1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/taskqueue.h> 65 #include <sys/ucred.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #if defined(SCTP) || defined(SCTP_SUPPORT) 107 #include <netinet/sctp_crc32.h> 108 #endif 109 110 #include <machine/in_cksum.h> 111 #include <security/mac/mac_framework.h> 112 113 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 114 115 /* 116 * Global variables 117 */ 118 119 /* state tables */ 120 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 121 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 122 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 123 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 124 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 125 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 126 VNET_DEFINE(struct pf_kstatus, pf_status); 127 128 VNET_DEFINE(u_int32_t, ticket_altqs_active); 129 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 130 VNET_DEFINE(int, altqs_inactive_open); 131 VNET_DEFINE(u_int32_t, ticket_pabuf); 132 133 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 134 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 135 VNET_DEFINE(u_char, pf_tcp_secret[16]); 136 #define V_pf_tcp_secret VNET(pf_tcp_secret) 137 VNET_DEFINE(int, pf_tcp_secret_init); 138 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 139 VNET_DEFINE(int, pf_tcp_iss_off); 140 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 141 VNET_DECLARE(int, pf_vnet_active); 142 #define V_pf_vnet_active VNET(pf_vnet_active) 143 144 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 145 #define V_pf_purge_idx VNET(pf_purge_idx) 146 147 /* 148 * Queue for pf_intr() sends. 149 */ 150 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 151 struct pf_send_entry { 152 STAILQ_ENTRY(pf_send_entry) pfse_next; 153 struct mbuf *pfse_m; 154 enum { 155 PFSE_IP, 156 PFSE_IP6, 157 PFSE_ICMP, 158 PFSE_ICMP6, 159 } pfse_type; 160 struct { 161 int type; 162 int code; 163 int mtu; 164 } icmpopts; 165 }; 166 167 STAILQ_HEAD(pf_send_head, pf_send_entry); 168 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 169 #define V_pf_sendqueue VNET(pf_sendqueue) 170 171 static struct mtx pf_sendqueue_mtx; 172 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 173 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 174 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 175 176 /* 177 * Queue for pf_overload_task() tasks. 178 */ 179 struct pf_overload_entry { 180 SLIST_ENTRY(pf_overload_entry) next; 181 struct pf_addr addr; 182 sa_family_t af; 183 uint8_t dir; 184 struct pf_krule *rule; 185 }; 186 187 SLIST_HEAD(pf_overload_head, pf_overload_entry); 188 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 189 #define V_pf_overloadqueue VNET(pf_overloadqueue) 190 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 191 #define V_pf_overloadtask VNET(pf_overloadtask) 192 193 static struct mtx pf_overloadqueue_mtx; 194 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 195 "pf overload/flush queue", MTX_DEF); 196 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 197 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 198 199 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 200 struct mtx pf_unlnkdrules_mtx; 201 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 202 MTX_DEF); 203 204 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 205 #define V_pf_sources_z VNET(pf_sources_z) 206 uma_zone_t pf_mtag_z; 207 VNET_DEFINE(uma_zone_t, pf_state_z); 208 VNET_DEFINE(uma_zone_t, pf_state_key_z); 209 210 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 211 #define PFID_CPUBITS 8 212 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 213 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 214 #define PFID_MAXID (~PFID_CPUMASK) 215 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 216 217 static void pf_src_tree_remove_state(struct pf_state *); 218 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 219 u_int32_t); 220 static void pf_add_threshold(struct pf_threshold *); 221 static int pf_check_threshold(struct pf_threshold *); 222 223 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 224 u_int16_t *, u_int16_t *, struct pf_addr *, 225 u_int16_t, u_int8_t, sa_family_t); 226 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 227 struct tcphdr *, struct pf_state_peer *); 228 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 229 struct pf_addr *, struct pf_addr *, u_int16_t, 230 u_int16_t *, u_int16_t *, u_int16_t *, 231 u_int16_t *, u_int8_t, sa_family_t); 232 static void pf_send_tcp(struct mbuf *, 233 const struct pf_krule *, sa_family_t, 234 const struct pf_addr *, const struct pf_addr *, 235 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 236 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 237 u_int16_t, struct ifnet *); 238 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 239 sa_family_t, struct pf_krule *); 240 static void pf_detach_state(struct pf_state *); 241 static int pf_state_key_attach(struct pf_state_key *, 242 struct pf_state_key *, struct pf_state *); 243 static void pf_state_key_detach(struct pf_state *, int); 244 static int pf_state_key_ctor(void *, int, void *, int); 245 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 246 static int pf_test_rule(struct pf_krule **, struct pf_state **, 247 int, struct pfi_kkif *, struct mbuf *, int, 248 struct pf_pdesc *, struct pf_krule **, 249 struct pf_kruleset **, struct inpcb *); 250 static int pf_create_state(struct pf_krule *, struct pf_krule *, 251 struct pf_krule *, struct pf_pdesc *, 252 struct pf_ksrc_node *, struct pf_state_key *, 253 struct pf_state_key *, struct mbuf *, int, 254 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 255 struct pf_state **, int, u_int16_t, u_int16_t, 256 int); 257 static int pf_test_fragment(struct pf_krule **, int, 258 struct pfi_kkif *, struct mbuf *, void *, 259 struct pf_pdesc *, struct pf_krule **, 260 struct pf_kruleset **); 261 static int pf_tcp_track_full(struct pf_state_peer *, 262 struct pf_state_peer *, struct pf_state **, 263 struct pfi_kkif *, struct mbuf *, int, 264 struct pf_pdesc *, u_short *, int *); 265 static int pf_tcp_track_sloppy(struct pf_state_peer *, 266 struct pf_state_peer *, struct pf_state **, 267 struct pf_pdesc *, u_short *); 268 static int pf_test_state_tcp(struct pf_state **, int, 269 struct pfi_kkif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_udp(struct pf_state **, int, 272 struct pfi_kkif *, struct mbuf *, int, 273 void *, struct pf_pdesc *); 274 static int pf_test_state_icmp(struct pf_state **, int, 275 struct pfi_kkif *, struct mbuf *, int, 276 void *, struct pf_pdesc *, u_short *); 277 static int pf_test_state_other(struct pf_state **, int, 278 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 279 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 280 sa_family_t); 281 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 282 sa_family_t); 283 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 284 int, u_int16_t); 285 static int pf_check_proto_cksum(struct mbuf *, int, int, 286 u_int8_t, sa_family_t); 287 static void pf_print_state_parts(struct pf_state *, 288 struct pf_state_key *, struct pf_state_key *); 289 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 290 struct pf_addr_wrap *); 291 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 292 bool, u_int8_t); 293 static struct pf_state *pf_find_state(struct pfi_kkif *, 294 struct pf_state_key_cmp *, u_int); 295 static int pf_src_connlimit(struct pf_state **); 296 static void pf_overload_task(void *v, int pending); 297 static int pf_insert_src_node(struct pf_ksrc_node **, 298 struct pf_krule *, struct pf_addr *, sa_family_t); 299 static u_int pf_purge_expired_states(u_int, int); 300 static void pf_purge_unlinked_rules(void); 301 static int pf_mtag_uminit(void *, int, int); 302 static void pf_mtag_free(struct m_tag *); 303 #ifdef INET 304 static void pf_route(struct mbuf **, struct pf_krule *, int, 305 struct ifnet *, struct pf_state *, 306 struct pf_pdesc *, struct inpcb *); 307 #endif /* INET */ 308 #ifdef INET6 309 static void pf_change_a6(struct pf_addr *, u_int16_t *, 310 struct pf_addr *, u_int8_t); 311 static void pf_route6(struct mbuf **, struct pf_krule *, int, 312 struct ifnet *, struct pf_state *, 313 struct pf_pdesc *, struct inpcb *); 314 #endif /* INET6 */ 315 316 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 317 318 extern int pf_end_threads; 319 extern struct proc *pf_purge_proc; 320 321 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 322 323 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 324 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 325 326 #define STATE_LOOKUP(i, k, d, s, pd) \ 327 do { \ 328 (s) = pf_find_state((i), (k), (d)); \ 329 if ((s) == NULL) \ 330 return (PF_DROP); \ 331 if (PACKET_LOOPED(pd)) \ 332 return (PF_PASS); \ 333 if ((d) == PF_OUT && \ 334 (((s)->rule.ptr->rt == PF_ROUTETO && \ 335 (s)->rule.ptr->direction == PF_OUT) || \ 336 ((s)->rule.ptr->rt == PF_REPLYTO && \ 337 (s)->rule.ptr->direction == PF_IN)) && \ 338 (s)->rt_kif != NULL && \ 339 (s)->rt_kif != (i)) \ 340 return (PF_PASS); \ 341 } while (0) 342 343 #define BOUND_IFACE(r, k) \ 344 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 345 346 #define STATE_INC_COUNTERS(s) \ 347 do { \ 348 counter_u64_add(s->rule.ptr->states_cur, 1); \ 349 counter_u64_add(s->rule.ptr->states_tot, 1); \ 350 if (s->anchor.ptr != NULL) { \ 351 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 352 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 353 } \ 354 if (s->nat_rule.ptr != NULL) { \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 356 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 357 } \ 358 } while (0) 359 360 #define STATE_DEC_COUNTERS(s) \ 361 do { \ 362 if (s->nat_rule.ptr != NULL) \ 363 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 364 if (s->anchor.ptr != NULL) \ 365 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 366 counter_u64_add(s->rule.ptr->states_cur, -1); \ 367 } while (0) 368 369 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 370 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 371 VNET_DEFINE(struct pf_idhash *, pf_idhash); 372 VNET_DEFINE(struct pf_srchash *, pf_srchash); 373 374 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 375 "pf(4)"); 376 377 u_long pf_hashmask; 378 u_long pf_srchashmask; 379 static u_long pf_hashsize; 380 static u_long pf_srchashsize; 381 u_long pf_ioctl_maxcount = 65535; 382 383 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 384 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 385 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 386 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 387 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 388 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 389 390 VNET_DEFINE(void *, pf_swi_cookie); 391 392 VNET_DEFINE(uint32_t, pf_hashseed); 393 #define V_pf_hashseed VNET(pf_hashseed) 394 395 int 396 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 397 { 398 399 switch (af) { 400 #ifdef INET 401 case AF_INET: 402 if (a->addr32[0] > b->addr32[0]) 403 return (1); 404 if (a->addr32[0] < b->addr32[0]) 405 return (-1); 406 break; 407 #endif /* INET */ 408 #ifdef INET6 409 case AF_INET6: 410 if (a->addr32[3] > b->addr32[3]) 411 return (1); 412 if (a->addr32[3] < b->addr32[3]) 413 return (-1); 414 if (a->addr32[2] > b->addr32[2]) 415 return (1); 416 if (a->addr32[2] < b->addr32[2]) 417 return (-1); 418 if (a->addr32[1] > b->addr32[1]) 419 return (1); 420 if (a->addr32[1] < b->addr32[1]) 421 return (-1); 422 if (a->addr32[0] > b->addr32[0]) 423 return (1); 424 if (a->addr32[0] < b->addr32[0]) 425 return (-1); 426 break; 427 #endif /* INET6 */ 428 default: 429 panic("%s: unknown address family %u", __func__, af); 430 } 431 return (0); 432 } 433 434 static __inline uint32_t 435 pf_hashkey(struct pf_state_key *sk) 436 { 437 uint32_t h; 438 439 h = murmur3_32_hash32((uint32_t *)sk, 440 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 441 V_pf_hashseed); 442 443 return (h & pf_hashmask); 444 } 445 446 static __inline uint32_t 447 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 448 { 449 uint32_t h; 450 451 switch (af) { 452 case AF_INET: 453 h = murmur3_32_hash32((uint32_t *)&addr->v4, 454 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 455 break; 456 case AF_INET6: 457 h = murmur3_32_hash32((uint32_t *)&addr->v6, 458 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 459 break; 460 default: 461 panic("%s: unknown address family %u", __func__, af); 462 } 463 464 return (h & pf_srchashmask); 465 } 466 467 #ifdef ALTQ 468 static int 469 pf_state_hash(struct pf_state *s) 470 { 471 u_int32_t hv = (intptr_t)s / sizeof(*s); 472 473 hv ^= crc32(&s->src, sizeof(s->src)); 474 hv ^= crc32(&s->dst, sizeof(s->dst)); 475 if (hv == 0) 476 hv = 1; 477 return (hv); 478 } 479 #endif 480 481 #ifdef INET6 482 void 483 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 484 { 485 switch (af) { 486 #ifdef INET 487 case AF_INET: 488 dst->addr32[0] = src->addr32[0]; 489 break; 490 #endif /* INET */ 491 case AF_INET6: 492 dst->addr32[0] = src->addr32[0]; 493 dst->addr32[1] = src->addr32[1]; 494 dst->addr32[2] = src->addr32[2]; 495 dst->addr32[3] = src->addr32[3]; 496 break; 497 } 498 } 499 #endif /* INET6 */ 500 501 static void 502 pf_init_threshold(struct pf_threshold *threshold, 503 u_int32_t limit, u_int32_t seconds) 504 { 505 threshold->limit = limit * PF_THRESHOLD_MULT; 506 threshold->seconds = seconds; 507 threshold->count = 0; 508 threshold->last = time_uptime; 509 } 510 511 static void 512 pf_add_threshold(struct pf_threshold *threshold) 513 { 514 u_int32_t t = time_uptime, diff = t - threshold->last; 515 516 if (diff >= threshold->seconds) 517 threshold->count = 0; 518 else 519 threshold->count -= threshold->count * diff / 520 threshold->seconds; 521 threshold->count += PF_THRESHOLD_MULT; 522 threshold->last = t; 523 } 524 525 static int 526 pf_check_threshold(struct pf_threshold *threshold) 527 { 528 return (threshold->count > threshold->limit); 529 } 530 531 static int 532 pf_src_connlimit(struct pf_state **state) 533 { 534 struct pf_overload_entry *pfoe; 535 int bad = 0; 536 537 PF_STATE_LOCK_ASSERT(*state); 538 539 (*state)->src_node->conn++; 540 (*state)->src.tcp_est = 1; 541 pf_add_threshold(&(*state)->src_node->conn_rate); 542 543 if ((*state)->rule.ptr->max_src_conn && 544 (*state)->rule.ptr->max_src_conn < 545 (*state)->src_node->conn) { 546 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 547 bad++; 548 } 549 550 if ((*state)->rule.ptr->max_src_conn_rate.limit && 551 pf_check_threshold(&(*state)->src_node->conn_rate)) { 552 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 553 bad++; 554 } 555 556 if (!bad) 557 return (0); 558 559 /* Kill this state. */ 560 (*state)->timeout = PFTM_PURGE; 561 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 562 563 if ((*state)->rule.ptr->overload_tbl == NULL) 564 return (1); 565 566 /* Schedule overloading and flushing task. */ 567 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 568 if (pfoe == NULL) 569 return (1); /* too bad :( */ 570 571 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 572 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 573 pfoe->rule = (*state)->rule.ptr; 574 pfoe->dir = (*state)->direction; 575 PF_OVERLOADQ_LOCK(); 576 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 577 PF_OVERLOADQ_UNLOCK(); 578 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 579 580 return (1); 581 } 582 583 static void 584 pf_overload_task(void *v, int pending) 585 { 586 struct pf_overload_head queue; 587 struct pfr_addr p; 588 struct pf_overload_entry *pfoe, *pfoe1; 589 uint32_t killed = 0; 590 591 CURVNET_SET((struct vnet *)v); 592 593 PF_OVERLOADQ_LOCK(); 594 queue = V_pf_overloadqueue; 595 SLIST_INIT(&V_pf_overloadqueue); 596 PF_OVERLOADQ_UNLOCK(); 597 598 bzero(&p, sizeof(p)); 599 SLIST_FOREACH(pfoe, &queue, next) { 600 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 601 if (V_pf_status.debug >= PF_DEBUG_MISC) { 602 printf("%s: blocking address ", __func__); 603 pf_print_host(&pfoe->addr, 0, pfoe->af); 604 printf("\n"); 605 } 606 607 p.pfra_af = pfoe->af; 608 switch (pfoe->af) { 609 #ifdef INET 610 case AF_INET: 611 p.pfra_net = 32; 612 p.pfra_ip4addr = pfoe->addr.v4; 613 break; 614 #endif 615 #ifdef INET6 616 case AF_INET6: 617 p.pfra_net = 128; 618 p.pfra_ip6addr = pfoe->addr.v6; 619 break; 620 #endif 621 } 622 623 PF_RULES_WLOCK(); 624 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 625 PF_RULES_WUNLOCK(); 626 } 627 628 /* 629 * Remove those entries, that don't need flushing. 630 */ 631 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 632 if (pfoe->rule->flush == 0) { 633 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 634 free(pfoe, M_PFTEMP); 635 } else 636 counter_u64_add( 637 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 638 639 /* If nothing to flush, return. */ 640 if (SLIST_EMPTY(&queue)) { 641 CURVNET_RESTORE(); 642 return; 643 } 644 645 for (int i = 0; i <= pf_hashmask; i++) { 646 struct pf_idhash *ih = &V_pf_idhash[i]; 647 struct pf_state_key *sk; 648 struct pf_state *s; 649 650 PF_HASHROW_LOCK(ih); 651 LIST_FOREACH(s, &ih->states, entry) { 652 sk = s->key[PF_SK_WIRE]; 653 SLIST_FOREACH(pfoe, &queue, next) 654 if (sk->af == pfoe->af && 655 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 656 pfoe->rule == s->rule.ptr) && 657 ((pfoe->dir == PF_OUT && 658 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 659 (pfoe->dir == PF_IN && 660 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 661 s->timeout = PFTM_PURGE; 662 s->src.state = s->dst.state = TCPS_CLOSED; 663 killed++; 664 } 665 } 666 PF_HASHROW_UNLOCK(ih); 667 } 668 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 669 free(pfoe, M_PFTEMP); 670 if (V_pf_status.debug >= PF_DEBUG_MISC) 671 printf("%s: %u states killed", __func__, killed); 672 673 CURVNET_RESTORE(); 674 } 675 676 /* 677 * Can return locked on failure, so that we can consistently 678 * allocate and insert a new one. 679 */ 680 struct pf_ksrc_node * 681 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 682 int returnlocked) 683 { 684 struct pf_srchash *sh; 685 struct pf_ksrc_node *n; 686 687 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 688 689 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 690 PF_HASHROW_LOCK(sh); 691 LIST_FOREACH(n, &sh->nodes, entry) 692 if (n->rule.ptr == rule && n->af == af && 693 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 694 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 695 break; 696 if (n != NULL) { 697 n->states++; 698 PF_HASHROW_UNLOCK(sh); 699 } else if (returnlocked == 0) 700 PF_HASHROW_UNLOCK(sh); 701 702 return (n); 703 } 704 705 static void 706 pf_free_src_node(struct pf_ksrc_node *sn) 707 { 708 709 for (int i = 0; i < 2; i++) { 710 if (sn->bytes[i]) 711 counter_u64_free(sn->bytes[i]); 712 if (sn->packets[i]) 713 counter_u64_free(sn->packets[i]); 714 } 715 uma_zfree(V_pf_sources_z, sn); 716 } 717 718 static int 719 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 720 struct pf_addr *src, sa_family_t af) 721 { 722 723 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 724 rule->rpool.opts & PF_POOL_STICKYADDR), 725 ("%s for non-tracking rule %p", __func__, rule)); 726 727 if (*sn == NULL) 728 *sn = pf_find_src_node(src, rule, af, 1); 729 730 if (*sn == NULL) { 731 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 732 733 PF_HASHROW_ASSERT(sh); 734 735 if (!rule->max_src_nodes || 736 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 737 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 738 else 739 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 740 1); 741 if ((*sn) == NULL) { 742 PF_HASHROW_UNLOCK(sh); 743 return (-1); 744 } 745 746 for (int i = 0; i < 2; i++) { 747 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 748 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 749 750 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 751 pf_free_src_node(*sn); 752 PF_HASHROW_UNLOCK(sh); 753 return (-1); 754 } 755 } 756 757 pf_init_threshold(&(*sn)->conn_rate, 758 rule->max_src_conn_rate.limit, 759 rule->max_src_conn_rate.seconds); 760 761 (*sn)->af = af; 762 (*sn)->rule.ptr = rule; 763 PF_ACPY(&(*sn)->addr, src, af); 764 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 765 (*sn)->creation = time_uptime; 766 (*sn)->ruletype = rule->action; 767 (*sn)->states = 1; 768 if ((*sn)->rule.ptr != NULL) 769 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 770 PF_HASHROW_UNLOCK(sh); 771 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 772 } else { 773 if (rule->max_src_states && 774 (*sn)->states >= rule->max_src_states) { 775 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 776 1); 777 return (-1); 778 } 779 } 780 return (0); 781 } 782 783 void 784 pf_unlink_src_node(struct pf_ksrc_node *src) 785 { 786 787 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 788 LIST_REMOVE(src, entry); 789 if (src->rule.ptr) 790 counter_u64_add(src->rule.ptr->src_nodes, -1); 791 } 792 793 u_int 794 pf_free_src_nodes(struct pf_ksrc_node_list *head) 795 { 796 struct pf_ksrc_node *sn, *tmp; 797 u_int count = 0; 798 799 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 800 pf_free_src_node(sn); 801 count++; 802 } 803 804 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 805 806 return (count); 807 } 808 809 void 810 pf_mtag_initialize() 811 { 812 813 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 814 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 815 UMA_ALIGN_PTR, 0); 816 } 817 818 /* Per-vnet data storage structures initialization. */ 819 void 820 pf_initialize() 821 { 822 struct pf_keyhash *kh; 823 struct pf_idhash *ih; 824 struct pf_srchash *sh; 825 u_int i; 826 827 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 828 pf_hashsize = PF_HASHSIZ; 829 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 830 pf_srchashsize = PF_SRCHASHSIZ; 831 832 V_pf_hashseed = arc4random(); 833 834 /* States and state keys storage. */ 835 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 836 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 837 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 838 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 839 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 840 841 V_pf_state_key_z = uma_zcreate("pf state keys", 842 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 843 UMA_ALIGN_PTR, 0); 844 845 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 846 M_PFHASH, M_NOWAIT | M_ZERO); 847 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 848 M_PFHASH, M_NOWAIT | M_ZERO); 849 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 850 printf("pf: Unable to allocate memory for " 851 "state_hashsize %lu.\n", pf_hashsize); 852 853 free(V_pf_keyhash, M_PFHASH); 854 free(V_pf_idhash, M_PFHASH); 855 856 pf_hashsize = PF_HASHSIZ; 857 V_pf_keyhash = mallocarray(pf_hashsize, 858 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 859 V_pf_idhash = mallocarray(pf_hashsize, 860 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 861 } 862 863 pf_hashmask = pf_hashsize - 1; 864 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 865 i++, kh++, ih++) { 866 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 867 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 868 } 869 870 /* Source nodes. */ 871 V_pf_sources_z = uma_zcreate("pf source nodes", 872 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 873 0); 874 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 875 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 876 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 877 878 V_pf_srchash = mallocarray(pf_srchashsize, 879 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 880 if (V_pf_srchash == NULL) { 881 printf("pf: Unable to allocate memory for " 882 "source_hashsize %lu.\n", pf_srchashsize); 883 884 pf_srchashsize = PF_SRCHASHSIZ; 885 V_pf_srchash = mallocarray(pf_srchashsize, 886 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 887 } 888 889 pf_srchashmask = pf_srchashsize - 1; 890 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 891 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 892 893 /* ALTQ */ 894 TAILQ_INIT(&V_pf_altqs[0]); 895 TAILQ_INIT(&V_pf_altqs[1]); 896 TAILQ_INIT(&V_pf_altqs[2]); 897 TAILQ_INIT(&V_pf_altqs[3]); 898 TAILQ_INIT(&V_pf_pabuf); 899 V_pf_altqs_active = &V_pf_altqs[0]; 900 V_pf_altq_ifs_active = &V_pf_altqs[1]; 901 V_pf_altqs_inactive = &V_pf_altqs[2]; 902 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 903 904 /* Send & overload+flush queues. */ 905 STAILQ_INIT(&V_pf_sendqueue); 906 SLIST_INIT(&V_pf_overloadqueue); 907 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 908 909 /* Unlinked, but may be referenced rules. */ 910 TAILQ_INIT(&V_pf_unlinked_rules); 911 } 912 913 void 914 pf_mtag_cleanup() 915 { 916 917 uma_zdestroy(pf_mtag_z); 918 } 919 920 void 921 pf_cleanup() 922 { 923 struct pf_keyhash *kh; 924 struct pf_idhash *ih; 925 struct pf_srchash *sh; 926 struct pf_send_entry *pfse, *next; 927 u_int i; 928 929 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 930 i++, kh++, ih++) { 931 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 932 __func__)); 933 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 934 __func__)); 935 mtx_destroy(&kh->lock); 936 mtx_destroy(&ih->lock); 937 } 938 free(V_pf_keyhash, M_PFHASH); 939 free(V_pf_idhash, M_PFHASH); 940 941 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 942 KASSERT(LIST_EMPTY(&sh->nodes), 943 ("%s: source node hash not empty", __func__)); 944 mtx_destroy(&sh->lock); 945 } 946 free(V_pf_srchash, M_PFHASH); 947 948 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 949 m_freem(pfse->pfse_m); 950 free(pfse, M_PFTEMP); 951 } 952 953 uma_zdestroy(V_pf_sources_z); 954 uma_zdestroy(V_pf_state_z); 955 uma_zdestroy(V_pf_state_key_z); 956 } 957 958 static int 959 pf_mtag_uminit(void *mem, int size, int how) 960 { 961 struct m_tag *t; 962 963 t = (struct m_tag *)mem; 964 t->m_tag_cookie = MTAG_ABI_COMPAT; 965 t->m_tag_id = PACKET_TAG_PF; 966 t->m_tag_len = sizeof(struct pf_mtag); 967 t->m_tag_free = pf_mtag_free; 968 969 return (0); 970 } 971 972 static void 973 pf_mtag_free(struct m_tag *t) 974 { 975 976 uma_zfree(pf_mtag_z, t); 977 } 978 979 struct pf_mtag * 980 pf_get_mtag(struct mbuf *m) 981 { 982 struct m_tag *mtag; 983 984 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 985 return ((struct pf_mtag *)(mtag + 1)); 986 987 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 988 if (mtag == NULL) 989 return (NULL); 990 bzero(mtag + 1, sizeof(struct pf_mtag)); 991 m_tag_prepend(m, mtag); 992 993 return ((struct pf_mtag *)(mtag + 1)); 994 } 995 996 static int 997 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 998 struct pf_state *s) 999 { 1000 struct pf_keyhash *khs, *khw, *kh; 1001 struct pf_state_key *sk, *cur; 1002 struct pf_state *si, *olds = NULL; 1003 int idx; 1004 1005 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1006 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1007 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1008 1009 /* 1010 * We need to lock hash slots of both keys. To avoid deadlock 1011 * we always lock the slot with lower address first. Unlock order 1012 * isn't important. 1013 * 1014 * We also need to lock ID hash slot before dropping key 1015 * locks. On success we return with ID hash slot locked. 1016 */ 1017 1018 if (skw == sks) { 1019 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1020 PF_HASHROW_LOCK(khs); 1021 } else { 1022 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1023 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1024 if (khs == khw) { 1025 PF_HASHROW_LOCK(khs); 1026 } else if (khs < khw) { 1027 PF_HASHROW_LOCK(khs); 1028 PF_HASHROW_LOCK(khw); 1029 } else { 1030 PF_HASHROW_LOCK(khw); 1031 PF_HASHROW_LOCK(khs); 1032 } 1033 } 1034 1035 #define KEYS_UNLOCK() do { \ 1036 if (khs != khw) { \ 1037 PF_HASHROW_UNLOCK(khs); \ 1038 PF_HASHROW_UNLOCK(khw); \ 1039 } else \ 1040 PF_HASHROW_UNLOCK(khs); \ 1041 } while (0) 1042 1043 /* 1044 * First run: start with wire key. 1045 */ 1046 sk = skw; 1047 kh = khw; 1048 idx = PF_SK_WIRE; 1049 1050 keyattach: 1051 LIST_FOREACH(cur, &kh->keys, entry) 1052 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1053 break; 1054 1055 if (cur != NULL) { 1056 /* Key exists. Check for same kif, if none, add to key. */ 1057 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1058 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1059 1060 PF_HASHROW_LOCK(ih); 1061 if (si->kif == s->kif && 1062 si->direction == s->direction) { 1063 if (sk->proto == IPPROTO_TCP && 1064 si->src.state >= TCPS_FIN_WAIT_2 && 1065 si->dst.state >= TCPS_FIN_WAIT_2) { 1066 /* 1067 * New state matches an old >FIN_WAIT_2 1068 * state. We can't drop key hash locks, 1069 * thus we can't unlink it properly. 1070 * 1071 * As a workaround we drop it into 1072 * TCPS_CLOSED state, schedule purge 1073 * ASAP and push it into the very end 1074 * of the slot TAILQ, so that it won't 1075 * conflict with our new state. 1076 */ 1077 si->src.state = si->dst.state = 1078 TCPS_CLOSED; 1079 si->timeout = PFTM_PURGE; 1080 olds = si; 1081 } else { 1082 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1083 printf("pf: %s key attach " 1084 "failed on %s: ", 1085 (idx == PF_SK_WIRE) ? 1086 "wire" : "stack", 1087 s->kif->pfik_name); 1088 pf_print_state_parts(s, 1089 (idx == PF_SK_WIRE) ? 1090 sk : NULL, 1091 (idx == PF_SK_STACK) ? 1092 sk : NULL); 1093 printf(", existing: "); 1094 pf_print_state_parts(si, 1095 (idx == PF_SK_WIRE) ? 1096 sk : NULL, 1097 (idx == PF_SK_STACK) ? 1098 sk : NULL); 1099 printf("\n"); 1100 } 1101 PF_HASHROW_UNLOCK(ih); 1102 KEYS_UNLOCK(); 1103 uma_zfree(V_pf_state_key_z, sk); 1104 if (idx == PF_SK_STACK) 1105 pf_detach_state(s); 1106 return (EEXIST); /* collision! */ 1107 } 1108 } 1109 PF_HASHROW_UNLOCK(ih); 1110 } 1111 uma_zfree(V_pf_state_key_z, sk); 1112 s->key[idx] = cur; 1113 } else { 1114 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1115 s->key[idx] = sk; 1116 } 1117 1118 stateattach: 1119 /* List is sorted, if-bound states before floating. */ 1120 if (s->kif == V_pfi_all) 1121 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1122 else 1123 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1124 1125 if (olds) { 1126 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1127 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1128 key_list[idx]); 1129 olds = NULL; 1130 } 1131 1132 /* 1133 * Attach done. See how should we (or should not?) 1134 * attach a second key. 1135 */ 1136 if (sks == skw) { 1137 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1138 idx = PF_SK_STACK; 1139 sks = NULL; 1140 goto stateattach; 1141 } else if (sks != NULL) { 1142 /* 1143 * Continue attaching with stack key. 1144 */ 1145 sk = sks; 1146 kh = khs; 1147 idx = PF_SK_STACK; 1148 sks = NULL; 1149 goto keyattach; 1150 } 1151 1152 PF_STATE_LOCK(s); 1153 KEYS_UNLOCK(); 1154 1155 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1156 ("%s failure", __func__)); 1157 1158 return (0); 1159 #undef KEYS_UNLOCK 1160 } 1161 1162 static void 1163 pf_detach_state(struct pf_state *s) 1164 { 1165 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1166 struct pf_keyhash *kh; 1167 1168 if (sks != NULL) { 1169 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1170 PF_HASHROW_LOCK(kh); 1171 if (s->key[PF_SK_STACK] != NULL) 1172 pf_state_key_detach(s, PF_SK_STACK); 1173 /* 1174 * If both point to same key, then we are done. 1175 */ 1176 if (sks == s->key[PF_SK_WIRE]) { 1177 pf_state_key_detach(s, PF_SK_WIRE); 1178 PF_HASHROW_UNLOCK(kh); 1179 return; 1180 } 1181 PF_HASHROW_UNLOCK(kh); 1182 } 1183 1184 if (s->key[PF_SK_WIRE] != NULL) { 1185 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1186 PF_HASHROW_LOCK(kh); 1187 if (s->key[PF_SK_WIRE] != NULL) 1188 pf_state_key_detach(s, PF_SK_WIRE); 1189 PF_HASHROW_UNLOCK(kh); 1190 } 1191 } 1192 1193 static void 1194 pf_state_key_detach(struct pf_state *s, int idx) 1195 { 1196 struct pf_state_key *sk = s->key[idx]; 1197 #ifdef INVARIANTS 1198 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1199 1200 PF_HASHROW_ASSERT(kh); 1201 #endif 1202 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1203 s->key[idx] = NULL; 1204 1205 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1206 LIST_REMOVE(sk, entry); 1207 uma_zfree(V_pf_state_key_z, sk); 1208 } 1209 } 1210 1211 static int 1212 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1213 { 1214 struct pf_state_key *sk = mem; 1215 1216 bzero(sk, sizeof(struct pf_state_key_cmp)); 1217 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1218 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1219 1220 return (0); 1221 } 1222 1223 struct pf_state_key * 1224 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1225 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1226 { 1227 struct pf_state_key *sk; 1228 1229 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1230 if (sk == NULL) 1231 return (NULL); 1232 1233 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1234 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1235 sk->port[pd->sidx] = sport; 1236 sk->port[pd->didx] = dport; 1237 sk->proto = pd->proto; 1238 sk->af = pd->af; 1239 1240 return (sk); 1241 } 1242 1243 struct pf_state_key * 1244 pf_state_key_clone(struct pf_state_key *orig) 1245 { 1246 struct pf_state_key *sk; 1247 1248 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1249 if (sk == NULL) 1250 return (NULL); 1251 1252 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1253 1254 return (sk); 1255 } 1256 1257 int 1258 pf_state_insert(struct pfi_kkif *kif, struct pf_state_key *skw, 1259 struct pf_state_key *sks, struct pf_state *s) 1260 { 1261 struct pf_idhash *ih; 1262 struct pf_state *cur; 1263 int error; 1264 1265 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1266 ("%s: sks not pristine", __func__)); 1267 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1268 ("%s: skw not pristine", __func__)); 1269 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1270 1271 s->kif = kif; 1272 1273 if (s->id == 0 && s->creatorid == 0) { 1274 /* XXX: should be atomic, but probability of collision low */ 1275 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1276 V_pf_stateid[curcpu] = 1; 1277 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1278 s->id = htobe64(s->id); 1279 s->creatorid = V_pf_status.hostid; 1280 } 1281 1282 /* Returns with ID locked on success. */ 1283 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1284 return (error); 1285 1286 ih = &V_pf_idhash[PF_IDHASH(s)]; 1287 PF_HASHROW_ASSERT(ih); 1288 LIST_FOREACH(cur, &ih->states, entry) 1289 if (cur->id == s->id && cur->creatorid == s->creatorid) 1290 break; 1291 1292 if (cur != NULL) { 1293 PF_HASHROW_UNLOCK(ih); 1294 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1295 printf("pf: state ID collision: " 1296 "id: %016llx creatorid: %08x\n", 1297 (unsigned long long)be64toh(s->id), 1298 ntohl(s->creatorid)); 1299 } 1300 pf_detach_state(s); 1301 return (EEXIST); 1302 } 1303 LIST_INSERT_HEAD(&ih->states, s, entry); 1304 /* One for keys, one for ID hash. */ 1305 refcount_init(&s->refs, 2); 1306 1307 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1308 if (V_pfsync_insert_state_ptr != NULL) 1309 V_pfsync_insert_state_ptr(s); 1310 1311 /* Returns locked. */ 1312 return (0); 1313 } 1314 1315 /* 1316 * Find state by ID: returns with locked row on success. 1317 */ 1318 struct pf_state * 1319 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1320 { 1321 struct pf_idhash *ih; 1322 struct pf_state *s; 1323 1324 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1325 1326 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1327 1328 PF_HASHROW_LOCK(ih); 1329 LIST_FOREACH(s, &ih->states, entry) 1330 if (s->id == id && s->creatorid == creatorid) 1331 break; 1332 1333 if (s == NULL) 1334 PF_HASHROW_UNLOCK(ih); 1335 1336 return (s); 1337 } 1338 1339 /* 1340 * Find state by key. 1341 * Returns with ID hash slot locked on success. 1342 */ 1343 static struct pf_state * 1344 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1345 { 1346 struct pf_keyhash *kh; 1347 struct pf_state_key *sk; 1348 struct pf_state *s; 1349 int idx; 1350 1351 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1352 1353 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1354 1355 PF_HASHROW_LOCK(kh); 1356 LIST_FOREACH(sk, &kh->keys, entry) 1357 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1358 break; 1359 if (sk == NULL) { 1360 PF_HASHROW_UNLOCK(kh); 1361 return (NULL); 1362 } 1363 1364 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1365 1366 /* List is sorted, if-bound states before floating ones. */ 1367 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1368 if (s->kif == V_pfi_all || s->kif == kif) { 1369 PF_STATE_LOCK(s); 1370 PF_HASHROW_UNLOCK(kh); 1371 if (s->timeout >= PFTM_MAX) { 1372 /* 1373 * State is either being processed by 1374 * pf_unlink_state() in an other thread, or 1375 * is scheduled for immediate expiry. 1376 */ 1377 PF_STATE_UNLOCK(s); 1378 return (NULL); 1379 } 1380 return (s); 1381 } 1382 PF_HASHROW_UNLOCK(kh); 1383 1384 return (NULL); 1385 } 1386 1387 struct pf_state * 1388 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1389 { 1390 struct pf_keyhash *kh; 1391 struct pf_state_key *sk; 1392 struct pf_state *s, *ret = NULL; 1393 int idx, inout = 0; 1394 1395 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1396 1397 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1398 1399 PF_HASHROW_LOCK(kh); 1400 LIST_FOREACH(sk, &kh->keys, entry) 1401 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1402 break; 1403 if (sk == NULL) { 1404 PF_HASHROW_UNLOCK(kh); 1405 return (NULL); 1406 } 1407 switch (dir) { 1408 case PF_IN: 1409 idx = PF_SK_WIRE; 1410 break; 1411 case PF_OUT: 1412 idx = PF_SK_STACK; 1413 break; 1414 case PF_INOUT: 1415 idx = PF_SK_WIRE; 1416 inout = 1; 1417 break; 1418 default: 1419 panic("%s: dir %u", __func__, dir); 1420 } 1421 second_run: 1422 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1423 if (more == NULL) { 1424 PF_HASHROW_UNLOCK(kh); 1425 return (s); 1426 } 1427 1428 if (ret) 1429 (*more)++; 1430 else 1431 ret = s; 1432 } 1433 if (inout == 1) { 1434 inout = 0; 1435 idx = PF_SK_STACK; 1436 goto second_run; 1437 } 1438 PF_HASHROW_UNLOCK(kh); 1439 1440 return (ret); 1441 } 1442 1443 /* END state table stuff */ 1444 1445 static void 1446 pf_send(struct pf_send_entry *pfse) 1447 { 1448 1449 PF_SENDQ_LOCK(); 1450 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1451 PF_SENDQ_UNLOCK(); 1452 swi_sched(V_pf_swi_cookie, 0); 1453 } 1454 1455 void 1456 pf_intr(void *v) 1457 { 1458 struct epoch_tracker et; 1459 struct pf_send_head queue; 1460 struct pf_send_entry *pfse, *next; 1461 1462 CURVNET_SET((struct vnet *)v); 1463 1464 PF_SENDQ_LOCK(); 1465 queue = V_pf_sendqueue; 1466 STAILQ_INIT(&V_pf_sendqueue); 1467 PF_SENDQ_UNLOCK(); 1468 1469 NET_EPOCH_ENTER(et); 1470 1471 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1472 switch (pfse->pfse_type) { 1473 #ifdef INET 1474 case PFSE_IP: 1475 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1476 break; 1477 case PFSE_ICMP: 1478 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1479 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1480 break; 1481 #endif /* INET */ 1482 #ifdef INET6 1483 case PFSE_IP6: 1484 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1485 NULL); 1486 break; 1487 case PFSE_ICMP6: 1488 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1489 pfse->icmpopts.code, pfse->icmpopts.mtu); 1490 break; 1491 #endif /* INET6 */ 1492 default: 1493 panic("%s: unknown type", __func__); 1494 } 1495 free(pfse, M_PFTEMP); 1496 } 1497 NET_EPOCH_EXIT(et); 1498 CURVNET_RESTORE(); 1499 } 1500 1501 void 1502 pf_purge_thread(void *unused __unused) 1503 { 1504 VNET_ITERATOR_DECL(vnet_iter); 1505 1506 sx_xlock(&pf_end_lock); 1507 while (pf_end_threads == 0) { 1508 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1509 1510 VNET_LIST_RLOCK(); 1511 VNET_FOREACH(vnet_iter) { 1512 CURVNET_SET(vnet_iter); 1513 1514 /* Wait until V_pf_default_rule is initialized. */ 1515 if (V_pf_vnet_active == 0) { 1516 CURVNET_RESTORE(); 1517 continue; 1518 } 1519 1520 /* 1521 * Process 1/interval fraction of the state 1522 * table every run. 1523 */ 1524 V_pf_purge_idx = 1525 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1526 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1527 1528 /* 1529 * Purge other expired types every 1530 * PFTM_INTERVAL seconds. 1531 */ 1532 if (V_pf_purge_idx == 0) { 1533 /* 1534 * Order is important: 1535 * - states and src nodes reference rules 1536 * - states and rules reference kifs 1537 */ 1538 pf_purge_expired_fragments(); 1539 pf_purge_expired_src_nodes(); 1540 pf_purge_unlinked_rules(); 1541 pfi_kkif_purge(); 1542 } 1543 CURVNET_RESTORE(); 1544 } 1545 VNET_LIST_RUNLOCK(); 1546 } 1547 1548 pf_end_threads++; 1549 sx_xunlock(&pf_end_lock); 1550 kproc_exit(0); 1551 } 1552 1553 void 1554 pf_unload_vnet_purge(void) 1555 { 1556 1557 /* 1558 * To cleanse up all kifs and rules we need 1559 * two runs: first one clears reference flags, 1560 * then pf_purge_expired_states() doesn't 1561 * raise them, and then second run frees. 1562 */ 1563 pf_purge_unlinked_rules(); 1564 pfi_kkif_purge(); 1565 1566 /* 1567 * Now purge everything. 1568 */ 1569 pf_purge_expired_states(0, pf_hashmask); 1570 pf_purge_fragments(UINT_MAX); 1571 pf_purge_expired_src_nodes(); 1572 1573 /* 1574 * Now all kifs & rules should be unreferenced, 1575 * thus should be successfully freed. 1576 */ 1577 pf_purge_unlinked_rules(); 1578 pfi_kkif_purge(); 1579 } 1580 1581 u_int32_t 1582 pf_state_expires(const struct pf_state *state) 1583 { 1584 u_int32_t timeout; 1585 u_int32_t start; 1586 u_int32_t end; 1587 u_int32_t states; 1588 1589 /* handle all PFTM_* > PFTM_MAX here */ 1590 if (state->timeout == PFTM_PURGE) 1591 return (time_uptime); 1592 KASSERT(state->timeout != PFTM_UNLINKED, 1593 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1594 KASSERT((state->timeout < PFTM_MAX), 1595 ("pf_state_expires: timeout > PFTM_MAX")); 1596 timeout = state->rule.ptr->timeout[state->timeout]; 1597 if (!timeout) 1598 timeout = V_pf_default_rule.timeout[state->timeout]; 1599 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1600 if (start && state->rule.ptr != &V_pf_default_rule) { 1601 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1602 states = counter_u64_fetch(state->rule.ptr->states_cur); 1603 } else { 1604 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1605 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1606 states = V_pf_status.states; 1607 } 1608 if (end && states > start && start < end) { 1609 if (states < end) { 1610 timeout = (u_int64_t)timeout * (end - states) / 1611 (end - start); 1612 return (state->expire + timeout); 1613 } 1614 else 1615 return (time_uptime); 1616 } 1617 return (state->expire + timeout); 1618 } 1619 1620 void 1621 pf_purge_expired_src_nodes() 1622 { 1623 struct pf_ksrc_node_list freelist; 1624 struct pf_srchash *sh; 1625 struct pf_ksrc_node *cur, *next; 1626 int i; 1627 1628 LIST_INIT(&freelist); 1629 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1630 PF_HASHROW_LOCK(sh); 1631 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1632 if (cur->states == 0 && cur->expire <= time_uptime) { 1633 pf_unlink_src_node(cur); 1634 LIST_INSERT_HEAD(&freelist, cur, entry); 1635 } else if (cur->rule.ptr != NULL) 1636 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1637 PF_HASHROW_UNLOCK(sh); 1638 } 1639 1640 pf_free_src_nodes(&freelist); 1641 1642 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1643 } 1644 1645 static void 1646 pf_src_tree_remove_state(struct pf_state *s) 1647 { 1648 struct pf_ksrc_node *sn; 1649 struct pf_srchash *sh; 1650 uint32_t timeout; 1651 1652 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1653 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1654 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1655 1656 if (s->src_node != NULL) { 1657 sn = s->src_node; 1658 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1659 PF_HASHROW_LOCK(sh); 1660 if (s->src.tcp_est) 1661 --sn->conn; 1662 if (--sn->states == 0) 1663 sn->expire = time_uptime + timeout; 1664 PF_HASHROW_UNLOCK(sh); 1665 } 1666 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1667 sn = s->nat_src_node; 1668 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1669 PF_HASHROW_LOCK(sh); 1670 if (--sn->states == 0) 1671 sn->expire = time_uptime + timeout; 1672 PF_HASHROW_UNLOCK(sh); 1673 } 1674 s->src_node = s->nat_src_node = NULL; 1675 } 1676 1677 /* 1678 * Unlink and potentilly free a state. Function may be 1679 * called with ID hash row locked, but always returns 1680 * unlocked, since it needs to go through key hash locking. 1681 */ 1682 int 1683 pf_unlink_state(struct pf_state *s, u_int flags) 1684 { 1685 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1686 1687 if ((flags & PF_ENTER_LOCKED) == 0) 1688 PF_HASHROW_LOCK(ih); 1689 else 1690 PF_HASHROW_ASSERT(ih); 1691 1692 if (s->timeout == PFTM_UNLINKED) { 1693 /* 1694 * State is being processed 1695 * by pf_unlink_state() in 1696 * an other thread. 1697 */ 1698 PF_HASHROW_UNLOCK(ih); 1699 return (0); /* XXXGL: undefined actually */ 1700 } 1701 1702 if (s->src.state == PF_TCPS_PROXY_DST) { 1703 /* XXX wire key the right one? */ 1704 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1705 &s->key[PF_SK_WIRE]->addr[1], 1706 &s->key[PF_SK_WIRE]->addr[0], 1707 s->key[PF_SK_WIRE]->port[1], 1708 s->key[PF_SK_WIRE]->port[0], 1709 s->src.seqhi, s->src.seqlo + 1, 1710 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1711 } 1712 1713 LIST_REMOVE(s, entry); 1714 pf_src_tree_remove_state(s); 1715 1716 if (V_pfsync_delete_state_ptr != NULL) 1717 V_pfsync_delete_state_ptr(s); 1718 1719 STATE_DEC_COUNTERS(s); 1720 1721 s->timeout = PFTM_UNLINKED; 1722 1723 PF_HASHROW_UNLOCK(ih); 1724 1725 pf_detach_state(s); 1726 /* pf_state_insert() initialises refs to 2, so we can never release the 1727 * last reference here, only in pf_release_state(). */ 1728 (void)refcount_release(&s->refs); 1729 1730 return (pf_release_state(s)); 1731 } 1732 1733 void 1734 pf_free_state(struct pf_state *cur) 1735 { 1736 1737 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1738 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1739 cur->timeout)); 1740 1741 for (int i = 0; i < 2; i++) { 1742 if (cur->bytes[i] != NULL) 1743 counter_u64_free(cur->bytes[i]); 1744 if (cur->packets[i] != NULL) 1745 counter_u64_free(cur->packets[i]); 1746 } 1747 1748 pf_normalize_tcp_cleanup(cur); 1749 uma_zfree(V_pf_state_z, cur); 1750 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1751 } 1752 1753 /* 1754 * Called only from pf_purge_thread(), thus serialized. 1755 */ 1756 static u_int 1757 pf_purge_expired_states(u_int i, int maxcheck) 1758 { 1759 struct pf_idhash *ih; 1760 struct pf_state *s; 1761 1762 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1763 1764 /* 1765 * Go through hash and unlink states that expire now. 1766 */ 1767 while (maxcheck > 0) { 1768 ih = &V_pf_idhash[i]; 1769 1770 /* only take the lock if we expect to do work */ 1771 if (!LIST_EMPTY(&ih->states)) { 1772 relock: 1773 PF_HASHROW_LOCK(ih); 1774 LIST_FOREACH(s, &ih->states, entry) { 1775 if (pf_state_expires(s) <= time_uptime) { 1776 V_pf_status.states -= 1777 pf_unlink_state(s, PF_ENTER_LOCKED); 1778 goto relock; 1779 } 1780 s->rule.ptr->rule_flag |= PFRULE_REFS; 1781 if (s->nat_rule.ptr != NULL) 1782 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1783 if (s->anchor.ptr != NULL) 1784 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1785 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1786 if (s->rt_kif) 1787 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1788 } 1789 PF_HASHROW_UNLOCK(ih); 1790 } 1791 1792 /* Return when we hit end of hash. */ 1793 if (++i > pf_hashmask) { 1794 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1795 return (0); 1796 } 1797 1798 maxcheck--; 1799 } 1800 1801 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1802 1803 return (i); 1804 } 1805 1806 static void 1807 pf_purge_unlinked_rules() 1808 { 1809 struct pf_krulequeue tmpq; 1810 struct pf_krule *r, *r1; 1811 1812 /* 1813 * If we have overloading task pending, then we'd 1814 * better skip purging this time. There is a tiny 1815 * probability that overloading task references 1816 * an already unlinked rule. 1817 */ 1818 PF_OVERLOADQ_LOCK(); 1819 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1820 PF_OVERLOADQ_UNLOCK(); 1821 return; 1822 } 1823 PF_OVERLOADQ_UNLOCK(); 1824 1825 /* 1826 * Do naive mark-and-sweep garbage collecting of old rules. 1827 * Reference flag is raised by pf_purge_expired_states() 1828 * and pf_purge_expired_src_nodes(). 1829 * 1830 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1831 * use a temporary queue. 1832 */ 1833 TAILQ_INIT(&tmpq); 1834 PF_UNLNKDRULES_LOCK(); 1835 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1836 if (!(r->rule_flag & PFRULE_REFS)) { 1837 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1838 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1839 } else 1840 r->rule_flag &= ~PFRULE_REFS; 1841 } 1842 PF_UNLNKDRULES_UNLOCK(); 1843 1844 if (!TAILQ_EMPTY(&tmpq)) { 1845 PF_RULES_WLOCK(); 1846 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1847 TAILQ_REMOVE(&tmpq, r, entries); 1848 pf_free_rule(r); 1849 } 1850 PF_RULES_WUNLOCK(); 1851 } 1852 } 1853 1854 void 1855 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1856 { 1857 switch (af) { 1858 #ifdef INET 1859 case AF_INET: { 1860 u_int32_t a = ntohl(addr->addr32[0]); 1861 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1862 (a>>8)&255, a&255); 1863 if (p) { 1864 p = ntohs(p); 1865 printf(":%u", p); 1866 } 1867 break; 1868 } 1869 #endif /* INET */ 1870 #ifdef INET6 1871 case AF_INET6: { 1872 u_int16_t b; 1873 u_int8_t i, curstart, curend, maxstart, maxend; 1874 curstart = curend = maxstart = maxend = 255; 1875 for (i = 0; i < 8; i++) { 1876 if (!addr->addr16[i]) { 1877 if (curstart == 255) 1878 curstart = i; 1879 curend = i; 1880 } else { 1881 if ((curend - curstart) > 1882 (maxend - maxstart)) { 1883 maxstart = curstart; 1884 maxend = curend; 1885 } 1886 curstart = curend = 255; 1887 } 1888 } 1889 if ((curend - curstart) > 1890 (maxend - maxstart)) { 1891 maxstart = curstart; 1892 maxend = curend; 1893 } 1894 for (i = 0; i < 8; i++) { 1895 if (i >= maxstart && i <= maxend) { 1896 if (i == 0) 1897 printf(":"); 1898 if (i == maxend) 1899 printf(":"); 1900 } else { 1901 b = ntohs(addr->addr16[i]); 1902 printf("%x", b); 1903 if (i < 7) 1904 printf(":"); 1905 } 1906 } 1907 if (p) { 1908 p = ntohs(p); 1909 printf("[%u]", p); 1910 } 1911 break; 1912 } 1913 #endif /* INET6 */ 1914 } 1915 } 1916 1917 void 1918 pf_print_state(struct pf_state *s) 1919 { 1920 pf_print_state_parts(s, NULL, NULL); 1921 } 1922 1923 static void 1924 pf_print_state_parts(struct pf_state *s, 1925 struct pf_state_key *skwp, struct pf_state_key *sksp) 1926 { 1927 struct pf_state_key *skw, *sks; 1928 u_int8_t proto, dir; 1929 1930 /* Do our best to fill these, but they're skipped if NULL */ 1931 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1932 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1933 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1934 dir = s ? s->direction : 0; 1935 1936 switch (proto) { 1937 case IPPROTO_IPV4: 1938 printf("IPv4"); 1939 break; 1940 case IPPROTO_IPV6: 1941 printf("IPv6"); 1942 break; 1943 case IPPROTO_TCP: 1944 printf("TCP"); 1945 break; 1946 case IPPROTO_UDP: 1947 printf("UDP"); 1948 break; 1949 case IPPROTO_ICMP: 1950 printf("ICMP"); 1951 break; 1952 case IPPROTO_ICMPV6: 1953 printf("ICMPv6"); 1954 break; 1955 default: 1956 printf("%u", proto); 1957 break; 1958 } 1959 switch (dir) { 1960 case PF_IN: 1961 printf(" in"); 1962 break; 1963 case PF_OUT: 1964 printf(" out"); 1965 break; 1966 } 1967 if (skw) { 1968 printf(" wire: "); 1969 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1970 printf(" "); 1971 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1972 } 1973 if (sks) { 1974 printf(" stack: "); 1975 if (sks != skw) { 1976 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1977 printf(" "); 1978 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1979 } else 1980 printf("-"); 1981 } 1982 if (s) { 1983 if (proto == IPPROTO_TCP) { 1984 printf(" [lo=%u high=%u win=%u modulator=%u", 1985 s->src.seqlo, s->src.seqhi, 1986 s->src.max_win, s->src.seqdiff); 1987 if (s->src.wscale && s->dst.wscale) 1988 printf(" wscale=%u", 1989 s->src.wscale & PF_WSCALE_MASK); 1990 printf("]"); 1991 printf(" [lo=%u high=%u win=%u modulator=%u", 1992 s->dst.seqlo, s->dst.seqhi, 1993 s->dst.max_win, s->dst.seqdiff); 1994 if (s->src.wscale && s->dst.wscale) 1995 printf(" wscale=%u", 1996 s->dst.wscale & PF_WSCALE_MASK); 1997 printf("]"); 1998 } 1999 printf(" %u:%u", s->src.state, s->dst.state); 2000 } 2001 } 2002 2003 void 2004 pf_print_flags(u_int8_t f) 2005 { 2006 if (f) 2007 printf(" "); 2008 if (f & TH_FIN) 2009 printf("F"); 2010 if (f & TH_SYN) 2011 printf("S"); 2012 if (f & TH_RST) 2013 printf("R"); 2014 if (f & TH_PUSH) 2015 printf("P"); 2016 if (f & TH_ACK) 2017 printf("A"); 2018 if (f & TH_URG) 2019 printf("U"); 2020 if (f & TH_ECE) 2021 printf("E"); 2022 if (f & TH_CWR) 2023 printf("W"); 2024 } 2025 2026 #define PF_SET_SKIP_STEPS(i) \ 2027 do { \ 2028 while (head[i] != cur) { \ 2029 head[i]->skip[i].ptr = cur; \ 2030 head[i] = TAILQ_NEXT(head[i], entries); \ 2031 } \ 2032 } while (0) 2033 2034 void 2035 pf_calc_skip_steps(struct pf_krulequeue *rules) 2036 { 2037 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2038 int i; 2039 2040 cur = TAILQ_FIRST(rules); 2041 prev = cur; 2042 for (i = 0; i < PF_SKIP_COUNT; ++i) 2043 head[i] = cur; 2044 while (cur != NULL) { 2045 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2046 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2047 if (cur->direction != prev->direction) 2048 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2049 if (cur->af != prev->af) 2050 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2051 if (cur->proto != prev->proto) 2052 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2053 if (cur->src.neg != prev->src.neg || 2054 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2055 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2056 if (cur->src.port[0] != prev->src.port[0] || 2057 cur->src.port[1] != prev->src.port[1] || 2058 cur->src.port_op != prev->src.port_op) 2059 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2060 if (cur->dst.neg != prev->dst.neg || 2061 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2062 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2063 if (cur->dst.port[0] != prev->dst.port[0] || 2064 cur->dst.port[1] != prev->dst.port[1] || 2065 cur->dst.port_op != prev->dst.port_op) 2066 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2067 2068 prev = cur; 2069 cur = TAILQ_NEXT(cur, entries); 2070 } 2071 for (i = 0; i < PF_SKIP_COUNT; ++i) 2072 PF_SET_SKIP_STEPS(i); 2073 } 2074 2075 static int 2076 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2077 { 2078 if (aw1->type != aw2->type) 2079 return (1); 2080 switch (aw1->type) { 2081 case PF_ADDR_ADDRMASK: 2082 case PF_ADDR_RANGE: 2083 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2084 return (1); 2085 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2086 return (1); 2087 return (0); 2088 case PF_ADDR_DYNIFTL: 2089 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2090 case PF_ADDR_NOROUTE: 2091 case PF_ADDR_URPFFAILED: 2092 return (0); 2093 case PF_ADDR_TABLE: 2094 return (aw1->p.tbl != aw2->p.tbl); 2095 default: 2096 printf("invalid address type: %d\n", aw1->type); 2097 return (1); 2098 } 2099 } 2100 2101 /** 2102 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2103 * header isn't always a full checksum. In some cases (i.e. output) it's a 2104 * pseudo-header checksum, which is a partial checksum over src/dst IP 2105 * addresses, protocol number and length. 2106 * 2107 * That means we have the following cases: 2108 * * Input or forwarding: we don't have TSO, the checksum fields are full 2109 * checksums, we need to update the checksum whenever we change anything. 2110 * * Output (i.e. the checksum is a pseudo-header checksum): 2111 * x The field being updated is src/dst address or affects the length of 2112 * the packet. We need to update the pseudo-header checksum (note that this 2113 * checksum is not ones' complement). 2114 * x Some other field is being modified (e.g. src/dst port numbers): We 2115 * don't have to update anything. 2116 **/ 2117 u_int16_t 2118 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2119 { 2120 u_int32_t x; 2121 2122 x = cksum + old - new; 2123 x = (x + (x >> 16)) & 0xffff; 2124 2125 /* optimise: eliminate a branch when not udp */ 2126 if (udp && cksum == 0x0000) 2127 return cksum; 2128 if (udp && x == 0x0000) 2129 x = 0xffff; 2130 2131 return (u_int16_t)(x); 2132 } 2133 2134 static void 2135 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2136 u_int8_t udp) 2137 { 2138 u_int16_t old = htons(hi ? (*f << 8) : *f); 2139 u_int16_t new = htons(hi ? ( v << 8) : v); 2140 2141 if (*f == v) 2142 return; 2143 2144 *f = v; 2145 2146 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2147 return; 2148 2149 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2150 } 2151 2152 void 2153 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2154 bool hi, u_int8_t udp) 2155 { 2156 u_int8_t *fb = (u_int8_t *)f; 2157 u_int8_t *vb = (u_int8_t *)&v; 2158 2159 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2160 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2161 } 2162 2163 void 2164 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2165 bool hi, u_int8_t udp) 2166 { 2167 u_int8_t *fb = (u_int8_t *)f; 2168 u_int8_t *vb = (u_int8_t *)&v; 2169 2170 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2171 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2172 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2173 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2174 } 2175 2176 u_int16_t 2177 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2178 u_int16_t new, u_int8_t udp) 2179 { 2180 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2181 return (cksum); 2182 2183 return (pf_cksum_fixup(cksum, old, new, udp)); 2184 } 2185 2186 static void 2187 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2188 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2189 sa_family_t af) 2190 { 2191 struct pf_addr ao; 2192 u_int16_t po = *p; 2193 2194 PF_ACPY(&ao, a, af); 2195 PF_ACPY(a, an, af); 2196 2197 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2198 *pc = ~*pc; 2199 2200 *p = pn; 2201 2202 switch (af) { 2203 #ifdef INET 2204 case AF_INET: 2205 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2206 ao.addr16[0], an->addr16[0], 0), 2207 ao.addr16[1], an->addr16[1], 0); 2208 *p = pn; 2209 2210 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2211 ao.addr16[0], an->addr16[0], u), 2212 ao.addr16[1], an->addr16[1], u); 2213 2214 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2215 break; 2216 #endif /* INET */ 2217 #ifdef INET6 2218 case AF_INET6: 2219 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2220 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2221 pf_cksum_fixup(pf_cksum_fixup(*pc, 2222 ao.addr16[0], an->addr16[0], u), 2223 ao.addr16[1], an->addr16[1], u), 2224 ao.addr16[2], an->addr16[2], u), 2225 ao.addr16[3], an->addr16[3], u), 2226 ao.addr16[4], an->addr16[4], u), 2227 ao.addr16[5], an->addr16[5], u), 2228 ao.addr16[6], an->addr16[6], u), 2229 ao.addr16[7], an->addr16[7], u); 2230 2231 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2232 break; 2233 #endif /* INET6 */ 2234 } 2235 2236 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2237 CSUM_DELAY_DATA_IPV6)) { 2238 *pc = ~*pc; 2239 if (! *pc) 2240 *pc = 0xffff; 2241 } 2242 } 2243 2244 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2245 void 2246 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2247 { 2248 u_int32_t ao; 2249 2250 memcpy(&ao, a, sizeof(ao)); 2251 memcpy(a, &an, sizeof(u_int32_t)); 2252 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2253 ao % 65536, an % 65536, u); 2254 } 2255 2256 void 2257 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2258 { 2259 u_int32_t ao; 2260 2261 memcpy(&ao, a, sizeof(ao)); 2262 memcpy(a, &an, sizeof(u_int32_t)); 2263 2264 *c = pf_proto_cksum_fixup(m, 2265 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2266 ao % 65536, an % 65536, udp); 2267 } 2268 2269 #ifdef INET6 2270 static void 2271 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2272 { 2273 struct pf_addr ao; 2274 2275 PF_ACPY(&ao, a, AF_INET6); 2276 PF_ACPY(a, an, AF_INET6); 2277 2278 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2279 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2280 pf_cksum_fixup(pf_cksum_fixup(*c, 2281 ao.addr16[0], an->addr16[0], u), 2282 ao.addr16[1], an->addr16[1], u), 2283 ao.addr16[2], an->addr16[2], u), 2284 ao.addr16[3], an->addr16[3], u), 2285 ao.addr16[4], an->addr16[4], u), 2286 ao.addr16[5], an->addr16[5], u), 2287 ao.addr16[6], an->addr16[6], u), 2288 ao.addr16[7], an->addr16[7], u); 2289 } 2290 #endif /* INET6 */ 2291 2292 static void 2293 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2294 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2295 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2296 { 2297 struct pf_addr oia, ooa; 2298 2299 PF_ACPY(&oia, ia, af); 2300 if (oa) 2301 PF_ACPY(&ooa, oa, af); 2302 2303 /* Change inner protocol port, fix inner protocol checksum. */ 2304 if (ip != NULL) { 2305 u_int16_t oip = *ip; 2306 u_int32_t opc; 2307 2308 if (pc != NULL) 2309 opc = *pc; 2310 *ip = np; 2311 if (pc != NULL) 2312 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2313 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2314 if (pc != NULL) 2315 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2316 } 2317 /* Change inner ip address, fix inner ip and icmp checksums. */ 2318 PF_ACPY(ia, na, af); 2319 switch (af) { 2320 #ifdef INET 2321 case AF_INET: { 2322 u_int32_t oh2c = *h2c; 2323 2324 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2325 oia.addr16[0], ia->addr16[0], 0), 2326 oia.addr16[1], ia->addr16[1], 0); 2327 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2328 oia.addr16[0], ia->addr16[0], 0), 2329 oia.addr16[1], ia->addr16[1], 0); 2330 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2331 break; 2332 } 2333 #endif /* INET */ 2334 #ifdef INET6 2335 case AF_INET6: 2336 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2337 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2338 pf_cksum_fixup(pf_cksum_fixup(*ic, 2339 oia.addr16[0], ia->addr16[0], u), 2340 oia.addr16[1], ia->addr16[1], u), 2341 oia.addr16[2], ia->addr16[2], u), 2342 oia.addr16[3], ia->addr16[3], u), 2343 oia.addr16[4], ia->addr16[4], u), 2344 oia.addr16[5], ia->addr16[5], u), 2345 oia.addr16[6], ia->addr16[6], u), 2346 oia.addr16[7], ia->addr16[7], u); 2347 break; 2348 #endif /* INET6 */ 2349 } 2350 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2351 if (oa) { 2352 PF_ACPY(oa, na, af); 2353 switch (af) { 2354 #ifdef INET 2355 case AF_INET: 2356 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2357 ooa.addr16[0], oa->addr16[0], 0), 2358 ooa.addr16[1], oa->addr16[1], 0); 2359 break; 2360 #endif /* INET */ 2361 #ifdef INET6 2362 case AF_INET6: 2363 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2364 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2365 pf_cksum_fixup(pf_cksum_fixup(*ic, 2366 ooa.addr16[0], oa->addr16[0], u), 2367 ooa.addr16[1], oa->addr16[1], u), 2368 ooa.addr16[2], oa->addr16[2], u), 2369 ooa.addr16[3], oa->addr16[3], u), 2370 ooa.addr16[4], oa->addr16[4], u), 2371 ooa.addr16[5], oa->addr16[5], u), 2372 ooa.addr16[6], oa->addr16[6], u), 2373 ooa.addr16[7], oa->addr16[7], u); 2374 break; 2375 #endif /* INET6 */ 2376 } 2377 } 2378 } 2379 2380 /* 2381 * Need to modulate the sequence numbers in the TCP SACK option 2382 * (credits to Krzysztof Pfaff for report and patch) 2383 */ 2384 static int 2385 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2386 struct tcphdr *th, struct pf_state_peer *dst) 2387 { 2388 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2389 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2390 int copyback = 0, i, olen; 2391 struct sackblk sack; 2392 2393 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2394 if (hlen < TCPOLEN_SACKLEN || 2395 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2396 return 0; 2397 2398 while (hlen >= TCPOLEN_SACKLEN) { 2399 size_t startoff = opt - opts; 2400 olen = opt[1]; 2401 switch (*opt) { 2402 case TCPOPT_EOL: /* FALLTHROUGH */ 2403 case TCPOPT_NOP: 2404 opt++; 2405 hlen--; 2406 break; 2407 case TCPOPT_SACK: 2408 if (olen > hlen) 2409 olen = hlen; 2410 if (olen >= TCPOLEN_SACKLEN) { 2411 for (i = 2; i + TCPOLEN_SACK <= olen; 2412 i += TCPOLEN_SACK) { 2413 memcpy(&sack, &opt[i], sizeof(sack)); 2414 pf_patch_32_unaligned(m, 2415 &th->th_sum, &sack.start, 2416 htonl(ntohl(sack.start) - dst->seqdiff), 2417 PF_ALGNMNT(startoff), 2418 0); 2419 pf_patch_32_unaligned(m, &th->th_sum, 2420 &sack.end, 2421 htonl(ntohl(sack.end) - dst->seqdiff), 2422 PF_ALGNMNT(startoff), 2423 0); 2424 memcpy(&opt[i], &sack, sizeof(sack)); 2425 } 2426 copyback = 1; 2427 } 2428 /* FALLTHROUGH */ 2429 default: 2430 if (olen < 2) 2431 olen = 2; 2432 hlen -= olen; 2433 opt += olen; 2434 } 2435 } 2436 2437 if (copyback) 2438 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2439 return (copyback); 2440 } 2441 2442 static void 2443 pf_send_tcp(struct mbuf *replyto, const struct pf_krule *r, sa_family_t af, 2444 const struct pf_addr *saddr, const struct pf_addr *daddr, 2445 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2446 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2447 u_int16_t rtag, struct ifnet *ifp) 2448 { 2449 struct pf_send_entry *pfse; 2450 struct mbuf *m; 2451 int len, tlen; 2452 #ifdef INET 2453 struct ip *h = NULL; 2454 #endif /* INET */ 2455 #ifdef INET6 2456 struct ip6_hdr *h6 = NULL; 2457 #endif /* INET6 */ 2458 struct tcphdr *th; 2459 char *opt; 2460 struct pf_mtag *pf_mtag; 2461 2462 len = 0; 2463 th = NULL; 2464 2465 /* maximum segment size tcp option */ 2466 tlen = sizeof(struct tcphdr); 2467 if (mss) 2468 tlen += 4; 2469 2470 switch (af) { 2471 #ifdef INET 2472 case AF_INET: 2473 len = sizeof(struct ip) + tlen; 2474 break; 2475 #endif /* INET */ 2476 #ifdef INET6 2477 case AF_INET6: 2478 len = sizeof(struct ip6_hdr) + tlen; 2479 break; 2480 #endif /* INET6 */ 2481 default: 2482 panic("%s: unsupported af %d", __func__, af); 2483 } 2484 2485 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2486 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2487 if (pfse == NULL) 2488 return; 2489 m = m_gethdr(M_NOWAIT, MT_DATA); 2490 if (m == NULL) { 2491 free(pfse, M_PFTEMP); 2492 return; 2493 } 2494 #ifdef MAC 2495 mac_netinet_firewall_send(m); 2496 #endif 2497 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2498 free(pfse, M_PFTEMP); 2499 m_freem(m); 2500 return; 2501 } 2502 if (tag) 2503 m->m_flags |= M_SKIP_FIREWALL; 2504 pf_mtag->tag = rtag; 2505 2506 if (r != NULL && r->rtableid >= 0) 2507 M_SETFIB(m, r->rtableid); 2508 2509 #ifdef ALTQ 2510 if (r != NULL && r->qid) { 2511 pf_mtag->qid = r->qid; 2512 2513 /* add hints for ecn */ 2514 pf_mtag->hdr = mtod(m, struct ip *); 2515 } 2516 #endif /* ALTQ */ 2517 m->m_data += max_linkhdr; 2518 m->m_pkthdr.len = m->m_len = len; 2519 m->m_pkthdr.rcvif = NULL; 2520 bzero(m->m_data, len); 2521 switch (af) { 2522 #ifdef INET 2523 case AF_INET: 2524 h = mtod(m, struct ip *); 2525 2526 /* IP header fields included in the TCP checksum */ 2527 h->ip_p = IPPROTO_TCP; 2528 h->ip_len = htons(tlen); 2529 h->ip_src.s_addr = saddr->v4.s_addr; 2530 h->ip_dst.s_addr = daddr->v4.s_addr; 2531 2532 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2533 break; 2534 #endif /* INET */ 2535 #ifdef INET6 2536 case AF_INET6: 2537 h6 = mtod(m, struct ip6_hdr *); 2538 2539 /* IP header fields included in the TCP checksum */ 2540 h6->ip6_nxt = IPPROTO_TCP; 2541 h6->ip6_plen = htons(tlen); 2542 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2543 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2544 2545 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2546 break; 2547 #endif /* INET6 */ 2548 } 2549 2550 /* TCP header */ 2551 th->th_sport = sport; 2552 th->th_dport = dport; 2553 th->th_seq = htonl(seq); 2554 th->th_ack = htonl(ack); 2555 th->th_off = tlen >> 2; 2556 th->th_flags = flags; 2557 th->th_win = htons(win); 2558 2559 if (mss) { 2560 opt = (char *)(th + 1); 2561 opt[0] = TCPOPT_MAXSEG; 2562 opt[1] = 4; 2563 HTONS(mss); 2564 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2565 } 2566 2567 switch (af) { 2568 #ifdef INET 2569 case AF_INET: 2570 /* TCP checksum */ 2571 th->th_sum = in_cksum(m, len); 2572 2573 /* Finish the IP header */ 2574 h->ip_v = 4; 2575 h->ip_hl = sizeof(*h) >> 2; 2576 h->ip_tos = IPTOS_LOWDELAY; 2577 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2578 h->ip_len = htons(len); 2579 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2580 h->ip_sum = 0; 2581 2582 pfse->pfse_type = PFSE_IP; 2583 break; 2584 #endif /* INET */ 2585 #ifdef INET6 2586 case AF_INET6: 2587 /* TCP checksum */ 2588 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2589 sizeof(struct ip6_hdr), tlen); 2590 2591 h6->ip6_vfc |= IPV6_VERSION; 2592 h6->ip6_hlim = IPV6_DEFHLIM; 2593 2594 pfse->pfse_type = PFSE_IP6; 2595 break; 2596 #endif /* INET6 */ 2597 } 2598 pfse->pfse_m = m; 2599 pf_send(pfse); 2600 } 2601 2602 static void 2603 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2604 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2605 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2606 u_short *reason) 2607 { 2608 struct pf_addr * const saddr = pd->src; 2609 struct pf_addr * const daddr = pd->dst; 2610 sa_family_t af = pd->af; 2611 2612 /* undo NAT changes, if they have taken place */ 2613 if (nr != NULL) { 2614 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2615 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2616 if (pd->sport) 2617 *pd->sport = sk->port[pd->sidx]; 2618 if (pd->dport) 2619 *pd->dport = sk->port[pd->didx]; 2620 if (pd->proto_sum) 2621 *pd->proto_sum = bproto_sum; 2622 if (pd->ip_sum) 2623 *pd->ip_sum = bip_sum; 2624 m_copyback(m, off, hdrlen, pd->hdr.any); 2625 } 2626 if (pd->proto == IPPROTO_TCP && 2627 ((r->rule_flag & PFRULE_RETURNRST) || 2628 (r->rule_flag & PFRULE_RETURN)) && 2629 !(th->th_flags & TH_RST)) { 2630 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2631 int len = 0; 2632 #ifdef INET 2633 struct ip *h4; 2634 #endif 2635 #ifdef INET6 2636 struct ip6_hdr *h6; 2637 #endif 2638 2639 switch (af) { 2640 #ifdef INET 2641 case AF_INET: 2642 h4 = mtod(m, struct ip *); 2643 len = ntohs(h4->ip_len) - off; 2644 break; 2645 #endif 2646 #ifdef INET6 2647 case AF_INET6: 2648 h6 = mtod(m, struct ip6_hdr *); 2649 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2650 break; 2651 #endif 2652 } 2653 2654 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2655 REASON_SET(reason, PFRES_PROTCKSUM); 2656 else { 2657 if (th->th_flags & TH_SYN) 2658 ack++; 2659 if (th->th_flags & TH_FIN) 2660 ack++; 2661 pf_send_tcp(m, r, af, pd->dst, 2662 pd->src, th->th_dport, th->th_sport, 2663 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2664 r->return_ttl, 1, 0, kif->pfik_ifp); 2665 } 2666 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2667 r->return_icmp) 2668 pf_send_icmp(m, r->return_icmp >> 8, 2669 r->return_icmp & 255, af, r); 2670 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2671 r->return_icmp6) 2672 pf_send_icmp(m, r->return_icmp6 >> 8, 2673 r->return_icmp6 & 255, af, r); 2674 } 2675 2676 static int 2677 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2678 { 2679 struct m_tag *mtag; 2680 2681 KASSERT(prio <= PF_PRIO_MAX, 2682 ("%s with invalid pcp", __func__)); 2683 2684 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2685 if (mtag == NULL) { 2686 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2687 sizeof(uint8_t), M_NOWAIT); 2688 if (mtag == NULL) 2689 return (ENOMEM); 2690 m_tag_prepend(m, mtag); 2691 } 2692 2693 *(uint8_t *)(mtag + 1) = prio; 2694 return (0); 2695 } 2696 2697 static int 2698 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2699 { 2700 struct m_tag *mtag; 2701 u_int8_t mpcp; 2702 2703 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2704 if (mtag == NULL) 2705 return (0); 2706 2707 if (prio == PF_PRIO_ZERO) 2708 prio = 0; 2709 2710 mpcp = *(uint8_t *)(mtag + 1); 2711 2712 return (mpcp == prio); 2713 } 2714 2715 static void 2716 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2717 struct pf_krule *r) 2718 { 2719 struct pf_send_entry *pfse; 2720 struct mbuf *m0; 2721 struct pf_mtag *pf_mtag; 2722 2723 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2724 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2725 if (pfse == NULL) 2726 return; 2727 2728 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2729 free(pfse, M_PFTEMP); 2730 return; 2731 } 2732 2733 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2734 free(pfse, M_PFTEMP); 2735 return; 2736 } 2737 /* XXX: revisit */ 2738 m0->m_flags |= M_SKIP_FIREWALL; 2739 2740 if (r->rtableid >= 0) 2741 M_SETFIB(m0, r->rtableid); 2742 2743 #ifdef ALTQ 2744 if (r->qid) { 2745 pf_mtag->qid = r->qid; 2746 /* add hints for ecn */ 2747 pf_mtag->hdr = mtod(m0, struct ip *); 2748 } 2749 #endif /* ALTQ */ 2750 2751 switch (af) { 2752 #ifdef INET 2753 case AF_INET: 2754 pfse->pfse_type = PFSE_ICMP; 2755 break; 2756 #endif /* INET */ 2757 #ifdef INET6 2758 case AF_INET6: 2759 pfse->pfse_type = PFSE_ICMP6; 2760 break; 2761 #endif /* INET6 */ 2762 } 2763 pfse->pfse_m = m0; 2764 pfse->icmpopts.type = type; 2765 pfse->icmpopts.code = code; 2766 pf_send(pfse); 2767 } 2768 2769 /* 2770 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2771 * If n is 0, they match if they are equal. If n is != 0, they match if they 2772 * are different. 2773 */ 2774 int 2775 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2776 struct pf_addr *b, sa_family_t af) 2777 { 2778 int match = 0; 2779 2780 switch (af) { 2781 #ifdef INET 2782 case AF_INET: 2783 if ((a->addr32[0] & m->addr32[0]) == 2784 (b->addr32[0] & m->addr32[0])) 2785 match++; 2786 break; 2787 #endif /* INET */ 2788 #ifdef INET6 2789 case AF_INET6: 2790 if (((a->addr32[0] & m->addr32[0]) == 2791 (b->addr32[0] & m->addr32[0])) && 2792 ((a->addr32[1] & m->addr32[1]) == 2793 (b->addr32[1] & m->addr32[1])) && 2794 ((a->addr32[2] & m->addr32[2]) == 2795 (b->addr32[2] & m->addr32[2])) && 2796 ((a->addr32[3] & m->addr32[3]) == 2797 (b->addr32[3] & m->addr32[3]))) 2798 match++; 2799 break; 2800 #endif /* INET6 */ 2801 } 2802 if (match) { 2803 if (n) 2804 return (0); 2805 else 2806 return (1); 2807 } else { 2808 if (n) 2809 return (1); 2810 else 2811 return (0); 2812 } 2813 } 2814 2815 /* 2816 * Return 1 if b <= a <= e, otherwise return 0. 2817 */ 2818 int 2819 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2820 struct pf_addr *a, sa_family_t af) 2821 { 2822 switch (af) { 2823 #ifdef INET 2824 case AF_INET: 2825 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2826 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2827 return (0); 2828 break; 2829 #endif /* INET */ 2830 #ifdef INET6 2831 case AF_INET6: { 2832 int i; 2833 2834 /* check a >= b */ 2835 for (i = 0; i < 4; ++i) 2836 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2837 break; 2838 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2839 return (0); 2840 /* check a <= e */ 2841 for (i = 0; i < 4; ++i) 2842 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2843 break; 2844 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2845 return (0); 2846 break; 2847 } 2848 #endif /* INET6 */ 2849 } 2850 return (1); 2851 } 2852 2853 static int 2854 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2855 { 2856 switch (op) { 2857 case PF_OP_IRG: 2858 return ((p > a1) && (p < a2)); 2859 case PF_OP_XRG: 2860 return ((p < a1) || (p > a2)); 2861 case PF_OP_RRG: 2862 return ((p >= a1) && (p <= a2)); 2863 case PF_OP_EQ: 2864 return (p == a1); 2865 case PF_OP_NE: 2866 return (p != a1); 2867 case PF_OP_LT: 2868 return (p < a1); 2869 case PF_OP_LE: 2870 return (p <= a1); 2871 case PF_OP_GT: 2872 return (p > a1); 2873 case PF_OP_GE: 2874 return (p >= a1); 2875 } 2876 return (0); /* never reached */ 2877 } 2878 2879 int 2880 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2881 { 2882 NTOHS(a1); 2883 NTOHS(a2); 2884 NTOHS(p); 2885 return (pf_match(op, a1, a2, p)); 2886 } 2887 2888 static int 2889 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2890 { 2891 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2892 return (0); 2893 return (pf_match(op, a1, a2, u)); 2894 } 2895 2896 static int 2897 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2898 { 2899 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2900 return (0); 2901 return (pf_match(op, a1, a2, g)); 2902 } 2903 2904 int 2905 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 2906 { 2907 if (*tag == -1) 2908 *tag = mtag; 2909 2910 return ((!r->match_tag_not && r->match_tag == *tag) || 2911 (r->match_tag_not && r->match_tag != *tag)); 2912 } 2913 2914 int 2915 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2916 { 2917 2918 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2919 2920 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2921 return (ENOMEM); 2922 2923 pd->pf_mtag->tag = tag; 2924 2925 return (0); 2926 } 2927 2928 #define PF_ANCHOR_STACKSIZE 32 2929 struct pf_kanchor_stackframe { 2930 struct pf_kruleset *rs; 2931 struct pf_krule *r; /* XXX: + match bit */ 2932 struct pf_kanchor *child; 2933 }; 2934 2935 /* 2936 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2937 */ 2938 #define PF_ANCHORSTACK_MATCH 0x00000001 2939 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2940 2941 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2942 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 2943 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2944 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2945 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2946 } while (0) 2947 2948 void 2949 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2950 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2951 int *match) 2952 { 2953 struct pf_kanchor_stackframe *f; 2954 2955 PF_RULES_RASSERT(); 2956 2957 if (match) 2958 *match = 0; 2959 if (*depth >= PF_ANCHOR_STACKSIZE) { 2960 printf("%s: anchor stack overflow on %s\n", 2961 __func__, (*r)->anchor->name); 2962 *r = TAILQ_NEXT(*r, entries); 2963 return; 2964 } else if (*depth == 0 && a != NULL) 2965 *a = *r; 2966 f = stack + (*depth)++; 2967 f->rs = *rs; 2968 f->r = *r; 2969 if ((*r)->anchor_wildcard) { 2970 struct pf_kanchor_node *parent = &(*r)->anchor->children; 2971 2972 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 2973 *r = NULL; 2974 return; 2975 } 2976 *rs = &f->child->ruleset; 2977 } else { 2978 f->child = NULL; 2979 *rs = &(*r)->anchor->ruleset; 2980 } 2981 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2982 } 2983 2984 int 2985 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2986 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2987 int *match) 2988 { 2989 struct pf_kanchor_stackframe *f; 2990 struct pf_krule *fr; 2991 int quick = 0; 2992 2993 PF_RULES_RASSERT(); 2994 2995 do { 2996 if (*depth <= 0) 2997 break; 2998 f = stack + *depth - 1; 2999 fr = PF_ANCHOR_RULE(f); 3000 if (f->child != NULL) { 3001 struct pf_kanchor_node *parent; 3002 3003 /* 3004 * This block traverses through 3005 * a wildcard anchor. 3006 */ 3007 parent = &fr->anchor->children; 3008 if (match != NULL && *match) { 3009 /* 3010 * If any of "*" matched, then 3011 * "foo/ *" matched, mark frame 3012 * appropriately. 3013 */ 3014 PF_ANCHOR_SET_MATCH(f); 3015 *match = 0; 3016 } 3017 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3018 if (f->child != NULL) { 3019 *rs = &f->child->ruleset; 3020 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3021 if (*r == NULL) 3022 continue; 3023 else 3024 break; 3025 } 3026 } 3027 (*depth)--; 3028 if (*depth == 0 && a != NULL) 3029 *a = NULL; 3030 *rs = f->rs; 3031 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3032 quick = fr->quick; 3033 *r = TAILQ_NEXT(fr, entries); 3034 } while (*r == NULL); 3035 3036 return (quick); 3037 } 3038 3039 #ifdef INET6 3040 void 3041 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3042 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3043 { 3044 switch (af) { 3045 #ifdef INET 3046 case AF_INET: 3047 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3048 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3049 break; 3050 #endif /* INET */ 3051 case AF_INET6: 3052 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3053 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3054 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3055 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3056 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3057 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3058 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3059 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3060 break; 3061 } 3062 } 3063 3064 void 3065 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3066 { 3067 switch (af) { 3068 #ifdef INET 3069 case AF_INET: 3070 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3071 break; 3072 #endif /* INET */ 3073 case AF_INET6: 3074 if (addr->addr32[3] == 0xffffffff) { 3075 addr->addr32[3] = 0; 3076 if (addr->addr32[2] == 0xffffffff) { 3077 addr->addr32[2] = 0; 3078 if (addr->addr32[1] == 0xffffffff) { 3079 addr->addr32[1] = 0; 3080 addr->addr32[0] = 3081 htonl(ntohl(addr->addr32[0]) + 1); 3082 } else 3083 addr->addr32[1] = 3084 htonl(ntohl(addr->addr32[1]) + 1); 3085 } else 3086 addr->addr32[2] = 3087 htonl(ntohl(addr->addr32[2]) + 1); 3088 } else 3089 addr->addr32[3] = 3090 htonl(ntohl(addr->addr32[3]) + 1); 3091 break; 3092 } 3093 } 3094 #endif /* INET6 */ 3095 3096 int 3097 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3098 { 3099 struct pf_addr *saddr, *daddr; 3100 u_int16_t sport, dport; 3101 struct inpcbinfo *pi; 3102 struct inpcb *inp; 3103 3104 pd->lookup.uid = UID_MAX; 3105 pd->lookup.gid = GID_MAX; 3106 3107 switch (pd->proto) { 3108 case IPPROTO_TCP: 3109 if (pd->hdr.tcp == NULL) 3110 return (-1); 3111 sport = pd->hdr.tcp->th_sport; 3112 dport = pd->hdr.tcp->th_dport; 3113 pi = &V_tcbinfo; 3114 break; 3115 case IPPROTO_UDP: 3116 if (pd->hdr.udp == NULL) 3117 return (-1); 3118 sport = pd->hdr.udp->uh_sport; 3119 dport = pd->hdr.udp->uh_dport; 3120 pi = &V_udbinfo; 3121 break; 3122 default: 3123 return (-1); 3124 } 3125 if (direction == PF_IN) { 3126 saddr = pd->src; 3127 daddr = pd->dst; 3128 } else { 3129 u_int16_t p; 3130 3131 p = sport; 3132 sport = dport; 3133 dport = p; 3134 saddr = pd->dst; 3135 daddr = pd->src; 3136 } 3137 switch (pd->af) { 3138 #ifdef INET 3139 case AF_INET: 3140 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3141 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3142 if (inp == NULL) { 3143 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3144 daddr->v4, dport, INPLOOKUP_WILDCARD | 3145 INPLOOKUP_RLOCKPCB, NULL, m); 3146 if (inp == NULL) 3147 return (-1); 3148 } 3149 break; 3150 #endif /* INET */ 3151 #ifdef INET6 3152 case AF_INET6: 3153 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3154 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3155 if (inp == NULL) { 3156 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3157 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3158 INPLOOKUP_RLOCKPCB, NULL, m); 3159 if (inp == NULL) 3160 return (-1); 3161 } 3162 break; 3163 #endif /* INET6 */ 3164 3165 default: 3166 return (-1); 3167 } 3168 INP_RLOCK_ASSERT(inp); 3169 pd->lookup.uid = inp->inp_cred->cr_uid; 3170 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3171 INP_RUNLOCK(inp); 3172 3173 return (1); 3174 } 3175 3176 static u_int8_t 3177 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3178 { 3179 int hlen; 3180 u_int8_t hdr[60]; 3181 u_int8_t *opt, optlen; 3182 u_int8_t wscale = 0; 3183 3184 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3185 if (hlen <= sizeof(struct tcphdr)) 3186 return (0); 3187 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3188 return (0); 3189 opt = hdr + sizeof(struct tcphdr); 3190 hlen -= sizeof(struct tcphdr); 3191 while (hlen >= 3) { 3192 switch (*opt) { 3193 case TCPOPT_EOL: 3194 case TCPOPT_NOP: 3195 ++opt; 3196 --hlen; 3197 break; 3198 case TCPOPT_WINDOW: 3199 wscale = opt[2]; 3200 if (wscale > TCP_MAX_WINSHIFT) 3201 wscale = TCP_MAX_WINSHIFT; 3202 wscale |= PF_WSCALE_FLAG; 3203 /* FALLTHROUGH */ 3204 default: 3205 optlen = opt[1]; 3206 if (optlen < 2) 3207 optlen = 2; 3208 hlen -= optlen; 3209 opt += optlen; 3210 break; 3211 } 3212 } 3213 return (wscale); 3214 } 3215 3216 static u_int16_t 3217 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3218 { 3219 int hlen; 3220 u_int8_t hdr[60]; 3221 u_int8_t *opt, optlen; 3222 u_int16_t mss = V_tcp_mssdflt; 3223 3224 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3225 if (hlen <= sizeof(struct tcphdr)) 3226 return (0); 3227 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3228 return (0); 3229 opt = hdr + sizeof(struct tcphdr); 3230 hlen -= sizeof(struct tcphdr); 3231 while (hlen >= TCPOLEN_MAXSEG) { 3232 switch (*opt) { 3233 case TCPOPT_EOL: 3234 case TCPOPT_NOP: 3235 ++opt; 3236 --hlen; 3237 break; 3238 case TCPOPT_MAXSEG: 3239 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3240 NTOHS(mss); 3241 /* FALLTHROUGH */ 3242 default: 3243 optlen = opt[1]; 3244 if (optlen < 2) 3245 optlen = 2; 3246 hlen -= optlen; 3247 opt += optlen; 3248 break; 3249 } 3250 } 3251 return (mss); 3252 } 3253 3254 static u_int16_t 3255 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3256 { 3257 struct nhop_object *nh; 3258 #ifdef INET6 3259 struct in6_addr dst6; 3260 uint32_t scopeid; 3261 #endif /* INET6 */ 3262 int hlen = 0; 3263 uint16_t mss = 0; 3264 3265 NET_EPOCH_ASSERT(); 3266 3267 switch (af) { 3268 #ifdef INET 3269 case AF_INET: 3270 hlen = sizeof(struct ip); 3271 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3272 if (nh != NULL) 3273 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3274 break; 3275 #endif /* INET */ 3276 #ifdef INET6 3277 case AF_INET6: 3278 hlen = sizeof(struct ip6_hdr); 3279 in6_splitscope(&addr->v6, &dst6, &scopeid); 3280 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3281 if (nh != NULL) 3282 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3283 break; 3284 #endif /* INET6 */ 3285 } 3286 3287 mss = max(V_tcp_mssdflt, mss); 3288 mss = min(mss, offer); 3289 mss = max(mss, 64); /* sanity - at least max opt space */ 3290 return (mss); 3291 } 3292 3293 static u_int32_t 3294 pf_tcp_iss(struct pf_pdesc *pd) 3295 { 3296 MD5_CTX ctx; 3297 u_int32_t digest[4]; 3298 3299 if (V_pf_tcp_secret_init == 0) { 3300 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3301 MD5Init(&V_pf_tcp_secret_ctx); 3302 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3303 sizeof(V_pf_tcp_secret)); 3304 V_pf_tcp_secret_init = 1; 3305 } 3306 3307 ctx = V_pf_tcp_secret_ctx; 3308 3309 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3310 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3311 if (pd->af == AF_INET6) { 3312 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3313 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3314 } else { 3315 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3316 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3317 } 3318 MD5Final((u_char *)digest, &ctx); 3319 V_pf_tcp_iss_off += 4096; 3320 #define ISN_RANDOM_INCREMENT (4096 - 1) 3321 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3322 V_pf_tcp_iss_off); 3323 #undef ISN_RANDOM_INCREMENT 3324 } 3325 3326 static int 3327 pf_test_rule(struct pf_krule **rm, struct pf_state **sm, int direction, 3328 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3329 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3330 { 3331 struct pf_krule *nr = NULL; 3332 struct pf_addr * const saddr = pd->src; 3333 struct pf_addr * const daddr = pd->dst; 3334 sa_family_t af = pd->af; 3335 struct pf_krule *r, *a = NULL; 3336 struct pf_kruleset *ruleset = NULL; 3337 struct pf_ksrc_node *nsn = NULL; 3338 struct tcphdr *th = pd->hdr.tcp; 3339 struct pf_state_key *sk = NULL, *nk = NULL; 3340 u_short reason; 3341 int rewrite = 0, hdrlen = 0; 3342 int tag = -1, rtableid = -1; 3343 int asd = 0; 3344 int match = 0; 3345 int state_icmp = 0; 3346 u_int16_t sport = 0, dport = 0; 3347 u_int16_t bproto_sum = 0, bip_sum = 0; 3348 u_int8_t icmptype = 0, icmpcode = 0; 3349 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3350 3351 PF_RULES_RASSERT(); 3352 3353 if (inp != NULL) { 3354 INP_LOCK_ASSERT(inp); 3355 pd->lookup.uid = inp->inp_cred->cr_uid; 3356 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3357 pd->lookup.done = 1; 3358 } 3359 3360 switch (pd->proto) { 3361 case IPPROTO_TCP: 3362 sport = th->th_sport; 3363 dport = th->th_dport; 3364 hdrlen = sizeof(*th); 3365 break; 3366 case IPPROTO_UDP: 3367 sport = pd->hdr.udp->uh_sport; 3368 dport = pd->hdr.udp->uh_dport; 3369 hdrlen = sizeof(*pd->hdr.udp); 3370 break; 3371 #ifdef INET 3372 case IPPROTO_ICMP: 3373 if (pd->af != AF_INET) 3374 break; 3375 sport = dport = pd->hdr.icmp->icmp_id; 3376 hdrlen = sizeof(*pd->hdr.icmp); 3377 icmptype = pd->hdr.icmp->icmp_type; 3378 icmpcode = pd->hdr.icmp->icmp_code; 3379 3380 if (icmptype == ICMP_UNREACH || 3381 icmptype == ICMP_SOURCEQUENCH || 3382 icmptype == ICMP_REDIRECT || 3383 icmptype == ICMP_TIMXCEED || 3384 icmptype == ICMP_PARAMPROB) 3385 state_icmp++; 3386 break; 3387 #endif /* INET */ 3388 #ifdef INET6 3389 case IPPROTO_ICMPV6: 3390 if (af != AF_INET6) 3391 break; 3392 sport = dport = pd->hdr.icmp6->icmp6_id; 3393 hdrlen = sizeof(*pd->hdr.icmp6); 3394 icmptype = pd->hdr.icmp6->icmp6_type; 3395 icmpcode = pd->hdr.icmp6->icmp6_code; 3396 3397 if (icmptype == ICMP6_DST_UNREACH || 3398 icmptype == ICMP6_PACKET_TOO_BIG || 3399 icmptype == ICMP6_TIME_EXCEEDED || 3400 icmptype == ICMP6_PARAM_PROB) 3401 state_icmp++; 3402 break; 3403 #endif /* INET6 */ 3404 default: 3405 sport = dport = hdrlen = 0; 3406 break; 3407 } 3408 3409 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3410 3411 /* check packet for BINAT/NAT/RDR */ 3412 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3413 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3414 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3415 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3416 3417 if (pd->ip_sum) 3418 bip_sum = *pd->ip_sum; 3419 3420 switch (pd->proto) { 3421 case IPPROTO_TCP: 3422 bproto_sum = th->th_sum; 3423 pd->proto_sum = &th->th_sum; 3424 3425 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3426 nk->port[pd->sidx] != sport) { 3427 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3428 &th->th_sum, &nk->addr[pd->sidx], 3429 nk->port[pd->sidx], 0, af); 3430 pd->sport = &th->th_sport; 3431 sport = th->th_sport; 3432 } 3433 3434 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3435 nk->port[pd->didx] != dport) { 3436 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3437 &th->th_sum, &nk->addr[pd->didx], 3438 nk->port[pd->didx], 0, af); 3439 dport = th->th_dport; 3440 pd->dport = &th->th_dport; 3441 } 3442 rewrite++; 3443 break; 3444 case IPPROTO_UDP: 3445 bproto_sum = pd->hdr.udp->uh_sum; 3446 pd->proto_sum = &pd->hdr.udp->uh_sum; 3447 3448 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3449 nk->port[pd->sidx] != sport) { 3450 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3451 pd->ip_sum, &pd->hdr.udp->uh_sum, 3452 &nk->addr[pd->sidx], 3453 nk->port[pd->sidx], 1, af); 3454 sport = pd->hdr.udp->uh_sport; 3455 pd->sport = &pd->hdr.udp->uh_sport; 3456 } 3457 3458 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3459 nk->port[pd->didx] != dport) { 3460 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3461 pd->ip_sum, &pd->hdr.udp->uh_sum, 3462 &nk->addr[pd->didx], 3463 nk->port[pd->didx], 1, af); 3464 dport = pd->hdr.udp->uh_dport; 3465 pd->dport = &pd->hdr.udp->uh_dport; 3466 } 3467 rewrite++; 3468 break; 3469 #ifdef INET 3470 case IPPROTO_ICMP: 3471 nk->port[0] = nk->port[1]; 3472 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3473 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3474 nk->addr[pd->sidx].v4.s_addr, 0); 3475 3476 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3477 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3478 nk->addr[pd->didx].v4.s_addr, 0); 3479 3480 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3481 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3482 pd->hdr.icmp->icmp_cksum, sport, 3483 nk->port[1], 0); 3484 pd->hdr.icmp->icmp_id = nk->port[1]; 3485 pd->sport = &pd->hdr.icmp->icmp_id; 3486 } 3487 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3488 break; 3489 #endif /* INET */ 3490 #ifdef INET6 3491 case IPPROTO_ICMPV6: 3492 nk->port[0] = nk->port[1]; 3493 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3494 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3495 &nk->addr[pd->sidx], 0); 3496 3497 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3498 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3499 &nk->addr[pd->didx], 0); 3500 rewrite++; 3501 break; 3502 #endif /* INET */ 3503 default: 3504 switch (af) { 3505 #ifdef INET 3506 case AF_INET: 3507 if (PF_ANEQ(saddr, 3508 &nk->addr[pd->sidx], AF_INET)) 3509 pf_change_a(&saddr->v4.s_addr, 3510 pd->ip_sum, 3511 nk->addr[pd->sidx].v4.s_addr, 0); 3512 3513 if (PF_ANEQ(daddr, 3514 &nk->addr[pd->didx], AF_INET)) 3515 pf_change_a(&daddr->v4.s_addr, 3516 pd->ip_sum, 3517 nk->addr[pd->didx].v4.s_addr, 0); 3518 break; 3519 #endif /* INET */ 3520 #ifdef INET6 3521 case AF_INET6: 3522 if (PF_ANEQ(saddr, 3523 &nk->addr[pd->sidx], AF_INET6)) 3524 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3525 3526 if (PF_ANEQ(daddr, 3527 &nk->addr[pd->didx], AF_INET6)) 3528 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3529 break; 3530 #endif /* INET */ 3531 } 3532 break; 3533 } 3534 if (nr->natpass) 3535 r = NULL; 3536 pd->nat_rule = nr; 3537 } 3538 3539 while (r != NULL) { 3540 counter_u64_add(r->evaluations, 1); 3541 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3542 r = r->skip[PF_SKIP_IFP].ptr; 3543 else if (r->direction && r->direction != direction) 3544 r = r->skip[PF_SKIP_DIR].ptr; 3545 else if (r->af && r->af != af) 3546 r = r->skip[PF_SKIP_AF].ptr; 3547 else if (r->proto && r->proto != pd->proto) 3548 r = r->skip[PF_SKIP_PROTO].ptr; 3549 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3550 r->src.neg, kif, M_GETFIB(m))) 3551 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3552 /* tcp/udp only. port_op always 0 in other cases */ 3553 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3554 r->src.port[0], r->src.port[1], sport)) 3555 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3556 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3557 r->dst.neg, NULL, M_GETFIB(m))) 3558 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3559 /* tcp/udp only. port_op always 0 in other cases */ 3560 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3561 r->dst.port[0], r->dst.port[1], dport)) 3562 r = r->skip[PF_SKIP_DST_PORT].ptr; 3563 /* icmp only. type always 0 in other cases */ 3564 else if (r->type && r->type != icmptype + 1) 3565 r = TAILQ_NEXT(r, entries); 3566 /* icmp only. type always 0 in other cases */ 3567 else if (r->code && r->code != icmpcode + 1) 3568 r = TAILQ_NEXT(r, entries); 3569 else if (r->tos && !(r->tos == pd->tos)) 3570 r = TAILQ_NEXT(r, entries); 3571 else if (r->rule_flag & PFRULE_FRAGMENT) 3572 r = TAILQ_NEXT(r, entries); 3573 else if (pd->proto == IPPROTO_TCP && 3574 (r->flagset & th->th_flags) != r->flags) 3575 r = TAILQ_NEXT(r, entries); 3576 /* tcp/udp only. uid.op always 0 in other cases */ 3577 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3578 pf_socket_lookup(direction, pd, m), 1)) && 3579 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3580 pd->lookup.uid)) 3581 r = TAILQ_NEXT(r, entries); 3582 /* tcp/udp only. gid.op always 0 in other cases */ 3583 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3584 pf_socket_lookup(direction, pd, m), 1)) && 3585 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3586 pd->lookup.gid)) 3587 r = TAILQ_NEXT(r, entries); 3588 else if (r->prio && 3589 !pf_match_ieee8021q_pcp(r->prio, m)) 3590 r = TAILQ_NEXT(r, entries); 3591 else if (r->prob && 3592 r->prob <= arc4random()) 3593 r = TAILQ_NEXT(r, entries); 3594 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3595 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3596 r = TAILQ_NEXT(r, entries); 3597 else if (r->os_fingerprint != PF_OSFP_ANY && 3598 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3599 pf_osfp_fingerprint(pd, m, off, th), 3600 r->os_fingerprint))) 3601 r = TAILQ_NEXT(r, entries); 3602 else { 3603 if (r->tag) 3604 tag = r->tag; 3605 if (r->rtableid >= 0) 3606 rtableid = r->rtableid; 3607 if (r->anchor == NULL) { 3608 match = 1; 3609 *rm = r; 3610 *am = a; 3611 *rsm = ruleset; 3612 if ((*rm)->quick) 3613 break; 3614 r = TAILQ_NEXT(r, entries); 3615 } else 3616 pf_step_into_anchor(anchor_stack, &asd, 3617 &ruleset, PF_RULESET_FILTER, &r, &a, 3618 &match); 3619 } 3620 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3621 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3622 break; 3623 } 3624 r = *rm; 3625 a = *am; 3626 ruleset = *rsm; 3627 3628 REASON_SET(&reason, PFRES_MATCH); 3629 3630 if (r->log || (nr != NULL && nr->log)) { 3631 if (rewrite) 3632 m_copyback(m, off, hdrlen, pd->hdr.any); 3633 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3634 ruleset, pd, 1); 3635 } 3636 3637 if ((r->action == PF_DROP) && 3638 ((r->rule_flag & PFRULE_RETURNRST) || 3639 (r->rule_flag & PFRULE_RETURNICMP) || 3640 (r->rule_flag & PFRULE_RETURN))) { 3641 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3642 bip_sum, hdrlen, &reason); 3643 } 3644 3645 if (r->action == PF_DROP) 3646 goto cleanup; 3647 3648 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3649 REASON_SET(&reason, PFRES_MEMORY); 3650 goto cleanup; 3651 } 3652 if (rtableid >= 0) 3653 M_SETFIB(m, rtableid); 3654 3655 if (!state_icmp && (r->keep_state || nr != NULL || 3656 (pd->flags & PFDESC_TCP_NORM))) { 3657 int action; 3658 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3659 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3660 hdrlen); 3661 if (action != PF_PASS) { 3662 if (action == PF_DROP && 3663 (r->rule_flag & PFRULE_RETURN)) 3664 pf_return(r, nr, pd, sk, off, m, th, kif, 3665 bproto_sum, bip_sum, hdrlen, &reason); 3666 return (action); 3667 } 3668 } else { 3669 if (sk != NULL) 3670 uma_zfree(V_pf_state_key_z, sk); 3671 if (nk != NULL) 3672 uma_zfree(V_pf_state_key_z, nk); 3673 } 3674 3675 /* copy back packet headers if we performed NAT operations */ 3676 if (rewrite) 3677 m_copyback(m, off, hdrlen, pd->hdr.any); 3678 3679 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3680 direction == PF_OUT && 3681 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3682 /* 3683 * We want the state created, but we dont 3684 * want to send this in case a partner 3685 * firewall has to know about it to allow 3686 * replies through it. 3687 */ 3688 return (PF_DEFER); 3689 3690 return (PF_PASS); 3691 3692 cleanup: 3693 if (sk != NULL) 3694 uma_zfree(V_pf_state_key_z, sk); 3695 if (nk != NULL) 3696 uma_zfree(V_pf_state_key_z, nk); 3697 return (PF_DROP); 3698 } 3699 3700 static int 3701 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3702 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3703 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3704 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_state **sm, 3705 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3706 { 3707 struct pf_state *s = NULL; 3708 struct pf_ksrc_node *sn = NULL; 3709 struct tcphdr *th = pd->hdr.tcp; 3710 u_int16_t mss = V_tcp_mssdflt; 3711 u_short reason; 3712 3713 /* check maximums */ 3714 if (r->max_states && 3715 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3716 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3717 REASON_SET(&reason, PFRES_MAXSTATES); 3718 goto csfailed; 3719 } 3720 /* src node for filter rule */ 3721 if ((r->rule_flag & PFRULE_SRCTRACK || 3722 r->rpool.opts & PF_POOL_STICKYADDR) && 3723 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3724 REASON_SET(&reason, PFRES_SRCLIMIT); 3725 goto csfailed; 3726 } 3727 /* src node for translation rule */ 3728 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3729 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3730 REASON_SET(&reason, PFRES_SRCLIMIT); 3731 goto csfailed; 3732 } 3733 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3734 if (s == NULL) { 3735 REASON_SET(&reason, PFRES_MEMORY); 3736 goto csfailed; 3737 } 3738 for (int i = 0; i < 2; i++) { 3739 s->bytes[i] = counter_u64_alloc(M_NOWAIT); 3740 s->packets[i] = counter_u64_alloc(M_NOWAIT); 3741 3742 if (s->bytes[i] == NULL || s->packets[i] == NULL) { 3743 pf_free_state(s); 3744 REASON_SET(&reason, PFRES_MEMORY); 3745 goto csfailed; 3746 } 3747 } 3748 s->rule.ptr = r; 3749 s->nat_rule.ptr = nr; 3750 s->anchor.ptr = a; 3751 STATE_INC_COUNTERS(s); 3752 if (r->allow_opts) 3753 s->state_flags |= PFSTATE_ALLOWOPTS; 3754 if (r->rule_flag & PFRULE_STATESLOPPY) 3755 s->state_flags |= PFSTATE_SLOPPY; 3756 s->log = r->log & PF_LOG_ALL; 3757 s->sync_state = PFSYNC_S_NONE; 3758 if (nr != NULL) 3759 s->log |= nr->log & PF_LOG_ALL; 3760 switch (pd->proto) { 3761 case IPPROTO_TCP: 3762 s->src.seqlo = ntohl(th->th_seq); 3763 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3764 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3765 r->keep_state == PF_STATE_MODULATE) { 3766 /* Generate sequence number modulator */ 3767 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3768 0) 3769 s->src.seqdiff = 1; 3770 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3771 htonl(s->src.seqlo + s->src.seqdiff), 0); 3772 *rewrite = 1; 3773 } else 3774 s->src.seqdiff = 0; 3775 if (th->th_flags & TH_SYN) { 3776 s->src.seqhi++; 3777 s->src.wscale = pf_get_wscale(m, off, 3778 th->th_off, pd->af); 3779 } 3780 s->src.max_win = MAX(ntohs(th->th_win), 1); 3781 if (s->src.wscale & PF_WSCALE_MASK) { 3782 /* Remove scale factor from initial window */ 3783 int win = s->src.max_win; 3784 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3785 s->src.max_win = (win - 1) >> 3786 (s->src.wscale & PF_WSCALE_MASK); 3787 } 3788 if (th->th_flags & TH_FIN) 3789 s->src.seqhi++; 3790 s->dst.seqhi = 1; 3791 s->dst.max_win = 1; 3792 s->src.state = TCPS_SYN_SENT; 3793 s->dst.state = TCPS_CLOSED; 3794 s->timeout = PFTM_TCP_FIRST_PACKET; 3795 break; 3796 case IPPROTO_UDP: 3797 s->src.state = PFUDPS_SINGLE; 3798 s->dst.state = PFUDPS_NO_TRAFFIC; 3799 s->timeout = PFTM_UDP_FIRST_PACKET; 3800 break; 3801 case IPPROTO_ICMP: 3802 #ifdef INET6 3803 case IPPROTO_ICMPV6: 3804 #endif 3805 s->timeout = PFTM_ICMP_FIRST_PACKET; 3806 break; 3807 default: 3808 s->src.state = PFOTHERS_SINGLE; 3809 s->dst.state = PFOTHERS_NO_TRAFFIC; 3810 s->timeout = PFTM_OTHER_FIRST_PACKET; 3811 } 3812 3813 if (r->rt) { 3814 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3815 REASON_SET(&reason, PFRES_MAPFAILED); 3816 pf_src_tree_remove_state(s); 3817 STATE_DEC_COUNTERS(s); 3818 uma_zfree(V_pf_state_z, s); 3819 goto csfailed; 3820 } 3821 s->rt_kif = r->rpool.cur->kif; 3822 } 3823 3824 s->creation = time_uptime; 3825 s->expire = time_uptime; 3826 3827 if (sn != NULL) 3828 s->src_node = sn; 3829 if (nsn != NULL) { 3830 /* XXX We only modify one side for now. */ 3831 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3832 s->nat_src_node = nsn; 3833 } 3834 if (pd->proto == IPPROTO_TCP) { 3835 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3836 off, pd, th, &s->src, &s->dst)) { 3837 REASON_SET(&reason, PFRES_MEMORY); 3838 pf_src_tree_remove_state(s); 3839 STATE_DEC_COUNTERS(s); 3840 uma_zfree(V_pf_state_z, s); 3841 return (PF_DROP); 3842 } 3843 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3844 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3845 &s->src, &s->dst, rewrite)) { 3846 /* This really shouldn't happen!!! */ 3847 DPFPRINTF(PF_DEBUG_URGENT, 3848 ("pf_normalize_tcp_stateful failed on first " 3849 "pkt\n")); 3850 pf_normalize_tcp_cleanup(s); 3851 pf_src_tree_remove_state(s); 3852 STATE_DEC_COUNTERS(s); 3853 uma_zfree(V_pf_state_z, s); 3854 return (PF_DROP); 3855 } 3856 } 3857 s->direction = pd->dir; 3858 3859 /* 3860 * sk/nk could already been setup by pf_get_translation(). 3861 */ 3862 if (nr == NULL) { 3863 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3864 __func__, nr, sk, nk)); 3865 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3866 if (sk == NULL) 3867 goto csfailed; 3868 nk = sk; 3869 } else 3870 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3871 __func__, nr, sk, nk)); 3872 3873 /* Swap sk/nk for PF_OUT. */ 3874 if (pf_state_insert(BOUND_IFACE(r, kif), 3875 (pd->dir == PF_IN) ? sk : nk, 3876 (pd->dir == PF_IN) ? nk : sk, s)) { 3877 if (pd->proto == IPPROTO_TCP) 3878 pf_normalize_tcp_cleanup(s); 3879 REASON_SET(&reason, PFRES_STATEINS); 3880 pf_src_tree_remove_state(s); 3881 STATE_DEC_COUNTERS(s); 3882 uma_zfree(V_pf_state_z, s); 3883 return (PF_DROP); 3884 } else 3885 *sm = s; 3886 3887 if (tag > 0) 3888 s->tag = tag; 3889 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3890 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3891 s->src.state = PF_TCPS_PROXY_SRC; 3892 /* undo NAT changes, if they have taken place */ 3893 if (nr != NULL) { 3894 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3895 if (pd->dir == PF_OUT) 3896 skt = s->key[PF_SK_STACK]; 3897 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3898 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3899 if (pd->sport) 3900 *pd->sport = skt->port[pd->sidx]; 3901 if (pd->dport) 3902 *pd->dport = skt->port[pd->didx]; 3903 if (pd->proto_sum) 3904 *pd->proto_sum = bproto_sum; 3905 if (pd->ip_sum) 3906 *pd->ip_sum = bip_sum; 3907 m_copyback(m, off, hdrlen, pd->hdr.any); 3908 } 3909 s->src.seqhi = htonl(arc4random()); 3910 /* Find mss option */ 3911 int rtid = M_GETFIB(m); 3912 mss = pf_get_mss(m, off, th->th_off, pd->af); 3913 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3914 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3915 s->src.mss = mss; 3916 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3917 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3918 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3919 REASON_SET(&reason, PFRES_SYNPROXY); 3920 return (PF_SYNPROXY_DROP); 3921 } 3922 3923 return (PF_PASS); 3924 3925 csfailed: 3926 if (sk != NULL) 3927 uma_zfree(V_pf_state_key_z, sk); 3928 if (nk != NULL) 3929 uma_zfree(V_pf_state_key_z, nk); 3930 3931 if (sn != NULL) { 3932 struct pf_srchash *sh; 3933 3934 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3935 PF_HASHROW_LOCK(sh); 3936 if (--sn->states == 0 && sn->expire == 0) { 3937 pf_unlink_src_node(sn); 3938 uma_zfree(V_pf_sources_z, sn); 3939 counter_u64_add( 3940 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3941 } 3942 PF_HASHROW_UNLOCK(sh); 3943 } 3944 3945 if (nsn != sn && nsn != NULL) { 3946 struct pf_srchash *sh; 3947 3948 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3949 PF_HASHROW_LOCK(sh); 3950 if (--nsn->states == 0 && nsn->expire == 0) { 3951 pf_unlink_src_node(nsn); 3952 uma_zfree(V_pf_sources_z, nsn); 3953 counter_u64_add( 3954 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3955 } 3956 PF_HASHROW_UNLOCK(sh); 3957 } 3958 3959 return (PF_DROP); 3960 } 3961 3962 static int 3963 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 3964 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 3965 struct pf_kruleset **rsm) 3966 { 3967 struct pf_krule *r, *a = NULL; 3968 struct pf_kruleset *ruleset = NULL; 3969 sa_family_t af = pd->af; 3970 u_short reason; 3971 int tag = -1; 3972 int asd = 0; 3973 int match = 0; 3974 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3975 3976 PF_RULES_RASSERT(); 3977 3978 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3979 while (r != NULL) { 3980 counter_u64_add(r->evaluations, 1); 3981 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3982 r = r->skip[PF_SKIP_IFP].ptr; 3983 else if (r->direction && r->direction != direction) 3984 r = r->skip[PF_SKIP_DIR].ptr; 3985 else if (r->af && r->af != af) 3986 r = r->skip[PF_SKIP_AF].ptr; 3987 else if (r->proto && r->proto != pd->proto) 3988 r = r->skip[PF_SKIP_PROTO].ptr; 3989 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3990 r->src.neg, kif, M_GETFIB(m))) 3991 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3992 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3993 r->dst.neg, NULL, M_GETFIB(m))) 3994 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3995 else if (r->tos && !(r->tos == pd->tos)) 3996 r = TAILQ_NEXT(r, entries); 3997 else if (r->os_fingerprint != PF_OSFP_ANY) 3998 r = TAILQ_NEXT(r, entries); 3999 else if (pd->proto == IPPROTO_UDP && 4000 (r->src.port_op || r->dst.port_op)) 4001 r = TAILQ_NEXT(r, entries); 4002 else if (pd->proto == IPPROTO_TCP && 4003 (r->src.port_op || r->dst.port_op || r->flagset)) 4004 r = TAILQ_NEXT(r, entries); 4005 else if ((pd->proto == IPPROTO_ICMP || 4006 pd->proto == IPPROTO_ICMPV6) && 4007 (r->type || r->code)) 4008 r = TAILQ_NEXT(r, entries); 4009 else if (r->prio && 4010 !pf_match_ieee8021q_pcp(r->prio, m)) 4011 r = TAILQ_NEXT(r, entries); 4012 else if (r->prob && r->prob <= 4013 (arc4random() % (UINT_MAX - 1) + 1)) 4014 r = TAILQ_NEXT(r, entries); 4015 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4016 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4017 r = TAILQ_NEXT(r, entries); 4018 else { 4019 if (r->anchor == NULL) { 4020 match = 1; 4021 *rm = r; 4022 *am = a; 4023 *rsm = ruleset; 4024 if ((*rm)->quick) 4025 break; 4026 r = TAILQ_NEXT(r, entries); 4027 } else 4028 pf_step_into_anchor(anchor_stack, &asd, 4029 &ruleset, PF_RULESET_FILTER, &r, &a, 4030 &match); 4031 } 4032 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4033 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4034 break; 4035 } 4036 r = *rm; 4037 a = *am; 4038 ruleset = *rsm; 4039 4040 REASON_SET(&reason, PFRES_MATCH); 4041 4042 if (r->log) 4043 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4044 1); 4045 4046 if (r->action != PF_PASS) 4047 return (PF_DROP); 4048 4049 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4050 REASON_SET(&reason, PFRES_MEMORY); 4051 return (PF_DROP); 4052 } 4053 4054 return (PF_PASS); 4055 } 4056 4057 static int 4058 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4059 struct pf_state **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4060 struct pf_pdesc *pd, u_short *reason, int *copyback) 4061 { 4062 struct tcphdr *th = pd->hdr.tcp; 4063 u_int16_t win = ntohs(th->th_win); 4064 u_int32_t ack, end, seq, orig_seq; 4065 u_int8_t sws, dws; 4066 int ackskew; 4067 4068 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4069 sws = src->wscale & PF_WSCALE_MASK; 4070 dws = dst->wscale & PF_WSCALE_MASK; 4071 } else 4072 sws = dws = 0; 4073 4074 /* 4075 * Sequence tracking algorithm from Guido van Rooij's paper: 4076 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4077 * tcp_filtering.ps 4078 */ 4079 4080 orig_seq = seq = ntohl(th->th_seq); 4081 if (src->seqlo == 0) { 4082 /* First packet from this end. Set its state */ 4083 4084 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4085 src->scrub == NULL) { 4086 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4087 REASON_SET(reason, PFRES_MEMORY); 4088 return (PF_DROP); 4089 } 4090 } 4091 4092 /* Deferred generation of sequence number modulator */ 4093 if (dst->seqdiff && !src->seqdiff) { 4094 /* use random iss for the TCP server */ 4095 while ((src->seqdiff = arc4random() - seq) == 0) 4096 ; 4097 ack = ntohl(th->th_ack) - dst->seqdiff; 4098 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4099 src->seqdiff), 0); 4100 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4101 *copyback = 1; 4102 } else { 4103 ack = ntohl(th->th_ack); 4104 } 4105 4106 end = seq + pd->p_len; 4107 if (th->th_flags & TH_SYN) { 4108 end++; 4109 if (dst->wscale & PF_WSCALE_FLAG) { 4110 src->wscale = pf_get_wscale(m, off, th->th_off, 4111 pd->af); 4112 if (src->wscale & PF_WSCALE_FLAG) { 4113 /* Remove scale factor from initial 4114 * window */ 4115 sws = src->wscale & PF_WSCALE_MASK; 4116 win = ((u_int32_t)win + (1 << sws) - 1) 4117 >> sws; 4118 dws = dst->wscale & PF_WSCALE_MASK; 4119 } else { 4120 /* fixup other window */ 4121 dst->max_win <<= dst->wscale & 4122 PF_WSCALE_MASK; 4123 /* in case of a retrans SYN|ACK */ 4124 dst->wscale = 0; 4125 } 4126 } 4127 } 4128 if (th->th_flags & TH_FIN) 4129 end++; 4130 4131 src->seqlo = seq; 4132 if (src->state < TCPS_SYN_SENT) 4133 src->state = TCPS_SYN_SENT; 4134 4135 /* 4136 * May need to slide the window (seqhi may have been set by 4137 * the crappy stack check or if we picked up the connection 4138 * after establishment) 4139 */ 4140 if (src->seqhi == 1 || 4141 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4142 src->seqhi = end + MAX(1, dst->max_win << dws); 4143 if (win > src->max_win) 4144 src->max_win = win; 4145 4146 } else { 4147 ack = ntohl(th->th_ack) - dst->seqdiff; 4148 if (src->seqdiff) { 4149 /* Modulate sequence numbers */ 4150 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4151 src->seqdiff), 0); 4152 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4153 *copyback = 1; 4154 } 4155 end = seq + pd->p_len; 4156 if (th->th_flags & TH_SYN) 4157 end++; 4158 if (th->th_flags & TH_FIN) 4159 end++; 4160 } 4161 4162 if ((th->th_flags & TH_ACK) == 0) { 4163 /* Let it pass through the ack skew check */ 4164 ack = dst->seqlo; 4165 } else if ((ack == 0 && 4166 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4167 /* broken tcp stacks do not set ack */ 4168 (dst->state < TCPS_SYN_SENT)) { 4169 /* 4170 * Many stacks (ours included) will set the ACK number in an 4171 * FIN|ACK if the SYN times out -- no sequence to ACK. 4172 */ 4173 ack = dst->seqlo; 4174 } 4175 4176 if (seq == end) { 4177 /* Ease sequencing restrictions on no data packets */ 4178 seq = src->seqlo; 4179 end = seq; 4180 } 4181 4182 ackskew = dst->seqlo - ack; 4183 4184 /* 4185 * Need to demodulate the sequence numbers in any TCP SACK options 4186 * (Selective ACK). We could optionally validate the SACK values 4187 * against the current ACK window, either forwards or backwards, but 4188 * I'm not confident that SACK has been implemented properly 4189 * everywhere. It wouldn't surprise me if several stacks accidentally 4190 * SACK too far backwards of previously ACKed data. There really aren't 4191 * any security implications of bad SACKing unless the target stack 4192 * doesn't validate the option length correctly. Someone trying to 4193 * spoof into a TCP connection won't bother blindly sending SACK 4194 * options anyway. 4195 */ 4196 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4197 if (pf_modulate_sack(m, off, pd, th, dst)) 4198 *copyback = 1; 4199 } 4200 4201 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4202 if (SEQ_GEQ(src->seqhi, end) && 4203 /* Last octet inside other's window space */ 4204 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4205 /* Retrans: not more than one window back */ 4206 (ackskew >= -MAXACKWINDOW) && 4207 /* Acking not more than one reassembled fragment backwards */ 4208 (ackskew <= (MAXACKWINDOW << sws)) && 4209 /* Acking not more than one window forward */ 4210 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4211 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4212 (pd->flags & PFDESC_IP_REAS) == 0)) { 4213 /* Require an exact/+1 sequence match on resets when possible */ 4214 4215 if (dst->scrub || src->scrub) { 4216 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4217 *state, src, dst, copyback)) 4218 return (PF_DROP); 4219 } 4220 4221 /* update max window */ 4222 if (src->max_win < win) 4223 src->max_win = win; 4224 /* synchronize sequencing */ 4225 if (SEQ_GT(end, src->seqlo)) 4226 src->seqlo = end; 4227 /* slide the window of what the other end can send */ 4228 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4229 dst->seqhi = ack + MAX((win << sws), 1); 4230 4231 /* update states */ 4232 if (th->th_flags & TH_SYN) 4233 if (src->state < TCPS_SYN_SENT) 4234 src->state = TCPS_SYN_SENT; 4235 if (th->th_flags & TH_FIN) 4236 if (src->state < TCPS_CLOSING) 4237 src->state = TCPS_CLOSING; 4238 if (th->th_flags & TH_ACK) { 4239 if (dst->state == TCPS_SYN_SENT) { 4240 dst->state = TCPS_ESTABLISHED; 4241 if (src->state == TCPS_ESTABLISHED && 4242 (*state)->src_node != NULL && 4243 pf_src_connlimit(state)) { 4244 REASON_SET(reason, PFRES_SRCLIMIT); 4245 return (PF_DROP); 4246 } 4247 } else if (dst->state == TCPS_CLOSING) 4248 dst->state = TCPS_FIN_WAIT_2; 4249 } 4250 if (th->th_flags & TH_RST) 4251 src->state = dst->state = TCPS_TIME_WAIT; 4252 4253 /* update expire time */ 4254 (*state)->expire = time_uptime; 4255 if (src->state >= TCPS_FIN_WAIT_2 && 4256 dst->state >= TCPS_FIN_WAIT_2) 4257 (*state)->timeout = PFTM_TCP_CLOSED; 4258 else if (src->state >= TCPS_CLOSING && 4259 dst->state >= TCPS_CLOSING) 4260 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4261 else if (src->state < TCPS_ESTABLISHED || 4262 dst->state < TCPS_ESTABLISHED) 4263 (*state)->timeout = PFTM_TCP_OPENING; 4264 else if (src->state >= TCPS_CLOSING || 4265 dst->state >= TCPS_CLOSING) 4266 (*state)->timeout = PFTM_TCP_CLOSING; 4267 else 4268 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4269 4270 /* Fall through to PASS packet */ 4271 4272 } else if ((dst->state < TCPS_SYN_SENT || 4273 dst->state >= TCPS_FIN_WAIT_2 || 4274 src->state >= TCPS_FIN_WAIT_2) && 4275 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4276 /* Within a window forward of the originating packet */ 4277 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4278 /* Within a window backward of the originating packet */ 4279 4280 /* 4281 * This currently handles three situations: 4282 * 1) Stupid stacks will shotgun SYNs before their peer 4283 * replies. 4284 * 2) When PF catches an already established stream (the 4285 * firewall rebooted, the state table was flushed, routes 4286 * changed...) 4287 * 3) Packets get funky immediately after the connection 4288 * closes (this should catch Solaris spurious ACK|FINs 4289 * that web servers like to spew after a close) 4290 * 4291 * This must be a little more careful than the above code 4292 * since packet floods will also be caught here. We don't 4293 * update the TTL here to mitigate the damage of a packet 4294 * flood and so the same code can handle awkward establishment 4295 * and a loosened connection close. 4296 * In the establishment case, a correct peer response will 4297 * validate the connection, go through the normal state code 4298 * and keep updating the state TTL. 4299 */ 4300 4301 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4302 printf("pf: loose state match: "); 4303 pf_print_state(*state); 4304 pf_print_flags(th->th_flags); 4305 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4306 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4307 pd->p_len, ackskew, 4308 (unsigned long long)counter_u64_fetch((*state)->packets[0]), 4309 (unsigned long long)counter_u64_fetch((*state)->packets[1]), 4310 pd->dir == PF_IN ? "in" : "out", 4311 pd->dir == (*state)->direction ? "fwd" : "rev"); 4312 } 4313 4314 if (dst->scrub || src->scrub) { 4315 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4316 *state, src, dst, copyback)) 4317 return (PF_DROP); 4318 } 4319 4320 /* update max window */ 4321 if (src->max_win < win) 4322 src->max_win = win; 4323 /* synchronize sequencing */ 4324 if (SEQ_GT(end, src->seqlo)) 4325 src->seqlo = end; 4326 /* slide the window of what the other end can send */ 4327 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4328 dst->seqhi = ack + MAX((win << sws), 1); 4329 4330 /* 4331 * Cannot set dst->seqhi here since this could be a shotgunned 4332 * SYN and not an already established connection. 4333 */ 4334 4335 if (th->th_flags & TH_FIN) 4336 if (src->state < TCPS_CLOSING) 4337 src->state = TCPS_CLOSING; 4338 if (th->th_flags & TH_RST) 4339 src->state = dst->state = TCPS_TIME_WAIT; 4340 4341 /* Fall through to PASS packet */ 4342 4343 } else { 4344 if ((*state)->dst.state == TCPS_SYN_SENT && 4345 (*state)->src.state == TCPS_SYN_SENT) { 4346 /* Send RST for state mismatches during handshake */ 4347 if (!(th->th_flags & TH_RST)) 4348 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4349 pd->dst, pd->src, th->th_dport, 4350 th->th_sport, ntohl(th->th_ack), 0, 4351 TH_RST, 0, 0, 4352 (*state)->rule.ptr->return_ttl, 1, 0, 4353 kif->pfik_ifp); 4354 src->seqlo = 0; 4355 src->seqhi = 1; 4356 src->max_win = 1; 4357 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4358 printf("pf: BAD state: "); 4359 pf_print_state(*state); 4360 pf_print_flags(th->th_flags); 4361 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4362 "pkts=%llu:%llu dir=%s,%s\n", 4363 seq, orig_seq, ack, pd->p_len, ackskew, 4364 (unsigned long long)counter_u64_fetch((*state)->packets[0]), 4365 (unsigned long long)counter_u64_fetch((*state)->packets[1]), 4366 pd->dir == PF_IN ? "in" : "out", 4367 pd->dir == (*state)->direction ? "fwd" : "rev"); 4368 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4369 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4370 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4371 ' ': '2', 4372 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4373 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4374 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4375 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4376 } 4377 REASON_SET(reason, PFRES_BADSTATE); 4378 return (PF_DROP); 4379 } 4380 4381 return (PF_PASS); 4382 } 4383 4384 static int 4385 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4386 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4387 { 4388 struct tcphdr *th = pd->hdr.tcp; 4389 4390 if (th->th_flags & TH_SYN) 4391 if (src->state < TCPS_SYN_SENT) 4392 src->state = TCPS_SYN_SENT; 4393 if (th->th_flags & TH_FIN) 4394 if (src->state < TCPS_CLOSING) 4395 src->state = TCPS_CLOSING; 4396 if (th->th_flags & TH_ACK) { 4397 if (dst->state == TCPS_SYN_SENT) { 4398 dst->state = TCPS_ESTABLISHED; 4399 if (src->state == TCPS_ESTABLISHED && 4400 (*state)->src_node != NULL && 4401 pf_src_connlimit(state)) { 4402 REASON_SET(reason, PFRES_SRCLIMIT); 4403 return (PF_DROP); 4404 } 4405 } else if (dst->state == TCPS_CLOSING) { 4406 dst->state = TCPS_FIN_WAIT_2; 4407 } else if (src->state == TCPS_SYN_SENT && 4408 dst->state < TCPS_SYN_SENT) { 4409 /* 4410 * Handle a special sloppy case where we only see one 4411 * half of the connection. If there is a ACK after 4412 * the initial SYN without ever seeing a packet from 4413 * the destination, set the connection to established. 4414 */ 4415 dst->state = src->state = TCPS_ESTABLISHED; 4416 if ((*state)->src_node != NULL && 4417 pf_src_connlimit(state)) { 4418 REASON_SET(reason, PFRES_SRCLIMIT); 4419 return (PF_DROP); 4420 } 4421 } else if (src->state == TCPS_CLOSING && 4422 dst->state == TCPS_ESTABLISHED && 4423 dst->seqlo == 0) { 4424 /* 4425 * Handle the closing of half connections where we 4426 * don't see the full bidirectional FIN/ACK+ACK 4427 * handshake. 4428 */ 4429 dst->state = TCPS_CLOSING; 4430 } 4431 } 4432 if (th->th_flags & TH_RST) 4433 src->state = dst->state = TCPS_TIME_WAIT; 4434 4435 /* update expire time */ 4436 (*state)->expire = time_uptime; 4437 if (src->state >= TCPS_FIN_WAIT_2 && 4438 dst->state >= TCPS_FIN_WAIT_2) 4439 (*state)->timeout = PFTM_TCP_CLOSED; 4440 else if (src->state >= TCPS_CLOSING && 4441 dst->state >= TCPS_CLOSING) 4442 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4443 else if (src->state < TCPS_ESTABLISHED || 4444 dst->state < TCPS_ESTABLISHED) 4445 (*state)->timeout = PFTM_TCP_OPENING; 4446 else if (src->state >= TCPS_CLOSING || 4447 dst->state >= TCPS_CLOSING) 4448 (*state)->timeout = PFTM_TCP_CLOSING; 4449 else 4450 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4451 4452 return (PF_PASS); 4453 } 4454 4455 static int 4456 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4457 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4458 u_short *reason) 4459 { 4460 struct pf_state_key_cmp key; 4461 struct tcphdr *th = pd->hdr.tcp; 4462 int copyback = 0; 4463 struct pf_state_peer *src, *dst; 4464 struct pf_state_key *sk; 4465 4466 bzero(&key, sizeof(key)); 4467 key.af = pd->af; 4468 key.proto = IPPROTO_TCP; 4469 if (direction == PF_IN) { /* wire side, straight */ 4470 PF_ACPY(&key.addr[0], pd->src, key.af); 4471 PF_ACPY(&key.addr[1], pd->dst, key.af); 4472 key.port[0] = th->th_sport; 4473 key.port[1] = th->th_dport; 4474 } else { /* stack side, reverse */ 4475 PF_ACPY(&key.addr[1], pd->src, key.af); 4476 PF_ACPY(&key.addr[0], pd->dst, key.af); 4477 key.port[1] = th->th_sport; 4478 key.port[0] = th->th_dport; 4479 } 4480 4481 STATE_LOOKUP(kif, &key, direction, *state, pd); 4482 4483 if (direction == (*state)->direction) { 4484 src = &(*state)->src; 4485 dst = &(*state)->dst; 4486 } else { 4487 src = &(*state)->dst; 4488 dst = &(*state)->src; 4489 } 4490 4491 sk = (*state)->key[pd->didx]; 4492 4493 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4494 if (direction != (*state)->direction) { 4495 REASON_SET(reason, PFRES_SYNPROXY); 4496 return (PF_SYNPROXY_DROP); 4497 } 4498 if (th->th_flags & TH_SYN) { 4499 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4500 REASON_SET(reason, PFRES_SYNPROXY); 4501 return (PF_DROP); 4502 } 4503 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4504 pd->src, th->th_dport, th->th_sport, 4505 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4506 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4507 REASON_SET(reason, PFRES_SYNPROXY); 4508 return (PF_SYNPROXY_DROP); 4509 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4510 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4511 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4512 REASON_SET(reason, PFRES_SYNPROXY); 4513 return (PF_DROP); 4514 } else if ((*state)->src_node != NULL && 4515 pf_src_connlimit(state)) { 4516 REASON_SET(reason, PFRES_SRCLIMIT); 4517 return (PF_DROP); 4518 } else 4519 (*state)->src.state = PF_TCPS_PROXY_DST; 4520 } 4521 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4522 if (direction == (*state)->direction) { 4523 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4524 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4525 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4526 REASON_SET(reason, PFRES_SYNPROXY); 4527 return (PF_DROP); 4528 } 4529 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4530 if ((*state)->dst.seqhi == 1) 4531 (*state)->dst.seqhi = htonl(arc4random()); 4532 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4533 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4534 sk->port[pd->sidx], sk->port[pd->didx], 4535 (*state)->dst.seqhi, 0, TH_SYN, 0, 4536 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4537 REASON_SET(reason, PFRES_SYNPROXY); 4538 return (PF_SYNPROXY_DROP); 4539 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4540 (TH_SYN|TH_ACK)) || 4541 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4542 REASON_SET(reason, PFRES_SYNPROXY); 4543 return (PF_DROP); 4544 } else { 4545 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4546 (*state)->dst.seqlo = ntohl(th->th_seq); 4547 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4548 pd->src, th->th_dport, th->th_sport, 4549 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4550 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4551 (*state)->tag, NULL); 4552 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4553 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4554 sk->port[pd->sidx], sk->port[pd->didx], 4555 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4556 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4557 (*state)->src.seqdiff = (*state)->dst.seqhi - 4558 (*state)->src.seqlo; 4559 (*state)->dst.seqdiff = (*state)->src.seqhi - 4560 (*state)->dst.seqlo; 4561 (*state)->src.seqhi = (*state)->src.seqlo + 4562 (*state)->dst.max_win; 4563 (*state)->dst.seqhi = (*state)->dst.seqlo + 4564 (*state)->src.max_win; 4565 (*state)->src.wscale = (*state)->dst.wscale = 0; 4566 (*state)->src.state = (*state)->dst.state = 4567 TCPS_ESTABLISHED; 4568 REASON_SET(reason, PFRES_SYNPROXY); 4569 return (PF_SYNPROXY_DROP); 4570 } 4571 } 4572 4573 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4574 dst->state >= TCPS_FIN_WAIT_2 && 4575 src->state >= TCPS_FIN_WAIT_2) { 4576 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4577 printf("pf: state reuse "); 4578 pf_print_state(*state); 4579 pf_print_flags(th->th_flags); 4580 printf("\n"); 4581 } 4582 /* XXX make sure it's the same direction ?? */ 4583 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4584 pf_unlink_state(*state, PF_ENTER_LOCKED); 4585 *state = NULL; 4586 return (PF_DROP); 4587 } 4588 4589 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4590 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4591 return (PF_DROP); 4592 } else { 4593 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4594 ©back) == PF_DROP) 4595 return (PF_DROP); 4596 } 4597 4598 /* translate source/destination address, if necessary */ 4599 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4600 struct pf_state_key *nk = (*state)->key[pd->didx]; 4601 4602 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4603 nk->port[pd->sidx] != th->th_sport) 4604 pf_change_ap(m, pd->src, &th->th_sport, 4605 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4606 nk->port[pd->sidx], 0, pd->af); 4607 4608 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4609 nk->port[pd->didx] != th->th_dport) 4610 pf_change_ap(m, pd->dst, &th->th_dport, 4611 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4612 nk->port[pd->didx], 0, pd->af); 4613 copyback = 1; 4614 } 4615 4616 /* Copyback sequence modulation or stateful scrub changes if needed */ 4617 if (copyback) 4618 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4619 4620 return (PF_PASS); 4621 } 4622 4623 static int 4624 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4625 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4626 { 4627 struct pf_state_peer *src, *dst; 4628 struct pf_state_key_cmp key; 4629 struct udphdr *uh = pd->hdr.udp; 4630 4631 bzero(&key, sizeof(key)); 4632 key.af = pd->af; 4633 key.proto = IPPROTO_UDP; 4634 if (direction == PF_IN) { /* wire side, straight */ 4635 PF_ACPY(&key.addr[0], pd->src, key.af); 4636 PF_ACPY(&key.addr[1], pd->dst, key.af); 4637 key.port[0] = uh->uh_sport; 4638 key.port[1] = uh->uh_dport; 4639 } else { /* stack side, reverse */ 4640 PF_ACPY(&key.addr[1], pd->src, key.af); 4641 PF_ACPY(&key.addr[0], pd->dst, key.af); 4642 key.port[1] = uh->uh_sport; 4643 key.port[0] = uh->uh_dport; 4644 } 4645 4646 STATE_LOOKUP(kif, &key, direction, *state, pd); 4647 4648 if (direction == (*state)->direction) { 4649 src = &(*state)->src; 4650 dst = &(*state)->dst; 4651 } else { 4652 src = &(*state)->dst; 4653 dst = &(*state)->src; 4654 } 4655 4656 /* update states */ 4657 if (src->state < PFUDPS_SINGLE) 4658 src->state = PFUDPS_SINGLE; 4659 if (dst->state == PFUDPS_SINGLE) 4660 dst->state = PFUDPS_MULTIPLE; 4661 4662 /* update expire time */ 4663 (*state)->expire = time_uptime; 4664 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4665 (*state)->timeout = PFTM_UDP_MULTIPLE; 4666 else 4667 (*state)->timeout = PFTM_UDP_SINGLE; 4668 4669 /* translate source/destination address, if necessary */ 4670 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4671 struct pf_state_key *nk = (*state)->key[pd->didx]; 4672 4673 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4674 nk->port[pd->sidx] != uh->uh_sport) 4675 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4676 &uh->uh_sum, &nk->addr[pd->sidx], 4677 nk->port[pd->sidx], 1, pd->af); 4678 4679 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4680 nk->port[pd->didx] != uh->uh_dport) 4681 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4682 &uh->uh_sum, &nk->addr[pd->didx], 4683 nk->port[pd->didx], 1, pd->af); 4684 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4685 } 4686 4687 return (PF_PASS); 4688 } 4689 4690 static int 4691 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kkif *kif, 4692 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4693 { 4694 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4695 u_int16_t icmpid = 0, *icmpsum; 4696 u_int8_t icmptype, icmpcode; 4697 int state_icmp = 0; 4698 struct pf_state_key_cmp key; 4699 4700 bzero(&key, sizeof(key)); 4701 switch (pd->proto) { 4702 #ifdef INET 4703 case IPPROTO_ICMP: 4704 icmptype = pd->hdr.icmp->icmp_type; 4705 icmpcode = pd->hdr.icmp->icmp_code; 4706 icmpid = pd->hdr.icmp->icmp_id; 4707 icmpsum = &pd->hdr.icmp->icmp_cksum; 4708 4709 if (icmptype == ICMP_UNREACH || 4710 icmptype == ICMP_SOURCEQUENCH || 4711 icmptype == ICMP_REDIRECT || 4712 icmptype == ICMP_TIMXCEED || 4713 icmptype == ICMP_PARAMPROB) 4714 state_icmp++; 4715 break; 4716 #endif /* INET */ 4717 #ifdef INET6 4718 case IPPROTO_ICMPV6: 4719 icmptype = pd->hdr.icmp6->icmp6_type; 4720 icmpcode = pd->hdr.icmp6->icmp6_code; 4721 icmpid = pd->hdr.icmp6->icmp6_id; 4722 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4723 4724 if (icmptype == ICMP6_DST_UNREACH || 4725 icmptype == ICMP6_PACKET_TOO_BIG || 4726 icmptype == ICMP6_TIME_EXCEEDED || 4727 icmptype == ICMP6_PARAM_PROB) 4728 state_icmp++; 4729 break; 4730 #endif /* INET6 */ 4731 } 4732 4733 if (!state_icmp) { 4734 /* 4735 * ICMP query/reply message not related to a TCP/UDP packet. 4736 * Search for an ICMP state. 4737 */ 4738 key.af = pd->af; 4739 key.proto = pd->proto; 4740 key.port[0] = key.port[1] = icmpid; 4741 if (direction == PF_IN) { /* wire side, straight */ 4742 PF_ACPY(&key.addr[0], pd->src, key.af); 4743 PF_ACPY(&key.addr[1], pd->dst, key.af); 4744 } else { /* stack side, reverse */ 4745 PF_ACPY(&key.addr[1], pd->src, key.af); 4746 PF_ACPY(&key.addr[0], pd->dst, key.af); 4747 } 4748 4749 STATE_LOOKUP(kif, &key, direction, *state, pd); 4750 4751 (*state)->expire = time_uptime; 4752 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4753 4754 /* translate source/destination address, if necessary */ 4755 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4756 struct pf_state_key *nk = (*state)->key[pd->didx]; 4757 4758 switch (pd->af) { 4759 #ifdef INET 4760 case AF_INET: 4761 if (PF_ANEQ(pd->src, 4762 &nk->addr[pd->sidx], AF_INET)) 4763 pf_change_a(&saddr->v4.s_addr, 4764 pd->ip_sum, 4765 nk->addr[pd->sidx].v4.s_addr, 0); 4766 4767 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4768 AF_INET)) 4769 pf_change_a(&daddr->v4.s_addr, 4770 pd->ip_sum, 4771 nk->addr[pd->didx].v4.s_addr, 0); 4772 4773 if (nk->port[0] != 4774 pd->hdr.icmp->icmp_id) { 4775 pd->hdr.icmp->icmp_cksum = 4776 pf_cksum_fixup( 4777 pd->hdr.icmp->icmp_cksum, icmpid, 4778 nk->port[pd->sidx], 0); 4779 pd->hdr.icmp->icmp_id = 4780 nk->port[pd->sidx]; 4781 } 4782 4783 m_copyback(m, off, ICMP_MINLEN, 4784 (caddr_t )pd->hdr.icmp); 4785 break; 4786 #endif /* INET */ 4787 #ifdef INET6 4788 case AF_INET6: 4789 if (PF_ANEQ(pd->src, 4790 &nk->addr[pd->sidx], AF_INET6)) 4791 pf_change_a6(saddr, 4792 &pd->hdr.icmp6->icmp6_cksum, 4793 &nk->addr[pd->sidx], 0); 4794 4795 if (PF_ANEQ(pd->dst, 4796 &nk->addr[pd->didx], AF_INET6)) 4797 pf_change_a6(daddr, 4798 &pd->hdr.icmp6->icmp6_cksum, 4799 &nk->addr[pd->didx], 0); 4800 4801 m_copyback(m, off, sizeof(struct icmp6_hdr), 4802 (caddr_t )pd->hdr.icmp6); 4803 break; 4804 #endif /* INET6 */ 4805 } 4806 } 4807 return (PF_PASS); 4808 4809 } else { 4810 /* 4811 * ICMP error message in response to a TCP/UDP packet. 4812 * Extract the inner TCP/UDP header and search for that state. 4813 */ 4814 4815 struct pf_pdesc pd2; 4816 bzero(&pd2, sizeof pd2); 4817 #ifdef INET 4818 struct ip h2; 4819 #endif /* INET */ 4820 #ifdef INET6 4821 struct ip6_hdr h2_6; 4822 int terminal = 0; 4823 #endif /* INET6 */ 4824 int ipoff2 = 0; 4825 int off2 = 0; 4826 4827 pd2.af = pd->af; 4828 /* Payload packet is from the opposite direction. */ 4829 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4830 pd2.didx = (direction == PF_IN) ? 0 : 1; 4831 switch (pd->af) { 4832 #ifdef INET 4833 case AF_INET: 4834 /* offset of h2 in mbuf chain */ 4835 ipoff2 = off + ICMP_MINLEN; 4836 4837 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4838 NULL, reason, pd2.af)) { 4839 DPFPRINTF(PF_DEBUG_MISC, 4840 ("pf: ICMP error message too short " 4841 "(ip)\n")); 4842 return (PF_DROP); 4843 } 4844 /* 4845 * ICMP error messages don't refer to non-first 4846 * fragments 4847 */ 4848 if (h2.ip_off & htons(IP_OFFMASK)) { 4849 REASON_SET(reason, PFRES_FRAG); 4850 return (PF_DROP); 4851 } 4852 4853 /* offset of protocol header that follows h2 */ 4854 off2 = ipoff2 + (h2.ip_hl << 2); 4855 4856 pd2.proto = h2.ip_p; 4857 pd2.src = (struct pf_addr *)&h2.ip_src; 4858 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4859 pd2.ip_sum = &h2.ip_sum; 4860 break; 4861 #endif /* INET */ 4862 #ifdef INET6 4863 case AF_INET6: 4864 ipoff2 = off + sizeof(struct icmp6_hdr); 4865 4866 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4867 NULL, reason, pd2.af)) { 4868 DPFPRINTF(PF_DEBUG_MISC, 4869 ("pf: ICMP error message too short " 4870 "(ip6)\n")); 4871 return (PF_DROP); 4872 } 4873 pd2.proto = h2_6.ip6_nxt; 4874 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4875 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4876 pd2.ip_sum = NULL; 4877 off2 = ipoff2 + sizeof(h2_6); 4878 do { 4879 switch (pd2.proto) { 4880 case IPPROTO_FRAGMENT: 4881 /* 4882 * ICMPv6 error messages for 4883 * non-first fragments 4884 */ 4885 REASON_SET(reason, PFRES_FRAG); 4886 return (PF_DROP); 4887 case IPPROTO_AH: 4888 case IPPROTO_HOPOPTS: 4889 case IPPROTO_ROUTING: 4890 case IPPROTO_DSTOPTS: { 4891 /* get next header and header length */ 4892 struct ip6_ext opt6; 4893 4894 if (!pf_pull_hdr(m, off2, &opt6, 4895 sizeof(opt6), NULL, reason, 4896 pd2.af)) { 4897 DPFPRINTF(PF_DEBUG_MISC, 4898 ("pf: ICMPv6 short opt\n")); 4899 return (PF_DROP); 4900 } 4901 if (pd2.proto == IPPROTO_AH) 4902 off2 += (opt6.ip6e_len + 2) * 4; 4903 else 4904 off2 += (opt6.ip6e_len + 1) * 8; 4905 pd2.proto = opt6.ip6e_nxt; 4906 /* goto the next header */ 4907 break; 4908 } 4909 default: 4910 terminal++; 4911 break; 4912 } 4913 } while (!terminal); 4914 break; 4915 #endif /* INET6 */ 4916 } 4917 4918 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4919 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4920 printf("pf: BAD ICMP %d:%d outer dst: ", 4921 icmptype, icmpcode); 4922 pf_print_host(pd->src, 0, pd->af); 4923 printf(" -> "); 4924 pf_print_host(pd->dst, 0, pd->af); 4925 printf(" inner src: "); 4926 pf_print_host(pd2.src, 0, pd2.af); 4927 printf(" -> "); 4928 pf_print_host(pd2.dst, 0, pd2.af); 4929 printf("\n"); 4930 } 4931 REASON_SET(reason, PFRES_BADSTATE); 4932 return (PF_DROP); 4933 } 4934 4935 switch (pd2.proto) { 4936 case IPPROTO_TCP: { 4937 struct tcphdr th; 4938 u_int32_t seq; 4939 struct pf_state_peer *src, *dst; 4940 u_int8_t dws; 4941 int copyback = 0; 4942 4943 /* 4944 * Only the first 8 bytes of the TCP header can be 4945 * expected. Don't access any TCP header fields after 4946 * th_seq, an ackskew test is not possible. 4947 */ 4948 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4949 pd2.af)) { 4950 DPFPRINTF(PF_DEBUG_MISC, 4951 ("pf: ICMP error message too short " 4952 "(tcp)\n")); 4953 return (PF_DROP); 4954 } 4955 4956 key.af = pd2.af; 4957 key.proto = IPPROTO_TCP; 4958 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4959 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4960 key.port[pd2.sidx] = th.th_sport; 4961 key.port[pd2.didx] = th.th_dport; 4962 4963 STATE_LOOKUP(kif, &key, direction, *state, pd); 4964 4965 if (direction == (*state)->direction) { 4966 src = &(*state)->dst; 4967 dst = &(*state)->src; 4968 } else { 4969 src = &(*state)->src; 4970 dst = &(*state)->dst; 4971 } 4972 4973 if (src->wscale && dst->wscale) 4974 dws = dst->wscale & PF_WSCALE_MASK; 4975 else 4976 dws = 0; 4977 4978 /* Demodulate sequence number */ 4979 seq = ntohl(th.th_seq) - src->seqdiff; 4980 if (src->seqdiff) { 4981 pf_change_a(&th.th_seq, icmpsum, 4982 htonl(seq), 0); 4983 copyback = 1; 4984 } 4985 4986 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4987 (!SEQ_GEQ(src->seqhi, seq) || 4988 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4989 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4990 printf("pf: BAD ICMP %d:%d ", 4991 icmptype, icmpcode); 4992 pf_print_host(pd->src, 0, pd->af); 4993 printf(" -> "); 4994 pf_print_host(pd->dst, 0, pd->af); 4995 printf(" state: "); 4996 pf_print_state(*state); 4997 printf(" seq=%u\n", seq); 4998 } 4999 REASON_SET(reason, PFRES_BADSTATE); 5000 return (PF_DROP); 5001 } else { 5002 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5003 printf("pf: OK ICMP %d:%d ", 5004 icmptype, icmpcode); 5005 pf_print_host(pd->src, 0, pd->af); 5006 printf(" -> "); 5007 pf_print_host(pd->dst, 0, pd->af); 5008 printf(" state: "); 5009 pf_print_state(*state); 5010 printf(" seq=%u\n", seq); 5011 } 5012 } 5013 5014 /* translate source/destination address, if necessary */ 5015 if ((*state)->key[PF_SK_WIRE] != 5016 (*state)->key[PF_SK_STACK]) { 5017 struct pf_state_key *nk = 5018 (*state)->key[pd->didx]; 5019 5020 if (PF_ANEQ(pd2.src, 5021 &nk->addr[pd2.sidx], pd2.af) || 5022 nk->port[pd2.sidx] != th.th_sport) 5023 pf_change_icmp(pd2.src, &th.th_sport, 5024 daddr, &nk->addr[pd2.sidx], 5025 nk->port[pd2.sidx], NULL, 5026 pd2.ip_sum, icmpsum, 5027 pd->ip_sum, 0, pd2.af); 5028 5029 if (PF_ANEQ(pd2.dst, 5030 &nk->addr[pd2.didx], pd2.af) || 5031 nk->port[pd2.didx] != th.th_dport) 5032 pf_change_icmp(pd2.dst, &th.th_dport, 5033 saddr, &nk->addr[pd2.didx], 5034 nk->port[pd2.didx], NULL, 5035 pd2.ip_sum, icmpsum, 5036 pd->ip_sum, 0, pd2.af); 5037 copyback = 1; 5038 } 5039 5040 if (copyback) { 5041 switch (pd2.af) { 5042 #ifdef INET 5043 case AF_INET: 5044 m_copyback(m, off, ICMP_MINLEN, 5045 (caddr_t )pd->hdr.icmp); 5046 m_copyback(m, ipoff2, sizeof(h2), 5047 (caddr_t )&h2); 5048 break; 5049 #endif /* INET */ 5050 #ifdef INET6 5051 case AF_INET6: 5052 m_copyback(m, off, 5053 sizeof(struct icmp6_hdr), 5054 (caddr_t )pd->hdr.icmp6); 5055 m_copyback(m, ipoff2, sizeof(h2_6), 5056 (caddr_t )&h2_6); 5057 break; 5058 #endif /* INET6 */ 5059 } 5060 m_copyback(m, off2, 8, (caddr_t)&th); 5061 } 5062 5063 return (PF_PASS); 5064 break; 5065 } 5066 case IPPROTO_UDP: { 5067 struct udphdr uh; 5068 5069 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5070 NULL, reason, pd2.af)) { 5071 DPFPRINTF(PF_DEBUG_MISC, 5072 ("pf: ICMP error message too short " 5073 "(udp)\n")); 5074 return (PF_DROP); 5075 } 5076 5077 key.af = pd2.af; 5078 key.proto = IPPROTO_UDP; 5079 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5080 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5081 key.port[pd2.sidx] = uh.uh_sport; 5082 key.port[pd2.didx] = uh.uh_dport; 5083 5084 STATE_LOOKUP(kif, &key, direction, *state, pd); 5085 5086 /* translate source/destination address, if necessary */ 5087 if ((*state)->key[PF_SK_WIRE] != 5088 (*state)->key[PF_SK_STACK]) { 5089 struct pf_state_key *nk = 5090 (*state)->key[pd->didx]; 5091 5092 if (PF_ANEQ(pd2.src, 5093 &nk->addr[pd2.sidx], pd2.af) || 5094 nk->port[pd2.sidx] != uh.uh_sport) 5095 pf_change_icmp(pd2.src, &uh.uh_sport, 5096 daddr, &nk->addr[pd2.sidx], 5097 nk->port[pd2.sidx], &uh.uh_sum, 5098 pd2.ip_sum, icmpsum, 5099 pd->ip_sum, 1, pd2.af); 5100 5101 if (PF_ANEQ(pd2.dst, 5102 &nk->addr[pd2.didx], pd2.af) || 5103 nk->port[pd2.didx] != uh.uh_dport) 5104 pf_change_icmp(pd2.dst, &uh.uh_dport, 5105 saddr, &nk->addr[pd2.didx], 5106 nk->port[pd2.didx], &uh.uh_sum, 5107 pd2.ip_sum, icmpsum, 5108 pd->ip_sum, 1, pd2.af); 5109 5110 switch (pd2.af) { 5111 #ifdef INET 5112 case AF_INET: 5113 m_copyback(m, off, ICMP_MINLEN, 5114 (caddr_t )pd->hdr.icmp); 5115 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5116 break; 5117 #endif /* INET */ 5118 #ifdef INET6 5119 case AF_INET6: 5120 m_copyback(m, off, 5121 sizeof(struct icmp6_hdr), 5122 (caddr_t )pd->hdr.icmp6); 5123 m_copyback(m, ipoff2, sizeof(h2_6), 5124 (caddr_t )&h2_6); 5125 break; 5126 #endif /* INET6 */ 5127 } 5128 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5129 } 5130 return (PF_PASS); 5131 break; 5132 } 5133 #ifdef INET 5134 case IPPROTO_ICMP: { 5135 struct icmp iih; 5136 5137 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5138 NULL, reason, pd2.af)) { 5139 DPFPRINTF(PF_DEBUG_MISC, 5140 ("pf: ICMP error message too short i" 5141 "(icmp)\n")); 5142 return (PF_DROP); 5143 } 5144 5145 key.af = pd2.af; 5146 key.proto = IPPROTO_ICMP; 5147 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5148 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5149 key.port[0] = key.port[1] = iih.icmp_id; 5150 5151 STATE_LOOKUP(kif, &key, direction, *state, pd); 5152 5153 /* translate source/destination address, if necessary */ 5154 if ((*state)->key[PF_SK_WIRE] != 5155 (*state)->key[PF_SK_STACK]) { 5156 struct pf_state_key *nk = 5157 (*state)->key[pd->didx]; 5158 5159 if (PF_ANEQ(pd2.src, 5160 &nk->addr[pd2.sidx], pd2.af) || 5161 nk->port[pd2.sidx] != iih.icmp_id) 5162 pf_change_icmp(pd2.src, &iih.icmp_id, 5163 daddr, &nk->addr[pd2.sidx], 5164 nk->port[pd2.sidx], NULL, 5165 pd2.ip_sum, icmpsum, 5166 pd->ip_sum, 0, AF_INET); 5167 5168 if (PF_ANEQ(pd2.dst, 5169 &nk->addr[pd2.didx], pd2.af) || 5170 nk->port[pd2.didx] != iih.icmp_id) 5171 pf_change_icmp(pd2.dst, &iih.icmp_id, 5172 saddr, &nk->addr[pd2.didx], 5173 nk->port[pd2.didx], NULL, 5174 pd2.ip_sum, icmpsum, 5175 pd->ip_sum, 0, AF_INET); 5176 5177 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5178 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5179 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5180 } 5181 return (PF_PASS); 5182 break; 5183 } 5184 #endif /* INET */ 5185 #ifdef INET6 5186 case IPPROTO_ICMPV6: { 5187 struct icmp6_hdr iih; 5188 5189 if (!pf_pull_hdr(m, off2, &iih, 5190 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5191 DPFPRINTF(PF_DEBUG_MISC, 5192 ("pf: ICMP error message too short " 5193 "(icmp6)\n")); 5194 return (PF_DROP); 5195 } 5196 5197 key.af = pd2.af; 5198 key.proto = IPPROTO_ICMPV6; 5199 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5200 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5201 key.port[0] = key.port[1] = iih.icmp6_id; 5202 5203 STATE_LOOKUP(kif, &key, direction, *state, pd); 5204 5205 /* translate source/destination address, if necessary */ 5206 if ((*state)->key[PF_SK_WIRE] != 5207 (*state)->key[PF_SK_STACK]) { 5208 struct pf_state_key *nk = 5209 (*state)->key[pd->didx]; 5210 5211 if (PF_ANEQ(pd2.src, 5212 &nk->addr[pd2.sidx], pd2.af) || 5213 nk->port[pd2.sidx] != iih.icmp6_id) 5214 pf_change_icmp(pd2.src, &iih.icmp6_id, 5215 daddr, &nk->addr[pd2.sidx], 5216 nk->port[pd2.sidx], NULL, 5217 pd2.ip_sum, icmpsum, 5218 pd->ip_sum, 0, AF_INET6); 5219 5220 if (PF_ANEQ(pd2.dst, 5221 &nk->addr[pd2.didx], pd2.af) || 5222 nk->port[pd2.didx] != iih.icmp6_id) 5223 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5224 saddr, &nk->addr[pd2.didx], 5225 nk->port[pd2.didx], NULL, 5226 pd2.ip_sum, icmpsum, 5227 pd->ip_sum, 0, AF_INET6); 5228 5229 m_copyback(m, off, sizeof(struct icmp6_hdr), 5230 (caddr_t)pd->hdr.icmp6); 5231 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5232 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5233 (caddr_t)&iih); 5234 } 5235 return (PF_PASS); 5236 break; 5237 } 5238 #endif /* INET6 */ 5239 default: { 5240 key.af = pd2.af; 5241 key.proto = pd2.proto; 5242 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5243 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5244 key.port[0] = key.port[1] = 0; 5245 5246 STATE_LOOKUP(kif, &key, direction, *state, pd); 5247 5248 /* translate source/destination address, if necessary */ 5249 if ((*state)->key[PF_SK_WIRE] != 5250 (*state)->key[PF_SK_STACK]) { 5251 struct pf_state_key *nk = 5252 (*state)->key[pd->didx]; 5253 5254 if (PF_ANEQ(pd2.src, 5255 &nk->addr[pd2.sidx], pd2.af)) 5256 pf_change_icmp(pd2.src, NULL, daddr, 5257 &nk->addr[pd2.sidx], 0, NULL, 5258 pd2.ip_sum, icmpsum, 5259 pd->ip_sum, 0, pd2.af); 5260 5261 if (PF_ANEQ(pd2.dst, 5262 &nk->addr[pd2.didx], pd2.af)) 5263 pf_change_icmp(pd2.dst, NULL, saddr, 5264 &nk->addr[pd2.didx], 0, NULL, 5265 pd2.ip_sum, icmpsum, 5266 pd->ip_sum, 0, pd2.af); 5267 5268 switch (pd2.af) { 5269 #ifdef INET 5270 case AF_INET: 5271 m_copyback(m, off, ICMP_MINLEN, 5272 (caddr_t)pd->hdr.icmp); 5273 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5274 break; 5275 #endif /* INET */ 5276 #ifdef INET6 5277 case AF_INET6: 5278 m_copyback(m, off, 5279 sizeof(struct icmp6_hdr), 5280 (caddr_t )pd->hdr.icmp6); 5281 m_copyback(m, ipoff2, sizeof(h2_6), 5282 (caddr_t )&h2_6); 5283 break; 5284 #endif /* INET6 */ 5285 } 5286 } 5287 return (PF_PASS); 5288 break; 5289 } 5290 } 5291 } 5292 } 5293 5294 static int 5295 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kkif *kif, 5296 struct mbuf *m, struct pf_pdesc *pd) 5297 { 5298 struct pf_state_peer *src, *dst; 5299 struct pf_state_key_cmp key; 5300 5301 bzero(&key, sizeof(key)); 5302 key.af = pd->af; 5303 key.proto = pd->proto; 5304 if (direction == PF_IN) { 5305 PF_ACPY(&key.addr[0], pd->src, key.af); 5306 PF_ACPY(&key.addr[1], pd->dst, key.af); 5307 key.port[0] = key.port[1] = 0; 5308 } else { 5309 PF_ACPY(&key.addr[1], pd->src, key.af); 5310 PF_ACPY(&key.addr[0], pd->dst, key.af); 5311 key.port[1] = key.port[0] = 0; 5312 } 5313 5314 STATE_LOOKUP(kif, &key, direction, *state, pd); 5315 5316 if (direction == (*state)->direction) { 5317 src = &(*state)->src; 5318 dst = &(*state)->dst; 5319 } else { 5320 src = &(*state)->dst; 5321 dst = &(*state)->src; 5322 } 5323 5324 /* update states */ 5325 if (src->state < PFOTHERS_SINGLE) 5326 src->state = PFOTHERS_SINGLE; 5327 if (dst->state == PFOTHERS_SINGLE) 5328 dst->state = PFOTHERS_MULTIPLE; 5329 5330 /* update expire time */ 5331 (*state)->expire = time_uptime; 5332 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5333 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5334 else 5335 (*state)->timeout = PFTM_OTHER_SINGLE; 5336 5337 /* translate source/destination address, if necessary */ 5338 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5339 struct pf_state_key *nk = (*state)->key[pd->didx]; 5340 5341 KASSERT(nk, ("%s: nk is null", __func__)); 5342 KASSERT(pd, ("%s: pd is null", __func__)); 5343 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5344 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5345 switch (pd->af) { 5346 #ifdef INET 5347 case AF_INET: 5348 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5349 pf_change_a(&pd->src->v4.s_addr, 5350 pd->ip_sum, 5351 nk->addr[pd->sidx].v4.s_addr, 5352 0); 5353 5354 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5355 pf_change_a(&pd->dst->v4.s_addr, 5356 pd->ip_sum, 5357 nk->addr[pd->didx].v4.s_addr, 5358 0); 5359 5360 break; 5361 #endif /* INET */ 5362 #ifdef INET6 5363 case AF_INET6: 5364 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5365 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5366 5367 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5368 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5369 #endif /* INET6 */ 5370 } 5371 } 5372 return (PF_PASS); 5373 } 5374 5375 /* 5376 * ipoff and off are measured from the start of the mbuf chain. 5377 * h must be at "ipoff" on the mbuf chain. 5378 */ 5379 void * 5380 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5381 u_short *actionp, u_short *reasonp, sa_family_t af) 5382 { 5383 switch (af) { 5384 #ifdef INET 5385 case AF_INET: { 5386 struct ip *h = mtod(m, struct ip *); 5387 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5388 5389 if (fragoff) { 5390 if (fragoff >= len) 5391 ACTION_SET(actionp, PF_PASS); 5392 else { 5393 ACTION_SET(actionp, PF_DROP); 5394 REASON_SET(reasonp, PFRES_FRAG); 5395 } 5396 return (NULL); 5397 } 5398 if (m->m_pkthdr.len < off + len || 5399 ntohs(h->ip_len) < off + len) { 5400 ACTION_SET(actionp, PF_DROP); 5401 REASON_SET(reasonp, PFRES_SHORT); 5402 return (NULL); 5403 } 5404 break; 5405 } 5406 #endif /* INET */ 5407 #ifdef INET6 5408 case AF_INET6: { 5409 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5410 5411 if (m->m_pkthdr.len < off + len || 5412 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5413 (unsigned)(off + len)) { 5414 ACTION_SET(actionp, PF_DROP); 5415 REASON_SET(reasonp, PFRES_SHORT); 5416 return (NULL); 5417 } 5418 break; 5419 } 5420 #endif /* INET6 */ 5421 } 5422 m_copydata(m, off, len, p); 5423 return (p); 5424 } 5425 5426 int 5427 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5428 int rtableid) 5429 { 5430 struct ifnet *ifp; 5431 5432 /* 5433 * Skip check for addresses with embedded interface scope, 5434 * as they would always match anyway. 5435 */ 5436 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5437 return (1); 5438 5439 if (af != AF_INET && af != AF_INET6) 5440 return (0); 5441 5442 /* Skip checks for ipsec interfaces */ 5443 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5444 return (1); 5445 5446 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5447 5448 switch (af) { 5449 #ifdef INET6 5450 case AF_INET6: 5451 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5452 ifp)); 5453 #endif 5454 #ifdef INET 5455 case AF_INET: 5456 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5457 ifp)); 5458 #endif 5459 } 5460 5461 return (0); 5462 } 5463 5464 #ifdef INET 5465 static void 5466 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5467 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5468 { 5469 struct mbuf *m0, *m1; 5470 struct sockaddr_in dst; 5471 struct ip *ip; 5472 struct ifnet *ifp = NULL; 5473 struct pf_addr naddr; 5474 struct pf_ksrc_node *sn = NULL; 5475 int error = 0; 5476 uint16_t ip_len, ip_off; 5477 5478 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5479 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5480 __func__)); 5481 5482 if ((pd->pf_mtag == NULL && 5483 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5484 pd->pf_mtag->routed++ > 3) { 5485 m0 = *m; 5486 *m = NULL; 5487 goto bad_locked; 5488 } 5489 5490 if (r->rt == PF_DUPTO) { 5491 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5492 if (s == NULL) { 5493 ifp = r->rpool.cur->kif ? 5494 r->rpool.cur->kif->pfik_ifp : NULL; 5495 } else { 5496 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5497 PF_STATE_UNLOCK(s); 5498 } 5499 if (ifp == oifp) { 5500 /* When the 2nd interface is not skipped */ 5501 return; 5502 } else { 5503 m0 = *m; 5504 *m = NULL; 5505 goto bad; 5506 } 5507 } else { 5508 pd->pf_mtag->flags |= PF_DUPLICATED; 5509 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5510 if (s) 5511 PF_STATE_UNLOCK(s); 5512 return; 5513 } 5514 } 5515 } else { 5516 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5517 if (s) 5518 PF_STATE_UNLOCK(s); 5519 return; 5520 } 5521 m0 = *m; 5522 } 5523 5524 ip = mtod(m0, struct ip *); 5525 5526 bzero(&dst, sizeof(dst)); 5527 dst.sin_family = AF_INET; 5528 dst.sin_len = sizeof(dst); 5529 dst.sin_addr = ip->ip_dst; 5530 5531 bzero(&naddr, sizeof(naddr)); 5532 5533 if (TAILQ_EMPTY(&r->rpool.list)) { 5534 DPFPRINTF(PF_DEBUG_URGENT, 5535 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5536 goto bad_locked; 5537 } 5538 if (s == NULL) { 5539 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5540 &naddr, NULL, &sn); 5541 if (!PF_AZERO(&naddr, AF_INET)) 5542 dst.sin_addr.s_addr = naddr.v4.s_addr; 5543 ifp = r->rpool.cur->kif ? 5544 r->rpool.cur->kif->pfik_ifp : NULL; 5545 } else { 5546 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5547 dst.sin_addr.s_addr = 5548 s->rt_addr.v4.s_addr; 5549 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5550 PF_STATE_UNLOCK(s); 5551 } 5552 if (ifp == NULL) 5553 goto bad; 5554 5555 if (oifp != ifp) { 5556 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5557 goto bad; 5558 else if (m0 == NULL) 5559 goto done; 5560 if (m0->m_len < sizeof(struct ip)) { 5561 DPFPRINTF(PF_DEBUG_URGENT, 5562 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5563 goto bad; 5564 } 5565 ip = mtod(m0, struct ip *); 5566 } 5567 5568 if (ifp->if_flags & IFF_LOOPBACK) 5569 m0->m_flags |= M_SKIP_FIREWALL; 5570 5571 ip_len = ntohs(ip->ip_len); 5572 ip_off = ntohs(ip->ip_off); 5573 5574 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5575 m0->m_pkthdr.csum_flags |= CSUM_IP; 5576 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5577 in_delayed_cksum(m0); 5578 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5579 } 5580 #if defined(SCTP) || defined(SCTP_SUPPORT) 5581 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5582 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5583 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5584 } 5585 #endif 5586 5587 /* 5588 * If small enough for interface, or the interface will take 5589 * care of the fragmentation for us, we can just send directly. 5590 */ 5591 if (ip_len <= ifp->if_mtu || 5592 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5593 ip->ip_sum = 0; 5594 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5595 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5596 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5597 } 5598 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5599 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5600 goto done; 5601 } 5602 5603 /* Balk when DF bit is set or the interface didn't support TSO. */ 5604 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5605 error = EMSGSIZE; 5606 KMOD_IPSTAT_INC(ips_cantfrag); 5607 if (r->rt != PF_DUPTO) { 5608 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5609 ifp->if_mtu); 5610 goto done; 5611 } else 5612 goto bad; 5613 } 5614 5615 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5616 if (error) 5617 goto bad; 5618 5619 for (; m0; m0 = m1) { 5620 m1 = m0->m_nextpkt; 5621 m0->m_nextpkt = NULL; 5622 if (error == 0) { 5623 m_clrprotoflags(m0); 5624 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5625 } else 5626 m_freem(m0); 5627 } 5628 5629 if (error == 0) 5630 KMOD_IPSTAT_INC(ips_fragmented); 5631 5632 done: 5633 if (r->rt != PF_DUPTO) 5634 *m = NULL; 5635 return; 5636 5637 bad_locked: 5638 if (s) 5639 PF_STATE_UNLOCK(s); 5640 bad: 5641 m_freem(m0); 5642 goto done; 5643 } 5644 #endif /* INET */ 5645 5646 #ifdef INET6 5647 static void 5648 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5649 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5650 { 5651 struct mbuf *m0; 5652 struct sockaddr_in6 dst; 5653 struct ip6_hdr *ip6; 5654 struct ifnet *ifp = NULL; 5655 struct pf_addr naddr; 5656 struct pf_ksrc_node *sn = NULL; 5657 5658 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5659 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5660 __func__)); 5661 5662 if ((pd->pf_mtag == NULL && 5663 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5664 pd->pf_mtag->routed++ > 3) { 5665 m0 = *m; 5666 *m = NULL; 5667 goto bad_locked; 5668 } 5669 5670 if (r->rt == PF_DUPTO) { 5671 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5672 if (s == NULL) { 5673 ifp = r->rpool.cur->kif ? 5674 r->rpool.cur->kif->pfik_ifp : NULL; 5675 } else { 5676 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5677 PF_STATE_UNLOCK(s); 5678 } 5679 if (ifp == oifp) { 5680 /* When the 2nd interface is not skipped */ 5681 return; 5682 } else { 5683 m0 = *m; 5684 *m = NULL; 5685 goto bad; 5686 } 5687 } else { 5688 pd->pf_mtag->flags |= PF_DUPLICATED; 5689 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5690 if (s) 5691 PF_STATE_UNLOCK(s); 5692 return; 5693 } 5694 } 5695 } else { 5696 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5697 if (s) 5698 PF_STATE_UNLOCK(s); 5699 return; 5700 } 5701 m0 = *m; 5702 } 5703 5704 ip6 = mtod(m0, struct ip6_hdr *); 5705 5706 bzero(&dst, sizeof(dst)); 5707 dst.sin6_family = AF_INET6; 5708 dst.sin6_len = sizeof(dst); 5709 dst.sin6_addr = ip6->ip6_dst; 5710 5711 bzero(&naddr, sizeof(naddr)); 5712 5713 if (TAILQ_EMPTY(&r->rpool.list)) { 5714 DPFPRINTF(PF_DEBUG_URGENT, 5715 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5716 goto bad_locked; 5717 } 5718 if (s == NULL) { 5719 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5720 &naddr, NULL, &sn); 5721 if (!PF_AZERO(&naddr, AF_INET6)) 5722 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5723 &naddr, AF_INET6); 5724 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5725 } else { 5726 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5727 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5728 &s->rt_addr, AF_INET6); 5729 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5730 } 5731 5732 if (s) 5733 PF_STATE_UNLOCK(s); 5734 5735 if (ifp == NULL) 5736 goto bad; 5737 5738 if (oifp != ifp) { 5739 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5740 goto bad; 5741 else if (m0 == NULL) 5742 goto done; 5743 if (m0->m_len < sizeof(struct ip6_hdr)) { 5744 DPFPRINTF(PF_DEBUG_URGENT, 5745 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5746 __func__)); 5747 goto bad; 5748 } 5749 ip6 = mtod(m0, struct ip6_hdr *); 5750 } 5751 5752 if (ifp->if_flags & IFF_LOOPBACK) 5753 m0->m_flags |= M_SKIP_FIREWALL; 5754 5755 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5756 ~ifp->if_hwassist) { 5757 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5758 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5759 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5760 } 5761 5762 /* 5763 * If the packet is too large for the outgoing interface, 5764 * send back an icmp6 error. 5765 */ 5766 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5767 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5768 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5769 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5770 else { 5771 in6_ifstat_inc(ifp, ifs6_in_toobig); 5772 if (r->rt != PF_DUPTO) 5773 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5774 else 5775 goto bad; 5776 } 5777 5778 done: 5779 if (r->rt != PF_DUPTO) 5780 *m = NULL; 5781 return; 5782 5783 bad_locked: 5784 if (s) 5785 PF_STATE_UNLOCK(s); 5786 bad: 5787 m_freem(m0); 5788 goto done; 5789 } 5790 #endif /* INET6 */ 5791 5792 /* 5793 * FreeBSD supports cksum offloads for the following drivers. 5794 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5795 * 5796 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5797 * network driver performed cksum including pseudo header, need to verify 5798 * csum_data 5799 * CSUM_DATA_VALID : 5800 * network driver performed cksum, needs to additional pseudo header 5801 * cksum computation with partial csum_data(i.e. lack of H/W support for 5802 * pseudo header, for instance sk(4) and possibly gem(4)) 5803 * 5804 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5805 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5806 * TCP/UDP layer. 5807 * Also, set csum_data to 0xffff to force cksum validation. 5808 */ 5809 static int 5810 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5811 { 5812 u_int16_t sum = 0; 5813 int hw_assist = 0; 5814 struct ip *ip; 5815 5816 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5817 return (1); 5818 if (m->m_pkthdr.len < off + len) 5819 return (1); 5820 5821 switch (p) { 5822 case IPPROTO_TCP: 5823 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5824 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5825 sum = m->m_pkthdr.csum_data; 5826 } else { 5827 ip = mtod(m, struct ip *); 5828 sum = in_pseudo(ip->ip_src.s_addr, 5829 ip->ip_dst.s_addr, htonl((u_short)len + 5830 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5831 } 5832 sum ^= 0xffff; 5833 ++hw_assist; 5834 } 5835 break; 5836 case IPPROTO_UDP: 5837 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5838 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5839 sum = m->m_pkthdr.csum_data; 5840 } else { 5841 ip = mtod(m, struct ip *); 5842 sum = in_pseudo(ip->ip_src.s_addr, 5843 ip->ip_dst.s_addr, htonl((u_short)len + 5844 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5845 } 5846 sum ^= 0xffff; 5847 ++hw_assist; 5848 } 5849 break; 5850 case IPPROTO_ICMP: 5851 #ifdef INET6 5852 case IPPROTO_ICMPV6: 5853 #endif /* INET6 */ 5854 break; 5855 default: 5856 return (1); 5857 } 5858 5859 if (!hw_assist) { 5860 switch (af) { 5861 case AF_INET: 5862 if (p == IPPROTO_ICMP) { 5863 if (m->m_len < off) 5864 return (1); 5865 m->m_data += off; 5866 m->m_len -= off; 5867 sum = in_cksum(m, len); 5868 m->m_data -= off; 5869 m->m_len += off; 5870 } else { 5871 if (m->m_len < sizeof(struct ip)) 5872 return (1); 5873 sum = in4_cksum(m, p, off, len); 5874 } 5875 break; 5876 #ifdef INET6 5877 case AF_INET6: 5878 if (m->m_len < sizeof(struct ip6_hdr)) 5879 return (1); 5880 sum = in6_cksum(m, p, off, len); 5881 break; 5882 #endif /* INET6 */ 5883 default: 5884 return (1); 5885 } 5886 } 5887 if (sum) { 5888 switch (p) { 5889 case IPPROTO_TCP: 5890 { 5891 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5892 break; 5893 } 5894 case IPPROTO_UDP: 5895 { 5896 KMOD_UDPSTAT_INC(udps_badsum); 5897 break; 5898 } 5899 #ifdef INET 5900 case IPPROTO_ICMP: 5901 { 5902 KMOD_ICMPSTAT_INC(icps_checksum); 5903 break; 5904 } 5905 #endif 5906 #ifdef INET6 5907 case IPPROTO_ICMPV6: 5908 { 5909 KMOD_ICMP6STAT_INC(icp6s_checksum); 5910 break; 5911 } 5912 #endif /* INET6 */ 5913 } 5914 return (1); 5915 } else { 5916 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5917 m->m_pkthdr.csum_flags |= 5918 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5919 m->m_pkthdr.csum_data = 0xffff; 5920 } 5921 } 5922 return (0); 5923 } 5924 5925 #ifdef INET 5926 int 5927 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5928 { 5929 struct pfi_kkif *kif; 5930 u_short action, reason = 0, log = 0; 5931 struct mbuf *m = *m0; 5932 struct ip *h = NULL; 5933 struct m_tag *ipfwtag; 5934 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5935 struct pf_state *s = NULL; 5936 struct pf_kruleset *ruleset = NULL; 5937 struct pf_pdesc pd; 5938 int off, dirndx, pqid = 0; 5939 5940 PF_RULES_RLOCK_TRACKER; 5941 5942 M_ASSERTPKTHDR(m); 5943 5944 if (!V_pf_status.running) 5945 return (PF_PASS); 5946 5947 memset(&pd, 0, sizeof(pd)); 5948 5949 kif = (struct pfi_kkif *)ifp->if_pf_kif; 5950 5951 if (kif == NULL) { 5952 DPFPRINTF(PF_DEBUG_URGENT, 5953 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5954 return (PF_DROP); 5955 } 5956 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5957 return (PF_PASS); 5958 5959 if (m->m_flags & M_SKIP_FIREWALL) 5960 return (PF_PASS); 5961 5962 pd.pf_mtag = pf_find_mtag(m); 5963 5964 PF_RULES_RLOCK(); 5965 5966 if (ip_divert_ptr != NULL && 5967 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5968 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5969 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5970 if (pd.pf_mtag == NULL && 5971 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5972 action = PF_DROP; 5973 goto done; 5974 } 5975 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5976 m_tag_delete(m, ipfwtag); 5977 } 5978 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5979 m->m_flags |= M_FASTFWD_OURS; 5980 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5981 } 5982 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5983 /* We do IP header normalization and packet reassembly here */ 5984 action = PF_DROP; 5985 goto done; 5986 } 5987 m = *m0; /* pf_normalize messes with m0 */ 5988 h = mtod(m, struct ip *); 5989 5990 off = h->ip_hl << 2; 5991 if (off < (int)sizeof(struct ip)) { 5992 action = PF_DROP; 5993 REASON_SET(&reason, PFRES_SHORT); 5994 log = 1; 5995 goto done; 5996 } 5997 5998 pd.src = (struct pf_addr *)&h->ip_src; 5999 pd.dst = (struct pf_addr *)&h->ip_dst; 6000 pd.sport = pd.dport = NULL; 6001 pd.ip_sum = &h->ip_sum; 6002 pd.proto_sum = NULL; 6003 pd.proto = h->ip_p; 6004 pd.dir = dir; 6005 pd.sidx = (dir == PF_IN) ? 0 : 1; 6006 pd.didx = (dir == PF_IN) ? 1 : 0; 6007 pd.af = AF_INET; 6008 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6009 pd.tot_len = ntohs(h->ip_len); 6010 6011 /* handle fragments that didn't get reassembled by normalization */ 6012 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6013 action = pf_test_fragment(&r, dir, kif, m, h, 6014 &pd, &a, &ruleset); 6015 goto done; 6016 } 6017 6018 switch (h->ip_p) { 6019 case IPPROTO_TCP: { 6020 struct tcphdr th; 6021 6022 pd.hdr.tcp = &th; 6023 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6024 &action, &reason, AF_INET)) { 6025 log = action != PF_PASS; 6026 goto done; 6027 } 6028 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6029 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6030 pqid = 1; 6031 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6032 if (action == PF_DROP) 6033 goto done; 6034 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6035 &reason); 6036 if (action == PF_PASS) { 6037 if (V_pfsync_update_state_ptr != NULL) 6038 V_pfsync_update_state_ptr(s); 6039 r = s->rule.ptr; 6040 a = s->anchor.ptr; 6041 log = s->log; 6042 } else if (s == NULL) 6043 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6044 &a, &ruleset, inp); 6045 break; 6046 } 6047 6048 case IPPROTO_UDP: { 6049 struct udphdr uh; 6050 6051 pd.hdr.udp = &uh; 6052 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6053 &action, &reason, AF_INET)) { 6054 log = action != PF_PASS; 6055 goto done; 6056 } 6057 if (uh.uh_dport == 0 || 6058 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6059 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6060 action = PF_DROP; 6061 REASON_SET(&reason, PFRES_SHORT); 6062 goto done; 6063 } 6064 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6065 if (action == PF_PASS) { 6066 if (V_pfsync_update_state_ptr != NULL) 6067 V_pfsync_update_state_ptr(s); 6068 r = s->rule.ptr; 6069 a = s->anchor.ptr; 6070 log = s->log; 6071 } else if (s == NULL) 6072 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6073 &a, &ruleset, inp); 6074 break; 6075 } 6076 6077 case IPPROTO_ICMP: { 6078 struct icmp ih; 6079 6080 pd.hdr.icmp = &ih; 6081 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6082 &action, &reason, AF_INET)) { 6083 log = action != PF_PASS; 6084 goto done; 6085 } 6086 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6087 &reason); 6088 if (action == PF_PASS) { 6089 if (V_pfsync_update_state_ptr != NULL) 6090 V_pfsync_update_state_ptr(s); 6091 r = s->rule.ptr; 6092 a = s->anchor.ptr; 6093 log = s->log; 6094 } else if (s == NULL) 6095 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6096 &a, &ruleset, inp); 6097 break; 6098 } 6099 6100 #ifdef INET6 6101 case IPPROTO_ICMPV6: { 6102 action = PF_DROP; 6103 DPFPRINTF(PF_DEBUG_MISC, 6104 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6105 goto done; 6106 } 6107 #endif 6108 6109 default: 6110 action = pf_test_state_other(&s, dir, kif, m, &pd); 6111 if (action == PF_PASS) { 6112 if (V_pfsync_update_state_ptr != NULL) 6113 V_pfsync_update_state_ptr(s); 6114 r = s->rule.ptr; 6115 a = s->anchor.ptr; 6116 log = s->log; 6117 } else if (s == NULL) 6118 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6119 &a, &ruleset, inp); 6120 break; 6121 } 6122 6123 done: 6124 PF_RULES_RUNLOCK(); 6125 if (action == PF_PASS && h->ip_hl > 5 && 6126 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6127 action = PF_DROP; 6128 REASON_SET(&reason, PFRES_IPOPTIONS); 6129 log = r->log; 6130 DPFPRINTF(PF_DEBUG_MISC, 6131 ("pf: dropping packet with ip options\n")); 6132 } 6133 6134 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6135 action = PF_DROP; 6136 REASON_SET(&reason, PFRES_MEMORY); 6137 } 6138 if (r->rtableid >= 0) 6139 M_SETFIB(m, r->rtableid); 6140 6141 if (r->scrub_flags & PFSTATE_SETPRIO) { 6142 if (pd.tos & IPTOS_LOWDELAY) 6143 pqid = 1; 6144 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6145 action = PF_DROP; 6146 REASON_SET(&reason, PFRES_MEMORY); 6147 log = 1; 6148 DPFPRINTF(PF_DEBUG_MISC, 6149 ("pf: failed to allocate 802.1q mtag\n")); 6150 } 6151 } 6152 6153 #ifdef ALTQ 6154 if (action == PF_PASS && r->qid) { 6155 if (pd.pf_mtag == NULL && 6156 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6157 action = PF_DROP; 6158 REASON_SET(&reason, PFRES_MEMORY); 6159 } else { 6160 if (s != NULL) 6161 pd.pf_mtag->qid_hash = pf_state_hash(s); 6162 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6163 pd.pf_mtag->qid = r->pqid; 6164 else 6165 pd.pf_mtag->qid = r->qid; 6166 /* Add hints for ecn. */ 6167 pd.pf_mtag->hdr = h; 6168 } 6169 } 6170 #endif /* ALTQ */ 6171 6172 /* 6173 * connections redirected to loopback should not match sockets 6174 * bound specifically to loopback due to security implications, 6175 * see tcp_input() and in_pcblookup_listen(). 6176 */ 6177 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6178 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6179 (s->nat_rule.ptr->action == PF_RDR || 6180 s->nat_rule.ptr->action == PF_BINAT) && 6181 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6182 m->m_flags |= M_SKIP_FIREWALL; 6183 6184 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6185 !PACKET_LOOPED(&pd)) { 6186 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6187 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6188 if (ipfwtag != NULL) { 6189 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6190 ntohs(r->divert.port); 6191 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6192 6193 if (s) 6194 PF_STATE_UNLOCK(s); 6195 6196 m_tag_prepend(m, ipfwtag); 6197 if (m->m_flags & M_FASTFWD_OURS) { 6198 if (pd.pf_mtag == NULL && 6199 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6200 action = PF_DROP; 6201 REASON_SET(&reason, PFRES_MEMORY); 6202 log = 1; 6203 DPFPRINTF(PF_DEBUG_MISC, 6204 ("pf: failed to allocate tag\n")); 6205 } else { 6206 pd.pf_mtag->flags |= 6207 PF_FASTFWD_OURS_PRESENT; 6208 m->m_flags &= ~M_FASTFWD_OURS; 6209 } 6210 } 6211 ip_divert_ptr(*m0, dir == PF_IN); 6212 *m0 = NULL; 6213 6214 return (action); 6215 } else { 6216 /* XXX: ipfw has the same behaviour! */ 6217 action = PF_DROP; 6218 REASON_SET(&reason, PFRES_MEMORY); 6219 log = 1; 6220 DPFPRINTF(PF_DEBUG_MISC, 6221 ("pf: failed to allocate divert tag\n")); 6222 } 6223 } 6224 6225 if (log) { 6226 struct pf_krule *lr; 6227 6228 if (s != NULL && s->nat_rule.ptr != NULL && 6229 s->nat_rule.ptr->log & PF_LOG_ALL) 6230 lr = s->nat_rule.ptr; 6231 else 6232 lr = r; 6233 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6234 (s == NULL)); 6235 } 6236 6237 counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6238 pd.tot_len); 6239 counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6240 1); 6241 6242 if (action == PF_PASS || r->action == PF_DROP) { 6243 dirndx = (dir == PF_OUT); 6244 counter_u64_add(r->packets[dirndx], 1); 6245 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6246 if (a != NULL) { 6247 counter_u64_add(a->packets[dirndx], 1); 6248 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6249 } 6250 if (s != NULL) { 6251 if (s->nat_rule.ptr != NULL) { 6252 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6253 1); 6254 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6255 pd.tot_len); 6256 } 6257 if (s->src_node != NULL) { 6258 counter_u64_add(s->src_node->packets[dirndx], 6259 1); 6260 counter_u64_add(s->src_node->bytes[dirndx], 6261 pd.tot_len); 6262 } 6263 if (s->nat_src_node != NULL) { 6264 counter_u64_add(s->nat_src_node->packets[dirndx], 6265 1); 6266 counter_u64_add(s->nat_src_node->bytes[dirndx], 6267 pd.tot_len); 6268 } 6269 dirndx = (dir == s->direction) ? 0 : 1; 6270 counter_u64_add(s->packets[dirndx], 1); 6271 counter_u64_add(s->bytes[dirndx], pd.tot_len); 6272 } 6273 tr = r; 6274 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6275 if (nr != NULL && r == &V_pf_default_rule) 6276 tr = nr; 6277 if (tr->src.addr.type == PF_ADDR_TABLE) 6278 pfr_update_stats(tr->src.addr.p.tbl, 6279 (s == NULL) ? pd.src : 6280 &s->key[(s->direction == PF_IN)]-> 6281 addr[(s->direction == PF_OUT)], 6282 pd.af, pd.tot_len, dir == PF_OUT, 6283 r->action == PF_PASS, tr->src.neg); 6284 if (tr->dst.addr.type == PF_ADDR_TABLE) 6285 pfr_update_stats(tr->dst.addr.p.tbl, 6286 (s == NULL) ? pd.dst : 6287 &s->key[(s->direction == PF_IN)]-> 6288 addr[(s->direction == PF_IN)], 6289 pd.af, pd.tot_len, dir == PF_OUT, 6290 r->action == PF_PASS, tr->dst.neg); 6291 } 6292 6293 switch (action) { 6294 case PF_SYNPROXY_DROP: 6295 m_freem(*m0); 6296 case PF_DEFER: 6297 *m0 = NULL; 6298 action = PF_PASS; 6299 break; 6300 case PF_DROP: 6301 m_freem(*m0); 6302 *m0 = NULL; 6303 break; 6304 default: 6305 /* pf_route() returns unlocked. */ 6306 if (r->rt) { 6307 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6308 return (action); 6309 } 6310 break; 6311 } 6312 if (s) 6313 PF_STATE_UNLOCK(s); 6314 6315 return (action); 6316 } 6317 #endif /* INET */ 6318 6319 #ifdef INET6 6320 int 6321 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6322 { 6323 struct pfi_kkif *kif; 6324 u_short action, reason = 0, log = 0; 6325 struct mbuf *m = *m0, *n = NULL; 6326 struct m_tag *mtag; 6327 struct ip6_hdr *h = NULL; 6328 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6329 struct pf_state *s = NULL; 6330 struct pf_kruleset *ruleset = NULL; 6331 struct pf_pdesc pd; 6332 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6333 6334 PF_RULES_RLOCK_TRACKER; 6335 M_ASSERTPKTHDR(m); 6336 6337 if (!V_pf_status.running) 6338 return (PF_PASS); 6339 6340 memset(&pd, 0, sizeof(pd)); 6341 pd.pf_mtag = pf_find_mtag(m); 6342 6343 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6344 return (PF_PASS); 6345 6346 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6347 if (kif == NULL) { 6348 DPFPRINTF(PF_DEBUG_URGENT, 6349 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6350 return (PF_DROP); 6351 } 6352 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6353 return (PF_PASS); 6354 6355 if (m->m_flags & M_SKIP_FIREWALL) 6356 return (PF_PASS); 6357 6358 PF_RULES_RLOCK(); 6359 6360 /* We do IP header normalization and packet reassembly here */ 6361 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6362 action = PF_DROP; 6363 goto done; 6364 } 6365 m = *m0; /* pf_normalize messes with m0 */ 6366 h = mtod(m, struct ip6_hdr *); 6367 6368 /* 6369 * we do not support jumbogram. if we keep going, zero ip6_plen 6370 * will do something bad, so drop the packet for now. 6371 */ 6372 if (htons(h->ip6_plen) == 0) { 6373 action = PF_DROP; 6374 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6375 goto done; 6376 } 6377 6378 pd.src = (struct pf_addr *)&h->ip6_src; 6379 pd.dst = (struct pf_addr *)&h->ip6_dst; 6380 pd.sport = pd.dport = NULL; 6381 pd.ip_sum = NULL; 6382 pd.proto_sum = NULL; 6383 pd.dir = dir; 6384 pd.sidx = (dir == PF_IN) ? 0 : 1; 6385 pd.didx = (dir == PF_IN) ? 1 : 0; 6386 pd.af = AF_INET6; 6387 pd.tos = 0; 6388 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6389 6390 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6391 pd.proto = h->ip6_nxt; 6392 do { 6393 switch (pd.proto) { 6394 case IPPROTO_FRAGMENT: 6395 action = pf_test_fragment(&r, dir, kif, m, h, 6396 &pd, &a, &ruleset); 6397 if (action == PF_DROP) 6398 REASON_SET(&reason, PFRES_FRAG); 6399 goto done; 6400 case IPPROTO_ROUTING: { 6401 struct ip6_rthdr rthdr; 6402 6403 if (rh_cnt++) { 6404 DPFPRINTF(PF_DEBUG_MISC, 6405 ("pf: IPv6 more than one rthdr\n")); 6406 action = PF_DROP; 6407 REASON_SET(&reason, PFRES_IPOPTIONS); 6408 log = 1; 6409 goto done; 6410 } 6411 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6412 &reason, pd.af)) { 6413 DPFPRINTF(PF_DEBUG_MISC, 6414 ("pf: IPv6 short rthdr\n")); 6415 action = PF_DROP; 6416 REASON_SET(&reason, PFRES_SHORT); 6417 log = 1; 6418 goto done; 6419 } 6420 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6421 DPFPRINTF(PF_DEBUG_MISC, 6422 ("pf: IPv6 rthdr0\n")); 6423 action = PF_DROP; 6424 REASON_SET(&reason, PFRES_IPOPTIONS); 6425 log = 1; 6426 goto done; 6427 } 6428 /* FALLTHROUGH */ 6429 } 6430 case IPPROTO_AH: 6431 case IPPROTO_HOPOPTS: 6432 case IPPROTO_DSTOPTS: { 6433 /* get next header and header length */ 6434 struct ip6_ext opt6; 6435 6436 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6437 NULL, &reason, pd.af)) { 6438 DPFPRINTF(PF_DEBUG_MISC, 6439 ("pf: IPv6 short opt\n")); 6440 action = PF_DROP; 6441 log = 1; 6442 goto done; 6443 } 6444 if (pd.proto == IPPROTO_AH) 6445 off += (opt6.ip6e_len + 2) * 4; 6446 else 6447 off += (opt6.ip6e_len + 1) * 8; 6448 pd.proto = opt6.ip6e_nxt; 6449 /* goto the next header */ 6450 break; 6451 } 6452 default: 6453 terminal++; 6454 break; 6455 } 6456 } while (!terminal); 6457 6458 /* if there's no routing header, use unmodified mbuf for checksumming */ 6459 if (!n) 6460 n = m; 6461 6462 switch (pd.proto) { 6463 case IPPROTO_TCP: { 6464 struct tcphdr th; 6465 6466 pd.hdr.tcp = &th; 6467 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6468 &action, &reason, AF_INET6)) { 6469 log = action != PF_PASS; 6470 goto done; 6471 } 6472 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6473 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6474 if (action == PF_DROP) 6475 goto done; 6476 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6477 &reason); 6478 if (action == PF_PASS) { 6479 if (V_pfsync_update_state_ptr != NULL) 6480 V_pfsync_update_state_ptr(s); 6481 r = s->rule.ptr; 6482 a = s->anchor.ptr; 6483 log = s->log; 6484 } else if (s == NULL) 6485 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6486 &a, &ruleset, inp); 6487 break; 6488 } 6489 6490 case IPPROTO_UDP: { 6491 struct udphdr uh; 6492 6493 pd.hdr.udp = &uh; 6494 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6495 &action, &reason, AF_INET6)) { 6496 log = action != PF_PASS; 6497 goto done; 6498 } 6499 if (uh.uh_dport == 0 || 6500 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6501 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6502 action = PF_DROP; 6503 REASON_SET(&reason, PFRES_SHORT); 6504 goto done; 6505 } 6506 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6507 if (action == PF_PASS) { 6508 if (V_pfsync_update_state_ptr != NULL) 6509 V_pfsync_update_state_ptr(s); 6510 r = s->rule.ptr; 6511 a = s->anchor.ptr; 6512 log = s->log; 6513 } else if (s == NULL) 6514 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6515 &a, &ruleset, inp); 6516 break; 6517 } 6518 6519 case IPPROTO_ICMP: { 6520 action = PF_DROP; 6521 DPFPRINTF(PF_DEBUG_MISC, 6522 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6523 goto done; 6524 } 6525 6526 case IPPROTO_ICMPV6: { 6527 struct icmp6_hdr ih; 6528 6529 pd.hdr.icmp6 = &ih; 6530 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6531 &action, &reason, AF_INET6)) { 6532 log = action != PF_PASS; 6533 goto done; 6534 } 6535 action = pf_test_state_icmp(&s, dir, kif, 6536 m, off, h, &pd, &reason); 6537 if (action == PF_PASS) { 6538 if (V_pfsync_update_state_ptr != NULL) 6539 V_pfsync_update_state_ptr(s); 6540 r = s->rule.ptr; 6541 a = s->anchor.ptr; 6542 log = s->log; 6543 } else if (s == NULL) 6544 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6545 &a, &ruleset, inp); 6546 break; 6547 } 6548 6549 default: 6550 action = pf_test_state_other(&s, dir, kif, m, &pd); 6551 if (action == PF_PASS) { 6552 if (V_pfsync_update_state_ptr != NULL) 6553 V_pfsync_update_state_ptr(s); 6554 r = s->rule.ptr; 6555 a = s->anchor.ptr; 6556 log = s->log; 6557 } else if (s == NULL) 6558 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6559 &a, &ruleset, inp); 6560 break; 6561 } 6562 6563 done: 6564 PF_RULES_RUNLOCK(); 6565 if (n != m) { 6566 m_freem(n); 6567 n = NULL; 6568 } 6569 6570 /* handle dangerous IPv6 extension headers. */ 6571 if (action == PF_PASS && rh_cnt && 6572 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6573 action = PF_DROP; 6574 REASON_SET(&reason, PFRES_IPOPTIONS); 6575 log = r->log; 6576 DPFPRINTF(PF_DEBUG_MISC, 6577 ("pf: dropping packet with dangerous v6 headers\n")); 6578 } 6579 6580 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6581 action = PF_DROP; 6582 REASON_SET(&reason, PFRES_MEMORY); 6583 } 6584 if (r->rtableid >= 0) 6585 M_SETFIB(m, r->rtableid); 6586 6587 if (r->scrub_flags & PFSTATE_SETPRIO) { 6588 if (pd.tos & IPTOS_LOWDELAY) 6589 pqid = 1; 6590 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6591 action = PF_DROP; 6592 REASON_SET(&reason, PFRES_MEMORY); 6593 log = 1; 6594 DPFPRINTF(PF_DEBUG_MISC, 6595 ("pf: failed to allocate 802.1q mtag\n")); 6596 } 6597 } 6598 6599 #ifdef ALTQ 6600 if (action == PF_PASS && r->qid) { 6601 if (pd.pf_mtag == NULL && 6602 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6603 action = PF_DROP; 6604 REASON_SET(&reason, PFRES_MEMORY); 6605 } else { 6606 if (s != NULL) 6607 pd.pf_mtag->qid_hash = pf_state_hash(s); 6608 if (pd.tos & IPTOS_LOWDELAY) 6609 pd.pf_mtag->qid = r->pqid; 6610 else 6611 pd.pf_mtag->qid = r->qid; 6612 /* Add hints for ecn. */ 6613 pd.pf_mtag->hdr = h; 6614 } 6615 } 6616 #endif /* ALTQ */ 6617 6618 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6619 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6620 (s->nat_rule.ptr->action == PF_RDR || 6621 s->nat_rule.ptr->action == PF_BINAT) && 6622 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6623 m->m_flags |= M_SKIP_FIREWALL; 6624 6625 /* XXX: Anybody working on it?! */ 6626 if (r->divert.port) 6627 printf("pf: divert(9) is not supported for IPv6\n"); 6628 6629 if (log) { 6630 struct pf_krule *lr; 6631 6632 if (s != NULL && s->nat_rule.ptr != NULL && 6633 s->nat_rule.ptr->log & PF_LOG_ALL) 6634 lr = s->nat_rule.ptr; 6635 else 6636 lr = r; 6637 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6638 &pd, (s == NULL)); 6639 } 6640 6641 counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6642 pd.tot_len); 6643 counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6644 1); 6645 6646 if (action == PF_PASS || r->action == PF_DROP) { 6647 dirndx = (dir == PF_OUT); 6648 counter_u64_add(r->packets[dirndx], 1); 6649 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6650 if (a != NULL) { 6651 counter_u64_add(a->packets[dirndx], 1); 6652 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6653 } 6654 if (s != NULL) { 6655 if (s->nat_rule.ptr != NULL) { 6656 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6657 1); 6658 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6659 pd.tot_len); 6660 } 6661 if (s->src_node != NULL) { 6662 counter_u64_add(s->src_node->packets[dirndx], 6663 1); 6664 counter_u64_add(s->src_node->bytes[dirndx], 6665 pd.tot_len); 6666 } 6667 if (s->nat_src_node != NULL) { 6668 counter_u64_add(s->nat_src_node->packets[dirndx], 6669 1); 6670 counter_u64_add(s->nat_src_node->bytes[dirndx], 6671 pd.tot_len); 6672 } 6673 dirndx = (dir == s->direction) ? 0 : 1; 6674 counter_u64_add(s->packets[dirndx], 1); 6675 counter_u64_add(s->bytes[dirndx], pd.tot_len); 6676 } 6677 tr = r; 6678 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6679 if (nr != NULL && r == &V_pf_default_rule) 6680 tr = nr; 6681 if (tr->src.addr.type == PF_ADDR_TABLE) 6682 pfr_update_stats(tr->src.addr.p.tbl, 6683 (s == NULL) ? pd.src : 6684 &s->key[(s->direction == PF_IN)]->addr[0], 6685 pd.af, pd.tot_len, dir == PF_OUT, 6686 r->action == PF_PASS, tr->src.neg); 6687 if (tr->dst.addr.type == PF_ADDR_TABLE) 6688 pfr_update_stats(tr->dst.addr.p.tbl, 6689 (s == NULL) ? pd.dst : 6690 &s->key[(s->direction == PF_IN)]->addr[1], 6691 pd.af, pd.tot_len, dir == PF_OUT, 6692 r->action == PF_PASS, tr->dst.neg); 6693 } 6694 6695 switch (action) { 6696 case PF_SYNPROXY_DROP: 6697 m_freem(*m0); 6698 case PF_DEFER: 6699 *m0 = NULL; 6700 action = PF_PASS; 6701 break; 6702 case PF_DROP: 6703 m_freem(*m0); 6704 *m0 = NULL; 6705 break; 6706 default: 6707 /* pf_route6() returns unlocked. */ 6708 if (r->rt) { 6709 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6710 return (action); 6711 } 6712 break; 6713 } 6714 6715 if (s) 6716 PF_STATE_UNLOCK(s); 6717 6718 /* If reassembled packet passed, create new fragments. */ 6719 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6720 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6721 action = pf_refragment6(ifp, m0, mtag); 6722 6723 return (action); 6724 } 6725 #endif /* INET6 */ 6726