u_int16_t rtag, struct ifnet *ifp) 2206 { 2207 struct pf_send_entry *pfse; 2208 struct mbuf *m; 2209 int len, tlen; 2210 #ifdef INET 2211 struct ip *h = NULL; 2212 #endif /* INET */ 2213 #ifdef INET6 2214 struct ip6_hdr *h6 = NULL; 2215 #endif /* INET6 */ 2216 struct tcphdr *th; 2217 char *opt; 2218 struct pf_mtag *pf_mtag; 2219 2220 len = 0; 2221 th = NULL; 2222 2223 /* maximum segment size tcp option */ 2224 tlen = sizeof(struct tcphdr); 2225 if (mss) 2226 tlen += 4; 2227 2228 switch (af) { 2229 #ifdef INET 2230 case AF_INET: 2231 len = sizeof(struct ip) + tlen; 2232 break; 2233 #endif /* INET */ 2234 #ifdef INET6 2235 case AF_INET6: 2236 len = sizeof(struct ip6_hdr) + tlen; 2237 break; 2238 #endif /* INET6 */ 2239 default: 2240 panic("%s: unsupported af %d", __func__, af); 2241 } 2242 2243 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2244 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2245 if (pfse == NULL) 2246 return; 2247 m = m_gethdr(M_NOWAIT, MT_DATA); 2248 if (m == NULL) { 2249 free(pfse, M_PFTEMP); 2250 return; 2251 } 2252 #ifdef MAC 2253 mac_netinet_firewall_send(m); 2254 #endif 2255 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2256 free(pfse, M_PFTEMP); 2257 m_freem(m); 2258 return; 2259 } 2260 if (tag) 2261 m->m_flags |= M_SKIP_FIREWALL; 2262 pf_mtag->tag = rtag; 2263 2264 if (r != NULL && r->rtableid >= 0) 2265 M_SETFIB(m, r->rtableid); 2266 2267 #ifdef ALTQ 2268 if (r != NULL && r->qid) { 2269 pf_mtag->qid = r->qid; 2270 2271 /* add hints for ecn */ 2272 pf_mtag->hdr = mtod(m, struct ip *); 2273 } 2274 #endif /* ALTQ */ 2275 m->m_data += max_linkhdr; 2276 m->m_pkthdr.len = m->m_len = len; 2277 m->m_pkthdr.rcvif = NULL; 2278 bzero(m->m_data, len); 2279 switch (af) { 2280 #ifdef INET 2281 case AF_INET: 2282 h = mtod(m, struct ip *); 2283 2284 /* IP header fields included in the TCP checksum */ 2285 h->ip_p = IPPROTO_TCP; 2286 h->ip_len = htons(tlen); 2287 h->ip_src.s_addr = saddr->v4.s_addr; 2288 h->ip_dst.s_addr = daddr->v4.s_addr; 2289 2290 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2291 break; 2292 #endif /* INET */ 2293 #ifdef INET6 2294 case AF_INET6: 2295 h6 = mtod(m, struct ip6_hdr *); 2296 2297 /* IP header fields included in the TCP checksum */ 2298 h6->ip6_nxt = IPPROTO_TCP; 2299 h6->ip6_plen = htons(tlen); 2300 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2301 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2302 2303 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2304 break; 2305 #endif /* INET6 */ 2306 } 2307 2308 /* TCP header */ 2309 th->th_sport = sport; 2310 th->th_dport = dport; 2311 th->th_seq = htonl(seq); 2312 th->th_ack = htonl(ack); 2313 th->th_off = tlen >> 2; 2314 th->th_flags = flags; 2315 th->th_win = htons(win); 2316 2317 if (mss) { 2318 opt = (char *)(th + 1); 2319 opt[0] = TCPOPT_MAXSEG; 2320 opt[1] = 4; 2321 HTONS(mss); 2322 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2323 } 2324 2325 switch (af) { 2326 #ifdef INET 2327 case AF_INET: 2328 /* TCP checksum */ 2329 th->th_sum = in_cksum(m, len); 2330 2331 /* Finish the IP header */ 2332 h->ip_v = 4; 2333 h->ip_hl = sizeof(*h) >> 2; 2334 h->ip_tos = IPTOS_LOWDELAY; 2335 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2336 h->ip_len = htons(len); 2337 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2338 h->ip_sum = 0; 2339 2340 pfse->pfse_type = PFSE_IP; 2341 break; 2342 #endif /* INET */ 2343 #ifdef INET6 2344 case AF_INET6: 2345 /* TCP checksum */ 2346 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2347 sizeof(struct ip6_hdr), tlen); 2348 2349 h6->ip6_vfc |= IPV6_VERSION; 2350 h6->ip6_hlim = IPV6_DEFHLIM; 2351 2352 pfse->pfse_type = PFSE_IP6; 2353 break; 2354 #endif /* INET6 */ 2355 } 2356 pfse->pfse_m = m; 2357 pf_send(pfse); 2358 } 2359 2360 static void 2361 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2362 struct pf_rule *r) 2363 { 2364 struct pf_send_entry *pfse; 2365 struct mbuf *m0; 2366 struct pf_mtag *pf_mtag; 2367 2368 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2369 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2370 if (pfse == NULL) 2371 return; 2372 2373 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2374 free(pfse, M_PFTEMP); 2375 return; 2376 } 2377 2378 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2379 free(pfse, M_PFTEMP); 2380 return; 2381 } 2382 /* XXX: revisit */ 2383 m0->m_flags |= M_SKIP_FIREWALL; 2384 2385 if (r->rtableid >= 0) 2386 M_SETFIB(m0, r->rtableid); 2387 2388 #ifdef ALTQ 2389 if (r->qid) { 2390 pf_mtag->qid = r->qid; 2391 /* add hints for ecn */ 2392 pf_mtag->hdr = mtod(m0, struct ip *); 2393 } 2394 #endif /* ALTQ */ 2395 2396 switch (af) { 2397 #ifdef INET 2398 case AF_INET: 2399 pfse->pfse_type = PFSE_ICMP; 2400 break; 2401 #endif /* INET */ 2402 #ifdef INET6 2403 case AF_INET6: 2404 pfse->pfse_type = PFSE_ICMP6; 2405 break; 2406 #endif /* INET6 */ 2407 } 2408 pfse->pfse_m = m0; 2409 pfse->icmpopts.type = type; 2410 pfse->icmpopts.code = code; 2411 pf_send(pfse); 2412 } 2413 2414 /* 2415 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2416 * If n is 0, they match if they are equal. If n is != 0, they match if they 2417 * are different. 2418 */ 2419 int 2420 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2421 struct pf_addr *b, sa_family_t af) 2422 { 2423 int match = 0; 2424 2425 switch (af) { 2426 #ifdef INET 2427 case AF_INET: 2428 if ((a->addr32[0] & m->addr32[0]) == 2429 (b->addr32[0] & m->addr32[0])) 2430 match++; 2431 break; 2432 #endif /* INET */ 2433 #ifdef INET6 2434 case AF_INET6: 2435 if (((a->addr32[0] & m->addr32[0]) == 2436 (b->addr32[0] & m->addr32[0])) && 2437 ((a->addr32[1] & m->addr32[1]) == 2438 (b->addr32[1] & m->addr32[1])) && 2439 ((a->addr32[2] & m->addr32[2]) == 2440 (b->addr32[2] & m->addr32[2])) && 2441 ((a->addr32[3] & m->addr32[3]) == 2442 (b->addr32[3] & m->addr32[3]))) 2443 match++; 2444 break; 2445 #endif /* INET6 */ 2446 } 2447 if (match) { 2448 if (n) 2449 return (0); 2450 else 2451 return (1); 2452 } else { 2453 if (n) 2454 return (1); 2455 else 2456 return (0); 2457 } 2458 } 2459 2460 /* 2461 * Return 1 if b <= a <= e, otherwise return 0. 2462 */ 2463 int 2464 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2465 struct pf_addr *a, sa_family_t af) 2466 { 2467 switch (af) { 2468 #ifdef INET 2469 case AF_INET: 2470 if ((a->addr32[0] < b->addr32[0]) || 2471 (a->addr32[0] > e->addr32[0])) 2472 return (0); 2473 break; 2474 #endif /* INET */ 2475 #ifdef INET6 2476 case AF_INET6: { 2477 int i; 2478 2479 /* check a >= b */ 2480 for (i = 0; i < 4; ++i) 2481 if (a->addr32[i] > b->addr32[i]) 2482 break; 2483 else if (a->addr32[i] < b->addr32[i]) 2484 return (0); 2485 /* check a <= e */ 2486 for (i = 0; i < 4; ++i) 2487 if (a->addr32[i] < e->addr32[i]) 2488 break; 2489 else if (a->addr32[i] > e->addr32[i]) 2490 return (0); 2491 break; 2492 } 2493 #endif /* INET6 */ 2494 } 2495 return (1); 2496 } 2497 2498 static int 2499 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2500 { 2501 switch (op) { 2502 case PF_OP_IRG: 2503 return ((p > a1) && (p < a2)); 2504 case PF_OP_XRG: 2505 return ((p < a1) || (p > a2)); 2506 case PF_OP_RRG: 2507 return ((p >= a1) && (p <= a2)); 2508 case PF_OP_EQ: 2509 return (p == a1); 2510 case PF_OP_NE: 2511 return (p != a1); 2512 case PF_OP_LT: 2513 return (p < a1); 2514 case PF_OP_LE: 2515 return (p <= a1); 2516 case PF_OP_GT: 2517 return (p > a1); 2518 case PF_OP_GE: 2519 return (p >= a1); 2520 } 2521 return (0); /* never reached */ 2522 } 2523 2524 int 2525 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2526 { 2527 NTOHS(a1); 2528 NTOHS(a2); 2529 NTOHS(p); 2530 return (pf_match(op, a1, a2, p)); 2531 } 2532 2533 static int 2534 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2535 { 2536 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2537 return (0); 2538 return (pf_match(op, a1, a2, u)); 2539 } 2540 2541 static int 2542 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2543 { 2544 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2545 return (0); 2546 return (pf_match(op, a1, a2, g)); 2547 } 2548 2549 int 2550 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2551 { 2552 if (*tag == -1) 2553 *tag = mtag; 2554 2555 return ((!r->match_tag_not && r->match_tag == *tag) || 2556 (r->match_tag_not && r->match_tag != *tag)); 2557 } 2558 2559 int 2560 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2561 { 2562 2563 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2564 2565 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2566 return (ENOMEM); 2567 2568 pd->pf_mtag->tag = tag; 2569 2570 return (0); 2571 } 2572 2573 #define PF_ANCHOR_STACKSIZE 32 2574 struct pf_anchor_stackframe { 2575 struct pf_ruleset *rs; 2576 struct pf_rule *r; /* XXX: + match bit */ 2577 struct pf_anchor *child; 2578 }; 2579 2580 /* 2581 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2582 */ 2583 #define PF_ANCHORSTACK_MATCH 0x00000001 2584 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2585 2586 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2587 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2588 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2589 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2590 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2591 } while (0) 2592 2593 void 2594 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2595 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2596 int *match) 2597 { 2598 struct pf_anchor_stackframe *f; 2599 2600 PF_RULES_RASSERT(); 2601 2602 if (match) 2603 *match = 0; 2604 if (*depth >= PF_ANCHOR_STACKSIZE) { 2605 printf("%s: anchor stack overflow on %s\n", 2606 __func__, (*r)->anchor->name); 2607 *r = TAILQ_NEXT(*r, entries); 2608 return; 2609 } else if (*depth == 0 && a != NULL) 2610 *a = *r; 2611 f = stack + (*depth)++; 2612 f->rs = *rs; 2613 f->r = *r; 2614 if ((*r)->anchor_wildcard) { 2615 struct pf_anchor_node *parent = &(*r)->anchor->children; 2616 2617 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2618 *r = NULL; 2619 return; 2620 } 2621 *rs = &f->child->ruleset; 2622 } else { 2623 f->child = NULL; 2624 *rs = &(*r)->anchor->ruleset; 2625 } 2626 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2627 } 2628 2629 int 2630 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2631 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2632 int *match) 2633 { 2634 struct pf_anchor_stackframe *f; 2635 struct pf_rule *fr; 2636 int quick = 0; 2637 2638 PF_RULES_RASSERT(); 2639 2640 do { 2641 if (*depth <= 0) 2642 break; 2643 f = stack + *depth - 1; 2644 fr = PF_ANCHOR_RULE(f); 2645 if (f->child != NULL) { 2646 struct pf_anchor_node *parent; 2647 2648 /* 2649 * This block traverses through 2650 * a wildcard anchor. 2651 */ 2652 parent = &fr->anchor->children; 2653 if (match != NULL && *match) { 2654 /* 2655 * If any of "*" matched, then 2656 * "foo/ *" matched, mark frame 2657 * appropriately. 2658 */ 2659 PF_ANCHOR_SET_MATCH(f); 2660 *match = 0; 2661 } 2662 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2663 if (f->child != NULL) { 2664 *rs = &f->child->ruleset; 2665 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2666 if (*r == NULL) 2667 continue; 2668 else 2669 break; 2670 } 2671 } 2672 (*depth)--; 2673 if (*depth == 0 && a != NULL) 2674 *a = NULL; 2675 *rs = f->rs; 2676 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2677 quick = fr->quick; 2678 *r = TAILQ_NEXT(fr, entries); 2679 } while (*r == NULL); 2680 2681 return (quick); 2682 } 2683 2684 #ifdef INET6 2685 void 2686 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2687 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2688 { 2689 switch (af) { 2690 #ifdef INET 2691 case AF_INET: 2692 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2693 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2694 break; 2695 #endif /* INET */ 2696 case AF_INET6: 2697 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2698 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2699 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2700 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2701 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2702 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2703 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2704 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2705 break; 2706 } 2707 } 2708 2709 void 2710 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2711 { 2712 switch (af) { 2713 #ifdef INET 2714 case AF_INET: 2715 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2716 break; 2717 #endif /* INET */ 2718 case AF_INET6: 2719 if (addr->addr32[3] == 0xffffffff) { 2720 addr->addr32[3] = 0; 2721 if (addr->addr32[2] == 0xffffffff) { 2722 addr->addr32[2] = 0; 2723 if (addr->addr32[1] == 0xffffffff) { 2724 addr->addr32[1] = 0; 2725 addr->addr32[0] = 2726 htonl(ntohl(addr->addr32[0]) + 1); 2727 } else 2728 addr->addr32[1] = 2729 htonl(ntohl(addr->addr32[1]) + 1); 2730 } else 2731 addr->addr32[2] = 2732 htonl(ntohl(addr->addr32[2]) + 1); 2733 } else 2734 addr->addr32[3] = 2735 htonl(ntohl(addr->addr32[3]) + 1); 2736 break; 2737 } 2738 } 2739 #endif /* INET6 */ 2740 2741 int 2742 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2743 { 2744 struct pf_addr *saddr, *daddr; 2745 u_int16_t sport, dport; 2746 struct inpcbinfo *pi; 2747 struct inpcb *inp; 2748 2749 pd->lookup.uid = UID_MAX; 2750 pd->lookup.gid = GID_MAX; 2751 2752 switch (pd->proto) { 2753 case IPPROTO_TCP: 2754 if (pd->hdr.tcp == NULL) 2755 return (-1); 2756 sport = pd->hdr.tcp->th_sport; 2757 dport = pd->hdr.tcp->th_dport; 2758 pi = &V_tcbinfo; 2759 break; 2760 case IPPROTO_UDP: 2761 if (pd->hdr.udp == NULL) 2762 return (-1); 2763 sport = pd->hdr.udp->uh_sport; 2764 dport = pd->hdr.udp->uh_dport; 2765 pi = &V_udbinfo; 2766 break; 2767 default: 2768 return (-1); 2769 } 2770 if (direction == PF_IN) { 2771 saddr = pd->src; 2772 daddr = pd->dst; 2773 } else { 2774 u_int16_t p; 2775 2776 p = sport; 2777 sport = dport; 2778 dport = p; 2779 saddr = pd->dst; 2780 daddr = pd->src; 2781 } 2782 switch (pd->af) { 2783 #ifdef INET 2784 case AF_INET: 2785 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2786 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2787 if (inp == NULL) { 2788 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2789 daddr->v4, dport, INPLOOKUP_WILDCARD | 2790 INPLOOKUP_RLOCKPCB, NULL, m); 2791 if (inp == NULL) 2792 return (-1); 2793 } 2794 break; 2795 #endif /* INET */ 2796 #ifdef INET6 2797 case AF_INET6: 2798 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2799 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2800 if (inp == NULL) { 2801 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2802 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2803 INPLOOKUP_RLOCKPCB, NULL, m); 2804 if (inp == NULL) 2805 return (-1); 2806 } 2807 break; 2808 #endif /* INET6 */ 2809 2810 default: 2811 return (-1); 2812 } 2813 INP_RLOCK_ASSERT(inp); 2814 pd->lookup.uid = inp->inp_cred->cr_uid; 2815 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2816 INP_RUNLOCK(inp); 2817 2818 return (1); 2819 } 2820 2821 static u_int8_t 2822 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2823 { 2824 int hlen; 2825 u_int8_t hdr[60]; 2826 u_int8_t *opt, optlen; 2827 u_int8_t wscale = 0; 2828 2829 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2830 if (hlen <= sizeof(struct tcphdr)) 2831 return (0); 2832 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2833 return (0); 2834 opt = hdr + sizeof(struct tcphdr); 2835 hlen -= sizeof(struct tcphdr); 2836 while (hlen >= 3) { 2837 switch (*opt) { 2838 case TCPOPT_EOL: 2839 case TCPOPT_NOP: 2840 ++opt; 2841 --hlen; 2842 break; 2843 case TCPOPT_WINDOW: 2844 wscale = opt[2]; 2845 if (wscale > TCP_MAX_WINSHIFT) 2846 wscale = TCP_MAX_WINSHIFT; 2847 wscale |= PF_WSCALE_FLAG; 2848 /* FALLTHROUGH */ 2849 default: 2850 optlen = opt[1]; 2851 if (optlen < 2) 2852 optlen = 2; 2853 hlen -= optlen; 2854 opt += optlen; 2855 break; 2856 } 2857 } 2858 return (wscale); 2859 } 2860 2861 static u_int16_t 2862 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2863 { 2864 int hlen; 2865 u_int8_t hdr[60]; 2866 u_int8_t *opt, optlen; 2867 u_int16_t mss = V_tcp_mssdflt; 2868 2869 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2870 if (hlen <= sizeof(struct tcphdr)) 2871 return (0); 2872 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2873 return (0); 2874 opt = hdr + sizeof(struct tcphdr); 2875 hlen -= sizeof(struct tcphdr); 2876 while (hlen >= TCPOLEN_MAXSEG) { 2877 switch (*opt) { 2878 case TCPOPT_EOL: 2879 case TCPOPT_NOP: 2880 ++opt; 2881 --hlen; 2882 break; 2883 case TCPOPT_MAXSEG: 2884 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 2885 NTOHS(mss); 2886 /* FALLTHROUGH */ 2887 default: 2888 optlen = opt[1]; 2889 if (optlen < 2) 2890 optlen = 2; 2891 hlen -= optlen; 2892 opt += optlen; 2893 break; 2894 } 2895 } 2896 return (mss); 2897 } 2898 2899 static u_int16_t 2900 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 2901 { 2902 #ifdef INET 2903 struct sockaddr_in *dst; 2904 struct route ro; 2905 #endif /* INET */ 2906 #ifdef INET6 2907 struct sockaddr_in6 *dst6; 2908 struct route_in6 ro6; 2909 #endif /* INET6 */ 2910 struct rtentry *rt = NULL; 2911 int hlen = 0; 2912 u_int16_t mss = V_tcp_mssdflt; 2913 2914 switch (af) { 2915 #ifdef INET 2916 case AF_INET: 2917 hlen = sizeof(struct ip); 2918 bzero(&ro, sizeof(ro)); 2919 dst = (struct sockaddr_in *)&ro.ro_dst; 2920 dst->sin_family = AF_INET; 2921 dst->sin_len = sizeof(*dst); 2922 dst->sin_addr = addr->v4; 2923 in_rtalloc_ign(&ro, 0, rtableid); 2924 rt = ro.ro_rt; 2925 break; 2926 #endif /* INET */ 2927 #ifdef INET6 2928 case AF_INET6: 2929 hlen = sizeof(struct ip6_hdr); 2930 bzero(&ro6, sizeof(ro6)); 2931 dst6 = (struct sockaddr_in6 *)&ro6.ro_dst; 2932 dst6->sin6_family = AF_INET6; 2933 dst6->sin6_len = sizeof(*dst6); 2934 dst6->sin6_addr = addr->v6; 2935 in6_rtalloc_ign(&ro6, 0, rtableid); 2936 rt = ro6.ro_rt; 2937 break; 2938 #endif /* INET6 */ 2939 } 2940 2941 if (rt && rt->rt_ifp) { 2942 mss = rt->rt_ifp->if_mtu - hlen - sizeof(struct tcphdr); 2943 mss = max(V_tcp_mssdflt, mss); 2944 RTFREE(rt); 2945 } 2946 mss = min(mss, offer); 2947 mss = max(mss, 64); /* sanity - at least max opt space */ 2948 return (mss); 2949 } 2950 2951 static u_int32_t 2952 pf_tcp_iss(struct pf_pdesc *pd) 2953 { 2954 MD5_CTX ctx; 2955 u_int32_t digest[4]; 2956 2957 if (V_pf_tcp_secret_init == 0) { 2958 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 2959 MD5Init(&V_pf_tcp_secret_ctx); 2960 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 2961 sizeof(V_pf_tcp_secret)); 2962 V_pf_tcp_secret_init = 1; 2963 } 2964 2965 ctx = V_pf_tcp_secret_ctx; 2966 2967 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 2968 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 2969 if (pd->af == AF_INET6) { 2970 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 2971 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 2972 } else { 2973 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 2974 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 2975 } 2976 MD5Final((u_char *)digest, &ctx); 2977 V_pf_tcp_iss_off += 4096; 2978 #define ISN_RANDOM_INCREMENT (4096 - 1) 2979 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 2980 V_pf_tcp_iss_off); 2981 #undef ISN_RANDOM_INCREMENT 2982 } 2983 2984 static int 2985 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 2986 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 2987 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 2988 { 2989 struct pf_rule *nr = NULL; 2990 struct pf_addr * const saddr = pd->src; 2991 struct pf_addr * const daddr = pd->dst; 2992 sa_family_t af = pd->af; 2993 struct pf_rule *r, *a = NULL; 2994 struct pf_ruleset *ruleset = NULL; 2995 struct pf_src_node *nsn = NULL; 2996 struct tcphdr *th = pd->hdr.tcp; 2997 struct pf_state_key *sk = NULL, *nk = NULL; 2998 u_short reason; 2999 int rewrite = 0, hdrlen = 0; 3000 int tag = -1, rtableid = -1; 3001 int asd = 0; 3002 int match = 0; 3003 int state_icmp = 0; 3004 u_int16_t sport = 0, dport = 0; 3005 u_int16_t bproto_sum = 0, bip_sum = 0; 3006 u_int8_t icmptype = 0, icmpcode = 0; 3007 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3008 3009 PF_RULES_RASSERT(); 3010 3011 if (inp != NULL) { 3012 INP_LOCK_ASSERT(inp); 3013 pd->lookup.uid = inp->inp_cred->cr_uid; 3014 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3015 pd->lookup.done = 1; 3016 } 3017 3018 switch (pd->proto) { 3019 case IPPROTO_TCP: 3020 sport = th->th_sport; 3021 dport = th->th_dport; 3022 hdrlen = sizeof(*th); 3023 break; 3024 case IPPROTO_UDP: 3025 sport = pd->hdr.udp->uh_sport; 3026 dport = pd->hdr.udp->uh_dport; 3027 hdrlen = sizeof(*pd->hdr.udp); 3028 break; 3029 #ifdef INET 3030 case IPPROTO_ICMP: 3031 if (pd->af != AF_INET) 3032 break; 3033 sport = dport = pd->hdr.icmp->icmp_id; 3034 hdrlen = sizeof(*pd->hdr.icmp); 3035 icmptype = pd->hdr.icmp->icmp_type; 3036 icmpcode = pd->hdr.icmp->icmp_code; 3037 3038 if (icmptype == ICMP_UNREACH || 3039 icmptype == ICMP_SOURCEQUENCH || 3040 icmptype == ICMP_REDIRECT || 3041 icmptype == ICMP_TIMXCEED || 3042 icmptype == ICMP_PARAMPROB) 3043 state_icmp++; 3044 break; 3045 #endif /* INET */ 3046 #ifdef INET6 3047 case IPPROTO_ICMPV6: 3048 if (af != AF_INET6) 3049 break; 3050 sport = dport = pd->hdr.icmp6->icmp6_id; 3051 hdrlen = sizeof(*pd->hdr.icmp6); 3052 icmptype = pd->hdr.icmp6->icmp6_type; 3053 icmpcode = pd->hdr.icmp6->icmp6_code; 3054 3055 if (icmptype == ICMP6_DST_UNREACH || 3056 icmptype == ICMP6_PACKET_TOO_BIG || 3057 icmptype == ICMP6_TIME_EXCEEDED || 3058 icmptype == ICMP6_PARAM_PROB) 3059 state_icmp++; 3060 break; 3061 #endif /* INET6 */ 3062 default: 3063 sport = dport = hdrlen = 0; 3064 break; 3065 } 3066 3067 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3068 3069 /* check packet for BINAT/NAT/RDR */ 3070 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3071 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3072 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3073 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3074 3075 if (pd->ip_sum) 3076 bip_sum = *pd->ip_sum; 3077 3078 switch (pd->proto) { 3079 case IPPROTO_TCP: 3080 bproto_sum = th->th_sum; 3081 pd->proto_sum = &th->th_sum; 3082 3083 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3084 nk->port[pd->sidx] != sport) { 3085 pf_change_ap(saddr, &th->th_sport, pd->ip_sum, 3086 &th->th_sum, &nk->addr[pd->sidx], 3087 nk->port[pd->sidx], 0, af); 3088 pd->sport = &th->th_sport; 3089 sport = th->th_sport; 3090 } 3091 3092 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3093 nk->port[pd->didx] != dport) { 3094 pf_change_ap(daddr, &th->th_dport, pd->ip_sum, 3095 &th->th_sum, &nk->addr[pd->didx], 3096 nk->port[pd->didx], 0, af); 3097 dport = th->th_dport; 3098 pd->dport = &th->th_dport; 3099 } 3100 rewrite++; 3101 break; 3102 case IPPROTO_UDP: 3103 bproto_sum = pd->hdr.udp->uh_sum; 3104 pd->proto_sum = &pd->hdr.udp->uh_sum; 3105 3106 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3107 nk->port[pd->sidx] != sport) { 3108 pf_change_ap(saddr, &pd->hdr.udp->uh_sport, 3109 pd->ip_sum, &pd->hdr.udp->uh_sum, 3110 &nk->addr[pd->sidx], 3111 nk->port[pd->sidx], 1, af); 3112 sport = pd->hdr.udp->uh_sport; 3113 pd->sport = &pd->hdr.udp->uh_sport; 3114 } 3115 3116 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3117 nk->port[pd->didx] != dport) { 3118 pf_change_ap(daddr, &pd->hdr.udp->uh_dport, 3119 pd->ip_sum, &pd->hdr.udp->uh_sum, 3120 &nk->addr[pd->didx], 3121 nk->port[pd->didx], 1, af); 3122 dport = pd->hdr.udp->uh_dport; 3123 pd->dport = &pd->hdr.udp->uh_dport; 3124 } 3125 rewrite++; 3126 break; 3127 #ifdef INET 3128 case IPPROTO_ICMP: 3129 nk->port[0] = nk->port[1]; 3130 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3131 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3132 nk->addr[pd->sidx].v4.s_addr, 0); 3133 3134 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3135 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3136 nk->addr[pd->didx].v4.s_addr, 0); 3137 3138 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3139 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3140 pd->hdr.icmp->icmp_cksum, sport, 3141 nk->port[1], 0); 3142 pd->hdr.icmp->icmp_id = nk->port[1]; 3143 pd->sport = &pd->hdr.icmp->icmp_id; 3144 } 3145 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3146 break; 3147 #endif /* INET */ 3148 #ifdef INET6 3149 case IPPROTO_ICMPV6: 3150 nk->port[0] = nk->port[1]; 3151 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3152 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3153 &nk->addr[pd->sidx], 0); 3154 3155 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3156 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3157 &nk->addr[pd->didx], 0); 3158 rewrite++; 3159 break; 3160 #endif /* INET */ 3161 default: 3162 switch (af) { 3163 #ifdef INET 3164 case AF_INET: 3165 if (PF_ANEQ(saddr, 3166 &nk->addr[pd->sidx], AF_INET)) 3167 pf_change_a(&saddr->v4.s_addr, 3168 pd->ip_sum, 3169 nk->addr[pd->sidx].v4.s_addr, 0); 3170 3171 if (PF_ANEQ(daddr, 3172 &nk->addr[pd->didx], AF_INET)) 3173 pf_change_a(&daddr->v4.s_addr, 3174 pd->ip_sum, 3175 nk->addr[pd->didx].v4.s_addr, 0); 3176 break; 3177 #endif /* INET */ 3178 #ifdef INET6 3179 case AF_INET6: 3180 if (PF_ANEQ(saddr, 3181 &nk->addr[pd->sidx], AF_INET6)) 3182 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3183 3184 if (PF_ANEQ(daddr, 3185 &nk->addr[pd->didx], AF_INET6)) 3186 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3187 break; 3188 #endif /* INET */ 3189 } 3190 break; 3191 } 3192 if (nr->natpass) 3193 r = NULL; 3194 pd->nat_rule = nr; 3195 } 3196 3197 while (r != NULL) { 3198 r->evaluations++; 3199 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3200 r = r->skip[PF_SKIP_IFP].ptr; 3201 else if (r->direction && r->direction != direction) 3202 r = r->skip[PF_SKIP_DIR].ptr; 3203 else if (r->af && r->af != af) 3204 r = r->skip[PF_SKIP_AF].ptr; 3205 else if (r->proto && r->proto != pd->proto) 3206 r = r->skip[PF_SKIP_PROTO].ptr; 3207 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3208 r->src.neg, kif, M_GETFIB(m))) 3209 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3210 /* tcp/udp only. port_op always 0 in other cases */ 3211 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3212 r->src.port[0], r->src.port[1], sport)) 3213 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3214 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3215 r->dst.neg, NULL, M_GETFIB(m))) 3216 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3217 /* tcp/udp only. port_op always 0 in other cases */ 3218 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3219 r->dst.port[0], r->dst.port[1], dport)) 3220 r = r->skip[PF_SKIP_DST_PORT].ptr; 3221 /* icmp only. type always 0 in other cases */ 3222 else if (r->type && r->type != icmptype + 1) 3223 r = TAILQ_NEXT(r, entries); 3224 /* icmp only. type always 0 in other cases */ 3225 else if (r->code && r->code != icmpcode + 1) 3226 r = TAILQ_NEXT(r, entries); 3227 else if (r->tos && !(r->tos == pd->tos)) 3228 r = TAILQ_NEXT(r, entries); 3229 else if (r->rule_flag & PFRULE_FRAGMENT) 3230 r = TAILQ_NEXT(r, entries); 3231 else if (pd->proto == IPPROTO_TCP && 3232 (r->flagset & th->th_flags) != r->flags) 3233 r = TAILQ_NEXT(r, entries); 3234 /* tcp/udp only. uid.op always 0 in other cases */ 3235 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3236 pf_socket_lookup(direction, pd, m), 1)) && 3237 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3238 pd->lookup.uid)) 3239 r = TAILQ_NEXT(r, entries); 3240 /* tcp/udp only. gid.op always 0 in other cases */ 3241 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3242 pf_socket_lookup(direction, pd, m), 1)) && 3243 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3244 pd->lookup.gid)) 3245 r = TAILQ_NEXT(r, entries); 3246 else if (r->prob && 3247 r->prob <= arc4random()) 3248 r = TAILQ_NEXT(r, entries); 3249 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3250 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3251 r = TAILQ_NEXT(r, entries); 3252 else if (r->os_fingerprint != PF_OSFP_ANY && 3253 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3254 pf_osfp_fingerprint(pd, m, off, th), 3255 r->os_fingerprint))) 3256 r = TAILQ_NEXT(r, entries); 3257 else { 3258 if (r->tag) 3259 tag = r->tag; 3260 if (r->rtableid >= 0) 3261 rtableid = r->rtableid; 3262 if (r->anchor == NULL) { 3263 match = 1; 3264 *rm = r; 3265 *am = a; 3266 *rsm = ruleset; 3267 if ((*rm)->quick) 3268 break; 3269 r = TAILQ_NEXT(r, entries); 3270 } else 3271 pf_step_into_anchor(anchor_stack, &asd, 3272 &ruleset, PF_RULESET_FILTER, &r, &a, 3273 &match); 3274 } 3275 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3276 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3277 break; 3278 } 3279 r = *rm; 3280 a = *am; 3281 ruleset = *rsm; 3282 3283 REASON_SET(&reason, PFRES_MATCH); 3284 3285 if (r->log || (nr != NULL && nr->log)) { 3286 if (rewrite) 3287 m_copyback(m, off, hdrlen, pd->hdr.any); 3288 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3289 ruleset, pd, 1); 3290 } 3291 3292 if ((r->action == PF_DROP) && 3293 ((r->rule_flag & PFRULE_RETURNRST) || 3294 (r->rule_flag & PFRULE_RETURNICMP) || 3295 (r->rule_flag & PFRULE_RETURN))) { 3296 /* undo NAT changes, if they have taken place */ 3297 if (nr != NULL) { 3298 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3299 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3300 if (pd->sport) 3301 *pd->sport = sk->port[pd->sidx]; 3302 if (pd->dport) 3303 *pd->dport = sk->port[pd->didx]; 3304 if (pd->proto_sum) 3305 *pd->proto_sum = bproto_sum; 3306 if (pd->ip_sum) 3307 *pd->ip_sum = bip_sum; 3308 m_copyback(m, off, hdrlen, pd->hdr.any); 3309 } 3310 if (pd->proto == IPPROTO_TCP && 3311 ((r->rule_flag & PFRULE_RETURNRST) || 3312 (r->rule_flag & PFRULE_RETURN)) && 3313 !(th->th_flags & TH_RST)) { 3314 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3315 int len = 0; 3316 #ifdef INET 3317 struct ip *h4; 3318 #endif 3319 #ifdef INET6 3320 struct ip6_hdr *h6; 3321 #endif 3322 3323 switch (af) { 3324 #ifdef INET 3325 case AF_INET: 3326 h4 = mtod(m, struct ip *); 3327 len = ntohs(h4->ip_len) - off; 3328 break; 3329 #endif 3330 #ifdef INET6 3331 case AF_INET6: 3332 h6 = mtod(m, struct ip6_hdr *); 3333 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3334 break; 3335 #endif 3336 } 3337 3338 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3339 REASON_SET(&reason, PFRES_PROTCKSUM); 3340 else { 3341 if (th->th_flags & TH_SYN) 3342 ack++; 3343 if (th->th_flags & TH_FIN) 3344 ack++; 3345 pf_send_tcp(m, r, af, pd->dst, 3346 pd->src, th->th_dport, th->th_sport, 3347 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3348 r->return_ttl, 1, 0, kif->pfik_ifp); 3349 } 3350 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3351 r->return_icmp) 3352 pf_send_icmp(m, r->return_icmp >> 8, 3353 r->return_icmp & 255, af, r); 3354 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3355 r->return_icmp6) 3356 pf_send_icmp(m, r->return_icmp6 >> 8, 3357 r->return_icmp6 & 255, af, r); 3358 } 3359 3360 if (r->action == PF_DROP) 3361 goto cleanup; 3362 3363 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3364 REASON_SET(&reason, PFRES_MEMORY); 3365 goto cleanup; 3366 } 3367 if (rtableid >= 0) 3368 M_SETFIB(m, rtableid); 3369 3370 if (!state_icmp && (r->keep_state || nr != NULL || 3371 (pd->flags & PFDESC_TCP_NORM))) { 3372 int action; 3373 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3374 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3375 hdrlen); 3376 if (action != PF_PASS) 3377 return (action); 3378 } else { 3379 if (sk != NULL) 3380 uma_zfree(V_pf_state_key_z, sk); 3381 if (nk != NULL) 3382 uma_zfree(V_pf_state_key_z, nk); 3383 } 3384 3385 /* copy back packet headers if we performed NAT operations */ 3386 if (rewrite) 3387 m_copyback(m, off, hdrlen, pd->hdr.any); 3388 3389 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3390 direction == PF_OUT && 3391 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3392 /* 3393 * We want the state created, but we dont 3394 * want to send this in case a partner 3395 * firewall has to know about it to allow 3396 * replies through it. 3397 */ 3398 return (PF_DEFER); 3399 3400 return (PF_PASS); 3401 3402 cleanup: 3403 if (sk != NULL) 3404 uma_zfree(V_pf_state_key_z, sk); 3405 if (nk != NULL) 3406 uma_zfree(V_pf_state_key_z, nk); 3407 return (PF_DROP); 3408 } 3409 3410 static int 3411 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3412 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3413 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3414 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3415 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3416 { 3417 struct pf_state *s = NULL; 3418 struct pf_src_node *sn = NULL; 3419 struct tcphdr *th = pd->hdr.tcp; 3420 u_int16_t mss = V_tcp_mssdflt; 3421 u_short reason; 3422 3423 /* check maximums */ 3424 if (r->max_states && 3425 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3426 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3427 REASON_SET(&reason, PFRES_MAXSTATES); 3428 return (PF_DROP); 3429 } 3430 /* src node for filter rule */ 3431 if ((r->rule_flag & PFRULE_SRCTRACK || 3432 r->rpool.opts & PF_POOL_STICKYADDR) && 3433 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3434 REASON_SET(&reason, PFRES_SRCLIMIT); 3435 goto csfailed; 3436 } 3437 /* src node for translation rule */ 3438 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3439 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3440 REASON_SET(&reason, PFRES_SRCLIMIT); 3441 goto csfailed; 3442 } 3443 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3444 if (s == NULL) { 3445 REASON_SET(&reason, PFRES_MEMORY); 3446 goto csfailed; 3447 } 3448 s->rule.ptr = r; 3449 s->nat_rule.ptr = nr; 3450 s->anchor.ptr = a; 3451 STATE_INC_COUNTERS(s); 3452 if (r->allow_opts) 3453 s->state_flags |= PFSTATE_ALLOWOPTS; 3454 if (r->rule_flag & PFRULE_STATESLOPPY) 3455 s->state_flags |= PFSTATE_SLOPPY; 3456 s->log = r->log & PF_LOG_ALL; 3457 s->sync_state = PFSYNC_S_NONE; 3458 if (nr != NULL) 3459 s->log |= nr->log & PF_LOG_ALL; 3460 switch (pd->proto) { 3461 case IPPROTO_TCP: 3462 s->src.seqlo = ntohl(th->th_seq); 3463 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3464 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3465 r->keep_state == PF_STATE_MODULATE) { 3466 /* Generate sequence number modulator */ 3467 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3468 0) 3469 s->src.seqdiff = 1; 3470 pf_change_a(&th->th_seq, &th->th_sum, 3471 htonl(s->src.seqlo + s->src.seqdiff), 0); 3472 *rewrite = 1; 3473 } else 3474 s->src.seqdiff = 0; 3475 if (th->th_flags & TH_SYN) { 3476 s->src.seqhi++; 3477 s->src.wscale = pf_get_wscale(m, off, 3478 th->th_off, pd->af); 3479 } 3480 s->src.max_win = MAX(ntohs(th->th_win), 1); 3481 if (s->src.wscale & PF_WSCALE_MASK) { 3482 /* Remove scale factor from initial window */ 3483 int win = s->src.max_win; 3484 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3485 s->src.max_win = (win - 1) >> 3486 (s->src.wscale & PF_WSCALE_MASK); 3487 } 3488 if (th->th_flags & TH_FIN) 3489 s->src.seqhi++; 3490 s->dst.seqhi = 1; 3491 s->dst.max_win = 1; 3492 s->src.state = TCPS_SYN_SENT; 3493 s->dst.state = TCPS_CLOSED; 3494 s->timeout = PFTM_TCP_FIRST_PACKET; 3495 break; 3496 case IPPROTO_UDP: 3497 s->src.state = PFUDPS_SINGLE; 3498 s->dst.state = PFUDPS_NO_TRAFFIC; 3499 s->timeout = PFTM_UDP_FIRST_PACKET; 3500 break; 3501 case IPPROTO_ICMP: 3502 #ifdef INET6 3503 case IPPROTO_ICMPV6: 3504 #endif 3505 s->timeout = PFTM_ICMP_FIRST_PACKET; 3506 break; 3507 default: 3508 s->src.state = PFOTHERS_SINGLE; 3509 s->dst.state = PFOTHERS_NO_TRAFFIC; 3510 s->timeout = PFTM_OTHER_FIRST_PACKET; 3511 } 3512 3513 if (r->rt && r->rt != PF_FASTROUTE) { 3514 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3515 REASON_SET(&reason, PFRES_MAPFAILED); 3516 pf_src_tree_remove_state(s); 3517 STATE_DEC_COUNTERS(s); 3518 uma_zfree(V_pf_state_z, s); 3519 goto csfailed; 3520 } 3521 s->rt_kif = r->rpool.cur->kif; 3522 } 3523 3524 s->creation = time_uptime; 3525 s->expire = time_uptime; 3526 3527 if (sn != NULL) { 3528 s->src_node = sn; 3529 s->src_node->states++; 3530 } 3531 if (nsn != NULL) { 3532 /* XXX We only modify one side for now. */ 3533 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3534 s->nat_src_node = nsn; 3535 s->nat_src_node->states++; 3536 } 3537 if (pd->proto == IPPROTO_TCP) { 3538 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3539 off, pd, th, &s->src, &s->dst)) { 3540 REASON_SET(&reason, PFRES_MEMORY); 3541 pf_src_tree_remove_state(s); 3542 STATE_DEC_COUNTERS(s); 3543 uma_zfree(V_pf_state_z, s); 3544 return (PF_DROP); 3545 } 3546 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3547 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3548 &s->src, &s->dst, rewrite)) { 3549 /* This really shouldn't happen!!! */ 3550 DPFPRINTF(PF_DEBUG_URGENT, 3551 ("pf_normalize_tcp_stateful failed on first pkt")); 3552 pf_normalize_tcp_cleanup(s); 3553 pf_src_tree_remove_state(s); 3554 STATE_DEC_COUNTERS(s); 3555 uma_zfree(V_pf_state_z, s); 3556 return (PF_DROP); 3557 } 3558 } 3559 s->direction = pd->dir; 3560 3561 /* 3562 * sk/nk could already been setup by pf_get_translation(). 3563 */ 3564 if (nr == NULL) { 3565 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3566 __func__, nr, sk, nk)); 3567 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3568 if (sk == NULL) 3569 goto csfailed; 3570 nk = sk; 3571 } else 3572 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3573 __func__, nr, sk, nk)); 3574 3575 /* Swap sk/nk for PF_OUT. */ 3576 if (pf_state_insert(BOUND_IFACE(r, kif), 3577 (pd->dir == PF_IN) ? sk : nk, 3578 (pd->dir == PF_IN) ? nk : sk, s)) { 3579 if (pd->proto == IPPROTO_TCP) 3580 pf_normalize_tcp_cleanup(s); 3581 REASON_SET(&reason, PFRES_STATEINS); 3582 pf_src_tree_remove_state(s); 3583 STATE_DEC_COUNTERS(s); 3584 uma_zfree(V_pf_state_z, s); 3585 return (PF_DROP); 3586 } else 3587 *sm = s; 3588 3589 if (tag > 0) 3590 s->tag = tag; 3591 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3592 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3593 s->src.state = PF_TCPS_PROXY_SRC; 3594 /* undo NAT changes, if they have taken place */ 3595 if (nr != NULL) { 3596 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3597 if (pd->dir == PF_OUT) 3598 skt = s->key[PF_SK_STACK]; 3599 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3600 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3601 if (pd->sport) 3602 *pd->sport = skt->port[pd->sidx]; 3603 if (pd->dport) 3604 *pd->dport = skt->port[pd->didx]; 3605 if (pd->proto_sum) 3606 *pd->proto_sum = bproto_sum; 3607 if (pd->ip_sum) 3608 *pd->ip_sum = bip_sum; 3609 m_copyback(m, off, hdrlen, pd->hdr.any); 3610 } 3611 s->src.seqhi = htonl(arc4random()); 3612 /* Find mss option */ 3613 int rtid = M_GETFIB(m); 3614 mss = pf_get_mss(m, off, th->th_off, pd->af); 3615 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3616 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3617 s->src.mss = mss; 3618 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3619 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3620 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3621 REASON_SET(&reason, PFRES_SYNPROXY); 3622 return (PF_SYNPROXY_DROP); 3623 } 3624 3625 return (PF_PASS); 3626 3627 csfailed: 3628 if (sk != NULL) 3629 uma_zfree(V_pf_state_key_z, sk); 3630 if (nk != NULL) 3631 uma_zfree(V_pf_state_key_z, nk); 3632 3633 if (sn != NULL && sn->states == 0 && sn->expire == 0) { 3634 pf_unlink_src_node(sn); 3635 pf_free_src_node(sn); 3636 } 3637 3638 if (nsn != sn && nsn != NULL && nsn->states == 0 && nsn->expire == 0) { 3639 pf_unlink_src_node(nsn); 3640 pf_free_src_node(nsn); 3641 } 3642 3643 return (PF_DROP); 3644 } 3645 3646 static int 3647 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3648 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3649 struct pf_ruleset **rsm) 3650 { 3651 struct pf_rule *r, *a = NULL; 3652 struct pf_ruleset *ruleset = NULL; 3653 sa_family_t af = pd->af; 3654 u_short reason; 3655 int tag = -1; 3656 int asd = 0; 3657 int match = 0; 3658 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3659 3660 PF_RULES_RASSERT(); 3661 3662 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3663 while (r != NULL) { 3664 r->evaluations++; 3665 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3666 r = r->skip[PF_SKIP_IFP].ptr; 3667 else if (r->direction && r->direction != direction) 3668 r = r->skip[PF_SKIP_DIR].ptr; 3669 else if (r->af && r->af != af) 3670 r = r->skip[PF_SKIP_AF].ptr; 3671 else if (r->proto && r->proto != pd->proto) 3672 r = r->skip[PF_SKIP_PROTO].ptr; 3673 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3674 r->src.neg, kif, M_GETFIB(m))) 3675 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3676 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3677 r->dst.neg, NULL, M_GETFIB(m))) 3678 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3679 else if (r->tos && !(r->tos == pd->tos)) 3680 r = TAILQ_NEXT(r, entries); 3681 else if (r->os_fingerprint != PF_OSFP_ANY) 3682 r = TAILQ_NEXT(r, entries); 3683 else if (pd->proto == IPPROTO_UDP && 3684 (r->src.port_op || r->dst.port_op)) 3685 r = TAILQ_NEXT(r, entries); 3686 else if (pd->proto == IPPROTO_TCP && 3687 (r->src.port_op || r->dst.port_op || r->flagset)) 3688 r = TAILQ_NEXT(r, entries); 3689 else if ((pd->proto == IPPROTO_ICMP || 3690 pd->proto == IPPROTO_ICMPV6) && 3691 (r->type || r->code)) 3692 r = TAILQ_NEXT(r, entries); 3693 else if (r->prob && r->prob <= 3694 (arc4random() % (UINT_MAX - 1) + 1)) 3695 r = TAILQ_NEXT(r, entries); 3696 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3697 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3698 r = TAILQ_NEXT(r, entries); 3699 else { 3700 if (r->anchor == NULL) { 3701 match = 1; 3702 *rm = r; 3703 *am = a; 3704 *rsm = ruleset; 3705 if ((*rm)->quick) 3706 break; 3707 r = TAILQ_NEXT(r, entries); 3708 } else 3709 pf_step_into_anchor(anchor_stack, &asd, 3710 &ruleset, PF_RULESET_FILTER, &r, &a, 3711 &match); 3712 } 3713 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3714 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3715 break; 3716 } 3717 r = *rm; 3718 a = *am; 3719 ruleset = *rsm; 3720 3721 REASON_SET(&reason, PFRES_MATCH); 3722 3723 if (r->log) 3724 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3725 1); 3726 3727 if (r->action != PF_PASS) 3728 return (PF_DROP); 3729 3730 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3731 REASON_SET(&reason, PFRES_MEMORY); 3732 return (PF_DROP); 3733 } 3734 3735 return (PF_PASS); 3736 } 3737 3738 static int 3739 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3740 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3741 struct pf_pdesc *pd, u_short *reason, int *copyback) 3742 { 3743 struct tcphdr *th = pd->hdr.tcp; 3744 u_int16_t win = ntohs(th->th_win); 3745 u_int32_t ack, end, seq, orig_seq; 3746 u_int8_t sws, dws; 3747 int ackskew; 3748 3749 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3750 sws = src->wscale & PF_WSCALE_MASK; 3751 dws = dst->wscale & PF_WSCALE_MASK; 3752 } else 3753 sws = dws = 0; 3754 3755 /* 3756 * Sequence tracking algorithm from Guido van Rooij's paper: 3757 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3758 * tcp_filtering.ps 3759 */ 3760 3761 orig_seq = seq = ntohl(th->th_seq); 3762 if (src->seqlo == 0) { 3763 /* First packet from this end. Set its state */ 3764 3765 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3766 src->scrub == NULL) { 3767 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3768 REASON_SET(reason, PFRES_MEMORY); 3769 return (PF_DROP); 3770 } 3771 } 3772 3773 /* Deferred generation of sequence number modulator */ 3774 if (dst->seqdiff && !src->seqdiff) { 3775 /* use random iss for the TCP server */ 3776 while ((src->seqdiff = arc4random() - seq) == 0) 3777 ; 3778 ack = ntohl(th->th_ack) - dst->seqdiff; 3779 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3780 src->seqdiff), 0); 3781 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3782 *copyback = 1; 3783 } else { 3784 ack = ntohl(th->th_ack); 3785 } 3786 3787 end = seq + pd->p_len; 3788 if (th->th_flags & TH_SYN) { 3789 end++; 3790 if (dst->wscale & PF_WSCALE_FLAG) { 3791 src->wscale = pf_get_wscale(m, off, th->th_off, 3792 pd->af); 3793 if (src->wscale & PF_WSCALE_FLAG) { 3794 /* Remove scale factor from initial 3795 * window */ 3796 sws = src->wscale & PF_WSCALE_MASK; 3797 win = ((u_int32_t)win + (1 << sws) - 1) 3798 >> sws; 3799 dws = dst->wscale & PF_WSCALE_MASK; 3800 } else { 3801 /* fixup other window */ 3802 dst->max_win <<= dst->wscale & 3803 PF_WSCALE_MASK; 3804 /* in case of a retrans SYN|ACK */ 3805 dst->wscale = 0; 3806 } 3807 } 3808 } 3809 if (th->th_flags & TH_FIN) 3810 end++; 3811 3812 src->seqlo = seq; 3813 if (src->state < TCPS_SYN_SENT) 3814 src->state = TCPS_SYN_SENT; 3815 3816 /* 3817 * May need to slide the window (seqhi may have been set by 3818 * the crappy stack check or if we picked up the connection 3819 * after establishment) 3820 */ 3821 if (src->seqhi == 1 || 3822 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3823 src->seqhi = end + MAX(1, dst->max_win << dws); 3824 if (win > src->max_win) 3825 src->max_win = win; 3826 3827 } else { 3828 ack = ntohl(th->th_ack) - dst->seqdiff; 3829 if (src->seqdiff) { 3830 /* Modulate sequence numbers */ 3831 pf_change_a(&th->th_seq, &th->th_sum, htonl(seq + 3832 src->seqdiff), 0); 3833 pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0); 3834 *copyback = 1; 3835 } 3836 end = seq + pd->p_len; 3837 if (th->th_flags & TH_SYN) 3838 end++; 3839 if (th->th_flags & TH_FIN) 3840 end++; 3841 } 3842 3843 if ((th->th_flags & TH_ACK) == 0) { 3844 /* Let it pass through the ack skew check */ 3845 ack = dst->seqlo; 3846 } else if ((ack == 0 && 3847 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3848 /* broken tcp stacks do not set ack */ 3849 (dst->state < TCPS_SYN_SENT)) { 3850 /* 3851 * Many stacks (ours included) will set the ACK number in an 3852 * FIN|ACK if the SYN times out -- no sequence to ACK. 3853 */ 3854 ack = dst->seqlo; 3855 } 3856 3857 if (seq == end) { 3858 /* Ease sequencing restrictions on no data packets */ 3859 seq = src->seqlo; 3860 end = seq; 3861 } 3862 3863 ackskew = dst->seqlo - ack; 3864 3865 3866 /* 3867 * Need to demodulate the sequence numbers in any TCP SACK options 3868 * (Selective ACK). We could optionally validate the SACK values 3869 * against the current ACK window, either forwards or backwards, but 3870 * I'm not confident that SACK has been implemented properly 3871 * everywhere. It wouldn't surprise me if several stacks accidently 3872 * SACK too far backwards of previously ACKed data. There really aren't 3873 * any security implications of bad SACKing unless the target stack 3874 * doesn't validate the option length correctly. Someone trying to 3875 * spoof into a TCP connection won't bother blindly sending SACK 3876 * options anyway. 3877 */ 3878 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 3879 if (pf_modulate_sack(m, off, pd, th, dst)) 3880 *copyback = 1; 3881 } 3882 3883 3884 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 3885 if (SEQ_GEQ(src->seqhi, end) && 3886 /* Last octet inside other's window space */ 3887 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 3888 /* Retrans: not more than one window back */ 3889 (ackskew >= -MAXACKWINDOW) && 3890 /* Acking not more than one reassembled fragment backwards */ 3891 (ackskew <= (MAXACKWINDOW << sws)) && 3892 /* Acking not more than one window forward */ 3893 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 3894 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 3895 (pd->flags & PFDESC_IP_REAS) == 0)) { 3896 /* Require an exact/+1 sequence match on resets when possible */ 3897 3898 if (dst->scrub || src->scrub) { 3899 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3900 *state, src, dst, copyback)) 3901 return (PF_DROP); 3902 } 3903 3904 /* update max window */ 3905 if (src->max_win < win) 3906 src->max_win = win; 3907 /* synchronize sequencing */ 3908 if (SEQ_GT(end, src->seqlo)) 3909 src->seqlo = end; 3910 /* slide the window of what the other end can send */ 3911 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 3912 dst->seqhi = ack + MAX((win << sws), 1); 3913 3914 3915 /* update states */ 3916 if (th->th_flags & TH_SYN) 3917 if (src->state < TCPS_SYN_SENT) 3918 src->state = TCPS_SYN_SENT; 3919 if (th->th_flags & TH_FIN) 3920 if (src->state < TCPS_CLOSING) 3921 src->state = TCPS_CLOSING; 3922 if (th->th_flags & TH_ACK) { 3923 if (dst->state == TCPS_SYN_SENT) { 3924 dst->state = TCPS_ESTABLISHED; 3925 if (src->state == TCPS_ESTABLISHED && 3926 (*state)->src_node != NULL && 3927 pf_src_connlimit(state)) { 3928 REASON_SET(reason, PFRES_SRCLIMIT); 3929 return (PF_DROP); 3930 } 3931 } else if (dst->state == TCPS_CLOSING) 3932 dst->state = TCPS_FIN_WAIT_2; 3933 } 3934 if (th->th_flags & TH_RST) 3935 src->state = dst->state = TCPS_TIME_WAIT; 3936 3937 /* update expire time */ 3938 (*state)->expire = time_uptime; 3939 if (src->state >= TCPS_FIN_WAIT_2 && 3940 dst->state >= TCPS_FIN_WAIT_2) 3941 (*state)->timeout = PFTM_TCP_CLOSED; 3942 else if (src->state >= TCPS_CLOSING && 3943 dst->state >= TCPS_CLOSING) 3944 (*state)->timeout = PFTM_TCP_FIN_WAIT; 3945 else if (src->state < TCPS_ESTABLISHED || 3946 dst->state < TCPS_ESTABLISHED) 3947 (*state)->timeout = PFTM_TCP_OPENING; 3948 else if (src->state >= TCPS_CLOSING || 3949 dst->state >= TCPS_CLOSING) 3950 (*state)->timeout = PFTM_TCP_CLOSING; 3951 else 3952 (*state)->timeout = PFTM_TCP_ESTABLISHED; 3953 3954 /* Fall through to PASS packet */ 3955 3956 } else if ((dst->state < TCPS_SYN_SENT || 3957 dst->state >= TCPS_FIN_WAIT_2 || 3958 src->state >= TCPS_FIN_WAIT_2) && 3959 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 3960 /* Within a window forward of the originating packet */ 3961 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 3962 /* Within a window backward of the originating packet */ 3963 3964 /* 3965 * This currently handles three situations: 3966 * 1) Stupid stacks will shotgun SYNs before their peer 3967 * replies. 3968 * 2) When PF catches an already established stream (the 3969 * firewall rebooted, the state table was flushed, routes 3970 * changed...) 3971 * 3) Packets get funky immediately after the connection 3972 * closes (this should catch Solaris spurious ACK|FINs 3973 * that web servers like to spew after a close) 3974 * 3975 * This must be a little more careful than the above code 3976 * since packet floods will also be caught here. We don't 3977 * update the TTL here to mitigate the damage of a packet 3978 * flood and so the same code can handle awkward establishment 3979 * and a loosened connection close. 3980 * In the establishment case, a correct peer response will 3981 * validate the connection, go through the normal state code 3982 * and keep updating the state TTL. 3983 */ 3984 3985 if (V_pf_status.debug >= PF_DEBUG_MISC) { 3986 printf("pf: loose state match: "); 3987 pf_print_state(*state); 3988 pf_print_flags(th->th_flags); 3989 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 3990 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 3991 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 3992 (unsigned long long)(*state)->packets[1], 3993 pd->dir == PF_IN ? "in" : "out", 3994 pd->dir == (*state)->direction ? "fwd" : "rev"); 3995 } 3996 3997 if (dst->scrub || src->scrub) { 3998 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 3999 *state, src, dst, copyback)) 4000 return (PF_DROP); 4001 } 4002 4003 /* update max window */ 4004 if (src->max_win < win) 4005 src->max_win = win; 4006 /* synchronize sequencing */ 4007 if (SEQ_GT(end, src->seqlo)) 4008 src->seqlo = end; 4009 /* slide the window of what the other end can send */ 4010 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4011 dst->seqhi = ack + MAX((win << sws), 1); 4012 4013 /* 4014 * Cannot set dst->seqhi here since this could be a shotgunned 4015 * SYN and not an already established connection. 4016 */ 4017 4018 if (th->th_flags & TH_FIN) 4019 if (src->state < TCPS_CLOSING) 4020 src->state = TCPS_CLOSING; 4021 if (th->th_flags & TH_RST) 4022 src->state = dst->state = TCPS_TIME_WAIT; 4023 4024 /* Fall through to PASS packet */ 4025 4026 } else { 4027 if ((*state)->dst.state == TCPS_SYN_SENT && 4028 (*state)->src.state == TCPS_SYN_SENT) { 4029 /* Send RST for state mismatches during handshake */ 4030 if (!(th->th_flags & TH_RST)) 4031 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4032 pd->dst, pd->src, th->th_dport, 4033 th->th_sport, ntohl(th->th_ack), 0, 4034 TH_RST, 0, 0, 4035 (*state)->rule.ptr->return_ttl, 1, 0, 4036 kif->pfik_ifp); 4037 src->seqlo = 0; 4038 src->seqhi = 1; 4039 src->max_win = 1; 4040 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4041 printf("pf: BAD state: "); 4042 pf_print_state(*state); 4043 pf_print_flags(th->th_flags); 4044 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4045 "pkts=%llu:%llu dir=%s,%s\n", 4046 seq, orig_seq, ack, pd->p_len, ackskew, 4047 (unsigned long long)(*state)->packets[0], 4048 (unsigned long long)(*state)->packets[1], 4049 pd->dir == PF_IN ? "in" : "out", 4050 pd->dir == (*state)->direction ? "fwd" : "rev"); 4051 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4052 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4053 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4054 ' ': '2', 4055 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4056 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4057 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4058 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4059 } 4060 REASON_SET(reason, PFRES_BADSTATE); 4061 return (PF_DROP); 4062 } 4063 4064 return (PF_PASS); 4065 } 4066 4067 static int 4068 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4069 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4070 { 4071 struct tcphdr *th = pd->hdr.tcp; 4072 4073 if (th->th_flags & TH_SYN) 4074 if (src->state < TCPS_SYN_SENT) 4075 src->state = TCPS_SYN_SENT; 4076 if (th->th_flags & TH_FIN) 4077 if (src->state < TCPS_CLOSING) 4078 src->state = TCPS_CLOSING; 4079 if (th->th_flags & TH_ACK) { 4080 if (dst->state == TCPS_SYN_SENT) { 4081 dst->state = TCPS_ESTABLISHED; 4082 if (src->state == TCPS_ESTABLISHED && 4083 (*state)->src_node != NULL && 4084 pf_src_connlimit(state)) { 4085 REASON_SET(reason, PFRES_SRCLIMIT); 4086 return (PF_DROP); 4087 } 4088 } else if (dst->state == TCPS_CLOSING) { 4089 dst->state = TCPS_FIN_WAIT_2; 4090 } else if (src->state == TCPS_SYN_SENT && 4091 dst->state < TCPS_SYN_SENT) { 4092 /* 4093 * Handle a special sloppy case where we only see one 4094 * half of the connection. If there is a ACK after 4095 * the initial SYN without ever seeing a packet from 4096 * the destination, set the connection to established. 4097 */ 4098 dst->state = src->state = TCPS_ESTABLISHED; 4099 if ((*state)->src_node != NULL && 4100 pf_src_connlimit(state)) { 4101 REASON_SET(reason, PFRES_SRCLIMIT); 4102 return (PF_DROP); 4103 } 4104 } else if (src->state == TCPS_CLOSING && 4105 dst->state == TCPS_ESTABLISHED && 4106 dst->seqlo == 0) { 4107 /* 4108 * Handle the closing of half connections where we 4109 * don't see the full bidirectional FIN/ACK+ACK 4110 * handshake. 4111 */ 4112 dst->state = TCPS_CLOSING; 4113 } 4114 } 4115 if (th->th_flags & TH_RST) 4116 src->state = dst->state = TCPS_TIME_WAIT; 4117 4118 /* update expire time */ 4119 (*state)->expire = time_uptime; 4120 if (src->state >= TCPS_FIN_WAIT_2 && 4121 dst->state >= TCPS_FIN_WAIT_2) 4122 (*state)->timeout = PFTM_TCP_CLOSED; 4123 else if (src->state >= TCPS_CLOSING && 4124 dst->state >= TCPS_CLOSING) 4125 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4126 else if (src->state < TCPS_ESTABLISHED || 4127 dst->state < TCPS_ESTABLISHED) 4128 (*state)->timeout = PFTM_TCP_OPENING; 4129 else if (src->state >= TCPS_CLOSING || 4130 dst->state >= TCPS_CLOSING) 4131 (*state)->timeout = PFTM_TCP_CLOSING; 4132 else 4133 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4134 4135 return (PF_PASS); 4136 } 4137 4138 static int 4139 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4140 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4141 u_short *reason) 4142 { 4143 struct pf_state_key_cmp key; 4144 struct tcphdr *th = pd->hdr.tcp; 4145 int copyback = 0; 4146 struct pf_state_peer *src, *dst; 4147 struct pf_state_key *sk; 4148 4149 bzero(&key, sizeof(key)); 4150 key.af = pd->af; 4151 key.proto = IPPROTO_TCP; 4152 if (direction == PF_IN) { /* wire side, straight */ 4153 PF_ACPY(&key.addr[0], pd->src, key.af); 4154 PF_ACPY(&key.addr[1], pd->dst, key.af); 4155 key.port[0] = th->th_sport; 4156 key.port[1] = th->th_dport; 4157 } else { /* stack side, reverse */ 4158 PF_ACPY(&key.addr[1], pd->src, key.af); 4159 PF_ACPY(&key.addr[0], pd->dst, key.af); 4160 key.port[1] = th->th_sport; 4161 key.port[0] = th->th_dport; 4162 } 4163 4164 STATE_LOOKUP(kif, &key, direction, *state, pd); 4165 4166 if (direction == (*state)->direction) { 4167 src = &(*state)->src; 4168 dst = &(*state)->dst; 4169 } else { 4170 src = &(*state)->dst; 4171 dst = &(*state)->src; 4172 } 4173 4174 sk = (*state)->key[pd->didx]; 4175 4176 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4177 if (direction != (*state)->direction) { 4178 REASON_SET(reason, PFRES_SYNPROXY); 4179 return (PF_SYNPROXY_DROP); 4180 } 4181 if (th->th_flags & TH_SYN) { 4182 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4183 REASON_SET(reason, PFRES_SYNPROXY); 4184 return (PF_DROP); 4185 } 4186 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4187 pd->src, th->th_dport, th->th_sport, 4188 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4189 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4190 REASON_SET(reason, PFRES_SYNPROXY); 4191 return (PF_SYNPROXY_DROP); 4192 } else if (!(th->th_flags & TH_ACK) || 4193 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4194 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4195 REASON_SET(reason, PFRES_SYNPROXY); 4196 return (PF_DROP); 4197 } else if ((*state)->src_node != NULL && 4198 pf_src_connlimit(state)) { 4199 REASON_SET(reason, PFRES_SRCLIMIT); 4200 return (PF_DROP); 4201 } else 4202 (*state)->src.state = PF_TCPS_PROXY_DST; 4203 } 4204 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4205 if (direction == (*state)->direction) { 4206 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4207 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4208 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4209 REASON_SET(reason, PFRES_SYNPROXY); 4210 return (PF_DROP); 4211 } 4212 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4213 if ((*state)->dst.seqhi == 1) 4214 (*state)->dst.seqhi = htonl(arc4random()); 4215 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4216 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4217 sk->port[pd->sidx], sk->port[pd->didx], 4218 (*state)->dst.seqhi, 0, TH_SYN, 0, 4219 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4220 REASON_SET(reason, PFRES_SYNPROXY); 4221 return (PF_SYNPROXY_DROP); 4222 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4223 (TH_SYN|TH_ACK)) || 4224 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4225 REASON_SET(reason, PFRES_SYNPROXY); 4226 return (PF_DROP); 4227 } else { 4228 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4229 (*state)->dst.seqlo = ntohl(th->th_seq); 4230 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4231 pd->src, th->th_dport, th->th_sport, 4232 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4233 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4234 (*state)->tag, NULL); 4235 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4236 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4237 sk->port[pd->sidx], sk->port[pd->didx], 4238 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4239 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4240 (*state)->src.seqdiff = (*state)->dst.seqhi - 4241 (*state)->src.seqlo; 4242 (*state)->dst.seqdiff = (*state)->src.seqhi - 4243 (*state)->dst.seqlo; 4244 (*state)->src.seqhi = (*state)->src.seqlo + 4245 (*state)->dst.max_win; 4246 (*state)->dst.seqhi = (*state)->dst.seqlo + 4247 (*state)->src.max_win; 4248 (*state)->src.wscale = (*state)->dst.wscale = 0; 4249 (*state)->src.state = (*state)->dst.state = 4250 TCPS_ESTABLISHED; 4251 REASON_SET(reason, PFRES_SYNPROXY); 4252 return (PF_SYNPROXY_DROP); 4253 } 4254 } 4255 4256 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4257 dst->state >= TCPS_FIN_WAIT_2 && 4258 src->state >= TCPS_FIN_WAIT_2) { 4259 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4260 printf("pf: state reuse "); 4261 pf_print_state(*state); 4262 pf_print_flags(th->th_flags); 4263 printf("\n"); 4264 } 4265 /* XXX make sure it's the same direction ?? */ 4266 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4267 pf_unlink_state(*state, PF_ENTER_LOCKED); 4268 *state = NULL; 4269 return (PF_DROP); 4270 } 4271 4272 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4273 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4274 return (PF_DROP); 4275 } else { 4276 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4277 ©back) == PF_DROP) 4278 return (PF_DROP); 4279 } 4280 4281 /* translate source/destination address, if necessary */ 4282 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4283 struct pf_state_key *nk = (*state)->key[pd->didx]; 4284 4285 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4286 nk->port[pd->sidx] != th->th_sport) 4287 pf_change_ap(pd->src, &th->th_sport, pd->ip_sum, 4288 &th->th_sum, &nk->addr[pd->sidx], 4289 nk->port[pd->sidx], 0, pd->af); 4290 4291 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4292 nk->port[pd->didx] != th->th_dport) 4293 pf_change_ap(pd->dst, &th->th_dport, pd->ip_sum, 4294 &th->th_sum, &nk->addr[pd->didx], 4295 nk->port[pd->didx], 0, pd->af); 4296 copyback = 1; 4297 } 4298 4299 /* Copyback sequence modulation or stateful scrub changes if needed */ 4300 if (copyback) 4301 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4302 4303 return (PF_PASS); 4304 } 4305 4306 static int 4307 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4308 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4309 { 4310 struct pf_state_peer *src, *dst; 4311 struct pf_state_key_cmp key; 4312 struct udphdr *uh = pd->hdr.udp; 4313 4314 bzero(&key, sizeof(key)); 4315 key.af = pd->af; 4316 key.proto = IPPROTO_UDP; 4317 if (direction == PF_IN) { /* wire side, straight */ 4318 PF_ACPY(&key.addr[0], pd->src, key.af); 4319 PF_ACPY(&key.addr[1], pd->dst, key.af); 4320 key.port[0] = uh->uh_sport; 4321 key.port[1] = uh->uh_dport; 4322 } else { /* stack side, reverse */ 4323 PF_ACPY(&key.addr[1], pd->src, key.af); 4324 PF_ACPY(&key.addr[0], pd->dst, key.af); 4325 key.port[1] = uh->uh_sport; 4326 key.port[0] = uh->uh_dport; 4327 } 4328 4329 STATE_LOOKUP(kif, &key, direction, *state, pd); 4330 4331 if (direction == (*state)->direction) { 4332 src = &(*state)->src; 4333 dst = &(*state)->dst; 4334 } else { 4335 src = &(*state)->dst; 4336 dst = &(*state)->src; 4337 } 4338 4339 /* update states */ 4340 if (src->state < PFUDPS_SINGLE) 4341 src->state = PFUDPS_SINGLE; 4342 if (dst->state == PFUDPS_SINGLE) 4343 dst->state = PFUDPS_MULTIPLE; 4344 4345 /* update expire time */ 4346 (*state)->expire = time_uptime; 4347 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4348 (*state)->timeout = PFTM_UDP_MULTIPLE; 4349 else 4350 (*state)->timeout = PFTM_UDP_SINGLE; 4351 4352 /* translate source/destination address, if necessary */ 4353 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4354 struct pf_state_key *nk = (*state)->key[pd->didx]; 4355 4356 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4357 nk->port[pd->sidx] != uh->uh_sport) 4358 pf_change_ap(pd->src, &uh->uh_sport, pd->ip_sum, 4359 &uh->uh_sum, &nk->addr[pd->sidx], 4360 nk->port[pd->sidx], 1, pd->af); 4361 4362 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4363 nk->port[pd->didx] != uh->uh_dport) 4364 pf_change_ap(pd->dst, &uh->uh_dport, pd->ip_sum, 4365 &uh->uh_sum, &nk->addr[pd->didx], 4366 nk->port[pd->didx], 1, pd->af); 4367 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4368 } 4369 4370 return (PF_PASS); 4371 } 4372 4373 static int 4374 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4375 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4376 { 4377 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4378 u_int16_t icmpid = 0, *icmpsum; 4379 u_int8_t icmptype; 4380 int state_icmp = 0; 4381 struct pf_state_key_cmp key; 4382 4383 bzero(&key, sizeof(key)); 4384 switch (pd->proto) { 4385 #ifdef INET 4386 case IPPROTO_ICMP: 4387 icmptype = pd->hdr.icmp->icmp_type; 4388 icmpid = pd->hdr.icmp->icmp_id; 4389 icmpsum = &pd->hdr.icmp->icmp_cksum; 4390 4391 if (icmptype == ICMP_UNREACH || 4392 icmptype == ICMP_SOURCEQUENCH || 4393 icmptype == ICMP_REDIRECT || 4394 icmptype == ICMP_TIMXCEED || 4395 icmptype == ICMP_PARAMPROB) 4396 state_icmp++; 4397 break; 4398 #endif /* INET */ 4399 #ifdef INET6 4400 case IPPROTO_ICMPV6: 4401 icmptype = pd->hdr.icmp6->icmp6_type; 4402 icmpid = pd->hdr.icmp6->icmp6_id; 4403 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4404 4405 if (icmptype == ICMP6_DST_UNREACH || 4406 icmptype == ICMP6_PACKET_TOO_BIG || 4407 icmptype == ICMP6_TIME_EXCEEDED || 4408 icmptype == ICMP6_PARAM_PROB) 4409 state_icmp++; 4410 break; 4411 #endif /* INET6 */ 4412 } 4413 4414 if (!state_icmp) { 4415 4416 /* 4417 * ICMP query/reply message not related to a TCP/UDP packet. 4418 * Search for an ICMP state. 4419 */ 4420 key.af = pd->af; 4421 key.proto = pd->proto; 4422 key.port[0] = key.port[1] = icmpid; 4423 if (direction == PF_IN) { /* wire side, straight */ 4424 PF_ACPY(&key.addr[0], pd->src, key.af); 4425 PF_ACPY(&key.addr[1], pd->dst, key.af); 4426 } else { /* stack side, reverse */ 4427 PF_ACPY(&key.addr[1], pd->src, key.af); 4428 PF_ACPY(&key.addr[0], pd->dst, key.af); 4429 } 4430 4431 STATE_LOOKUP(kif, &key, direction, *state, pd); 4432 4433 (*state)->expire = time_uptime; 4434 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4435 4436 /* translate source/destination address, if necessary */ 4437 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4438 struct pf_state_key *nk = (*state)->key[pd->didx]; 4439 4440 switch (pd->af) { 4441 #ifdef INET 4442 case AF_INET: 4443 if (PF_ANEQ(pd->src, 4444 &nk->addr[pd->sidx], AF_INET)) 4445 pf_change_a(&saddr->v4.s_addr, 4446 pd->ip_sum, 4447 nk->addr[pd->sidx].v4.s_addr, 0); 4448 4449 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4450 AF_INET)) 4451 pf_change_a(&daddr->v4.s_addr, 4452 pd->ip_sum, 4453 nk->addr[pd->didx].v4.s_addr, 0); 4454 4455 if (nk->port[0] != 4456 pd->hdr.icmp->icmp_id) { 4457 pd->hdr.icmp->icmp_cksum = 4458 pf_cksum_fixup( 4459 pd->hdr.icmp->icmp_cksum, icmpid, 4460 nk->port[pd->sidx], 0); 4461 pd->hdr.icmp->icmp_id = 4462 nk->port[pd->sidx]; 4463 } 4464 4465 m_copyback(m, off, ICMP_MINLEN, 4466 (caddr_t )pd->hdr.icmp); 4467 break; 4468 #endif /* INET */ 4469 #ifdef INET6 4470 case AF_INET6: 4471 if (PF_ANEQ(pd->src, 4472 &nk->addr[pd->sidx], AF_INET6)) 4473 pf_change_a6(saddr, 4474 &pd->hdr.icmp6->icmp6_cksum, 4475 &nk->addr[pd->sidx], 0); 4476 4477 if (PF_ANEQ(pd->dst, 4478 &nk->addr[pd->didx], AF_INET6)) 4479 pf_change_a6(daddr, 4480 &pd->hdr.icmp6->icmp6_cksum, 4481 &nk->addr[pd->didx], 0); 4482 4483 m_copyback(m, off, sizeof(struct icmp6_hdr), 4484 (caddr_t )pd->hdr.icmp6); 4485 break; 4486 #endif /* INET6 */ 4487 } 4488 } 4489 return (PF_PASS); 4490 4491 } else { 4492 /* 4493 * ICMP error message in response to a TCP/UDP packet. 4494 * Extract the inner TCP/UDP header and search for that state. 4495 */ 4496 4497 struct pf_pdesc pd2; 4498 bzero(&pd2, sizeof pd2); 4499 #ifdef INET 4500 struct ip h2; 4501 #endif /* INET */ 4502 #ifdef INET6 4503 struct ip6_hdr h2_6; 4504 int terminal = 0; 4505 #endif /* INET6 */ 4506 int ipoff2 = 0; 4507 int off2 = 0; 4508 4509 pd2.af = pd->af; 4510 /* Payload packet is from the opposite direction. */ 4511 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4512 pd2.didx = (direction == PF_IN) ? 0 : 1; 4513 switch (pd->af) { 4514 #ifdef INET 4515 case AF_INET: 4516 /* offset of h2 in mbuf chain */ 4517 ipoff2 = off + ICMP_MINLEN; 4518 4519 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4520 NULL, reason, pd2.af)) { 4521 DPFPRINTF(PF_DEBUG_MISC, 4522 ("pf: ICMP error message too short " 4523 "(ip)\n")); 4524 return (PF_DROP); 4525 } 4526 /* 4527 * ICMP error messages don't refer to non-first 4528 * fragments 4529 */ 4530 if (h2.ip_off & htons(IP_OFFMASK)) { 4531 REASON_SET(reason, PFRES_FRAG); 4532 return (PF_DROP); 4533 } 4534 4535 /* offset of protocol header that follows h2 */ 4536 off2 = ipoff2 + (h2.ip_hl << 2); 4537 4538 pd2.proto = h2.ip_p; 4539 pd2.src = (struct pf_addr *)&h2.ip_src; 4540 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4541 pd2.ip_sum = &h2.ip_sum; 4542 break; 4543 #endif /* INET */ 4544 #ifdef INET6 4545 case AF_INET6: 4546 ipoff2 = off + sizeof(struct icmp6_hdr); 4547 4548 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4549 NULL, reason, pd2.af)) { 4550 DPFPRINTF(PF_DEBUG_MISC, 4551 ("pf: ICMP error message too short " 4552 "(ip6)\n")); 4553 return (PF_DROP); 4554 } 4555 pd2.proto = h2_6.ip6_nxt; 4556 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4557 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4558 pd2.ip_sum = NULL; 4559 off2 = ipoff2 + sizeof(h2_6); 4560 do { 4561 switch (pd2.proto) { 4562 case IPPROTO_FRAGMENT: 4563 /* 4564 * ICMPv6 error messages for 4565 * non-first fragments 4566 */ 4567 REASON_SET(reason, PFRES_FRAG); 4568 return (PF_DROP); 4569 case IPPROTO_AH: 4570 case IPPROTO_HOPOPTS: 4571 case IPPROTO_ROUTING: 4572 case IPPROTO_DSTOPTS: { 4573 /* get next header and header length */ 4574 struct ip6_ext opt6; 4575 4576 if (!pf_pull_hdr(m, off2, &opt6, 4577 sizeof(opt6), NULL, reason, 4578 pd2.af)) { 4579 DPFPRINTF(PF_DEBUG_MISC, 4580 ("pf: ICMPv6 short opt\n")); 4581 return (PF_DROP); 4582 } 4583 if (pd2.proto == IPPROTO_AH) 4584 off2 += (opt6.ip6e_len + 2) * 4; 4585 else 4586 off2 += (opt6.ip6e_len + 1) * 8; 4587 pd2.proto = opt6.ip6e_nxt; 4588 /* goto the next header */ 4589 break; 4590 } 4591 default: 4592 terminal++; 4593 break; 4594 } 4595 } while (!terminal); 4596 break; 4597 #endif /* INET6 */ 4598 } 4599 4600 switch (pd2.proto) { 4601 case IPPROTO_TCP: { 4602 struct tcphdr th; 4603 u_int32_t seq; 4604 struct pf_state_peer *src, *dst; 4605 u_int8_t dws; 4606 int copyback = 0; 4607 4608 /* 4609 * Only the first 8 bytes of the TCP header can be 4610 * expected. Don't access any TCP header fields after 4611 * th_seq, an ackskew test is not possible. 4612 */ 4613 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4614 pd2.af)) { 4615 DPFPRINTF(PF_DEBUG_MISC, 4616 ("pf: ICMP error message too short " 4617 "(tcp)\n")); 4618 return (PF_DROP); 4619 } 4620 4621 key.af = pd2.af; 4622 key.proto = IPPROTO_TCP; 4623 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4624 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4625 key.port[pd2.sidx] = th.th_sport; 4626 key.port[pd2.didx] = th.th_dport; 4627 4628 STATE_LOOKUP(kif, &key, direction, *state, pd); 4629 4630 if (direction == (*state)->direction) { 4631 src = &(*state)->dst; 4632 dst = &(*state)->src; 4633 } else { 4634 src = &(*state)->src; 4635 dst = &(*state)->dst; 4636 } 4637 4638 if (src->wscale && dst->wscale) 4639 dws = dst->wscale & PF_WSCALE_MASK; 4640 else 4641 dws = 0; 4642 4643 /* Demodulate sequence number */ 4644 seq = ntohl(th.th_seq) - src->seqdiff; 4645 if (src->seqdiff) { 4646 pf_change_a(&th.th_seq, icmpsum, 4647 htonl(seq), 0); 4648 copyback = 1; 4649 } 4650 4651 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4652 (!SEQ_GEQ(src->seqhi, seq) || 4653 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4654 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4655 printf("pf: BAD ICMP %d:%d ", 4656 icmptype, pd->hdr.icmp->icmp_code); 4657 pf_print_host(pd->src, 0, pd->af); 4658 printf(" -> "); 4659 pf_print_host(pd->dst, 0, pd->af); 4660 printf(" state: "); 4661 pf_print_state(*state); 4662 printf(" seq=%u\n", seq); 4663 } 4664 REASON_SET(reason, PFRES_BADSTATE); 4665 return (PF_DROP); 4666 } else { 4667 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4668 printf("pf: OK ICMP %d:%d ", 4669 icmptype, pd->hdr.icmp->icmp_code); 4670 pf_print_host(pd->src, 0, pd->af); 4671 printf(" -> "); 4672 pf_print_host(pd->dst, 0, pd->af); 4673 printf(" state: "); 4674 pf_print_state(*state); 4675 printf(" seq=%u\n", seq); 4676 } 4677 } 4678 4679 /* translate source/destination address, if necessary */ 4680 if ((*state)->key[PF_SK_WIRE] != 4681 (*state)->key[PF_SK_STACK]) { 4682 struct pf_state_key *nk = 4683 (*state)->key[pd->didx]; 4684 4685 if (PF_ANEQ(pd2.src, 4686 &nk->addr[pd2.sidx], pd2.af) || 4687 nk->port[pd2.sidx] != th.th_sport) 4688 pf_change_icmp(pd2.src, &th.th_sport, 4689 daddr, &nk->addr[pd2.sidx], 4690 nk->port[pd2.sidx], NULL, 4691 pd2.ip_sum, icmpsum, 4692 pd->ip_sum, 0, pd2.af); 4693 4694 if (PF_ANEQ(pd2.dst, 4695 &nk->addr[pd2.didx], pd2.af) || 4696 nk->port[pd2.didx] != th.th_dport) 4697 pf_change_icmp(pd2.dst, &th.th_dport, 4698 NULL, /* XXX Inbound NAT? */ 4699 &nk->addr[pd2.didx], 4700 nk->port[pd2.didx], NULL, 4701 pd2.ip_sum, icmpsum, 4702 pd->ip_sum, 0, pd2.af); 4703 copyback = 1; 4704 } 4705 4706 if (copyback) { 4707 switch (pd2.af) { 4708 #ifdef INET 4709 case AF_INET: 4710 m_copyback(m, off, ICMP_MINLEN, 4711 (caddr_t )pd->hdr.icmp); 4712 m_copyback(m, ipoff2, sizeof(h2), 4713 (caddr_t )&h2); 4714 break; 4715 #endif /* INET */ 4716 #ifdef INET6 4717 case AF_INET6: 4718 m_copyback(m, off, 4719 sizeof(struct icmp6_hdr), 4720 (caddr_t )pd->hdr.icmp6); 4721 m_copyback(m, ipoff2, sizeof(h2_6), 4722 (caddr_t )&h2_6); 4723 break; 4724 #endif /* INET6 */ 4725 } 4726 m_copyback(m, off2, 8, (caddr_t)&th); 4727 } 4728 4729 return (PF_PASS); 4730 break; 4731 } 4732 case IPPROTO_UDP: { 4733 struct udphdr uh; 4734 4735 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4736 NULL, reason, pd2.af)) { 4737 DPFPRINTF(PF_DEBUG_MISC, 4738 ("pf: ICMP error message too short " 4739 "(udp)\n")); 4740 return (PF_DROP); 4741 } 4742 4743 key.af = pd2.af; 4744 key.proto = IPPROTO_UDP; 4745 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4746 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4747 key.port[pd2.sidx] = uh.uh_sport; 4748 key.port[pd2.didx] = uh.uh_dport; 4749 4750 STATE_LOOKUP(kif, &key, direction, *state, pd); 4751 4752 /* translate source/destination address, if necessary */ 4753 if ((*state)->key[PF_SK_WIRE] != 4754 (*state)->key[PF_SK_STACK]) { 4755 struct pf_state_key *nk = 4756 (*state)->key[pd->didx]; 4757 4758 if (PF_ANEQ(pd2.src, 4759 &nk->addr[pd2.sidx], pd2.af) || 4760 nk->port[pd2.sidx] != uh.uh_sport) 4761 pf_change_icmp(pd2.src, &uh.uh_sport, 4762 daddr, &nk->addr[pd2.sidx], 4763 nk->port[pd2.sidx], &uh.uh_sum, 4764 pd2.ip_sum, icmpsum, 4765 pd->ip_sum, 1, pd2.af); 4766 4767 if (PF_ANEQ(pd2.dst, 4768 &nk->addr[pd2.didx], pd2.af) || 4769 nk->port[pd2.didx] != uh.uh_dport) 4770 pf_change_icmp(pd2.dst, &uh.uh_dport, 4771 NULL, /* XXX Inbound NAT? */ 4772 &nk->addr[pd2.didx], 4773 nk->port[pd2.didx], &uh.uh_sum, 4774 pd2.ip_sum, icmpsum, 4775 pd->ip_sum, 1, pd2.af); 4776 4777 switch (pd2.af) { 4778 #ifdef INET 4779 case AF_INET: 4780 m_copyback(m, off, ICMP_MINLEN, 4781 (caddr_t )pd->hdr.icmp); 4782 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4783 break; 4784 #endif /* INET */ 4785 #ifdef INET6 4786 case AF_INET6: 4787 m_copyback(m, off, 4788 sizeof(struct icmp6_hdr), 4789 (caddr_t )pd->hdr.icmp6); 4790 m_copyback(m, ipoff2, sizeof(h2_6), 4791 (caddr_t )&h2_6); 4792 break; 4793 #endif /* INET6 */ 4794 } 4795 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4796 } 4797 return (PF_PASS); 4798 break; 4799 } 4800 #ifdef INET 4801 case IPPROTO_ICMP: { 4802 struct icmp iih; 4803 4804 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4805 NULL, reason, pd2.af)) { 4806 DPFPRINTF(PF_DEBUG_MISC, 4807 ("pf: ICMP error message too short i" 4808 "(icmp)\n")); 4809 return (PF_DROP); 4810 } 4811 4812 key.af = pd2.af; 4813 key.proto = IPPROTO_ICMP; 4814 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4815 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4816 key.port[0] = key.port[1] = iih.icmp_id; 4817 4818 STATE_LOOKUP(kif, &key, direction, *state, pd); 4819 4820 /* translate source/destination address, if necessary */ 4821 if ((*state)->key[PF_SK_WIRE] != 4822 (*state)->key[PF_SK_STACK]) { 4823 struct pf_state_key *nk = 4824 (*state)->key[pd->didx]; 4825 4826 if (PF_ANEQ(pd2.src, 4827 &nk->addr[pd2.sidx], pd2.af) || 4828 nk->port[pd2.sidx] != iih.icmp_id) 4829 pf_change_icmp(pd2.src, &iih.icmp_id, 4830 daddr, &nk->addr[pd2.sidx], 4831 nk->port[pd2.sidx], NULL, 4832 pd2.ip_sum, icmpsum, 4833 pd->ip_sum, 0, AF_INET); 4834 4835 if (PF_ANEQ(pd2.dst, 4836 &nk->addr[pd2.didx], pd2.af) || 4837 nk->port[pd2.didx] != iih.icmp_id) 4838 pf_change_icmp(pd2.dst, &iih.icmp_id, 4839 NULL, /* XXX Inbound NAT? */ 4840 &nk->addr[pd2.didx], 4841 nk->port[pd2.didx], NULL, 4842 pd2.ip_sum, icmpsum, 4843 pd->ip_sum, 0, AF_INET); 4844 4845 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4846 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4847 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4848 } 4849 return (PF_PASS); 4850 break; 4851 } 4852 #endif /* INET */ 4853 #ifdef INET6 4854 case IPPROTO_ICMPV6: { 4855 struct icmp6_hdr iih; 4856 4857 if (!pf_pull_hdr(m, off2, &iih, 4858 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4859 DPFPRINTF(PF_DEBUG_MISC, 4860 ("pf: ICMP error message too short " 4861 "(icmp6)\n")); 4862 return (PF_DROP); 4863 } 4864 4865 key.af = pd2.af; 4866 key.proto = IPPROTO_ICMPV6; 4867 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4868 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4869 key.port[0] = key.port[1] = iih.icmp6_id; 4870 4871 STATE_LOOKUP(kif, &key, direction, *state, pd); 4872 4873 /* translate source/destination address, if necessary */ 4874 if ((*state)->key[PF_SK_WIRE] != 4875 (*state)->key[PF_SK_STACK]) { 4876 struct pf_state_key *nk = 4877 (*state)->key[pd->didx]; 4878 4879 if (PF_ANEQ(pd2.src, 4880 &nk->addr[pd2.sidx], pd2.af) || 4881 nk->port[pd2.sidx] != iih.icmp6_id) 4882 pf_change_icmp(pd2.src, &iih.icmp6_id, 4883 daddr, &nk->addr[pd2.sidx], 4884 nk->port[pd2.sidx], NULL, 4885 pd2.ip_sum, icmpsum, 4886 pd->ip_sum, 0, AF_INET6); 4887 4888 if (PF_ANEQ(pd2.dst, 4889 &nk->addr[pd2.didx], pd2.af) || 4890 nk->port[pd2.didx] != iih.icmp6_id) 4891 pf_change_icmp(pd2.dst, &iih.icmp6_id, 4892 NULL, /* XXX Inbound NAT? */ 4893 &nk->addr[pd2.didx], 4894 nk->port[pd2.didx], NULL, 4895 pd2.ip_sum, icmpsum, 4896 pd->ip_sum, 0, AF_INET6); 4897 4898 m_copyback(m, off, sizeof(struct icmp6_hdr), 4899 (caddr_t)pd->hdr.icmp6); 4900 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 4901 m_copyback(m, off2, sizeof(struct icmp6_hdr), 4902 (caddr_t)&iih); 4903 } 4904 return (PF_PASS); 4905 break; 4906 } 4907 #endif /* INET6 */ 4908 default: { 4909 key.af = pd2.af; 4910 key.proto = pd2.proto; 4911 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4912 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4913 key.port[0] = key.port[1] = 0; 4914 4915 STATE_LOOKUP(kif, &key, direction, *state, pd); 4916 4917 /* translate source/destination address, if necessary */ 4918 if ((*state)->key[PF_SK_WIRE] != 4919 (*state)->key[PF_SK_STACK]) { 4920 struct pf_state_key *nk = 4921 (*state)->key[pd->didx]; 4922 4923 if (PF_ANEQ(pd2.src, 4924 &nk->addr[pd2.sidx], pd2.af)) 4925 pf_change_icmp(pd2.src, NULL, daddr, 4926 &nk->addr[pd2.sidx], 0, NULL, 4927 pd2.ip_sum, icmpsum, 4928 pd->ip_sum, 0, pd2.af); 4929 4930 if (PF_ANEQ(pd2.dst, 4931 &nk->addr[pd2.didx], pd2.af)) 4932 pf_change_icmp(pd2.src, NULL, 4933 NULL, /* XXX Inbound NAT? */ 4934 &nk->addr[pd2.didx], 0, NULL, 4935 pd2.ip_sum, icmpsum, 4936 pd->ip_sum, 0, pd2.af); 4937 4938 switch (pd2.af) { 4939 #ifdef INET 4940 case AF_INET: 4941 m_copyback(m, off, ICMP_MINLEN, 4942 (caddr_t)pd->hdr.icmp); 4943 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4944 break; 4945 #endif /* INET */ 4946 #ifdef INET6 4947 case AF_INET6: 4948 m_copyback(m, off, 4949 sizeof(struct icmp6_hdr), 4950 (caddr_t )pd->hdr.icmp6); 4951 m_copyback(m, ipoff2, sizeof(h2_6), 4952 (caddr_t )&h2_6); 4953 break; 4954 #endif /* INET6 */ 4955 } 4956 } 4957 return (PF_PASS); 4958 break; 4959 } 4960 } 4961 } 4962 } 4963 4964 static int 4965 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 4966 struct mbuf *m, struct pf_pdesc *pd) 4967 { 4968 struct pf_state_peer *src, *dst; 4969 struct pf_state_key_cmp key; 4970 4971 bzero(&key, sizeof(key)); 4972 key.af = pd->af; 4973 key.proto = pd->proto; 4974 if (direction == PF_IN) { 4975 PF_ACPY(&key.addr[0], pd->src, key.af); 4976 PF_ACPY(&key.addr[1], pd->dst, key.af); 4977 key.port[0] = key.port[1] = 0; 4978 } else { 4979 PF_ACPY(&key.addr[1], pd->src, key.af); 4980 PF_ACPY(&key.addr[0], pd->dst, key.af); 4981 key.port[1] = key.port[0] = 0; 4982 } 4983 4984 STATE_LOOKUP(kif, &key, direction, *state, pd); 4985 4986 if (direction == (*state)->direction) { 4987 src = &(*state)->src; 4988 dst = &(*state)->dst; 4989 } else { 4990 src = &(*state)->dst; 4991 dst = &(*state)->src; 4992 } 4993 4994 /* update states */ 4995 if (src->state < PFOTHERS_SINGLE) 4996 src->state = PFOTHERS_SINGLE; 4997 if (dst->state == PFOTHERS_SINGLE) 4998 dst->state = PFOTHERS_MULTIPLE; 4999 5000 /* update expire time */ 5001 (*state)->expire = time_uptime; 5002 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5003 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5004 else 5005 (*state)->timeout = PFTM_OTHER_SINGLE; 5006 5007 /* translate source/destination address, if necessary */ 5008 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5009 struct pf_state_key *nk = (*state)->key[pd->didx]; 5010 5011 KASSERT(nk, ("%s: nk is null", __func__)); 5012 KASSERT(pd, ("%s: pd is null", __func__)); 5013 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5014 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5015 switch (pd->af) { 5016 #ifdef INET 5017 case AF_INET: 5018 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5019 pf_change_a(&pd->src->v4.s_addr, 5020 pd->ip_sum, 5021 nk->addr[pd->sidx].v4.s_addr, 5022 0); 5023 5024 5025 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5026 pf_change_a(&pd->dst->v4.s_addr, 5027 pd->ip_sum, 5028 nk->addr[pd->didx].v4.s_addr, 5029 0); 5030 5031 break; 5032 #endif /* INET */ 5033 #ifdef INET6 5034 case AF_INET6: 5035 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5036 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5037 5038 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5039 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5040 #endif /* INET6 */ 5041 } 5042 } 5043 return (PF_PASS); 5044 } 5045 5046 /* 5047 * ipoff and off are measured from the start of the mbuf chain. 5048 * h must be at "ipoff" on the mbuf chain. 5049 */ 5050 void * 5051 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5052 u_short *actionp, u_short *reasonp, sa_family_t af) 5053 { 5054 switch (af) { 5055 #ifdef INET 5056 case AF_INET: { 5057 struct ip *h = mtod(m, struct ip *); 5058 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5059 5060 if (fragoff) { 5061 if (fragoff >= len) 5062 ACTION_SET(actionp, PF_PASS); 5063 else { 5064 ACTION_SET(actionp, PF_DROP); 5065 REASON_SET(reasonp, PFRES_FRAG); 5066 } 5067 return (NULL); 5068 } 5069 if (m->m_pkthdr.len < off + len || 5070 ntohs(h->ip_len) < off + len) { 5071 ACTION_SET(actionp, PF_DROP); 5072 REASON_SET(reasonp, PFRES_SHORT); 5073 return (NULL); 5074 } 5075 break; 5076 } 5077 #endif /* INET */ 5078 #ifdef INET6 5079 case AF_INET6: { 5080 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5081 5082 if (m->m_pkthdr.len < off + len || 5083 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5084 (unsigned)(off + len)) { 5085 ACTION_SET(actionp, PF_DROP); 5086 REASON_SET(reasonp, PFRES_SHORT); 5087 return (NULL); 5088 } 5089 break; 5090 } 5091 #endif /* INET6 */ 5092 } 5093 m_copydata(m, off, len, p); 5094 return (p); 5095 } 5096 5097 int 5098 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5099 int rtableid) 5100 { 5101 #ifdef RADIX_MPATH 5102 struct radix_node_head *rnh; 5103 #endif 5104 struct sockaddr_in *dst; 5105 int ret = 1; 5106 int check_mpath; 5107 #ifdef INET6 5108 struct sockaddr_in6 *dst6; 5109 struct route_in6 ro; 5110 #else 5111 struct route ro; 5112 #endif 5113 struct radix_node *rn; 5114 struct rtentry *rt; 5115 struct ifnet *ifp; 5116 5117 check_mpath = 0; 5118 #ifdef RADIX_MPATH 5119 /* XXX: stick to table 0 for now */ 5120 rnh = rt_tables_get_rnh(0, af); 5121 if (rnh != NULL && rn_mpath_capable(rnh)) 5122 check_mpath = 1; 5123 #endif 5124 bzero(&ro, sizeof(ro)); 5125 switch (af) { 5126 case AF_INET: 5127 dst = satosin(&ro.ro_dst); 5128 dst->sin_family = AF_INET; 5129 dst->sin_len = sizeof(*dst); 5130 dst->sin_addr = addr->v4; 5131 break; 5132 #ifdef INET6 5133 case AF_INET6: 5134 /* 5135 * Skip check for addresses with embedded interface scope, 5136 * as they would always match anyway. 5137 */ 5138 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5139 goto out; 5140 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5141 dst6->sin6_family = AF_INET6; 5142 dst6->sin6_len = sizeof(*dst6); 5143 dst6->sin6_addr = addr->v6; 5144 break; 5145 #endif /* INET6 */ 5146 default: 5147 return (0); 5148 } 5149 5150 /* Skip checks for ipsec interfaces */ 5151 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5152 goto out; 5153 5154 switch (af) { 5155 #ifdef INET6 5156 case AF_INET6: 5157 in6_rtalloc_ign(&ro, 0, rtableid); 5158 break; 5159 #endif 5160 #ifdef INET 5161 case AF_INET: 5162 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5163 break; 5164 #endif 5165 default: 5166 rtalloc_ign((struct route *)&ro, 0); /* No/default FIB. */ 5167 break; 5168 } 5169 5170 if (ro.ro_rt != NULL) { 5171 /* No interface given, this is a no-route check */ 5172 if (kif == NULL) 5173 goto out; 5174 5175 if (kif->pfik_ifp == NULL) { 5176 ret = 0; 5177 goto out; 5178 } 5179 5180 /* Perform uRPF check if passed input interface */ 5181 ret = 0; 5182 rn = (struct radix_node *)ro.ro_rt; 5183 do { 5184 rt = (struct rtentry *)rn; 5185 ifp = rt->rt_ifp; 5186 5187 if (kif->pfik_ifp == ifp) 5188 ret = 1; 5189 #ifdef RADIX_MPATH 5190 rn = rn_mpath_next(rn); 5191 #endif 5192 } while (check_mpath == 1 && rn != NULL && ret == 0); 5193 } else 5194 ret = 0; 5195 out: 5196 if (ro.ro_rt != NULL) 5197 RTFREE(ro.ro_rt); 5198 return (ret); 5199 } 5200 5201 #ifdef INET 5202 static void 5203 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5204 struct pf_state *s, struct pf_pdesc *pd) 5205 { 5206 struct mbuf *m0, *m1; 5207 struct sockaddr_in dst; 5208 struct ip *ip; 5209 struct ifnet *ifp = NULL; 5210 struct pf_addr naddr; 5211 struct pf_src_node *sn = NULL; 5212 int error = 0; 5213 uint16_t ip_len, ip_off; 5214 5215 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5216 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5217 __func__)); 5218 5219 if ((pd->pf_mtag == NULL && 5220 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5221 pd->pf_mtag->routed++ > 3) { 5222 m0 = *m; 5223 *m = NULL; 5224 goto bad_locked; 5225 } 5226 5227 if (r->rt == PF_DUPTO) { 5228 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5229 if (s) 5230 PF_STATE_UNLOCK(s); 5231 return; 5232 } 5233 } else { 5234 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5235 if (s) 5236 PF_STATE_UNLOCK(s); 5237 return; 5238 } 5239 m0 = *m; 5240 } 5241 5242 ip = mtod(m0, struct ip *); 5243 5244 bzero(&dst, sizeof(dst)); 5245 dst.sin_family = AF_INET; 5246 dst.sin_len = sizeof(dst); 5247 dst.sin_addr = ip->ip_dst; 5248 5249 if (r->rt == PF_FASTROUTE) { 5250 struct rtentry *rt; 5251 5252 if (s) 5253 PF_STATE_UNLOCK(s); 5254 rt = rtalloc1_fib(sintosa(&dst), 0, 0, M_GETFIB(m0)); 5255 if (rt == NULL) { 5256 KMOD_IPSTAT_INC(ips_noroute); 5257 error = EHOSTUNREACH; 5258 goto bad; 5259 } 5260 5261 ifp = rt->rt_ifp; 5262 counter_u64_add(rt->rt_pksent, 1); 5263 5264 if (rt->rt_flags & RTF_GATEWAY) 5265 bcopy(satosin(rt->rt_gateway), &dst, sizeof(dst)); 5266 RTFREE_LOCKED(rt); 5267 } else { 5268 if (TAILQ_EMPTY(&r->rpool.list)) { 5269 DPFPRINTF(PF_DEBUG_URGENT, 5270 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5271 goto bad_locked; 5272 } 5273 if (s == NULL) { 5274 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5275 &naddr, NULL, &sn); 5276 if (!PF_AZERO(&naddr, AF_INET)) 5277 dst.sin_addr.s_addr = naddr.v4.s_addr; 5278 ifp = r->rpool.cur->kif ? 5279 r->rpool.cur->kif->pfik_ifp : NULL; 5280 } else { 5281 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5282 dst.sin_addr.s_addr = 5283 s->rt_addr.v4.s_addr; 5284 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5285 PF_STATE_UNLOCK(s); 5286 } 5287 } 5288 if (ifp == NULL) 5289 goto bad; 5290 5291 if (oifp != ifp) { 5292 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5293 goto bad; 5294 else if (m0 == NULL) 5295 goto done; 5296 if (m0->m_len < sizeof(struct ip)) { 5297 DPFPRINTF(PF_DEBUG_URGENT, 5298 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5299 goto bad; 5300 } 5301 ip = mtod(m0, struct ip *); 5302 } 5303 5304 if (ifp->if_flags & IFF_LOOPBACK) 5305 m0->m_flags |= M_SKIP_FIREWALL; 5306 5307 ip_len = ntohs(ip->ip_len); 5308 ip_off = ntohs(ip->ip_off); 5309 5310 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5311 m0->m_pkthdr.csum_flags |= CSUM_IP; 5312 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5313 in_delayed_cksum(m0); 5314 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5315 } 5316 #ifdef SCTP 5317 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5318 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5319 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5320 } 5321 #endif 5322 5323 /* 5324 * If small enough for interface, or the interface will take 5325 * care of the fragmentation for us, we can just send directly. 5326 */ 5327 if (ip_len <= ifp->if_mtu || 5328 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5329 ip->ip_sum = 0; 5330 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5331 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5332 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5333 } 5334 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5335 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5336 goto done; 5337 } 5338 5339 /* Balk when DF bit is set or the interface didn't support TSO. */ 5340 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5341 error = EMSGSIZE; 5342 KMOD_IPSTAT_INC(ips_cantfrag); 5343 if (r->rt != PF_DUPTO) { 5344 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5345 ifp->if_mtu); 5346 goto done; 5347 } else 5348 goto bad; 5349 } 5350 5351 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5352 if (error) 5353 goto bad; 5354 5355 for (; m0; m0 = m1) { 5356 m1 = m0->m_nextpkt; 5357 m0->m_nextpkt = NULL; 5358 if (error == 0) { 5359 m_clrprotoflags(m0); 5360 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5361 } else 5362 m_freem(m0); 5363 } 5364 5365 if (error == 0) 5366 KMOD_IPSTAT_INC(ips_fragmented); 5367 5368 done: 5369 if (r->rt != PF_DUPTO) 5370 *m = NULL; 5371 return; 5372 5373 bad_locked: 5374 if (s) 5375 PF_STATE_UNLOCK(s); 5376 bad: 5377 m_freem(m0); 5378 goto done; 5379 } 5380 #endif /* INET */ 5381 5382 #ifdef INET6 5383 static void 5384 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5385 struct pf_state *s, struct pf_pdesc *pd) 5386 { 5387 struct mbuf *m0; 5388 struct sockaddr_in6 dst; 5389 struct ip6_hdr *ip6; 5390 struct ifnet *ifp = NULL; 5391 struct pf_addr naddr; 5392 struct pf_src_node *sn = NULL; 5393 5394 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5395 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5396 __func__)); 5397 5398 if ((pd->pf_mtag == NULL && 5399 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5400 pd->pf_mtag->routed++ > 3) { 5401 m0 = *m; 5402 *m = NULL; 5403 goto bad_locked; 5404 } 5405 5406 if (r->rt == PF_DUPTO) { 5407 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5408 if (s) 5409 PF_STATE_UNLOCK(s); 5410 return; 5411 } 5412 } else { 5413 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5414 if (s) 5415 PF_STATE_UNLOCK(s); 5416 return; 5417 } 5418 m0 = *m; 5419 } 5420 5421 ip6 = mtod(m0, struct ip6_hdr *); 5422 5423 bzero(&dst, sizeof(dst)); 5424 dst.sin6_family = AF_INET6; 5425 dst.sin6_len = sizeof(dst); 5426 dst.sin6_addr = ip6->ip6_dst; 5427 5428 /* Cheat. XXX why only in the v6 case??? */ 5429 if (r->rt == PF_FASTROUTE) { 5430 if (s) 5431 PF_STATE_UNLOCK(s); 5432 m0->m_flags |= M_SKIP_FIREWALL; 5433 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5434 return; 5435 } 5436 5437 if (TAILQ_EMPTY(&r->rpool.list)) { 5438 DPFPRINTF(PF_DEBUG_URGENT, 5439 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5440 goto bad_locked; 5441 } 5442 if (s == NULL) { 5443 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5444 &naddr, NULL, &sn); 5445 if (!PF_AZERO(&naddr, AF_INET6)) 5446 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5447 &naddr, AF_INET6); 5448 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5449 } else { 5450 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5451 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5452 &s->rt_addr, AF_INET6); 5453 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5454 } 5455 5456 if (s) 5457 PF_STATE_UNLOCK(s); 5458 5459 if (ifp == NULL) 5460 goto bad; 5461 5462 if (oifp != ifp) { 5463 if (pf_test6(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5464 goto bad; 5465 else if (m0 == NULL) 5466 goto done; 5467 if (m0->m_len < sizeof(struct ip6_hdr)) { 5468 DPFPRINTF(PF_DEBUG_URGENT, 5469 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5470 __func__)); 5471 goto bad; 5472 } 5473 ip6 = mtod(m0, struct ip6_hdr *); 5474 } 5475 5476 if (ifp->if_flags & IFF_LOOPBACK) 5477 m0->m_flags |= M_SKIP_FIREWALL; 5478 5479 /* 5480 * If the packet is too large for the outgoing interface, 5481 * send back an icmp6 error. 5482 */ 5483 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5484 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5485 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5486 nd6_output(ifp, ifp, m0, &dst, NULL); 5487 else { 5488 in6_ifstat_inc(ifp, ifs6_in_toobig); 5489 if (r->rt != PF_DUPTO) 5490 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5491 else 5492 goto bad; 5493 } 5494 5495 done: 5496 if (r->rt != PF_DUPTO) 5497 *m = NULL; 5498 return; 5499 5500 bad_locked: 5501 if (s) 5502 PF_STATE_UNLOCK(s); 5503 bad: 5504 m_freem(m0); 5505 goto done; 5506 } 5507 #endif /* INET6 */ 5508 5509 /* 5510 * FreeBSD supports cksum offloads for the following drivers. 5511 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5512 * ti(4), txp(4), xl(4) 5513 * 5514 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5515 * network driver performed cksum including pseudo header, need to verify 5516 * csum_data 5517 * CSUM_DATA_VALID : 5518 * network driver performed cksum, needs to additional pseudo header 5519 * cksum computation with partial csum_data(i.e. lack of H/W support for 5520 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5521 * 5522 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5523 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5524 * TCP/UDP layer. 5525 * Also, set csum_data to 0xffff to force cksum validation. 5526 */ 5527 static int 5528 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5529 { 5530 u_int16_t sum = 0; 5531 int hw_assist = 0; 5532 struct ip *ip; 5533 5534 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5535 return (1); 5536 if (m->m_pkthdr.len < off + len) 5537 return (1); 5538 5539 switch (p) { 5540 case IPPROTO_TCP: 5541 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5542 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5543 sum = m->m_pkthdr.csum_data; 5544 } else { 5545 ip = mtod(m, struct ip *); 5546 sum = in_pseudo(ip->ip_src.s_addr, 5547 ip->ip_dst.s_addr, htonl((u_short)len + 5548 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5549 } 5550 sum ^= 0xffff; 5551 ++hw_assist; 5552 } 5553 break; 5554 case IPPROTO_UDP: 5555 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5556 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5557 sum = m->m_pkthdr.csum_data; 5558 } else { 5559 ip = mtod(m, struct ip *); 5560 sum = in_pseudo(ip->ip_src.s_addr, 5561 ip->ip_dst.s_addr, htonl((u_short)len + 5562 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5563 } 5564 sum ^= 0xffff; 5565 ++hw_assist; 5566 } 5567 break; 5568 case IPPROTO_ICMP: 5569 #ifdef INET6 5570 case IPPROTO_ICMPV6: 5571 #endif /* INET6 */ 5572 break; 5573 default: 5574 return (1); 5575 } 5576 5577 if (!hw_assist) { 5578 switch (af) { 5579 case AF_INET: 5580 if (p == IPPROTO_ICMP) { 5581 if (m->m_len < off) 5582 return (1); 5583 m->m_data += off; 5584 m->m_len -= off; 5585 sum = in_cksum(m, len); 5586 m->m_data -= off; 5587 m->m_len += off; 5588 } else { 5589 if (m->m_len < sizeof(struct ip)) 5590 return (1); 5591 sum = in4_cksum(m, p, off, len); 5592 } 5593 break; 5594 #ifdef INET6 5595 case AF_INET6: 5596 if (m->m_len < sizeof(struct ip6_hdr)) 5597 return (1); 5598 sum = in6_cksum(m, p, off, len); 5599 break; 5600 #endif /* INET6 */ 5601 default: 5602 return (1); 5603 } 5604 } 5605 if (sum) { 5606 switch (p) { 5607 case IPPROTO_TCP: 5608 { 5609 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5610 break; 5611 } 5612 case IPPROTO_UDP: 5613 { 5614 KMOD_UDPSTAT_INC(udps_badsum); 5615 break; 5616 } 5617 #ifdef INET 5618 case IPPROTO_ICMP: 5619 { 5620 KMOD_ICMPSTAT_INC(icps_checksum); 5621 break; 5622 } 5623 #endif 5624 #ifdef INET6 5625 case IPPROTO_ICMPV6: 5626 { 5627 KMOD_ICMP6STAT_INC(icp6s_checksum); 5628 break; 5629 } 5630 #endif /* INET6 */ 5631 } 5632 return (1); 5633 } else { 5634 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5635 m->m_pkthdr.csum_flags |= 5636 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5637 m->m_pkthdr.csum_data = 0xffff; 5638 } 5639 } 5640 return (0); 5641 } 5642 5643 5644 #ifdef INET 5645 int 5646 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5647 { 5648 struct pfi_kif *kif; 5649 u_short action, reason = 0, log = 0; 5650 struct mbuf *m = *m0; 5651 struct ip *h = NULL; 5652 struct m_tag *ipfwtag; 5653 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5654 struct pf_state *s = NULL; 5655 struct pf_ruleset *ruleset = NULL; 5656 struct pf_pdesc pd; 5657 int off, dirndx, pqid = 0; 5658 5659 M_ASSERTPKTHDR(m); 5660 5661 if (!V_pf_status.running) 5662 return (PF_PASS); 5663 5664 memset(&pd, 0, sizeof(pd)); 5665 5666 kif = (struct pfi_kif *)ifp->if_pf_kif; 5667 5668 if (kif == NULL) { 5669 DPFPRINTF(PF_DEBUG_URGENT, 5670 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5671 return (PF_DROP); 5672 } 5673 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5674 return (PF_PASS); 5675 5676 if (m->m_flags & M_SKIP_FIREWALL) 5677 return (PF_PASS); 5678 5679 pd.pf_mtag = pf_find_mtag(m); 5680 5681 PF_RULES_RLOCK(); 5682 5683 if (ip_divert_ptr != NULL && 5684 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5685 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5686 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5687 if (pd.pf_mtag == NULL && 5688 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5689 action = PF_DROP; 5690 goto done; 5691 } 5692 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5693 m_tag_delete(m, ipfwtag); 5694 } 5695 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5696 m->m_flags |= M_FASTFWD_OURS; 5697 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5698 } 5699 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5700 /* We do IP header normalization and packet reassembly here */ 5701 action = PF_DROP; 5702 goto done; 5703 } 5704 m = *m0; /* pf_normalize messes with m0 */ 5705 h = mtod(m, struct ip *); 5706 5707 off = h->ip_hl << 2; 5708 if (off < (int)sizeof(struct ip)) { 5709 action = PF_DROP; 5710 REASON_SET(&reason, PFRES_SHORT); 5711 log = 1; 5712 goto done; 5713 } 5714 5715 pd.src = (struct pf_addr *)&h->ip_src; 5716 pd.dst = (struct pf_addr *)&h->ip_dst; 5717 pd.sport = pd.dport = NULL; 5718 pd.ip_sum = &h->ip_sum; 5719 pd.proto_sum = NULL; 5720 pd.proto = h->ip_p; 5721 pd.dir = dir; 5722 pd.sidx = (dir == PF_IN) ? 0 : 1; 5723 pd.didx = (dir == PF_IN) ? 1 : 0; 5724 pd.af = AF_INET; 5725 pd.tos = h->ip_tos; 5726 pd.tot_len = ntohs(h->ip_len); 5727 5728 /* handle fragments that didn't get reassembled by normalization */ 5729 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5730 action = pf_test_fragment(&r, dir, kif, m, h, 5731 &pd, &a, &ruleset); 5732 goto done; 5733 } 5734 5735 switch (h->ip_p) { 5736 5737 case IPPROTO_TCP: { 5738 struct tcphdr th; 5739 5740 pd.hdr.tcp = &th; 5741 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5742 &action, &reason, AF_INET)) { 5743 log = action != PF_PASS; 5744 goto done; 5745 } 5746 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5747 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5748 pqid = 1; 5749 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5750 if (action == PF_DROP) 5751 goto done; 5752 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5753 &reason); 5754 if (action == PF_PASS) { 5755 if (pfsync_update_state_ptr != NULL) 5756 pfsync_update_state_ptr(s); 5757 r = s->rule.ptr; 5758 a = s->anchor.ptr; 5759 log = s->log; 5760 } else if (s == NULL) 5761 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5762 &a, &ruleset, inp); 5763 break; 5764 } 5765 5766 case IPPROTO_UDP: { 5767 struct udphdr uh; 5768 5769 pd.hdr.udp = &uh; 5770 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5771 &action, &reason, AF_INET)) { 5772 log = action != PF_PASS; 5773 goto done; 5774 } 5775 if (uh.uh_dport == 0 || 5776 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5777 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5778 action = PF_DROP; 5779 REASON_SET(&reason, PFRES_SHORT); 5780 goto done; 5781 } 5782 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5783 if (action == PF_PASS) { 5784 if (pfsync_update_state_ptr != NULL) 5785 pfsync_update_state_ptr(s); 5786 r = s->rule.ptr; 5787 a = s->anchor.ptr; 5788 log = s->log; 5789 } else if (s == NULL) 5790 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5791 &a, &ruleset, inp); 5792 break; 5793 } 5794 5795 case IPPROTO_ICMP: { 5796 struct icmp ih; 5797 5798 pd.hdr.icmp = &ih; 5799 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5800 &action, &reason, AF_INET)) { 5801 log = action != PF_PASS; 5802 goto done; 5803 } 5804 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5805 &reason); 5806 if (action == PF_PASS) { 5807 if (pfsync_update_state_ptr != NULL) 5808 pfsync_update_state_ptr(s); 5809 r = s->rule.ptr; 5810 a = s->anchor.ptr; 5811 log = s->log; 5812 } else if (s == NULL) 5813 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5814 &a, &ruleset, inp); 5815 break; 5816 } 5817 5818 #ifdef INET6 5819 case IPPROTO_ICMPV6: { 5820 action = PF_DROP; 5821 DPFPRINTF(PF_DEBUG_MISC, 5822 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5823 goto done; 5824 } 5825 #endif 5826 5827 default: 5828 action = pf_test_state_other(&s, dir, kif, m, &pd); 5829 if (action == PF_PASS) { 5830 if (pfsync_update_state_ptr != NULL) 5831 pfsync_update_state_ptr(s); 5832 r = s->rule.ptr; 5833 a = s->anchor.ptr; 5834 log = s->log; 5835 } else if (s == NULL) 5836 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5837 &a, &ruleset, inp); 5838 break; 5839 } 5840 5841 done: 5842 PF_RULES_RUNLOCK(); 5843 if (action == PF_PASS && h->ip_hl > 5 && 5844 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 5845 action = PF_DROP; 5846 REASON_SET(&reason, PFRES_IPOPTIONS); 5847 log = 1; 5848 DPFPRINTF(PF_DEBUG_MISC, 5849 ("pf: dropping packet with ip options\n")); 5850 } 5851 5852 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 5853 action = PF_DROP; 5854 REASON_SET(&reason, PFRES_MEMORY); 5855 } 5856 if (r->rtableid >= 0) 5857 M_SETFIB(m, r->rtableid); 5858 5859 #ifdef ALTQ 5860 if (action == PF_PASS && r->qid) { 5861 if (pd.pf_mtag == NULL && 5862 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5863 action = PF_DROP; 5864 REASON_SET(&reason, PFRES_MEMORY); 5865 } 5866 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 5867 pd.pf_mtag->qid = r->pqid; 5868 else 5869 pd.pf_mtag->qid = r->qid; 5870 /* add hints for ecn */ 5871 pd.pf_mtag->hdr = h; 5872 5873 } 5874 #endif /* ALTQ */ 5875 5876 /* 5877 * connections redirected to loopback should not match sockets 5878 * bound specifically to loopback due to security implications, 5879 * see tcp_input() and in_pcblookup_listen(). 5880 */ 5881 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 5882 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 5883 (s->nat_rule.ptr->action == PF_RDR || 5884 s->nat_rule.ptr->action == PF_BINAT) && 5885 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 5886 m->m_flags |= M_SKIP_FIREWALL; 5887 5888 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 5889 !PACKET_LOOPED(&pd)) { 5890 5891 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 5892 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 5893 if (ipfwtag != NULL) { 5894 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 5895 ntohs(r->divert.port); 5896 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 5897 5898 if (s) 5899 PF_STATE_UNLOCK(s); 5900 5901 m_tag_prepend(m, ipfwtag); 5902 if (m->m_flags & M_FASTFWD_OURS) { 5903 if (pd.pf_mtag == NULL && 5904 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5905 action = PF_DROP; 5906 REASON_SET(&reason, PFRES_MEMORY); 5907 log = 1; 5908 DPFPRINTF(PF_DEBUG_MISC, 5909 ("pf: failed to allocate tag\n")); 5910 } 5911 pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; 5912 m->m_flags &= ~M_FASTFWD_OURS; 5913 } 5914 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 5915 *m0 = NULL; 5916 5917 return (action); 5918 } else { 5919 /* XXX: ipfw has the same behaviour! */ 5920 action = PF_DROP; 5921 REASON_SET(&reason, PFRES_MEMORY); 5922 log = 1; 5923 DPFPRINTF(PF_DEBUG_MISC, 5924 ("pf: failed to allocate divert tag\n")); 5925 } 5926 } 5927 5928 if (log) { 5929 struct pf_rule *lr; 5930 5931 if (s != NULL && s->nat_rule.ptr != NULL && 5932 s->nat_rule.ptr->log & PF_LOG_ALL) 5933 lr = s->nat_rule.ptr; 5934 else 5935 lr = r; 5936 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 5937 (s == NULL)); 5938 } 5939 5940 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 5941 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 5942 5943 if (action == PF_PASS || r->action == PF_DROP) { 5944 dirndx = (dir == PF_OUT); 5945 r->packets[dirndx]++; 5946 r->bytes[dirndx] += pd.tot_len; 5947 if (a != NULL) { 5948 a->packets[dirndx]++; 5949 a->bytes[dirndx] += pd.tot_len; 5950 } 5951 if (s != NULL) { 5952 if (s->nat_rule.ptr != NULL) { 5953 s->nat_rule.ptr->packets[dirndx]++; 5954 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 5955 } 5956 if (s->src_node != NULL) { 5957 s->src_node->packets[dirndx]++; 5958 s->src_node->bytes[dirndx] += pd.tot_len; 5959 } 5960 if (s->nat_src_node != NULL) { 5961 s->nat_src_node->packets[dirndx]++; 5962 s->nat_src_node->bytes[dirndx] += pd.tot_len; 5963 } 5964 dirndx = (dir == s->direction) ? 0 : 1; 5965 s->packets[dirndx]++; 5966 s->bytes[dirndx] += pd.tot_len; 5967 } 5968 tr = r; 5969 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 5970 if (nr != NULL && r == &V_pf_default_rule) 5971 tr = nr; 5972 if (tr->src.addr.type == PF_ADDR_TABLE) 5973 pfr_update_stats(tr->src.addr.p.tbl, 5974 (s == NULL) ? pd.src : 5975 &s->key[(s->direction == PF_IN)]-> 5976 addr[(s->direction == PF_OUT)], 5977 pd.af, pd.tot_len, dir == PF_OUT, 5978 r->action == PF_PASS, tr->src.neg); 5979 if (tr->dst.addr.type == PF_ADDR_TABLE) 5980 pfr_update_stats(tr->dst.addr.p.tbl, 5981 (s == NULL) ? pd.dst : 5982 &s->key[(s->direction == PF_IN)]-> 5983 addr[(s->direction == PF_IN)], 5984 pd.af, pd.tot_len, dir == PF_OUT, 5985 r->action == PF_PASS, tr->dst.neg); 5986 } 5987 5988 switch (action) { 5989 case PF_SYNPROXY_DROP: 5990 m_freem(*m0); 5991 case PF_DEFER: 5992 *m0 = NULL; 5993 action = PF_PASS; 5994 break; 5995 case PF_DROP: 5996 m_freem(*m0); 5997 *m0 = NULL; 5998 break; 5999 default: 6000 /* pf_route() returns unlocked. */ 6001 if (r->rt) { 6002 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6003 return (action); 6004 } 6005 break; 6006 } 6007 if (s) 6008 PF_STATE_UNLOCK(s); 6009 6010 return (action); 6011 } 6012 #endif /* INET */ 6013 6014 #ifdef INET6 6015 int 6016 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6017 { 6018 struct pfi_kif *kif; 6019 u_short action, reason = 0, log = 0; 6020 struct mbuf *m = *m0, *n = NULL; 6021 struct ip6_hdr *h = NULL; 6022 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6023 struct pf_state *s = NULL; 6024 struct pf_ruleset *ruleset = NULL; 6025 struct pf_pdesc pd; 6026 int off, terminal = 0, dirndx, rh_cnt = 0; 6027 6028 M_ASSERTPKTHDR(m); 6029 6030 if (!V_pf_status.running) 6031 return (PF_PASS); 6032 6033 memset(&pd, 0, sizeof(pd)); 6034 pd.pf_mtag = pf_find_mtag(m); 6035 6036 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6037 return (PF_PASS); 6038 6039 kif = (struct pfi_kif *)ifp->if_pf_kif; 6040 if (kif == NULL) { 6041 DPFPRINTF(PF_DEBUG_URGENT, 6042 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6043 return (PF_DROP); 6044 } 6045 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6046 return (PF_PASS); 6047 6048 if (m->m_flags & M_SKIP_FIREWALL) 6049 return (PF_PASS); 6050 6051 PF_RULES_RLOCK(); 6052 6053 /* We do IP header normalization and packet reassembly here */ 6054 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6055 action = PF_DROP; 6056 goto done; 6057 } 6058 m = *m0; /* pf_normalize messes with m0 */ 6059 h = mtod(m, struct ip6_hdr *); 6060 6061 #if 1 6062 /* 6063 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6064 * will do something bad, so drop the packet for now. 6065 */ 6066 if (htons(h->ip6_plen) == 0) { 6067 action = PF_DROP; 6068 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6069 goto done; 6070 } 6071 #endif 6072 6073 pd.src = (struct pf_addr *)&h->ip6_src; 6074 pd.dst = (struct pf_addr *)&h->ip6_dst; 6075 pd.sport = pd.dport = NULL; 6076 pd.ip_sum = NULL; 6077 pd.proto_sum = NULL; 6078 pd.dir = dir; 6079 pd.sidx = (dir == PF_IN) ? 0 : 1; 6080 pd.didx = (dir == PF_IN) ? 1 : 0; 6081 pd.af = AF_INET6; 6082 pd.tos = 0; 6083 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6084 6085 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6086 pd.proto = h->ip6_nxt; 6087 do { 6088 switch (pd.proto) { 6089 case IPPROTO_FRAGMENT: 6090 action = pf_test_fragment(&r, dir, kif, m, h, 6091 &pd, &a, &ruleset); 6092 if (action == PF_DROP) 6093 REASON_SET(&reason, PFRES_FRAG); 6094 goto done; 6095 case IPPROTO_ROUTING: { 6096 struct ip6_rthdr rthdr; 6097 6098 if (rh_cnt++) { 6099 DPFPRINTF(PF_DEBUG_MISC, 6100 ("pf: IPv6 more than one rthdr\n")); 6101 action = PF_DROP; 6102 REASON_SET(&reason, PFRES_IPOPTIONS); 6103 log = 1; 6104 goto done; 6105 } 6106 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6107 &reason, pd.af)) { 6108 DPFPRINTF(PF_DEBUG_MISC, 6109 ("pf: IPv6 short rthdr\n")); 6110 action = PF_DROP; 6111 REASON_SET(&reason, PFRES_SHORT); 6112 log = 1; 6113 goto done; 6114 } 6115 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6116 DPFPRINTF(PF_DEBUG_MISC, 6117 ("pf: IPv6 rthdr0\n")); 6118 action = PF_DROP; 6119 REASON_SET(&reason, PFRES_IPOPTIONS); 6120 log = 1; 6121 goto done; 6122 } 6123 /* FALLTHROUGH */ 6124 } 6125 case IPPROTO_AH: 6126 case IPPROTO_HOPOPTS: 6127 case IPPROTO_DSTOPTS: { 6128 /* get next header and header length */ 6129 struct ip6_ext opt6; 6130 6131 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6132 NULL, &reason, pd.af)) { 6133 DPFPRINTF(PF_DEBUG_MISC, 6134 ("pf: IPv6 short opt\n")); 6135 action = PF_DROP; 6136 log = 1; 6137 goto done; 6138 } 6139 if (pd.proto == IPPROTO_AH) 6140 off += (opt6.ip6e_len + 2) * 4; 6141 else 6142 off += (opt6.ip6e_len + 1) * 8; 6143 pd.proto = opt6.ip6e_nxt; 6144 /* goto the next header */ 6145 break; 6146 } 6147 default: 6148 terminal++; 6149 break; 6150 } 6151 } while (!terminal); 6152 6153 /* if there's no routing header, use unmodified mbuf for checksumming */ 6154 if (!n) 6155 n = m; 6156 6157 switch (pd.proto) { 6158 6159 case IPPROTO_TCP: { 6160 struct tcphdr th; 6161 6162 pd.hdr.tcp = &th; 6163 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6164 &action, &reason, AF_INET6)) { 6165 log = action != PF_PASS; 6166 goto done; 6167 } 6168 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6169 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6170 if (action == PF_DROP) 6171 goto done; 6172 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6173 &reason); 6174 if (action == PF_PASS) { 6175 if (pfsync_update_state_ptr != NULL) 6176 pfsync_update_state_ptr(s); 6177 r = s->rule.ptr; 6178 a = s->anchor.ptr; 6179 log = s->log; 6180 } else if (s == NULL) 6181 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6182 &a, &ruleset, inp); 6183 break; 6184 } 6185 6186 case IPPROTO_UDP: { 6187 struct udphdr uh; 6188 6189 pd.hdr.udp = &uh; 6190 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6191 &action, &reason, AF_INET6)) { 6192 log = action != PF_PASS; 6193 goto done; 6194 } 6195 if (uh.uh_dport == 0 || 6196 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6197 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6198 action = PF_DROP; 6199 REASON_SET(&reason, PFRES_SHORT); 6200 goto done; 6201 } 6202 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6203 if (action == PF_PASS) { 6204 if (pfsync_update_state_ptr != NULL) 6205 pfsync_update_state_ptr(s); 6206 r = s->rule.ptr; 6207 a = s->anchor.ptr; 6208 log = s->log; 6209 } else if (s == NULL) 6210 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6211 &a, &ruleset, inp); 6212 break; 6213 } 6214 6215 case IPPROTO_ICMP: { 6216 action = PF_DROP; 6217 DPFPRINTF(PF_DEBUG_MISC, 6218 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6219 goto done; 6220 } 6221 6222 case IPPROTO_ICMPV6: { 6223 struct icmp6_hdr ih; 6224 6225 pd.hdr.icmp6 = &ih; 6226 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6227 &action, &reason, AF_INET6)) { 6228 log = action != PF_PASS; 6229 goto done; 6230 } 6231 action = pf_test_state_icmp(&s, dir, kif, 6232 m, off, h, &pd, &reason); 6233 if (action == PF_PASS) { 6234 if (pfsync_update_state_ptr != NULL) 6235 pfsync_update_state_ptr(s); 6236 r = s->rule.ptr; 6237 a = s->anchor.ptr; 6238 log = s->log; 6239 } else if (s == NULL) 6240 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6241 &a, &ruleset, inp); 6242 break; 6243 } 6244 6245 default: 6246 action = pf_test_state_other(&s, dir, kif, m, &pd); 6247 if (action == PF_PASS) { 6248 if (pfsync_update_state_ptr != NULL) 6249 pfsync_update_state_ptr(s); 6250 r = s->rule.ptr; 6251 a = s->anchor.ptr; 6252 log = s->log; 6253 } else if (s == NULL) 6254 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6255 &a, &ruleset, inp); 6256 break; 6257 } 6258 6259 done: 6260 PF_RULES_RUNLOCK(); 6261 if (n != m) { 6262 m_freem(n); 6263 n = NULL; 6264 } 6265 6266 /* handle dangerous IPv6 extension headers. */ 6267 if (action == PF_PASS && rh_cnt && 6268 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6269 action = PF_DROP; 6270 REASON_SET(&reason, PFRES_IPOPTIONS); 6271 log = 1; 6272 DPFPRINTF(PF_DEBUG_MISC, 6273 ("pf: dropping packet with dangerous v6 headers\n")); 6274 } 6275 6276 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6277 action = PF_DROP; 6278 REASON_SET(&reason, PFRES_MEMORY); 6279 } 6280 if (r->rtableid >= 0) 6281 M_SETFIB(m, r->rtableid); 6282 6283 #ifdef ALTQ 6284 if (action == PF_PASS && r->qid) { 6285 if (pd.pf_mtag == NULL && 6286 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6287 action = PF_DROP; 6288 REASON_SET(&reason, PFRES_MEMORY); 6289 } 6290 if (pd.tos & IPTOS_LOWDELAY) 6291 pd.pf_mtag->qid = r->pqid; 6292 else 6293 pd.pf_mtag->qid = r->qid; 6294 /* add hints for ecn */ 6295 pd.pf_mtag->hdr = h; 6296 } 6297 #endif /* ALTQ */ 6298 6299 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6300 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6301 (s->nat_rule.ptr->action == PF_RDR || 6302 s->nat_rule.ptr->action == PF_BINAT) && 6303 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6304 m->m_flags |= M_SKIP_FIREWALL; 6305 6306 /* XXX: Anybody working on it?! */ 6307 if (r->divert.port) 6308 printf("pf: divert(9) is not supported for IPv6\n"); 6309 6310 if (log) { 6311 struct pf_rule *lr; 6312 6313 if (s != NULL && s->nat_rule.ptr != NULL && 6314 s->nat_rule.ptr->log & PF_LOG_ALL) 6315 lr = s->nat_rule.ptr; 6316 else 6317 lr = r; 6318 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6319 &pd, (s == NULL)); 6320 } 6321 6322 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6323 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6324 6325 if (action == PF_PASS || r->action == PF_DROP) { 6326 dirndx = (dir == PF_OUT); 6327 r->packets[dirndx]++; 6328 r->bytes[dirndx] += pd.tot_len; 6329 if (a != NULL) { 6330 a->packets[dirndx]++; 6331 a->bytes[dirndx] += pd.tot_len; 6332 } 6333 if (s != NULL) { 6334 if (s->nat_rule.ptr != NULL) { 6335 s->nat_rule.ptr->packets[dirndx]++; 6336 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6337 } 6338 if (s->src_node != NULL) { 6339 s->src_node->packets[dirndx]++; 6340 s->src_node->bytes[dirndx] += pd.tot_len; 6341 } 6342 if (s->nat_src_node != NULL) { 6343 s->nat_src_node->packets[dirndx]++; 6344 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6345 } 6346 dirndx = (dir == s->direction) ? 0 : 1; 6347 s->packets[dirndx]++; 6348 s->bytes[dirndx] += pd.tot_len; 6349 } 6350 tr = r; 6351 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6352 if (nr != NULL && r == &V_pf_default_rule) 6353 tr = nr; 6354 if (tr->src.addr.type == PF_ADDR_TABLE) 6355 pfr_update_stats(tr->src.addr.p.tbl, 6356 (s == NULL) ? pd.src : 6357 &s->key[(s->direction == PF_IN)]->addr[0], 6358 pd.af, pd.tot_len, dir == PF_OUT, 6359 r->action == PF_PASS, tr->src.neg); 6360 if (tr->dst.addr.type == PF_ADDR_TABLE) 6361 pfr_update_stats(tr->dst.addr.p.tbl, 6362 (s == NULL) ? pd.dst : 6363 &s->key[(s->direction == PF_IN)]->addr[1], 6364 pd.af, pd.tot_len, dir == PF_OUT, 6365 r->action == PF_PASS, tr->dst.neg); 6366 } 6367 6368 switch (action) { 6369 case PF_SYNPROXY_DROP: 6370 m_freem(*m0); 6371 case PF_DEFER: 6372 *m0 = NULL; 6373 action = PF_PASS; 6374 break; 6375 case PF_DROP: 6376 m_freem(*m0); 6377 *m0 = NULL; 6378 break; 6379 default: 6380 /* pf_route6() returns unlocked. */ 6381 if (r->rt) { 6382 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6383 return (action); 6384 } 6385 break; 6386 } 6387 6388 if (s) 6389 PF_STATE_UNLOCK(s); 6390 6391 return (action); 6392 } 6393 #endif /* INET6 */ 6394