1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 138 "struct pf_krule *", "struct mbuf *", "int"); 139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 140 "struct pf_sctp_source *"); 141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 142 "struct pf_kstate *", "struct pf_sctp_source *"); 143 144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 145 "struct mbuf *"); 146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 148 "int", "struct pf_keth_rule *", "char *"); 149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 151 "int", "struct pf_keth_rule *"); 152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 153 154 /* 155 * Global variables 156 */ 157 158 /* state tables */ 159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 160 VNET_DEFINE(struct pf_kpalist, pf_pabuf[2]); 161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 165 VNET_DEFINE(struct pf_kstatus, pf_status); 166 167 VNET_DEFINE(u_int32_t, ticket_altqs_active); 168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 169 VNET_DEFINE(int, altqs_inactive_open); 170 VNET_DEFINE(u_int32_t, ticket_pabuf); 171 172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 174 VNET_DEFINE(u_char, pf_tcp_secret[16]); 175 #define V_pf_tcp_secret VNET(pf_tcp_secret) 176 VNET_DEFINE(int, pf_tcp_secret_init); 177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 178 VNET_DEFINE(int, pf_tcp_iss_off); 179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 180 VNET_DECLARE(int, pf_vnet_active); 181 #define V_pf_vnet_active VNET(pf_vnet_active) 182 183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 184 #define V_pf_purge_idx VNET(pf_purge_idx) 185 186 #ifdef PF_WANT_32_TO_64_COUNTER 187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 189 190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 191 VNET_DEFINE(size_t, pf_allrulecount); 192 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 193 #endif 194 195 struct pf_sctp_endpoint; 196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 197 struct pf_sctp_source { 198 sa_family_t af; 199 struct pf_addr addr; 200 TAILQ_ENTRY(pf_sctp_source) entry; 201 }; 202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 203 struct pf_sctp_endpoint 204 { 205 uint32_t v_tag; 206 struct pf_sctp_sources sources; 207 RB_ENTRY(pf_sctp_endpoint) entry; 208 }; 209 static int 210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 211 { 212 return (a->v_tag - b->v_tag); 213 } 214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 218 static struct mtx_padalign pf_sctp_endpoints_mtx; 219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 222 223 /* 224 * Queue for pf_intr() sends. 225 */ 226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 227 struct pf_send_entry { 228 STAILQ_ENTRY(pf_send_entry) pfse_next; 229 struct mbuf *pfse_m; 230 enum { 231 PFSE_IP, 232 PFSE_IP6, 233 PFSE_ICMP, 234 PFSE_ICMP6, 235 } pfse_type; 236 struct { 237 int type; 238 int code; 239 int mtu; 240 } icmpopts; 241 }; 242 243 STAILQ_HEAD(pf_send_head, pf_send_entry); 244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 245 #define V_pf_sendqueue VNET(pf_sendqueue) 246 247 static struct mtx_padalign pf_sendqueue_mtx; 248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 251 252 /* 253 * Queue for pf_overload_task() tasks. 254 */ 255 struct pf_overload_entry { 256 SLIST_ENTRY(pf_overload_entry) next; 257 struct pf_addr addr; 258 sa_family_t af; 259 uint8_t dir; 260 struct pf_krule *rule; 261 }; 262 263 SLIST_HEAD(pf_overload_head, pf_overload_entry); 264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 265 #define V_pf_overloadqueue VNET(pf_overloadqueue) 266 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 267 #define V_pf_overloadtask VNET(pf_overloadtask) 268 269 static struct mtx_padalign pf_overloadqueue_mtx; 270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 271 "pf overload/flush queue", MTX_DEF); 272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 274 275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 276 struct mtx_padalign pf_unlnkdrules_mtx; 277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 278 MTX_DEF); 279 280 struct sx pf_config_lock; 281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 282 283 struct mtx_padalign pf_table_stats_lock; 284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 285 MTX_DEF); 286 287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 288 #define V_pf_sources_z VNET(pf_sources_z) 289 uma_zone_t pf_mtag_z; 290 VNET_DEFINE(uma_zone_t, pf_state_z); 291 VNET_DEFINE(uma_zone_t, pf_state_key_z); 292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 293 294 VNET_DEFINE(struct unrhdr64, pf_stateid); 295 296 static void pf_src_tree_remove_state(struct pf_kstate *); 297 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 298 u_int32_t); 299 static void pf_add_threshold(struct pf_threshold *); 300 static int pf_check_threshold(struct pf_threshold *); 301 302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 303 u_int16_t *, u_int16_t *, struct pf_addr *, 304 u_int16_t, u_int8_t, sa_family_t, sa_family_t); 305 static int pf_modulate_sack(struct pf_pdesc *, 306 struct tcphdr *, struct pf_state_peer *); 307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 308 int *, u_int16_t *, u_int16_t *); 309 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 310 struct pf_addr *, struct pf_addr *, u_int16_t, 311 u_int16_t *, u_int16_t *, u_int16_t *, 312 u_int16_t *, u_int8_t, sa_family_t); 313 int pf_change_icmp_af(struct mbuf *, int, 314 struct pf_pdesc *, struct pf_pdesc *, 315 struct pf_addr *, struct pf_addr *, sa_family_t, 316 sa_family_t); 317 int pf_translate_icmp_af(int, void *); 318 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 319 sa_family_t, struct pf_krule *, int); 320 static void pf_detach_state(struct pf_kstate *); 321 static int pf_state_key_attach(struct pf_state_key *, 322 struct pf_state_key *, struct pf_kstate *); 323 static void pf_state_key_detach(struct pf_kstate *, int); 324 static int pf_state_key_ctor(void *, int, void *, int); 325 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 326 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 327 struct pf_mtag *pf_mtag); 328 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 329 struct pf_krule *, struct mbuf **); 330 static int pf_dummynet_route(struct pf_pdesc *, 331 struct pf_kstate *, struct pf_krule *, 332 struct ifnet *, struct sockaddr *, struct mbuf **); 333 static int pf_test_eth_rule(int, struct pfi_kkif *, 334 struct mbuf **); 335 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 336 struct pf_pdesc *, struct pf_krule **, 337 struct pf_kruleset **, struct inpcb *); 338 static int pf_create_state(struct pf_krule *, struct pf_krule *, 339 struct pf_krule *, struct pf_pdesc *, 340 struct pf_state_key *, struct pf_state_key *, int *, 341 struct pf_kstate **, int, u_int16_t, u_int16_t, 342 struct pf_krule_slist *, struct pf_udp_mapping *); 343 static int pf_state_key_addr_setup(struct pf_pdesc *, 344 struct pf_state_key_cmp *, int); 345 static int pf_tcp_track_full(struct pf_kstate **, 346 struct pf_pdesc *, u_short *, int *); 347 static int pf_tcp_track_sloppy(struct pf_kstate **, 348 struct pf_pdesc *, u_short *); 349 static int pf_test_state_tcp(struct pf_kstate **, 350 struct pf_pdesc *, u_short *); 351 static int pf_test_state_udp(struct pf_kstate **, 352 struct pf_pdesc *); 353 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 354 struct pf_pdesc *, struct pf_kstate **, 355 int, u_int16_t, u_int16_t, 356 int, int *, int, int); 357 static int pf_test_state_icmp(struct pf_kstate **, 358 struct pf_pdesc *, u_short *); 359 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 360 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 361 struct pfi_kkif *, struct pf_kstate *, int); 362 static int pf_test_state_sctp(struct pf_kstate **, 363 struct pf_pdesc *, u_short *); 364 static int pf_test_state_other(struct pf_kstate **, 365 struct pf_pdesc *); 366 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 367 int, u_int16_t); 368 static int pf_check_proto_cksum(struct mbuf *, int, int, 369 u_int8_t, sa_family_t); 370 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *, 371 u_short *); 372 static void pf_print_state_parts(struct pf_kstate *, 373 struct pf_state_key *, struct pf_state_key *); 374 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 375 bool, u_int8_t); 376 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 377 const struct pf_state_key_cmp *, u_int); 378 static bool pf_src_connlimit(struct pf_kstate *); 379 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 380 static void pf_counters_inc(int, struct pf_pdesc *, 381 struct pf_kstate *, struct pf_krule *, 382 struct pf_krule *); 383 static void pf_overload_task(void *v, int pending); 384 static u_short pf_insert_src_node(struct pf_ksrc_node **, 385 struct pf_srchash **, struct pf_krule *, 386 struct pf_addr *, sa_family_t, struct pf_addr *, 387 struct pfi_kkif *); 388 static u_int pf_purge_expired_states(u_int, int); 389 static void pf_purge_unlinked_rules(void); 390 static int pf_mtag_uminit(void *, int, int); 391 static void pf_mtag_free(struct m_tag *); 392 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 393 int, struct pf_state_key *); 394 #ifdef INET 395 static void pf_route(struct mbuf **, struct pf_krule *, 396 struct ifnet *, struct pf_kstate *, 397 struct pf_pdesc *, struct inpcb *); 398 #endif /* INET */ 399 #ifdef INET6 400 static void pf_change_a6(struct pf_addr *, u_int16_t *, 401 struct pf_addr *, u_int8_t); 402 static void pf_route6(struct mbuf **, struct pf_krule *, 403 struct ifnet *, struct pf_kstate *, 404 struct pf_pdesc *, struct inpcb *); 405 #endif /* INET6 */ 406 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 407 408 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 409 410 extern int pf_end_threads; 411 extern struct proc *pf_purge_proc; 412 413 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 414 415 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 416 417 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 418 do { \ 419 struct pf_state_key *nk; \ 420 if ((pd->dir) == PF_OUT) \ 421 nk = (_s)->key[PF_SK_STACK]; \ 422 else \ 423 nk = (_s)->key[PF_SK_WIRE]; \ 424 pf_packet_rework_nat(_m, _pd, _off, nk); \ 425 } while (0) 426 427 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 428 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 429 430 #define STATE_LOOKUP(k, s, pd) \ 431 do { \ 432 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 433 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 434 if ((s) == NULL) \ 435 return (PF_DROP); \ 436 if (PACKET_LOOPED(pd)) \ 437 return (PF_PASS); \ 438 } while (0) 439 440 static struct pfi_kkif * 441 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 442 { 443 struct pfi_kkif *k = pd->kif; 444 445 SDT_PROBE2(pf, ip, , bound_iface, st, k); 446 447 /* Floating unless otherwise specified. */ 448 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 449 return (V_pfi_all); 450 451 /* 452 * Initially set to all, because we don't know what interface we'll be 453 * sending this out when we create the state. 454 */ 455 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf)) 456 return (V_pfi_all); 457 458 /* Don't overrule the interface for states created on incoming packets. */ 459 if (st->direction == PF_IN) 460 return (k); 461 462 /* No route-to, so don't overrule. */ 463 if (st->act.rt != PF_ROUTETO) 464 return (k); 465 466 /* Bind to the route-to interface. */ 467 return (st->act.rt_kif); 468 } 469 470 #define STATE_INC_COUNTERS(s) \ 471 do { \ 472 struct pf_krule_item *mrm; \ 473 counter_u64_add(s->rule->states_cur, 1); \ 474 counter_u64_add(s->rule->states_tot, 1); \ 475 if (s->anchor != NULL) { \ 476 counter_u64_add(s->anchor->states_cur, 1); \ 477 counter_u64_add(s->anchor->states_tot, 1); \ 478 } \ 479 if (s->nat_rule != NULL) { \ 480 counter_u64_add(s->nat_rule->states_cur, 1);\ 481 counter_u64_add(s->nat_rule->states_tot, 1);\ 482 } \ 483 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 484 counter_u64_add(mrm->r->states_cur, 1); \ 485 counter_u64_add(mrm->r->states_tot, 1); \ 486 } \ 487 } while (0) 488 489 #define STATE_DEC_COUNTERS(s) \ 490 do { \ 491 struct pf_krule_item *mrm; \ 492 if (s->nat_rule != NULL) \ 493 counter_u64_add(s->nat_rule->states_cur, -1);\ 494 if (s->anchor != NULL) \ 495 counter_u64_add(s->anchor->states_cur, -1); \ 496 counter_u64_add(s->rule->states_cur, -1); \ 497 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 498 counter_u64_add(mrm->r->states_cur, -1); \ 499 } while (0) 500 501 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 502 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 503 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 504 VNET_DEFINE(struct pf_idhash *, pf_idhash); 505 VNET_DEFINE(struct pf_srchash *, pf_srchash); 506 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 507 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 508 509 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 510 "pf(4)"); 511 512 VNET_DEFINE(u_long, pf_hashmask); 513 VNET_DEFINE(u_long, pf_srchashmask); 514 VNET_DEFINE(u_long, pf_udpendpointhashmask); 515 VNET_DEFINE_STATIC(u_long, pf_hashsize); 516 #define V_pf_hashsize VNET(pf_hashsize) 517 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 518 #define V_pf_srchashsize VNET(pf_srchashsize) 519 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 520 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 521 u_long pf_ioctl_maxcount = 65535; 522 523 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 524 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 525 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 526 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 527 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 528 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 529 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 530 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 531 532 VNET_DEFINE(void *, pf_swi_cookie); 533 VNET_DEFINE(struct intr_event *, pf_swi_ie); 534 535 VNET_DEFINE(uint32_t, pf_hashseed); 536 #define V_pf_hashseed VNET(pf_hashseed) 537 538 static void 539 pf_sctp_checksum(struct mbuf *m, int off) 540 { 541 uint32_t sum = 0; 542 543 /* Zero out the checksum, to enable recalculation. */ 544 m_copyback(m, off + offsetof(struct sctphdr, checksum), 545 sizeof(sum), (caddr_t)&sum); 546 547 sum = sctp_calculate_cksum(m, off); 548 549 m_copyback(m, off + offsetof(struct sctphdr, checksum), 550 sizeof(sum), (caddr_t)&sum); 551 } 552 553 int 554 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 555 { 556 557 switch (af) { 558 #ifdef INET 559 case AF_INET: 560 if (a->addr32[0] > b->addr32[0]) 561 return (1); 562 if (a->addr32[0] < b->addr32[0]) 563 return (-1); 564 break; 565 #endif /* INET */ 566 #ifdef INET6 567 case AF_INET6: 568 if (a->addr32[3] > b->addr32[3]) 569 return (1); 570 if (a->addr32[3] < b->addr32[3]) 571 return (-1); 572 if (a->addr32[2] > b->addr32[2]) 573 return (1); 574 if (a->addr32[2] < b->addr32[2]) 575 return (-1); 576 if (a->addr32[1] > b->addr32[1]) 577 return (1); 578 if (a->addr32[1] < b->addr32[1]) 579 return (-1); 580 if (a->addr32[0] > b->addr32[0]) 581 return (1); 582 if (a->addr32[0] < b->addr32[0]) 583 return (-1); 584 break; 585 #endif /* INET6 */ 586 } 587 return (0); 588 } 589 590 static bool 591 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 592 { 593 switch (af) { 594 #ifdef INET 595 case AF_INET: 596 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 597 #endif 598 case AF_INET6: 599 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 600 default: 601 panic("Unknown af %d", af); 602 } 603 } 604 605 static void 606 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 607 struct pf_state_key *nk) 608 { 609 610 switch (pd->proto) { 611 case IPPROTO_TCP: { 612 struct tcphdr *th = &pd->hdr.tcp; 613 614 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 615 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 616 &th->th_sum, &nk->addr[pd->sidx], 617 nk->port[pd->sidx], 0, pd->af, pd->naf); 618 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 619 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 620 &th->th_sum, &nk->addr[pd->didx], 621 nk->port[pd->didx], 0, pd->af, pd->naf); 622 m_copyback(m, off, sizeof(*th), (caddr_t)th); 623 break; 624 } 625 case IPPROTO_UDP: { 626 struct udphdr *uh = &pd->hdr.udp; 627 628 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 629 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 630 &uh->uh_sum, &nk->addr[pd->sidx], 631 nk->port[pd->sidx], 1, pd->af, pd->naf); 632 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 633 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 634 &uh->uh_sum, &nk->addr[pd->didx], 635 nk->port[pd->didx], 1, pd->af, pd->naf); 636 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 637 break; 638 } 639 case IPPROTO_SCTP: { 640 struct sctphdr *sh = &pd->hdr.sctp; 641 uint16_t checksum = 0; 642 643 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 644 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 645 &checksum, &nk->addr[pd->sidx], 646 nk->port[pd->sidx], 1, pd->af, pd->naf); 647 } 648 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 649 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 650 &checksum, &nk->addr[pd->didx], 651 nk->port[pd->didx], 1, pd->af, pd->naf); 652 } 653 654 break; 655 } 656 case IPPROTO_ICMP: { 657 struct icmp *ih = &pd->hdr.icmp; 658 659 if (nk->port[pd->sidx] != ih->icmp_id) { 660 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 661 ih->icmp_cksum, ih->icmp_id, 662 nk->port[pd->sidx], 0); 663 ih->icmp_id = nk->port[pd->sidx]; 664 pd->sport = &ih->icmp_id; 665 666 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 667 } 668 /* FALLTHROUGH */ 669 } 670 default: 671 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 672 switch (pd->af) { 673 case AF_INET: 674 pf_change_a(&pd->src->v4.s_addr, 675 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 676 0); 677 break; 678 case AF_INET6: 679 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 680 break; 681 } 682 } 683 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 684 switch (pd->af) { 685 case AF_INET: 686 pf_change_a(&pd->dst->v4.s_addr, 687 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 688 0); 689 break; 690 case AF_INET6: 691 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 692 break; 693 } 694 } 695 break; 696 } 697 } 698 699 static __inline uint32_t 700 pf_hashkey(const struct pf_state_key *sk) 701 { 702 uint32_t h; 703 704 h = murmur3_32_hash32((const uint32_t *)sk, 705 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 706 V_pf_hashseed); 707 708 return (h & V_pf_hashmask); 709 } 710 711 __inline uint32_t 712 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 713 { 714 uint32_t h; 715 716 switch (af) { 717 case AF_INET: 718 h = murmur3_32_hash32((uint32_t *)&addr->v4, 719 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 720 break; 721 case AF_INET6: 722 h = murmur3_32_hash32((uint32_t *)&addr->v6, 723 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 724 break; 725 } 726 727 return (h & V_pf_srchashmask); 728 } 729 730 static inline uint32_t 731 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 732 { 733 uint32_t h; 734 735 h = murmur3_32_hash32((uint32_t *)endpoint, 736 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 737 V_pf_hashseed); 738 return (h & V_pf_udpendpointhashmask); 739 } 740 741 #ifdef ALTQ 742 static int 743 pf_state_hash(struct pf_kstate *s) 744 { 745 u_int32_t hv = (intptr_t)s / sizeof(*s); 746 747 hv ^= crc32(&s->src, sizeof(s->src)); 748 hv ^= crc32(&s->dst, sizeof(s->dst)); 749 if (hv == 0) 750 hv = 1; 751 return (hv); 752 } 753 #endif 754 755 static __inline void 756 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 757 { 758 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 759 s->dst.state = newstate; 760 if (which == PF_PEER_DST) 761 return; 762 if (s->src.state == newstate) 763 return; 764 if (s->creatorid == V_pf_status.hostid && 765 s->key[PF_SK_STACK] != NULL && 766 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 767 !(TCPS_HAVEESTABLISHED(s->src.state) || 768 s->src.state == TCPS_CLOSED) && 769 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 770 atomic_add_32(&V_pf_status.states_halfopen, -1); 771 772 s->src.state = newstate; 773 } 774 775 #ifdef INET6 776 void 777 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 778 { 779 switch (af) { 780 #ifdef INET 781 case AF_INET: 782 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 783 break; 784 #endif /* INET */ 785 case AF_INET6: 786 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 787 break; 788 } 789 } 790 #endif /* INET6 */ 791 792 static void 793 pf_init_threshold(struct pf_threshold *threshold, 794 u_int32_t limit, u_int32_t seconds) 795 { 796 threshold->limit = limit * PF_THRESHOLD_MULT; 797 threshold->seconds = seconds; 798 threshold->count = 0; 799 threshold->last = time_uptime; 800 } 801 802 static void 803 pf_add_threshold(struct pf_threshold *threshold) 804 { 805 u_int32_t t = time_uptime, diff = t - threshold->last; 806 807 if (diff >= threshold->seconds) 808 threshold->count = 0; 809 else 810 threshold->count -= threshold->count * diff / 811 threshold->seconds; 812 threshold->count += PF_THRESHOLD_MULT; 813 threshold->last = t; 814 } 815 816 static int 817 pf_check_threshold(struct pf_threshold *threshold) 818 { 819 return (threshold->count > threshold->limit); 820 } 821 822 static bool 823 pf_src_connlimit(struct pf_kstate *state) 824 { 825 struct pf_overload_entry *pfoe; 826 bool limited = false; 827 828 PF_STATE_LOCK_ASSERT(state); 829 PF_SRC_NODE_LOCK(state->src_node); 830 831 state->src_node->conn++; 832 state->src.tcp_est = 1; 833 pf_add_threshold(&state->src_node->conn_rate); 834 835 if (state->rule->max_src_conn && 836 state->rule->max_src_conn < 837 state->src_node->conn) { 838 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 839 limited = true; 840 } 841 842 if (state->rule->max_src_conn_rate.limit && 843 pf_check_threshold(&state->src_node->conn_rate)) { 844 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 845 limited = true; 846 } 847 848 if (!limited) 849 goto done; 850 851 /* Kill this state. */ 852 state->timeout = PFTM_PURGE; 853 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 854 855 if (state->rule->overload_tbl == NULL) 856 goto done; 857 858 /* Schedule overloading and flushing task. */ 859 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 860 if (pfoe == NULL) 861 goto done; /* too bad :( */ 862 863 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 864 pfoe->af = state->key[PF_SK_WIRE]->af; 865 pfoe->rule = state->rule; 866 pfoe->dir = state->direction; 867 PF_OVERLOADQ_LOCK(); 868 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 869 PF_OVERLOADQ_UNLOCK(); 870 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 871 872 done: 873 PF_SRC_NODE_UNLOCK(state->src_node); 874 return (limited); 875 } 876 877 static void 878 pf_overload_task(void *v, int pending) 879 { 880 struct pf_overload_head queue; 881 struct pfr_addr p; 882 struct pf_overload_entry *pfoe, *pfoe1; 883 uint32_t killed = 0; 884 885 CURVNET_SET((struct vnet *)v); 886 887 PF_OVERLOADQ_LOCK(); 888 queue = V_pf_overloadqueue; 889 SLIST_INIT(&V_pf_overloadqueue); 890 PF_OVERLOADQ_UNLOCK(); 891 892 bzero(&p, sizeof(p)); 893 SLIST_FOREACH(pfoe, &queue, next) { 894 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 895 if (V_pf_status.debug >= PF_DEBUG_MISC) { 896 printf("%s: blocking address ", __func__); 897 pf_print_host(&pfoe->addr, 0, pfoe->af); 898 printf("\n"); 899 } 900 901 p.pfra_af = pfoe->af; 902 switch (pfoe->af) { 903 #ifdef INET 904 case AF_INET: 905 p.pfra_net = 32; 906 p.pfra_ip4addr = pfoe->addr.v4; 907 break; 908 #endif 909 #ifdef INET6 910 case AF_INET6: 911 p.pfra_net = 128; 912 p.pfra_ip6addr = pfoe->addr.v6; 913 break; 914 #endif 915 } 916 917 PF_RULES_WLOCK(); 918 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 919 PF_RULES_WUNLOCK(); 920 } 921 922 /* 923 * Remove those entries, that don't need flushing. 924 */ 925 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 926 if (pfoe->rule->flush == 0) { 927 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 928 free(pfoe, M_PFTEMP); 929 } else 930 counter_u64_add( 931 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 932 933 /* If nothing to flush, return. */ 934 if (SLIST_EMPTY(&queue)) { 935 CURVNET_RESTORE(); 936 return; 937 } 938 939 for (int i = 0; i <= V_pf_hashmask; i++) { 940 struct pf_idhash *ih = &V_pf_idhash[i]; 941 struct pf_state_key *sk; 942 struct pf_kstate *s; 943 944 PF_HASHROW_LOCK(ih); 945 LIST_FOREACH(s, &ih->states, entry) { 946 sk = s->key[PF_SK_WIRE]; 947 SLIST_FOREACH(pfoe, &queue, next) 948 if (sk->af == pfoe->af && 949 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 950 pfoe->rule == s->rule) && 951 ((pfoe->dir == PF_OUT && 952 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 953 (pfoe->dir == PF_IN && 954 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 955 s->timeout = PFTM_PURGE; 956 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 957 killed++; 958 } 959 } 960 PF_HASHROW_UNLOCK(ih); 961 } 962 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 963 free(pfoe, M_PFTEMP); 964 if (V_pf_status.debug >= PF_DEBUG_MISC) 965 printf("%s: %u states killed", __func__, killed); 966 967 CURVNET_RESTORE(); 968 } 969 970 /* 971 * On node found always returns locked. On not found its configurable. 972 */ 973 struct pf_ksrc_node * 974 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 975 struct pf_srchash **sh, bool returnlocked) 976 { 977 struct pf_ksrc_node *n; 978 979 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 980 981 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 982 PF_HASHROW_LOCK(*sh); 983 LIST_FOREACH(n, &(*sh)->nodes, entry) 984 if (n->rule == rule && n->af == af && 985 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 986 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 987 break; 988 989 if (n == NULL && !returnlocked) 990 PF_HASHROW_UNLOCK(*sh); 991 992 return (n); 993 } 994 995 bool 996 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 997 { 998 struct pf_ksrc_node *cur; 999 1000 if ((*sn) == NULL) 1001 return (false); 1002 1003 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 1004 1005 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1006 PF_HASHROW_LOCK(sh); 1007 LIST_FOREACH(cur, &(sh->nodes), entry) { 1008 if (cur == (*sn) && 1009 cur->expire != 1) /* Ignore nodes being killed */ 1010 return (true); 1011 } 1012 PF_HASHROW_UNLOCK(sh); 1013 (*sn) = NULL; 1014 return (false); 1015 } 1016 1017 static void 1018 pf_free_src_node(struct pf_ksrc_node *sn) 1019 { 1020 1021 for (int i = 0; i < 2; i++) { 1022 counter_u64_free(sn->bytes[i]); 1023 counter_u64_free(sn->packets[i]); 1024 } 1025 uma_zfree(V_pf_sources_z, sn); 1026 } 1027 1028 static u_short 1029 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh, 1030 struct pf_krule *rule, struct pf_addr *src, sa_family_t af, 1031 struct pf_addr *raddr, struct pfi_kkif *rkif) 1032 { 1033 u_short reason = 0; 1034 1035 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1036 rule->rdr.opts & PF_POOL_STICKYADDR), 1037 ("%s for non-tracking rule %p", __func__, rule)); 1038 1039 /* 1040 * Request the sh to always be locked, as we might insert a new sn. 1041 */ 1042 if (*sn == NULL) 1043 *sn = pf_find_src_node(src, rule, af, sh, true); 1044 1045 if (*sn == NULL) { 1046 PF_HASHROW_ASSERT(*sh); 1047 1048 if (rule->max_src_nodes && 1049 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1050 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1051 reason = PFRES_SRCLIMIT; 1052 goto done; 1053 } 1054 1055 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1056 if ((*sn) == NULL) { 1057 reason = PFRES_MEMORY; 1058 goto done; 1059 } 1060 1061 for (int i = 0; i < 2; i++) { 1062 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1063 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1064 1065 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1066 pf_free_src_node(*sn); 1067 reason = PFRES_MEMORY; 1068 goto done; 1069 } 1070 } 1071 1072 pf_init_threshold(&(*sn)->conn_rate, 1073 rule->max_src_conn_rate.limit, 1074 rule->max_src_conn_rate.seconds); 1075 1076 MPASS((*sn)->lock == NULL); 1077 (*sn)->lock = &(*sh)->lock; 1078 1079 (*sn)->af = af; 1080 (*sn)->rule = rule; 1081 PF_ACPY(&(*sn)->addr, src, af); 1082 PF_ACPY(&(*sn)->raddr, raddr, af); 1083 (*sn)->rkif = rkif; 1084 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1085 (*sn)->creation = time_uptime; 1086 (*sn)->ruletype = rule->action; 1087 if ((*sn)->rule != NULL) 1088 counter_u64_add((*sn)->rule->src_nodes, 1); 1089 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1090 } else { 1091 if (rule->max_src_states && 1092 (*sn)->states >= rule->max_src_states) { 1093 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1094 1); 1095 reason = PFRES_SRCLIMIT; 1096 goto done; 1097 } 1098 } 1099 done: 1100 if (reason == 0) 1101 (*sn)->states++; 1102 else 1103 (*sn) = NULL; 1104 1105 PF_HASHROW_UNLOCK(*sh); 1106 return (reason); 1107 } 1108 1109 void 1110 pf_unlink_src_node(struct pf_ksrc_node *src) 1111 { 1112 PF_SRC_NODE_LOCK_ASSERT(src); 1113 1114 LIST_REMOVE(src, entry); 1115 if (src->rule) 1116 counter_u64_add(src->rule->src_nodes, -1); 1117 } 1118 1119 u_int 1120 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1121 { 1122 struct pf_ksrc_node *sn, *tmp; 1123 u_int count = 0; 1124 1125 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1126 pf_free_src_node(sn); 1127 count++; 1128 } 1129 1130 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1131 1132 return (count); 1133 } 1134 1135 void 1136 pf_mtag_initialize(void) 1137 { 1138 1139 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1140 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1141 UMA_ALIGN_PTR, 0); 1142 } 1143 1144 /* Per-vnet data storage structures initialization. */ 1145 void 1146 pf_initialize(void) 1147 { 1148 struct pf_keyhash *kh; 1149 struct pf_idhash *ih; 1150 struct pf_srchash *sh; 1151 struct pf_udpendpointhash *uh; 1152 u_int i; 1153 1154 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1155 V_pf_hashsize = PF_HASHSIZ; 1156 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1157 V_pf_srchashsize = PF_SRCHASHSIZ; 1158 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1159 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1160 1161 V_pf_hashseed = arc4random(); 1162 1163 /* States and state keys storage. */ 1164 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1165 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1166 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1167 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1168 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1169 1170 V_pf_state_key_z = uma_zcreate("pf state keys", 1171 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1172 UMA_ALIGN_PTR, 0); 1173 1174 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1175 M_PFHASH, M_NOWAIT | M_ZERO); 1176 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1177 M_PFHASH, M_NOWAIT | M_ZERO); 1178 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1179 printf("pf: Unable to allocate memory for " 1180 "state_hashsize %lu.\n", V_pf_hashsize); 1181 1182 free(V_pf_keyhash, M_PFHASH); 1183 free(V_pf_idhash, M_PFHASH); 1184 1185 V_pf_hashsize = PF_HASHSIZ; 1186 V_pf_keyhash = mallocarray(V_pf_hashsize, 1187 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1188 V_pf_idhash = mallocarray(V_pf_hashsize, 1189 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1190 } 1191 1192 V_pf_hashmask = V_pf_hashsize - 1; 1193 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1194 i++, kh++, ih++) { 1195 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1196 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1197 } 1198 1199 /* Source nodes. */ 1200 V_pf_sources_z = uma_zcreate("pf source nodes", 1201 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1202 0); 1203 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1204 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1205 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1206 1207 V_pf_srchash = mallocarray(V_pf_srchashsize, 1208 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1209 if (V_pf_srchash == NULL) { 1210 printf("pf: Unable to allocate memory for " 1211 "source_hashsize %lu.\n", V_pf_srchashsize); 1212 1213 V_pf_srchashsize = PF_SRCHASHSIZ; 1214 V_pf_srchash = mallocarray(V_pf_srchashsize, 1215 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1216 } 1217 1218 V_pf_srchashmask = V_pf_srchashsize - 1; 1219 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1220 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1221 1222 1223 /* UDP endpoint mappings. */ 1224 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1225 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1226 UMA_ALIGN_PTR, 0); 1227 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1228 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1229 if (V_pf_udpendpointhash == NULL) { 1230 printf("pf: Unable to allocate memory for " 1231 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1232 1233 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1234 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1235 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1236 } 1237 1238 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1239 for (i = 0, uh = V_pf_udpendpointhash; 1240 i <= V_pf_udpendpointhashmask; 1241 i++, uh++) { 1242 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1243 MTX_DEF | MTX_DUPOK); 1244 } 1245 1246 /* ALTQ */ 1247 TAILQ_INIT(&V_pf_altqs[0]); 1248 TAILQ_INIT(&V_pf_altqs[1]); 1249 TAILQ_INIT(&V_pf_altqs[2]); 1250 TAILQ_INIT(&V_pf_altqs[3]); 1251 TAILQ_INIT(&V_pf_pabuf[0]); 1252 TAILQ_INIT(&V_pf_pabuf[1]); 1253 V_pf_altqs_active = &V_pf_altqs[0]; 1254 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1255 V_pf_altqs_inactive = &V_pf_altqs[2]; 1256 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1257 1258 /* Send & overload+flush queues. */ 1259 STAILQ_INIT(&V_pf_sendqueue); 1260 SLIST_INIT(&V_pf_overloadqueue); 1261 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1262 1263 /* Unlinked, but may be referenced rules. */ 1264 TAILQ_INIT(&V_pf_unlinked_rules); 1265 } 1266 1267 void 1268 pf_mtag_cleanup(void) 1269 { 1270 1271 uma_zdestroy(pf_mtag_z); 1272 } 1273 1274 void 1275 pf_cleanup(void) 1276 { 1277 struct pf_keyhash *kh; 1278 struct pf_idhash *ih; 1279 struct pf_srchash *sh; 1280 struct pf_udpendpointhash *uh; 1281 struct pf_send_entry *pfse, *next; 1282 u_int i; 1283 1284 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1285 i <= V_pf_hashmask; 1286 i++, kh++, ih++) { 1287 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1288 __func__)); 1289 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1290 __func__)); 1291 mtx_destroy(&kh->lock); 1292 mtx_destroy(&ih->lock); 1293 } 1294 free(V_pf_keyhash, M_PFHASH); 1295 free(V_pf_idhash, M_PFHASH); 1296 1297 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1298 KASSERT(LIST_EMPTY(&sh->nodes), 1299 ("%s: source node hash not empty", __func__)); 1300 mtx_destroy(&sh->lock); 1301 } 1302 free(V_pf_srchash, M_PFHASH); 1303 1304 for (i = 0, uh = V_pf_udpendpointhash; 1305 i <= V_pf_udpendpointhashmask; 1306 i++, uh++) { 1307 KASSERT(LIST_EMPTY(&uh->endpoints), 1308 ("%s: udp endpoint hash not empty", __func__)); 1309 mtx_destroy(&uh->lock); 1310 } 1311 free(V_pf_udpendpointhash, M_PFHASH); 1312 1313 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1314 m_freem(pfse->pfse_m); 1315 free(pfse, M_PFTEMP); 1316 } 1317 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1318 1319 uma_zdestroy(V_pf_sources_z); 1320 uma_zdestroy(V_pf_state_z); 1321 uma_zdestroy(V_pf_state_key_z); 1322 uma_zdestroy(V_pf_udp_mapping_z); 1323 } 1324 1325 static int 1326 pf_mtag_uminit(void *mem, int size, int how) 1327 { 1328 struct m_tag *t; 1329 1330 t = (struct m_tag *)mem; 1331 t->m_tag_cookie = MTAG_ABI_COMPAT; 1332 t->m_tag_id = PACKET_TAG_PF; 1333 t->m_tag_len = sizeof(struct pf_mtag); 1334 t->m_tag_free = pf_mtag_free; 1335 1336 return (0); 1337 } 1338 1339 static void 1340 pf_mtag_free(struct m_tag *t) 1341 { 1342 1343 uma_zfree(pf_mtag_z, t); 1344 } 1345 1346 struct pf_mtag * 1347 pf_get_mtag(struct mbuf *m) 1348 { 1349 struct m_tag *mtag; 1350 1351 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1352 return ((struct pf_mtag *)(mtag + 1)); 1353 1354 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1355 if (mtag == NULL) 1356 return (NULL); 1357 bzero(mtag + 1, sizeof(struct pf_mtag)); 1358 m_tag_prepend(m, mtag); 1359 1360 return ((struct pf_mtag *)(mtag + 1)); 1361 } 1362 1363 static int 1364 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1365 struct pf_kstate *s) 1366 { 1367 struct pf_keyhash *khs, *khw, *kh; 1368 struct pf_state_key *sk, *cur; 1369 struct pf_kstate *si, *olds = NULL; 1370 int idx; 1371 1372 NET_EPOCH_ASSERT(); 1373 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1374 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1375 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1376 1377 /* 1378 * We need to lock hash slots of both keys. To avoid deadlock 1379 * we always lock the slot with lower address first. Unlock order 1380 * isn't important. 1381 * 1382 * We also need to lock ID hash slot before dropping key 1383 * locks. On success we return with ID hash slot locked. 1384 */ 1385 1386 if (skw == sks) { 1387 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1388 PF_HASHROW_LOCK(khs); 1389 } else { 1390 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1391 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1392 if (khs == khw) { 1393 PF_HASHROW_LOCK(khs); 1394 } else if (khs < khw) { 1395 PF_HASHROW_LOCK(khs); 1396 PF_HASHROW_LOCK(khw); 1397 } else { 1398 PF_HASHROW_LOCK(khw); 1399 PF_HASHROW_LOCK(khs); 1400 } 1401 } 1402 1403 #define KEYS_UNLOCK() do { \ 1404 if (khs != khw) { \ 1405 PF_HASHROW_UNLOCK(khs); \ 1406 PF_HASHROW_UNLOCK(khw); \ 1407 } else \ 1408 PF_HASHROW_UNLOCK(khs); \ 1409 } while (0) 1410 1411 /* 1412 * First run: start with wire key. 1413 */ 1414 sk = skw; 1415 kh = khw; 1416 idx = PF_SK_WIRE; 1417 1418 MPASS(s->lock == NULL); 1419 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1420 1421 keyattach: 1422 LIST_FOREACH(cur, &kh->keys, entry) 1423 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1424 break; 1425 1426 if (cur != NULL) { 1427 /* Key exists. Check for same kif, if none, add to key. */ 1428 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1429 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1430 1431 PF_HASHROW_LOCK(ih); 1432 if (si->kif == s->kif && 1433 ((si->key[PF_SK_WIRE]->af == sk->af && 1434 si->direction == s->direction) || 1435 (si->key[PF_SK_WIRE]->af != 1436 si->key[PF_SK_STACK]->af && 1437 sk->af == si->key[PF_SK_STACK]->af && 1438 si->direction != s->direction))) { 1439 if (sk->proto == IPPROTO_TCP && 1440 si->src.state >= TCPS_FIN_WAIT_2 && 1441 si->dst.state >= TCPS_FIN_WAIT_2) { 1442 /* 1443 * New state matches an old >FIN_WAIT_2 1444 * state. We can't drop key hash locks, 1445 * thus we can't unlink it properly. 1446 * 1447 * As a workaround we drop it into 1448 * TCPS_CLOSED state, schedule purge 1449 * ASAP and push it into the very end 1450 * of the slot TAILQ, so that it won't 1451 * conflict with our new state. 1452 */ 1453 pf_set_protostate(si, PF_PEER_BOTH, 1454 TCPS_CLOSED); 1455 si->timeout = PFTM_PURGE; 1456 olds = si; 1457 } else { 1458 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1459 printf("pf: %s key attach " 1460 "failed on %s: ", 1461 (idx == PF_SK_WIRE) ? 1462 "wire" : "stack", 1463 s->kif->pfik_name); 1464 pf_print_state_parts(s, 1465 (idx == PF_SK_WIRE) ? 1466 sk : NULL, 1467 (idx == PF_SK_STACK) ? 1468 sk : NULL); 1469 printf(", existing: "); 1470 pf_print_state_parts(si, 1471 (idx == PF_SK_WIRE) ? 1472 sk : NULL, 1473 (idx == PF_SK_STACK) ? 1474 sk : NULL); 1475 printf("\n"); 1476 } 1477 s->timeout = PFTM_UNLINKED; 1478 PF_HASHROW_UNLOCK(ih); 1479 KEYS_UNLOCK(); 1480 uma_zfree(V_pf_state_key_z, skw); 1481 if (skw != sks) 1482 uma_zfree(V_pf_state_key_z, sks); 1483 if (idx == PF_SK_STACK) 1484 pf_detach_state(s); 1485 return (EEXIST); /* collision! */ 1486 } 1487 } 1488 PF_HASHROW_UNLOCK(ih); 1489 } 1490 uma_zfree(V_pf_state_key_z, sk); 1491 s->key[idx] = cur; 1492 } else { 1493 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1494 s->key[idx] = sk; 1495 } 1496 1497 stateattach: 1498 /* List is sorted, if-bound states before floating. */ 1499 if (s->kif == V_pfi_all) 1500 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1501 else 1502 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1503 1504 if (olds) { 1505 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1506 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1507 key_list[idx]); 1508 olds = NULL; 1509 } 1510 1511 /* 1512 * Attach done. See how should we (or should not?) 1513 * attach a second key. 1514 */ 1515 if (sks == skw) { 1516 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1517 idx = PF_SK_STACK; 1518 sks = NULL; 1519 goto stateattach; 1520 } else if (sks != NULL) { 1521 /* 1522 * Continue attaching with stack key. 1523 */ 1524 sk = sks; 1525 kh = khs; 1526 idx = PF_SK_STACK; 1527 sks = NULL; 1528 goto keyattach; 1529 } 1530 1531 PF_STATE_LOCK(s); 1532 KEYS_UNLOCK(); 1533 1534 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1535 ("%s failure", __func__)); 1536 1537 return (0); 1538 #undef KEYS_UNLOCK 1539 } 1540 1541 static void 1542 pf_detach_state(struct pf_kstate *s) 1543 { 1544 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1545 struct pf_keyhash *kh; 1546 1547 NET_EPOCH_ASSERT(); 1548 MPASS(s->timeout >= PFTM_MAX); 1549 1550 pf_sctp_multihome_detach_addr(s); 1551 1552 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1553 V_pflow_export_state_ptr(s); 1554 1555 if (sks != NULL) { 1556 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1557 PF_HASHROW_LOCK(kh); 1558 if (s->key[PF_SK_STACK] != NULL) 1559 pf_state_key_detach(s, PF_SK_STACK); 1560 /* 1561 * If both point to same key, then we are done. 1562 */ 1563 if (sks == s->key[PF_SK_WIRE]) { 1564 pf_state_key_detach(s, PF_SK_WIRE); 1565 PF_HASHROW_UNLOCK(kh); 1566 return; 1567 } 1568 PF_HASHROW_UNLOCK(kh); 1569 } 1570 1571 if (s->key[PF_SK_WIRE] != NULL) { 1572 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1573 PF_HASHROW_LOCK(kh); 1574 if (s->key[PF_SK_WIRE] != NULL) 1575 pf_state_key_detach(s, PF_SK_WIRE); 1576 PF_HASHROW_UNLOCK(kh); 1577 } 1578 } 1579 1580 static void 1581 pf_state_key_detach(struct pf_kstate *s, int idx) 1582 { 1583 struct pf_state_key *sk = s->key[idx]; 1584 #ifdef INVARIANTS 1585 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1586 1587 PF_HASHROW_ASSERT(kh); 1588 #endif 1589 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1590 s->key[idx] = NULL; 1591 1592 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1593 LIST_REMOVE(sk, entry); 1594 uma_zfree(V_pf_state_key_z, sk); 1595 } 1596 } 1597 1598 static int 1599 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1600 { 1601 struct pf_state_key *sk = mem; 1602 1603 bzero(sk, sizeof(struct pf_state_key_cmp)); 1604 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1605 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1606 1607 return (0); 1608 } 1609 1610 static int 1611 pf_state_key_addr_setup(struct pf_pdesc *pd, 1612 struct pf_state_key_cmp *key, int multi) 1613 { 1614 struct pf_addr *saddr = pd->src; 1615 struct pf_addr *daddr = pd->dst; 1616 #ifdef INET6 1617 struct nd_neighbor_solicit nd; 1618 struct pf_addr *target; 1619 u_short action, reason; 1620 1621 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1622 goto copy; 1623 1624 switch (pd->hdr.icmp6.icmp6_type) { 1625 case ND_NEIGHBOR_SOLICIT: 1626 if (multi) 1627 return (-1); 1628 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1629 return (-1); 1630 target = (struct pf_addr *)&nd.nd_ns_target; 1631 daddr = target; 1632 break; 1633 case ND_NEIGHBOR_ADVERT: 1634 if (multi) 1635 return (-1); 1636 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1637 return (-1); 1638 target = (struct pf_addr *)&nd.nd_ns_target; 1639 saddr = target; 1640 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1641 key->addr[pd->didx].addr32[0] = 0; 1642 key->addr[pd->didx].addr32[1] = 0; 1643 key->addr[pd->didx].addr32[2] = 0; 1644 key->addr[pd->didx].addr32[3] = 0; 1645 daddr = NULL; /* overwritten */ 1646 } 1647 break; 1648 default: 1649 if (multi == PF_ICMP_MULTI_LINK) { 1650 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1651 key->addr[pd->sidx].addr32[1] = 0; 1652 key->addr[pd->sidx].addr32[2] = 0; 1653 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1654 saddr = NULL; /* overwritten */ 1655 } 1656 } 1657 copy: 1658 #endif 1659 if (saddr) 1660 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1661 if (daddr) 1662 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1663 1664 return (0); 1665 } 1666 1667 int 1668 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1669 struct pf_state_key **sk, struct pf_state_key **nk) 1670 { 1671 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1672 if (*sk == NULL) 1673 return (ENOMEM); 1674 1675 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1676 0)) { 1677 uma_zfree(V_pf_state_key_z, *sk); 1678 *sk = NULL; 1679 return (ENOMEM); 1680 } 1681 1682 (*sk)->port[pd->sidx] = sport; 1683 (*sk)->port[pd->didx] = dport; 1684 (*sk)->proto = pd->proto; 1685 (*sk)->af = pd->af; 1686 1687 *nk = pf_state_key_clone(*sk); 1688 if (*nk == NULL) { 1689 uma_zfree(V_pf_state_key_z, *sk); 1690 *sk = NULL; 1691 return (ENOMEM); 1692 } 1693 1694 if (pd->af != pd->naf) { 1695 (*sk)->port[pd->sidx] = pd->osport; 1696 (*sk)->port[pd->didx] = pd->odport; 1697 1698 (*nk)->af = pd->naf; 1699 1700 /* 1701 * We're overwriting an address here, so potentially there's bits of an IPv6 1702 * address left in here. Clear that out first. 1703 */ 1704 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1705 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1706 1707 PF_ACPY(&(*nk)->addr[pd->af == pd->naf ? pd->sidx : pd->didx], 1708 &pd->nsaddr, pd->naf); 1709 PF_ACPY(&(*nk)->addr[pd->af == pd->naf ? pd->didx : pd->sidx], 1710 &pd->ndaddr, pd->naf); 1711 (*nk)->port[pd->af == pd->naf ? pd->sidx : pd->didx] = pd->nsport; 1712 (*nk)->port[pd->af == pd->naf ? pd->didx : pd->sidx] = pd->ndport; 1713 switch (pd->proto) { 1714 case IPPROTO_ICMP: 1715 (*nk)->proto = IPPROTO_ICMPV6; 1716 break; 1717 case IPPROTO_ICMPV6: 1718 (*nk)->proto = IPPROTO_ICMP; 1719 break; 1720 default: 1721 (*nk)->proto = pd->proto; 1722 } 1723 } 1724 1725 return (0); 1726 } 1727 1728 struct pf_state_key * 1729 pf_state_key_clone(const struct pf_state_key *orig) 1730 { 1731 struct pf_state_key *sk; 1732 1733 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1734 if (sk == NULL) 1735 return (NULL); 1736 1737 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1738 1739 return (sk); 1740 } 1741 1742 int 1743 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1744 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1745 { 1746 struct pf_idhash *ih; 1747 struct pf_kstate *cur; 1748 int error; 1749 1750 NET_EPOCH_ASSERT(); 1751 1752 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1753 ("%s: sks not pristine", __func__)); 1754 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1755 ("%s: skw not pristine", __func__)); 1756 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1757 1758 s->kif = kif; 1759 s->orig_kif = orig_kif; 1760 1761 if (s->id == 0 && s->creatorid == 0) { 1762 s->id = alloc_unr64(&V_pf_stateid); 1763 s->id = htobe64(s->id); 1764 s->creatorid = V_pf_status.hostid; 1765 } 1766 1767 /* Returns with ID locked on success. */ 1768 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1769 return (error); 1770 1771 ih = &V_pf_idhash[PF_IDHASH(s)]; 1772 PF_HASHROW_ASSERT(ih); 1773 LIST_FOREACH(cur, &ih->states, entry) 1774 if (cur->id == s->id && cur->creatorid == s->creatorid) 1775 break; 1776 1777 if (cur != NULL) { 1778 s->timeout = PFTM_UNLINKED; 1779 PF_HASHROW_UNLOCK(ih); 1780 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1781 printf("pf: state ID collision: " 1782 "id: %016llx creatorid: %08x\n", 1783 (unsigned long long)be64toh(s->id), 1784 ntohl(s->creatorid)); 1785 } 1786 pf_detach_state(s); 1787 return (EEXIST); 1788 } 1789 LIST_INSERT_HEAD(&ih->states, s, entry); 1790 /* One for keys, one for ID hash. */ 1791 refcount_init(&s->refs, 2); 1792 1793 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1794 if (V_pfsync_insert_state_ptr != NULL) 1795 V_pfsync_insert_state_ptr(s); 1796 1797 /* Returns locked. */ 1798 return (0); 1799 } 1800 1801 /* 1802 * Find state by ID: returns with locked row on success. 1803 */ 1804 struct pf_kstate * 1805 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1806 { 1807 struct pf_idhash *ih; 1808 struct pf_kstate *s; 1809 1810 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1811 1812 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1813 1814 PF_HASHROW_LOCK(ih); 1815 LIST_FOREACH(s, &ih->states, entry) 1816 if (s->id == id && s->creatorid == creatorid) 1817 break; 1818 1819 if (s == NULL) 1820 PF_HASHROW_UNLOCK(ih); 1821 1822 return (s); 1823 } 1824 1825 /* 1826 * Find state by key. 1827 * Returns with ID hash slot locked on success. 1828 */ 1829 static struct pf_kstate * 1830 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1831 u_int dir) 1832 { 1833 struct pf_keyhash *kh; 1834 struct pf_state_key *sk; 1835 struct pf_kstate *s; 1836 int idx; 1837 1838 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1839 1840 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1841 1842 PF_HASHROW_LOCK(kh); 1843 LIST_FOREACH(sk, &kh->keys, entry) 1844 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1845 break; 1846 if (sk == NULL) { 1847 PF_HASHROW_UNLOCK(kh); 1848 return (NULL); 1849 } 1850 1851 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1852 1853 /* List is sorted, if-bound states before floating ones. */ 1854 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1855 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1856 PF_STATE_LOCK(s); 1857 PF_HASHROW_UNLOCK(kh); 1858 if (__predict_false(s->timeout >= PFTM_MAX)) { 1859 /* 1860 * State is either being processed by 1861 * pf_unlink_state() in an other thread, or 1862 * is scheduled for immediate expiry. 1863 */ 1864 PF_STATE_UNLOCK(s); 1865 return (NULL); 1866 } 1867 return (s); 1868 } 1869 1870 /* Look through the other list, in case of AF-TO */ 1871 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1872 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1873 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1874 continue; 1875 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1876 PF_STATE_LOCK(s); 1877 PF_HASHROW_UNLOCK(kh); 1878 if (__predict_false(s->timeout >= PFTM_MAX)) { 1879 /* 1880 * State is either being processed by 1881 * pf_unlink_state() in an other thread, or 1882 * is scheduled for immediate expiry. 1883 */ 1884 PF_STATE_UNLOCK(s); 1885 return (NULL); 1886 } 1887 return (s); 1888 } 1889 } 1890 1891 PF_HASHROW_UNLOCK(kh); 1892 1893 return (NULL); 1894 } 1895 1896 /* 1897 * Returns with ID hash slot locked on success. 1898 */ 1899 struct pf_kstate * 1900 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1901 { 1902 struct pf_keyhash *kh; 1903 struct pf_state_key *sk; 1904 struct pf_kstate *s, *ret = NULL; 1905 int idx, inout = 0; 1906 1907 if (more != NULL) 1908 *more = 0; 1909 1910 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1911 1912 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1913 1914 PF_HASHROW_LOCK(kh); 1915 LIST_FOREACH(sk, &kh->keys, entry) 1916 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1917 break; 1918 if (sk == NULL) { 1919 PF_HASHROW_UNLOCK(kh); 1920 return (NULL); 1921 } 1922 switch (dir) { 1923 case PF_IN: 1924 idx = PF_SK_WIRE; 1925 break; 1926 case PF_OUT: 1927 idx = PF_SK_STACK; 1928 break; 1929 case PF_INOUT: 1930 idx = PF_SK_WIRE; 1931 inout = 1; 1932 break; 1933 default: 1934 panic("%s: dir %u", __func__, dir); 1935 } 1936 second_run: 1937 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1938 if (more == NULL) { 1939 PF_STATE_LOCK(s); 1940 PF_HASHROW_UNLOCK(kh); 1941 return (s); 1942 } 1943 1944 if (ret) 1945 (*more)++; 1946 else { 1947 ret = s; 1948 PF_STATE_LOCK(s); 1949 } 1950 } 1951 if (inout == 1) { 1952 inout = 0; 1953 idx = PF_SK_STACK; 1954 goto second_run; 1955 } 1956 PF_HASHROW_UNLOCK(kh); 1957 1958 return (ret); 1959 } 1960 1961 /* 1962 * FIXME 1963 * This routine is inefficient -- locks the state only to unlock immediately on 1964 * return. 1965 * It is racy -- after the state is unlocked nothing stops other threads from 1966 * removing it. 1967 */ 1968 bool 1969 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1970 { 1971 struct pf_kstate *s; 1972 1973 s = pf_find_state_all(key, dir, NULL); 1974 if (s != NULL) { 1975 PF_STATE_UNLOCK(s); 1976 return (true); 1977 } 1978 return (false); 1979 } 1980 1981 struct pf_udp_mapping * 1982 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1983 struct pf_addr *nat_addr, uint16_t nat_port) 1984 { 1985 struct pf_udp_mapping *mapping; 1986 1987 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1988 if (mapping == NULL) 1989 return (NULL); 1990 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1991 mapping->endpoints[0].port = src_port; 1992 mapping->endpoints[0].af = af; 1993 mapping->endpoints[0].mapping = mapping; 1994 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1995 mapping->endpoints[1].port = nat_port; 1996 mapping->endpoints[1].af = af; 1997 mapping->endpoints[1].mapping = mapping; 1998 refcount_init(&mapping->refs, 1); 1999 return (mapping); 2000 } 2001 2002 int 2003 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2004 { 2005 struct pf_udpendpointhash *h0, *h1; 2006 struct pf_udp_endpoint *endpoint; 2007 int ret = EEXIST; 2008 2009 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2010 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2011 if (h0 == h1) { 2012 PF_HASHROW_LOCK(h0); 2013 } else if (h0 < h1) { 2014 PF_HASHROW_LOCK(h0); 2015 PF_HASHROW_LOCK(h1); 2016 } else { 2017 PF_HASHROW_LOCK(h1); 2018 PF_HASHROW_LOCK(h0); 2019 } 2020 2021 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2022 if (bcmp(endpoint, &mapping->endpoints[0], 2023 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2024 break; 2025 } 2026 if (endpoint != NULL) 2027 goto cleanup; 2028 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2029 if (bcmp(endpoint, &mapping->endpoints[1], 2030 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2031 break; 2032 } 2033 if (endpoint != NULL) 2034 goto cleanup; 2035 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2036 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2037 ret = 0; 2038 2039 cleanup: 2040 if (h0 != h1) { 2041 PF_HASHROW_UNLOCK(h0); 2042 PF_HASHROW_UNLOCK(h1); 2043 } else { 2044 PF_HASHROW_UNLOCK(h0); 2045 } 2046 return (ret); 2047 } 2048 2049 void 2050 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2051 { 2052 /* refcount is synchronized on the source endpoint's row lock */ 2053 struct pf_udpendpointhash *h0, *h1; 2054 2055 if (mapping == NULL) 2056 return; 2057 2058 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2059 PF_HASHROW_LOCK(h0); 2060 if (refcount_release(&mapping->refs)) { 2061 LIST_REMOVE(&mapping->endpoints[0], entry); 2062 PF_HASHROW_UNLOCK(h0); 2063 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2064 PF_HASHROW_LOCK(h1); 2065 LIST_REMOVE(&mapping->endpoints[1], entry); 2066 PF_HASHROW_UNLOCK(h1); 2067 2068 uma_zfree(V_pf_udp_mapping_z, mapping); 2069 } else { 2070 PF_HASHROW_UNLOCK(h0); 2071 } 2072 } 2073 2074 2075 struct pf_udp_mapping * 2076 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2077 { 2078 struct pf_udpendpointhash *uh; 2079 struct pf_udp_endpoint *endpoint; 2080 2081 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2082 2083 PF_HASHROW_LOCK(uh); 2084 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2085 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2086 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2087 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2088 break; 2089 } 2090 if (endpoint == NULL) { 2091 PF_HASHROW_UNLOCK(uh); 2092 return (NULL); 2093 } 2094 refcount_acquire(&endpoint->mapping->refs); 2095 PF_HASHROW_UNLOCK(uh); 2096 return (endpoint->mapping); 2097 } 2098 /* END state table stuff */ 2099 2100 static void 2101 pf_send(struct pf_send_entry *pfse) 2102 { 2103 2104 PF_SENDQ_LOCK(); 2105 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2106 PF_SENDQ_UNLOCK(); 2107 swi_sched(V_pf_swi_cookie, 0); 2108 } 2109 2110 static bool 2111 pf_isforlocal(struct mbuf *m, int af) 2112 { 2113 switch (af) { 2114 #ifdef INET 2115 case AF_INET: { 2116 struct ip *ip = mtod(m, struct ip *); 2117 2118 return (in_localip(ip->ip_dst)); 2119 } 2120 #endif 2121 #ifdef INET6 2122 case AF_INET6: { 2123 struct ip6_hdr *ip6; 2124 struct in6_ifaddr *ia; 2125 ip6 = mtod(m, struct ip6_hdr *); 2126 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2127 if (ia == NULL) 2128 return (false); 2129 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2130 } 2131 #endif 2132 } 2133 2134 return (false); 2135 } 2136 2137 int 2138 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2139 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2140 { 2141 /* 2142 * ICMP types marked with PF_OUT are typically responses to 2143 * PF_IN, and will match states in the opposite direction. 2144 * PF_IN ICMP types need to match a state with that type. 2145 */ 2146 *icmp_dir = PF_OUT; 2147 *multi = PF_ICMP_MULTI_LINK; 2148 /* Queries (and responses) */ 2149 switch (pd->af) { 2150 #ifdef INET 2151 case AF_INET: 2152 switch (type) { 2153 case ICMP_ECHO: 2154 *icmp_dir = PF_IN; 2155 case ICMP_ECHOREPLY: 2156 *virtual_type = ICMP_ECHO; 2157 *virtual_id = pd->hdr.icmp.icmp_id; 2158 break; 2159 2160 case ICMP_TSTAMP: 2161 *icmp_dir = PF_IN; 2162 case ICMP_TSTAMPREPLY: 2163 *virtual_type = ICMP_TSTAMP; 2164 *virtual_id = pd->hdr.icmp.icmp_id; 2165 break; 2166 2167 case ICMP_IREQ: 2168 *icmp_dir = PF_IN; 2169 case ICMP_IREQREPLY: 2170 *virtual_type = ICMP_IREQ; 2171 *virtual_id = pd->hdr.icmp.icmp_id; 2172 break; 2173 2174 case ICMP_MASKREQ: 2175 *icmp_dir = PF_IN; 2176 case ICMP_MASKREPLY: 2177 *virtual_type = ICMP_MASKREQ; 2178 *virtual_id = pd->hdr.icmp.icmp_id; 2179 break; 2180 2181 case ICMP_IPV6_WHEREAREYOU: 2182 *icmp_dir = PF_IN; 2183 case ICMP_IPV6_IAMHERE: 2184 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2185 *virtual_id = 0; /* Nothing sane to match on! */ 2186 break; 2187 2188 case ICMP_MOBILE_REGREQUEST: 2189 *icmp_dir = PF_IN; 2190 case ICMP_MOBILE_REGREPLY: 2191 *virtual_type = ICMP_MOBILE_REGREQUEST; 2192 *virtual_id = 0; /* Nothing sane to match on! */ 2193 break; 2194 2195 case ICMP_ROUTERSOLICIT: 2196 *icmp_dir = PF_IN; 2197 case ICMP_ROUTERADVERT: 2198 *virtual_type = ICMP_ROUTERSOLICIT; 2199 *virtual_id = 0; /* Nothing sane to match on! */ 2200 break; 2201 2202 /* These ICMP types map to other connections */ 2203 case ICMP_UNREACH: 2204 case ICMP_SOURCEQUENCH: 2205 case ICMP_REDIRECT: 2206 case ICMP_TIMXCEED: 2207 case ICMP_PARAMPROB: 2208 /* These will not be used, but set them anyway */ 2209 *icmp_dir = PF_IN; 2210 *virtual_type = type; 2211 *virtual_id = 0; 2212 HTONS(*virtual_type); 2213 return (1); /* These types match to another state */ 2214 2215 /* 2216 * All remaining ICMP types get their own states, 2217 * and will only match in one direction. 2218 */ 2219 default: 2220 *icmp_dir = PF_IN; 2221 *virtual_type = type; 2222 *virtual_id = 0; 2223 break; 2224 } 2225 break; 2226 #endif /* INET */ 2227 #ifdef INET6 2228 case AF_INET6: 2229 switch (type) { 2230 case ICMP6_ECHO_REQUEST: 2231 *icmp_dir = PF_IN; 2232 case ICMP6_ECHO_REPLY: 2233 *virtual_type = ICMP6_ECHO_REQUEST; 2234 *virtual_id = pd->hdr.icmp6.icmp6_id; 2235 break; 2236 2237 case MLD_LISTENER_QUERY: 2238 case MLD_LISTENER_REPORT: { 2239 /* 2240 * Listener Report can be sent by clients 2241 * without an associated Listener Query. 2242 * In addition to that, when Report is sent as a 2243 * reply to a Query its source and destination 2244 * address are different. 2245 */ 2246 *icmp_dir = PF_IN; 2247 *virtual_type = MLD_LISTENER_QUERY; 2248 *virtual_id = 0; 2249 break; 2250 } 2251 case MLD_MTRACE: 2252 *icmp_dir = PF_IN; 2253 case MLD_MTRACE_RESP: 2254 *virtual_type = MLD_MTRACE; 2255 *virtual_id = 0; /* Nothing sane to match on! */ 2256 break; 2257 2258 case ND_NEIGHBOR_SOLICIT: 2259 *icmp_dir = PF_IN; 2260 case ND_NEIGHBOR_ADVERT: { 2261 *virtual_type = ND_NEIGHBOR_SOLICIT; 2262 *virtual_id = 0; 2263 break; 2264 } 2265 2266 /* 2267 * These ICMP types map to other connections. 2268 * ND_REDIRECT can't be in this list because the triggering 2269 * packet header is optional. 2270 */ 2271 case ICMP6_DST_UNREACH: 2272 case ICMP6_PACKET_TOO_BIG: 2273 case ICMP6_TIME_EXCEEDED: 2274 case ICMP6_PARAM_PROB: 2275 /* These will not be used, but set them anyway */ 2276 *icmp_dir = PF_IN; 2277 *virtual_type = type; 2278 *virtual_id = 0; 2279 HTONS(*virtual_type); 2280 return (1); /* These types match to another state */ 2281 /* 2282 * All remaining ICMP6 types get their own states, 2283 * and will only match in one direction. 2284 */ 2285 default: 2286 *icmp_dir = PF_IN; 2287 *virtual_type = type; 2288 *virtual_id = 0; 2289 break; 2290 } 2291 break; 2292 #endif /* INET6 */ 2293 } 2294 HTONS(*virtual_type); 2295 return (0); /* These types match to their own state */ 2296 } 2297 2298 void 2299 pf_intr(void *v) 2300 { 2301 struct epoch_tracker et; 2302 struct pf_send_head queue; 2303 struct pf_send_entry *pfse, *next; 2304 2305 CURVNET_SET((struct vnet *)v); 2306 2307 PF_SENDQ_LOCK(); 2308 queue = V_pf_sendqueue; 2309 STAILQ_INIT(&V_pf_sendqueue); 2310 PF_SENDQ_UNLOCK(); 2311 2312 NET_EPOCH_ENTER(et); 2313 2314 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2315 switch (pfse->pfse_type) { 2316 #ifdef INET 2317 case PFSE_IP: { 2318 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2319 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2320 ("%s: rcvif != loif", __func__)); 2321 2322 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2323 pfse->pfse_m->m_pkthdr.csum_flags |= 2324 CSUM_IP_VALID | CSUM_IP_CHECKED; 2325 ip_input(pfse->pfse_m); 2326 } else { 2327 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2328 NULL); 2329 } 2330 break; 2331 } 2332 case PFSE_ICMP: 2333 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2334 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2335 break; 2336 #endif /* INET */ 2337 #ifdef INET6 2338 case PFSE_IP6: 2339 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2340 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2341 ("%s: rcvif != loif", __func__)); 2342 2343 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2344 M_LOOP; 2345 ip6_input(pfse->pfse_m); 2346 } else { 2347 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2348 NULL, NULL); 2349 } 2350 break; 2351 case PFSE_ICMP6: 2352 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2353 pfse->icmpopts.code, pfse->icmpopts.mtu); 2354 break; 2355 #endif /* INET6 */ 2356 default: 2357 panic("%s: unknown type", __func__); 2358 } 2359 free(pfse, M_PFTEMP); 2360 } 2361 NET_EPOCH_EXIT(et); 2362 CURVNET_RESTORE(); 2363 } 2364 2365 #define pf_purge_thread_period (hz / 10) 2366 2367 #ifdef PF_WANT_32_TO_64_COUNTER 2368 static void 2369 pf_status_counter_u64_periodic(void) 2370 { 2371 2372 PF_RULES_RASSERT(); 2373 2374 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2375 return; 2376 } 2377 2378 for (int i = 0; i < FCNT_MAX; i++) { 2379 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2380 } 2381 } 2382 2383 static void 2384 pf_kif_counter_u64_periodic(void) 2385 { 2386 struct pfi_kkif *kif; 2387 size_t r, run; 2388 2389 PF_RULES_RASSERT(); 2390 2391 if (__predict_false(V_pf_allkifcount == 0)) { 2392 return; 2393 } 2394 2395 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2396 return; 2397 } 2398 2399 run = V_pf_allkifcount / 10; 2400 if (run < 5) 2401 run = 5; 2402 2403 for (r = 0; r < run; r++) { 2404 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2405 if (kif == NULL) { 2406 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2407 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2408 break; 2409 } 2410 2411 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2412 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2413 2414 for (int i = 0; i < 2; i++) { 2415 for (int j = 0; j < 2; j++) { 2416 for (int k = 0; k < 2; k++) { 2417 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2418 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2419 } 2420 } 2421 } 2422 } 2423 } 2424 2425 static void 2426 pf_rule_counter_u64_periodic(void) 2427 { 2428 struct pf_krule *rule; 2429 size_t r, run; 2430 2431 PF_RULES_RASSERT(); 2432 2433 if (__predict_false(V_pf_allrulecount == 0)) { 2434 return; 2435 } 2436 2437 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2438 return; 2439 } 2440 2441 run = V_pf_allrulecount / 10; 2442 if (run < 5) 2443 run = 5; 2444 2445 for (r = 0; r < run; r++) { 2446 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2447 if (rule == NULL) { 2448 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2449 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2450 break; 2451 } 2452 2453 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2454 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2455 2456 pf_counter_u64_periodic(&rule->evaluations); 2457 for (int i = 0; i < 2; i++) { 2458 pf_counter_u64_periodic(&rule->packets[i]); 2459 pf_counter_u64_periodic(&rule->bytes[i]); 2460 } 2461 } 2462 } 2463 2464 static void 2465 pf_counter_u64_periodic_main(void) 2466 { 2467 PF_RULES_RLOCK_TRACKER; 2468 2469 V_pf_counter_periodic_iter++; 2470 2471 PF_RULES_RLOCK(); 2472 pf_counter_u64_critical_enter(); 2473 pf_status_counter_u64_periodic(); 2474 pf_kif_counter_u64_periodic(); 2475 pf_rule_counter_u64_periodic(); 2476 pf_counter_u64_critical_exit(); 2477 PF_RULES_RUNLOCK(); 2478 } 2479 #else 2480 #define pf_counter_u64_periodic_main() do { } while (0) 2481 #endif 2482 2483 void 2484 pf_purge_thread(void *unused __unused) 2485 { 2486 struct epoch_tracker et; 2487 2488 VNET_ITERATOR_DECL(vnet_iter); 2489 2490 sx_xlock(&pf_end_lock); 2491 while (pf_end_threads == 0) { 2492 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2493 2494 VNET_LIST_RLOCK(); 2495 NET_EPOCH_ENTER(et); 2496 VNET_FOREACH(vnet_iter) { 2497 CURVNET_SET(vnet_iter); 2498 2499 /* Wait until V_pf_default_rule is initialized. */ 2500 if (V_pf_vnet_active == 0) { 2501 CURVNET_RESTORE(); 2502 continue; 2503 } 2504 2505 pf_counter_u64_periodic_main(); 2506 2507 /* 2508 * Process 1/interval fraction of the state 2509 * table every run. 2510 */ 2511 V_pf_purge_idx = 2512 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2513 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2514 2515 /* 2516 * Purge other expired types every 2517 * PFTM_INTERVAL seconds. 2518 */ 2519 if (V_pf_purge_idx == 0) { 2520 /* 2521 * Order is important: 2522 * - states and src nodes reference rules 2523 * - states and rules reference kifs 2524 */ 2525 pf_purge_expired_fragments(); 2526 pf_purge_expired_src_nodes(); 2527 pf_purge_unlinked_rules(); 2528 pfi_kkif_purge(); 2529 } 2530 CURVNET_RESTORE(); 2531 } 2532 NET_EPOCH_EXIT(et); 2533 VNET_LIST_RUNLOCK(); 2534 } 2535 2536 pf_end_threads++; 2537 sx_xunlock(&pf_end_lock); 2538 kproc_exit(0); 2539 } 2540 2541 void 2542 pf_unload_vnet_purge(void) 2543 { 2544 2545 /* 2546 * To cleanse up all kifs and rules we need 2547 * two runs: first one clears reference flags, 2548 * then pf_purge_expired_states() doesn't 2549 * raise them, and then second run frees. 2550 */ 2551 pf_purge_unlinked_rules(); 2552 pfi_kkif_purge(); 2553 2554 /* 2555 * Now purge everything. 2556 */ 2557 pf_purge_expired_states(0, V_pf_hashmask); 2558 pf_purge_fragments(UINT_MAX); 2559 pf_purge_expired_src_nodes(); 2560 2561 /* 2562 * Now all kifs & rules should be unreferenced, 2563 * thus should be successfully freed. 2564 */ 2565 pf_purge_unlinked_rules(); 2566 pfi_kkif_purge(); 2567 } 2568 2569 u_int32_t 2570 pf_state_expires(const struct pf_kstate *state) 2571 { 2572 u_int32_t timeout; 2573 u_int32_t start; 2574 u_int32_t end; 2575 u_int32_t states; 2576 2577 /* handle all PFTM_* > PFTM_MAX here */ 2578 if (state->timeout == PFTM_PURGE) 2579 return (time_uptime); 2580 KASSERT(state->timeout != PFTM_UNLINKED, 2581 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2582 KASSERT((state->timeout < PFTM_MAX), 2583 ("pf_state_expires: timeout > PFTM_MAX")); 2584 timeout = state->rule->timeout[state->timeout]; 2585 if (!timeout) 2586 timeout = V_pf_default_rule.timeout[state->timeout]; 2587 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2588 if (start && state->rule != &V_pf_default_rule) { 2589 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2590 states = counter_u64_fetch(state->rule->states_cur); 2591 } else { 2592 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2593 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2594 states = V_pf_status.states; 2595 } 2596 if (end && states > start && start < end) { 2597 if (states < end) { 2598 timeout = (u_int64_t)timeout * (end - states) / 2599 (end - start); 2600 return ((state->expire / 1000) + timeout); 2601 } 2602 else 2603 return (time_uptime); 2604 } 2605 return ((state->expire / 1000) + timeout); 2606 } 2607 2608 void 2609 pf_purge_expired_src_nodes(void) 2610 { 2611 struct pf_ksrc_node_list freelist; 2612 struct pf_srchash *sh; 2613 struct pf_ksrc_node *cur, *next; 2614 int i; 2615 2616 LIST_INIT(&freelist); 2617 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2618 PF_HASHROW_LOCK(sh); 2619 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2620 if (cur->states == 0 && cur->expire <= time_uptime) { 2621 pf_unlink_src_node(cur); 2622 LIST_INSERT_HEAD(&freelist, cur, entry); 2623 } else if (cur->rule != NULL) 2624 cur->rule->rule_ref |= PFRULE_REFS; 2625 PF_HASHROW_UNLOCK(sh); 2626 } 2627 2628 pf_free_src_nodes(&freelist); 2629 2630 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2631 } 2632 2633 static void 2634 pf_src_tree_remove_state(struct pf_kstate *s) 2635 { 2636 struct pf_ksrc_node *sn; 2637 uint32_t timeout; 2638 2639 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2640 s->rule->timeout[PFTM_SRC_NODE] : 2641 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2642 2643 if (s->src_node != NULL) { 2644 sn = s->src_node; 2645 PF_SRC_NODE_LOCK(sn); 2646 if (s->src.tcp_est) 2647 --sn->conn; 2648 if (--sn->states == 0) 2649 sn->expire = time_uptime + timeout; 2650 PF_SRC_NODE_UNLOCK(sn); 2651 } 2652 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2653 sn = s->nat_src_node; 2654 PF_SRC_NODE_LOCK(sn); 2655 if (--sn->states == 0) 2656 sn->expire = time_uptime + timeout; 2657 PF_SRC_NODE_UNLOCK(sn); 2658 } 2659 s->src_node = s->nat_src_node = NULL; 2660 } 2661 2662 /* 2663 * Unlink and potentilly free a state. Function may be 2664 * called with ID hash row locked, but always returns 2665 * unlocked, since it needs to go through key hash locking. 2666 */ 2667 int 2668 pf_unlink_state(struct pf_kstate *s) 2669 { 2670 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2671 2672 NET_EPOCH_ASSERT(); 2673 PF_HASHROW_ASSERT(ih); 2674 2675 if (s->timeout == PFTM_UNLINKED) { 2676 /* 2677 * State is being processed 2678 * by pf_unlink_state() in 2679 * an other thread. 2680 */ 2681 PF_HASHROW_UNLOCK(ih); 2682 return (0); /* XXXGL: undefined actually */ 2683 } 2684 2685 if (s->src.state == PF_TCPS_PROXY_DST) { 2686 /* XXX wire key the right one? */ 2687 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2688 &s->key[PF_SK_WIRE]->addr[1], 2689 &s->key[PF_SK_WIRE]->addr[0], 2690 s->key[PF_SK_WIRE]->port[1], 2691 s->key[PF_SK_WIRE]->port[0], 2692 s->src.seqhi, s->src.seqlo + 1, 2693 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2694 s->act.rtableid); 2695 } 2696 2697 LIST_REMOVE(s, entry); 2698 pf_src_tree_remove_state(s); 2699 2700 if (V_pfsync_delete_state_ptr != NULL) 2701 V_pfsync_delete_state_ptr(s); 2702 2703 STATE_DEC_COUNTERS(s); 2704 2705 s->timeout = PFTM_UNLINKED; 2706 2707 /* Ensure we remove it from the list of halfopen states, if needed. */ 2708 if (s->key[PF_SK_STACK] != NULL && 2709 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2710 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2711 2712 PF_HASHROW_UNLOCK(ih); 2713 2714 pf_detach_state(s); 2715 2716 pf_udp_mapping_release(s->udp_mapping); 2717 2718 /* pf_state_insert() initialises refs to 2 */ 2719 return (pf_release_staten(s, 2)); 2720 } 2721 2722 struct pf_kstate * 2723 pf_alloc_state(int flags) 2724 { 2725 2726 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2727 } 2728 2729 void 2730 pf_free_state(struct pf_kstate *cur) 2731 { 2732 struct pf_krule_item *ri; 2733 2734 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2735 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2736 cur->timeout)); 2737 2738 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2739 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2740 free(ri, M_PF_RULE_ITEM); 2741 } 2742 2743 pf_normalize_tcp_cleanup(cur); 2744 uma_zfree(V_pf_state_z, cur); 2745 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2746 } 2747 2748 /* 2749 * Called only from pf_purge_thread(), thus serialized. 2750 */ 2751 static u_int 2752 pf_purge_expired_states(u_int i, int maxcheck) 2753 { 2754 struct pf_idhash *ih; 2755 struct pf_kstate *s; 2756 struct pf_krule_item *mrm; 2757 size_t count __unused; 2758 2759 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2760 2761 /* 2762 * Go through hash and unlink states that expire now. 2763 */ 2764 while (maxcheck > 0) { 2765 count = 0; 2766 ih = &V_pf_idhash[i]; 2767 2768 /* only take the lock if we expect to do work */ 2769 if (!LIST_EMPTY(&ih->states)) { 2770 relock: 2771 PF_HASHROW_LOCK(ih); 2772 LIST_FOREACH(s, &ih->states, entry) { 2773 if (pf_state_expires(s) <= time_uptime) { 2774 V_pf_status.states -= 2775 pf_unlink_state(s); 2776 goto relock; 2777 } 2778 s->rule->rule_ref |= PFRULE_REFS; 2779 if (s->nat_rule != NULL) 2780 s->nat_rule->rule_ref |= PFRULE_REFS; 2781 if (s->anchor != NULL) 2782 s->anchor->rule_ref |= PFRULE_REFS; 2783 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2784 SLIST_FOREACH(mrm, &s->match_rules, entry) 2785 mrm->r->rule_ref |= PFRULE_REFS; 2786 if (s->act.rt_kif) 2787 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2788 count++; 2789 } 2790 PF_HASHROW_UNLOCK(ih); 2791 } 2792 2793 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2794 2795 /* Return when we hit end of hash. */ 2796 if (++i > V_pf_hashmask) { 2797 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2798 return (0); 2799 } 2800 2801 maxcheck--; 2802 } 2803 2804 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2805 2806 return (i); 2807 } 2808 2809 static void 2810 pf_purge_unlinked_rules(void) 2811 { 2812 struct pf_krulequeue tmpq; 2813 struct pf_krule *r, *r1; 2814 2815 /* 2816 * If we have overloading task pending, then we'd 2817 * better skip purging this time. There is a tiny 2818 * probability that overloading task references 2819 * an already unlinked rule. 2820 */ 2821 PF_OVERLOADQ_LOCK(); 2822 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2823 PF_OVERLOADQ_UNLOCK(); 2824 return; 2825 } 2826 PF_OVERLOADQ_UNLOCK(); 2827 2828 /* 2829 * Do naive mark-and-sweep garbage collecting of old rules. 2830 * Reference flag is raised by pf_purge_expired_states() 2831 * and pf_purge_expired_src_nodes(). 2832 * 2833 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2834 * use a temporary queue. 2835 */ 2836 TAILQ_INIT(&tmpq); 2837 PF_UNLNKDRULES_LOCK(); 2838 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2839 if (!(r->rule_ref & PFRULE_REFS)) { 2840 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2841 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2842 } else 2843 r->rule_ref &= ~PFRULE_REFS; 2844 } 2845 PF_UNLNKDRULES_UNLOCK(); 2846 2847 if (!TAILQ_EMPTY(&tmpq)) { 2848 PF_CONFIG_LOCK(); 2849 PF_RULES_WLOCK(); 2850 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2851 TAILQ_REMOVE(&tmpq, r, entries); 2852 pf_free_rule(r); 2853 } 2854 PF_RULES_WUNLOCK(); 2855 PF_CONFIG_UNLOCK(); 2856 } 2857 } 2858 2859 void 2860 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2861 { 2862 switch (af) { 2863 #ifdef INET 2864 case AF_INET: { 2865 u_int32_t a = ntohl(addr->addr32[0]); 2866 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2867 (a>>8)&255, a&255); 2868 if (p) { 2869 p = ntohs(p); 2870 printf(":%u", p); 2871 } 2872 break; 2873 } 2874 #endif /* INET */ 2875 #ifdef INET6 2876 case AF_INET6: { 2877 u_int16_t b; 2878 u_int8_t i, curstart, curend, maxstart, maxend; 2879 curstart = curend = maxstart = maxend = 255; 2880 for (i = 0; i < 8; i++) { 2881 if (!addr->addr16[i]) { 2882 if (curstart == 255) 2883 curstart = i; 2884 curend = i; 2885 } else { 2886 if ((curend - curstart) > 2887 (maxend - maxstart)) { 2888 maxstart = curstart; 2889 maxend = curend; 2890 } 2891 curstart = curend = 255; 2892 } 2893 } 2894 if ((curend - curstart) > 2895 (maxend - maxstart)) { 2896 maxstart = curstart; 2897 maxend = curend; 2898 } 2899 for (i = 0; i < 8; i++) { 2900 if (i >= maxstart && i <= maxend) { 2901 if (i == 0) 2902 printf(":"); 2903 if (i == maxend) 2904 printf(":"); 2905 } else { 2906 b = ntohs(addr->addr16[i]); 2907 printf("%x", b); 2908 if (i < 7) 2909 printf(":"); 2910 } 2911 } 2912 if (p) { 2913 p = ntohs(p); 2914 printf("[%u]", p); 2915 } 2916 break; 2917 } 2918 #endif /* INET6 */ 2919 } 2920 } 2921 2922 void 2923 pf_print_state(struct pf_kstate *s) 2924 { 2925 pf_print_state_parts(s, NULL, NULL); 2926 } 2927 2928 static void 2929 pf_print_state_parts(struct pf_kstate *s, 2930 struct pf_state_key *skwp, struct pf_state_key *sksp) 2931 { 2932 struct pf_state_key *skw, *sks; 2933 u_int8_t proto, dir; 2934 2935 /* Do our best to fill these, but they're skipped if NULL */ 2936 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2937 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2938 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2939 dir = s ? s->direction : 0; 2940 2941 switch (proto) { 2942 case IPPROTO_IPV4: 2943 printf("IPv4"); 2944 break; 2945 case IPPROTO_IPV6: 2946 printf("IPv6"); 2947 break; 2948 case IPPROTO_TCP: 2949 printf("TCP"); 2950 break; 2951 case IPPROTO_UDP: 2952 printf("UDP"); 2953 break; 2954 case IPPROTO_ICMP: 2955 printf("ICMP"); 2956 break; 2957 case IPPROTO_ICMPV6: 2958 printf("ICMPv6"); 2959 break; 2960 default: 2961 printf("%u", proto); 2962 break; 2963 } 2964 switch (dir) { 2965 case PF_IN: 2966 printf(" in"); 2967 break; 2968 case PF_OUT: 2969 printf(" out"); 2970 break; 2971 } 2972 if (skw) { 2973 printf(" wire: "); 2974 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2975 printf(" "); 2976 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2977 } 2978 if (sks) { 2979 printf(" stack: "); 2980 if (sks != skw) { 2981 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2982 printf(" "); 2983 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2984 } else 2985 printf("-"); 2986 } 2987 if (s) { 2988 if (proto == IPPROTO_TCP) { 2989 printf(" [lo=%u high=%u win=%u modulator=%u", 2990 s->src.seqlo, s->src.seqhi, 2991 s->src.max_win, s->src.seqdiff); 2992 if (s->src.wscale && s->dst.wscale) 2993 printf(" wscale=%u", 2994 s->src.wscale & PF_WSCALE_MASK); 2995 printf("]"); 2996 printf(" [lo=%u high=%u win=%u modulator=%u", 2997 s->dst.seqlo, s->dst.seqhi, 2998 s->dst.max_win, s->dst.seqdiff); 2999 if (s->src.wscale && s->dst.wscale) 3000 printf(" wscale=%u", 3001 s->dst.wscale & PF_WSCALE_MASK); 3002 printf("]"); 3003 } 3004 printf(" %u:%u", s->src.state, s->dst.state); 3005 if (s->rule) 3006 printf(" @%d", s->rule->nr); 3007 } 3008 } 3009 3010 void 3011 pf_print_flags(uint16_t f) 3012 { 3013 if (f) 3014 printf(" "); 3015 if (f & TH_FIN) 3016 printf("F"); 3017 if (f & TH_SYN) 3018 printf("S"); 3019 if (f & TH_RST) 3020 printf("R"); 3021 if (f & TH_PUSH) 3022 printf("P"); 3023 if (f & TH_ACK) 3024 printf("A"); 3025 if (f & TH_URG) 3026 printf("U"); 3027 if (f & TH_ECE) 3028 printf("E"); 3029 if (f & TH_CWR) 3030 printf("W"); 3031 if (f & TH_AE) 3032 printf("e"); 3033 } 3034 3035 #define PF_SET_SKIP_STEPS(i) \ 3036 do { \ 3037 while (head[i] != cur) { \ 3038 head[i]->skip[i] = cur; \ 3039 head[i] = TAILQ_NEXT(head[i], entries); \ 3040 } \ 3041 } while (0) 3042 3043 void 3044 pf_calc_skip_steps(struct pf_krulequeue *rules) 3045 { 3046 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3047 int i; 3048 3049 cur = TAILQ_FIRST(rules); 3050 prev = cur; 3051 for (i = 0; i < PF_SKIP_COUNT; ++i) 3052 head[i] = cur; 3053 while (cur != NULL) { 3054 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3055 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3056 if (cur->direction != prev->direction) 3057 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3058 if (cur->af != prev->af) 3059 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3060 if (cur->proto != prev->proto) 3061 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3062 if (cur->src.neg != prev->src.neg || 3063 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3064 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3065 if (cur->dst.neg != prev->dst.neg || 3066 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3067 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3068 if (cur->src.port[0] != prev->src.port[0] || 3069 cur->src.port[1] != prev->src.port[1] || 3070 cur->src.port_op != prev->src.port_op) 3071 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3072 if (cur->dst.port[0] != prev->dst.port[0] || 3073 cur->dst.port[1] != prev->dst.port[1] || 3074 cur->dst.port_op != prev->dst.port_op) 3075 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3076 3077 prev = cur; 3078 cur = TAILQ_NEXT(cur, entries); 3079 } 3080 for (i = 0; i < PF_SKIP_COUNT; ++i) 3081 PF_SET_SKIP_STEPS(i); 3082 } 3083 3084 int 3085 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3086 { 3087 if (aw1->type != aw2->type) 3088 return (1); 3089 switch (aw1->type) { 3090 case PF_ADDR_ADDRMASK: 3091 case PF_ADDR_RANGE: 3092 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3093 return (1); 3094 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3095 return (1); 3096 return (0); 3097 case PF_ADDR_DYNIFTL: 3098 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3099 case PF_ADDR_NONE: 3100 case PF_ADDR_NOROUTE: 3101 case PF_ADDR_URPFFAILED: 3102 return (0); 3103 case PF_ADDR_TABLE: 3104 return (aw1->p.tbl != aw2->p.tbl); 3105 default: 3106 printf("invalid address type: %d\n", aw1->type); 3107 return (1); 3108 } 3109 } 3110 3111 /** 3112 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3113 * header isn't always a full checksum. In some cases (i.e. output) it's a 3114 * pseudo-header checksum, which is a partial checksum over src/dst IP 3115 * addresses, protocol number and length. 3116 * 3117 * That means we have the following cases: 3118 * * Input or forwarding: we don't have TSO, the checksum fields are full 3119 * checksums, we need to update the checksum whenever we change anything. 3120 * * Output (i.e. the checksum is a pseudo-header checksum): 3121 * x The field being updated is src/dst address or affects the length of 3122 * the packet. We need to update the pseudo-header checksum (note that this 3123 * checksum is not ones' complement). 3124 * x Some other field is being modified (e.g. src/dst port numbers): We 3125 * don't have to update anything. 3126 **/ 3127 u_int16_t 3128 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3129 { 3130 u_int32_t x; 3131 3132 x = cksum + old - new; 3133 x = (x + (x >> 16)) & 0xffff; 3134 3135 /* optimise: eliminate a branch when not udp */ 3136 if (udp && cksum == 0x0000) 3137 return cksum; 3138 if (udp && x == 0x0000) 3139 x = 0xffff; 3140 3141 return (u_int16_t)(x); 3142 } 3143 3144 static void 3145 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3146 u_int8_t udp) 3147 { 3148 u_int16_t old = htons(hi ? (*f << 8) : *f); 3149 u_int16_t new = htons(hi ? ( v << 8) : v); 3150 3151 if (*f == v) 3152 return; 3153 3154 *f = v; 3155 3156 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3157 return; 3158 3159 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3160 } 3161 3162 void 3163 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3164 bool hi, u_int8_t udp) 3165 { 3166 u_int8_t *fb = (u_int8_t *)f; 3167 u_int8_t *vb = (u_int8_t *)&v; 3168 3169 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3170 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3171 } 3172 3173 void 3174 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3175 bool hi, u_int8_t udp) 3176 { 3177 u_int8_t *fb = (u_int8_t *)f; 3178 u_int8_t *vb = (u_int8_t *)&v; 3179 3180 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3181 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3182 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3183 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3184 } 3185 3186 u_int16_t 3187 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3188 u_int16_t new, u_int8_t udp) 3189 { 3190 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3191 return (cksum); 3192 3193 return (pf_cksum_fixup(cksum, old, new, udp)); 3194 } 3195 3196 static void 3197 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3198 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3199 sa_family_t af, sa_family_t naf) 3200 { 3201 struct pf_addr ao; 3202 u_int16_t po = *p; 3203 3204 PF_ACPY(&ao, a, af); 3205 if (af == naf) 3206 PF_ACPY(a, an, af); 3207 3208 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3209 *pc = ~*pc; 3210 3211 *p = pn; 3212 3213 switch (af) { 3214 #ifdef INET 3215 case AF_INET: 3216 switch (naf) { 3217 case AF_INET: 3218 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3219 ao.addr16[0], an->addr16[0], 0), 3220 ao.addr16[1], an->addr16[1], 0); 3221 *p = pn; 3222 3223 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3224 ao.addr16[0], an->addr16[0], u), 3225 ao.addr16[1], an->addr16[1], u); 3226 3227 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3228 break; 3229 #ifdef INET6 3230 case AF_INET6: 3231 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3232 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3233 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3234 ao.addr16[0], an->addr16[0], u), 3235 ao.addr16[1], an->addr16[1], u), 3236 0, an->addr16[2], u), 3237 0, an->addr16[3], u), 3238 0, an->addr16[4], u), 3239 0, an->addr16[5], u), 3240 0, an->addr16[6], u), 3241 0, an->addr16[7], u), 3242 po, pn, u); 3243 3244 /* XXXKP TODO *ic checksum? */ 3245 break; 3246 #endif /* INET6 */ 3247 } 3248 break; 3249 #endif /* INET */ 3250 #ifdef INET6 3251 case AF_INET6: 3252 switch (naf) { 3253 #ifdef INET 3254 case AF_INET: 3255 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3256 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3257 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc, 3258 ao.addr16[0], an->addr16[0], u), 3259 ao.addr16[1], an->addr16[1], u), 3260 ao.addr16[2], 0, u), 3261 ao.addr16[3], 0, u), 3262 ao.addr16[4], 0, u), 3263 ao.addr16[5], 0, u), 3264 ao.addr16[6], 0, u), 3265 ao.addr16[7], 0, u), 3266 po, pn, u); 3267 3268 /* XXXKP TODO *ic checksum? */ 3269 break; 3270 #endif /* INET */ 3271 case AF_INET6: 3272 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3273 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3274 pf_cksum_fixup(pf_cksum_fixup(*pc, 3275 ao.addr16[0], an->addr16[0], u), 3276 ao.addr16[1], an->addr16[1], u), 3277 ao.addr16[2], an->addr16[2], u), 3278 ao.addr16[3], an->addr16[3], u), 3279 ao.addr16[4], an->addr16[4], u), 3280 ao.addr16[5], an->addr16[5], u), 3281 ao.addr16[6], an->addr16[6], u), 3282 ao.addr16[7], an->addr16[7], u); 3283 3284 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3285 break; 3286 } 3287 break; 3288 #endif /* INET6 */ 3289 } 3290 3291 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3292 CSUM_DELAY_DATA_IPV6)) { 3293 *pc = ~*pc; 3294 if (! *pc) 3295 *pc = 0xffff; 3296 } 3297 } 3298 3299 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3300 void 3301 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3302 { 3303 u_int32_t ao; 3304 3305 memcpy(&ao, a, sizeof(ao)); 3306 memcpy(a, &an, sizeof(u_int32_t)); 3307 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3308 ao % 65536, an % 65536, u); 3309 } 3310 3311 void 3312 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3313 { 3314 u_int32_t ao; 3315 3316 memcpy(&ao, a, sizeof(ao)); 3317 memcpy(a, &an, sizeof(u_int32_t)); 3318 3319 *c = pf_proto_cksum_fixup(m, 3320 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3321 ao % 65536, an % 65536, udp); 3322 } 3323 3324 #ifdef INET6 3325 static void 3326 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3327 { 3328 struct pf_addr ao; 3329 3330 PF_ACPY(&ao, a, AF_INET6); 3331 PF_ACPY(a, an, AF_INET6); 3332 3333 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3334 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3335 pf_cksum_fixup(pf_cksum_fixup(*c, 3336 ao.addr16[0], an->addr16[0], u), 3337 ao.addr16[1], an->addr16[1], u), 3338 ao.addr16[2], an->addr16[2], u), 3339 ao.addr16[3], an->addr16[3], u), 3340 ao.addr16[4], an->addr16[4], u), 3341 ao.addr16[5], an->addr16[5], u), 3342 ao.addr16[6], an->addr16[6], u), 3343 ao.addr16[7], an->addr16[7], u); 3344 } 3345 #endif /* INET6 */ 3346 3347 static void 3348 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3349 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3350 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3351 { 3352 struct pf_addr oia, ooa; 3353 3354 PF_ACPY(&oia, ia, af); 3355 if (oa) 3356 PF_ACPY(&ooa, oa, af); 3357 3358 /* Change inner protocol port, fix inner protocol checksum. */ 3359 if (ip != NULL) { 3360 u_int16_t oip = *ip; 3361 u_int32_t opc; 3362 3363 if (pc != NULL) 3364 opc = *pc; 3365 *ip = np; 3366 if (pc != NULL) 3367 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3368 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3369 if (pc != NULL) 3370 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3371 } 3372 /* Change inner ip address, fix inner ip and icmp checksums. */ 3373 PF_ACPY(ia, na, af); 3374 switch (af) { 3375 #ifdef INET 3376 case AF_INET: { 3377 u_int32_t oh2c = *h2c; 3378 3379 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3380 oia.addr16[0], ia->addr16[0], 0), 3381 oia.addr16[1], ia->addr16[1], 0); 3382 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3383 oia.addr16[0], ia->addr16[0], 0), 3384 oia.addr16[1], ia->addr16[1], 0); 3385 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3386 break; 3387 } 3388 #endif /* INET */ 3389 #ifdef INET6 3390 case AF_INET6: 3391 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3392 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3393 pf_cksum_fixup(pf_cksum_fixup(*ic, 3394 oia.addr16[0], ia->addr16[0], u), 3395 oia.addr16[1], ia->addr16[1], u), 3396 oia.addr16[2], ia->addr16[2], u), 3397 oia.addr16[3], ia->addr16[3], u), 3398 oia.addr16[4], ia->addr16[4], u), 3399 oia.addr16[5], ia->addr16[5], u), 3400 oia.addr16[6], ia->addr16[6], u), 3401 oia.addr16[7], ia->addr16[7], u); 3402 break; 3403 #endif /* INET6 */ 3404 } 3405 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3406 if (oa) { 3407 PF_ACPY(oa, na, af); 3408 switch (af) { 3409 #ifdef INET 3410 case AF_INET: 3411 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3412 ooa.addr16[0], oa->addr16[0], 0), 3413 ooa.addr16[1], oa->addr16[1], 0); 3414 break; 3415 #endif /* INET */ 3416 #ifdef INET6 3417 case AF_INET6: 3418 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3419 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3420 pf_cksum_fixup(pf_cksum_fixup(*ic, 3421 ooa.addr16[0], oa->addr16[0], u), 3422 ooa.addr16[1], oa->addr16[1], u), 3423 ooa.addr16[2], oa->addr16[2], u), 3424 ooa.addr16[3], oa->addr16[3], u), 3425 ooa.addr16[4], oa->addr16[4], u), 3426 ooa.addr16[5], oa->addr16[5], u), 3427 ooa.addr16[6], oa->addr16[6], u), 3428 ooa.addr16[7], oa->addr16[7], u); 3429 break; 3430 #endif /* INET6 */ 3431 } 3432 } 3433 } 3434 3435 int 3436 pf_translate_af(struct pf_pdesc *pd) 3437 { 3438 #if defined(INET) && defined(INET6) 3439 struct mbuf *mp; 3440 struct ip *ip4; 3441 struct ip6_hdr *ip6; 3442 struct icmp6_hdr *icmp; 3443 struct m_tag *mtag; 3444 struct pf_fragment_tag *ftag; 3445 int hlen; 3446 3447 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3448 3449 /* trim the old header */ 3450 m_adj(pd->m, pd->off); 3451 3452 /* prepend a new one */ 3453 M_PREPEND(pd->m, hlen, M_NOWAIT); 3454 if (pd->m == NULL) 3455 return (-1); 3456 3457 switch (pd->naf) { 3458 case AF_INET: 3459 ip4 = mtod(pd->m, struct ip *); 3460 bzero(ip4, hlen); 3461 ip4->ip_v = IPVERSION; 3462 ip4->ip_hl = hlen >> 2; 3463 ip4->ip_tos = pd->tos; 3464 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3465 ip_fillid(ip4); 3466 ip4->ip_ttl = pd->ttl; 3467 ip4->ip_p = pd->proto; 3468 ip4->ip_src = pd->nsaddr.v4; 3469 ip4->ip_dst = pd->ndaddr.v4; 3470 pd->src = (struct pf_addr *)&ip4->ip_src; 3471 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3472 pd->off = sizeof(struct ip); 3473 break; 3474 case AF_INET6: 3475 ip6 = mtod(pd->m, struct ip6_hdr *); 3476 bzero(ip6, hlen); 3477 ip6->ip6_vfc = IPV6_VERSION; 3478 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3479 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3480 ip6->ip6_nxt = pd->proto; 3481 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3482 ip6->ip6_hlim = IPV6_DEFHLIM; 3483 else 3484 ip6->ip6_hlim = pd->ttl; 3485 ip6->ip6_src = pd->nsaddr.v6; 3486 ip6->ip6_dst = pd->ndaddr.v6; 3487 pd->src = (struct pf_addr *)&ip6->ip6_src; 3488 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3489 pd->off = sizeof(struct ip6_hdr); 3490 3491 /* 3492 * If we're dealing with a reassembled packet we need to adjust 3493 * the header length from the IPv4 header size to IPv6 header 3494 * size. 3495 */ 3496 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3497 if (mtag) { 3498 ftag = (struct pf_fragment_tag *)(mtag + 1); 3499 ftag->ft_hdrlen = sizeof(*ip6); 3500 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3501 sizeof(struct ip) + sizeof(struct ip6_frag); 3502 } 3503 break; 3504 default: 3505 return (-1); 3506 } 3507 3508 /* recalculate icmp/icmp6 checksums */ 3509 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3510 int off; 3511 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3512 NULL) { 3513 pd->m = NULL; 3514 return (-1); 3515 } 3516 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3517 icmp->icmp6_cksum = 0; 3518 icmp->icmp6_cksum = pd->naf == AF_INET ? 3519 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3520 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3521 ntohs(ip6->ip6_plen)); 3522 } 3523 #endif /* INET && INET6 */ 3524 3525 return (0); 3526 } 3527 3528 int 3529 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3530 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3531 sa_family_t af, sa_family_t naf) 3532 { 3533 #if defined(INET) && defined(INET6) 3534 struct mbuf *n = NULL; 3535 struct ip *ip4; 3536 struct ip6_hdr *ip6; 3537 int hlen, olen, mlen; 3538 3539 if (af == naf || (af != AF_INET && af != AF_INET6) || 3540 (naf != AF_INET && naf != AF_INET6)) 3541 return (-1); 3542 3543 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3544 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3545 return (-1); 3546 3547 /* old header */ 3548 olen = pd2->off - off; 3549 /* new header */ 3550 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3551 /* data lenght */ 3552 mlen = m->m_pkthdr.len - pd2->off; 3553 3554 /* trim old header */ 3555 m_adj(n, olen); 3556 3557 /* prepend a new one */ 3558 M_PREPEND(n, hlen, M_NOWAIT); 3559 if (n == NULL) 3560 return (-1); 3561 3562 /* translate inner ip/ip6 header */ 3563 switch (naf) { 3564 case AF_INET: 3565 ip4 = mtod(n, struct ip *); 3566 bzero(ip4, sizeof(*ip4)); 3567 ip4->ip_v = IPVERSION; 3568 ip4->ip_hl = sizeof(*ip4) >> 2; 3569 ip4->ip_len = htons(sizeof(*ip4) + mlen); 3570 ip_fillid(ip4); 3571 ip4->ip_off = htons(IP_DF); 3572 ip4->ip_ttl = pd2->ttl; 3573 if (pd2->proto == IPPROTO_ICMPV6) 3574 ip4->ip_p = IPPROTO_ICMP; 3575 else 3576 ip4->ip_p = pd2->proto; 3577 ip4->ip_src = src->v4; 3578 ip4->ip_dst = dst->v4; 3579 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3580 break; 3581 case AF_INET6: 3582 ip6 = mtod(n, struct ip6_hdr *); 3583 bzero(ip6, sizeof(*ip6)); 3584 ip6->ip6_vfc = IPV6_VERSION; 3585 ip6->ip6_plen = htons(mlen); 3586 if (pd2->proto == IPPROTO_ICMP) 3587 ip6->ip6_nxt = IPPROTO_ICMPV6; 3588 else 3589 ip6->ip6_nxt = pd2->proto; 3590 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3591 ip6->ip6_hlim = IPV6_DEFHLIM; 3592 else 3593 ip6->ip6_hlim = pd2->ttl; 3594 ip6->ip6_src = src->v6; 3595 ip6->ip6_dst = dst->v6; 3596 break; 3597 } 3598 3599 /* adjust payload offset and total packet length */ 3600 pd2->off += hlen - olen; 3601 pd->tot_len += hlen - olen; 3602 3603 /* merge modified inner packet with the original header */ 3604 mlen = n->m_pkthdr.len; 3605 m_cat(m, n); 3606 m->m_pkthdr.len += mlen; 3607 #endif /* INET && INET6 */ 3608 3609 return (0); 3610 } 3611 3612 #define PTR_IP(field) (offsetof(struct ip, field)) 3613 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3614 3615 int 3616 pf_translate_icmp_af(int af, void *arg) 3617 { 3618 #if defined(INET) && defined(INET6) 3619 struct icmp *icmp4; 3620 struct icmp6_hdr *icmp6; 3621 u_int32_t mtu; 3622 int32_t ptr = -1; 3623 u_int8_t type; 3624 u_int8_t code; 3625 3626 switch (af) { 3627 case AF_INET: 3628 icmp6 = arg; 3629 type = icmp6->icmp6_type; 3630 code = icmp6->icmp6_code; 3631 mtu = ntohl(icmp6->icmp6_mtu); 3632 3633 switch (type) { 3634 case ICMP6_ECHO_REQUEST: 3635 type = ICMP_ECHO; 3636 break; 3637 case ICMP6_ECHO_REPLY: 3638 type = ICMP_ECHOREPLY; 3639 break; 3640 case ICMP6_DST_UNREACH: 3641 type = ICMP_UNREACH; 3642 switch (code) { 3643 case ICMP6_DST_UNREACH_NOROUTE: 3644 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3645 case ICMP6_DST_UNREACH_ADDR: 3646 code = ICMP_UNREACH_HOST; 3647 break; 3648 case ICMP6_DST_UNREACH_ADMIN: 3649 code = ICMP_UNREACH_HOST_PROHIB; 3650 break; 3651 case ICMP6_DST_UNREACH_NOPORT: 3652 code = ICMP_UNREACH_PORT; 3653 break; 3654 default: 3655 return (-1); 3656 } 3657 break; 3658 case ICMP6_PACKET_TOO_BIG: 3659 type = ICMP_UNREACH; 3660 code = ICMP_UNREACH_NEEDFRAG; 3661 mtu -= 20; 3662 break; 3663 case ICMP6_TIME_EXCEEDED: 3664 type = ICMP_TIMXCEED; 3665 break; 3666 case ICMP6_PARAM_PROB: 3667 switch (code) { 3668 case ICMP6_PARAMPROB_HEADER: 3669 type = ICMP_PARAMPROB; 3670 code = ICMP_PARAMPROB_ERRATPTR; 3671 ptr = ntohl(icmp6->icmp6_pptr); 3672 3673 if (ptr == PTR_IP6(ip6_vfc)) 3674 ; /* preserve */ 3675 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3676 ptr = PTR_IP(ip_tos); 3677 else if (ptr == PTR_IP6(ip6_plen) || 3678 ptr == PTR_IP6(ip6_plen) + 1) 3679 ptr = PTR_IP(ip_len); 3680 else if (ptr == PTR_IP6(ip6_nxt)) 3681 ptr = PTR_IP(ip_p); 3682 else if (ptr == PTR_IP6(ip6_hlim)) 3683 ptr = PTR_IP(ip_ttl); 3684 else if (ptr >= PTR_IP6(ip6_src) && 3685 ptr < PTR_IP6(ip6_dst)) 3686 ptr = PTR_IP(ip_src); 3687 else if (ptr >= PTR_IP6(ip6_dst) && 3688 ptr < sizeof(struct ip6_hdr)) 3689 ptr = PTR_IP(ip_dst); 3690 else { 3691 return (-1); 3692 } 3693 break; 3694 case ICMP6_PARAMPROB_NEXTHEADER: 3695 type = ICMP_UNREACH; 3696 code = ICMP_UNREACH_PROTOCOL; 3697 break; 3698 default: 3699 return (-1); 3700 } 3701 break; 3702 default: 3703 return (-1); 3704 } 3705 if (icmp6->icmp6_type != type) { 3706 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3707 icmp6->icmp6_type, type, 0); 3708 icmp6->icmp6_type = type; 3709 } 3710 if (icmp6->icmp6_code != code) { 3711 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3712 icmp6->icmp6_code, code, 0); 3713 icmp6->icmp6_code = code; 3714 } 3715 if (icmp6->icmp6_mtu != htonl(mtu)) { 3716 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3717 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3718 /* aligns well with a icmpv4 nextmtu */ 3719 icmp6->icmp6_mtu = htonl(mtu); 3720 } 3721 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3722 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3723 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3724 /* icmpv4 pptr is a one most significant byte */ 3725 icmp6->icmp6_pptr = htonl(ptr << 24); 3726 } 3727 break; 3728 case AF_INET6: 3729 icmp4 = arg; 3730 type = icmp4->icmp_type; 3731 code = icmp4->icmp_code; 3732 mtu = ntohs(icmp4->icmp_nextmtu); 3733 3734 switch (type) { 3735 case ICMP_ECHO: 3736 type = ICMP6_ECHO_REQUEST; 3737 break; 3738 case ICMP_ECHOREPLY: 3739 type = ICMP6_ECHO_REPLY; 3740 break; 3741 case ICMP_UNREACH: 3742 type = ICMP6_DST_UNREACH; 3743 switch (code) { 3744 case ICMP_UNREACH_NET: 3745 case ICMP_UNREACH_HOST: 3746 case ICMP_UNREACH_NET_UNKNOWN: 3747 case ICMP_UNREACH_HOST_UNKNOWN: 3748 case ICMP_UNREACH_ISOLATED: 3749 case ICMP_UNREACH_TOSNET: 3750 case ICMP_UNREACH_TOSHOST: 3751 code = ICMP6_DST_UNREACH_NOROUTE; 3752 break; 3753 case ICMP_UNREACH_PORT: 3754 code = ICMP6_DST_UNREACH_NOPORT; 3755 break; 3756 case ICMP_UNREACH_NET_PROHIB: 3757 case ICMP_UNREACH_HOST_PROHIB: 3758 case ICMP_UNREACH_FILTER_PROHIB: 3759 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3760 code = ICMP6_DST_UNREACH_ADMIN; 3761 break; 3762 case ICMP_UNREACH_PROTOCOL: 3763 type = ICMP6_PARAM_PROB; 3764 code = ICMP6_PARAMPROB_NEXTHEADER; 3765 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3766 break; 3767 case ICMP_UNREACH_NEEDFRAG: 3768 type = ICMP6_PACKET_TOO_BIG; 3769 code = 0; 3770 mtu += 20; 3771 break; 3772 default: 3773 return (-1); 3774 } 3775 break; 3776 case ICMP_TIMXCEED: 3777 type = ICMP6_TIME_EXCEEDED; 3778 break; 3779 case ICMP_PARAMPROB: 3780 type = ICMP6_PARAM_PROB; 3781 switch (code) { 3782 case ICMP_PARAMPROB_ERRATPTR: 3783 code = ICMP6_PARAMPROB_HEADER; 3784 break; 3785 case ICMP_PARAMPROB_LENGTH: 3786 code = ICMP6_PARAMPROB_HEADER; 3787 break; 3788 default: 3789 return (-1); 3790 } 3791 3792 ptr = icmp4->icmp_pptr; 3793 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3794 ; /* preserve */ 3795 else if (ptr == PTR_IP(ip_len) || 3796 ptr == PTR_IP(ip_len) + 1) 3797 ptr = PTR_IP6(ip6_plen); 3798 else if (ptr == PTR_IP(ip_ttl)) 3799 ptr = PTR_IP6(ip6_hlim); 3800 else if (ptr == PTR_IP(ip_p)) 3801 ptr = PTR_IP6(ip6_nxt); 3802 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3803 ptr = PTR_IP6(ip6_src); 3804 else if (ptr >= PTR_IP(ip_dst) && 3805 ptr < sizeof(struct ip)) 3806 ptr = PTR_IP6(ip6_dst); 3807 else { 3808 return (-1); 3809 } 3810 break; 3811 default: 3812 return (-1); 3813 } 3814 if (icmp4->icmp_type != type) { 3815 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3816 icmp4->icmp_type, type, 0); 3817 icmp4->icmp_type = type; 3818 } 3819 if (icmp4->icmp_code != code) { 3820 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3821 icmp4->icmp_code, code, 0); 3822 icmp4->icmp_code = code; 3823 } 3824 if (icmp4->icmp_nextmtu != htons(mtu)) { 3825 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3826 icmp4->icmp_nextmtu, htons(mtu), 0); 3827 icmp4->icmp_nextmtu = htons(mtu); 3828 } 3829 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3830 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3831 htons(icmp4->icmp_pptr), htons(ptr), 0); 3832 icmp4->icmp_void = htonl(ptr); 3833 } 3834 break; 3835 } 3836 #endif /* INET && INET6 */ 3837 3838 return (0); 3839 } 3840 3841 /* 3842 * Need to modulate the sequence numbers in the TCP SACK option 3843 * (credits to Krzysztof Pfaff for report and patch) 3844 */ 3845 static int 3846 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3847 struct pf_state_peer *dst) 3848 { 3849 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3850 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3851 int copyback = 0, i, olen; 3852 struct sackblk sack; 3853 3854 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3855 if (hlen < TCPOLEN_SACKLEN || 3856 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3857 return 0; 3858 3859 while (hlen >= TCPOLEN_SACKLEN) { 3860 size_t startoff = opt - opts; 3861 olen = opt[1]; 3862 switch (*opt) { 3863 case TCPOPT_EOL: /* FALLTHROUGH */ 3864 case TCPOPT_NOP: 3865 opt++; 3866 hlen--; 3867 break; 3868 case TCPOPT_SACK: 3869 if (olen > hlen) 3870 olen = hlen; 3871 if (olen >= TCPOLEN_SACKLEN) { 3872 for (i = 2; i + TCPOLEN_SACK <= olen; 3873 i += TCPOLEN_SACK) { 3874 memcpy(&sack, &opt[i], sizeof(sack)); 3875 pf_patch_32_unaligned(pd->m, 3876 &th->th_sum, &sack.start, 3877 htonl(ntohl(sack.start) - dst->seqdiff), 3878 PF_ALGNMNT(startoff), 3879 0); 3880 pf_patch_32_unaligned(pd->m, &th->th_sum, 3881 &sack.end, 3882 htonl(ntohl(sack.end) - dst->seqdiff), 3883 PF_ALGNMNT(startoff), 3884 0); 3885 memcpy(&opt[i], &sack, sizeof(sack)); 3886 } 3887 copyback = 1; 3888 } 3889 /* FALLTHROUGH */ 3890 default: 3891 if (olen < 2) 3892 olen = 2; 3893 hlen -= olen; 3894 opt += olen; 3895 } 3896 } 3897 3898 if (copyback) 3899 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3900 return (copyback); 3901 } 3902 3903 struct mbuf * 3904 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3905 const struct pf_addr *saddr, const struct pf_addr *daddr, 3906 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3907 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3908 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3909 { 3910 struct mbuf *m; 3911 int len, tlen; 3912 #ifdef INET 3913 struct ip *h = NULL; 3914 #endif /* INET */ 3915 #ifdef INET6 3916 struct ip6_hdr *h6 = NULL; 3917 #endif /* INET6 */ 3918 struct tcphdr *th; 3919 char *opt; 3920 struct pf_mtag *pf_mtag; 3921 3922 len = 0; 3923 th = NULL; 3924 3925 /* maximum segment size tcp option */ 3926 tlen = sizeof(struct tcphdr); 3927 if (mss) 3928 tlen += 4; 3929 3930 switch (af) { 3931 #ifdef INET 3932 case AF_INET: 3933 len = sizeof(struct ip) + tlen; 3934 break; 3935 #endif /* INET */ 3936 #ifdef INET6 3937 case AF_INET6: 3938 len = sizeof(struct ip6_hdr) + tlen; 3939 break; 3940 #endif /* INET6 */ 3941 } 3942 3943 m = m_gethdr(M_NOWAIT, MT_DATA); 3944 if (m == NULL) 3945 return (NULL); 3946 3947 #ifdef MAC 3948 mac_netinet_firewall_send(m); 3949 #endif 3950 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3951 m_freem(m); 3952 return (NULL); 3953 } 3954 m->m_flags |= mbuf_flags; 3955 pf_mtag->tag = mtag_tag; 3956 pf_mtag->flags = mtag_flags; 3957 3958 if (rtableid >= 0) 3959 M_SETFIB(m, rtableid); 3960 3961 #ifdef ALTQ 3962 if (r != NULL && r->qid) { 3963 pf_mtag->qid = r->qid; 3964 3965 /* add hints for ecn */ 3966 pf_mtag->hdr = mtod(m, struct ip *); 3967 } 3968 #endif /* ALTQ */ 3969 m->m_data += max_linkhdr; 3970 m->m_pkthdr.len = m->m_len = len; 3971 /* The rest of the stack assumes a rcvif, so provide one. 3972 * This is a locally generated packet, so .. close enough. */ 3973 m->m_pkthdr.rcvif = V_loif; 3974 bzero(m->m_data, len); 3975 switch (af) { 3976 #ifdef INET 3977 case AF_INET: 3978 h = mtod(m, struct ip *); 3979 3980 /* IP header fields included in the TCP checksum */ 3981 h->ip_p = IPPROTO_TCP; 3982 h->ip_len = htons(tlen); 3983 h->ip_src.s_addr = saddr->v4.s_addr; 3984 h->ip_dst.s_addr = daddr->v4.s_addr; 3985 3986 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3987 break; 3988 #endif /* INET */ 3989 #ifdef INET6 3990 case AF_INET6: 3991 h6 = mtod(m, struct ip6_hdr *); 3992 3993 /* IP header fields included in the TCP checksum */ 3994 h6->ip6_nxt = IPPROTO_TCP; 3995 h6->ip6_plen = htons(tlen); 3996 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3997 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3998 3999 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4000 break; 4001 #endif /* INET6 */ 4002 } 4003 4004 /* TCP header */ 4005 th->th_sport = sport; 4006 th->th_dport = dport; 4007 th->th_seq = htonl(seq); 4008 th->th_ack = htonl(ack); 4009 th->th_off = tlen >> 2; 4010 tcp_set_flags(th, tcp_flags); 4011 th->th_win = htons(win); 4012 4013 if (mss) { 4014 opt = (char *)(th + 1); 4015 opt[0] = TCPOPT_MAXSEG; 4016 opt[1] = 4; 4017 HTONS(mss); 4018 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 4019 } 4020 4021 switch (af) { 4022 #ifdef INET 4023 case AF_INET: 4024 /* TCP checksum */ 4025 th->th_sum = in_cksum(m, len); 4026 4027 /* Finish the IP header */ 4028 h->ip_v = 4; 4029 h->ip_hl = sizeof(*h) >> 2; 4030 h->ip_tos = IPTOS_LOWDELAY; 4031 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4032 h->ip_len = htons(len); 4033 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4034 h->ip_sum = 0; 4035 break; 4036 #endif /* INET */ 4037 #ifdef INET6 4038 case AF_INET6: 4039 /* TCP checksum */ 4040 th->th_sum = in6_cksum(m, IPPROTO_TCP, 4041 sizeof(struct ip6_hdr), tlen); 4042 4043 h6->ip6_vfc |= IPV6_VERSION; 4044 h6->ip6_hlim = IPV6_DEFHLIM; 4045 break; 4046 #endif /* INET6 */ 4047 } 4048 4049 return (m); 4050 } 4051 4052 static void 4053 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4054 uint8_t ttl, int rtableid) 4055 { 4056 struct mbuf *m; 4057 #ifdef INET 4058 struct ip *h = NULL; 4059 #endif /* INET */ 4060 #ifdef INET6 4061 struct ip6_hdr *h6 = NULL; 4062 #endif /* INET6 */ 4063 struct sctphdr *hdr; 4064 struct sctp_chunkhdr *chunk; 4065 struct pf_send_entry *pfse; 4066 int off = 0; 4067 4068 MPASS(af == pd->af); 4069 4070 m = m_gethdr(M_NOWAIT, MT_DATA); 4071 if (m == NULL) 4072 return; 4073 4074 m->m_data += max_linkhdr; 4075 m->m_flags |= M_SKIP_FIREWALL; 4076 /* The rest of the stack assumes a rcvif, so provide one. 4077 * This is a locally generated packet, so .. close enough. */ 4078 m->m_pkthdr.rcvif = V_loif; 4079 4080 /* IPv4|6 header */ 4081 switch (af) { 4082 #ifdef INET 4083 case AF_INET: 4084 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4085 4086 h = mtod(m, struct ip *); 4087 4088 /* IP header fields included in the TCP checksum */ 4089 4090 h->ip_p = IPPROTO_SCTP; 4091 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4092 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4093 h->ip_src = pd->dst->v4; 4094 h->ip_dst = pd->src->v4; 4095 4096 off += sizeof(struct ip); 4097 break; 4098 #endif /* INET */ 4099 #ifdef INET6 4100 case AF_INET6: 4101 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4102 4103 h6 = mtod(m, struct ip6_hdr *); 4104 4105 /* IP header fields included in the TCP checksum */ 4106 h6->ip6_vfc |= IPV6_VERSION; 4107 h6->ip6_nxt = IPPROTO_SCTP; 4108 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4109 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4110 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4111 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4112 4113 off += sizeof(struct ip6_hdr); 4114 break; 4115 #endif /* INET6 */ 4116 } 4117 4118 /* SCTP header */ 4119 hdr = mtodo(m, off); 4120 4121 hdr->src_port = pd->hdr.sctp.dest_port; 4122 hdr->dest_port = pd->hdr.sctp.src_port; 4123 hdr->v_tag = pd->sctp_initiate_tag; 4124 hdr->checksum = 0; 4125 4126 /* Abort chunk. */ 4127 off += sizeof(struct sctphdr); 4128 chunk = mtodo(m, off); 4129 4130 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4131 chunk->chunk_length = htons(sizeof(*chunk)); 4132 4133 /* SCTP checksum */ 4134 off += sizeof(*chunk); 4135 m->m_pkthdr.len = m->m_len = off; 4136 4137 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4138 4139 if (rtableid >= 0) 4140 M_SETFIB(m, rtableid); 4141 4142 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4143 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4144 if (pfse == NULL) { 4145 m_freem(m); 4146 return; 4147 } 4148 4149 switch (af) { 4150 #ifdef INET 4151 case AF_INET: 4152 pfse->pfse_type = PFSE_IP; 4153 break; 4154 #endif /* INET */ 4155 #ifdef INET6 4156 case AF_INET6: 4157 pfse->pfse_type = PFSE_IP6; 4158 break; 4159 #endif /* INET6 */ 4160 } 4161 4162 pfse->pfse_m = m; 4163 pf_send(pfse); 4164 } 4165 4166 void 4167 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4168 const struct pf_addr *saddr, const struct pf_addr *daddr, 4169 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4170 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4171 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4172 { 4173 struct pf_send_entry *pfse; 4174 struct mbuf *m; 4175 4176 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4177 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid); 4178 if (m == NULL) 4179 return; 4180 4181 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4182 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4183 if (pfse == NULL) { 4184 m_freem(m); 4185 return; 4186 } 4187 4188 switch (af) { 4189 #ifdef INET 4190 case AF_INET: 4191 pfse->pfse_type = PFSE_IP; 4192 break; 4193 #endif /* INET */ 4194 #ifdef INET6 4195 case AF_INET6: 4196 pfse->pfse_type = PFSE_IP6; 4197 break; 4198 #endif /* INET6 */ 4199 } 4200 4201 pfse->pfse_m = m; 4202 pf_send(pfse); 4203 } 4204 4205 static void 4206 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4207 struct pf_state_key *sk, struct tcphdr *th, 4208 u_int16_t bproto_sum, u_int16_t bip_sum, 4209 u_short *reason, int rtableid) 4210 { 4211 struct pf_addr * const saddr = pd->src; 4212 struct pf_addr * const daddr = pd->dst; 4213 4214 /* undo NAT changes, if they have taken place */ 4215 if (nr != NULL) { 4216 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af); 4217 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af); 4218 if (pd->sport) 4219 *pd->sport = sk->port[pd->sidx]; 4220 if (pd->dport) 4221 *pd->dport = sk->port[pd->didx]; 4222 if (pd->ip_sum) 4223 *pd->ip_sum = bip_sum; 4224 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4225 } 4226 if (pd->proto == IPPROTO_TCP && 4227 ((r->rule_flag & PFRULE_RETURNRST) || 4228 (r->rule_flag & PFRULE_RETURN)) && 4229 !(tcp_get_flags(th) & TH_RST)) { 4230 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4231 4232 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4233 IPPROTO_TCP, pd->af)) 4234 REASON_SET(reason, PFRES_PROTCKSUM); 4235 else { 4236 if (tcp_get_flags(th) & TH_SYN) 4237 ack++; 4238 if (tcp_get_flags(th) & TH_FIN) 4239 ack++; 4240 pf_send_tcp(r, pd->af, pd->dst, 4241 pd->src, th->th_dport, th->th_sport, 4242 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4243 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4244 } 4245 } else if (pd->proto == IPPROTO_SCTP && 4246 (r->rule_flag & PFRULE_RETURN)) { 4247 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4248 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4249 r->return_icmp) 4250 pf_send_icmp(pd->m, r->return_icmp >> 8, 4251 r->return_icmp & 255, pd->af, r, rtableid); 4252 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4253 r->return_icmp6) 4254 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4255 r->return_icmp6 & 255, pd->af, r, rtableid); 4256 } 4257 4258 static int 4259 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4260 { 4261 struct m_tag *mtag; 4262 u_int8_t mpcp; 4263 4264 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4265 if (mtag == NULL) 4266 return (0); 4267 4268 if (prio == PF_PRIO_ZERO) 4269 prio = 0; 4270 4271 mpcp = *(uint8_t *)(mtag + 1); 4272 4273 return (mpcp == prio); 4274 } 4275 4276 static int 4277 pf_icmp_to_bandlim(uint8_t type) 4278 { 4279 switch (type) { 4280 case ICMP_ECHO: 4281 case ICMP_ECHOREPLY: 4282 return (BANDLIM_ICMP_ECHO); 4283 case ICMP_TSTAMP: 4284 case ICMP_TSTAMPREPLY: 4285 return (BANDLIM_ICMP_TSTAMP); 4286 case ICMP_UNREACH: 4287 default: 4288 return (BANDLIM_ICMP_UNREACH); 4289 } 4290 } 4291 4292 static void 4293 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 4294 struct pf_krule *r, int rtableid) 4295 { 4296 struct pf_send_entry *pfse; 4297 struct mbuf *m0; 4298 struct pf_mtag *pf_mtag; 4299 4300 /* ICMP packet rate limitation. */ 4301 switch (af) { 4302 #ifdef INET6 4303 case AF_INET6: 4304 if (icmp6_ratelimit(NULL, type, code)) 4305 return; 4306 break; 4307 #endif 4308 #ifdef INET 4309 case AF_INET: 4310 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4311 return; 4312 break; 4313 #endif 4314 } 4315 4316 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4317 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4318 if (pfse == NULL) 4319 return; 4320 4321 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4322 free(pfse, M_PFTEMP); 4323 return; 4324 } 4325 4326 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4327 free(pfse, M_PFTEMP); 4328 return; 4329 } 4330 /* XXX: revisit */ 4331 m0->m_flags |= M_SKIP_FIREWALL; 4332 4333 if (rtableid >= 0) 4334 M_SETFIB(m0, rtableid); 4335 4336 #ifdef ALTQ 4337 if (r->qid) { 4338 pf_mtag->qid = r->qid; 4339 /* add hints for ecn */ 4340 pf_mtag->hdr = mtod(m0, struct ip *); 4341 } 4342 #endif /* ALTQ */ 4343 4344 switch (af) { 4345 #ifdef INET 4346 case AF_INET: 4347 pfse->pfse_type = PFSE_ICMP; 4348 break; 4349 #endif /* INET */ 4350 #ifdef INET6 4351 case AF_INET6: 4352 pfse->pfse_type = PFSE_ICMP6; 4353 break; 4354 #endif /* INET6 */ 4355 } 4356 pfse->pfse_m = m0; 4357 pfse->icmpopts.type = type; 4358 pfse->icmpopts.code = code; 4359 pf_send(pfse); 4360 } 4361 4362 /* 4363 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 4364 * If n is 0, they match if they are equal. If n is != 0, they match if they 4365 * are different. 4366 */ 4367 int 4368 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 4369 struct pf_addr *b, sa_family_t af) 4370 { 4371 int match = 0; 4372 4373 switch (af) { 4374 #ifdef INET 4375 case AF_INET: 4376 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4377 match++; 4378 break; 4379 #endif /* INET */ 4380 #ifdef INET6 4381 case AF_INET6: 4382 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4383 match++; 4384 break; 4385 #endif /* INET6 */ 4386 } 4387 if (match) { 4388 if (n) 4389 return (0); 4390 else 4391 return (1); 4392 } else { 4393 if (n) 4394 return (1); 4395 else 4396 return (0); 4397 } 4398 } 4399 4400 /* 4401 * Return 1 if b <= a <= e, otherwise return 0. 4402 */ 4403 int 4404 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 4405 struct pf_addr *a, sa_family_t af) 4406 { 4407 switch (af) { 4408 #ifdef INET 4409 case AF_INET: 4410 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4411 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4412 return (0); 4413 break; 4414 #endif /* INET */ 4415 #ifdef INET6 4416 case AF_INET6: { 4417 int i; 4418 4419 /* check a >= b */ 4420 for (i = 0; i < 4; ++i) 4421 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4422 break; 4423 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4424 return (0); 4425 /* check a <= e */ 4426 for (i = 0; i < 4; ++i) 4427 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4428 break; 4429 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4430 return (0); 4431 break; 4432 } 4433 #endif /* INET6 */ 4434 } 4435 return (1); 4436 } 4437 4438 static int 4439 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4440 { 4441 switch (op) { 4442 case PF_OP_IRG: 4443 return ((p > a1) && (p < a2)); 4444 case PF_OP_XRG: 4445 return ((p < a1) || (p > a2)); 4446 case PF_OP_RRG: 4447 return ((p >= a1) && (p <= a2)); 4448 case PF_OP_EQ: 4449 return (p == a1); 4450 case PF_OP_NE: 4451 return (p != a1); 4452 case PF_OP_LT: 4453 return (p < a1); 4454 case PF_OP_LE: 4455 return (p <= a1); 4456 case PF_OP_GT: 4457 return (p > a1); 4458 case PF_OP_GE: 4459 return (p >= a1); 4460 } 4461 return (0); /* never reached */ 4462 } 4463 4464 int 4465 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4466 { 4467 NTOHS(a1); 4468 NTOHS(a2); 4469 NTOHS(p); 4470 return (pf_match(op, a1, a2, p)); 4471 } 4472 4473 static int 4474 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4475 { 4476 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4477 return (0); 4478 return (pf_match(op, a1, a2, u)); 4479 } 4480 4481 static int 4482 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4483 { 4484 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4485 return (0); 4486 return (pf_match(op, a1, a2, g)); 4487 } 4488 4489 int 4490 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4491 { 4492 if (*tag == -1) 4493 *tag = mtag; 4494 4495 return ((!r->match_tag_not && r->match_tag == *tag) || 4496 (r->match_tag_not && r->match_tag != *tag)); 4497 } 4498 4499 static int 4500 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4501 { 4502 struct ifnet *ifp = m->m_pkthdr.rcvif; 4503 struct pfi_kkif *kif; 4504 4505 if (ifp == NULL) 4506 return (0); 4507 4508 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4509 4510 if (kif == NULL) { 4511 DPFPRINTF(PF_DEBUG_URGENT, 4512 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 4513 r->rcv_ifname)); 4514 return (0); 4515 } 4516 4517 return (pfi_kkif_match(r->rcv_kif, kif)); 4518 } 4519 4520 int 4521 pf_tag_packet(struct pf_pdesc *pd, int tag) 4522 { 4523 4524 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4525 4526 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4527 return (ENOMEM); 4528 4529 pd->pf_mtag->tag = tag; 4530 4531 return (0); 4532 } 4533 4534 #define PF_ANCHOR_STACKSIZE 32 4535 struct pf_kanchor_stackframe { 4536 struct pf_kruleset *rs; 4537 struct pf_krule *r; /* XXX: + match bit */ 4538 struct pf_kanchor *child; 4539 }; 4540 4541 /* 4542 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4543 */ 4544 #define PF_ANCHORSTACK_MATCH 0x00000001 4545 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4546 4547 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4548 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4549 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4550 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4551 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4552 } while (0) 4553 4554 void 4555 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4556 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4557 int *match) 4558 { 4559 struct pf_kanchor_stackframe *f; 4560 4561 PF_RULES_RASSERT(); 4562 4563 if (match) 4564 *match = 0; 4565 if (*depth >= PF_ANCHOR_STACKSIZE) { 4566 printf("%s: anchor stack overflow on %s\n", 4567 __func__, (*r)->anchor->name); 4568 *r = TAILQ_NEXT(*r, entries); 4569 return; 4570 } else if (*depth == 0 && a != NULL) 4571 *a = *r; 4572 f = stack + (*depth)++; 4573 f->rs = *rs; 4574 f->r = *r; 4575 if ((*r)->anchor_wildcard) { 4576 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4577 4578 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4579 *r = NULL; 4580 return; 4581 } 4582 *rs = &f->child->ruleset; 4583 } else { 4584 f->child = NULL; 4585 *rs = &(*r)->anchor->ruleset; 4586 } 4587 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4588 } 4589 4590 int 4591 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4592 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4593 int *match) 4594 { 4595 struct pf_kanchor_stackframe *f; 4596 struct pf_krule *fr; 4597 int quick = 0; 4598 4599 PF_RULES_RASSERT(); 4600 4601 do { 4602 if (*depth <= 0) 4603 break; 4604 f = stack + *depth - 1; 4605 fr = PF_ANCHOR_RULE(f); 4606 if (f->child != NULL) { 4607 /* 4608 * This block traverses through 4609 * a wildcard anchor. 4610 */ 4611 if (match != NULL && *match) { 4612 /* 4613 * If any of "*" matched, then 4614 * "foo/ *" matched, mark frame 4615 * appropriately. 4616 */ 4617 PF_ANCHOR_SET_MATCH(f); 4618 *match = 0; 4619 } 4620 f->child = RB_NEXT(pf_kanchor_node, 4621 &fr->anchor->children, f->child); 4622 if (f->child != NULL) { 4623 *rs = &f->child->ruleset; 4624 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4625 if (*r == NULL) 4626 continue; 4627 else 4628 break; 4629 } 4630 } 4631 (*depth)--; 4632 if (*depth == 0 && a != NULL) 4633 *a = NULL; 4634 *rs = f->rs; 4635 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4636 quick = fr->quick; 4637 *r = TAILQ_NEXT(fr, entries); 4638 } while (*r == NULL); 4639 4640 return (quick); 4641 } 4642 4643 struct pf_keth_anchor_stackframe { 4644 struct pf_keth_ruleset *rs; 4645 struct pf_keth_rule *r; /* XXX: + match bit */ 4646 struct pf_keth_anchor *child; 4647 }; 4648 4649 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4650 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4651 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4652 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4653 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4654 } while (0) 4655 4656 void 4657 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4658 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4659 struct pf_keth_rule **a, int *match) 4660 { 4661 struct pf_keth_anchor_stackframe *f; 4662 4663 NET_EPOCH_ASSERT(); 4664 4665 if (match) 4666 *match = 0; 4667 if (*depth >= PF_ANCHOR_STACKSIZE) { 4668 printf("%s: anchor stack overflow on %s\n", 4669 __func__, (*r)->anchor->name); 4670 *r = TAILQ_NEXT(*r, entries); 4671 return; 4672 } else if (*depth == 0 && a != NULL) 4673 *a = *r; 4674 f = stack + (*depth)++; 4675 f->rs = *rs; 4676 f->r = *r; 4677 if ((*r)->anchor_wildcard) { 4678 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4679 4680 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4681 *r = NULL; 4682 return; 4683 } 4684 *rs = &f->child->ruleset; 4685 } else { 4686 f->child = NULL; 4687 *rs = &(*r)->anchor->ruleset; 4688 } 4689 *r = TAILQ_FIRST((*rs)->active.rules); 4690 } 4691 4692 int 4693 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4694 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4695 struct pf_keth_rule **a, int *match) 4696 { 4697 struct pf_keth_anchor_stackframe *f; 4698 struct pf_keth_rule *fr; 4699 int quick = 0; 4700 4701 NET_EPOCH_ASSERT(); 4702 4703 do { 4704 if (*depth <= 0) 4705 break; 4706 f = stack + *depth - 1; 4707 fr = PF_ETH_ANCHOR_RULE(f); 4708 if (f->child != NULL) { 4709 /* 4710 * This block traverses through 4711 * a wildcard anchor. 4712 */ 4713 if (match != NULL && *match) { 4714 /* 4715 * If any of "*" matched, then 4716 * "foo/ *" matched, mark frame 4717 * appropriately. 4718 */ 4719 PF_ETH_ANCHOR_SET_MATCH(f); 4720 *match = 0; 4721 } 4722 f->child = RB_NEXT(pf_keth_anchor_node, 4723 &fr->anchor->children, f->child); 4724 if (f->child != NULL) { 4725 *rs = &f->child->ruleset; 4726 *r = TAILQ_FIRST((*rs)->active.rules); 4727 if (*r == NULL) 4728 continue; 4729 else 4730 break; 4731 } 4732 } 4733 (*depth)--; 4734 if (*depth == 0 && a != NULL) 4735 *a = NULL; 4736 *rs = f->rs; 4737 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4738 quick = fr->quick; 4739 *r = TAILQ_NEXT(fr, entries); 4740 } while (*r == NULL); 4741 4742 return (quick); 4743 } 4744 4745 #ifdef INET6 4746 void 4747 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4748 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4749 { 4750 switch (af) { 4751 #ifdef INET 4752 case AF_INET: 4753 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4754 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4755 break; 4756 #endif /* INET */ 4757 case AF_INET6: 4758 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4759 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4760 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4761 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4762 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4763 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4764 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4765 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4766 break; 4767 } 4768 } 4769 4770 void 4771 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4772 { 4773 switch (af) { 4774 #ifdef INET 4775 case AF_INET: 4776 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4777 break; 4778 #endif /* INET */ 4779 case AF_INET6: 4780 if (addr->addr32[3] == 0xffffffff) { 4781 addr->addr32[3] = 0; 4782 if (addr->addr32[2] == 0xffffffff) { 4783 addr->addr32[2] = 0; 4784 if (addr->addr32[1] == 0xffffffff) { 4785 addr->addr32[1] = 0; 4786 addr->addr32[0] = 4787 htonl(ntohl(addr->addr32[0]) + 1); 4788 } else 4789 addr->addr32[1] = 4790 htonl(ntohl(addr->addr32[1]) + 1); 4791 } else 4792 addr->addr32[2] = 4793 htonl(ntohl(addr->addr32[2]) + 1); 4794 } else 4795 addr->addr32[3] = 4796 htonl(ntohl(addr->addr32[3]) + 1); 4797 break; 4798 } 4799 } 4800 #endif /* INET6 */ 4801 4802 void 4803 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4804 { 4805 /* 4806 * Modern rules use the same flags in rules as they do in states. 4807 */ 4808 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4809 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4810 4811 /* 4812 * Old-style scrub rules have different flags which need to be translated. 4813 */ 4814 if (r->rule_flag & PFRULE_RANDOMID) 4815 a->flags |= PFSTATE_RANDOMID; 4816 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4817 a->flags |= PFSTATE_SETTOS; 4818 a->set_tos = r->set_tos; 4819 } 4820 4821 if (r->qid) 4822 a->qid = r->qid; 4823 if (r->pqid) 4824 a->pqid = r->pqid; 4825 if (r->rtableid >= 0) 4826 a->rtableid = r->rtableid; 4827 a->log |= r->log; 4828 if (r->min_ttl) 4829 a->min_ttl = r->min_ttl; 4830 if (r->max_mss) 4831 a->max_mss = r->max_mss; 4832 if (r->dnpipe) 4833 a->dnpipe = r->dnpipe; 4834 if (r->dnrpipe) 4835 a->dnrpipe = r->dnrpipe; 4836 if (r->dnpipe || r->dnrpipe) { 4837 if (r->free_flags & PFRULE_DN_IS_PIPE) 4838 a->flags |= PFSTATE_DN_IS_PIPE; 4839 else 4840 a->flags &= ~PFSTATE_DN_IS_PIPE; 4841 } 4842 if (r->scrub_flags & PFSTATE_SETPRIO) { 4843 a->set_prio[0] = r->set_prio[0]; 4844 a->set_prio[1] = r->set_prio[1]; 4845 } 4846 } 4847 4848 int 4849 pf_socket_lookup(struct pf_pdesc *pd) 4850 { 4851 struct pf_addr *saddr, *daddr; 4852 u_int16_t sport, dport; 4853 struct inpcbinfo *pi; 4854 struct inpcb *inp; 4855 4856 pd->lookup.uid = UID_MAX; 4857 pd->lookup.gid = GID_MAX; 4858 4859 switch (pd->proto) { 4860 case IPPROTO_TCP: 4861 sport = pd->hdr.tcp.th_sport; 4862 dport = pd->hdr.tcp.th_dport; 4863 pi = &V_tcbinfo; 4864 break; 4865 case IPPROTO_UDP: 4866 sport = pd->hdr.udp.uh_sport; 4867 dport = pd->hdr.udp.uh_dport; 4868 pi = &V_udbinfo; 4869 break; 4870 default: 4871 return (-1); 4872 } 4873 if (pd->dir == PF_IN) { 4874 saddr = pd->src; 4875 daddr = pd->dst; 4876 } else { 4877 u_int16_t p; 4878 4879 p = sport; 4880 sport = dport; 4881 dport = p; 4882 saddr = pd->dst; 4883 daddr = pd->src; 4884 } 4885 switch (pd->af) { 4886 #ifdef INET 4887 case AF_INET: 4888 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4889 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4890 if (inp == NULL) { 4891 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4892 daddr->v4, dport, INPLOOKUP_WILDCARD | 4893 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4894 if (inp == NULL) 4895 return (-1); 4896 } 4897 break; 4898 #endif /* INET */ 4899 #ifdef INET6 4900 case AF_INET6: 4901 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4902 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4903 if (inp == NULL) { 4904 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4905 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4906 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4907 if (inp == NULL) 4908 return (-1); 4909 } 4910 break; 4911 #endif /* INET6 */ 4912 } 4913 INP_RLOCK_ASSERT(inp); 4914 pd->lookup.uid = inp->inp_cred->cr_uid; 4915 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4916 INP_RUNLOCK(inp); 4917 4918 return (1); 4919 } 4920 4921 u_int8_t 4922 pf_get_wscale(struct pf_pdesc *pd) 4923 { 4924 struct tcphdr *th = &pd->hdr.tcp; 4925 int hlen; 4926 u_int8_t hdr[60]; 4927 u_int8_t *opt, optlen; 4928 u_int8_t wscale = 0; 4929 4930 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4931 if (hlen <= sizeof(struct tcphdr)) 4932 return (0); 4933 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4934 return (0); 4935 opt = hdr + sizeof(struct tcphdr); 4936 hlen -= sizeof(struct tcphdr); 4937 while (hlen >= 3) { 4938 switch (*opt) { 4939 case TCPOPT_EOL: 4940 case TCPOPT_NOP: 4941 ++opt; 4942 --hlen; 4943 break; 4944 case TCPOPT_WINDOW: 4945 wscale = opt[2]; 4946 if (wscale > TCP_MAX_WINSHIFT) 4947 wscale = TCP_MAX_WINSHIFT; 4948 wscale |= PF_WSCALE_FLAG; 4949 /* FALLTHROUGH */ 4950 default: 4951 optlen = opt[1]; 4952 if (optlen < 2) 4953 optlen = 2; 4954 hlen -= optlen; 4955 opt += optlen; 4956 break; 4957 } 4958 } 4959 return (wscale); 4960 } 4961 4962 u_int16_t 4963 pf_get_mss(struct pf_pdesc *pd) 4964 { 4965 struct tcphdr *th = &pd->hdr.tcp; 4966 int hlen; 4967 u_int8_t hdr[60]; 4968 u_int8_t *opt, optlen; 4969 u_int16_t mss = V_tcp_mssdflt; 4970 4971 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4972 if (hlen <= sizeof(struct tcphdr)) 4973 return (0); 4974 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4975 return (0); 4976 opt = hdr + sizeof(struct tcphdr); 4977 hlen -= sizeof(struct tcphdr); 4978 while (hlen >= TCPOLEN_MAXSEG) { 4979 switch (*opt) { 4980 case TCPOPT_EOL: 4981 case TCPOPT_NOP: 4982 ++opt; 4983 --hlen; 4984 break; 4985 case TCPOPT_MAXSEG: 4986 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4987 NTOHS(mss); 4988 /* FALLTHROUGH */ 4989 default: 4990 optlen = opt[1]; 4991 if (optlen < 2) 4992 optlen = 2; 4993 hlen -= optlen; 4994 opt += optlen; 4995 break; 4996 } 4997 } 4998 return (mss); 4999 } 5000 5001 static u_int16_t 5002 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5003 { 5004 struct nhop_object *nh; 5005 #ifdef INET6 5006 struct in6_addr dst6; 5007 uint32_t scopeid; 5008 #endif /* INET6 */ 5009 int hlen = 0; 5010 uint16_t mss = 0; 5011 5012 NET_EPOCH_ASSERT(); 5013 5014 switch (af) { 5015 #ifdef INET 5016 case AF_INET: 5017 hlen = sizeof(struct ip); 5018 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5019 if (nh != NULL) 5020 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5021 break; 5022 #endif /* INET */ 5023 #ifdef INET6 5024 case AF_INET6: 5025 hlen = sizeof(struct ip6_hdr); 5026 in6_splitscope(&addr->v6, &dst6, &scopeid); 5027 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5028 if (nh != NULL) 5029 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5030 break; 5031 #endif /* INET6 */ 5032 } 5033 5034 mss = max(V_tcp_mssdflt, mss); 5035 mss = min(mss, offer); 5036 mss = max(mss, 64); /* sanity - at least max opt space */ 5037 return (mss); 5038 } 5039 5040 static u_int32_t 5041 pf_tcp_iss(struct pf_pdesc *pd) 5042 { 5043 MD5_CTX ctx; 5044 u_int32_t digest[4]; 5045 5046 if (V_pf_tcp_secret_init == 0) { 5047 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5048 MD5Init(&V_pf_tcp_secret_ctx); 5049 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5050 sizeof(V_pf_tcp_secret)); 5051 V_pf_tcp_secret_init = 1; 5052 } 5053 5054 ctx = V_pf_tcp_secret_ctx; 5055 5056 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 5057 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 5058 switch (pd->af) { 5059 case AF_INET6: 5060 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 5061 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 5062 break; 5063 case AF_INET: 5064 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 5065 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 5066 break; 5067 } 5068 MD5Final((u_char *)digest, &ctx); 5069 V_pf_tcp_iss_off += 4096; 5070 #define ISN_RANDOM_INCREMENT (4096 - 1) 5071 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5072 V_pf_tcp_iss_off); 5073 #undef ISN_RANDOM_INCREMENT 5074 } 5075 5076 static bool 5077 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5078 { 5079 bool match = true; 5080 5081 /* Always matches if not set */ 5082 if (! r->isset) 5083 return (!r->neg); 5084 5085 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5086 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5087 match = false; 5088 break; 5089 } 5090 } 5091 5092 return (match ^ r->neg); 5093 } 5094 5095 static int 5096 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5097 { 5098 if (*tag == -1) 5099 *tag = mtag; 5100 5101 return ((!r->match_tag_not && r->match_tag == *tag) || 5102 (r->match_tag_not && r->match_tag != *tag)); 5103 } 5104 5105 static void 5106 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5107 { 5108 /* If we don't have the interface drop the packet. */ 5109 if (ifp == NULL) { 5110 m_freem(m); 5111 return; 5112 } 5113 5114 switch (ifp->if_type) { 5115 case IFT_ETHER: 5116 case IFT_XETHER: 5117 case IFT_L2VLAN: 5118 case IFT_BRIDGE: 5119 case IFT_IEEE8023ADLAG: 5120 break; 5121 default: 5122 m_freem(m); 5123 return; 5124 } 5125 5126 ifp->if_transmit(ifp, m); 5127 } 5128 5129 static int 5130 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5131 { 5132 #ifdef INET 5133 struct ip ip; 5134 #endif 5135 #ifdef INET6 5136 struct ip6_hdr ip6; 5137 #endif 5138 struct mbuf *m = *m0; 5139 struct ether_header *e; 5140 struct pf_keth_rule *r, *rm, *a = NULL; 5141 struct pf_keth_ruleset *ruleset = NULL; 5142 struct pf_mtag *mtag; 5143 struct pf_keth_ruleq *rules; 5144 struct pf_addr *src = NULL, *dst = NULL; 5145 struct pfi_kkif *bridge_to; 5146 sa_family_t af = 0; 5147 uint16_t proto; 5148 int asd = 0, match = 0; 5149 int tag = -1; 5150 uint8_t action; 5151 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5152 5153 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5154 NET_EPOCH_ASSERT(); 5155 5156 PF_RULES_RLOCK_TRACKER; 5157 5158 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5159 5160 mtag = pf_find_mtag(m); 5161 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5162 /* Dummynet re-injects packets after they've 5163 * completed their delay. We've already 5164 * processed them, so pass unconditionally. */ 5165 5166 /* But only once. We may see the packet multiple times (e.g. 5167 * PFIL_IN/PFIL_OUT). */ 5168 pf_dummynet_flag_remove(m, mtag); 5169 5170 return (PF_PASS); 5171 } 5172 5173 ruleset = V_pf_keth; 5174 rules = ck_pr_load_ptr(&ruleset->active.rules); 5175 r = TAILQ_FIRST(rules); 5176 rm = NULL; 5177 5178 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5179 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5180 DPFPRINTF(PF_DEBUG_URGENT, 5181 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 5182 ", pullup failed\n")); 5183 return (PF_DROP); 5184 } 5185 e = mtod(m, struct ether_header *); 5186 proto = ntohs(e->ether_type); 5187 5188 switch (proto) { 5189 #ifdef INET 5190 case ETHERTYPE_IP: { 5191 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5192 sizeof(ip))) 5193 return (PF_DROP); 5194 5195 af = AF_INET; 5196 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5197 (caddr_t)&ip); 5198 src = (struct pf_addr *)&ip.ip_src; 5199 dst = (struct pf_addr *)&ip.ip_dst; 5200 break; 5201 } 5202 #endif /* INET */ 5203 #ifdef INET6 5204 case ETHERTYPE_IPV6: { 5205 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5206 sizeof(ip6))) 5207 return (PF_DROP); 5208 5209 af = AF_INET6; 5210 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5211 (caddr_t)&ip6); 5212 src = (struct pf_addr *)&ip6.ip6_src; 5213 dst = (struct pf_addr *)&ip6.ip6_dst; 5214 break; 5215 } 5216 #endif /* INET6 */ 5217 } 5218 5219 PF_RULES_RLOCK(); 5220 5221 while (r != NULL) { 5222 counter_u64_add(r->evaluations, 1); 5223 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5224 5225 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5226 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5227 "kif"); 5228 r = r->skip[PFE_SKIP_IFP].ptr; 5229 } 5230 else if (r->direction && r->direction != dir) { 5231 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5232 "dir"); 5233 r = r->skip[PFE_SKIP_DIR].ptr; 5234 } 5235 else if (r->proto && r->proto != proto) { 5236 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5237 "proto"); 5238 r = r->skip[PFE_SKIP_PROTO].ptr; 5239 } 5240 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5241 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5242 "src"); 5243 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5244 } 5245 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5246 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5247 "dst"); 5248 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5249 } 5250 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5251 r->ipsrc.neg, kif, M_GETFIB(m))) { 5252 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5253 "ip_src"); 5254 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5255 } 5256 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5257 r->ipdst.neg, kif, M_GETFIB(m))) { 5258 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5259 "ip_dst"); 5260 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5261 } 5262 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5263 mtag ? mtag->tag : 0)) { 5264 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5265 "match_tag"); 5266 r = TAILQ_NEXT(r, entries); 5267 } 5268 else { 5269 if (r->tag) 5270 tag = r->tag; 5271 if (r->anchor == NULL) { 5272 /* Rule matches */ 5273 rm = r; 5274 5275 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5276 5277 if (r->quick) 5278 break; 5279 5280 r = TAILQ_NEXT(r, entries); 5281 } else { 5282 pf_step_into_keth_anchor(anchor_stack, &asd, 5283 &ruleset, &r, &a, &match); 5284 } 5285 } 5286 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5287 &ruleset, &r, &a, &match)) 5288 break; 5289 } 5290 5291 r = rm; 5292 5293 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5294 5295 /* Default to pass. */ 5296 if (r == NULL) { 5297 PF_RULES_RUNLOCK(); 5298 return (PF_PASS); 5299 } 5300 5301 /* Execute action. */ 5302 counter_u64_add(r->packets[dir == PF_OUT], 1); 5303 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5304 pf_update_timestamp(r); 5305 5306 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5307 if (r->action == PF_DROP) { 5308 PF_RULES_RUNLOCK(); 5309 return (PF_DROP); 5310 } 5311 5312 if (tag > 0) { 5313 if (mtag == NULL) 5314 mtag = pf_get_mtag(m); 5315 if (mtag == NULL) { 5316 PF_RULES_RUNLOCK(); 5317 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5318 return (PF_DROP); 5319 } 5320 mtag->tag = tag; 5321 } 5322 5323 if (r->qid != 0) { 5324 if (mtag == NULL) 5325 mtag = pf_get_mtag(m); 5326 if (mtag == NULL) { 5327 PF_RULES_RUNLOCK(); 5328 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5329 return (PF_DROP); 5330 } 5331 mtag->qid = r->qid; 5332 } 5333 5334 action = r->action; 5335 bridge_to = r->bridge_to; 5336 5337 /* Dummynet */ 5338 if (r->dnpipe) { 5339 struct ip_fw_args dnflow; 5340 5341 /* Drop packet if dummynet is not loaded. */ 5342 if (ip_dn_io_ptr == NULL) { 5343 PF_RULES_RUNLOCK(); 5344 m_freem(m); 5345 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5346 return (PF_DROP); 5347 } 5348 if (mtag == NULL) 5349 mtag = pf_get_mtag(m); 5350 if (mtag == NULL) { 5351 PF_RULES_RUNLOCK(); 5352 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5353 return (PF_DROP); 5354 } 5355 5356 bzero(&dnflow, sizeof(dnflow)); 5357 5358 /* We don't have port numbers here, so we set 0. That means 5359 * that we'll be somewhat limited in distinguishing flows (i.e. 5360 * only based on IP addresses, not based on port numbers), but 5361 * it's better than nothing. */ 5362 dnflow.f_id.dst_port = 0; 5363 dnflow.f_id.src_port = 0; 5364 dnflow.f_id.proto = 0; 5365 5366 dnflow.rule.info = r->dnpipe; 5367 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5368 if (r->dnflags & PFRULE_DN_IS_PIPE) 5369 dnflow.rule.info |= IPFW_IS_PIPE; 5370 5371 dnflow.f_id.extra = dnflow.rule.info; 5372 5373 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5374 dnflow.flags |= IPFW_ARGS_ETHER; 5375 dnflow.ifp = kif->pfik_ifp; 5376 5377 switch (af) { 5378 case AF_INET: 5379 dnflow.f_id.addr_type = 4; 5380 dnflow.f_id.src_ip = src->v4.s_addr; 5381 dnflow.f_id.dst_ip = dst->v4.s_addr; 5382 break; 5383 case AF_INET6: 5384 dnflow.flags |= IPFW_ARGS_IP6; 5385 dnflow.f_id.addr_type = 6; 5386 dnflow.f_id.src_ip6 = src->v6; 5387 dnflow.f_id.dst_ip6 = dst->v6; 5388 break; 5389 } 5390 5391 PF_RULES_RUNLOCK(); 5392 5393 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5394 ip_dn_io_ptr(m0, &dnflow); 5395 if (*m0 != NULL) 5396 pf_dummynet_flag_remove(m, mtag); 5397 } else { 5398 PF_RULES_RUNLOCK(); 5399 } 5400 5401 if (action == PF_PASS && bridge_to) { 5402 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5403 *m0 = NULL; /* We've eaten the packet. */ 5404 } 5405 5406 return (action); 5407 } 5408 5409 #define PF_TEST_ATTRIB(t, a)\ 5410 do { \ 5411 if (t) { \ 5412 r = a; \ 5413 goto nextrule; \ 5414 } \ 5415 } while (0) 5416 5417 static int 5418 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5419 struct pf_pdesc *pd, struct pf_krule **am, 5420 struct pf_kruleset **rsm, struct inpcb *inp) 5421 { 5422 struct pf_krule *nr = NULL; 5423 struct pf_krule *r, *a = NULL; 5424 struct pf_kruleset *ruleset = NULL; 5425 struct pf_krule_slist match_rules; 5426 struct pf_krule_item *ri; 5427 struct tcphdr *th = &pd->hdr.tcp; 5428 struct pf_state_key *sk = NULL, *nk = NULL; 5429 u_short reason, transerror; 5430 int rewrite = 0; 5431 int tag = -1; 5432 int asd = 0; 5433 int match = 0; 5434 int state_icmp = 0, icmp_dir, multi; 5435 u_int16_t virtual_type, virtual_id; 5436 u_int16_t bproto_sum = 0, bip_sum = 0; 5437 u_int8_t icmptype = 0, icmpcode = 0; 5438 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5439 struct pf_udp_mapping *udp_mapping = NULL; 5440 5441 PF_RULES_RASSERT(); 5442 5443 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5444 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5445 5446 SLIST_INIT(&match_rules); 5447 5448 if (inp != NULL) { 5449 INP_LOCK_ASSERT(inp); 5450 pd->lookup.uid = inp->inp_cred->cr_uid; 5451 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5452 pd->lookup.done = 1; 5453 } 5454 5455 switch (pd->virtual_proto) { 5456 case IPPROTO_TCP: 5457 pd->nsport = th->th_sport; 5458 pd->ndport = th->th_dport; 5459 break; 5460 case IPPROTO_UDP: 5461 pd->nsport = pd->hdr.udp.uh_sport; 5462 pd->ndport = pd->hdr.udp.uh_dport; 5463 break; 5464 case IPPROTO_SCTP: 5465 pd->nsport = pd->hdr.sctp.src_port; 5466 pd->ndport = pd->hdr.sctp.dest_port; 5467 break; 5468 #ifdef INET 5469 case IPPROTO_ICMP: 5470 MPASS(pd->af == AF_INET); 5471 icmptype = pd->hdr.icmp.icmp_type; 5472 icmpcode = pd->hdr.icmp.icmp_code; 5473 state_icmp = pf_icmp_mapping(pd, icmptype, 5474 &icmp_dir, &multi, &virtual_id, &virtual_type); 5475 if (icmp_dir == PF_IN) { 5476 pd->nsport = virtual_id; 5477 pd->ndport = virtual_type; 5478 } else { 5479 pd->nsport = virtual_type; 5480 pd->ndport = virtual_id; 5481 } 5482 break; 5483 #endif /* INET */ 5484 #ifdef INET6 5485 case IPPROTO_ICMPV6: 5486 MPASS(pd->af == AF_INET6); 5487 icmptype = pd->hdr.icmp6.icmp6_type; 5488 icmpcode = pd->hdr.icmp6.icmp6_code; 5489 state_icmp = pf_icmp_mapping(pd, icmptype, 5490 &icmp_dir, &multi, &virtual_id, &virtual_type); 5491 if (icmp_dir == PF_IN) { 5492 pd->nsport = virtual_id; 5493 pd->ndport = virtual_type; 5494 } else { 5495 pd->nsport = virtual_type; 5496 pd->ndport = virtual_id; 5497 } 5498 5499 break; 5500 #endif /* INET6 */ 5501 default: 5502 pd->nsport = pd->ndport = 0; 5503 break; 5504 } 5505 pd->osport = pd->nsport; 5506 pd->odport = pd->ndport; 5507 5508 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5509 5510 /* check packet for BINAT/NAT/RDR */ 5511 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack, 5512 &nr, &udp_mapping); 5513 switch (transerror) { 5514 default: 5515 /* A translation error occurred. */ 5516 REASON_SET(&reason, transerror); 5517 goto cleanup; 5518 case PFRES_MAX: 5519 /* No match. */ 5520 break; 5521 case PFRES_MATCH: 5522 KASSERT(sk != NULL, ("%s: null sk", __func__)); 5523 KASSERT(nk != NULL, ("%s: null nk", __func__)); 5524 5525 if (nr->log) { 5526 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a, 5527 ruleset, pd, 1); 5528 } 5529 5530 if (pd->ip_sum) 5531 bip_sum = *pd->ip_sum; 5532 5533 switch (pd->proto) { 5534 case IPPROTO_TCP: 5535 bproto_sum = th->th_sum; 5536 5537 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5538 nk->port[pd->sidx] != pd->nsport) { 5539 pf_change_ap(pd->m, pd->src, &th->th_sport, 5540 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5541 nk->port[pd->sidx], 0, pd->af, pd->naf); 5542 pd->sport = &th->th_sport; 5543 pd->nsport = th->th_sport; 5544 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5545 } 5546 5547 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5548 nk->port[pd->didx] != pd->ndport) { 5549 pf_change_ap(pd->m, pd->dst, &th->th_dport, 5550 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5551 nk->port[pd->didx], 0, pd->af, pd->naf); 5552 pd->dport = &th->th_dport; 5553 pd->ndport = th->th_dport; 5554 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5555 } 5556 rewrite++; 5557 break; 5558 case IPPROTO_UDP: 5559 bproto_sum = pd->hdr.udp.uh_sum; 5560 5561 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5562 nk->port[pd->sidx] != pd->nsport) { 5563 pf_change_ap(pd->m, pd->src, 5564 &pd->hdr.udp.uh_sport, 5565 pd->ip_sum, &pd->hdr.udp.uh_sum, 5566 &nk->addr[pd->sidx], 5567 nk->port[pd->sidx], 1, pd->af, pd->naf); 5568 pd->sport = &pd->hdr.udp.uh_sport; 5569 pd->nsport = pd->hdr.udp.uh_sport; 5570 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5571 } 5572 5573 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5574 nk->port[pd->didx] != pd->ndport) { 5575 pf_change_ap(pd->m, pd->dst, 5576 &pd->hdr.udp.uh_dport, 5577 pd->ip_sum, &pd->hdr.udp.uh_sum, 5578 &nk->addr[pd->didx], 5579 nk->port[pd->didx], 1, pd->af, pd->naf); 5580 pd->dport = &pd->hdr.udp.uh_dport; 5581 pd->ndport = pd->hdr.udp.uh_dport; 5582 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5583 } 5584 rewrite++; 5585 break; 5586 case IPPROTO_SCTP: { 5587 uint16_t checksum = 0; 5588 5589 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 5590 nk->port[pd->sidx] != pd->nsport) { 5591 pf_change_ap(pd->m, pd->src, 5592 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum, 5593 &nk->addr[pd->sidx], 5594 nk->port[pd->sidx], 1, pd->af, pd->naf); 5595 pd->sport = &pd->hdr.sctp.src_port; 5596 pd->nsport = pd->hdr.sctp.src_port; 5597 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5598 } 5599 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 5600 nk->port[pd->didx] != pd->ndport) { 5601 pf_change_ap(pd->m, pd->dst, 5602 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum, 5603 &nk->addr[pd->didx], 5604 nk->port[pd->didx], 1, pd->af, pd->naf); 5605 pd->dport = &pd->hdr.sctp.dest_port; 5606 pd->ndport = pd->hdr.sctp.dest_port; 5607 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5608 } 5609 break; 5610 } 5611 #ifdef INET 5612 case IPPROTO_ICMP: 5613 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 5614 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 5615 nk->addr[pd->sidx].v4.s_addr, 0); 5616 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5617 } 5618 5619 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 5620 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 5621 nk->addr[pd->didx].v4.s_addr, 0); 5622 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5623 } 5624 5625 if (virtual_type == htons(ICMP_ECHO) && 5626 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5627 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5628 pd->hdr.icmp.icmp_cksum, pd->nsport, 5629 nk->port[pd->sidx], 0); 5630 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5631 pd->sport = &pd->hdr.icmp.icmp_id; 5632 } 5633 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5634 break; 5635 #endif /* INET */ 5636 #ifdef INET6 5637 case IPPROTO_ICMPV6: 5638 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 5639 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 5640 &nk->addr[pd->sidx], 0); 5641 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5642 } 5643 5644 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 5645 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 5646 &nk->addr[pd->didx], 0); 5647 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5648 } 5649 rewrite++; 5650 break; 5651 #endif /* INET */ 5652 default: 5653 switch (pd->af) { 5654 #ifdef INET 5655 case AF_INET: 5656 if (PF_ANEQ(&pd->nsaddr, 5657 &nk->addr[pd->sidx], AF_INET)) { 5658 pf_change_a(&pd->src->v4.s_addr, 5659 pd->ip_sum, 5660 nk->addr[pd->sidx].v4.s_addr, 0); 5661 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5662 } 5663 5664 if (PF_ANEQ(&pd->ndaddr, 5665 &nk->addr[pd->didx], AF_INET)) { 5666 pf_change_a(&pd->dst->v4.s_addr, 5667 pd->ip_sum, 5668 nk->addr[pd->didx].v4.s_addr, 0); 5669 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5670 } 5671 break; 5672 #endif /* INET */ 5673 #ifdef INET6 5674 case AF_INET6: 5675 if (PF_ANEQ(&pd->nsaddr, 5676 &nk->addr[pd->sidx], AF_INET6)) { 5677 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af); 5678 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5679 } 5680 5681 if (PF_ANEQ(&pd->ndaddr, 5682 &nk->addr[pd->didx], AF_INET6)) { 5683 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af); 5684 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5685 } 5686 break; 5687 #endif /* INET */ 5688 } 5689 break; 5690 } 5691 if (nr->natpass) 5692 r = NULL; 5693 } 5694 5695 while (r != NULL) { 5696 pf_counter_u64_add(&r->evaluations, 1); 5697 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5698 r->skip[PF_SKIP_IFP]); 5699 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5700 r->skip[PF_SKIP_DIR]); 5701 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5702 r->skip[PF_SKIP_AF]); 5703 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5704 r->skip[PF_SKIP_PROTO]); 5705 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5706 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5707 r->skip[PF_SKIP_SRC_ADDR]); 5708 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5709 r->dst.neg, NULL, M_GETFIB(pd->m)), 5710 r->skip[PF_SKIP_DST_ADDR]); 5711 switch (pd->virtual_proto) { 5712 case PF_VPROTO_FRAGMENT: 5713 /* tcp/udp only. port_op always 0 in other cases */ 5714 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5715 TAILQ_NEXT(r, entries)); 5716 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5717 TAILQ_NEXT(r, entries)); 5718 /* icmp only. type/code always 0 in other cases */ 5719 PF_TEST_ATTRIB((r->type || r->code), 5720 TAILQ_NEXT(r, entries)); 5721 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5722 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5723 TAILQ_NEXT(r, entries)); 5724 break; 5725 5726 case IPPROTO_TCP: 5727 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags, 5728 TAILQ_NEXT(r, entries)); 5729 /* FALLTHROUGH */ 5730 case IPPROTO_SCTP: 5731 case IPPROTO_UDP: 5732 /* tcp/udp only. port_op always 0 in other cases */ 5733 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5734 r->src.port[0], r->src.port[1], pd->nsport), 5735 r->skip[PF_SKIP_SRC_PORT]); 5736 /* tcp/udp only. port_op always 0 in other cases */ 5737 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5738 r->dst.port[0], r->dst.port[1], pd->ndport), 5739 r->skip[PF_SKIP_DST_PORT]); 5740 /* tcp/udp only. uid.op always 0 in other cases */ 5741 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5742 pf_socket_lookup(pd), 1)) && 5743 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5744 pd->lookup.uid), 5745 TAILQ_NEXT(r, entries)); 5746 /* tcp/udp only. gid.op always 0 in other cases */ 5747 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5748 pf_socket_lookup(pd), 1)) && 5749 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5750 pd->lookup.gid), 5751 TAILQ_NEXT(r, entries)); 5752 break; 5753 5754 case IPPROTO_ICMP: 5755 case IPPROTO_ICMPV6: 5756 /* icmp only. type always 0 in other cases */ 5757 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1, 5758 TAILQ_NEXT(r, entries)); 5759 /* icmp only. type always 0 in other cases */ 5760 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1, 5761 TAILQ_NEXT(r, entries)); 5762 break; 5763 5764 default: 5765 break; 5766 } 5767 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5768 TAILQ_NEXT(r, entries)); 5769 PF_TEST_ATTRIB(r->prio && 5770 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5771 TAILQ_NEXT(r, entries)); 5772 PF_TEST_ATTRIB(r->prob && 5773 r->prob <= arc4random(), 5774 TAILQ_NEXT(r, entries)); 5775 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag, 5776 pd->pf_mtag ? pd->pf_mtag->tag : 0), 5777 TAILQ_NEXT(r, entries)); 5778 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r), 5779 TAILQ_NEXT(r, entries)); 5780 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5781 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5782 TAILQ_NEXT(r, entries)); 5783 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5784 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5785 pf_osfp_fingerprint(pd, th), 5786 r->os_fingerprint)), 5787 TAILQ_NEXT(r, entries)); 5788 /* FALLTHROUGH */ 5789 if (r->tag) 5790 tag = r->tag; 5791 if (r->anchor == NULL) { 5792 if (r->action == PF_MATCH) { 5793 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5794 if (ri == NULL) { 5795 REASON_SET(&reason, PFRES_MEMORY); 5796 goto cleanup; 5797 } 5798 ri->r = r; 5799 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5800 pf_counter_u64_critical_enter(); 5801 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5802 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5803 pf_counter_u64_critical_exit(); 5804 pf_rule_to_actions(r, &pd->act); 5805 if (r->naf) 5806 pd->naf = r->naf; 5807 if (pd->af != pd->naf) { 5808 if (pf_get_transaddr_af(r, pd) == -1) { 5809 REASON_SET(&reason, PFRES_MEMORY); 5810 goto cleanup; 5811 } 5812 } 5813 if (r->log || pd->act.log & PF_LOG_MATCHES) 5814 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5815 a, ruleset, pd, 1); 5816 } else { 5817 match = 1; 5818 *rm = r; 5819 *am = a; 5820 *rsm = ruleset; 5821 if (pd->act.log & PF_LOG_MATCHES) 5822 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5823 a, ruleset, pd, 1); 5824 } 5825 if ((*rm)->quick) 5826 break; 5827 r = TAILQ_NEXT(r, entries); 5828 } else 5829 pf_step_into_anchor(anchor_stack, &asd, 5830 &ruleset, PF_RULESET_FILTER, &r, &a, 5831 &match); 5832 nextrule: 5833 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5834 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5835 break; 5836 } 5837 r = *rm; 5838 a = *am; 5839 ruleset = *rsm; 5840 5841 REASON_SET(&reason, PFRES_MATCH); 5842 5843 /* apply actions for last matching pass/block rule */ 5844 pf_rule_to_actions(r, &pd->act); 5845 if (r->naf) 5846 pd->naf = r->naf; 5847 if (pd->af != pd->naf) { 5848 if (pf_get_transaddr_af(r, pd) == -1) { 5849 REASON_SET(&reason, PFRES_MEMORY); 5850 goto cleanup; 5851 } 5852 } 5853 5854 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5855 if (rewrite) 5856 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5857 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1); 5858 } 5859 5860 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5861 (r->action == PF_DROP) && 5862 ((r->rule_flag & PFRULE_RETURNRST) || 5863 (r->rule_flag & PFRULE_RETURNICMP) || 5864 (r->rule_flag & PFRULE_RETURN))) { 5865 pf_return(r, nr, pd, sk, th, bproto_sum, 5866 bip_sum, &reason, r->rtableid); 5867 } 5868 5869 if (r->action == PF_DROP) 5870 goto cleanup; 5871 5872 if (tag > 0 && pf_tag_packet(pd, tag)) { 5873 REASON_SET(&reason, PFRES_MEMORY); 5874 goto cleanup; 5875 } 5876 if (pd->act.rtableid >= 0) 5877 M_SETFIB(pd->m, pd->act.rtableid); 5878 5879 if (r->rt) { 5880 struct pf_ksrc_node *sn = NULL; 5881 struct pf_srchash *snh = NULL; 5882 /* 5883 * Set act.rt here instead of in pf_rule_to_actions() because 5884 * it is applied only from the last pass rule. 5885 */ 5886 pd->act.rt = r->rt; 5887 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5888 reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5889 &pd->act.rt_kif, NULL, &sn, &snh, &r->rdr); 5890 if (reason != 0) 5891 goto cleanup; 5892 } 5893 5894 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5895 (!state_icmp && (r->keep_state || nr != NULL || 5896 (pd->flags & PFDESC_TCP_NORM)))) { 5897 int action; 5898 bool nat64; 5899 5900 action = pf_create_state(r, nr, a, pd, nk, sk, 5901 &rewrite, sm, tag, bproto_sum, bip_sum, 5902 &match_rules, udp_mapping); 5903 if (action != PF_PASS) { 5904 pf_udp_mapping_release(udp_mapping); 5905 if (action == PF_DROP && 5906 (r->rule_flag & PFRULE_RETURN)) 5907 pf_return(r, nr, pd, sk, th, 5908 bproto_sum, bip_sum, &reason, 5909 pd->act.rtableid); 5910 return (action); 5911 } 5912 5913 nat64 = pd->af != pd->naf; 5914 if (nat64) { 5915 struct pf_state_key *_sk; 5916 int ret; 5917 5918 if (sk == NULL) 5919 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5920 if (nk == NULL) 5921 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5922 if (pd->dir == PF_IN) 5923 _sk = sk; 5924 else 5925 _sk = nk; 5926 5927 ret = pf_translate(pd, 5928 &_sk->addr[pd->didx], 5929 _sk->port[pd->didx], 5930 &_sk->addr[pd->sidx], 5931 _sk->port[pd->sidx], 5932 virtual_type, icmp_dir); 5933 if (ret < 0) 5934 goto cleanup; 5935 5936 rewrite += ret; 5937 } 5938 } else { 5939 while ((ri = SLIST_FIRST(&match_rules))) { 5940 SLIST_REMOVE_HEAD(&match_rules, entry); 5941 free(ri, M_PF_RULE_ITEM); 5942 } 5943 5944 uma_zfree(V_pf_state_key_z, sk); 5945 uma_zfree(V_pf_state_key_z, nk); 5946 pf_udp_mapping_release(udp_mapping); 5947 } 5948 5949 /* copy back packet headers if we performed NAT operations */ 5950 if (rewrite) 5951 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5952 5953 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5954 pd->dir == PF_OUT && 5955 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) 5956 /* 5957 * We want the state created, but we dont 5958 * want to send this in case a partner 5959 * firewall has to know about it to allow 5960 * replies through it. 5961 */ 5962 return (PF_DEFER); 5963 5964 if (rewrite && sk != NULL && nk != NULL && sk->af != nk->af) { 5965 return (PF_AFRT); 5966 } else 5967 return (PF_PASS); 5968 5969 cleanup: 5970 while ((ri = SLIST_FIRST(&match_rules))) { 5971 SLIST_REMOVE_HEAD(&match_rules, entry); 5972 free(ri, M_PF_RULE_ITEM); 5973 } 5974 5975 uma_zfree(V_pf_state_key_z, sk); 5976 uma_zfree(V_pf_state_key_z, nk); 5977 pf_udp_mapping_release(udp_mapping); 5978 5979 return (PF_DROP); 5980 } 5981 5982 static int 5983 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5984 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk, 5985 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum, 5986 u_int16_t bip_sum, struct pf_krule_slist *match_rules, 5987 struct pf_udp_mapping *udp_mapping) 5988 { 5989 struct pf_kstate *s = NULL; 5990 struct pf_ksrc_node *sn = NULL; 5991 struct pf_srchash *snh = NULL; 5992 struct pf_ksrc_node *nsn = NULL; 5993 struct pf_srchash *nsnh = NULL; 5994 struct tcphdr *th = &pd->hdr.tcp; 5995 u_int16_t mss = V_tcp_mssdflt; 5996 u_short reason, sn_reason; 5997 struct pf_krule_item *ri; 5998 5999 /* check maximums */ 6000 if (r->max_states && 6001 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 6002 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 6003 REASON_SET(&reason, PFRES_MAXSTATES); 6004 goto csfailed; 6005 } 6006 /* src node for filter rule */ 6007 if ((r->rule_flag & PFRULE_SRCTRACK || 6008 r->rdr.opts & PF_POOL_STICKYADDR) && 6009 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af, 6010 &pd->act.rt_addr, pd->act.rt_kif)) != 0) { 6011 REASON_SET(&reason, sn_reason); 6012 goto csfailed; 6013 } 6014 /* src node for translation rule */ 6015 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) && 6016 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx], 6017 pd->af, &nk->addr[1], NULL)) != 0 ) { 6018 REASON_SET(&reason, sn_reason); 6019 goto csfailed; 6020 } 6021 s = pf_alloc_state(M_NOWAIT); 6022 if (s == NULL) { 6023 REASON_SET(&reason, PFRES_MEMORY); 6024 goto csfailed; 6025 } 6026 s->rule = r; 6027 s->nat_rule = nr; 6028 s->anchor = a; 6029 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 6030 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6031 6032 STATE_INC_COUNTERS(s); 6033 if (r->allow_opts) 6034 s->state_flags |= PFSTATE_ALLOWOPTS; 6035 if (r->rule_flag & PFRULE_STATESLOPPY) 6036 s->state_flags |= PFSTATE_SLOPPY; 6037 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6038 s->state_flags |= PFSTATE_SCRUB_TCP; 6039 if ((r->rule_flag & PFRULE_PFLOW) || 6040 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 6041 s->state_flags |= PFSTATE_PFLOW; 6042 6043 s->act.log = pd->act.log & PF_LOG_ALL; 6044 s->sync_state = PFSYNC_S_NONE; 6045 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6046 6047 if (nr != NULL) 6048 s->act.log |= nr->log & PF_LOG_ALL; 6049 switch (pd->proto) { 6050 case IPPROTO_TCP: 6051 s->src.seqlo = ntohl(th->th_seq); 6052 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6053 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6054 r->keep_state == PF_STATE_MODULATE) { 6055 /* Generate sequence number modulator */ 6056 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6057 0) 6058 s->src.seqdiff = 1; 6059 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6060 htonl(s->src.seqlo + s->src.seqdiff), 0); 6061 *rewrite = 1; 6062 } else 6063 s->src.seqdiff = 0; 6064 if (tcp_get_flags(th) & TH_SYN) { 6065 s->src.seqhi++; 6066 s->src.wscale = pf_get_wscale(pd); 6067 } 6068 s->src.max_win = MAX(ntohs(th->th_win), 1); 6069 if (s->src.wscale & PF_WSCALE_MASK) { 6070 /* Remove scale factor from initial window */ 6071 int win = s->src.max_win; 6072 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6073 s->src.max_win = (win - 1) >> 6074 (s->src.wscale & PF_WSCALE_MASK); 6075 } 6076 if (tcp_get_flags(th) & TH_FIN) 6077 s->src.seqhi++; 6078 s->dst.seqhi = 1; 6079 s->dst.max_win = 1; 6080 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6081 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6082 s->timeout = PFTM_TCP_FIRST_PACKET; 6083 atomic_add_32(&V_pf_status.states_halfopen, 1); 6084 break; 6085 case IPPROTO_UDP: 6086 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6087 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6088 s->timeout = PFTM_UDP_FIRST_PACKET; 6089 break; 6090 case IPPROTO_SCTP: 6091 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6092 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6093 s->timeout = PFTM_SCTP_FIRST_PACKET; 6094 break; 6095 case IPPROTO_ICMP: 6096 #ifdef INET6 6097 case IPPROTO_ICMPV6: 6098 #endif 6099 s->timeout = PFTM_ICMP_FIRST_PACKET; 6100 break; 6101 default: 6102 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6103 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6104 s->timeout = PFTM_OTHER_FIRST_PACKET; 6105 } 6106 6107 s->creation = s->expire = pf_get_uptime(); 6108 6109 if (pd->proto == IPPROTO_TCP) { 6110 if (s->state_flags & PFSTATE_SCRUB_TCP && 6111 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) { 6112 REASON_SET(&reason, PFRES_MEMORY); 6113 goto csfailed; 6114 } 6115 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6116 pf_normalize_tcp_stateful(pd, &reason, th, s, 6117 &s->src, &s->dst, rewrite)) { 6118 /* This really shouldn't happen!!! */ 6119 DPFPRINTF(PF_DEBUG_URGENT, 6120 ("pf_normalize_tcp_stateful failed on first " 6121 "pkt\n")); 6122 goto csfailed; 6123 } 6124 } else if (pd->proto == IPPROTO_SCTP) { 6125 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6126 goto csfailed; 6127 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6128 goto csfailed; 6129 } 6130 s->direction = pd->dir; 6131 6132 /* 6133 * sk/nk could already been setup by pf_get_translation(). 6134 */ 6135 if (nr == NULL) { 6136 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 6137 __func__, nr, sk, nk)); 6138 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6139 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6140 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) { 6141 goto csfailed; 6142 } 6143 } else 6144 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 6145 __func__, nr, sk, nk)); 6146 6147 /* Swap sk/nk for PF_OUT. */ 6148 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6149 (pd->dir == PF_IN) ? sk : nk, 6150 (pd->dir == PF_IN) ? nk : sk, s)) { 6151 REASON_SET(&reason, PFRES_STATEINS); 6152 goto drop; 6153 } else 6154 *sm = s; 6155 6156 /* 6157 * Lock order is important: first state, then source node. 6158 */ 6159 if (pf_src_node_exists(&sn, snh)) { 6160 s->src_node = sn; 6161 PF_HASHROW_UNLOCK(snh); 6162 } 6163 if (pf_src_node_exists(&nsn, nsnh)) { 6164 s->nat_src_node = nsn; 6165 PF_HASHROW_UNLOCK(nsnh); 6166 } 6167 6168 if (tag > 0) 6169 s->tag = tag; 6170 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6171 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 6172 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6173 /* undo NAT changes, if they have taken place */ 6174 if (nr != NULL) { 6175 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 6176 if (pd->dir == PF_OUT) 6177 skt = s->key[PF_SK_STACK]; 6178 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 6179 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 6180 if (pd->sport) 6181 *pd->sport = skt->port[pd->sidx]; 6182 if (pd->dport) 6183 *pd->dport = skt->port[pd->didx]; 6184 if (pd->ip_sum) 6185 *pd->ip_sum = bip_sum; 6186 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 6187 } 6188 s->src.seqhi = htonl(arc4random()); 6189 /* Find mss option */ 6190 int rtid = M_GETFIB(pd->m); 6191 mss = pf_get_mss(pd); 6192 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6193 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6194 s->src.mss = mss; 6195 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6196 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6197 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6198 pd->act.rtableid); 6199 REASON_SET(&reason, PFRES_SYNPROXY); 6200 return (PF_SYNPROXY_DROP); 6201 } 6202 6203 s->udp_mapping = udp_mapping; 6204 6205 return (PF_PASS); 6206 6207 csfailed: 6208 while ((ri = SLIST_FIRST(match_rules))) { 6209 SLIST_REMOVE_HEAD(match_rules, entry); 6210 free(ri, M_PF_RULE_ITEM); 6211 } 6212 6213 uma_zfree(V_pf_state_key_z, sk); 6214 uma_zfree(V_pf_state_key_z, nk); 6215 6216 if (pf_src_node_exists(&sn, snh)) { 6217 if (--sn->states == 0 && sn->expire == 0) { 6218 pf_unlink_src_node(sn); 6219 pf_free_src_node(sn); 6220 counter_u64_add( 6221 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6222 } 6223 PF_HASHROW_UNLOCK(snh); 6224 } 6225 6226 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) { 6227 if (--nsn->states == 0 && nsn->expire == 0) { 6228 pf_unlink_src_node(nsn); 6229 pf_free_src_node(nsn); 6230 counter_u64_add( 6231 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6232 } 6233 PF_HASHROW_UNLOCK(nsnh); 6234 } 6235 6236 drop: 6237 if (s != NULL) { 6238 pf_src_tree_remove_state(s); 6239 s->timeout = PFTM_UNLINKED; 6240 STATE_DEC_COUNTERS(s); 6241 pf_free_state(s); 6242 } 6243 6244 return (PF_DROP); 6245 } 6246 6247 int 6248 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6249 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6250 int icmp_dir) 6251 { 6252 /* 6253 * pf_translate() implements OpenBSD's "new" NAT approach. 6254 * We don't follow it, because it involves a breaking syntax change 6255 * (removing nat/rdr rules, moving it into regular pf rules.) 6256 * It also moves NAT processing to be done after normal rules evaluation 6257 * whereas in FreeBSD that's done before rules processing. 6258 * 6259 * We adopt the function only for nat64, and keep other NAT processing 6260 * before rules processing. 6261 */ 6262 int rewrite = 0; 6263 int afto = pd->af != pd->naf; 6264 6265 MPASS(afto); 6266 6267 switch (pd->proto) { 6268 case IPPROTO_TCP: 6269 if (afto || *pd->sport != sport) { 6270 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6271 saddr, sport, 0, pd->af, pd->naf); 6272 rewrite = 1; 6273 } 6274 if (afto || *pd->dport != dport) { 6275 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum, 6276 daddr, dport, 0, pd->af, pd->naf); 6277 rewrite = 1; 6278 } 6279 break; 6280 6281 case IPPROTO_UDP: 6282 if (afto || *pd->sport != sport) { 6283 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6284 saddr, sport, 1, pd->af, pd->naf); 6285 rewrite = 1; 6286 } 6287 if (afto || *pd->dport != dport) { 6288 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum, 6289 daddr, dport, 1, pd->af, pd->naf); 6290 rewrite = 1; 6291 } 6292 break; 6293 6294 case IPPROTO_SCTP: { 6295 uint16_t checksum = 0; 6296 if (afto || *pd->sport != sport) { 6297 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &checksum, 6298 saddr, sport, 1, pd->af, pd->naf); 6299 rewrite = 1; 6300 } 6301 if (afto || *pd->dport != dport) { 6302 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &checksum, 6303 daddr, dport, 1, pd->af, pd->naf); 6304 rewrite = 1; 6305 } 6306 break; 6307 } 6308 6309 #ifdef INET 6310 case IPPROTO_ICMP: 6311 /* pf_translate() is also used when logging invalid packets */ 6312 if (pd->af != AF_INET) 6313 return (0); 6314 6315 if (afto) { 6316 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6317 return (-1); 6318 pd->proto = IPPROTO_ICMPV6; 6319 rewrite = 1; 6320 } 6321 if (virtual_type == htons(ICMP_ECHO)) { 6322 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6323 6324 if (icmpid != pd->hdr.icmp.icmp_id) { 6325 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6326 pd->hdr.icmp.icmp_cksum, 6327 pd->hdr.icmp.icmp_id, icmpid, 0); 6328 pd->hdr.icmp.icmp_id = icmpid; 6329 /* XXX TODO copyback. */ 6330 rewrite = 1; 6331 } 6332 } 6333 break; 6334 #endif /* INET */ 6335 6336 #ifdef INET6 6337 case IPPROTO_ICMPV6: 6338 /* pf_translate() is also used when logging invalid packets */ 6339 if (pd->af != AF_INET6) 6340 return (0); 6341 6342 if (afto) { 6343 /* ip_sum will be recalculated in pf_translate_af */ 6344 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6345 return (0); 6346 pd->proto = IPPROTO_ICMP; 6347 rewrite = 1; 6348 } 6349 break; 6350 #endif /* INET6 */ 6351 6352 default: 6353 break; 6354 } 6355 6356 return (rewrite); 6357 } 6358 6359 static int 6360 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd, 6361 u_short *reason, int *copyback) 6362 { 6363 struct tcphdr *th = &pd->hdr.tcp; 6364 struct pf_state_peer *src, *dst; 6365 u_int16_t win = ntohs(th->th_win); 6366 u_int32_t ack, end, data_end, seq, orig_seq; 6367 u_int8_t sws, dws, psrc, pdst; 6368 int ackskew; 6369 6370 if (pd->dir == (*state)->direction) { 6371 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 6372 src = &(*state)->dst; 6373 dst = &(*state)->src; 6374 } else { 6375 src = &(*state)->src; 6376 dst = &(*state)->dst; 6377 } 6378 psrc = PF_PEER_SRC; 6379 pdst = PF_PEER_DST; 6380 } else { 6381 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 6382 src = &(*state)->src; 6383 dst = &(*state)->dst; 6384 } else { 6385 src = &(*state)->dst; 6386 dst = &(*state)->src; 6387 } 6388 psrc = PF_PEER_DST; 6389 pdst = PF_PEER_SRC; 6390 } 6391 6392 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6393 sws = src->wscale & PF_WSCALE_MASK; 6394 dws = dst->wscale & PF_WSCALE_MASK; 6395 } else 6396 sws = dws = 0; 6397 6398 /* 6399 * Sequence tracking algorithm from Guido van Rooij's paper: 6400 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6401 * tcp_filtering.ps 6402 */ 6403 6404 orig_seq = seq = ntohl(th->th_seq); 6405 if (src->seqlo == 0) { 6406 /* First packet from this end. Set its state */ 6407 6408 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6409 src->scrub == NULL) { 6410 if (pf_normalize_tcp_init(pd, th, src, dst)) { 6411 REASON_SET(reason, PFRES_MEMORY); 6412 return (PF_DROP); 6413 } 6414 } 6415 6416 /* Deferred generation of sequence number modulator */ 6417 if (dst->seqdiff && !src->seqdiff) { 6418 /* use random iss for the TCP server */ 6419 while ((src->seqdiff = arc4random() - seq) == 0) 6420 ; 6421 ack = ntohl(th->th_ack) - dst->seqdiff; 6422 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6423 src->seqdiff), 0); 6424 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6425 *copyback = 1; 6426 } else { 6427 ack = ntohl(th->th_ack); 6428 } 6429 6430 end = seq + pd->p_len; 6431 if (tcp_get_flags(th) & TH_SYN) { 6432 end++; 6433 if (dst->wscale & PF_WSCALE_FLAG) { 6434 src->wscale = pf_get_wscale(pd); 6435 if (src->wscale & PF_WSCALE_FLAG) { 6436 /* Remove scale factor from initial 6437 * window */ 6438 sws = src->wscale & PF_WSCALE_MASK; 6439 win = ((u_int32_t)win + (1 << sws) - 1) 6440 >> sws; 6441 dws = dst->wscale & PF_WSCALE_MASK; 6442 } else { 6443 /* fixup other window */ 6444 dst->max_win = MIN(TCP_MAXWIN, 6445 (u_int32_t)dst->max_win << 6446 (dst->wscale & PF_WSCALE_MASK)); 6447 /* in case of a retrans SYN|ACK */ 6448 dst->wscale = 0; 6449 } 6450 } 6451 } 6452 data_end = end; 6453 if (tcp_get_flags(th) & TH_FIN) 6454 end++; 6455 6456 src->seqlo = seq; 6457 if (src->state < TCPS_SYN_SENT) 6458 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6459 6460 /* 6461 * May need to slide the window (seqhi may have been set by 6462 * the crappy stack check or if we picked up the connection 6463 * after establishment) 6464 */ 6465 if (src->seqhi == 1 || 6466 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6467 src->seqhi = end + MAX(1, dst->max_win << dws); 6468 if (win > src->max_win) 6469 src->max_win = win; 6470 6471 } else { 6472 ack = ntohl(th->th_ack) - dst->seqdiff; 6473 if (src->seqdiff) { 6474 /* Modulate sequence numbers */ 6475 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6476 src->seqdiff), 0); 6477 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6478 *copyback = 1; 6479 } 6480 end = seq + pd->p_len; 6481 if (tcp_get_flags(th) & TH_SYN) 6482 end++; 6483 data_end = end; 6484 if (tcp_get_flags(th) & TH_FIN) 6485 end++; 6486 } 6487 6488 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6489 /* Let it pass through the ack skew check */ 6490 ack = dst->seqlo; 6491 } else if ((ack == 0 && 6492 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6493 /* broken tcp stacks do not set ack */ 6494 (dst->state < TCPS_SYN_SENT)) { 6495 /* 6496 * Many stacks (ours included) will set the ACK number in an 6497 * FIN|ACK if the SYN times out -- no sequence to ACK. 6498 */ 6499 ack = dst->seqlo; 6500 } 6501 6502 if (seq == end) { 6503 /* Ease sequencing restrictions on no data packets */ 6504 seq = src->seqlo; 6505 data_end = end = seq; 6506 } 6507 6508 ackskew = dst->seqlo - ack; 6509 6510 /* 6511 * Need to demodulate the sequence numbers in any TCP SACK options 6512 * (Selective ACK). We could optionally validate the SACK values 6513 * against the current ACK window, either forwards or backwards, but 6514 * I'm not confident that SACK has been implemented properly 6515 * everywhere. It wouldn't surprise me if several stacks accidentally 6516 * SACK too far backwards of previously ACKed data. There really aren't 6517 * any security implications of bad SACKing unless the target stack 6518 * doesn't validate the option length correctly. Someone trying to 6519 * spoof into a TCP connection won't bother blindly sending SACK 6520 * options anyway. 6521 */ 6522 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6523 if (pf_modulate_sack(pd, th, dst)) 6524 *copyback = 1; 6525 } 6526 6527 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6528 if (SEQ_GEQ(src->seqhi, data_end) && 6529 /* Last octet inside other's window space */ 6530 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6531 /* Retrans: not more than one window back */ 6532 (ackskew >= -MAXACKWINDOW) && 6533 /* Acking not more than one reassembled fragment backwards */ 6534 (ackskew <= (MAXACKWINDOW << sws)) && 6535 /* Acking not more than one window forward */ 6536 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6537 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6538 /* Require an exact/+1 sequence match on resets when possible */ 6539 6540 if (dst->scrub || src->scrub) { 6541 if (pf_normalize_tcp_stateful(pd, reason, th, 6542 *state, src, dst, copyback)) 6543 return (PF_DROP); 6544 } 6545 6546 /* update max window */ 6547 if (src->max_win < win) 6548 src->max_win = win; 6549 /* synchronize sequencing */ 6550 if (SEQ_GT(end, src->seqlo)) 6551 src->seqlo = end; 6552 /* slide the window of what the other end can send */ 6553 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6554 dst->seqhi = ack + MAX((win << sws), 1); 6555 6556 /* update states */ 6557 if (tcp_get_flags(th) & TH_SYN) 6558 if (src->state < TCPS_SYN_SENT) 6559 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6560 if (tcp_get_flags(th) & TH_FIN) 6561 if (src->state < TCPS_CLOSING) 6562 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6563 if (tcp_get_flags(th) & TH_ACK) { 6564 if (dst->state == TCPS_SYN_SENT) { 6565 pf_set_protostate(*state, pdst, 6566 TCPS_ESTABLISHED); 6567 if (src->state == TCPS_ESTABLISHED && 6568 (*state)->src_node != NULL && 6569 pf_src_connlimit(*state)) { 6570 REASON_SET(reason, PFRES_SRCLIMIT); 6571 return (PF_DROP); 6572 } 6573 } else if (dst->state == TCPS_CLOSING) 6574 pf_set_protostate(*state, pdst, 6575 TCPS_FIN_WAIT_2); 6576 } 6577 if (tcp_get_flags(th) & TH_RST) 6578 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6579 6580 /* update expire time */ 6581 (*state)->expire = pf_get_uptime(); 6582 if (src->state >= TCPS_FIN_WAIT_2 && 6583 dst->state >= TCPS_FIN_WAIT_2) 6584 (*state)->timeout = PFTM_TCP_CLOSED; 6585 else if (src->state >= TCPS_CLOSING && 6586 dst->state >= TCPS_CLOSING) 6587 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6588 else if (src->state < TCPS_ESTABLISHED || 6589 dst->state < TCPS_ESTABLISHED) 6590 (*state)->timeout = PFTM_TCP_OPENING; 6591 else if (src->state >= TCPS_CLOSING || 6592 dst->state >= TCPS_CLOSING) 6593 (*state)->timeout = PFTM_TCP_CLOSING; 6594 else 6595 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6596 6597 /* Fall through to PASS packet */ 6598 6599 } else if ((dst->state < TCPS_SYN_SENT || 6600 dst->state >= TCPS_FIN_WAIT_2 || 6601 src->state >= TCPS_FIN_WAIT_2) && 6602 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6603 /* Within a window forward of the originating packet */ 6604 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6605 /* Within a window backward of the originating packet */ 6606 6607 /* 6608 * This currently handles three situations: 6609 * 1) Stupid stacks will shotgun SYNs before their peer 6610 * replies. 6611 * 2) When PF catches an already established stream (the 6612 * firewall rebooted, the state table was flushed, routes 6613 * changed...) 6614 * 3) Packets get funky immediately after the connection 6615 * closes (this should catch Solaris spurious ACK|FINs 6616 * that web servers like to spew after a close) 6617 * 6618 * This must be a little more careful than the above code 6619 * since packet floods will also be caught here. We don't 6620 * update the TTL here to mitigate the damage of a packet 6621 * flood and so the same code can handle awkward establishment 6622 * and a loosened connection close. 6623 * In the establishment case, a correct peer response will 6624 * validate the connection, go through the normal state code 6625 * and keep updating the state TTL. 6626 */ 6627 6628 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6629 printf("pf: loose state match: "); 6630 pf_print_state(*state); 6631 pf_print_flags(tcp_get_flags(th)); 6632 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6633 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6634 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 6635 (unsigned long long)(*state)->packets[1], 6636 pd->dir == PF_IN ? "in" : "out", 6637 pd->dir == (*state)->direction ? "fwd" : "rev"); 6638 } 6639 6640 if (dst->scrub || src->scrub) { 6641 if (pf_normalize_tcp_stateful(pd, reason, th, 6642 *state, src, dst, copyback)) 6643 return (PF_DROP); 6644 } 6645 6646 /* update max window */ 6647 if (src->max_win < win) 6648 src->max_win = win; 6649 /* synchronize sequencing */ 6650 if (SEQ_GT(end, src->seqlo)) 6651 src->seqlo = end; 6652 /* slide the window of what the other end can send */ 6653 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6654 dst->seqhi = ack + MAX((win << sws), 1); 6655 6656 /* 6657 * Cannot set dst->seqhi here since this could be a shotgunned 6658 * SYN and not an already established connection. 6659 */ 6660 6661 if (tcp_get_flags(th) & TH_FIN) 6662 if (src->state < TCPS_CLOSING) 6663 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6664 if (tcp_get_flags(th) & TH_RST) 6665 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6666 6667 /* Fall through to PASS packet */ 6668 6669 } else { 6670 if ((*state)->dst.state == TCPS_SYN_SENT && 6671 (*state)->src.state == TCPS_SYN_SENT) { 6672 /* Send RST for state mismatches during handshake */ 6673 if (!(tcp_get_flags(th) & TH_RST)) 6674 pf_send_tcp((*state)->rule, pd->af, 6675 pd->dst, pd->src, th->th_dport, 6676 th->th_sport, ntohl(th->th_ack), 0, 6677 TH_RST, 0, 0, 6678 (*state)->rule->return_ttl, M_SKIP_FIREWALL, 6679 0, 0, (*state)->act.rtableid); 6680 src->seqlo = 0; 6681 src->seqhi = 1; 6682 src->max_win = 1; 6683 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6684 printf("pf: BAD state: "); 6685 pf_print_state(*state); 6686 pf_print_flags(tcp_get_flags(th)); 6687 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6688 "pkts=%llu:%llu dir=%s,%s\n", 6689 seq, orig_seq, ack, pd->p_len, ackskew, 6690 (unsigned long long)(*state)->packets[0], 6691 (unsigned long long)(*state)->packets[1], 6692 pd->dir == PF_IN ? "in" : "out", 6693 pd->dir == (*state)->direction ? "fwd" : "rev"); 6694 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6695 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6696 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6697 ' ': '2', 6698 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6699 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6700 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6701 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6702 } 6703 REASON_SET(reason, PFRES_BADSTATE); 6704 return (PF_DROP); 6705 } 6706 6707 return (PF_PASS); 6708 } 6709 6710 static int 6711 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6712 { 6713 struct tcphdr *th = &pd->hdr.tcp; 6714 struct pf_state_peer *src, *dst; 6715 u_int8_t psrc, pdst; 6716 6717 if (pd->dir == (*state)->direction) { 6718 src = &(*state)->src; 6719 dst = &(*state)->dst; 6720 psrc = PF_PEER_SRC; 6721 pdst = PF_PEER_DST; 6722 } else { 6723 src = &(*state)->dst; 6724 dst = &(*state)->src; 6725 psrc = PF_PEER_DST; 6726 pdst = PF_PEER_SRC; 6727 } 6728 6729 if (tcp_get_flags(th) & TH_SYN) 6730 if (src->state < TCPS_SYN_SENT) 6731 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6732 if (tcp_get_flags(th) & TH_FIN) 6733 if (src->state < TCPS_CLOSING) 6734 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6735 if (tcp_get_flags(th) & TH_ACK) { 6736 if (dst->state == TCPS_SYN_SENT) { 6737 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6738 if (src->state == TCPS_ESTABLISHED && 6739 (*state)->src_node != NULL && 6740 pf_src_connlimit(*state)) { 6741 REASON_SET(reason, PFRES_SRCLIMIT); 6742 return (PF_DROP); 6743 } 6744 } else if (dst->state == TCPS_CLOSING) { 6745 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6746 } else if (src->state == TCPS_SYN_SENT && 6747 dst->state < TCPS_SYN_SENT) { 6748 /* 6749 * Handle a special sloppy case where we only see one 6750 * half of the connection. If there is a ACK after 6751 * the initial SYN without ever seeing a packet from 6752 * the destination, set the connection to established. 6753 */ 6754 pf_set_protostate(*state, PF_PEER_BOTH, 6755 TCPS_ESTABLISHED); 6756 dst->state = src->state = TCPS_ESTABLISHED; 6757 if ((*state)->src_node != NULL && 6758 pf_src_connlimit(*state)) { 6759 REASON_SET(reason, PFRES_SRCLIMIT); 6760 return (PF_DROP); 6761 } 6762 } else if (src->state == TCPS_CLOSING && 6763 dst->state == TCPS_ESTABLISHED && 6764 dst->seqlo == 0) { 6765 /* 6766 * Handle the closing of half connections where we 6767 * don't see the full bidirectional FIN/ACK+ACK 6768 * handshake. 6769 */ 6770 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6771 } 6772 } 6773 if (tcp_get_flags(th) & TH_RST) 6774 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6775 6776 /* update expire time */ 6777 (*state)->expire = pf_get_uptime(); 6778 if (src->state >= TCPS_FIN_WAIT_2 && 6779 dst->state >= TCPS_FIN_WAIT_2) 6780 (*state)->timeout = PFTM_TCP_CLOSED; 6781 else if (src->state >= TCPS_CLOSING && 6782 dst->state >= TCPS_CLOSING) 6783 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6784 else if (src->state < TCPS_ESTABLISHED || 6785 dst->state < TCPS_ESTABLISHED) 6786 (*state)->timeout = PFTM_TCP_OPENING; 6787 else if (src->state >= TCPS_CLOSING || 6788 dst->state >= TCPS_CLOSING) 6789 (*state)->timeout = PFTM_TCP_CLOSING; 6790 else 6791 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6792 6793 return (PF_PASS); 6794 } 6795 6796 static int 6797 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6798 { 6799 struct pf_state_key *sk = (*state)->key[pd->didx]; 6800 struct tcphdr *th = &pd->hdr.tcp; 6801 6802 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6803 if (pd->dir != (*state)->direction) { 6804 REASON_SET(reason, PFRES_SYNPROXY); 6805 return (PF_SYNPROXY_DROP); 6806 } 6807 if (tcp_get_flags(th) & TH_SYN) { 6808 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6809 REASON_SET(reason, PFRES_SYNPROXY); 6810 return (PF_DROP); 6811 } 6812 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6813 pd->src, th->th_dport, th->th_sport, 6814 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6815 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 6816 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6817 REASON_SET(reason, PFRES_SYNPROXY); 6818 return (PF_SYNPROXY_DROP); 6819 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6820 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6821 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6822 REASON_SET(reason, PFRES_SYNPROXY); 6823 return (PF_DROP); 6824 } else if ((*state)->src_node != NULL && 6825 pf_src_connlimit(*state)) { 6826 REASON_SET(reason, PFRES_SRCLIMIT); 6827 return (PF_DROP); 6828 } else 6829 pf_set_protostate(*state, PF_PEER_SRC, 6830 PF_TCPS_PROXY_DST); 6831 } 6832 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6833 if (pd->dir == (*state)->direction) { 6834 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6835 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6836 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6837 REASON_SET(reason, PFRES_SYNPROXY); 6838 return (PF_DROP); 6839 } 6840 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6841 if ((*state)->dst.seqhi == 1) 6842 (*state)->dst.seqhi = htonl(arc4random()); 6843 pf_send_tcp((*state)->rule, pd->af, 6844 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6845 sk->port[pd->sidx], sk->port[pd->didx], 6846 (*state)->dst.seqhi, 0, TH_SYN, 0, 6847 (*state)->src.mss, 0, 6848 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6849 (*state)->tag, 0, (*state)->act.rtableid); 6850 REASON_SET(reason, PFRES_SYNPROXY); 6851 return (PF_SYNPROXY_DROP); 6852 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6853 (TH_SYN|TH_ACK)) || 6854 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6855 REASON_SET(reason, PFRES_SYNPROXY); 6856 return (PF_DROP); 6857 } else { 6858 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6859 (*state)->dst.seqlo = ntohl(th->th_seq); 6860 pf_send_tcp((*state)->rule, pd->af, pd->dst, 6861 pd->src, th->th_dport, th->th_sport, 6862 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6863 TH_ACK, (*state)->src.max_win, 0, 0, 0, 6864 (*state)->tag, 0, (*state)->act.rtableid); 6865 pf_send_tcp((*state)->rule, pd->af, 6866 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6867 sk->port[pd->sidx], sk->port[pd->didx], 6868 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6869 TH_ACK, (*state)->dst.max_win, 0, 0, 6870 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid); 6871 (*state)->src.seqdiff = (*state)->dst.seqhi - 6872 (*state)->src.seqlo; 6873 (*state)->dst.seqdiff = (*state)->src.seqhi - 6874 (*state)->dst.seqlo; 6875 (*state)->src.seqhi = (*state)->src.seqlo + 6876 (*state)->dst.max_win; 6877 (*state)->dst.seqhi = (*state)->dst.seqlo + 6878 (*state)->src.max_win; 6879 (*state)->src.wscale = (*state)->dst.wscale = 0; 6880 pf_set_protostate(*state, PF_PEER_BOTH, 6881 TCPS_ESTABLISHED); 6882 REASON_SET(reason, PFRES_SYNPROXY); 6883 return (PF_SYNPROXY_DROP); 6884 } 6885 } 6886 6887 return (PF_PASS); 6888 } 6889 6890 static int 6891 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd, 6892 u_short *reason) 6893 { 6894 struct pf_state_key_cmp key; 6895 struct tcphdr *th = &pd->hdr.tcp; 6896 int copyback = 0; 6897 int action = PF_PASS; 6898 struct pf_state_peer *src, *dst; 6899 6900 bzero(&key, sizeof(key)); 6901 key.af = pd->af; 6902 key.proto = IPPROTO_TCP; 6903 if (pd->dir == PF_IN) { /* wire side, straight */ 6904 PF_ACPY(&key.addr[0], pd->src, key.af); 6905 PF_ACPY(&key.addr[1], pd->dst, key.af); 6906 key.port[0] = th->th_sport; 6907 key.port[1] = th->th_dport; 6908 } else { /* stack side, reverse */ 6909 PF_ACPY(&key.addr[1], pd->src, key.af); 6910 PF_ACPY(&key.addr[0], pd->dst, key.af); 6911 key.port[1] = th->th_sport; 6912 key.port[0] = th->th_dport; 6913 } 6914 6915 STATE_LOOKUP(&key, *state, pd); 6916 6917 if (pd->dir == (*state)->direction) { 6918 src = &(*state)->src; 6919 dst = &(*state)->dst; 6920 } else { 6921 src = &(*state)->dst; 6922 dst = &(*state)->src; 6923 } 6924 6925 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6926 return (action); 6927 6928 if (dst->state >= TCPS_FIN_WAIT_2 && 6929 src->state >= TCPS_FIN_WAIT_2 && 6930 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) || 6931 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6932 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6933 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6934 printf("pf: state reuse "); 6935 pf_print_state(*state); 6936 pf_print_flags(tcp_get_flags(th)); 6937 printf("\n"); 6938 } 6939 /* XXX make sure it's the same direction ?? */ 6940 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6941 pf_unlink_state(*state); 6942 *state = NULL; 6943 return (PF_DROP); 6944 } 6945 6946 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6947 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6948 return (PF_DROP); 6949 } else { 6950 int ret; 6951 6952 ret = pf_tcp_track_full(state, pd, reason, 6953 ©back); 6954 if (ret == PF_DROP) 6955 return (PF_DROP); 6956 } 6957 6958 /* translate source/destination address, if necessary */ 6959 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6960 struct pf_state_key *nk; 6961 int afto, sidx, didx; 6962 6963 if (PF_REVERSED_KEY((*state)->key, pd->af)) 6964 nk = (*state)->key[pd->sidx]; 6965 else 6966 nk = (*state)->key[pd->didx]; 6967 6968 afto = pd->af != nk->af; 6969 sidx = afto ? pd->didx : pd->sidx; 6970 didx = afto ? pd->sidx : pd->didx; 6971 6972 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 6973 nk->port[sidx] != th->th_sport) 6974 pf_change_ap(pd->m, pd->src, &th->th_sport, 6975 pd->ip_sum, &th->th_sum, &nk->addr[sidx], 6976 nk->port[sidx], 0, pd->af, nk->af); 6977 6978 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 6979 nk->port[didx] != th->th_dport) 6980 pf_change_ap(pd->m, pd->dst, &th->th_dport, 6981 pd->ip_sum, &th->th_sum, &nk->addr[didx], 6982 nk->port[didx], 0, pd->af, nk->af); 6983 6984 if (afto) { 6985 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 6986 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 6987 pd->naf = nk->af; 6988 action = PF_AFRT; 6989 } 6990 6991 copyback = 1; 6992 } 6993 6994 /* Copyback sequence modulation or stateful scrub changes if needed */ 6995 if (copyback) 6996 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 6997 6998 return (action); 6999 } 7000 7001 static int 7002 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd) 7003 { 7004 struct pf_state_peer *src, *dst; 7005 struct pf_state_key_cmp key; 7006 struct udphdr *uh = &pd->hdr.udp; 7007 uint8_t psrc, pdst; 7008 int action = PF_PASS; 7009 7010 bzero(&key, sizeof(key)); 7011 key.af = pd->af; 7012 key.proto = IPPROTO_UDP; 7013 if (pd->dir == PF_IN) { /* wire side, straight */ 7014 PF_ACPY(&key.addr[0], pd->src, key.af); 7015 PF_ACPY(&key.addr[1], pd->dst, key.af); 7016 key.port[0] = uh->uh_sport; 7017 key.port[1] = uh->uh_dport; 7018 } else { /* stack side, reverse */ 7019 PF_ACPY(&key.addr[1], pd->src, key.af); 7020 PF_ACPY(&key.addr[0], pd->dst, key.af); 7021 key.port[1] = uh->uh_sport; 7022 key.port[0] = uh->uh_dport; 7023 } 7024 7025 STATE_LOOKUP(&key, *state, pd); 7026 7027 if (pd->dir == (*state)->direction) { 7028 src = &(*state)->src; 7029 dst = &(*state)->dst; 7030 psrc = PF_PEER_SRC; 7031 pdst = PF_PEER_DST; 7032 } else { 7033 src = &(*state)->dst; 7034 dst = &(*state)->src; 7035 psrc = PF_PEER_DST; 7036 pdst = PF_PEER_SRC; 7037 } 7038 7039 /* update states */ 7040 if (src->state < PFUDPS_SINGLE) 7041 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7042 if (dst->state == PFUDPS_SINGLE) 7043 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7044 7045 /* update expire time */ 7046 (*state)->expire = pf_get_uptime(); 7047 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7048 (*state)->timeout = PFTM_UDP_MULTIPLE; 7049 else 7050 (*state)->timeout = PFTM_UDP_SINGLE; 7051 7052 /* translate source/destination address, if necessary */ 7053 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7054 struct pf_state_key *nk; 7055 int afto, sidx, didx; 7056 7057 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7058 nk = (*state)->key[pd->sidx]; 7059 else 7060 nk = (*state)->key[pd->didx]; 7061 7062 afto = pd->af != nk->af; 7063 sidx = afto ? pd->didx : pd->sidx; 7064 didx = afto ? pd->sidx : pd->didx; 7065 7066 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7067 nk->port[sidx] != uh->uh_sport) 7068 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum, 7069 &uh->uh_sum, &nk->addr[pd->sidx], 7070 nk->port[sidx], 1, pd->af, nk->af); 7071 7072 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7073 nk->port[didx] != uh->uh_dport) 7074 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum, 7075 &uh->uh_sum, &nk->addr[pd->didx], 7076 nk->port[didx], 1, pd->af, nk->af); 7077 7078 if (afto) { 7079 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7080 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7081 pd->naf = nk->af; 7082 action = PF_AFRT; 7083 } 7084 7085 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh); 7086 } 7087 7088 return (action); 7089 } 7090 7091 static int 7092 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7093 u_short *reason) 7094 { 7095 struct pf_state_peer *src; 7096 if (pd->dir == state->direction) { 7097 if (PF_REVERSED_KEY(state->key, pd->af)) 7098 src = &state->dst; 7099 else 7100 src = &state->src; 7101 } else { 7102 if (PF_REVERSED_KEY(state->key, pd->af)) 7103 src = &state->src; 7104 else 7105 src = &state->dst; 7106 } 7107 7108 if (src->scrub != NULL) { 7109 if (src->scrub->pfss_v_tag == 0) 7110 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7111 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7112 return (PF_DROP); 7113 } 7114 7115 return (PF_PASS); 7116 } 7117 7118 static int 7119 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd, 7120 u_short *reason) 7121 { 7122 struct pf_state_key_cmp key; 7123 struct pf_state_peer *src, *dst; 7124 struct sctphdr *sh = &pd->hdr.sctp; 7125 u_int8_t psrc; //, pdst; 7126 7127 bzero(&key, sizeof(key)); 7128 key.af = pd->af; 7129 key.proto = IPPROTO_SCTP; 7130 if (pd->dir == PF_IN) { /* wire side, straight */ 7131 PF_ACPY(&key.addr[0], pd->src, key.af); 7132 PF_ACPY(&key.addr[1], pd->dst, key.af); 7133 key.port[0] = sh->src_port; 7134 key.port[1] = sh->dest_port; 7135 } else { /* stack side, reverse */ 7136 PF_ACPY(&key.addr[1], pd->src, key.af); 7137 PF_ACPY(&key.addr[0], pd->dst, key.af); 7138 key.port[1] = sh->src_port; 7139 key.port[0] = sh->dest_port; 7140 } 7141 7142 STATE_LOOKUP(&key, *state, pd); 7143 7144 if (pd->dir == (*state)->direction) { 7145 src = &(*state)->src; 7146 dst = &(*state)->dst; 7147 psrc = PF_PEER_SRC; 7148 } else { 7149 src = &(*state)->dst; 7150 dst = &(*state)->src; 7151 psrc = PF_PEER_DST; 7152 } 7153 7154 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7155 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7156 pd->sctp_flags & PFDESC_SCTP_INIT) { 7157 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7158 pf_unlink_state(*state); 7159 *state = NULL; 7160 return (PF_DROP); 7161 } 7162 7163 /* Track state. */ 7164 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7165 if (src->state < SCTP_COOKIE_WAIT) { 7166 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7167 (*state)->timeout = PFTM_SCTP_OPENING; 7168 } 7169 } 7170 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7171 MPASS(dst->scrub != NULL); 7172 if (dst->scrub->pfss_v_tag == 0) 7173 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7174 } 7175 7176 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7177 if (src->state < SCTP_ESTABLISHED) { 7178 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7179 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7180 } 7181 } 7182 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 7183 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7184 if (src->state < SCTP_SHUTDOWN_PENDING) { 7185 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7186 (*state)->timeout = PFTM_SCTP_CLOSING; 7187 } 7188 } 7189 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7190 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7191 (*state)->timeout = PFTM_SCTP_CLOSED; 7192 } 7193 7194 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7195 return (PF_DROP); 7196 7197 (*state)->expire = pf_get_uptime(); 7198 7199 /* translate source/destination address, if necessary */ 7200 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7201 uint16_t checksum = 0; 7202 struct pf_state_key *nk; 7203 int afto, sidx, didx; 7204 7205 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7206 nk = (*state)->key[pd->sidx]; 7207 else 7208 nk = (*state)->key[pd->didx]; 7209 7210 afto = pd->af != nk->af; 7211 sidx = afto ? pd->didx : pd->sidx; 7212 didx = afto ? pd->sidx : pd->didx; 7213 7214 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7215 nk->port[sidx] != pd->hdr.sctp.src_port) { 7216 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port, 7217 pd->ip_sum, &checksum, &nk->addr[sidx], 7218 nk->port[sidx], 1, pd->af, pd->naf); 7219 } 7220 7221 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7222 nk->port[didx] != pd->hdr.sctp.dest_port) { 7223 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port, 7224 pd->ip_sum, &checksum, &nk->addr[didx], 7225 nk->port[didx], 1, pd->af, pd->naf); 7226 } 7227 7228 if (afto) { 7229 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7230 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7231 pd->naf = nk->af; 7232 return (PF_AFRT); 7233 } 7234 } 7235 7236 return (PF_PASS); 7237 } 7238 7239 static void 7240 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7241 { 7242 struct pf_sctp_endpoint key; 7243 struct pf_sctp_endpoint *ep; 7244 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7245 struct pf_sctp_source *i, *tmp; 7246 7247 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7248 return; 7249 7250 PF_SCTP_ENDPOINTS_LOCK(); 7251 7252 key.v_tag = s->dst.scrub->pfss_v_tag; 7253 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7254 if (ep != NULL) { 7255 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7256 if (pf_addr_cmp(&i->addr, 7257 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7258 s->key[PF_SK_WIRE]->af) == 0) { 7259 SDT_PROBE3(pf, sctp, multihome, remove, 7260 key.v_tag, s, i); 7261 TAILQ_REMOVE(&ep->sources, i, entry); 7262 free(i, M_PFTEMP); 7263 break; 7264 } 7265 } 7266 7267 if (TAILQ_EMPTY(&ep->sources)) { 7268 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7269 free(ep, M_PFTEMP); 7270 } 7271 } 7272 7273 /* Other direction. */ 7274 key.v_tag = s->src.scrub->pfss_v_tag; 7275 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7276 if (ep != NULL) { 7277 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7278 if (pf_addr_cmp(&i->addr, 7279 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7280 s->key[PF_SK_WIRE]->af) == 0) { 7281 SDT_PROBE3(pf, sctp, multihome, remove, 7282 key.v_tag, s, i); 7283 TAILQ_REMOVE(&ep->sources, i, entry); 7284 free(i, M_PFTEMP); 7285 break; 7286 } 7287 } 7288 7289 if (TAILQ_EMPTY(&ep->sources)) { 7290 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7291 free(ep, M_PFTEMP); 7292 } 7293 } 7294 7295 PF_SCTP_ENDPOINTS_UNLOCK(); 7296 } 7297 7298 static void 7299 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7300 { 7301 struct pf_sctp_endpoint key = { 7302 .v_tag = v_tag, 7303 }; 7304 struct pf_sctp_source *i; 7305 struct pf_sctp_endpoint *ep; 7306 7307 PF_SCTP_ENDPOINTS_LOCK(); 7308 7309 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7310 if (ep == NULL) { 7311 ep = malloc(sizeof(struct pf_sctp_endpoint), 7312 M_PFTEMP, M_NOWAIT); 7313 if (ep == NULL) { 7314 PF_SCTP_ENDPOINTS_UNLOCK(); 7315 return; 7316 } 7317 7318 ep->v_tag = v_tag; 7319 TAILQ_INIT(&ep->sources); 7320 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7321 } 7322 7323 /* Avoid inserting duplicates. */ 7324 TAILQ_FOREACH(i, &ep->sources, entry) { 7325 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7326 PF_SCTP_ENDPOINTS_UNLOCK(); 7327 return; 7328 } 7329 } 7330 7331 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7332 if (i == NULL) { 7333 PF_SCTP_ENDPOINTS_UNLOCK(); 7334 return; 7335 } 7336 7337 i->af = pd->af; 7338 memcpy(&i->addr, a, sizeof(*a)); 7339 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7340 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7341 7342 PF_SCTP_ENDPOINTS_UNLOCK(); 7343 } 7344 7345 static void 7346 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7347 struct pf_kstate *s, int action) 7348 { 7349 struct pf_sctp_multihome_job *j, *tmp; 7350 struct pf_sctp_source *i; 7351 int ret __unused; 7352 struct pf_kstate *sm = NULL; 7353 struct pf_krule *ra = NULL; 7354 struct pf_krule *r = &V_pf_default_rule; 7355 struct pf_kruleset *rs = NULL; 7356 bool do_extra = true; 7357 7358 PF_RULES_RLOCK_TRACKER; 7359 7360 again: 7361 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7362 if (s == NULL || action != PF_PASS) 7363 goto free; 7364 7365 /* Confirm we don't recurse here. */ 7366 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7367 7368 switch (j->op) { 7369 case SCTP_ADD_IP_ADDRESS: { 7370 uint32_t v_tag = pd->sctp_initiate_tag; 7371 7372 if (v_tag == 0) { 7373 if (s->direction == pd->dir) 7374 v_tag = s->src.scrub->pfss_v_tag; 7375 else 7376 v_tag = s->dst.scrub->pfss_v_tag; 7377 } 7378 7379 /* 7380 * Avoid duplicating states. We'll already have 7381 * created a state based on the source address of 7382 * the packet, but SCTP endpoints may also list this 7383 * address again in the INIT(_ACK) parameters. 7384 */ 7385 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7386 break; 7387 } 7388 7389 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7390 PF_RULES_RLOCK(); 7391 sm = NULL; 7392 ret = pf_test_rule(&r, &sm, 7393 &j->pd, &ra, &rs, NULL); 7394 PF_RULES_RUNLOCK(); 7395 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7396 if (ret != PF_DROP && sm != NULL) { 7397 /* Inherit v_tag values. */ 7398 if (sm->direction == s->direction) { 7399 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7400 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7401 } else { 7402 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7403 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7404 } 7405 PF_STATE_UNLOCK(sm); 7406 } else { 7407 /* If we try duplicate inserts? */ 7408 break; 7409 } 7410 7411 /* Only add the address if we've actually allowed the state. */ 7412 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7413 7414 if (! do_extra) { 7415 break; 7416 } 7417 /* 7418 * We need to do this for each of our source addresses. 7419 * Find those based on the verification tag. 7420 */ 7421 struct pf_sctp_endpoint key = { 7422 .v_tag = pd->hdr.sctp.v_tag, 7423 }; 7424 struct pf_sctp_endpoint *ep; 7425 7426 PF_SCTP_ENDPOINTS_LOCK(); 7427 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7428 if (ep == NULL) { 7429 PF_SCTP_ENDPOINTS_UNLOCK(); 7430 break; 7431 } 7432 MPASS(ep != NULL); 7433 7434 TAILQ_FOREACH(i, &ep->sources, entry) { 7435 struct pf_sctp_multihome_job *nj; 7436 7437 /* SCTP can intermingle IPv4 and IPv6. */ 7438 if (i->af != pd->af) 7439 continue; 7440 7441 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7442 if (! nj) { 7443 continue; 7444 } 7445 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7446 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7447 nj->pd.src = &nj->src; 7448 // New destination address! 7449 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7450 nj->pd.dst = &nj->dst; 7451 nj->pd.m = j->pd.m; 7452 nj->op = j->op; 7453 7454 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7455 } 7456 PF_SCTP_ENDPOINTS_UNLOCK(); 7457 7458 break; 7459 } 7460 case SCTP_DEL_IP_ADDRESS: { 7461 struct pf_state_key_cmp key; 7462 uint8_t psrc; 7463 7464 bzero(&key, sizeof(key)); 7465 key.af = j->pd.af; 7466 key.proto = IPPROTO_SCTP; 7467 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7468 PF_ACPY(&key.addr[0], j->pd.src, key.af); 7469 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 7470 key.port[0] = j->pd.hdr.sctp.src_port; 7471 key.port[1] = j->pd.hdr.sctp.dest_port; 7472 } else { /* stack side, reverse */ 7473 PF_ACPY(&key.addr[1], j->pd.src, key.af); 7474 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 7475 key.port[1] = j->pd.hdr.sctp.src_port; 7476 key.port[0] = j->pd.hdr.sctp.dest_port; 7477 } 7478 7479 sm = pf_find_state(kif, &key, j->pd.dir); 7480 if (sm != NULL) { 7481 PF_STATE_LOCK_ASSERT(sm); 7482 if (j->pd.dir == sm->direction) { 7483 psrc = PF_PEER_SRC; 7484 } else { 7485 psrc = PF_PEER_DST; 7486 } 7487 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7488 sm->timeout = PFTM_SCTP_CLOSING; 7489 PF_STATE_UNLOCK(sm); 7490 } 7491 break; 7492 default: 7493 panic("Unknown op %#x", j->op); 7494 } 7495 } 7496 7497 free: 7498 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7499 free(j, M_PFTEMP); 7500 } 7501 7502 /* We may have inserted extra work while processing the list. */ 7503 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7504 do_extra = false; 7505 goto again; 7506 } 7507 } 7508 7509 static int 7510 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7511 { 7512 int off = 0; 7513 struct pf_sctp_multihome_job *job; 7514 7515 while (off < len) { 7516 struct sctp_paramhdr h; 7517 7518 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7519 pd->af)) 7520 return (PF_DROP); 7521 7522 /* Parameters are at least 4 bytes. */ 7523 if (ntohs(h.param_length) < 4) 7524 return (PF_DROP); 7525 7526 switch (ntohs(h.param_type)) { 7527 case SCTP_IPV4_ADDRESS: { 7528 struct in_addr t; 7529 7530 if (ntohs(h.param_length) != 7531 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7532 return (PF_DROP); 7533 7534 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7535 NULL, NULL, pd->af)) 7536 return (PF_DROP); 7537 7538 if (in_nullhost(t)) 7539 t.s_addr = pd->src->v4.s_addr; 7540 7541 /* 7542 * We hold the state lock (idhash) here, which means 7543 * that we can't acquire the keyhash, or we'll get a 7544 * LOR (and potentially double-lock things too). We also 7545 * can't release the state lock here, so instead we'll 7546 * enqueue this for async handling. 7547 * There's a relatively small race here, in that a 7548 * packet using the new addresses could arrive already, 7549 * but that's just though luck for it. 7550 */ 7551 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7552 if (! job) 7553 return (PF_DROP); 7554 7555 memcpy(&job->pd, pd, sizeof(*pd)); 7556 7557 // New source address! 7558 memcpy(&job->src, &t, sizeof(t)); 7559 job->pd.src = &job->src; 7560 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7561 job->pd.dst = &job->dst; 7562 job->pd.m = pd->m; 7563 job->op = op; 7564 7565 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7566 break; 7567 } 7568 #ifdef INET6 7569 case SCTP_IPV6_ADDRESS: { 7570 struct in6_addr t; 7571 7572 if (ntohs(h.param_length) != 7573 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7574 return (PF_DROP); 7575 7576 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7577 NULL, NULL, pd->af)) 7578 return (PF_DROP); 7579 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7580 break; 7581 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7582 memcpy(&t, &pd->src->v6, sizeof(t)); 7583 7584 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7585 if (! job) 7586 return (PF_DROP); 7587 7588 memcpy(&job->pd, pd, sizeof(*pd)); 7589 memcpy(&job->src, &t, sizeof(t)); 7590 job->pd.src = &job->src; 7591 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7592 job->pd.dst = &job->dst; 7593 job->pd.m = pd->m; 7594 job->op = op; 7595 7596 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7597 break; 7598 } 7599 #endif 7600 case SCTP_ADD_IP_ADDRESS: { 7601 int ret; 7602 struct sctp_asconf_paramhdr ah; 7603 7604 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7605 NULL, NULL, pd->af)) 7606 return (PF_DROP); 7607 7608 ret = pf_multihome_scan(start + off + sizeof(ah), 7609 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7610 SCTP_ADD_IP_ADDRESS); 7611 if (ret != PF_PASS) 7612 return (ret); 7613 break; 7614 } 7615 case SCTP_DEL_IP_ADDRESS: { 7616 int ret; 7617 struct sctp_asconf_paramhdr ah; 7618 7619 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7620 NULL, NULL, pd->af)) 7621 return (PF_DROP); 7622 ret = pf_multihome_scan(start + off + sizeof(ah), 7623 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7624 SCTP_DEL_IP_ADDRESS); 7625 if (ret != PF_PASS) 7626 return (ret); 7627 break; 7628 } 7629 default: 7630 break; 7631 } 7632 7633 off += roundup(ntohs(h.param_length), 4); 7634 } 7635 7636 return (PF_PASS); 7637 } 7638 int 7639 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7640 { 7641 start += sizeof(struct sctp_init_chunk); 7642 len -= sizeof(struct sctp_init_chunk); 7643 7644 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7645 } 7646 7647 int 7648 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7649 { 7650 start += sizeof(struct sctp_asconf_chunk); 7651 len -= sizeof(struct sctp_asconf_chunk); 7652 7653 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7654 } 7655 7656 int 7657 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7658 struct pf_kstate **state, int direction, 7659 u_int16_t icmpid, u_int16_t type, int icmp_dir, 7660 int *iidx, int multi, int inner) 7661 { 7662 key->af = pd->af; 7663 key->proto = pd->proto; 7664 if (icmp_dir == PF_IN) { 7665 *iidx = pd->sidx; 7666 key->port[pd->sidx] = icmpid; 7667 key->port[pd->didx] = type; 7668 } else { 7669 *iidx = pd->didx; 7670 key->port[pd->sidx] = type; 7671 key->port[pd->didx] = icmpid; 7672 } 7673 if (pf_state_key_addr_setup(pd, key, multi)) 7674 return (PF_DROP); 7675 7676 STATE_LOOKUP(key, *state, pd); 7677 7678 if ((*state)->state_flags & PFSTATE_SLOPPY) 7679 return (-1); 7680 7681 /* Is this ICMP message flowing in right direction? */ 7682 if ((*state)->rule->type && 7683 (((!inner && (*state)->direction == direction) || 7684 (inner && (*state)->direction != direction)) ? 7685 PF_IN : PF_OUT) != icmp_dir) { 7686 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7687 printf("pf: icmp type %d in wrong direction (%d): ", 7688 ntohs(type), icmp_dir); 7689 pf_print_state(*state); 7690 printf("\n"); 7691 } 7692 PF_STATE_UNLOCK(*state); 7693 *state = NULL; 7694 return (PF_DROP); 7695 } 7696 return (-1); 7697 } 7698 7699 static int 7700 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7701 u_short *reason) 7702 { 7703 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7704 u_int16_t *icmpsum, virtual_id, virtual_type; 7705 u_int8_t icmptype, icmpcode; 7706 int icmp_dir, iidx, ret, multi; 7707 struct pf_state_key_cmp key; 7708 #ifdef INET 7709 u_int16_t icmpid; 7710 #endif 7711 7712 MPASS(*state == NULL); 7713 7714 bzero(&key, sizeof(key)); 7715 switch (pd->proto) { 7716 #ifdef INET 7717 case IPPROTO_ICMP: 7718 icmptype = pd->hdr.icmp.icmp_type; 7719 icmpcode = pd->hdr.icmp.icmp_code; 7720 icmpid = pd->hdr.icmp.icmp_id; 7721 icmpsum = &pd->hdr.icmp.icmp_cksum; 7722 break; 7723 #endif /* INET */ 7724 #ifdef INET6 7725 case IPPROTO_ICMPV6: 7726 icmptype = pd->hdr.icmp6.icmp6_type; 7727 icmpcode = pd->hdr.icmp6.icmp6_code; 7728 #ifdef INET 7729 icmpid = pd->hdr.icmp6.icmp6_id; 7730 #endif 7731 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7732 break; 7733 #endif /* INET6 */ 7734 } 7735 7736 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 7737 &virtual_id, &virtual_type) == 0) { 7738 /* 7739 * ICMP query/reply message not related to a TCP/UDP packet. 7740 * Search for an ICMP state. 7741 */ 7742 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir, 7743 virtual_id, virtual_type, icmp_dir, &iidx, 7744 PF_ICMP_MULTI_NONE, 0); 7745 if (ret >= 0) { 7746 MPASS(*state == NULL); 7747 if (ret == PF_DROP && pd->af == AF_INET6 && 7748 icmp_dir == PF_OUT) { 7749 ret = pf_icmp_state_lookup(&key, pd, state, 7750 pd->dir, virtual_id, virtual_type, 7751 icmp_dir, &iidx, multi, 0); 7752 if (ret >= 0) { 7753 MPASS(*state == NULL); 7754 return (ret); 7755 } 7756 } else 7757 return (ret); 7758 } 7759 7760 (*state)->expire = pf_get_uptime(); 7761 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7762 7763 /* translate source/destination address, if necessary */ 7764 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7765 struct pf_state_key *nk; 7766 int afto, sidx, didx; 7767 7768 if (PF_REVERSED_KEY((*state)->key, pd->af)) 7769 nk = (*state)->key[pd->sidx]; 7770 else 7771 nk = (*state)->key[pd->didx]; 7772 7773 afto = pd->af != nk->af; 7774 sidx = afto ? pd->didx : pd->sidx; 7775 didx = afto ? pd->sidx : pd->didx; 7776 iidx = afto ? !iidx : iidx; 7777 7778 switch (pd->af) { 7779 #ifdef INET 7780 case AF_INET: 7781 #ifdef INET6 7782 if (afto) { 7783 if (pf_translate_icmp_af(AF_INET6, 7784 &pd->hdr.icmp)) 7785 return (PF_DROP); 7786 pd->proto = IPPROTO_ICMPV6; 7787 } 7788 #endif 7789 if (!afto && 7790 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7791 pf_change_a(&saddr->v4.s_addr, 7792 pd->ip_sum, 7793 nk->addr[sidx].v4.s_addr, 7794 0); 7795 7796 if (!afto && PF_ANEQ(pd->dst, 7797 &nk->addr[didx], AF_INET)) 7798 pf_change_a(&daddr->v4.s_addr, 7799 pd->ip_sum, 7800 nk->addr[didx].v4.s_addr, 0); 7801 7802 if (nk->port[iidx] != 7803 pd->hdr.icmp.icmp_id) { 7804 pd->hdr.icmp.icmp_cksum = 7805 pf_cksum_fixup( 7806 pd->hdr.icmp.icmp_cksum, icmpid, 7807 nk->port[iidx], 0); 7808 pd->hdr.icmp.icmp_id = 7809 nk->port[iidx]; 7810 } 7811 7812 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7813 (caddr_t )&pd->hdr.icmp); 7814 break; 7815 #endif /* INET */ 7816 #ifdef INET6 7817 case AF_INET6: 7818 #ifdef INET 7819 if (afto) { 7820 if (pf_translate_icmp_af(AF_INET, 7821 &pd->hdr.icmp6)) 7822 return (PF_DROP); 7823 pd->proto = IPPROTO_ICMP; 7824 } 7825 #endif 7826 if (!afto && 7827 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7828 pf_change_a6(saddr, 7829 &pd->hdr.icmp6.icmp6_cksum, 7830 &nk->addr[sidx], 0); 7831 7832 if (!afto && PF_ANEQ(pd->dst, 7833 &nk->addr[didx], AF_INET6)) 7834 pf_change_a6(daddr, 7835 &pd->hdr.icmp6.icmp6_cksum, 7836 &nk->addr[didx], 0); 7837 7838 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 7839 pd->hdr.icmp6.icmp6_id = 7840 nk->port[iidx]; 7841 7842 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7843 (caddr_t )&pd->hdr.icmp6); 7844 break; 7845 #endif /* INET6 */ 7846 } 7847 if (afto) { 7848 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7849 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7850 pd->naf = nk->af; 7851 return (PF_AFRT); 7852 } 7853 } 7854 return (PF_PASS); 7855 7856 } else { 7857 /* 7858 * ICMP error message in response to a TCP/UDP packet. 7859 * Extract the inner TCP/UDP header and search for that state. 7860 */ 7861 7862 struct pf_pdesc pd2; 7863 bzero(&pd2, sizeof pd2); 7864 #ifdef INET 7865 struct ip h2; 7866 #endif /* INET */ 7867 #ifdef INET6 7868 struct ip6_hdr h2_6; 7869 int fragoff2, extoff2; 7870 u_int32_t jumbolen; 7871 #endif /* INET6 */ 7872 int ipoff2 = 0; 7873 7874 pd2.af = pd->af; 7875 pd2.dir = pd->dir; 7876 /* Payload packet is from the opposite direction. */ 7877 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7878 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7879 pd2.m = pd->m; 7880 switch (pd->af) { 7881 #ifdef INET 7882 case AF_INET: 7883 /* offset of h2 in mbuf chain */ 7884 ipoff2 = pd->off + ICMP_MINLEN; 7885 7886 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7887 NULL, reason, pd2.af)) { 7888 DPFPRINTF(PF_DEBUG_MISC, 7889 ("pf: ICMP error message too short " 7890 "(ip)\n")); 7891 return (PF_DROP); 7892 } 7893 /* 7894 * ICMP error messages don't refer to non-first 7895 * fragments 7896 */ 7897 if (h2.ip_off & htons(IP_OFFMASK)) { 7898 REASON_SET(reason, PFRES_FRAG); 7899 return (PF_DROP); 7900 } 7901 7902 /* offset of protocol header that follows h2 */ 7903 pd2.off = ipoff2 + (h2.ip_hl << 2); 7904 7905 pd2.proto = h2.ip_p; 7906 pd2.src = (struct pf_addr *)&h2.ip_src; 7907 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7908 pd2.ip_sum = &h2.ip_sum; 7909 break; 7910 #endif /* INET */ 7911 #ifdef INET6 7912 case AF_INET6: 7913 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7914 7915 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7916 NULL, reason, pd2.af)) { 7917 DPFPRINTF(PF_DEBUG_MISC, 7918 ("pf: ICMP error message too short " 7919 "(ip6)\n")); 7920 return (PF_DROP); 7921 } 7922 pd2.off = ipoff2; 7923 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2, 7924 &fragoff2, &pd2.proto, &jumbolen, 7925 reason) != PF_PASS) 7926 return (PF_DROP); 7927 7928 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7929 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7930 pd2.ip_sum = NULL; 7931 break; 7932 #endif /* INET6 */ 7933 } 7934 7935 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7936 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7937 printf("pf: BAD ICMP %d:%d outer dst: ", 7938 icmptype, icmpcode); 7939 pf_print_host(pd->src, 0, pd->af); 7940 printf(" -> "); 7941 pf_print_host(pd->dst, 0, pd->af); 7942 printf(" inner src: "); 7943 pf_print_host(pd2.src, 0, pd2.af); 7944 printf(" -> "); 7945 pf_print_host(pd2.dst, 0, pd2.af); 7946 printf("\n"); 7947 } 7948 REASON_SET(reason, PFRES_BADSTATE); 7949 return (PF_DROP); 7950 } 7951 7952 switch (pd2.proto) { 7953 case IPPROTO_TCP: { 7954 struct tcphdr th; 7955 u_int32_t seq; 7956 struct pf_state_peer *src, *dst; 7957 u_int8_t dws; 7958 int copyback = 0; 7959 7960 /* 7961 * Only the first 8 bytes of the TCP header can be 7962 * expected. Don't access any TCP header fields after 7963 * th_seq, an ackskew test is not possible. 7964 */ 7965 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason, 7966 pd2.af)) { 7967 DPFPRINTF(PF_DEBUG_MISC, 7968 ("pf: ICMP error message too short " 7969 "(tcp)\n")); 7970 return (PF_DROP); 7971 } 7972 7973 key.af = pd2.af; 7974 key.proto = IPPROTO_TCP; 7975 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7976 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7977 key.port[pd2.sidx] = th.th_sport; 7978 key.port[pd2.didx] = th.th_dport; 7979 7980 STATE_LOOKUP(&key, *state, pd); 7981 7982 if (pd->dir == (*state)->direction) { 7983 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 7984 src = &(*state)->src; 7985 dst = &(*state)->dst; 7986 } else { 7987 src = &(*state)->dst; 7988 dst = &(*state)->src; 7989 } 7990 } else { 7991 if (PF_REVERSED_KEY((*state)->key, pd->af)) { 7992 src = &(*state)->dst; 7993 dst = &(*state)->src; 7994 } else { 7995 src = &(*state)->src; 7996 dst = &(*state)->dst; 7997 } 7998 } 7999 8000 if (src->wscale && dst->wscale) 8001 dws = dst->wscale & PF_WSCALE_MASK; 8002 else 8003 dws = 0; 8004 8005 /* Demodulate sequence number */ 8006 seq = ntohl(th.th_seq) - src->seqdiff; 8007 if (src->seqdiff) { 8008 pf_change_a(&th.th_seq, icmpsum, 8009 htonl(seq), 0); 8010 copyback = 1; 8011 } 8012 8013 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 8014 (!SEQ_GEQ(src->seqhi, seq) || 8015 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 8016 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8017 printf("pf: BAD ICMP %d:%d ", 8018 icmptype, icmpcode); 8019 pf_print_host(pd->src, 0, pd->af); 8020 printf(" -> "); 8021 pf_print_host(pd->dst, 0, pd->af); 8022 printf(" state: "); 8023 pf_print_state(*state); 8024 printf(" seq=%u\n", seq); 8025 } 8026 REASON_SET(reason, PFRES_BADSTATE); 8027 return (PF_DROP); 8028 } else { 8029 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8030 printf("pf: OK ICMP %d:%d ", 8031 icmptype, icmpcode); 8032 pf_print_host(pd->src, 0, pd->af); 8033 printf(" -> "); 8034 pf_print_host(pd->dst, 0, pd->af); 8035 printf(" state: "); 8036 pf_print_state(*state); 8037 printf(" seq=%u\n", seq); 8038 } 8039 } 8040 8041 /* translate source/destination address, if necessary */ 8042 if ((*state)->key[PF_SK_WIRE] != 8043 (*state)->key[PF_SK_STACK]) { 8044 8045 struct pf_state_key *nk; 8046 8047 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8048 nk = (*state)->key[pd->sidx]; 8049 else 8050 nk = (*state)->key[pd->didx]; 8051 8052 #if defined(INET) && defined(INET6) 8053 int afto, sidx, didx; 8054 8055 afto = pd->af != nk->af; 8056 sidx = afto ? pd2.didx : pd2.sidx; 8057 didx = afto ? pd2.sidx : pd2.didx; 8058 8059 if (afto) { 8060 if (pf_translate_icmp_af(nk->af, 8061 &pd->hdr.icmp)) 8062 return (PF_DROP); 8063 m_copyback(pd->m, pd->off, 8064 sizeof(struct icmp6_hdr), 8065 (c_caddr_t)&pd->hdr.icmp6); 8066 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8067 &pd2, &nk->addr[sidx], 8068 &nk->addr[didx], pd->af, 8069 nk->af)) 8070 return (PF_DROP); 8071 if (nk->af == AF_INET) 8072 pd->proto = IPPROTO_ICMP; 8073 else 8074 pd->proto = IPPROTO_ICMPV6; 8075 th.th_sport = nk->port[sidx]; 8076 th.th_dport = nk->port[didx]; 8077 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th); 8078 PF_ACPY(pd->src, 8079 &nk->addr[pd2.sidx], nk->af); 8080 PF_ACPY(pd->dst, 8081 &nk->addr[pd2.didx], nk->af); 8082 pd->naf = nk->af; 8083 return (PF_AFRT); 8084 } 8085 #endif 8086 8087 if (PF_ANEQ(pd2.src, 8088 &nk->addr[pd2.sidx], pd2.af) || 8089 nk->port[pd2.sidx] != th.th_sport) 8090 pf_change_icmp(pd2.src, &th.th_sport, 8091 daddr, &nk->addr[pd2.sidx], 8092 nk->port[pd2.sidx], NULL, 8093 pd2.ip_sum, icmpsum, 8094 pd->ip_sum, 0, pd2.af); 8095 8096 if (PF_ANEQ(pd2.dst, 8097 &nk->addr[pd2.didx], pd2.af) || 8098 nk->port[pd2.didx] != th.th_dport) 8099 pf_change_icmp(pd2.dst, &th.th_dport, 8100 saddr, &nk->addr[pd2.didx], 8101 nk->port[pd2.didx], NULL, 8102 pd2.ip_sum, icmpsum, 8103 pd->ip_sum, 0, pd2.af); 8104 copyback = 1; 8105 } 8106 8107 if (copyback) { 8108 switch (pd2.af) { 8109 #ifdef INET 8110 case AF_INET: 8111 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8112 (caddr_t )&pd->hdr.icmp); 8113 m_copyback(pd->m, ipoff2, sizeof(h2), 8114 (caddr_t )&h2); 8115 break; 8116 #endif /* INET */ 8117 #ifdef INET6 8118 case AF_INET6: 8119 m_copyback(pd->m, pd->off, 8120 sizeof(struct icmp6_hdr), 8121 (caddr_t )&pd->hdr.icmp6); 8122 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8123 (caddr_t )&h2_6); 8124 break; 8125 #endif /* INET6 */ 8126 } 8127 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th); 8128 } 8129 8130 return (PF_PASS); 8131 break; 8132 } 8133 case IPPROTO_UDP: { 8134 struct udphdr uh; 8135 8136 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh), 8137 NULL, reason, pd2.af)) { 8138 DPFPRINTF(PF_DEBUG_MISC, 8139 ("pf: ICMP error message too short " 8140 "(udp)\n")); 8141 return (PF_DROP); 8142 } 8143 8144 key.af = pd2.af; 8145 key.proto = IPPROTO_UDP; 8146 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8147 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8148 key.port[pd2.sidx] = uh.uh_sport; 8149 key.port[pd2.didx] = uh.uh_dport; 8150 8151 STATE_LOOKUP(&key, *state, pd); 8152 8153 /* translate source/destination address, if necessary */ 8154 if ((*state)->key[PF_SK_WIRE] != 8155 (*state)->key[PF_SK_STACK]) { 8156 struct pf_state_key *nk; 8157 8158 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8159 nk = (*state)->key[pd->sidx]; 8160 else 8161 nk = (*state)->key[pd->didx]; 8162 8163 #if defined(INET) && defined(INET6) 8164 int afto, sidx, didx; 8165 8166 afto = pd->af != nk->af; 8167 sidx = afto ? pd2.didx : pd2.sidx; 8168 didx = afto ? pd2.sidx : pd2.didx; 8169 8170 if (afto) { 8171 if (pf_translate_icmp_af(nk->af, 8172 &pd->hdr.icmp)) 8173 return (PF_DROP); 8174 m_copyback(pd->m, pd->off, 8175 sizeof(struct icmp6_hdr), 8176 (c_caddr_t)&pd->hdr.icmp6); 8177 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8178 &pd2, &nk->addr[sidx], 8179 &nk->addr[didx], pd->af, 8180 nk->af)) 8181 return (PF_DROP); 8182 if (nk->af == AF_INET) 8183 pd->proto = IPPROTO_ICMP; 8184 else 8185 pd->proto = IPPROTO_ICMPV6; 8186 pf_change_ap(pd->m, pd2.src, &uh.uh_sport, 8187 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx], 8188 nk->port[sidx], 1, pd->af, nk->af); 8189 pf_change_ap(pd->m, pd2.dst, &uh.uh_dport, 8190 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx], 8191 nk->port[didx], 1, pd->af, nk->af); 8192 m_copyback(pd2.m, pd2.off, sizeof(uh), 8193 (c_caddr_t)&uh); 8194 PF_ACPY(&pd->nsaddr, 8195 &nk->addr[pd2.sidx], nk->af); 8196 PF_ACPY(&pd->ndaddr, 8197 &nk->addr[pd2.didx], nk->af); 8198 pd->naf = nk->af; 8199 return (PF_AFRT); 8200 } 8201 #endif 8202 8203 if (PF_ANEQ(pd2.src, 8204 &nk->addr[pd2.sidx], pd2.af) || 8205 nk->port[pd2.sidx] != uh.uh_sport) 8206 pf_change_icmp(pd2.src, &uh.uh_sport, 8207 daddr, &nk->addr[pd2.sidx], 8208 nk->port[pd2.sidx], &uh.uh_sum, 8209 pd2.ip_sum, icmpsum, 8210 pd->ip_sum, 1, pd2.af); 8211 8212 if (PF_ANEQ(pd2.dst, 8213 &nk->addr[pd2.didx], pd2.af) || 8214 nk->port[pd2.didx] != uh.uh_dport) 8215 pf_change_icmp(pd2.dst, &uh.uh_dport, 8216 saddr, &nk->addr[pd2.didx], 8217 nk->port[pd2.didx], &uh.uh_sum, 8218 pd2.ip_sum, icmpsum, 8219 pd->ip_sum, 1, pd2.af); 8220 8221 switch (pd2.af) { 8222 #ifdef INET 8223 case AF_INET: 8224 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8225 (caddr_t )&pd->hdr.icmp); 8226 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8227 break; 8228 #endif /* INET */ 8229 #ifdef INET6 8230 case AF_INET6: 8231 m_copyback(pd->m, pd->off, 8232 sizeof(struct icmp6_hdr), 8233 (caddr_t )&pd->hdr.icmp6); 8234 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8235 (caddr_t )&h2_6); 8236 break; 8237 #endif /* INET6 */ 8238 } 8239 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh); 8240 } 8241 return (PF_PASS); 8242 break; 8243 } 8244 #ifdef INET 8245 case IPPROTO_ICMP: { 8246 struct icmp *iih = &pd2.hdr.icmp; 8247 8248 if (pd2.af != AF_INET) { 8249 REASON_SET(reason, PFRES_NORM); 8250 return (PF_DROP); 8251 } 8252 8253 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8254 NULL, reason, pd2.af)) { 8255 DPFPRINTF(PF_DEBUG_MISC, 8256 ("pf: ICMP error message too short i" 8257 "(icmp)\n")); 8258 return (PF_DROP); 8259 } 8260 8261 icmpid = iih->icmp_id; 8262 pf_icmp_mapping(&pd2, iih->icmp_type, 8263 &icmp_dir, &multi, &virtual_id, &virtual_type); 8264 8265 ret = pf_icmp_state_lookup(&key, &pd2, state, 8266 pd2.dir, virtual_id, virtual_type, 8267 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 8268 if (ret >= 0) { 8269 MPASS(*state == NULL); 8270 return (ret); 8271 } 8272 8273 /* translate source/destination address, if necessary */ 8274 if ((*state)->key[PF_SK_WIRE] != 8275 (*state)->key[PF_SK_STACK]) { 8276 struct pf_state_key *nk; 8277 8278 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8279 nk = (*state)->key[pd->sidx]; 8280 else 8281 nk = (*state)->key[pd->didx]; 8282 8283 #if defined(INET) && defined(INET6) 8284 int afto, sidx, didx; 8285 8286 afto = pd->af != nk->af; 8287 sidx = afto ? pd2.didx : pd2.sidx; 8288 didx = afto ? pd2.sidx : pd2.didx; 8289 iidx = afto ? !iidx : iidx; 8290 8291 if (afto) { 8292 if (nk->af != AF_INET6) 8293 return (PF_DROP); 8294 if (pf_translate_icmp_af(nk->af, 8295 &pd->hdr.icmp)) 8296 return (PF_DROP); 8297 m_copyback(pd->m, pd->off, 8298 sizeof(struct icmp6_hdr), 8299 (c_caddr_t)&pd->hdr.icmp6); 8300 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8301 &pd2, &nk->addr[sidx], 8302 &nk->addr[didx], pd->af, 8303 nk->af)) 8304 return (PF_DROP); 8305 pd->proto = IPPROTO_ICMPV6; 8306 if (pf_translate_icmp_af(nk->af, &iih)) 8307 return (PF_DROP); 8308 if (virtual_type == htons(ICMP_ECHO) && 8309 nk->port[iidx] != iih->icmp_id) 8310 iih->icmp_id = nk->port[iidx]; 8311 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8312 (c_caddr_t)&iih); 8313 PF_ACPY(&pd->nsaddr, 8314 &nk->addr[pd2.sidx], nk->af); 8315 PF_ACPY(&pd->ndaddr, 8316 &nk->addr[pd2.didx], nk->af); 8317 pd->naf = nk->af; 8318 return (PF_AFRT); 8319 } 8320 #endif 8321 8322 if (PF_ANEQ(pd2.src, 8323 &nk->addr[pd2.sidx], pd2.af) || 8324 (virtual_type == htons(ICMP_ECHO) && 8325 nk->port[iidx] != iih->icmp_id)) 8326 pf_change_icmp(pd2.src, 8327 (virtual_type == htons(ICMP_ECHO)) ? 8328 &iih->icmp_id : NULL, 8329 daddr, &nk->addr[pd2.sidx], 8330 (virtual_type == htons(ICMP_ECHO)) ? 8331 nk->port[iidx] : 0, NULL, 8332 pd2.ip_sum, icmpsum, 8333 pd->ip_sum, 0, AF_INET); 8334 8335 if (PF_ANEQ(pd2.dst, 8336 &nk->addr[pd2.didx], pd2.af)) 8337 pf_change_icmp(pd2.dst, NULL, NULL, 8338 &nk->addr[pd2.didx], 0, NULL, 8339 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8340 AF_INET); 8341 8342 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8343 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8344 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8345 } 8346 return (PF_PASS); 8347 break; 8348 } 8349 #endif /* INET */ 8350 #ifdef INET6 8351 case IPPROTO_ICMPV6: { 8352 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8353 8354 if (pd2.af != AF_INET6) { 8355 REASON_SET(reason, PFRES_NORM); 8356 return (PF_DROP); 8357 } 8358 8359 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8360 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8361 DPFPRINTF(PF_DEBUG_MISC, 8362 ("pf: ICMP error message too short " 8363 "(icmp6)\n")); 8364 return (PF_DROP); 8365 } 8366 8367 pf_icmp_mapping(&pd2, iih->icmp6_type, 8368 &icmp_dir, &multi, &virtual_id, &virtual_type); 8369 8370 ret = pf_icmp_state_lookup(&key, &pd2, state, 8371 pd->dir, virtual_id, virtual_type, 8372 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 8373 if (ret >= 0) { 8374 MPASS(*state == NULL); 8375 if (ret == PF_DROP && pd2.af == AF_INET6 && 8376 icmp_dir == PF_OUT) { 8377 ret = pf_icmp_state_lookup(&key, &pd2, 8378 state, pd->dir, 8379 virtual_id, virtual_type, 8380 icmp_dir, &iidx, multi, 1); 8381 if (ret >= 0) { 8382 MPASS(*state == NULL); 8383 return (ret); 8384 } 8385 } else 8386 return (ret); 8387 } 8388 8389 /* translate source/destination address, if necessary */ 8390 if ((*state)->key[PF_SK_WIRE] != 8391 (*state)->key[PF_SK_STACK]) { 8392 struct pf_state_key *nk; 8393 8394 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8395 nk = (*state)->key[pd->sidx]; 8396 else 8397 nk = (*state)->key[pd->didx]; 8398 8399 #if defined(INET) && defined(INET6) 8400 int afto, sidx, didx; 8401 8402 afto = pd->af != nk->af; 8403 sidx = afto ? pd2.didx : pd2.sidx; 8404 didx = afto ? pd2.sidx : pd2.didx; 8405 iidx = afto ? !iidx : iidx; 8406 8407 if (afto) { 8408 if (nk->af != AF_INET) 8409 return (PF_DROP); 8410 if (pf_translate_icmp_af(nk->af, 8411 &pd->hdr.icmp)) 8412 return (PF_DROP); 8413 m_copyback(pd->m, pd->off, 8414 sizeof(struct icmp6_hdr), 8415 (c_caddr_t)&pd->hdr.icmp6); 8416 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8417 &pd2, &nk->addr[sidx], 8418 &nk->addr[didx], pd->af, 8419 nk->af)) 8420 return (PF_DROP); 8421 pd->proto = IPPROTO_ICMP; 8422 if (pf_translate_icmp_af(nk->af, &iih)) 8423 return (PF_DROP); 8424 if (virtual_type == 8425 htons(ICMP6_ECHO_REQUEST) && 8426 nk->port[iidx] != iih->icmp6_id) 8427 iih->icmp6_id = nk->port[iidx]; 8428 m_copyback(pd2.m, pd2.off, 8429 sizeof(struct icmp6_hdr), (c_caddr_t)&iih); 8430 PF_ACPY(&pd->nsaddr, 8431 &nk->addr[pd2.sidx], nk->af); 8432 PF_ACPY(&pd->ndaddr, 8433 &nk->addr[pd2.didx], nk->af); 8434 pd->naf = nk->af; 8435 return (PF_AFRT); 8436 } 8437 #endif 8438 8439 if (PF_ANEQ(pd2.src, 8440 &nk->addr[pd2.sidx], pd2.af) || 8441 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8442 nk->port[pd2.sidx] != iih->icmp6_id)) 8443 pf_change_icmp(pd2.src, 8444 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8445 ? &iih->icmp6_id : NULL, 8446 daddr, &nk->addr[pd2.sidx], 8447 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8448 ? nk->port[iidx] : 0, NULL, 8449 pd2.ip_sum, icmpsum, 8450 pd->ip_sum, 0, AF_INET6); 8451 8452 if (PF_ANEQ(pd2.dst, 8453 &nk->addr[pd2.didx], pd2.af)) 8454 pf_change_icmp(pd2.dst, NULL, NULL, 8455 &nk->addr[pd2.didx], 0, NULL, 8456 pd2.ip_sum, icmpsum, 8457 pd->ip_sum, 0, AF_INET6); 8458 8459 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8460 (caddr_t)&pd->hdr.icmp6); 8461 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8462 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8463 (caddr_t)iih); 8464 } 8465 return (PF_PASS); 8466 break; 8467 } 8468 #endif /* INET6 */ 8469 default: { 8470 key.af = pd2.af; 8471 key.proto = pd2.proto; 8472 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8473 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8474 key.port[0] = key.port[1] = 0; 8475 8476 STATE_LOOKUP(&key, *state, pd); 8477 8478 /* translate source/destination address, if necessary */ 8479 if ((*state)->key[PF_SK_WIRE] != 8480 (*state)->key[PF_SK_STACK]) { 8481 struct pf_state_key *nk = 8482 (*state)->key[pd->didx]; 8483 8484 if (PF_ANEQ(pd2.src, 8485 &nk->addr[pd2.sidx], pd2.af)) 8486 pf_change_icmp(pd2.src, NULL, daddr, 8487 &nk->addr[pd2.sidx], 0, NULL, 8488 pd2.ip_sum, icmpsum, 8489 pd->ip_sum, 0, pd2.af); 8490 8491 if (PF_ANEQ(pd2.dst, 8492 &nk->addr[pd2.didx], pd2.af)) 8493 pf_change_icmp(pd2.dst, NULL, saddr, 8494 &nk->addr[pd2.didx], 0, NULL, 8495 pd2.ip_sum, icmpsum, 8496 pd->ip_sum, 0, pd2.af); 8497 8498 switch (pd2.af) { 8499 #ifdef INET 8500 case AF_INET: 8501 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8502 (caddr_t)&pd->hdr.icmp); 8503 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8504 break; 8505 #endif /* INET */ 8506 #ifdef INET6 8507 case AF_INET6: 8508 m_copyback(pd->m, pd->off, 8509 sizeof(struct icmp6_hdr), 8510 (caddr_t )&pd->hdr.icmp6); 8511 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8512 (caddr_t )&h2_6); 8513 break; 8514 #endif /* INET6 */ 8515 } 8516 } 8517 return (PF_PASS); 8518 break; 8519 } 8520 } 8521 } 8522 } 8523 8524 static int 8525 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd) 8526 { 8527 struct pf_state_peer *src, *dst; 8528 struct pf_state_key_cmp key; 8529 uint8_t psrc, pdst; 8530 int action = PF_PASS; 8531 8532 bzero(&key, sizeof(key)); 8533 key.af = pd->af; 8534 key.proto = pd->proto; 8535 if (pd->dir == PF_IN) { 8536 PF_ACPY(&key.addr[0], pd->src, key.af); 8537 PF_ACPY(&key.addr[1], pd->dst, key.af); 8538 key.port[0] = key.port[1] = 0; 8539 } else { 8540 PF_ACPY(&key.addr[1], pd->src, key.af); 8541 PF_ACPY(&key.addr[0], pd->dst, key.af); 8542 key.port[1] = key.port[0] = 0; 8543 } 8544 8545 STATE_LOOKUP(&key, *state, pd); 8546 8547 if (pd->dir == (*state)->direction) { 8548 src = &(*state)->src; 8549 dst = &(*state)->dst; 8550 psrc = PF_PEER_SRC; 8551 pdst = PF_PEER_DST; 8552 } else { 8553 src = &(*state)->dst; 8554 dst = &(*state)->src; 8555 psrc = PF_PEER_DST; 8556 pdst = PF_PEER_SRC; 8557 } 8558 8559 /* update states */ 8560 if (src->state < PFOTHERS_SINGLE) 8561 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 8562 if (dst->state == PFOTHERS_SINGLE) 8563 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 8564 8565 /* update expire time */ 8566 (*state)->expire = pf_get_uptime(); 8567 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 8568 (*state)->timeout = PFTM_OTHER_MULTIPLE; 8569 else 8570 (*state)->timeout = PFTM_OTHER_SINGLE; 8571 8572 /* translate source/destination address, if necessary */ 8573 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 8574 struct pf_state_key *nk; 8575 int afto; 8576 8577 if (PF_REVERSED_KEY((*state)->key, pd->af)) 8578 nk = (*state)->key[pd->sidx]; 8579 else 8580 nk = (*state)->key[pd->didx]; 8581 8582 KASSERT(nk, ("%s: nk is null", __func__)); 8583 KASSERT(pd, ("%s: pd is null", __func__)); 8584 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 8585 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 8586 8587 afto = pd->af != nk->af; 8588 8589 switch (pd->af) { 8590 #ifdef INET 8591 case AF_INET: 8592 if (!afto && 8593 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 8594 pf_change_a(&pd->src->v4.s_addr, 8595 pd->ip_sum, 8596 nk->addr[pd->sidx].v4.s_addr, 8597 0); 8598 8599 if (!afto && 8600 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 8601 pf_change_a(&pd->dst->v4.s_addr, 8602 pd->ip_sum, 8603 nk->addr[pd->didx].v4.s_addr, 8604 0); 8605 8606 break; 8607 #endif /* INET */ 8608 #ifdef INET6 8609 case AF_INET6: 8610 if (!afto && 8611 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 8612 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 8613 8614 if (!afto && 8615 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 8616 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 8617 #endif /* INET6 */ 8618 } 8619 if (afto) { 8620 PF_ACPY(&pd->nsaddr, 8621 &nk->addr[afto ? pd->didx : pd->sidx], nk->af); 8622 PF_ACPY(&pd->ndaddr, 8623 &nk->addr[afto ? pd->sidx : pd->didx], nk->af); 8624 pd->naf = nk->af; 8625 action = PF_AFRT; 8626 } 8627 } 8628 return (action); 8629 } 8630 8631 /* 8632 * ipoff and off are measured from the start of the mbuf chain. 8633 * h must be at "ipoff" on the mbuf chain. 8634 */ 8635 void * 8636 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8637 u_short *actionp, u_short *reasonp, sa_family_t af) 8638 { 8639 switch (af) { 8640 #ifdef INET 8641 case AF_INET: { 8642 const struct ip *h = mtod(m, struct ip *); 8643 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8644 8645 if (fragoff) { 8646 if (fragoff >= len) 8647 ACTION_SET(actionp, PF_PASS); 8648 else { 8649 ACTION_SET(actionp, PF_DROP); 8650 REASON_SET(reasonp, PFRES_FRAG); 8651 } 8652 return (NULL); 8653 } 8654 if (m->m_pkthdr.len < off + len || 8655 ntohs(h->ip_len) < off + len) { 8656 ACTION_SET(actionp, PF_DROP); 8657 REASON_SET(reasonp, PFRES_SHORT); 8658 return (NULL); 8659 } 8660 break; 8661 } 8662 #endif /* INET */ 8663 #ifdef INET6 8664 case AF_INET6: { 8665 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8666 8667 if (m->m_pkthdr.len < off + len || 8668 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 8669 (unsigned)(off + len)) { 8670 ACTION_SET(actionp, PF_DROP); 8671 REASON_SET(reasonp, PFRES_SHORT); 8672 return (NULL); 8673 } 8674 break; 8675 } 8676 #endif /* INET6 */ 8677 } 8678 m_copydata(m, off, len, p); 8679 return (p); 8680 } 8681 8682 int 8683 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8684 int rtableid) 8685 { 8686 struct ifnet *ifp; 8687 8688 /* 8689 * Skip check for addresses with embedded interface scope, 8690 * as they would always match anyway. 8691 */ 8692 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8693 return (1); 8694 8695 if (af != AF_INET && af != AF_INET6) 8696 return (0); 8697 8698 if (kif == V_pfi_all) 8699 return (1); 8700 8701 /* Skip checks for ipsec interfaces */ 8702 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8703 return (1); 8704 8705 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8706 8707 switch (af) { 8708 #ifdef INET6 8709 case AF_INET6: 8710 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8711 ifp)); 8712 #endif 8713 #ifdef INET 8714 case AF_INET: 8715 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8716 ifp)); 8717 #endif 8718 } 8719 8720 return (0); 8721 } 8722 8723 #ifdef INET 8724 static void 8725 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8726 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8727 { 8728 struct mbuf *m0, *m1, *md; 8729 struct sockaddr_in dst; 8730 struct ip *ip; 8731 struct ifnet *ifp = NULL; 8732 int error = 0; 8733 uint16_t ip_len, ip_off; 8734 uint16_t tmp; 8735 int r_dir; 8736 8737 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8738 8739 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp); 8740 8741 if (s) { 8742 r_dir = s->direction; 8743 } else { 8744 r_dir = r->direction; 8745 } 8746 8747 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8748 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8749 __func__)); 8750 8751 if ((pd->pf_mtag == NULL && 8752 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8753 pd->pf_mtag->routed++ > 3) { 8754 m0 = *m; 8755 *m = NULL; 8756 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8757 goto bad_locked; 8758 } 8759 8760 if (pd->act.rt_kif != NULL) 8761 ifp = pd->act.rt_kif->pfik_ifp; 8762 8763 if (pd->act.rt == PF_DUPTO) { 8764 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8765 if (s != NULL) { 8766 PF_STATE_UNLOCK(s); 8767 } 8768 if (ifp == oifp) { 8769 /* When the 2nd interface is not skipped */ 8770 return; 8771 } else { 8772 m0 = *m; 8773 *m = NULL; 8774 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8775 goto bad; 8776 } 8777 } else { 8778 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8779 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8780 if (s) 8781 PF_STATE_UNLOCK(s); 8782 return; 8783 } 8784 } 8785 } else { 8786 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8787 pf_dummynet(pd, s, r, m); 8788 if (s) 8789 PF_STATE_UNLOCK(s); 8790 return; 8791 } 8792 m0 = *m; 8793 } 8794 8795 ip = mtod(m0, struct ip *); 8796 8797 bzero(&dst, sizeof(dst)); 8798 dst.sin_family = AF_INET; 8799 dst.sin_len = sizeof(dst); 8800 dst.sin_addr = ip->ip_dst; 8801 dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 8802 8803 if (s != NULL){ 8804 if (r->rule_flag & PFRULE_IFBOUND && 8805 pd->act.rt == PF_REPLYTO && 8806 s->kif == V_pfi_all) { 8807 s->kif = pd->act.rt_kif; 8808 s->orig_kif = oifp->if_pf_kif; 8809 } 8810 8811 if (ifp == NULL && (pd->af != pd->naf)) { 8812 /* We're in the AFTO case. Do a route lookup. */ 8813 struct nhop_object *nh; 8814 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0); 8815 if (nh) { 8816 ifp = nh->nh_ifp; 8817 8818 /* Use the gateway if needed. */ 8819 if (nh->nh_flags & NHF_GATEWAY) 8820 dst.sin_addr = nh->gw4_sa.sin_addr; 8821 else 8822 dst.sin_addr = ip->ip_dst; 8823 8824 /* 8825 * Bind to the correct interface if we're 8826 * if-bound. We don't know which interface 8827 * that will be until here, so we've inserted 8828 * the state on V_pf_all. Fix that now. 8829 */ 8830 if (s->kif == V_pfi_all && ifp != NULL && 8831 r->rule_flag & PFRULE_IFBOUND) 8832 s->kif = ifp->if_pf_kif; 8833 } 8834 } 8835 8836 PF_STATE_UNLOCK(s); 8837 } 8838 8839 if (ifp == NULL) { 8840 m0 = *m; 8841 *m = NULL; 8842 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8843 goto bad; 8844 } 8845 8846 if (pd->dir == PF_IN) { 8847 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8848 &pd->act) != PF_PASS) { 8849 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8850 goto bad; 8851 } else if (m0 == NULL) { 8852 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8853 goto done; 8854 } 8855 if (m0->m_len < sizeof(struct ip)) { 8856 DPFPRINTF(PF_DEBUG_URGENT, 8857 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 8858 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8859 goto bad; 8860 } 8861 ip = mtod(m0, struct ip *); 8862 } 8863 8864 if (ifp->if_flags & IFF_LOOPBACK) 8865 m0->m_flags |= M_SKIP_FIREWALL; 8866 8867 ip_len = ntohs(ip->ip_len); 8868 ip_off = ntohs(ip->ip_off); 8869 8870 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 8871 m0->m_pkthdr.csum_flags |= CSUM_IP; 8872 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 8873 in_delayed_cksum(m0); 8874 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 8875 } 8876 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 8877 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 8878 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 8879 } 8880 8881 if (pd->dir == PF_IN) { 8882 /* 8883 * Make sure dummynet gets the correct direction, in case it needs to 8884 * re-inject later. 8885 */ 8886 pd->dir = PF_OUT; 8887 8888 /* 8889 * The following processing is actually the rest of the inbound processing, even 8890 * though we've marked it as outbound (so we don't look through dummynet) and it 8891 * happens after the outbound processing (pf_test(PF_OUT) above). 8892 * Swap the dummynet pipe numbers, because it's going to come to the wrong 8893 * conclusion about what direction it's processing, and we can't fix it or it 8894 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 8895 * decision will pick the right pipe, and everything will mostly work as expected. 8896 */ 8897 tmp = pd->act.dnrpipe; 8898 pd->act.dnrpipe = pd->act.dnpipe; 8899 pd->act.dnpipe = tmp; 8900 } 8901 8902 /* 8903 * If small enough for interface, or the interface will take 8904 * care of the fragmentation for us, we can just send directly. 8905 */ 8906 if (ip_len <= ifp->if_mtu || 8907 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 8908 ip->ip_sum = 0; 8909 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 8910 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 8911 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 8912 } 8913 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 8914 8915 md = m0; 8916 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8917 if (md != NULL) { 8918 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 8919 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 8920 } 8921 goto done; 8922 } 8923 8924 /* Balk when DF bit is set or the interface didn't support TSO. */ 8925 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 8926 error = EMSGSIZE; 8927 KMOD_IPSTAT_INC(ips_cantfrag); 8928 if (pd->act.rt != PF_DUPTO) { 8929 if (s && s->nat_rule != NULL) 8930 PACKET_UNDO_NAT(m0, pd, 8931 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 8932 s); 8933 8934 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 8935 ifp->if_mtu); 8936 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8937 goto done; 8938 } else { 8939 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8940 goto bad; 8941 } 8942 } 8943 8944 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 8945 if (error) { 8946 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8947 goto bad; 8948 } 8949 8950 for (; m0; m0 = m1) { 8951 m1 = m0->m_nextpkt; 8952 m0->m_nextpkt = NULL; 8953 if (error == 0) { 8954 m_clrprotoflags(m0); 8955 md = m0; 8956 pd->pf_mtag = pf_find_mtag(md); 8957 error = pf_dummynet_route(pd, s, r, ifp, 8958 sintosa(&dst), &md); 8959 if (md != NULL) { 8960 error = (*ifp->if_output)(ifp, md, 8961 sintosa(&dst), NULL); 8962 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 8963 } 8964 } else 8965 m_freem(m0); 8966 } 8967 8968 if (error == 0) 8969 KMOD_IPSTAT_INC(ips_fragmented); 8970 8971 done: 8972 if (pd->act.rt != PF_DUPTO) 8973 *m = NULL; 8974 return; 8975 8976 bad_locked: 8977 if (s) 8978 PF_STATE_UNLOCK(s); 8979 bad: 8980 m_freem(m0); 8981 goto done; 8982 } 8983 #endif /* INET */ 8984 8985 #ifdef INET6 8986 static void 8987 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8988 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8989 { 8990 struct mbuf *m0, *md; 8991 struct m_tag *mtag; 8992 struct sockaddr_in6 dst; 8993 struct ip6_hdr *ip6; 8994 struct ifnet *ifp = NULL; 8995 int r_dir; 8996 8997 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8998 8999 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp); 9000 9001 if (s) { 9002 r_dir = s->direction; 9003 } else { 9004 r_dir = r->direction; 9005 } 9006 9007 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9008 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9009 __func__)); 9010 9011 if ((pd->pf_mtag == NULL && 9012 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 9013 pd->pf_mtag->routed++ > 3) { 9014 m0 = *m; 9015 *m = NULL; 9016 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9017 goto bad_locked; 9018 } 9019 9020 if (pd->act.rt_kif != NULL) 9021 ifp = pd->act.rt_kif->pfik_ifp; 9022 9023 if (pd->act.rt == PF_DUPTO) { 9024 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9025 if (s != NULL) { 9026 PF_STATE_UNLOCK(s); 9027 } 9028 if (ifp == oifp) { 9029 /* When the 2nd interface is not skipped */ 9030 return; 9031 } else { 9032 m0 = *m; 9033 *m = NULL; 9034 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9035 goto bad; 9036 } 9037 } else { 9038 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9039 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 9040 if (s) 9041 PF_STATE_UNLOCK(s); 9042 return; 9043 } 9044 } 9045 } else { 9046 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9047 pf_dummynet(pd, s, r, m); 9048 if (s) 9049 PF_STATE_UNLOCK(s); 9050 return; 9051 } 9052 m0 = *m; 9053 } 9054 9055 ip6 = mtod(m0, struct ip6_hdr *); 9056 9057 bzero(&dst, sizeof(dst)); 9058 dst.sin6_family = AF_INET6; 9059 dst.sin6_len = sizeof(dst); 9060 dst.sin6_addr = ip6->ip6_dst; 9061 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 9062 9063 if (s != NULL) { 9064 if (r->rule_flag & PFRULE_IFBOUND && 9065 pd->act.rt == PF_REPLYTO && 9066 s->kif == V_pfi_all) { 9067 s->kif = pd->act.rt_kif; 9068 s->orig_kif = oifp->if_pf_kif; 9069 } 9070 9071 if (ifp == NULL && (pd->af != pd->naf)) { 9072 struct nhop_object *nh; 9073 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0); 9074 if (nh) { 9075 ifp = nh->nh_ifp; 9076 9077 /* Use the gateway if needed. */ 9078 if (nh->nh_flags & NHF_GATEWAY) 9079 bcopy(&dst.sin6_addr, &nh->gw6_sa.sin6_addr, 9080 sizeof(dst.sin6_addr)); 9081 else 9082 dst.sin6_addr = ip6->ip6_dst; 9083 9084 /* 9085 * Bind to the correct interface if we're 9086 * if-bound. We don't know which interface 9087 * that will be until here, so we've inserted 9088 * the state on V_pf_all. Fix that now. 9089 */ 9090 if (s->kif == V_pfi_all && ifp != NULL && 9091 r->rule_flag & PFRULE_IFBOUND) 9092 s->kif = ifp->if_pf_kif; 9093 } 9094 } 9095 9096 PF_STATE_UNLOCK(s); 9097 } 9098 9099 if (pd->af != pd->naf) { 9100 struct udphdr *uh = &pd->hdr.udp; 9101 9102 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9103 uh->uh_sum = in6_cksum_pseudo(ip6, 9104 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9105 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9106 } 9107 } 9108 9109 if (ifp == NULL) { 9110 m0 = *m; 9111 *m = NULL; 9112 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9113 goto bad; 9114 } 9115 9116 if (pd->dir == PF_IN) { 9117 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9118 ifp, &m0, inp, &pd->act) != PF_PASS) { 9119 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9120 goto bad; 9121 } else if (m0 == NULL) { 9122 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9123 goto done; 9124 } 9125 if (m0->m_len < sizeof(struct ip6_hdr)) { 9126 DPFPRINTF(PF_DEBUG_URGENT, 9127 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 9128 __func__)); 9129 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9130 goto bad; 9131 } 9132 ip6 = mtod(m0, struct ip6_hdr *); 9133 } 9134 9135 if (ifp->if_flags & IFF_LOOPBACK) 9136 m0->m_flags |= M_SKIP_FIREWALL; 9137 9138 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9139 ~ifp->if_hwassist) { 9140 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9141 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9142 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9143 } 9144 9145 if (pd->dir == PF_IN) { 9146 uint16_t tmp; 9147 /* 9148 * Make sure dummynet gets the correct direction, in case it needs to 9149 * re-inject later. 9150 */ 9151 pd->dir = PF_OUT; 9152 9153 /* 9154 * The following processing is actually the rest of the inbound processing, even 9155 * though we've marked it as outbound (so we don't look through dummynet) and it 9156 * happens after the outbound processing (pf_test(PF_OUT) above). 9157 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9158 * conclusion about what direction it's processing, and we can't fix it or it 9159 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9160 * decision will pick the right pipe, and everything will mostly work as expected. 9161 */ 9162 tmp = pd->act.dnrpipe; 9163 pd->act.dnrpipe = pd->act.dnpipe; 9164 pd->act.dnpipe = tmp; 9165 } 9166 9167 /* 9168 * If the packet is too large for the outgoing interface, 9169 * send back an icmp6 error. 9170 */ 9171 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9172 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9173 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9174 if (mtag != NULL) { 9175 int ret __sdt_used; 9176 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9177 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9178 goto done; 9179 } 9180 9181 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9182 md = m0; 9183 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9184 if (md != NULL) { 9185 int ret __sdt_used; 9186 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9187 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9188 } 9189 } 9190 else { 9191 in6_ifstat_inc(ifp, ifs6_in_toobig); 9192 if (pd->act.rt != PF_DUPTO) { 9193 if (s && s->nat_rule != NULL) 9194 PACKET_UNDO_NAT(m0, pd, 9195 ((caddr_t)ip6 - m0->m_data) + 9196 sizeof(struct ip6_hdr), s); 9197 9198 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 9199 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9200 } else { 9201 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9202 goto bad; 9203 } 9204 } 9205 9206 done: 9207 if (pd->act.rt != PF_DUPTO) 9208 *m = NULL; 9209 return; 9210 9211 bad_locked: 9212 if (s) 9213 PF_STATE_UNLOCK(s); 9214 bad: 9215 m_freem(m0); 9216 goto done; 9217 } 9218 #endif /* INET6 */ 9219 9220 /* 9221 * FreeBSD supports cksum offloads for the following drivers. 9222 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9223 * 9224 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9225 * network driver performed cksum including pseudo header, need to verify 9226 * csum_data 9227 * CSUM_DATA_VALID : 9228 * network driver performed cksum, needs to additional pseudo header 9229 * cksum computation with partial csum_data(i.e. lack of H/W support for 9230 * pseudo header, for instance sk(4) and possibly gem(4)) 9231 * 9232 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9233 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9234 * TCP/UDP layer. 9235 * Also, set csum_data to 0xffff to force cksum validation. 9236 */ 9237 static int 9238 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9239 { 9240 u_int16_t sum = 0; 9241 int hw_assist = 0; 9242 struct ip *ip; 9243 9244 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9245 return (1); 9246 if (m->m_pkthdr.len < off + len) 9247 return (1); 9248 9249 switch (p) { 9250 case IPPROTO_TCP: 9251 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9252 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9253 sum = m->m_pkthdr.csum_data; 9254 } else { 9255 ip = mtod(m, struct ip *); 9256 sum = in_pseudo(ip->ip_src.s_addr, 9257 ip->ip_dst.s_addr, htonl((u_short)len + 9258 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9259 } 9260 sum ^= 0xffff; 9261 ++hw_assist; 9262 } 9263 break; 9264 case IPPROTO_UDP: 9265 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9266 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9267 sum = m->m_pkthdr.csum_data; 9268 } else { 9269 ip = mtod(m, struct ip *); 9270 sum = in_pseudo(ip->ip_src.s_addr, 9271 ip->ip_dst.s_addr, htonl((u_short)len + 9272 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9273 } 9274 sum ^= 0xffff; 9275 ++hw_assist; 9276 } 9277 break; 9278 case IPPROTO_ICMP: 9279 #ifdef INET6 9280 case IPPROTO_ICMPV6: 9281 #endif /* INET6 */ 9282 break; 9283 default: 9284 return (1); 9285 } 9286 9287 if (!hw_assist) { 9288 switch (af) { 9289 case AF_INET: 9290 if (p == IPPROTO_ICMP) { 9291 if (m->m_len < off) 9292 return (1); 9293 m->m_data += off; 9294 m->m_len -= off; 9295 sum = in_cksum(m, len); 9296 m->m_data -= off; 9297 m->m_len += off; 9298 } else { 9299 if (m->m_len < sizeof(struct ip)) 9300 return (1); 9301 sum = in4_cksum(m, p, off, len); 9302 } 9303 break; 9304 #ifdef INET6 9305 case AF_INET6: 9306 if (m->m_len < sizeof(struct ip6_hdr)) 9307 return (1); 9308 sum = in6_cksum(m, p, off, len); 9309 break; 9310 #endif /* INET6 */ 9311 } 9312 } 9313 if (sum) { 9314 switch (p) { 9315 case IPPROTO_TCP: 9316 { 9317 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9318 break; 9319 } 9320 case IPPROTO_UDP: 9321 { 9322 KMOD_UDPSTAT_INC(udps_badsum); 9323 break; 9324 } 9325 #ifdef INET 9326 case IPPROTO_ICMP: 9327 { 9328 KMOD_ICMPSTAT_INC(icps_checksum); 9329 break; 9330 } 9331 #endif 9332 #ifdef INET6 9333 case IPPROTO_ICMPV6: 9334 { 9335 KMOD_ICMP6STAT_INC(icp6s_checksum); 9336 break; 9337 } 9338 #endif /* INET6 */ 9339 } 9340 return (1); 9341 } else { 9342 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9343 m->m_pkthdr.csum_flags |= 9344 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9345 m->m_pkthdr.csum_data = 0xffff; 9346 } 9347 } 9348 return (0); 9349 } 9350 9351 static bool 9352 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9353 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9354 { 9355 int dndir = r->direction; 9356 9357 if (s && dndir == PF_INOUT) { 9358 dndir = s->direction; 9359 } else if (dndir == PF_INOUT) { 9360 /* Assume primary direction. Happens when we've set dnpipe in 9361 * the ethernet level code. */ 9362 dndir = pd->dir; 9363 } 9364 9365 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9366 return (false); 9367 9368 memset(dnflow, 0, sizeof(*dnflow)); 9369 9370 if (pd->dport != NULL) 9371 dnflow->f_id.dst_port = ntohs(*pd->dport); 9372 if (pd->sport != NULL) 9373 dnflow->f_id.src_port = ntohs(*pd->sport); 9374 9375 if (pd->dir == PF_IN) 9376 dnflow->flags |= IPFW_ARGS_IN; 9377 else 9378 dnflow->flags |= IPFW_ARGS_OUT; 9379 9380 if (pd->dir != dndir && pd->act.dnrpipe) { 9381 dnflow->rule.info = pd->act.dnrpipe; 9382 } 9383 else if (pd->dir == dndir && pd->act.dnpipe) { 9384 dnflow->rule.info = pd->act.dnpipe; 9385 } 9386 else { 9387 return (false); 9388 } 9389 9390 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9391 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9392 dnflow->rule.info |= IPFW_IS_PIPE; 9393 9394 dnflow->f_id.proto = pd->proto; 9395 dnflow->f_id.extra = dnflow->rule.info; 9396 switch (pd->naf) { 9397 case AF_INET: 9398 dnflow->f_id.addr_type = 4; 9399 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9400 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9401 break; 9402 case AF_INET6: 9403 dnflow->flags |= IPFW_ARGS_IP6; 9404 dnflow->f_id.addr_type = 6; 9405 dnflow->f_id.src_ip6 = pd->src->v6; 9406 dnflow->f_id.dst_ip6 = pd->dst->v6; 9407 break; 9408 } 9409 9410 return (true); 9411 } 9412 9413 int 9414 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9415 struct inpcb *inp) 9416 { 9417 struct pfi_kkif *kif; 9418 struct mbuf *m = *m0; 9419 9420 M_ASSERTPKTHDR(m); 9421 MPASS(ifp->if_vnet == curvnet); 9422 NET_EPOCH_ASSERT(); 9423 9424 if (!V_pf_status.running) 9425 return (PF_PASS); 9426 9427 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9428 9429 if (kif == NULL) { 9430 DPFPRINTF(PF_DEBUG_URGENT, 9431 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 9432 return (PF_DROP); 9433 } 9434 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9435 return (PF_PASS); 9436 9437 if (m->m_flags & M_SKIP_FIREWALL) 9438 return (PF_PASS); 9439 9440 if (__predict_false(! M_WRITABLE(*m0))) { 9441 m = *m0 = m_unshare(*m0, M_NOWAIT); 9442 if (*m0 == NULL) 9443 return (PF_DROP); 9444 } 9445 9446 /* Stateless! */ 9447 return (pf_test_eth_rule(dir, kif, m0)); 9448 } 9449 9450 static __inline void 9451 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9452 { 9453 struct m_tag *mtag; 9454 9455 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9456 9457 /* dummynet adds this tag, but pf does not need it, 9458 * and keeping it creates unexpected behavior, 9459 * e.g. in case of divert(4) usage right after dummynet. */ 9460 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9461 if (mtag != NULL) 9462 m_tag_delete(m, mtag); 9463 } 9464 9465 static int 9466 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9467 struct pf_krule *r, struct mbuf **m0) 9468 { 9469 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9470 } 9471 9472 static int 9473 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9474 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 9475 struct mbuf **m0) 9476 { 9477 struct ip_fw_args dnflow; 9478 9479 NET_EPOCH_ASSERT(); 9480 9481 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9482 return (0); 9483 9484 if (ip_dn_io_ptr == NULL) { 9485 m_freem(*m0); 9486 *m0 = NULL; 9487 return (ENOMEM); 9488 } 9489 9490 if (pd->pf_mtag == NULL && 9491 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9492 m_freem(*m0); 9493 *m0 = NULL; 9494 return (ENOMEM); 9495 } 9496 9497 if (ifp != NULL) { 9498 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9499 9500 pd->pf_mtag->if_index = ifp->if_index; 9501 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9502 9503 MPASS(sa != NULL); 9504 9505 switch (pd->naf) { 9506 case AF_INET: 9507 memcpy(&pd->pf_mtag->dst, sa, 9508 sizeof(struct sockaddr_in)); 9509 break; 9510 case AF_INET6: 9511 memcpy(&pd->pf_mtag->dst, sa, 9512 sizeof(struct sockaddr_in6)); 9513 break; 9514 } 9515 } 9516 9517 if (s != NULL && s->nat_rule != NULL && 9518 s->nat_rule->action == PF_RDR && 9519 ( 9520 #ifdef INET 9521 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9522 #endif 9523 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9524 /* 9525 * If we're redirecting to loopback mark this packet 9526 * as being local. Otherwise it might get dropped 9527 * if dummynet re-injects. 9528 */ 9529 (*m0)->m_pkthdr.rcvif = V_loif; 9530 } 9531 9532 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9533 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9534 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9535 ip_dn_io_ptr(m0, &dnflow); 9536 if (*m0 != NULL) { 9537 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9538 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9539 } 9540 } 9541 9542 return (0); 9543 } 9544 9545 #ifdef INET6 9546 static int 9547 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen, 9548 u_short *reason) 9549 { 9550 struct ip6_opt opt; 9551 struct ip6_opt_jumbo jumbo; 9552 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 9553 9554 while (off < end) { 9555 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type), 9556 NULL, reason, AF_INET6)) { 9557 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 9558 return (PF_DROP); 9559 } 9560 if (opt.ip6o_type == IP6OPT_PAD1) { 9561 off++; 9562 continue; 9563 } 9564 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason, 9565 AF_INET6)) { 9566 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 9567 return (PF_DROP); 9568 } 9569 if (off + sizeof(opt) + opt.ip6o_len > end) { 9570 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 9571 REASON_SET(reason, PFRES_IPOPTIONS); 9572 return (PF_DROP); 9573 } 9574 switch (opt.ip6o_type) { 9575 case IP6OPT_JUMBO: 9576 if (*jumbolen != 0) { 9577 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 9578 REASON_SET(reason, PFRES_IPOPTIONS); 9579 return (PF_DROP); 9580 } 9581 if (ntohs(h->ip6_plen) != 0) { 9582 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 9583 REASON_SET(reason, PFRES_IPOPTIONS); 9584 return (PF_DROP); 9585 } 9586 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL, 9587 reason, AF_INET6)) { 9588 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 9589 return (PF_DROP); 9590 } 9591 memcpy(jumbolen, jumbo.ip6oj_jumbo_len, 9592 sizeof(*jumbolen)); 9593 *jumbolen = ntohl(*jumbolen); 9594 if (*jumbolen < IPV6_MAXPACKET) { 9595 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 9596 REASON_SET(reason, PFRES_IPOPTIONS); 9597 return (PF_DROP); 9598 } 9599 break; 9600 default: 9601 break; 9602 } 9603 off += sizeof(opt) + opt.ip6o_len; 9604 } 9605 9606 return (PF_PASS); 9607 } 9608 9609 int 9610 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff, 9611 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason) 9612 { 9613 struct ip6_frag frag; 9614 struct ip6_ext ext; 9615 struct ip6_rthdr rthdr; 9616 int rthdr_cnt = 0; 9617 9618 *off += sizeof(struct ip6_hdr); 9619 *extoff = *fragoff = 0; 9620 *nxt = h->ip6_nxt; 9621 *jumbolen = 0; 9622 for (;;) { 9623 switch (*nxt) { 9624 case IPPROTO_FRAGMENT: 9625 if (*fragoff != 0) { 9626 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 9627 REASON_SET(reason, PFRES_FRAG); 9628 return (PF_DROP); 9629 } 9630 /* jumbo payload packets cannot be fragmented */ 9631 if (*jumbolen != 0) { 9632 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 9633 REASON_SET(reason, PFRES_FRAG); 9634 return (PF_DROP); 9635 } 9636 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL, 9637 reason, AF_INET6)) { 9638 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 9639 return (PF_DROP); 9640 } 9641 *fragoff = *off; 9642 /* stop walking over non initial fragments */ 9643 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0) 9644 return (PF_PASS); 9645 *off += sizeof(frag); 9646 *nxt = frag.ip6f_nxt; 9647 break; 9648 case IPPROTO_ROUTING: 9649 if (rthdr_cnt++) { 9650 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 9651 REASON_SET(reason, PFRES_IPOPTIONS); 9652 return (PF_DROP); 9653 } 9654 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL, 9655 reason, AF_INET6)) { 9656 /* fragments may be short */ 9657 if (*fragoff != 0) { 9658 *off = *fragoff; 9659 *nxt = IPPROTO_FRAGMENT; 9660 return (PF_PASS); 9661 } 9662 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 9663 return (PF_DROP); 9664 } 9665 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9666 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 9667 REASON_SET(reason, PFRES_IPOPTIONS); 9668 return (PF_DROP); 9669 } 9670 /* FALLTHROUGH */ 9671 case IPPROTO_AH: 9672 case IPPROTO_HOPOPTS: 9673 case IPPROTO_DSTOPTS: 9674 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL, 9675 reason, AF_INET6)) { 9676 /* fragments may be short */ 9677 if (*fragoff != 0) { 9678 *off = *fragoff; 9679 *nxt = IPPROTO_FRAGMENT; 9680 return (PF_PASS); 9681 } 9682 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 9683 return (PF_DROP); 9684 } 9685 /* reassembly needs the ext header before the frag */ 9686 if (*fragoff == 0) 9687 *extoff = *off; 9688 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) { 9689 if (pf_walk_option6(m, *off + sizeof(ext), 9690 *off + (ext.ip6e_len + 1) * 8, jumbolen, 9691 reason) != PF_PASS) 9692 return (PF_DROP); 9693 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) { 9694 DPFPRINTF(PF_DEBUG_MISC, 9695 ("IPv6 missing jumbo")); 9696 REASON_SET(reason, PFRES_IPOPTIONS); 9697 return (PF_DROP); 9698 } 9699 } 9700 if (*nxt == IPPROTO_AH) 9701 *off += (ext.ip6e_len + 2) * 4; 9702 else 9703 *off += (ext.ip6e_len + 1) * 8; 9704 *nxt = ext.ip6e_nxt; 9705 break; 9706 case IPPROTO_TCP: 9707 case IPPROTO_UDP: 9708 case IPPROTO_SCTP: 9709 case IPPROTO_ICMPV6: 9710 /* fragments may be short, ignore inner header then */ 9711 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off + 9712 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) : 9713 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) : 9714 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) : 9715 sizeof(struct icmp6_hdr))) { 9716 *off = *fragoff; 9717 *nxt = IPPROTO_FRAGMENT; 9718 } 9719 /* FALLTHROUGH */ 9720 default: 9721 return (PF_PASS); 9722 } 9723 } 9724 } 9725 #endif 9726 9727 static void 9728 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 9729 { 9730 memset(pd, 0, sizeof(*pd)); 9731 pd->pf_mtag = pf_find_mtag(m); 9732 pd->m = m; 9733 } 9734 9735 static int 9736 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 9737 u_short *action, u_short *reason, struct pfi_kkif *kif, 9738 struct pf_rule_actions *default_actions) 9739 { 9740 pd->dir = dir; 9741 pd->kif = kif; 9742 pd->m = *m0; 9743 pd->sidx = (dir == PF_IN) ? 0 : 1; 9744 pd->didx = (dir == PF_IN) ? 1 : 0; 9745 pd->af = pd->naf = af; 9746 9747 TAILQ_INIT(&pd->sctp_multihome_jobs); 9748 if (default_actions != NULL) 9749 memcpy(&pd->act, default_actions, sizeof(pd->act)); 9750 9751 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 9752 pd->act.dnpipe = pd->pf_mtag->dnpipe; 9753 pd->act.flags = pd->pf_mtag->dnflags; 9754 } 9755 9756 switch (af) { 9757 #ifdef INET 9758 case AF_INET: { 9759 struct ip *h; 9760 9761 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 9762 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 9763 DPFPRINTF(PF_DEBUG_URGENT, 9764 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 9765 *action = PF_DROP; 9766 REASON_SET(reason, PFRES_SHORT); 9767 return (-1); 9768 } 9769 9770 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) { 9771 /* We do IP header normalization and packet reassembly here */ 9772 *action = PF_DROP; 9773 return (-1); 9774 } 9775 pd->m = *m0; 9776 9777 h = mtod(pd->m, struct ip *); 9778 pd->off = h->ip_hl << 2; 9779 if (pd->off < (int)sizeof(*h)) { 9780 *action = PF_DROP; 9781 REASON_SET(reason, PFRES_SHORT); 9782 return (-1); 9783 } 9784 pd->src = (struct pf_addr *)&h->ip_src; 9785 pd->dst = (struct pf_addr *)&h->ip_dst; 9786 pd->ip_sum = &h->ip_sum; 9787 pd->virtual_proto = pd->proto = h->ip_p; 9788 pd->tos = h->ip_tos; 9789 pd->ttl = h->ip_ttl; 9790 pd->tot_len = ntohs(h->ip_len); 9791 pd->act.rtableid = -1; 9792 9793 if (h->ip_hl > 5) /* has options */ 9794 pd->badopts++; 9795 9796 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 9797 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9798 9799 break; 9800 } 9801 #endif 9802 #ifdef INET6 9803 case AF_INET6: { 9804 struct ip6_hdr *h; 9805 int fragoff; 9806 uint32_t jumbolen; 9807 uint8_t nxt; 9808 9809 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 9810 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9811 DPFPRINTF(PF_DEBUG_URGENT, 9812 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 9813 ", pullup failed\n")); 9814 *action = PF_DROP; 9815 REASON_SET(reason, PFRES_SHORT); 9816 return (-1); 9817 } 9818 9819 h = mtod(pd->m, struct ip6_hdr *); 9820 pd->off = 0; 9821 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 9822 &jumbolen, reason) != PF_PASS) { 9823 *action = PF_DROP; 9824 return (-1); 9825 } 9826 9827 h = mtod(pd->m, struct ip6_hdr *); 9828 pd->src = (struct pf_addr *)&h->ip6_src; 9829 pd->dst = (struct pf_addr *)&h->ip6_dst; 9830 pd->ip_sum = NULL; 9831 pd->tos = IPV6_DSCP(h); 9832 pd->ttl = h->ip6_hlim; 9833 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9834 pd->virtual_proto = pd->proto = h->ip6_nxt; 9835 pd->act.rtableid = -1; 9836 9837 if (fragoff != 0) 9838 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9839 9840 /* 9841 * we do not support jumbogram. if we keep going, zero ip6_plen 9842 * will do something bad, so drop the packet for now. 9843 */ 9844 if (htons(h->ip6_plen) == 0) { 9845 *action = PF_DROP; 9846 return (-1); 9847 } 9848 9849 /* We do IP header normalization and packet reassembly here */ 9850 if (pf_normalize_ip6(m0, fragoff, reason, pd) != 9851 PF_PASS) { 9852 *action = PF_DROP; 9853 return (-1); 9854 } 9855 pd->m = *m0; 9856 if (pd->m == NULL) { 9857 /* packet sits in reassembly queue, no error */ 9858 *action = PF_PASS; 9859 return (-1); 9860 } 9861 9862 /* Update pointers into the packet. */ 9863 h = mtod(pd->m, struct ip6_hdr *); 9864 pd->src = (struct pf_addr *)&h->ip6_src; 9865 pd->dst = (struct pf_addr *)&h->ip6_dst; 9866 9867 /* 9868 * Reassembly may have changed the next protocol from fragment 9869 * to something else, so update. 9870 */ 9871 pd->virtual_proto = pd->proto = h->ip6_nxt; 9872 pd->off = 0; 9873 9874 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt, 9875 &jumbolen, reason) != PF_PASS) { 9876 *action = PF_DROP; 9877 return (-1); 9878 } 9879 9880 if (fragoff != 0) 9881 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9882 9883 break; 9884 } 9885 #endif 9886 default: 9887 panic("pf_setup_pdesc called with illegal af %u", af); 9888 } 9889 9890 switch (pd->virtual_proto) { 9891 case IPPROTO_TCP: { 9892 struct tcphdr *th = &pd->hdr.tcp; 9893 9894 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 9895 reason, af)) { 9896 *action = PF_DROP; 9897 REASON_SET(reason, PFRES_SHORT); 9898 return (-1); 9899 } 9900 pd->hdrlen = sizeof(*th); 9901 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 9902 pd->sport = &th->th_sport; 9903 pd->dport = &th->th_dport; 9904 break; 9905 } 9906 case IPPROTO_UDP: { 9907 struct udphdr *uh = &pd->hdr.udp; 9908 9909 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 9910 reason, af)) { 9911 *action = PF_DROP; 9912 REASON_SET(reason, PFRES_SHORT); 9913 return (-1); 9914 } 9915 pd->hdrlen = sizeof(*uh); 9916 if (uh->uh_dport == 0 || 9917 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 9918 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 9919 *action = PF_DROP; 9920 REASON_SET(reason, PFRES_SHORT); 9921 return (-1); 9922 } 9923 pd->sport = &uh->uh_sport; 9924 pd->dport = &uh->uh_dport; 9925 break; 9926 } 9927 case IPPROTO_SCTP: { 9928 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 9929 action, reason, af)) { 9930 *action = PF_DROP; 9931 REASON_SET(reason, PFRES_SHORT); 9932 return (-1); 9933 } 9934 pd->hdrlen = sizeof(pd->hdr.sctp); 9935 pd->p_len = pd->tot_len - pd->off; 9936 9937 pd->sport = &pd->hdr.sctp.src_port; 9938 pd->dport = &pd->hdr.sctp.dest_port; 9939 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 9940 *action = PF_DROP; 9941 REASON_SET(reason, PFRES_SHORT); 9942 return (-1); 9943 } 9944 if (pf_scan_sctp(pd) != PF_PASS) { 9945 *action = PF_DROP; 9946 REASON_SET(reason, PFRES_SHORT); 9947 return (-1); 9948 } 9949 break; 9950 } 9951 case IPPROTO_ICMP: { 9952 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 9953 action, reason, af)) { 9954 *action = PF_DROP; 9955 REASON_SET(reason, PFRES_SHORT); 9956 return (-1); 9957 } 9958 pd->hdrlen = ICMP_MINLEN; 9959 break; 9960 } 9961 #ifdef INET6 9962 case IPPROTO_ICMPV6: { 9963 size_t icmp_hlen = sizeof(struct icmp6_hdr); 9964 9965 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 9966 action, reason, af)) { 9967 *action = PF_DROP; 9968 REASON_SET(reason, PFRES_SHORT); 9969 return (-1); 9970 } 9971 /* ICMP headers we look further into to match state */ 9972 switch (pd->hdr.icmp6.icmp6_type) { 9973 case MLD_LISTENER_QUERY: 9974 case MLD_LISTENER_REPORT: 9975 icmp_hlen = sizeof(struct mld_hdr); 9976 break; 9977 case ND_NEIGHBOR_SOLICIT: 9978 case ND_NEIGHBOR_ADVERT: 9979 icmp_hlen = sizeof(struct nd_neighbor_solicit); 9980 break; 9981 } 9982 if (icmp_hlen > sizeof(struct icmp6_hdr) && 9983 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 9984 action, reason, af)) { 9985 *action = PF_DROP; 9986 REASON_SET(reason, PFRES_SHORT); 9987 return (-1); 9988 } 9989 pd->hdrlen = icmp_hlen; 9990 break; 9991 } 9992 #endif 9993 } 9994 return (0); 9995 } 9996 9997 static void 9998 pf_counters_inc(int action, struct pf_pdesc *pd, 9999 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10000 { 10001 struct pf_krule *tr; 10002 int dir = pd->dir; 10003 int dirndx; 10004 10005 pf_counter_u64_critical_enter(); 10006 pf_counter_u64_add_protected( 10007 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10008 pd->tot_len); 10009 pf_counter_u64_add_protected( 10010 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10011 1); 10012 10013 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10014 dirndx = (dir == PF_OUT); 10015 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10016 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10017 pf_update_timestamp(r); 10018 10019 if (a != NULL) { 10020 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10021 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10022 } 10023 if (s != NULL) { 10024 struct pf_krule_item *ri; 10025 10026 if (s->nat_rule != NULL) { 10027 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10028 1); 10029 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10030 pd->tot_len); 10031 } 10032 if (s->src_node != NULL) { 10033 counter_u64_add(s->src_node->packets[dirndx], 10034 1); 10035 counter_u64_add(s->src_node->bytes[dirndx], 10036 pd->tot_len); 10037 } 10038 if (s->nat_src_node != NULL) { 10039 counter_u64_add(s->nat_src_node->packets[dirndx], 10040 1); 10041 counter_u64_add(s->nat_src_node->bytes[dirndx], 10042 pd->tot_len); 10043 } 10044 dirndx = (dir == s->direction) ? 0 : 1; 10045 s->packets[dirndx]++; 10046 s->bytes[dirndx] += pd->tot_len; 10047 10048 SLIST_FOREACH(ri, &s->match_rules, entry) { 10049 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10050 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10051 } 10052 } 10053 10054 tr = r; 10055 if (s != NULL && s->nat_rule != NULL && 10056 r == &V_pf_default_rule) 10057 tr = s->nat_rule; 10058 10059 if (tr->src.addr.type == PF_ADDR_TABLE) 10060 pfr_update_stats(tr->src.addr.p.tbl, 10061 (s == NULL) ? pd->src : 10062 &s->key[(s->direction == PF_IN)]-> 10063 addr[(s->direction == PF_OUT)], 10064 pd->af, pd->tot_len, dir == PF_OUT, 10065 r->action == PF_PASS, tr->src.neg); 10066 if (tr->dst.addr.type == PF_ADDR_TABLE) 10067 pfr_update_stats(tr->dst.addr.p.tbl, 10068 (s == NULL) ? pd->dst : 10069 &s->key[(s->direction == PF_IN)]-> 10070 addr[(s->direction == PF_IN)], 10071 pd->af, pd->tot_len, dir == PF_OUT, 10072 r->action == PF_PASS, tr->dst.neg); 10073 } 10074 pf_counter_u64_critical_exit(); 10075 } 10076 10077 #if defined(INET) || defined(INET6) 10078 int 10079 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10080 struct inpcb *inp, struct pf_rule_actions *default_actions) 10081 { 10082 struct pfi_kkif *kif; 10083 u_short action, reason = 0; 10084 struct m_tag *mtag; 10085 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10086 struct pf_kstate *s = NULL; 10087 struct pf_kruleset *ruleset = NULL; 10088 struct pf_pdesc pd; 10089 int use_2nd_queue = 0; 10090 uint16_t tag; 10091 10092 PF_RULES_RLOCK_TRACKER; 10093 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10094 M_ASSERTPKTHDR(*m0); 10095 10096 if (!V_pf_status.running) 10097 return (PF_PASS); 10098 10099 PF_RULES_RLOCK(); 10100 10101 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10102 10103 if (__predict_false(kif == NULL)) { 10104 DPFPRINTF(PF_DEBUG_URGENT, 10105 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 10106 PF_RULES_RUNLOCK(); 10107 return (PF_DROP); 10108 } 10109 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10110 PF_RULES_RUNLOCK(); 10111 return (PF_PASS); 10112 } 10113 10114 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10115 PF_RULES_RUNLOCK(); 10116 return (PF_PASS); 10117 } 10118 10119 #ifdef INET6 10120 /* 10121 * If we end up changing IP addresses (e.g. binat) the stack may get 10122 * confused and fail to send the icmp6 packet too big error. Just send 10123 * it here, before we do any NAT. 10124 */ 10125 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10126 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10127 PF_RULES_RUNLOCK(); 10128 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10129 *m0 = NULL; 10130 return (PF_DROP); 10131 } 10132 #endif 10133 10134 if (__predict_false(! M_WRITABLE(*m0))) { 10135 *m0 = m_unshare(*m0, M_NOWAIT); 10136 if (*m0 == NULL) { 10137 PF_RULES_RUNLOCK(); 10138 return (PF_DROP); 10139 } 10140 } 10141 10142 pf_init_pdesc(&pd, *m0); 10143 10144 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10145 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10146 10147 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10148 pd.pf_mtag->if_idxgen); 10149 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10150 PF_RULES_RUNLOCK(); 10151 m_freem(*m0); 10152 *m0 = NULL; 10153 return (PF_PASS); 10154 } 10155 PF_RULES_RUNLOCK(); 10156 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10157 *m0 = NULL; 10158 return (PF_PASS); 10159 } 10160 10161 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10162 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10163 /* Dummynet re-injects packets after they've 10164 * completed their delay. We've already 10165 * processed them, so pass unconditionally. */ 10166 10167 /* But only once. We may see the packet multiple times (e.g. 10168 * PFIL_IN/PFIL_OUT). */ 10169 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10170 PF_RULES_RUNLOCK(); 10171 10172 return (PF_PASS); 10173 } 10174 10175 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10176 kif, default_actions) == -1) { 10177 if (action != PF_PASS) 10178 pd.act.log |= PF_LOG_FORCE; 10179 goto done; 10180 } 10181 10182 if (__predict_false(ip_divert_ptr != NULL) && 10183 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10184 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10185 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10186 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10187 if (pd.pf_mtag == NULL && 10188 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10189 action = PF_DROP; 10190 goto done; 10191 } 10192 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10193 } 10194 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10195 pd.m->m_flags |= M_FASTFWD_OURS; 10196 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10197 } 10198 m_tag_delete(pd.m, mtag); 10199 10200 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10201 if (mtag != NULL) 10202 m_tag_delete(pd.m, mtag); 10203 } 10204 10205 switch (pd.virtual_proto) { 10206 case PF_VPROTO_FRAGMENT: 10207 /* 10208 * handle fragments that aren't reassembled by 10209 * normalization 10210 */ 10211 if (kif == NULL || r == NULL) /* pflog */ 10212 action = PF_DROP; 10213 else 10214 action = pf_test_rule(&r, &s, &pd, &a, 10215 &ruleset, inp); 10216 if (action != PF_PASS) 10217 REASON_SET(&reason, PFRES_FRAG); 10218 break; 10219 10220 case IPPROTO_TCP: { 10221 /* Respond to SYN with a syncookie. */ 10222 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10223 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10224 pf_syncookie_send(&pd); 10225 action = PF_DROP; 10226 break; 10227 } 10228 10229 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10230 use_2nd_queue = 1; 10231 action = pf_normalize_tcp(&pd); 10232 if (action == PF_DROP) 10233 goto done; 10234 action = pf_test_state_tcp(&s, &pd, &reason); 10235 if (action == PF_PASS || action == PF_AFRT) { 10236 if (V_pfsync_update_state_ptr != NULL) 10237 V_pfsync_update_state_ptr(s); 10238 r = s->rule; 10239 a = s->anchor; 10240 } else if (s == NULL) { 10241 /* Validate remote SYN|ACK, re-create original SYN if 10242 * valid. */ 10243 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10244 TH_ACK && pf_syncookie_validate(&pd) && 10245 pd.dir == PF_IN) { 10246 struct mbuf *msyn; 10247 10248 msyn = pf_syncookie_recreate_syn(&pd); 10249 if (msyn == NULL) { 10250 action = PF_DROP; 10251 break; 10252 } 10253 10254 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10255 &pd.act); 10256 m_freem(msyn); 10257 if (action != PF_PASS) 10258 break; 10259 10260 action = pf_test_state_tcp(&s, &pd, &reason); 10261 if (action != PF_PASS || s == NULL) { 10262 action = PF_DROP; 10263 break; 10264 } 10265 10266 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10267 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10268 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10269 action = pf_synproxy(&pd, &s, &reason); 10270 break; 10271 } else { 10272 action = pf_test_rule(&r, &s, &pd, 10273 &a, &ruleset, inp); 10274 } 10275 } 10276 break; 10277 } 10278 10279 case IPPROTO_UDP: { 10280 action = pf_test_state_udp(&s, &pd); 10281 if (action == PF_PASS || action == PF_AFRT) { 10282 if (V_pfsync_update_state_ptr != NULL) 10283 V_pfsync_update_state_ptr(s); 10284 r = s->rule; 10285 a = s->anchor; 10286 } else if (s == NULL) 10287 action = pf_test_rule(&r, &s, &pd, 10288 &a, &ruleset, inp); 10289 break; 10290 } 10291 10292 case IPPROTO_SCTP: { 10293 action = pf_normalize_sctp(&pd); 10294 if (action == PF_DROP) 10295 goto done; 10296 action = pf_test_state_sctp(&s, &pd, &reason); 10297 if (action == PF_PASS || action == PF_AFRT) { 10298 if (V_pfsync_update_state_ptr != NULL) 10299 V_pfsync_update_state_ptr(s); 10300 r = s->rule; 10301 a = s->anchor; 10302 } else if (s == NULL) { 10303 action = pf_test_rule(&r, &s, 10304 &pd, &a, &ruleset, inp); 10305 } 10306 break; 10307 } 10308 10309 case IPPROTO_ICMP: { 10310 if (af != AF_INET) { 10311 action = PF_DROP; 10312 REASON_SET(&reason, PFRES_NORM); 10313 DPFPRINTF(PF_DEBUG_MISC, 10314 ("dropping IPv6 packet with ICMPv4 payload")); 10315 goto done; 10316 } 10317 action = pf_test_state_icmp(&s, &pd, &reason); 10318 if (action == PF_PASS || action == PF_AFRT) { 10319 if (V_pfsync_update_state_ptr != NULL) 10320 V_pfsync_update_state_ptr(s); 10321 r = s->rule; 10322 a = s->anchor; 10323 } else if (s == NULL) 10324 action = pf_test_rule(&r, &s, &pd, 10325 &a, &ruleset, inp); 10326 break; 10327 } 10328 10329 case IPPROTO_ICMPV6: { 10330 if (af != AF_INET6) { 10331 action = PF_DROP; 10332 REASON_SET(&reason, PFRES_NORM); 10333 DPFPRINTF(PF_DEBUG_MISC, 10334 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 10335 goto done; 10336 } 10337 action = pf_test_state_icmp(&s, &pd, &reason); 10338 if (action == PF_PASS || action == PF_AFRT) { 10339 if (V_pfsync_update_state_ptr != NULL) 10340 V_pfsync_update_state_ptr(s); 10341 r = s->rule; 10342 a = s->anchor; 10343 } else if (s == NULL) 10344 action = pf_test_rule(&r, &s, &pd, 10345 &a, &ruleset, inp); 10346 break; 10347 } 10348 10349 default: 10350 action = pf_test_state_other(&s, &pd); 10351 if (action == PF_PASS || action == PF_AFRT) { 10352 if (V_pfsync_update_state_ptr != NULL) 10353 V_pfsync_update_state_ptr(s); 10354 r = s->rule; 10355 a = s->anchor; 10356 } else if (s == NULL) 10357 action = pf_test_rule(&r, &s, &pd, 10358 &a, &ruleset, inp); 10359 break; 10360 } 10361 10362 done: 10363 PF_RULES_RUNLOCK(); 10364 10365 if (pd.m == NULL) 10366 goto eat_pkt; 10367 10368 if (action == PF_PASS && pd.badopts && 10369 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 10370 action = PF_DROP; 10371 REASON_SET(&reason, PFRES_IPOPTIONS); 10372 pd.act.log = PF_LOG_FORCE; 10373 DPFPRINTF(PF_DEBUG_MISC, 10374 ("pf: dropping packet with dangerous headers\n")); 10375 } 10376 10377 if (s) { 10378 uint8_t log = pd.act.log; 10379 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10380 pd.act.log |= log; 10381 tag = s->tag; 10382 } else { 10383 tag = r->tag; 10384 } 10385 10386 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10387 action = PF_DROP; 10388 REASON_SET(&reason, PFRES_MEMORY); 10389 } 10390 10391 pf_scrub(&pd); 10392 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10393 pf_normalize_mss(&pd); 10394 10395 if (pd.act.rtableid >= 0) 10396 M_SETFIB(pd.m, pd.act.rtableid); 10397 10398 if (pd.act.flags & PFSTATE_SETPRIO) { 10399 if (pd.tos & IPTOS_LOWDELAY) 10400 use_2nd_queue = 1; 10401 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10402 action = PF_DROP; 10403 REASON_SET(&reason, PFRES_MEMORY); 10404 pd.act.log = PF_LOG_FORCE; 10405 DPFPRINTF(PF_DEBUG_MISC, 10406 ("pf: failed to allocate 802.1q mtag\n")); 10407 } 10408 } 10409 10410 #ifdef ALTQ 10411 if (action == PF_PASS && pd.act.qid) { 10412 if (pd.pf_mtag == NULL && 10413 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10414 action = PF_DROP; 10415 REASON_SET(&reason, PFRES_MEMORY); 10416 } else { 10417 if (s != NULL) 10418 pd.pf_mtag->qid_hash = pf_state_hash(s); 10419 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10420 pd.pf_mtag->qid = pd.act.pqid; 10421 else 10422 pd.pf_mtag->qid = pd.act.qid; 10423 /* Add hints for ecn. */ 10424 pd.pf_mtag->hdr = mtod(pd.m, void *); 10425 } 10426 } 10427 #endif /* ALTQ */ 10428 10429 /* 10430 * connections redirected to loopback should not match sockets 10431 * bound specifically to loopback due to security implications, 10432 * see tcp_input() and in_pcblookup_listen(). 10433 */ 10434 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10435 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10436 (s->nat_rule->action == PF_RDR || 10437 s->nat_rule->action == PF_BINAT) && 10438 pf_is_loopback(af, pd.dst)) 10439 pd.m->m_flags |= M_SKIP_FIREWALL; 10440 10441 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10442 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10443 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10444 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10445 if (mtag != NULL) { 10446 ((struct pf_divert_mtag *)(mtag+1))->port = 10447 ntohs(r->divert.port); 10448 ((struct pf_divert_mtag *)(mtag+1))->idir = 10449 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10450 PF_DIVERT_MTAG_DIR_OUT; 10451 10452 if (s) 10453 PF_STATE_UNLOCK(s); 10454 10455 m_tag_prepend(pd.m, mtag); 10456 if (pd.m->m_flags & M_FASTFWD_OURS) { 10457 if (pd.pf_mtag == NULL && 10458 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10459 action = PF_DROP; 10460 REASON_SET(&reason, PFRES_MEMORY); 10461 pd.act.log = PF_LOG_FORCE; 10462 DPFPRINTF(PF_DEBUG_MISC, 10463 ("pf: failed to allocate tag\n")); 10464 } else { 10465 pd.pf_mtag->flags |= 10466 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10467 pd.m->m_flags &= ~M_FASTFWD_OURS; 10468 } 10469 } 10470 ip_divert_ptr(*m0, dir == PF_IN); 10471 *m0 = NULL; 10472 10473 return (action); 10474 } else { 10475 /* XXX: ipfw has the same behaviour! */ 10476 action = PF_DROP; 10477 REASON_SET(&reason, PFRES_MEMORY); 10478 pd.act.log = PF_LOG_FORCE; 10479 DPFPRINTF(PF_DEBUG_MISC, 10480 ("pf: failed to allocate divert tag\n")); 10481 } 10482 } 10483 /* XXX: Anybody working on it?! */ 10484 if (af == AF_INET6 && r->divert.port) 10485 printf("pf: divert(9) is not supported for IPv6\n"); 10486 10487 /* this flag will need revising if the pkt is forwarded */ 10488 if (pd.pf_mtag) 10489 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 10490 10491 if (pd.act.log) { 10492 struct pf_krule *lr; 10493 struct pf_krule_item *ri; 10494 10495 if (s != NULL && s->nat_rule != NULL && 10496 s->nat_rule->log & PF_LOG_ALL) 10497 lr = s->nat_rule; 10498 else 10499 lr = r; 10500 10501 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 10502 PFLOG_PACKET(action, reason, lr, a, 10503 ruleset, &pd, (s == NULL)); 10504 if (s) { 10505 SLIST_FOREACH(ri, &s->match_rules, entry) 10506 if (ri->r->log & PF_LOG_ALL) 10507 PFLOG_PACKET(action, 10508 reason, ri->r, a, ruleset, &pd, 0); 10509 } 10510 } 10511 10512 pf_counters_inc(action, &pd, s, r, a); 10513 10514 switch (action) { 10515 case PF_SYNPROXY_DROP: 10516 m_freem(*m0); 10517 case PF_DEFER: 10518 *m0 = NULL; 10519 action = PF_PASS; 10520 break; 10521 case PF_DROP: 10522 m_freem(*m0); 10523 *m0 = NULL; 10524 break; 10525 case PF_AFRT: 10526 if (pf_translate_af(&pd)) { 10527 if (!pd.m) 10528 *m0 = NULL; 10529 action = PF_DROP; 10530 break; 10531 } 10532 *m0 = pd.m; /* pf_translate_af may change pd.m */ 10533 #ifdef INET 10534 if (pd.naf == AF_INET) 10535 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10536 #endif 10537 #ifdef INET6 10538 if (pd.naf == AF_INET6) 10539 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10540 #endif 10541 *m0 = NULL; 10542 action = PF_PASS; 10543 goto out; 10544 break; 10545 default: 10546 if (pd.act.rt) { 10547 switch (af) { 10548 #ifdef INET 10549 case AF_INET: 10550 /* pf_route() returns unlocked. */ 10551 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 10552 break; 10553 #endif 10554 #ifdef INET6 10555 case AF_INET6: 10556 /* pf_route6() returns unlocked. */ 10557 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 10558 break; 10559 #endif 10560 } 10561 goto out; 10562 } 10563 if (pf_dummynet(&pd, s, r, m0) != 0) { 10564 action = PF_DROP; 10565 REASON_SET(&reason, PFRES_MEMORY); 10566 } 10567 break; 10568 } 10569 10570 eat_pkt: 10571 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 10572 10573 if (s && action != PF_DROP) { 10574 if (!s->if_index_in && dir == PF_IN) 10575 s->if_index_in = ifp->if_index; 10576 else if (!s->if_index_out && dir == PF_OUT) 10577 s->if_index_out = ifp->if_index; 10578 } 10579 10580 if (s) 10581 PF_STATE_UNLOCK(s); 10582 10583 out: 10584 #ifdef INET6 10585 /* If reassembled packet passed, create new fragments. */ 10586 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 10587 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 10588 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 10589 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 10590 #endif 10591 10592 pf_sctp_multihome_delayed(&pd, kif, s, action); 10593 10594 return (action); 10595 } 10596 #endif /* INET || INET6 */ 10597