1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfvar.h> 74 #include <net/if_pflog.h> 75 #include <net/if_pfsync.h> 76 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_var.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_icmp.h> 83 #include <netinet/icmp_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/tcp.h> 86 #include <netinet/tcp_fsm.h> 87 #include <netinet/tcp_seq.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp.h> 91 #include <netinet/udp_var.h> 92 93 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 94 95 #ifdef INET6 96 #include <netinet/ip6.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/nd6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/in6_pcb.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/scope6_var.h> 103 #endif /* INET6 */ 104 105 #include <machine/in_cksum.h> 106 #include <security/mac/mac_framework.h> 107 108 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 109 110 /* 111 * Global variables 112 */ 113 114 /* state tables */ 115 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 116 VNET_DEFINE(struct pf_palist, pf_pabuf); 117 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 119 VNET_DEFINE(struct pf_kstatus, pf_status); 120 121 VNET_DEFINE(u_int32_t, ticket_altqs_active); 122 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 123 VNET_DEFINE(int, altqs_inactive_open); 124 VNET_DEFINE(u_int32_t, ticket_pabuf); 125 126 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 127 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 128 VNET_DEFINE(u_char, pf_tcp_secret[16]); 129 #define V_pf_tcp_secret VNET(pf_tcp_secret) 130 VNET_DEFINE(int, pf_tcp_secret_init); 131 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 132 VNET_DEFINE(int, pf_tcp_iss_off); 133 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 134 VNET_DECLARE(int, pf_vnet_active); 135 #define V_pf_vnet_active VNET(pf_vnet_active) 136 137 static VNET_DEFINE(uint32_t, pf_purge_idx); 138 #define V_pf_purge_idx VNET(pf_purge_idx) 139 140 /* 141 * Queue for pf_intr() sends. 142 */ 143 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 144 struct pf_send_entry { 145 STAILQ_ENTRY(pf_send_entry) pfse_next; 146 struct mbuf *pfse_m; 147 enum { 148 PFSE_IP, 149 PFSE_IP6, 150 PFSE_ICMP, 151 PFSE_ICMP6, 152 } pfse_type; 153 struct { 154 int type; 155 int code; 156 int mtu; 157 } icmpopts; 158 }; 159 160 STAILQ_HEAD(pf_send_head, pf_send_entry); 161 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 162 #define V_pf_sendqueue VNET(pf_sendqueue) 163 164 static struct mtx pf_sendqueue_mtx; 165 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 166 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 167 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 168 169 /* 170 * Queue for pf_overload_task() tasks. 171 */ 172 struct pf_overload_entry { 173 SLIST_ENTRY(pf_overload_entry) next; 174 struct pf_addr addr; 175 sa_family_t af; 176 uint8_t dir; 177 struct pf_rule *rule; 178 }; 179 180 SLIST_HEAD(pf_overload_head, pf_overload_entry); 181 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 182 #define V_pf_overloadqueue VNET(pf_overloadqueue) 183 static VNET_DEFINE(struct task, pf_overloadtask); 184 #define V_pf_overloadtask VNET(pf_overloadtask) 185 186 static struct mtx pf_overloadqueue_mtx; 187 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 188 "pf overload/flush queue", MTX_DEF); 189 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 190 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 191 192 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 193 struct mtx pf_unlnkdrules_mtx; 194 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 195 MTX_DEF); 196 197 static VNET_DEFINE(uma_zone_t, pf_sources_z); 198 #define V_pf_sources_z VNET(pf_sources_z) 199 uma_zone_t pf_mtag_z; 200 VNET_DEFINE(uma_zone_t, pf_state_z); 201 VNET_DEFINE(uma_zone_t, pf_state_key_z); 202 203 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 204 #define PFID_CPUBITS 8 205 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 206 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 207 #define PFID_MAXID (~PFID_CPUMASK) 208 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 209 210 static void pf_src_tree_remove_state(struct pf_state *); 211 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 212 u_int32_t); 213 static void pf_add_threshold(struct pf_threshold *); 214 static int pf_check_threshold(struct pf_threshold *); 215 216 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 217 u_int16_t *, u_int16_t *, struct pf_addr *, 218 u_int16_t, u_int8_t, sa_family_t); 219 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 220 struct tcphdr *, struct pf_state_peer *); 221 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 222 struct pf_addr *, struct pf_addr *, u_int16_t, 223 u_int16_t *, u_int16_t *, u_int16_t *, 224 u_int16_t *, u_int8_t, sa_family_t); 225 static void pf_send_tcp(struct mbuf *, 226 const struct pf_rule *, sa_family_t, 227 const struct pf_addr *, const struct pf_addr *, 228 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 229 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 230 u_int16_t, struct ifnet *); 231 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 232 sa_family_t, struct pf_rule *); 233 static void pf_detach_state(struct pf_state *); 234 static int pf_state_key_attach(struct pf_state_key *, 235 struct pf_state_key *, struct pf_state *); 236 static void pf_state_key_detach(struct pf_state *, int); 237 static int pf_state_key_ctor(void *, int, void *, int); 238 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 239 static int pf_test_rule(struct pf_rule **, struct pf_state **, 240 int, struct pfi_kif *, struct mbuf *, int, 241 struct pf_pdesc *, struct pf_rule **, 242 struct pf_ruleset **, struct inpcb *); 243 static int pf_create_state(struct pf_rule *, struct pf_rule *, 244 struct pf_rule *, struct pf_pdesc *, 245 struct pf_src_node *, struct pf_state_key *, 246 struct pf_state_key *, struct mbuf *, int, 247 u_int16_t, u_int16_t, int *, struct pfi_kif *, 248 struct pf_state **, int, u_int16_t, u_int16_t, 249 int); 250 static int pf_test_fragment(struct pf_rule **, int, 251 struct pfi_kif *, struct mbuf *, void *, 252 struct pf_pdesc *, struct pf_rule **, 253 struct pf_ruleset **); 254 static int pf_tcp_track_full(struct pf_state_peer *, 255 struct pf_state_peer *, struct pf_state **, 256 struct pfi_kif *, struct mbuf *, int, 257 struct pf_pdesc *, u_short *, int *); 258 static int pf_tcp_track_sloppy(struct pf_state_peer *, 259 struct pf_state_peer *, struct pf_state **, 260 struct pf_pdesc *, u_short *); 261 static int pf_test_state_tcp(struct pf_state **, int, 262 struct pfi_kif *, struct mbuf *, int, 263 void *, struct pf_pdesc *, u_short *); 264 static int pf_test_state_udp(struct pf_state **, int, 265 struct pfi_kif *, struct mbuf *, int, 266 void *, struct pf_pdesc *); 267 static int pf_test_state_icmp(struct pf_state **, int, 268 struct pfi_kif *, struct mbuf *, int, 269 void *, struct pf_pdesc *, u_short *); 270 static int pf_test_state_other(struct pf_state **, int, 271 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 272 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 275 sa_family_t); 276 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 277 int, u_int16_t); 278 static int pf_check_proto_cksum(struct mbuf *, int, int, 279 u_int8_t, sa_family_t); 280 static void pf_print_state_parts(struct pf_state *, 281 struct pf_state_key *, struct pf_state_key *); 282 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 283 struct pf_addr_wrap *); 284 static struct pf_state *pf_find_state(struct pfi_kif *, 285 struct pf_state_key_cmp *, u_int); 286 static int pf_src_connlimit(struct pf_state **); 287 static void pf_overload_task(void *v, int pending); 288 static int pf_insert_src_node(struct pf_src_node **, 289 struct pf_rule *, struct pf_addr *, sa_family_t); 290 static u_int pf_purge_expired_states(u_int, int); 291 static void pf_purge_unlinked_rules(void); 292 static int pf_mtag_uminit(void *, int, int); 293 static void pf_mtag_free(struct m_tag *); 294 #ifdef INET 295 static void pf_route(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET */ 299 #ifdef INET6 300 static void pf_change_a6(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, u_int8_t); 302 static void pf_route6(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *); 305 #endif /* INET6 */ 306 307 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 308 309 extern int pf_end_threads; 310 extern struct proc *pf_purge_proc; 311 312 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 313 314 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 315 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 316 317 #define STATE_LOOKUP(i, k, d, s, pd) \ 318 do { \ 319 (s) = pf_find_state((i), (k), (d)); \ 320 if ((s) == NULL) \ 321 return (PF_DROP); \ 322 if (PACKET_LOOPED(pd)) \ 323 return (PF_PASS); \ 324 if ((d) == PF_OUT && \ 325 (((s)->rule.ptr->rt == PF_ROUTETO && \ 326 (s)->rule.ptr->direction == PF_OUT) || \ 327 ((s)->rule.ptr->rt == PF_REPLYTO && \ 328 (s)->rule.ptr->direction == PF_IN)) && \ 329 (s)->rt_kif != NULL && \ 330 (s)->rt_kif != (i)) \ 331 return (PF_PASS); \ 332 } while (0) 333 334 #define BOUND_IFACE(r, k) \ 335 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 336 337 #define STATE_INC_COUNTERS(s) \ 338 do { \ 339 counter_u64_add(s->rule.ptr->states_cur, 1); \ 340 counter_u64_add(s->rule.ptr->states_tot, 1); \ 341 if (s->anchor.ptr != NULL) { \ 342 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 343 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 344 } \ 345 if (s->nat_rule.ptr != NULL) { \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 347 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 348 } \ 349 } while (0) 350 351 #define STATE_DEC_COUNTERS(s) \ 352 do { \ 353 if (s->nat_rule.ptr != NULL) \ 354 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 355 if (s->anchor.ptr != NULL) \ 356 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 357 counter_u64_add(s->rule.ptr->states_cur, -1); \ 358 } while (0) 359 360 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 361 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 362 VNET_DEFINE(struct pf_idhash *, pf_idhash); 363 VNET_DEFINE(struct pf_srchash *, pf_srchash); 364 365 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 366 367 u_long pf_hashmask; 368 u_long pf_srchashmask; 369 static u_long pf_hashsize; 370 static u_long pf_srchashsize; 371 372 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 373 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 374 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 375 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 376 377 VNET_DEFINE(void *, pf_swi_cookie); 378 379 VNET_DEFINE(uint32_t, pf_hashseed); 380 #define V_pf_hashseed VNET(pf_hashseed) 381 382 int 383 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 384 { 385 386 switch (af) { 387 #ifdef INET 388 case AF_INET: 389 if (a->addr32[0] > b->addr32[0]) 390 return (1); 391 if (a->addr32[0] < b->addr32[0]) 392 return (-1); 393 break; 394 #endif /* INET */ 395 #ifdef INET6 396 case AF_INET6: 397 if (a->addr32[3] > b->addr32[3]) 398 return (1); 399 if (a->addr32[3] < b->addr32[3]) 400 return (-1); 401 if (a->addr32[2] > b->addr32[2]) 402 return (1); 403 if (a->addr32[2] < b->addr32[2]) 404 return (-1); 405 if (a->addr32[1] > b->addr32[1]) 406 return (1); 407 if (a->addr32[1] < b->addr32[1]) 408 return (-1); 409 if (a->addr32[0] > b->addr32[0]) 410 return (1); 411 if (a->addr32[0] < b->addr32[0]) 412 return (-1); 413 break; 414 #endif /* INET6 */ 415 default: 416 panic("%s: unknown address family %u", __func__, af); 417 } 418 return (0); 419 } 420 421 static __inline uint32_t 422 pf_hashkey(struct pf_state_key *sk) 423 { 424 uint32_t h; 425 426 h = murmur3_32_hash32((uint32_t *)sk, 427 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 428 V_pf_hashseed); 429 430 return (h & pf_hashmask); 431 } 432 433 static __inline uint32_t 434 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 435 { 436 uint32_t h; 437 438 switch (af) { 439 case AF_INET: 440 h = murmur3_32_hash32((uint32_t *)&addr->v4, 441 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 442 break; 443 case AF_INET6: 444 h = murmur3_32_hash32((uint32_t *)&addr->v6, 445 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 default: 448 panic("%s: unknown address family %u", __func__, af); 449 } 450 451 return (h & pf_srchashmask); 452 } 453 454 #ifdef ALTQ 455 static int 456 pf_state_hash(struct pf_state *s) 457 { 458 u_int32_t hv = (intptr_t)s / sizeof(*s); 459 460 hv ^= crc32(&s->src, sizeof(s->src)); 461 hv ^= crc32(&s->dst, sizeof(s->dst)); 462 if (hv == 0) 463 hv = 1; 464 return (hv); 465 } 466 #endif 467 468 #ifdef INET6 469 void 470 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 471 { 472 switch (af) { 473 #ifdef INET 474 case AF_INET: 475 dst->addr32[0] = src->addr32[0]; 476 break; 477 #endif /* INET */ 478 case AF_INET6: 479 dst->addr32[0] = src->addr32[0]; 480 dst->addr32[1] = src->addr32[1]; 481 dst->addr32[2] = src->addr32[2]; 482 dst->addr32[3] = src->addr32[3]; 483 break; 484 } 485 } 486 #endif /* INET6 */ 487 488 static void 489 pf_init_threshold(struct pf_threshold *threshold, 490 u_int32_t limit, u_int32_t seconds) 491 { 492 threshold->limit = limit * PF_THRESHOLD_MULT; 493 threshold->seconds = seconds; 494 threshold->count = 0; 495 threshold->last = time_uptime; 496 } 497 498 static void 499 pf_add_threshold(struct pf_threshold *threshold) 500 { 501 u_int32_t t = time_uptime, diff = t - threshold->last; 502 503 if (diff >= threshold->seconds) 504 threshold->count = 0; 505 else 506 threshold->count -= threshold->count * diff / 507 threshold->seconds; 508 threshold->count += PF_THRESHOLD_MULT; 509 threshold->last = t; 510 } 511 512 static int 513 pf_check_threshold(struct pf_threshold *threshold) 514 { 515 return (threshold->count > threshold->limit); 516 } 517 518 static int 519 pf_src_connlimit(struct pf_state **state) 520 { 521 struct pf_overload_entry *pfoe; 522 int bad = 0; 523 524 PF_STATE_LOCK_ASSERT(*state); 525 526 (*state)->src_node->conn++; 527 (*state)->src.tcp_est = 1; 528 pf_add_threshold(&(*state)->src_node->conn_rate); 529 530 if ((*state)->rule.ptr->max_src_conn && 531 (*state)->rule.ptr->max_src_conn < 532 (*state)->src_node->conn) { 533 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 534 bad++; 535 } 536 537 if ((*state)->rule.ptr->max_src_conn_rate.limit && 538 pf_check_threshold(&(*state)->src_node->conn_rate)) { 539 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 540 bad++; 541 } 542 543 if (!bad) 544 return (0); 545 546 /* Kill this state. */ 547 (*state)->timeout = PFTM_PURGE; 548 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 549 550 if ((*state)->rule.ptr->overload_tbl == NULL) 551 return (1); 552 553 /* Schedule overloading and flushing task. */ 554 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 555 if (pfoe == NULL) 556 return (1); /* too bad :( */ 557 558 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 559 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 560 pfoe->rule = (*state)->rule.ptr; 561 pfoe->dir = (*state)->direction; 562 PF_OVERLOADQ_LOCK(); 563 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 564 PF_OVERLOADQ_UNLOCK(); 565 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 566 567 return (1); 568 } 569 570 static void 571 pf_overload_task(void *v, int pending) 572 { 573 struct pf_overload_head queue; 574 struct pfr_addr p; 575 struct pf_overload_entry *pfoe, *pfoe1; 576 uint32_t killed = 0; 577 578 CURVNET_SET((struct vnet *)v); 579 580 PF_OVERLOADQ_LOCK(); 581 queue = V_pf_overloadqueue; 582 SLIST_INIT(&V_pf_overloadqueue); 583 PF_OVERLOADQ_UNLOCK(); 584 585 bzero(&p, sizeof(p)); 586 SLIST_FOREACH(pfoe, &queue, next) { 587 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 588 if (V_pf_status.debug >= PF_DEBUG_MISC) { 589 printf("%s: blocking address ", __func__); 590 pf_print_host(&pfoe->addr, 0, pfoe->af); 591 printf("\n"); 592 } 593 594 p.pfra_af = pfoe->af; 595 switch (pfoe->af) { 596 #ifdef INET 597 case AF_INET: 598 p.pfra_net = 32; 599 p.pfra_ip4addr = pfoe->addr.v4; 600 break; 601 #endif 602 #ifdef INET6 603 case AF_INET6: 604 p.pfra_net = 128; 605 p.pfra_ip6addr = pfoe->addr.v6; 606 break; 607 #endif 608 } 609 610 PF_RULES_WLOCK(); 611 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 612 PF_RULES_WUNLOCK(); 613 } 614 615 /* 616 * Remove those entries, that don't need flushing. 617 */ 618 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 619 if (pfoe->rule->flush == 0) { 620 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 621 free(pfoe, M_PFTEMP); 622 } else 623 counter_u64_add( 624 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 625 626 /* If nothing to flush, return. */ 627 if (SLIST_EMPTY(&queue)) { 628 CURVNET_RESTORE(); 629 return; 630 } 631 632 for (int i = 0; i <= pf_hashmask; i++) { 633 struct pf_idhash *ih = &V_pf_idhash[i]; 634 struct pf_state_key *sk; 635 struct pf_state *s; 636 637 PF_HASHROW_LOCK(ih); 638 LIST_FOREACH(s, &ih->states, entry) { 639 sk = s->key[PF_SK_WIRE]; 640 SLIST_FOREACH(pfoe, &queue, next) 641 if (sk->af == pfoe->af && 642 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 643 pfoe->rule == s->rule.ptr) && 644 ((pfoe->dir == PF_OUT && 645 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 646 (pfoe->dir == PF_IN && 647 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 648 s->timeout = PFTM_PURGE; 649 s->src.state = s->dst.state = TCPS_CLOSED; 650 killed++; 651 } 652 } 653 PF_HASHROW_UNLOCK(ih); 654 } 655 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 656 free(pfoe, M_PFTEMP); 657 if (V_pf_status.debug >= PF_DEBUG_MISC) 658 printf("%s: %u states killed", __func__, killed); 659 660 CURVNET_RESTORE(); 661 } 662 663 /* 664 * Can return locked on failure, so that we can consistently 665 * allocate and insert a new one. 666 */ 667 struct pf_src_node * 668 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 669 int returnlocked) 670 { 671 struct pf_srchash *sh; 672 struct pf_src_node *n; 673 674 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 675 676 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 677 PF_HASHROW_LOCK(sh); 678 LIST_FOREACH(n, &sh->nodes, entry) 679 if (n->rule.ptr == rule && n->af == af && 680 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 681 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 682 break; 683 if (n != NULL) { 684 n->states++; 685 PF_HASHROW_UNLOCK(sh); 686 } else if (returnlocked == 0) 687 PF_HASHROW_UNLOCK(sh); 688 689 return (n); 690 } 691 692 static int 693 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 694 struct pf_addr *src, sa_family_t af) 695 { 696 697 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 698 rule->rpool.opts & PF_POOL_STICKYADDR), 699 ("%s for non-tracking rule %p", __func__, rule)); 700 701 if (*sn == NULL) 702 *sn = pf_find_src_node(src, rule, af, 1); 703 704 if (*sn == NULL) { 705 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 706 707 PF_HASHROW_ASSERT(sh); 708 709 if (!rule->max_src_nodes || 710 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 711 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 712 else 713 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 714 1); 715 if ((*sn) == NULL) { 716 PF_HASHROW_UNLOCK(sh); 717 return (-1); 718 } 719 720 pf_init_threshold(&(*sn)->conn_rate, 721 rule->max_src_conn_rate.limit, 722 rule->max_src_conn_rate.seconds); 723 724 (*sn)->af = af; 725 (*sn)->rule.ptr = rule; 726 PF_ACPY(&(*sn)->addr, src, af); 727 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 728 (*sn)->creation = time_uptime; 729 (*sn)->ruletype = rule->action; 730 (*sn)->states = 1; 731 if ((*sn)->rule.ptr != NULL) 732 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 733 PF_HASHROW_UNLOCK(sh); 734 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 735 } else { 736 if (rule->max_src_states && 737 (*sn)->states >= rule->max_src_states) { 738 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 739 1); 740 return (-1); 741 } 742 } 743 return (0); 744 } 745 746 void 747 pf_unlink_src_node(struct pf_src_node *src) 748 { 749 750 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 751 LIST_REMOVE(src, entry); 752 if (src->rule.ptr) 753 counter_u64_add(src->rule.ptr->src_nodes, -1); 754 } 755 756 u_int 757 pf_free_src_nodes(struct pf_src_node_list *head) 758 { 759 struct pf_src_node *sn, *tmp; 760 u_int count = 0; 761 762 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 763 uma_zfree(V_pf_sources_z, sn); 764 count++; 765 } 766 767 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 768 769 return (count); 770 } 771 772 void 773 pf_mtag_initialize() 774 { 775 776 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 777 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 778 UMA_ALIGN_PTR, 0); 779 } 780 781 /* Per-vnet data storage structures initialization. */ 782 void 783 pf_initialize() 784 { 785 struct pf_keyhash *kh; 786 struct pf_idhash *ih; 787 struct pf_srchash *sh; 788 u_int i; 789 790 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 791 pf_hashsize = PF_HASHSIZ; 792 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 793 pf_srchashsize = PF_HASHSIZ / 4; 794 795 V_pf_hashseed = arc4random(); 796 797 /* States and state keys storage. */ 798 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 799 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 800 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 801 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 802 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 803 804 V_pf_state_key_z = uma_zcreate("pf state keys", 805 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 806 UMA_ALIGN_PTR, 0); 807 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 808 M_PFHASH, M_WAITOK | M_ZERO); 809 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 810 M_PFHASH, M_WAITOK | M_ZERO); 811 pf_hashmask = pf_hashsize - 1; 812 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 813 i++, kh++, ih++) { 814 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 815 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 816 } 817 818 /* Source nodes. */ 819 V_pf_sources_z = uma_zcreate("pf source nodes", 820 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 821 0); 822 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 823 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 824 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 825 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 826 M_PFHASH, M_WAITOK|M_ZERO); 827 pf_srchashmask = pf_srchashsize - 1; 828 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 829 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 830 831 /* ALTQ */ 832 TAILQ_INIT(&V_pf_altqs[0]); 833 TAILQ_INIT(&V_pf_altqs[1]); 834 TAILQ_INIT(&V_pf_pabuf); 835 V_pf_altqs_active = &V_pf_altqs[0]; 836 V_pf_altqs_inactive = &V_pf_altqs[1]; 837 838 /* Send & overload+flush queues. */ 839 STAILQ_INIT(&V_pf_sendqueue); 840 SLIST_INIT(&V_pf_overloadqueue); 841 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 842 843 /* Unlinked, but may be referenced rules. */ 844 TAILQ_INIT(&V_pf_unlinked_rules); 845 } 846 847 void 848 pf_mtag_cleanup() 849 { 850 851 uma_zdestroy(pf_mtag_z); 852 } 853 854 void 855 pf_cleanup() 856 { 857 struct pf_keyhash *kh; 858 struct pf_idhash *ih; 859 struct pf_srchash *sh; 860 struct pf_send_entry *pfse, *next; 861 u_int i; 862 863 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 864 i++, kh++, ih++) { 865 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 866 __func__)); 867 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 868 __func__)); 869 mtx_destroy(&kh->lock); 870 mtx_destroy(&ih->lock); 871 } 872 free(V_pf_keyhash, M_PFHASH); 873 free(V_pf_idhash, M_PFHASH); 874 875 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 876 KASSERT(LIST_EMPTY(&sh->nodes), 877 ("%s: source node hash not empty", __func__)); 878 mtx_destroy(&sh->lock); 879 } 880 free(V_pf_srchash, M_PFHASH); 881 882 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 883 m_freem(pfse->pfse_m); 884 free(pfse, M_PFTEMP); 885 } 886 887 uma_zdestroy(V_pf_sources_z); 888 uma_zdestroy(V_pf_state_z); 889 uma_zdestroy(V_pf_state_key_z); 890 } 891 892 static int 893 pf_mtag_uminit(void *mem, int size, int how) 894 { 895 struct m_tag *t; 896 897 t = (struct m_tag *)mem; 898 t->m_tag_cookie = MTAG_ABI_COMPAT; 899 t->m_tag_id = PACKET_TAG_PF; 900 t->m_tag_len = sizeof(struct pf_mtag); 901 t->m_tag_free = pf_mtag_free; 902 903 return (0); 904 } 905 906 static void 907 pf_mtag_free(struct m_tag *t) 908 { 909 910 uma_zfree(pf_mtag_z, t); 911 } 912 913 struct pf_mtag * 914 pf_get_mtag(struct mbuf *m) 915 { 916 struct m_tag *mtag; 917 918 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 919 return ((struct pf_mtag *)(mtag + 1)); 920 921 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 922 if (mtag == NULL) 923 return (NULL); 924 bzero(mtag + 1, sizeof(struct pf_mtag)); 925 m_tag_prepend(m, mtag); 926 927 return ((struct pf_mtag *)(mtag + 1)); 928 } 929 930 static int 931 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 932 struct pf_state *s) 933 { 934 struct pf_keyhash *khs, *khw, *kh; 935 struct pf_state_key *sk, *cur; 936 struct pf_state *si, *olds = NULL; 937 int idx; 938 939 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 940 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 941 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 942 943 /* 944 * We need to lock hash slots of both keys. To avoid deadlock 945 * we always lock the slot with lower address first. Unlock order 946 * isn't important. 947 * 948 * We also need to lock ID hash slot before dropping key 949 * locks. On success we return with ID hash slot locked. 950 */ 951 952 if (skw == sks) { 953 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 954 PF_HASHROW_LOCK(khs); 955 } else { 956 khs = &V_pf_keyhash[pf_hashkey(sks)]; 957 khw = &V_pf_keyhash[pf_hashkey(skw)]; 958 if (khs == khw) { 959 PF_HASHROW_LOCK(khs); 960 } else if (khs < khw) { 961 PF_HASHROW_LOCK(khs); 962 PF_HASHROW_LOCK(khw); 963 } else { 964 PF_HASHROW_LOCK(khw); 965 PF_HASHROW_LOCK(khs); 966 } 967 } 968 969 #define KEYS_UNLOCK() do { \ 970 if (khs != khw) { \ 971 PF_HASHROW_UNLOCK(khs); \ 972 PF_HASHROW_UNLOCK(khw); \ 973 } else \ 974 PF_HASHROW_UNLOCK(khs); \ 975 } while (0) 976 977 /* 978 * First run: start with wire key. 979 */ 980 sk = skw; 981 kh = khw; 982 idx = PF_SK_WIRE; 983 984 keyattach: 985 LIST_FOREACH(cur, &kh->keys, entry) 986 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 987 break; 988 989 if (cur != NULL) { 990 /* Key exists. Check for same kif, if none, add to key. */ 991 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 992 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 993 994 PF_HASHROW_LOCK(ih); 995 if (si->kif == s->kif && 996 si->direction == s->direction) { 997 if (sk->proto == IPPROTO_TCP && 998 si->src.state >= TCPS_FIN_WAIT_2 && 999 si->dst.state >= TCPS_FIN_WAIT_2) { 1000 /* 1001 * New state matches an old >FIN_WAIT_2 1002 * state. We can't drop key hash locks, 1003 * thus we can't unlink it properly. 1004 * 1005 * As a workaround we drop it into 1006 * TCPS_CLOSED state, schedule purge 1007 * ASAP and push it into the very end 1008 * of the slot TAILQ, so that it won't 1009 * conflict with our new state. 1010 */ 1011 si->src.state = si->dst.state = 1012 TCPS_CLOSED; 1013 si->timeout = PFTM_PURGE; 1014 olds = si; 1015 } else { 1016 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1017 printf("pf: %s key attach " 1018 "failed on %s: ", 1019 (idx == PF_SK_WIRE) ? 1020 "wire" : "stack", 1021 s->kif->pfik_name); 1022 pf_print_state_parts(s, 1023 (idx == PF_SK_WIRE) ? 1024 sk : NULL, 1025 (idx == PF_SK_STACK) ? 1026 sk : NULL); 1027 printf(", existing: "); 1028 pf_print_state_parts(si, 1029 (idx == PF_SK_WIRE) ? 1030 sk : NULL, 1031 (idx == PF_SK_STACK) ? 1032 sk : NULL); 1033 printf("\n"); 1034 } 1035 PF_HASHROW_UNLOCK(ih); 1036 KEYS_UNLOCK(); 1037 uma_zfree(V_pf_state_key_z, sk); 1038 if (idx == PF_SK_STACK) 1039 pf_detach_state(s); 1040 return (EEXIST); /* collision! */ 1041 } 1042 } 1043 PF_HASHROW_UNLOCK(ih); 1044 } 1045 uma_zfree(V_pf_state_key_z, sk); 1046 s->key[idx] = cur; 1047 } else { 1048 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1049 s->key[idx] = sk; 1050 } 1051 1052 stateattach: 1053 /* List is sorted, if-bound states before floating. */ 1054 if (s->kif == V_pfi_all) 1055 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1056 else 1057 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1058 1059 if (olds) { 1060 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1061 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1062 key_list[idx]); 1063 olds = NULL; 1064 } 1065 1066 /* 1067 * Attach done. See how should we (or should not?) 1068 * attach a second key. 1069 */ 1070 if (sks == skw) { 1071 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1072 idx = PF_SK_STACK; 1073 sks = NULL; 1074 goto stateattach; 1075 } else if (sks != NULL) { 1076 /* 1077 * Continue attaching with stack key. 1078 */ 1079 sk = sks; 1080 kh = khs; 1081 idx = PF_SK_STACK; 1082 sks = NULL; 1083 goto keyattach; 1084 } 1085 1086 PF_STATE_LOCK(s); 1087 KEYS_UNLOCK(); 1088 1089 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1090 ("%s failure", __func__)); 1091 1092 return (0); 1093 #undef KEYS_UNLOCK 1094 } 1095 1096 static void 1097 pf_detach_state(struct pf_state *s) 1098 { 1099 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1100 struct pf_keyhash *kh; 1101 1102 if (sks != NULL) { 1103 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1104 PF_HASHROW_LOCK(kh); 1105 if (s->key[PF_SK_STACK] != NULL) 1106 pf_state_key_detach(s, PF_SK_STACK); 1107 /* 1108 * If both point to same key, then we are done. 1109 */ 1110 if (sks == s->key[PF_SK_WIRE]) { 1111 pf_state_key_detach(s, PF_SK_WIRE); 1112 PF_HASHROW_UNLOCK(kh); 1113 return; 1114 } 1115 PF_HASHROW_UNLOCK(kh); 1116 } 1117 1118 if (s->key[PF_SK_WIRE] != NULL) { 1119 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1120 PF_HASHROW_LOCK(kh); 1121 if (s->key[PF_SK_WIRE] != NULL) 1122 pf_state_key_detach(s, PF_SK_WIRE); 1123 PF_HASHROW_UNLOCK(kh); 1124 } 1125 } 1126 1127 static void 1128 pf_state_key_detach(struct pf_state *s, int idx) 1129 { 1130 struct pf_state_key *sk = s->key[idx]; 1131 #ifdef INVARIANTS 1132 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1133 1134 PF_HASHROW_ASSERT(kh); 1135 #endif 1136 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1137 s->key[idx] = NULL; 1138 1139 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1140 LIST_REMOVE(sk, entry); 1141 uma_zfree(V_pf_state_key_z, sk); 1142 } 1143 } 1144 1145 static int 1146 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1147 { 1148 struct pf_state_key *sk = mem; 1149 1150 bzero(sk, sizeof(struct pf_state_key_cmp)); 1151 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1152 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1153 1154 return (0); 1155 } 1156 1157 struct pf_state_key * 1158 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1159 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1160 { 1161 struct pf_state_key *sk; 1162 1163 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1164 if (sk == NULL) 1165 return (NULL); 1166 1167 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1168 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1169 sk->port[pd->sidx] = sport; 1170 sk->port[pd->didx] = dport; 1171 sk->proto = pd->proto; 1172 sk->af = pd->af; 1173 1174 return (sk); 1175 } 1176 1177 struct pf_state_key * 1178 pf_state_key_clone(struct pf_state_key *orig) 1179 { 1180 struct pf_state_key *sk; 1181 1182 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1183 if (sk == NULL) 1184 return (NULL); 1185 1186 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1187 1188 return (sk); 1189 } 1190 1191 int 1192 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1193 struct pf_state_key *sks, struct pf_state *s) 1194 { 1195 struct pf_idhash *ih; 1196 struct pf_state *cur; 1197 int error; 1198 1199 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1200 ("%s: sks not pristine", __func__)); 1201 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1202 ("%s: skw not pristine", __func__)); 1203 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1204 1205 s->kif = kif; 1206 1207 if (s->id == 0 && s->creatorid == 0) { 1208 /* XXX: should be atomic, but probability of collision low */ 1209 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1210 V_pf_stateid[curcpu] = 1; 1211 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1212 s->id = htobe64(s->id); 1213 s->creatorid = V_pf_status.hostid; 1214 } 1215 1216 /* Returns with ID locked on success. */ 1217 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1218 return (error); 1219 1220 ih = &V_pf_idhash[PF_IDHASH(s)]; 1221 PF_HASHROW_ASSERT(ih); 1222 LIST_FOREACH(cur, &ih->states, entry) 1223 if (cur->id == s->id && cur->creatorid == s->creatorid) 1224 break; 1225 1226 if (cur != NULL) { 1227 PF_HASHROW_UNLOCK(ih); 1228 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1229 printf("pf: state ID collision: " 1230 "id: %016llx creatorid: %08x\n", 1231 (unsigned long long)be64toh(s->id), 1232 ntohl(s->creatorid)); 1233 } 1234 pf_detach_state(s); 1235 return (EEXIST); 1236 } 1237 LIST_INSERT_HEAD(&ih->states, s, entry); 1238 /* One for keys, one for ID hash. */ 1239 refcount_init(&s->refs, 2); 1240 1241 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1242 if (pfsync_insert_state_ptr != NULL) 1243 pfsync_insert_state_ptr(s); 1244 1245 /* Returns locked. */ 1246 return (0); 1247 } 1248 1249 /* 1250 * Find state by ID: returns with locked row on success. 1251 */ 1252 struct pf_state * 1253 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1254 { 1255 struct pf_idhash *ih; 1256 struct pf_state *s; 1257 1258 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1259 1260 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1261 1262 PF_HASHROW_LOCK(ih); 1263 LIST_FOREACH(s, &ih->states, entry) 1264 if (s->id == id && s->creatorid == creatorid) 1265 break; 1266 1267 if (s == NULL) 1268 PF_HASHROW_UNLOCK(ih); 1269 1270 return (s); 1271 } 1272 1273 /* 1274 * Find state by key. 1275 * Returns with ID hash slot locked on success. 1276 */ 1277 static struct pf_state * 1278 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1279 { 1280 struct pf_keyhash *kh; 1281 struct pf_state_key *sk; 1282 struct pf_state *s; 1283 int idx; 1284 1285 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1286 1287 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1288 1289 PF_HASHROW_LOCK(kh); 1290 LIST_FOREACH(sk, &kh->keys, entry) 1291 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1292 break; 1293 if (sk == NULL) { 1294 PF_HASHROW_UNLOCK(kh); 1295 return (NULL); 1296 } 1297 1298 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1299 1300 /* List is sorted, if-bound states before floating ones. */ 1301 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1302 if (s->kif == V_pfi_all || s->kif == kif) { 1303 PF_STATE_LOCK(s); 1304 PF_HASHROW_UNLOCK(kh); 1305 if (s->timeout >= PFTM_MAX) { 1306 /* 1307 * State is either being processed by 1308 * pf_unlink_state() in an other thread, or 1309 * is scheduled for immediate expiry. 1310 */ 1311 PF_STATE_UNLOCK(s); 1312 return (NULL); 1313 } 1314 return (s); 1315 } 1316 PF_HASHROW_UNLOCK(kh); 1317 1318 return (NULL); 1319 } 1320 1321 struct pf_state * 1322 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1323 { 1324 struct pf_keyhash *kh; 1325 struct pf_state_key *sk; 1326 struct pf_state *s, *ret = NULL; 1327 int idx, inout = 0; 1328 1329 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1330 1331 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1332 1333 PF_HASHROW_LOCK(kh); 1334 LIST_FOREACH(sk, &kh->keys, entry) 1335 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1336 break; 1337 if (sk == NULL) { 1338 PF_HASHROW_UNLOCK(kh); 1339 return (NULL); 1340 } 1341 switch (dir) { 1342 case PF_IN: 1343 idx = PF_SK_WIRE; 1344 break; 1345 case PF_OUT: 1346 idx = PF_SK_STACK; 1347 break; 1348 case PF_INOUT: 1349 idx = PF_SK_WIRE; 1350 inout = 1; 1351 break; 1352 default: 1353 panic("%s: dir %u", __func__, dir); 1354 } 1355 second_run: 1356 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1357 if (more == NULL) { 1358 PF_HASHROW_UNLOCK(kh); 1359 return (s); 1360 } 1361 1362 if (ret) 1363 (*more)++; 1364 else 1365 ret = s; 1366 } 1367 if (inout == 1) { 1368 inout = 0; 1369 idx = PF_SK_STACK; 1370 goto second_run; 1371 } 1372 PF_HASHROW_UNLOCK(kh); 1373 1374 return (ret); 1375 } 1376 1377 /* END state table stuff */ 1378 1379 static void 1380 pf_send(struct pf_send_entry *pfse) 1381 { 1382 1383 PF_SENDQ_LOCK(); 1384 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1385 PF_SENDQ_UNLOCK(); 1386 swi_sched(V_pf_swi_cookie, 0); 1387 } 1388 1389 void 1390 pf_intr(void *v) 1391 { 1392 struct pf_send_head queue; 1393 struct pf_send_entry *pfse, *next; 1394 1395 CURVNET_SET((struct vnet *)v); 1396 1397 PF_SENDQ_LOCK(); 1398 queue = V_pf_sendqueue; 1399 STAILQ_INIT(&V_pf_sendqueue); 1400 PF_SENDQ_UNLOCK(); 1401 1402 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1403 switch (pfse->pfse_type) { 1404 #ifdef INET 1405 case PFSE_IP: 1406 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1407 break; 1408 case PFSE_ICMP: 1409 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1410 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1411 break; 1412 #endif /* INET */ 1413 #ifdef INET6 1414 case PFSE_IP6: 1415 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1416 NULL); 1417 break; 1418 case PFSE_ICMP6: 1419 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1420 pfse->icmpopts.code, pfse->icmpopts.mtu); 1421 break; 1422 #endif /* INET6 */ 1423 default: 1424 panic("%s: unknown type", __func__); 1425 } 1426 free(pfse, M_PFTEMP); 1427 } 1428 CURVNET_RESTORE(); 1429 } 1430 1431 void 1432 pf_purge_thread(void *unused __unused) 1433 { 1434 VNET_ITERATOR_DECL(vnet_iter); 1435 1436 sx_xlock(&pf_end_lock); 1437 while (pf_end_threads == 0) { 1438 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1439 1440 VNET_LIST_RLOCK(); 1441 VNET_FOREACH(vnet_iter) { 1442 CURVNET_SET(vnet_iter); 1443 1444 1445 /* Wait until V_pf_default_rule is initialized. */ 1446 if (V_pf_vnet_active == 0) { 1447 CURVNET_RESTORE(); 1448 continue; 1449 } 1450 1451 /* 1452 * Process 1/interval fraction of the state 1453 * table every run. 1454 */ 1455 V_pf_purge_idx = 1456 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1457 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1458 1459 /* 1460 * Purge other expired types every 1461 * PFTM_INTERVAL seconds. 1462 */ 1463 if (V_pf_purge_idx == 0) { 1464 /* 1465 * Order is important: 1466 * - states and src nodes reference rules 1467 * - states and rules reference kifs 1468 */ 1469 pf_purge_expired_fragments(); 1470 pf_purge_expired_src_nodes(); 1471 pf_purge_unlinked_rules(); 1472 pfi_kif_purge(); 1473 } 1474 CURVNET_RESTORE(); 1475 } 1476 VNET_LIST_RUNLOCK(); 1477 } 1478 1479 pf_end_threads++; 1480 sx_xunlock(&pf_end_lock); 1481 kproc_exit(0); 1482 } 1483 1484 void 1485 pf_unload_vnet_purge(void) 1486 { 1487 1488 /* 1489 * To cleanse up all kifs and rules we need 1490 * two runs: first one clears reference flags, 1491 * then pf_purge_expired_states() doesn't 1492 * raise them, and then second run frees. 1493 */ 1494 pf_purge_unlinked_rules(); 1495 pfi_kif_purge(); 1496 1497 /* 1498 * Now purge everything. 1499 */ 1500 pf_purge_expired_states(0, pf_hashmask); 1501 pf_purge_expired_fragments(); 1502 pf_purge_expired_src_nodes(); 1503 1504 /* 1505 * Now all kifs & rules should be unreferenced, 1506 * thus should be successfully freed. 1507 */ 1508 pf_purge_unlinked_rules(); 1509 pfi_kif_purge(); 1510 } 1511 1512 1513 u_int32_t 1514 pf_state_expires(const struct pf_state *state) 1515 { 1516 u_int32_t timeout; 1517 u_int32_t start; 1518 u_int32_t end; 1519 u_int32_t states; 1520 1521 /* handle all PFTM_* > PFTM_MAX here */ 1522 if (state->timeout == PFTM_PURGE) 1523 return (time_uptime); 1524 KASSERT(state->timeout != PFTM_UNLINKED, 1525 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1526 KASSERT((state->timeout < PFTM_MAX), 1527 ("pf_state_expires: timeout > PFTM_MAX")); 1528 timeout = state->rule.ptr->timeout[state->timeout]; 1529 if (!timeout) 1530 timeout = V_pf_default_rule.timeout[state->timeout]; 1531 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1532 if (start) { 1533 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1534 states = counter_u64_fetch(state->rule.ptr->states_cur); 1535 } else { 1536 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1537 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1538 states = V_pf_status.states; 1539 } 1540 if (end && states > start && start < end) { 1541 if (states < end) 1542 return (state->expire + timeout * (end - states) / 1543 (end - start)); 1544 else 1545 return (time_uptime); 1546 } 1547 return (state->expire + timeout); 1548 } 1549 1550 void 1551 pf_purge_expired_src_nodes() 1552 { 1553 struct pf_src_node_list freelist; 1554 struct pf_srchash *sh; 1555 struct pf_src_node *cur, *next; 1556 int i; 1557 1558 LIST_INIT(&freelist); 1559 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1560 PF_HASHROW_LOCK(sh); 1561 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1562 if (cur->states == 0 && cur->expire <= time_uptime) { 1563 pf_unlink_src_node(cur); 1564 LIST_INSERT_HEAD(&freelist, cur, entry); 1565 } else if (cur->rule.ptr != NULL) 1566 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1567 PF_HASHROW_UNLOCK(sh); 1568 } 1569 1570 pf_free_src_nodes(&freelist); 1571 1572 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1573 } 1574 1575 static void 1576 pf_src_tree_remove_state(struct pf_state *s) 1577 { 1578 struct pf_src_node *sn; 1579 struct pf_srchash *sh; 1580 uint32_t timeout; 1581 1582 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1583 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1584 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1585 1586 if (s->src_node != NULL) { 1587 sn = s->src_node; 1588 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1589 PF_HASHROW_LOCK(sh); 1590 if (s->src.tcp_est) 1591 --sn->conn; 1592 if (--sn->states == 0) 1593 sn->expire = time_uptime + timeout; 1594 PF_HASHROW_UNLOCK(sh); 1595 } 1596 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1597 sn = s->nat_src_node; 1598 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1599 PF_HASHROW_LOCK(sh); 1600 if (--sn->states == 0) 1601 sn->expire = time_uptime + timeout; 1602 PF_HASHROW_UNLOCK(sh); 1603 } 1604 s->src_node = s->nat_src_node = NULL; 1605 } 1606 1607 /* 1608 * Unlink and potentilly free a state. Function may be 1609 * called with ID hash row locked, but always returns 1610 * unlocked, since it needs to go through key hash locking. 1611 */ 1612 int 1613 pf_unlink_state(struct pf_state *s, u_int flags) 1614 { 1615 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1616 1617 if ((flags & PF_ENTER_LOCKED) == 0) 1618 PF_HASHROW_LOCK(ih); 1619 else 1620 PF_HASHROW_ASSERT(ih); 1621 1622 if (s->timeout == PFTM_UNLINKED) { 1623 /* 1624 * State is being processed 1625 * by pf_unlink_state() in 1626 * an other thread. 1627 */ 1628 PF_HASHROW_UNLOCK(ih); 1629 return (0); /* XXXGL: undefined actually */ 1630 } 1631 1632 if (s->src.state == PF_TCPS_PROXY_DST) { 1633 /* XXX wire key the right one? */ 1634 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1635 &s->key[PF_SK_WIRE]->addr[1], 1636 &s->key[PF_SK_WIRE]->addr[0], 1637 s->key[PF_SK_WIRE]->port[1], 1638 s->key[PF_SK_WIRE]->port[0], 1639 s->src.seqhi, s->src.seqlo + 1, 1640 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1641 } 1642 1643 LIST_REMOVE(s, entry); 1644 pf_src_tree_remove_state(s); 1645 1646 if (pfsync_delete_state_ptr != NULL) 1647 pfsync_delete_state_ptr(s); 1648 1649 STATE_DEC_COUNTERS(s); 1650 1651 s->timeout = PFTM_UNLINKED; 1652 1653 PF_HASHROW_UNLOCK(ih); 1654 1655 pf_detach_state(s); 1656 refcount_release(&s->refs); 1657 1658 return (pf_release_state(s)); 1659 } 1660 1661 void 1662 pf_free_state(struct pf_state *cur) 1663 { 1664 1665 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1666 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1667 cur->timeout)); 1668 1669 pf_normalize_tcp_cleanup(cur); 1670 uma_zfree(V_pf_state_z, cur); 1671 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1672 } 1673 1674 /* 1675 * Called only from pf_purge_thread(), thus serialized. 1676 */ 1677 static u_int 1678 pf_purge_expired_states(u_int i, int maxcheck) 1679 { 1680 struct pf_idhash *ih; 1681 struct pf_state *s; 1682 1683 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1684 1685 /* 1686 * Go through hash and unlink states that expire now. 1687 */ 1688 while (maxcheck > 0) { 1689 1690 ih = &V_pf_idhash[i]; 1691 relock: 1692 PF_HASHROW_LOCK(ih); 1693 LIST_FOREACH(s, &ih->states, entry) { 1694 if (pf_state_expires(s) <= time_uptime) { 1695 V_pf_status.states -= 1696 pf_unlink_state(s, PF_ENTER_LOCKED); 1697 goto relock; 1698 } 1699 s->rule.ptr->rule_flag |= PFRULE_REFS; 1700 if (s->nat_rule.ptr != NULL) 1701 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1702 if (s->anchor.ptr != NULL) 1703 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1704 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1705 if (s->rt_kif) 1706 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1707 } 1708 PF_HASHROW_UNLOCK(ih); 1709 1710 /* Return when we hit end of hash. */ 1711 if (++i > pf_hashmask) { 1712 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1713 return (0); 1714 } 1715 1716 maxcheck--; 1717 } 1718 1719 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1720 1721 return (i); 1722 } 1723 1724 static void 1725 pf_purge_unlinked_rules() 1726 { 1727 struct pf_rulequeue tmpq; 1728 struct pf_rule *r, *r1; 1729 1730 /* 1731 * If we have overloading task pending, then we'd 1732 * better skip purging this time. There is a tiny 1733 * probability that overloading task references 1734 * an already unlinked rule. 1735 */ 1736 PF_OVERLOADQ_LOCK(); 1737 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1738 PF_OVERLOADQ_UNLOCK(); 1739 return; 1740 } 1741 PF_OVERLOADQ_UNLOCK(); 1742 1743 /* 1744 * Do naive mark-and-sweep garbage collecting of old rules. 1745 * Reference flag is raised by pf_purge_expired_states() 1746 * and pf_purge_expired_src_nodes(). 1747 * 1748 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1749 * use a temporary queue. 1750 */ 1751 TAILQ_INIT(&tmpq); 1752 PF_UNLNKDRULES_LOCK(); 1753 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1754 if (!(r->rule_flag & PFRULE_REFS)) { 1755 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1756 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1757 } else 1758 r->rule_flag &= ~PFRULE_REFS; 1759 } 1760 PF_UNLNKDRULES_UNLOCK(); 1761 1762 if (!TAILQ_EMPTY(&tmpq)) { 1763 PF_RULES_WLOCK(); 1764 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1765 TAILQ_REMOVE(&tmpq, r, entries); 1766 pf_free_rule(r); 1767 } 1768 PF_RULES_WUNLOCK(); 1769 } 1770 } 1771 1772 void 1773 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1774 { 1775 switch (af) { 1776 #ifdef INET 1777 case AF_INET: { 1778 u_int32_t a = ntohl(addr->addr32[0]); 1779 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1780 (a>>8)&255, a&255); 1781 if (p) { 1782 p = ntohs(p); 1783 printf(":%u", p); 1784 } 1785 break; 1786 } 1787 #endif /* INET */ 1788 #ifdef INET6 1789 case AF_INET6: { 1790 u_int16_t b; 1791 u_int8_t i, curstart, curend, maxstart, maxend; 1792 curstart = curend = maxstart = maxend = 255; 1793 for (i = 0; i < 8; i++) { 1794 if (!addr->addr16[i]) { 1795 if (curstart == 255) 1796 curstart = i; 1797 curend = i; 1798 } else { 1799 if ((curend - curstart) > 1800 (maxend - maxstart)) { 1801 maxstart = curstart; 1802 maxend = curend; 1803 } 1804 curstart = curend = 255; 1805 } 1806 } 1807 if ((curend - curstart) > 1808 (maxend - maxstart)) { 1809 maxstart = curstart; 1810 maxend = curend; 1811 } 1812 for (i = 0; i < 8; i++) { 1813 if (i >= maxstart && i <= maxend) { 1814 if (i == 0) 1815 printf(":"); 1816 if (i == maxend) 1817 printf(":"); 1818 } else { 1819 b = ntohs(addr->addr16[i]); 1820 printf("%x", b); 1821 if (i < 7) 1822 printf(":"); 1823 } 1824 } 1825 if (p) { 1826 p = ntohs(p); 1827 printf("[%u]", p); 1828 } 1829 break; 1830 } 1831 #endif /* INET6 */ 1832 } 1833 } 1834 1835 void 1836 pf_print_state(struct pf_state *s) 1837 { 1838 pf_print_state_parts(s, NULL, NULL); 1839 } 1840 1841 static void 1842 pf_print_state_parts(struct pf_state *s, 1843 struct pf_state_key *skwp, struct pf_state_key *sksp) 1844 { 1845 struct pf_state_key *skw, *sks; 1846 u_int8_t proto, dir; 1847 1848 /* Do our best to fill these, but they're skipped if NULL */ 1849 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1850 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1851 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1852 dir = s ? s->direction : 0; 1853 1854 switch (proto) { 1855 case IPPROTO_IPV4: 1856 printf("IPv4"); 1857 break; 1858 case IPPROTO_IPV6: 1859 printf("IPv6"); 1860 break; 1861 case IPPROTO_TCP: 1862 printf("TCP"); 1863 break; 1864 case IPPROTO_UDP: 1865 printf("UDP"); 1866 break; 1867 case IPPROTO_ICMP: 1868 printf("ICMP"); 1869 break; 1870 case IPPROTO_ICMPV6: 1871 printf("ICMPv6"); 1872 break; 1873 default: 1874 printf("%u", proto); 1875 break; 1876 } 1877 switch (dir) { 1878 case PF_IN: 1879 printf(" in"); 1880 break; 1881 case PF_OUT: 1882 printf(" out"); 1883 break; 1884 } 1885 if (skw) { 1886 printf(" wire: "); 1887 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1888 printf(" "); 1889 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1890 } 1891 if (sks) { 1892 printf(" stack: "); 1893 if (sks != skw) { 1894 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1895 printf(" "); 1896 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1897 } else 1898 printf("-"); 1899 } 1900 if (s) { 1901 if (proto == IPPROTO_TCP) { 1902 printf(" [lo=%u high=%u win=%u modulator=%u", 1903 s->src.seqlo, s->src.seqhi, 1904 s->src.max_win, s->src.seqdiff); 1905 if (s->src.wscale && s->dst.wscale) 1906 printf(" wscale=%u", 1907 s->src.wscale & PF_WSCALE_MASK); 1908 printf("]"); 1909 printf(" [lo=%u high=%u win=%u modulator=%u", 1910 s->dst.seqlo, s->dst.seqhi, 1911 s->dst.max_win, s->dst.seqdiff); 1912 if (s->src.wscale && s->dst.wscale) 1913 printf(" wscale=%u", 1914 s->dst.wscale & PF_WSCALE_MASK); 1915 printf("]"); 1916 } 1917 printf(" %u:%u", s->src.state, s->dst.state); 1918 } 1919 } 1920 1921 void 1922 pf_print_flags(u_int8_t f) 1923 { 1924 if (f) 1925 printf(" "); 1926 if (f & TH_FIN) 1927 printf("F"); 1928 if (f & TH_SYN) 1929 printf("S"); 1930 if (f & TH_RST) 1931 printf("R"); 1932 if (f & TH_PUSH) 1933 printf("P"); 1934 if (f & TH_ACK) 1935 printf("A"); 1936 if (f & TH_URG) 1937 printf("U"); 1938 if (f & TH_ECE) 1939 printf("E"); 1940 if (f & TH_CWR) 1941 printf("W"); 1942 } 1943 1944 #define PF_SET_SKIP_STEPS(i) \ 1945 do { \ 1946 while (head[i] != cur) { \ 1947 head[i]->skip[i].ptr = cur; \ 1948 head[i] = TAILQ_NEXT(head[i], entries); \ 1949 } \ 1950 } while (0) 1951 1952 void 1953 pf_calc_skip_steps(struct pf_rulequeue *rules) 1954 { 1955 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1956 int i; 1957 1958 cur = TAILQ_FIRST(rules); 1959 prev = cur; 1960 for (i = 0; i < PF_SKIP_COUNT; ++i) 1961 head[i] = cur; 1962 while (cur != NULL) { 1963 1964 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1965 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1966 if (cur->direction != prev->direction) 1967 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1968 if (cur->af != prev->af) 1969 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1970 if (cur->proto != prev->proto) 1971 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1972 if (cur->src.neg != prev->src.neg || 1973 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1974 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1975 if (cur->src.port[0] != prev->src.port[0] || 1976 cur->src.port[1] != prev->src.port[1] || 1977 cur->src.port_op != prev->src.port_op) 1978 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1979 if (cur->dst.neg != prev->dst.neg || 1980 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1981 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1982 if (cur->dst.port[0] != prev->dst.port[0] || 1983 cur->dst.port[1] != prev->dst.port[1] || 1984 cur->dst.port_op != prev->dst.port_op) 1985 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1986 1987 prev = cur; 1988 cur = TAILQ_NEXT(cur, entries); 1989 } 1990 for (i = 0; i < PF_SKIP_COUNT; ++i) 1991 PF_SET_SKIP_STEPS(i); 1992 } 1993 1994 static int 1995 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1996 { 1997 if (aw1->type != aw2->type) 1998 return (1); 1999 switch (aw1->type) { 2000 case PF_ADDR_ADDRMASK: 2001 case PF_ADDR_RANGE: 2002 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2003 return (1); 2004 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2005 return (1); 2006 return (0); 2007 case PF_ADDR_DYNIFTL: 2008 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2009 case PF_ADDR_NOROUTE: 2010 case PF_ADDR_URPFFAILED: 2011 return (0); 2012 case PF_ADDR_TABLE: 2013 return (aw1->p.tbl != aw2->p.tbl); 2014 default: 2015 printf("invalid address type: %d\n", aw1->type); 2016 return (1); 2017 } 2018 } 2019 2020 /** 2021 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2022 * header isn't always a full checksum. In some cases (i.e. output) it's a 2023 * pseudo-header checksum, which is a partial checksum over src/dst IP 2024 * addresses, protocol number and length. 2025 * 2026 * That means we have the following cases: 2027 * * Input or forwarding: we don't have TSO, the checksum fields are full 2028 * checksums, we need to update the checksum whenever we change anything. 2029 * * Output (i.e. the checksum is a pseudo-header checksum): 2030 * x The field being updated is src/dst address or affects the length of 2031 * the packet. We need to update the pseudo-header checksum (note that this 2032 * checksum is not ones' complement). 2033 * x Some other field is being modified (e.g. src/dst port numbers): We 2034 * don't have to update anything. 2035 **/ 2036 u_int16_t 2037 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2038 { 2039 u_int32_t l; 2040 2041 if (udp && !cksum) 2042 return (0x0000); 2043 l = cksum + old - new; 2044 l = (l >> 16) + (l & 65535); 2045 l = l & 65535; 2046 if (udp && !l) 2047 return (0xFFFF); 2048 return (l); 2049 } 2050 2051 u_int16_t 2052 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2053 u_int16_t new, u_int8_t udp) 2054 { 2055 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2056 return (cksum); 2057 2058 return (pf_cksum_fixup(cksum, old, new, udp)); 2059 } 2060 2061 static void 2062 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2063 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2064 sa_family_t af) 2065 { 2066 struct pf_addr ao; 2067 u_int16_t po = *p; 2068 2069 PF_ACPY(&ao, a, af); 2070 PF_ACPY(a, an, af); 2071 2072 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2073 *pc = ~*pc; 2074 2075 *p = pn; 2076 2077 switch (af) { 2078 #ifdef INET 2079 case AF_INET: 2080 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2081 ao.addr16[0], an->addr16[0], 0), 2082 ao.addr16[1], an->addr16[1], 0); 2083 *p = pn; 2084 2085 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2086 ao.addr16[0], an->addr16[0], u), 2087 ao.addr16[1], an->addr16[1], u); 2088 2089 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2090 break; 2091 #endif /* INET */ 2092 #ifdef INET6 2093 case AF_INET6: 2094 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2095 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2096 pf_cksum_fixup(pf_cksum_fixup(*pc, 2097 ao.addr16[0], an->addr16[0], u), 2098 ao.addr16[1], an->addr16[1], u), 2099 ao.addr16[2], an->addr16[2], u), 2100 ao.addr16[3], an->addr16[3], u), 2101 ao.addr16[4], an->addr16[4], u), 2102 ao.addr16[5], an->addr16[5], u), 2103 ao.addr16[6], an->addr16[6], u), 2104 ao.addr16[7], an->addr16[7], u); 2105 2106 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2107 break; 2108 #endif /* INET6 */ 2109 } 2110 2111 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2112 CSUM_DELAY_DATA_IPV6)) { 2113 *pc = ~*pc; 2114 if (! *pc) 2115 *pc = 0xffff; 2116 } 2117 } 2118 2119 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2120 void 2121 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2122 { 2123 u_int32_t ao; 2124 2125 memcpy(&ao, a, sizeof(ao)); 2126 memcpy(a, &an, sizeof(u_int32_t)); 2127 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2128 ao % 65536, an % 65536, u); 2129 } 2130 2131 void 2132 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2133 { 2134 u_int32_t ao; 2135 2136 memcpy(&ao, a, sizeof(ao)); 2137 memcpy(a, &an, sizeof(u_int32_t)); 2138 2139 *c = pf_proto_cksum_fixup(m, 2140 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2141 ao % 65536, an % 65536, udp); 2142 } 2143 2144 #ifdef INET6 2145 static void 2146 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2147 { 2148 struct pf_addr ao; 2149 2150 PF_ACPY(&ao, a, AF_INET6); 2151 PF_ACPY(a, an, AF_INET6); 2152 2153 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2154 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2155 pf_cksum_fixup(pf_cksum_fixup(*c, 2156 ao.addr16[0], an->addr16[0], u), 2157 ao.addr16[1], an->addr16[1], u), 2158 ao.addr16[2], an->addr16[2], u), 2159 ao.addr16[3], an->addr16[3], u), 2160 ao.addr16[4], an->addr16[4], u), 2161 ao.addr16[5], an->addr16[5], u), 2162 ao.addr16[6], an->addr16[6], u), 2163 ao.addr16[7], an->addr16[7], u); 2164 } 2165 #endif /* INET6 */ 2166 2167 static void 2168 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2169 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2170 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2171 { 2172 struct pf_addr oia, ooa; 2173 2174 PF_ACPY(&oia, ia, af); 2175 if (oa) 2176 PF_ACPY(&ooa, oa, af); 2177 2178 /* Change inner protocol port, fix inner protocol checksum. */ 2179 if (ip != NULL) { 2180 u_int16_t oip = *ip; 2181 u_int32_t opc; 2182 2183 if (pc != NULL) 2184 opc = *pc; 2185 *ip = np; 2186 if (pc != NULL) 2187 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2188 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2189 if (pc != NULL) 2190 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2191 } 2192 /* Change inner ip address, fix inner ip and icmp checksums. */ 2193 PF_ACPY(ia, na, af); 2194 switch (af) { 2195 #ifdef INET 2196 case AF_INET: { 2197 u_int32_t oh2c = *h2c; 2198 2199 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2200 oia.addr16[0], ia->addr16[0], 0), 2201 oia.addr16[1], ia->addr16[1], 0); 2202 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2203 oia.addr16[0], ia->addr16[0], 0), 2204 oia.addr16[1], ia->addr16[1], 0); 2205 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2206 break; 2207 } 2208 #endif /* INET */ 2209 #ifdef INET6 2210 case AF_INET6: 2211 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2212 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2213 pf_cksum_fixup(pf_cksum_fixup(*ic, 2214 oia.addr16[0], ia->addr16[0], u), 2215 oia.addr16[1], ia->addr16[1], u), 2216 oia.addr16[2], ia->addr16[2], u), 2217 oia.addr16[3], ia->addr16[3], u), 2218 oia.addr16[4], ia->addr16[4], u), 2219 oia.addr16[5], ia->addr16[5], u), 2220 oia.addr16[6], ia->addr16[6], u), 2221 oia.addr16[7], ia->addr16[7], u); 2222 break; 2223 #endif /* INET6 */ 2224 } 2225 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2226 if (oa) { 2227 PF_ACPY(oa, na, af); 2228 switch (af) { 2229 #ifdef INET 2230 case AF_INET: 2231 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2232 ooa.addr16[0], oa->addr16[0], 0), 2233 ooa.addr16[1], oa->addr16[1], 0); 2234 break; 2235 #endif /* INET */ 2236 #ifdef INET6 2237 case AF_INET6: 2238 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2239 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2240 pf_cksum_fixup(pf_cksum_fixup(*ic, 2241 ooa.addr16[0], oa->addr16[0], u), 2242 ooa.addr16[1], oa->addr16[1], u), 2243 ooa.addr16[2], oa->addr16[2], u), 2244 ooa.addr16[3], oa->addr16[3], u), 2245 ooa.addr16[4], oa->addr16[4], u), 2246 ooa.addr16[5], oa->addr16[5], u), 2247 ooa.addr16[6], oa->addr16[6], u), 2248 ooa.addr16[7], oa->addr16[7], u); 2249 break; 2250 #endif /* INET6 */ 2251 } 2252 } 2253 } 2254 2255 2256 /* 2257 * Need to modulate the sequence numbers in the TCP SACK option 2258 * (credits to Krzysztof Pfaff for report and patch) 2259 */ 2260 static int 2261 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2262 struct tcphdr *th, struct pf_state_peer *dst) 2263 { 2264 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2265 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2266 int copyback = 0, i, olen; 2267 struct sackblk sack; 2268 2269 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2270 if (hlen < TCPOLEN_SACKLEN || 2271 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2272 return 0; 2273 2274 while (hlen >= TCPOLEN_SACKLEN) { 2275 olen = opt[1]; 2276 switch (*opt) { 2277 case TCPOPT_EOL: /* FALLTHROUGH */ 2278 case TCPOPT_NOP: 2279 opt++; 2280 hlen--; 2281 break; 2282 case TCPOPT_SACK: 2283 if (olen > hlen) 2284 olen = hlen; 2285 if (olen >= TCPOLEN_SACKLEN) { 2286 for (i = 2; i + TCPOLEN_SACK <= olen; 2287 i += TCPOLEN_SACK) { 2288 memcpy(&sack, &opt[i], sizeof(sack)); 2289 pf_change_proto_a(m, &sack.start, &th->th_sum, 2290 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2291 pf_change_proto_a(m, &sack.end, &th->th_sum, 2292 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2293 memcpy(&opt[i], &sack, sizeof(sack)); 2294 } 2295 copyback = 1; 2296 } 2297 /* FALLTHROUGH */ 2298 default: 2299 if (olen < 2) 2300 olen = 2; 2301 hlen -= olen; 2302 opt += olen; 2303 } 2304 } 2305 2306 if (copyback) 2307 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2308 return (copyback); 2309 } 2310 2311 static void 2312 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2313 const struct pf_addr *saddr, const struct pf_addr *daddr, 2314 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2315 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2316 u_int16_t rtag, struct ifnet *ifp) 2317 { 2318 struct pf_send_entry *pfse; 2319 struct mbuf *m; 2320 int len, tlen; 2321 #ifdef INET 2322 struct ip *h = NULL; 2323 #endif /* INET */ 2324 #ifdef INET6 2325 struct ip6_hdr *h6 = NULL; 2326 #endif /* INET6 */ 2327 struct tcphdr *th; 2328 char *opt; 2329 struct pf_mtag *pf_mtag; 2330 2331 len = 0; 2332 th = NULL; 2333 2334 /* maximum segment size tcp option */ 2335 tlen = sizeof(struct tcphdr); 2336 if (mss) 2337 tlen += 4; 2338 2339 switch (af) { 2340 #ifdef INET 2341 case AF_INET: 2342 len = sizeof(struct ip) + tlen; 2343 break; 2344 #endif /* INET */ 2345 #ifdef INET6 2346 case AF_INET6: 2347 len = sizeof(struct ip6_hdr) + tlen; 2348 break; 2349 #endif /* INET6 */ 2350 default: 2351 panic("%s: unsupported af %d", __func__, af); 2352 } 2353 2354 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2355 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2356 if (pfse == NULL) 2357 return; 2358 m = m_gethdr(M_NOWAIT, MT_DATA); 2359 if (m == NULL) { 2360 free(pfse, M_PFTEMP); 2361 return; 2362 } 2363 #ifdef MAC 2364 mac_netinet_firewall_send(m); 2365 #endif 2366 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2367 free(pfse, M_PFTEMP); 2368 m_freem(m); 2369 return; 2370 } 2371 if (tag) 2372 m->m_flags |= M_SKIP_FIREWALL; 2373 pf_mtag->tag = rtag; 2374 2375 if (r != NULL && r->rtableid >= 0) 2376 M_SETFIB(m, r->rtableid); 2377 2378 #ifdef ALTQ 2379 if (r != NULL && r->qid) { 2380 pf_mtag->qid = r->qid; 2381 2382 /* add hints for ecn */ 2383 pf_mtag->hdr = mtod(m, struct ip *); 2384 } 2385 #endif /* ALTQ */ 2386 m->m_data += max_linkhdr; 2387 m->m_pkthdr.len = m->m_len = len; 2388 m->m_pkthdr.rcvif = NULL; 2389 bzero(m->m_data, len); 2390 switch (af) { 2391 #ifdef INET 2392 case AF_INET: 2393 h = mtod(m, struct ip *); 2394 2395 /* IP header fields included in the TCP checksum */ 2396 h->ip_p = IPPROTO_TCP; 2397 h->ip_len = htons(tlen); 2398 h->ip_src.s_addr = saddr->v4.s_addr; 2399 h->ip_dst.s_addr = daddr->v4.s_addr; 2400 2401 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2402 break; 2403 #endif /* INET */ 2404 #ifdef INET6 2405 case AF_INET6: 2406 h6 = mtod(m, struct ip6_hdr *); 2407 2408 /* IP header fields included in the TCP checksum */ 2409 h6->ip6_nxt = IPPROTO_TCP; 2410 h6->ip6_plen = htons(tlen); 2411 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2412 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2413 2414 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2415 break; 2416 #endif /* INET6 */ 2417 } 2418 2419 /* TCP header */ 2420 th->th_sport = sport; 2421 th->th_dport = dport; 2422 th->th_seq = htonl(seq); 2423 th->th_ack = htonl(ack); 2424 th->th_off = tlen >> 2; 2425 th->th_flags = flags; 2426 th->th_win = htons(win); 2427 2428 if (mss) { 2429 opt = (char *)(th + 1); 2430 opt[0] = TCPOPT_MAXSEG; 2431 opt[1] = 4; 2432 HTONS(mss); 2433 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2434 } 2435 2436 switch (af) { 2437 #ifdef INET 2438 case AF_INET: 2439 /* TCP checksum */ 2440 th->th_sum = in_cksum(m, len); 2441 2442 /* Finish the IP header */ 2443 h->ip_v = 4; 2444 h->ip_hl = sizeof(*h) >> 2; 2445 h->ip_tos = IPTOS_LOWDELAY; 2446 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2447 h->ip_len = htons(len); 2448 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2449 h->ip_sum = 0; 2450 2451 pfse->pfse_type = PFSE_IP; 2452 break; 2453 #endif /* INET */ 2454 #ifdef INET6 2455 case AF_INET6: 2456 /* TCP checksum */ 2457 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2458 sizeof(struct ip6_hdr), tlen); 2459 2460 h6->ip6_vfc |= IPV6_VERSION; 2461 h6->ip6_hlim = IPV6_DEFHLIM; 2462 2463 pfse->pfse_type = PFSE_IP6; 2464 break; 2465 #endif /* INET6 */ 2466 } 2467 pfse->pfse_m = m; 2468 pf_send(pfse); 2469 } 2470 2471 static int 2472 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2473 { 2474 struct m_tag *mtag; 2475 2476 KASSERT(prio <= PF_PRIO_MAX, 2477 ("%s with invalid pcp", __func__)); 2478 2479 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2480 if (mtag == NULL) { 2481 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2482 sizeof(uint8_t), M_NOWAIT); 2483 if (mtag == NULL) 2484 return (ENOMEM); 2485 m_tag_prepend(m, mtag); 2486 } 2487 2488 *(uint8_t *)(mtag + 1) = prio; 2489 return (0); 2490 } 2491 2492 static int 2493 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2494 { 2495 struct m_tag *mtag; 2496 u_int8_t mpcp; 2497 2498 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2499 if (mtag == NULL) 2500 return (0); 2501 2502 if (prio == PF_PRIO_ZERO) 2503 prio = 0; 2504 2505 mpcp = *(uint8_t *)(mtag + 1); 2506 2507 return (mpcp == prio); 2508 } 2509 2510 static void 2511 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2512 struct pf_rule *r) 2513 { 2514 struct pf_send_entry *pfse; 2515 struct mbuf *m0; 2516 struct pf_mtag *pf_mtag; 2517 2518 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2519 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2520 if (pfse == NULL) 2521 return; 2522 2523 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2524 free(pfse, M_PFTEMP); 2525 return; 2526 } 2527 2528 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2529 free(pfse, M_PFTEMP); 2530 return; 2531 } 2532 /* XXX: revisit */ 2533 m0->m_flags |= M_SKIP_FIREWALL; 2534 2535 if (r->rtableid >= 0) 2536 M_SETFIB(m0, r->rtableid); 2537 2538 #ifdef ALTQ 2539 if (r->qid) { 2540 pf_mtag->qid = r->qid; 2541 /* add hints for ecn */ 2542 pf_mtag->hdr = mtod(m0, struct ip *); 2543 } 2544 #endif /* ALTQ */ 2545 2546 switch (af) { 2547 #ifdef INET 2548 case AF_INET: 2549 pfse->pfse_type = PFSE_ICMP; 2550 break; 2551 #endif /* INET */ 2552 #ifdef INET6 2553 case AF_INET6: 2554 pfse->pfse_type = PFSE_ICMP6; 2555 break; 2556 #endif /* INET6 */ 2557 } 2558 pfse->pfse_m = m0; 2559 pfse->icmpopts.type = type; 2560 pfse->icmpopts.code = code; 2561 pf_send(pfse); 2562 } 2563 2564 /* 2565 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2566 * If n is 0, they match if they are equal. If n is != 0, they match if they 2567 * are different. 2568 */ 2569 int 2570 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2571 struct pf_addr *b, sa_family_t af) 2572 { 2573 int match = 0; 2574 2575 switch (af) { 2576 #ifdef INET 2577 case AF_INET: 2578 if ((a->addr32[0] & m->addr32[0]) == 2579 (b->addr32[0] & m->addr32[0])) 2580 match++; 2581 break; 2582 #endif /* INET */ 2583 #ifdef INET6 2584 case AF_INET6: 2585 if (((a->addr32[0] & m->addr32[0]) == 2586 (b->addr32[0] & m->addr32[0])) && 2587 ((a->addr32[1] & m->addr32[1]) == 2588 (b->addr32[1] & m->addr32[1])) && 2589 ((a->addr32[2] & m->addr32[2]) == 2590 (b->addr32[2] & m->addr32[2])) && 2591 ((a->addr32[3] & m->addr32[3]) == 2592 (b->addr32[3] & m->addr32[3]))) 2593 match++; 2594 break; 2595 #endif /* INET6 */ 2596 } 2597 if (match) { 2598 if (n) 2599 return (0); 2600 else 2601 return (1); 2602 } else { 2603 if (n) 2604 return (1); 2605 else 2606 return (0); 2607 } 2608 } 2609 2610 /* 2611 * Return 1 if b <= a <= e, otherwise return 0. 2612 */ 2613 int 2614 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2615 struct pf_addr *a, sa_family_t af) 2616 { 2617 switch (af) { 2618 #ifdef INET 2619 case AF_INET: 2620 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2621 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2622 return (0); 2623 break; 2624 #endif /* INET */ 2625 #ifdef INET6 2626 case AF_INET6: { 2627 int i; 2628 2629 /* check a >= b */ 2630 for (i = 0; i < 4; ++i) 2631 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2632 break; 2633 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2634 return (0); 2635 /* check a <= e */ 2636 for (i = 0; i < 4; ++i) 2637 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2638 break; 2639 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2640 return (0); 2641 break; 2642 } 2643 #endif /* INET6 */ 2644 } 2645 return (1); 2646 } 2647 2648 static int 2649 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2650 { 2651 switch (op) { 2652 case PF_OP_IRG: 2653 return ((p > a1) && (p < a2)); 2654 case PF_OP_XRG: 2655 return ((p < a1) || (p > a2)); 2656 case PF_OP_RRG: 2657 return ((p >= a1) && (p <= a2)); 2658 case PF_OP_EQ: 2659 return (p == a1); 2660 case PF_OP_NE: 2661 return (p != a1); 2662 case PF_OP_LT: 2663 return (p < a1); 2664 case PF_OP_LE: 2665 return (p <= a1); 2666 case PF_OP_GT: 2667 return (p > a1); 2668 case PF_OP_GE: 2669 return (p >= a1); 2670 } 2671 return (0); /* never reached */ 2672 } 2673 2674 int 2675 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2676 { 2677 NTOHS(a1); 2678 NTOHS(a2); 2679 NTOHS(p); 2680 return (pf_match(op, a1, a2, p)); 2681 } 2682 2683 static int 2684 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2685 { 2686 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2687 return (0); 2688 return (pf_match(op, a1, a2, u)); 2689 } 2690 2691 static int 2692 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2693 { 2694 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2695 return (0); 2696 return (pf_match(op, a1, a2, g)); 2697 } 2698 2699 int 2700 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2701 { 2702 if (*tag == -1) 2703 *tag = mtag; 2704 2705 return ((!r->match_tag_not && r->match_tag == *tag) || 2706 (r->match_tag_not && r->match_tag != *tag)); 2707 } 2708 2709 int 2710 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2711 { 2712 2713 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2714 2715 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2716 return (ENOMEM); 2717 2718 pd->pf_mtag->tag = tag; 2719 2720 return (0); 2721 } 2722 2723 #define PF_ANCHOR_STACKSIZE 32 2724 struct pf_anchor_stackframe { 2725 struct pf_ruleset *rs; 2726 struct pf_rule *r; /* XXX: + match bit */ 2727 struct pf_anchor *child; 2728 }; 2729 2730 /* 2731 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2732 */ 2733 #define PF_ANCHORSTACK_MATCH 0x00000001 2734 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2735 2736 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2737 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2738 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2739 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2740 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2741 } while (0) 2742 2743 void 2744 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2745 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2746 int *match) 2747 { 2748 struct pf_anchor_stackframe *f; 2749 2750 PF_RULES_RASSERT(); 2751 2752 if (match) 2753 *match = 0; 2754 if (*depth >= PF_ANCHOR_STACKSIZE) { 2755 printf("%s: anchor stack overflow on %s\n", 2756 __func__, (*r)->anchor->name); 2757 *r = TAILQ_NEXT(*r, entries); 2758 return; 2759 } else if (*depth == 0 && a != NULL) 2760 *a = *r; 2761 f = stack + (*depth)++; 2762 f->rs = *rs; 2763 f->r = *r; 2764 if ((*r)->anchor_wildcard) { 2765 struct pf_anchor_node *parent = &(*r)->anchor->children; 2766 2767 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2768 *r = NULL; 2769 return; 2770 } 2771 *rs = &f->child->ruleset; 2772 } else { 2773 f->child = NULL; 2774 *rs = &(*r)->anchor->ruleset; 2775 } 2776 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2777 } 2778 2779 int 2780 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2781 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2782 int *match) 2783 { 2784 struct pf_anchor_stackframe *f; 2785 struct pf_rule *fr; 2786 int quick = 0; 2787 2788 PF_RULES_RASSERT(); 2789 2790 do { 2791 if (*depth <= 0) 2792 break; 2793 f = stack + *depth - 1; 2794 fr = PF_ANCHOR_RULE(f); 2795 if (f->child != NULL) { 2796 struct pf_anchor_node *parent; 2797 2798 /* 2799 * This block traverses through 2800 * a wildcard anchor. 2801 */ 2802 parent = &fr->anchor->children; 2803 if (match != NULL && *match) { 2804 /* 2805 * If any of "*" matched, then 2806 * "foo/ *" matched, mark frame 2807 * appropriately. 2808 */ 2809 PF_ANCHOR_SET_MATCH(f); 2810 *match = 0; 2811 } 2812 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2813 if (f->child != NULL) { 2814 *rs = &f->child->ruleset; 2815 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2816 if (*r == NULL) 2817 continue; 2818 else 2819 break; 2820 } 2821 } 2822 (*depth)--; 2823 if (*depth == 0 && a != NULL) 2824 *a = NULL; 2825 *rs = f->rs; 2826 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2827 quick = fr->quick; 2828 *r = TAILQ_NEXT(fr, entries); 2829 } while (*r == NULL); 2830 2831 return (quick); 2832 } 2833 2834 #ifdef INET6 2835 void 2836 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2837 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2838 { 2839 switch (af) { 2840 #ifdef INET 2841 case AF_INET: 2842 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2843 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2844 break; 2845 #endif /* INET */ 2846 case AF_INET6: 2847 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2848 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2849 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2850 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2851 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2852 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2853 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2854 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2855 break; 2856 } 2857 } 2858 2859 void 2860 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2861 { 2862 switch (af) { 2863 #ifdef INET 2864 case AF_INET: 2865 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2866 break; 2867 #endif /* INET */ 2868 case AF_INET6: 2869 if (addr->addr32[3] == 0xffffffff) { 2870 addr->addr32[3] = 0; 2871 if (addr->addr32[2] == 0xffffffff) { 2872 addr->addr32[2] = 0; 2873 if (addr->addr32[1] == 0xffffffff) { 2874 addr->addr32[1] = 0; 2875 addr->addr32[0] = 2876 htonl(ntohl(addr->addr32[0]) + 1); 2877 } else 2878 addr->addr32[1] = 2879 htonl(ntohl(addr->addr32[1]) + 1); 2880 } else 2881 addr->addr32[2] = 2882 htonl(ntohl(addr->addr32[2]) + 1); 2883 } else 2884 addr->addr32[3] = 2885 htonl(ntohl(addr->addr32[3]) + 1); 2886 break; 2887 } 2888 } 2889 #endif /* INET6 */ 2890 2891 int 2892 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2893 { 2894 struct pf_addr *saddr, *daddr; 2895 u_int16_t sport, dport; 2896 struct inpcbinfo *pi; 2897 struct inpcb *inp; 2898 2899 pd->lookup.uid = UID_MAX; 2900 pd->lookup.gid = GID_MAX; 2901 2902 switch (pd->proto) { 2903 case IPPROTO_TCP: 2904 if (pd->hdr.tcp == NULL) 2905 return (-1); 2906 sport = pd->hdr.tcp->th_sport; 2907 dport = pd->hdr.tcp->th_dport; 2908 pi = &V_tcbinfo; 2909 break; 2910 case IPPROTO_UDP: 2911 if (pd->hdr.udp == NULL) 2912 return (-1); 2913 sport = pd->hdr.udp->uh_sport; 2914 dport = pd->hdr.udp->uh_dport; 2915 pi = &V_udbinfo; 2916 break; 2917 default: 2918 return (-1); 2919 } 2920 if (direction == PF_IN) { 2921 saddr = pd->src; 2922 daddr = pd->dst; 2923 } else { 2924 u_int16_t p; 2925 2926 p = sport; 2927 sport = dport; 2928 dport = p; 2929 saddr = pd->dst; 2930 daddr = pd->src; 2931 } 2932 switch (pd->af) { 2933 #ifdef INET 2934 case AF_INET: 2935 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2936 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2937 if (inp == NULL) { 2938 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2939 daddr->v4, dport, INPLOOKUP_WILDCARD | 2940 INPLOOKUP_RLOCKPCB, NULL, m); 2941 if (inp == NULL) 2942 return (-1); 2943 } 2944 break; 2945 #endif /* INET */ 2946 #ifdef INET6 2947 case AF_INET6: 2948 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2949 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2950 if (inp == NULL) { 2951 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2952 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2953 INPLOOKUP_RLOCKPCB, NULL, m); 2954 if (inp == NULL) 2955 return (-1); 2956 } 2957 break; 2958 #endif /* INET6 */ 2959 2960 default: 2961 return (-1); 2962 } 2963 INP_RLOCK_ASSERT(inp); 2964 pd->lookup.uid = inp->inp_cred->cr_uid; 2965 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2966 INP_RUNLOCK(inp); 2967 2968 return (1); 2969 } 2970 2971 static u_int8_t 2972 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2973 { 2974 int hlen; 2975 u_int8_t hdr[60]; 2976 u_int8_t *opt, optlen; 2977 u_int8_t wscale = 0; 2978 2979 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2980 if (hlen <= sizeof(struct tcphdr)) 2981 return (0); 2982 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2983 return (0); 2984 opt = hdr + sizeof(struct tcphdr); 2985 hlen -= sizeof(struct tcphdr); 2986 while (hlen >= 3) { 2987 switch (*opt) { 2988 case TCPOPT_EOL: 2989 case TCPOPT_NOP: 2990 ++opt; 2991 --hlen; 2992 break; 2993 case TCPOPT_WINDOW: 2994 wscale = opt[2]; 2995 if (wscale > TCP_MAX_WINSHIFT) 2996 wscale = TCP_MAX_WINSHIFT; 2997 wscale |= PF_WSCALE_FLAG; 2998 /* FALLTHROUGH */ 2999 default: 3000 optlen = opt[1]; 3001 if (optlen < 2) 3002 optlen = 2; 3003 hlen -= optlen; 3004 opt += optlen; 3005 break; 3006 } 3007 } 3008 return (wscale); 3009 } 3010 3011 static u_int16_t 3012 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3013 { 3014 int hlen; 3015 u_int8_t hdr[60]; 3016 u_int8_t *opt, optlen; 3017 u_int16_t mss = V_tcp_mssdflt; 3018 3019 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3020 if (hlen <= sizeof(struct tcphdr)) 3021 return (0); 3022 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3023 return (0); 3024 opt = hdr + sizeof(struct tcphdr); 3025 hlen -= sizeof(struct tcphdr); 3026 while (hlen >= TCPOLEN_MAXSEG) { 3027 switch (*opt) { 3028 case TCPOPT_EOL: 3029 case TCPOPT_NOP: 3030 ++opt; 3031 --hlen; 3032 break; 3033 case TCPOPT_MAXSEG: 3034 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3035 NTOHS(mss); 3036 /* FALLTHROUGH */ 3037 default: 3038 optlen = opt[1]; 3039 if (optlen < 2) 3040 optlen = 2; 3041 hlen -= optlen; 3042 opt += optlen; 3043 break; 3044 } 3045 } 3046 return (mss); 3047 } 3048 3049 static u_int16_t 3050 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3051 { 3052 #ifdef INET 3053 struct nhop4_basic nh4; 3054 #endif /* INET */ 3055 #ifdef INET6 3056 struct nhop6_basic nh6; 3057 struct in6_addr dst6; 3058 uint32_t scopeid; 3059 #endif /* INET6 */ 3060 int hlen = 0; 3061 uint16_t mss = 0; 3062 3063 switch (af) { 3064 #ifdef INET 3065 case AF_INET: 3066 hlen = sizeof(struct ip); 3067 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3068 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3069 break; 3070 #endif /* INET */ 3071 #ifdef INET6 3072 case AF_INET6: 3073 hlen = sizeof(struct ip6_hdr); 3074 in6_splitscope(&addr->v6, &dst6, &scopeid); 3075 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3076 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3077 break; 3078 #endif /* INET6 */ 3079 } 3080 3081 mss = max(V_tcp_mssdflt, mss); 3082 mss = min(mss, offer); 3083 mss = max(mss, 64); /* sanity - at least max opt space */ 3084 return (mss); 3085 } 3086 3087 static u_int32_t 3088 pf_tcp_iss(struct pf_pdesc *pd) 3089 { 3090 MD5_CTX ctx; 3091 u_int32_t digest[4]; 3092 3093 if (V_pf_tcp_secret_init == 0) { 3094 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3095 MD5Init(&V_pf_tcp_secret_ctx); 3096 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3097 sizeof(V_pf_tcp_secret)); 3098 V_pf_tcp_secret_init = 1; 3099 } 3100 3101 ctx = V_pf_tcp_secret_ctx; 3102 3103 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3104 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3105 if (pd->af == AF_INET6) { 3106 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3107 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3108 } else { 3109 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3110 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3111 } 3112 MD5Final((u_char *)digest, &ctx); 3113 V_pf_tcp_iss_off += 4096; 3114 #define ISN_RANDOM_INCREMENT (4096 - 1) 3115 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3116 V_pf_tcp_iss_off); 3117 #undef ISN_RANDOM_INCREMENT 3118 } 3119 3120 static int 3121 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3122 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3123 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3124 { 3125 struct pf_rule *nr = NULL; 3126 struct pf_addr * const saddr = pd->src; 3127 struct pf_addr * const daddr = pd->dst; 3128 sa_family_t af = pd->af; 3129 struct pf_rule *r, *a = NULL; 3130 struct pf_ruleset *ruleset = NULL; 3131 struct pf_src_node *nsn = NULL; 3132 struct tcphdr *th = pd->hdr.tcp; 3133 struct pf_state_key *sk = NULL, *nk = NULL; 3134 u_short reason; 3135 int rewrite = 0, hdrlen = 0; 3136 int tag = -1, rtableid = -1; 3137 int asd = 0; 3138 int match = 0; 3139 int state_icmp = 0; 3140 u_int16_t sport = 0, dport = 0; 3141 u_int16_t bproto_sum = 0, bip_sum = 0; 3142 u_int8_t icmptype = 0, icmpcode = 0; 3143 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3144 3145 PF_RULES_RASSERT(); 3146 3147 if (inp != NULL) { 3148 INP_LOCK_ASSERT(inp); 3149 pd->lookup.uid = inp->inp_cred->cr_uid; 3150 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3151 pd->lookup.done = 1; 3152 } 3153 3154 switch (pd->proto) { 3155 case IPPROTO_TCP: 3156 sport = th->th_sport; 3157 dport = th->th_dport; 3158 hdrlen = sizeof(*th); 3159 break; 3160 case IPPROTO_UDP: 3161 sport = pd->hdr.udp->uh_sport; 3162 dport = pd->hdr.udp->uh_dport; 3163 hdrlen = sizeof(*pd->hdr.udp); 3164 break; 3165 #ifdef INET 3166 case IPPROTO_ICMP: 3167 if (pd->af != AF_INET) 3168 break; 3169 sport = dport = pd->hdr.icmp->icmp_id; 3170 hdrlen = sizeof(*pd->hdr.icmp); 3171 icmptype = pd->hdr.icmp->icmp_type; 3172 icmpcode = pd->hdr.icmp->icmp_code; 3173 3174 if (icmptype == ICMP_UNREACH || 3175 icmptype == ICMP_SOURCEQUENCH || 3176 icmptype == ICMP_REDIRECT || 3177 icmptype == ICMP_TIMXCEED || 3178 icmptype == ICMP_PARAMPROB) 3179 state_icmp++; 3180 break; 3181 #endif /* INET */ 3182 #ifdef INET6 3183 case IPPROTO_ICMPV6: 3184 if (af != AF_INET6) 3185 break; 3186 sport = dport = pd->hdr.icmp6->icmp6_id; 3187 hdrlen = sizeof(*pd->hdr.icmp6); 3188 icmptype = pd->hdr.icmp6->icmp6_type; 3189 icmpcode = pd->hdr.icmp6->icmp6_code; 3190 3191 if (icmptype == ICMP6_DST_UNREACH || 3192 icmptype == ICMP6_PACKET_TOO_BIG || 3193 icmptype == ICMP6_TIME_EXCEEDED || 3194 icmptype == ICMP6_PARAM_PROB) 3195 state_icmp++; 3196 break; 3197 #endif /* INET6 */ 3198 default: 3199 sport = dport = hdrlen = 0; 3200 break; 3201 } 3202 3203 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3204 3205 /* check packet for BINAT/NAT/RDR */ 3206 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3207 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3208 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3209 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3210 3211 if (pd->ip_sum) 3212 bip_sum = *pd->ip_sum; 3213 3214 switch (pd->proto) { 3215 case IPPROTO_TCP: 3216 bproto_sum = th->th_sum; 3217 pd->proto_sum = &th->th_sum; 3218 3219 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3220 nk->port[pd->sidx] != sport) { 3221 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3222 &th->th_sum, &nk->addr[pd->sidx], 3223 nk->port[pd->sidx], 0, af); 3224 pd->sport = &th->th_sport; 3225 sport = th->th_sport; 3226 } 3227 3228 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3229 nk->port[pd->didx] != dport) { 3230 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3231 &th->th_sum, &nk->addr[pd->didx], 3232 nk->port[pd->didx], 0, af); 3233 dport = th->th_dport; 3234 pd->dport = &th->th_dport; 3235 } 3236 rewrite++; 3237 break; 3238 case IPPROTO_UDP: 3239 bproto_sum = pd->hdr.udp->uh_sum; 3240 pd->proto_sum = &pd->hdr.udp->uh_sum; 3241 3242 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3243 nk->port[pd->sidx] != sport) { 3244 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3245 pd->ip_sum, &pd->hdr.udp->uh_sum, 3246 &nk->addr[pd->sidx], 3247 nk->port[pd->sidx], 1, af); 3248 sport = pd->hdr.udp->uh_sport; 3249 pd->sport = &pd->hdr.udp->uh_sport; 3250 } 3251 3252 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3253 nk->port[pd->didx] != dport) { 3254 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3255 pd->ip_sum, &pd->hdr.udp->uh_sum, 3256 &nk->addr[pd->didx], 3257 nk->port[pd->didx], 1, af); 3258 dport = pd->hdr.udp->uh_dport; 3259 pd->dport = &pd->hdr.udp->uh_dport; 3260 } 3261 rewrite++; 3262 break; 3263 #ifdef INET 3264 case IPPROTO_ICMP: 3265 nk->port[0] = nk->port[1]; 3266 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3267 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3268 nk->addr[pd->sidx].v4.s_addr, 0); 3269 3270 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3271 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3272 nk->addr[pd->didx].v4.s_addr, 0); 3273 3274 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3275 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3276 pd->hdr.icmp->icmp_cksum, sport, 3277 nk->port[1], 0); 3278 pd->hdr.icmp->icmp_id = nk->port[1]; 3279 pd->sport = &pd->hdr.icmp->icmp_id; 3280 } 3281 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3282 break; 3283 #endif /* INET */ 3284 #ifdef INET6 3285 case IPPROTO_ICMPV6: 3286 nk->port[0] = nk->port[1]; 3287 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3288 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3289 &nk->addr[pd->sidx], 0); 3290 3291 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3292 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3293 &nk->addr[pd->didx], 0); 3294 rewrite++; 3295 break; 3296 #endif /* INET */ 3297 default: 3298 switch (af) { 3299 #ifdef INET 3300 case AF_INET: 3301 if (PF_ANEQ(saddr, 3302 &nk->addr[pd->sidx], AF_INET)) 3303 pf_change_a(&saddr->v4.s_addr, 3304 pd->ip_sum, 3305 nk->addr[pd->sidx].v4.s_addr, 0); 3306 3307 if (PF_ANEQ(daddr, 3308 &nk->addr[pd->didx], AF_INET)) 3309 pf_change_a(&daddr->v4.s_addr, 3310 pd->ip_sum, 3311 nk->addr[pd->didx].v4.s_addr, 0); 3312 break; 3313 #endif /* INET */ 3314 #ifdef INET6 3315 case AF_INET6: 3316 if (PF_ANEQ(saddr, 3317 &nk->addr[pd->sidx], AF_INET6)) 3318 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3319 3320 if (PF_ANEQ(daddr, 3321 &nk->addr[pd->didx], AF_INET6)) 3322 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3323 break; 3324 #endif /* INET */ 3325 } 3326 break; 3327 } 3328 if (nr->natpass) 3329 r = NULL; 3330 pd->nat_rule = nr; 3331 } 3332 3333 while (r != NULL) { 3334 r->evaluations++; 3335 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3336 r = r->skip[PF_SKIP_IFP].ptr; 3337 else if (r->direction && r->direction != direction) 3338 r = r->skip[PF_SKIP_DIR].ptr; 3339 else if (r->af && r->af != af) 3340 r = r->skip[PF_SKIP_AF].ptr; 3341 else if (r->proto && r->proto != pd->proto) 3342 r = r->skip[PF_SKIP_PROTO].ptr; 3343 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3344 r->src.neg, kif, M_GETFIB(m))) 3345 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3346 /* tcp/udp only. port_op always 0 in other cases */ 3347 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3348 r->src.port[0], r->src.port[1], sport)) 3349 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3350 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3351 r->dst.neg, NULL, M_GETFIB(m))) 3352 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3353 /* tcp/udp only. port_op always 0 in other cases */ 3354 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3355 r->dst.port[0], r->dst.port[1], dport)) 3356 r = r->skip[PF_SKIP_DST_PORT].ptr; 3357 /* icmp only. type always 0 in other cases */ 3358 else if (r->type && r->type != icmptype + 1) 3359 r = TAILQ_NEXT(r, entries); 3360 /* icmp only. type always 0 in other cases */ 3361 else if (r->code && r->code != icmpcode + 1) 3362 r = TAILQ_NEXT(r, entries); 3363 else if (r->tos && !(r->tos == pd->tos)) 3364 r = TAILQ_NEXT(r, entries); 3365 else if (r->rule_flag & PFRULE_FRAGMENT) 3366 r = TAILQ_NEXT(r, entries); 3367 else if (pd->proto == IPPROTO_TCP && 3368 (r->flagset & th->th_flags) != r->flags) 3369 r = TAILQ_NEXT(r, entries); 3370 /* tcp/udp only. uid.op always 0 in other cases */ 3371 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3372 pf_socket_lookup(direction, pd, m), 1)) && 3373 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3374 pd->lookup.uid)) 3375 r = TAILQ_NEXT(r, entries); 3376 /* tcp/udp only. gid.op always 0 in other cases */ 3377 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3378 pf_socket_lookup(direction, pd, m), 1)) && 3379 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3380 pd->lookup.gid)) 3381 r = TAILQ_NEXT(r, entries); 3382 else if (r->prio && 3383 !pf_match_ieee8021q_pcp(r->prio, m)) 3384 r = TAILQ_NEXT(r, entries); 3385 else if (r->prob && 3386 r->prob <= arc4random()) 3387 r = TAILQ_NEXT(r, entries); 3388 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3389 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3390 r = TAILQ_NEXT(r, entries); 3391 else if (r->os_fingerprint != PF_OSFP_ANY && 3392 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3393 pf_osfp_fingerprint(pd, m, off, th), 3394 r->os_fingerprint))) 3395 r = TAILQ_NEXT(r, entries); 3396 else { 3397 if (r->tag) 3398 tag = r->tag; 3399 if (r->rtableid >= 0) 3400 rtableid = r->rtableid; 3401 if (r->anchor == NULL) { 3402 match = 1; 3403 *rm = r; 3404 *am = a; 3405 *rsm = ruleset; 3406 if ((*rm)->quick) 3407 break; 3408 r = TAILQ_NEXT(r, entries); 3409 } else 3410 pf_step_into_anchor(anchor_stack, &asd, 3411 &ruleset, PF_RULESET_FILTER, &r, &a, 3412 &match); 3413 } 3414 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3415 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3416 break; 3417 } 3418 r = *rm; 3419 a = *am; 3420 ruleset = *rsm; 3421 3422 REASON_SET(&reason, PFRES_MATCH); 3423 3424 if (r->log || (nr != NULL && nr->log)) { 3425 if (rewrite) 3426 m_copyback(m, off, hdrlen, pd->hdr.any); 3427 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3428 ruleset, pd, 1); 3429 } 3430 3431 if ((r->action == PF_DROP) && 3432 ((r->rule_flag & PFRULE_RETURNRST) || 3433 (r->rule_flag & PFRULE_RETURNICMP) || 3434 (r->rule_flag & PFRULE_RETURN))) { 3435 /* undo NAT changes, if they have taken place */ 3436 if (nr != NULL) { 3437 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3438 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3439 if (pd->sport) 3440 *pd->sport = sk->port[pd->sidx]; 3441 if (pd->dport) 3442 *pd->dport = sk->port[pd->didx]; 3443 if (pd->proto_sum) 3444 *pd->proto_sum = bproto_sum; 3445 if (pd->ip_sum) 3446 *pd->ip_sum = bip_sum; 3447 m_copyback(m, off, hdrlen, pd->hdr.any); 3448 } 3449 if (pd->proto == IPPROTO_TCP && 3450 ((r->rule_flag & PFRULE_RETURNRST) || 3451 (r->rule_flag & PFRULE_RETURN)) && 3452 !(th->th_flags & TH_RST)) { 3453 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3454 int len = 0; 3455 #ifdef INET 3456 struct ip *h4; 3457 #endif 3458 #ifdef INET6 3459 struct ip6_hdr *h6; 3460 #endif 3461 3462 switch (af) { 3463 #ifdef INET 3464 case AF_INET: 3465 h4 = mtod(m, struct ip *); 3466 len = ntohs(h4->ip_len) - off; 3467 break; 3468 #endif 3469 #ifdef INET6 3470 case AF_INET6: 3471 h6 = mtod(m, struct ip6_hdr *); 3472 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3473 break; 3474 #endif 3475 } 3476 3477 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3478 REASON_SET(&reason, PFRES_PROTCKSUM); 3479 else { 3480 if (th->th_flags & TH_SYN) 3481 ack++; 3482 if (th->th_flags & TH_FIN) 3483 ack++; 3484 pf_send_tcp(m, r, af, pd->dst, 3485 pd->src, th->th_dport, th->th_sport, 3486 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3487 r->return_ttl, 1, 0, kif->pfik_ifp); 3488 } 3489 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3490 r->return_icmp) 3491 pf_send_icmp(m, r->return_icmp >> 8, 3492 r->return_icmp & 255, af, r); 3493 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3494 r->return_icmp6) 3495 pf_send_icmp(m, r->return_icmp6 >> 8, 3496 r->return_icmp6 & 255, af, r); 3497 } 3498 3499 if (r->action == PF_DROP) 3500 goto cleanup; 3501 3502 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3503 REASON_SET(&reason, PFRES_MEMORY); 3504 goto cleanup; 3505 } 3506 if (rtableid >= 0) 3507 M_SETFIB(m, rtableid); 3508 3509 if (!state_icmp && (r->keep_state || nr != NULL || 3510 (pd->flags & PFDESC_TCP_NORM))) { 3511 int action; 3512 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3513 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3514 hdrlen); 3515 if (action != PF_PASS) 3516 return (action); 3517 } else { 3518 if (sk != NULL) 3519 uma_zfree(V_pf_state_key_z, sk); 3520 if (nk != NULL) 3521 uma_zfree(V_pf_state_key_z, nk); 3522 } 3523 3524 /* copy back packet headers if we performed NAT operations */ 3525 if (rewrite) 3526 m_copyback(m, off, hdrlen, pd->hdr.any); 3527 3528 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3529 direction == PF_OUT && 3530 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3531 /* 3532 * We want the state created, but we dont 3533 * want to send this in case a partner 3534 * firewall has to know about it to allow 3535 * replies through it. 3536 */ 3537 return (PF_DEFER); 3538 3539 return (PF_PASS); 3540 3541 cleanup: 3542 if (sk != NULL) 3543 uma_zfree(V_pf_state_key_z, sk); 3544 if (nk != NULL) 3545 uma_zfree(V_pf_state_key_z, nk); 3546 return (PF_DROP); 3547 } 3548 3549 static int 3550 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3551 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3552 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3553 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3554 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3555 { 3556 struct pf_state *s = NULL; 3557 struct pf_src_node *sn = NULL; 3558 struct tcphdr *th = pd->hdr.tcp; 3559 u_int16_t mss = V_tcp_mssdflt; 3560 u_short reason; 3561 3562 /* check maximums */ 3563 if (r->max_states && 3564 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3565 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3566 REASON_SET(&reason, PFRES_MAXSTATES); 3567 goto csfailed; 3568 } 3569 /* src node for filter rule */ 3570 if ((r->rule_flag & PFRULE_SRCTRACK || 3571 r->rpool.opts & PF_POOL_STICKYADDR) && 3572 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3573 REASON_SET(&reason, PFRES_SRCLIMIT); 3574 goto csfailed; 3575 } 3576 /* src node for translation rule */ 3577 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3578 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3579 REASON_SET(&reason, PFRES_SRCLIMIT); 3580 goto csfailed; 3581 } 3582 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3583 if (s == NULL) { 3584 REASON_SET(&reason, PFRES_MEMORY); 3585 goto csfailed; 3586 } 3587 s->rule.ptr = r; 3588 s->nat_rule.ptr = nr; 3589 s->anchor.ptr = a; 3590 STATE_INC_COUNTERS(s); 3591 if (r->allow_opts) 3592 s->state_flags |= PFSTATE_ALLOWOPTS; 3593 if (r->rule_flag & PFRULE_STATESLOPPY) 3594 s->state_flags |= PFSTATE_SLOPPY; 3595 s->log = r->log & PF_LOG_ALL; 3596 s->sync_state = PFSYNC_S_NONE; 3597 if (nr != NULL) 3598 s->log |= nr->log & PF_LOG_ALL; 3599 switch (pd->proto) { 3600 case IPPROTO_TCP: 3601 s->src.seqlo = ntohl(th->th_seq); 3602 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3603 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3604 r->keep_state == PF_STATE_MODULATE) { 3605 /* Generate sequence number modulator */ 3606 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3607 0) 3608 s->src.seqdiff = 1; 3609 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3610 htonl(s->src.seqlo + s->src.seqdiff), 0); 3611 *rewrite = 1; 3612 } else 3613 s->src.seqdiff = 0; 3614 if (th->th_flags & TH_SYN) { 3615 s->src.seqhi++; 3616 s->src.wscale = pf_get_wscale(m, off, 3617 th->th_off, pd->af); 3618 } 3619 s->src.max_win = MAX(ntohs(th->th_win), 1); 3620 if (s->src.wscale & PF_WSCALE_MASK) { 3621 /* Remove scale factor from initial window */ 3622 int win = s->src.max_win; 3623 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3624 s->src.max_win = (win - 1) >> 3625 (s->src.wscale & PF_WSCALE_MASK); 3626 } 3627 if (th->th_flags & TH_FIN) 3628 s->src.seqhi++; 3629 s->dst.seqhi = 1; 3630 s->dst.max_win = 1; 3631 s->src.state = TCPS_SYN_SENT; 3632 s->dst.state = TCPS_CLOSED; 3633 s->timeout = PFTM_TCP_FIRST_PACKET; 3634 break; 3635 case IPPROTO_UDP: 3636 s->src.state = PFUDPS_SINGLE; 3637 s->dst.state = PFUDPS_NO_TRAFFIC; 3638 s->timeout = PFTM_UDP_FIRST_PACKET; 3639 break; 3640 case IPPROTO_ICMP: 3641 #ifdef INET6 3642 case IPPROTO_ICMPV6: 3643 #endif 3644 s->timeout = PFTM_ICMP_FIRST_PACKET; 3645 break; 3646 default: 3647 s->src.state = PFOTHERS_SINGLE; 3648 s->dst.state = PFOTHERS_NO_TRAFFIC; 3649 s->timeout = PFTM_OTHER_FIRST_PACKET; 3650 } 3651 3652 if (r->rt) { 3653 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3654 REASON_SET(&reason, PFRES_MAPFAILED); 3655 pf_src_tree_remove_state(s); 3656 STATE_DEC_COUNTERS(s); 3657 uma_zfree(V_pf_state_z, s); 3658 goto csfailed; 3659 } 3660 s->rt_kif = r->rpool.cur->kif; 3661 } 3662 3663 s->creation = time_uptime; 3664 s->expire = time_uptime; 3665 3666 if (sn != NULL) 3667 s->src_node = sn; 3668 if (nsn != NULL) { 3669 /* XXX We only modify one side for now. */ 3670 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3671 s->nat_src_node = nsn; 3672 } 3673 if (pd->proto == IPPROTO_TCP) { 3674 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3675 off, pd, th, &s->src, &s->dst)) { 3676 REASON_SET(&reason, PFRES_MEMORY); 3677 pf_src_tree_remove_state(s); 3678 STATE_DEC_COUNTERS(s); 3679 uma_zfree(V_pf_state_z, s); 3680 return (PF_DROP); 3681 } 3682 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3683 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3684 &s->src, &s->dst, rewrite)) { 3685 /* This really shouldn't happen!!! */ 3686 DPFPRINTF(PF_DEBUG_URGENT, 3687 ("pf_normalize_tcp_stateful failed on first pkt")); 3688 pf_normalize_tcp_cleanup(s); 3689 pf_src_tree_remove_state(s); 3690 STATE_DEC_COUNTERS(s); 3691 uma_zfree(V_pf_state_z, s); 3692 return (PF_DROP); 3693 } 3694 } 3695 s->direction = pd->dir; 3696 3697 /* 3698 * sk/nk could already been setup by pf_get_translation(). 3699 */ 3700 if (nr == NULL) { 3701 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3702 __func__, nr, sk, nk)); 3703 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3704 if (sk == NULL) 3705 goto csfailed; 3706 nk = sk; 3707 } else 3708 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3709 __func__, nr, sk, nk)); 3710 3711 /* Swap sk/nk for PF_OUT. */ 3712 if (pf_state_insert(BOUND_IFACE(r, kif), 3713 (pd->dir == PF_IN) ? sk : nk, 3714 (pd->dir == PF_IN) ? nk : sk, s)) { 3715 if (pd->proto == IPPROTO_TCP) 3716 pf_normalize_tcp_cleanup(s); 3717 REASON_SET(&reason, PFRES_STATEINS); 3718 pf_src_tree_remove_state(s); 3719 STATE_DEC_COUNTERS(s); 3720 uma_zfree(V_pf_state_z, s); 3721 return (PF_DROP); 3722 } else 3723 *sm = s; 3724 3725 if (tag > 0) 3726 s->tag = tag; 3727 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3728 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3729 s->src.state = PF_TCPS_PROXY_SRC; 3730 /* undo NAT changes, if they have taken place */ 3731 if (nr != NULL) { 3732 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3733 if (pd->dir == PF_OUT) 3734 skt = s->key[PF_SK_STACK]; 3735 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3736 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3737 if (pd->sport) 3738 *pd->sport = skt->port[pd->sidx]; 3739 if (pd->dport) 3740 *pd->dport = skt->port[pd->didx]; 3741 if (pd->proto_sum) 3742 *pd->proto_sum = bproto_sum; 3743 if (pd->ip_sum) 3744 *pd->ip_sum = bip_sum; 3745 m_copyback(m, off, hdrlen, pd->hdr.any); 3746 } 3747 s->src.seqhi = htonl(arc4random()); 3748 /* Find mss option */ 3749 int rtid = M_GETFIB(m); 3750 mss = pf_get_mss(m, off, th->th_off, pd->af); 3751 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3752 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3753 s->src.mss = mss; 3754 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3755 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3756 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3757 REASON_SET(&reason, PFRES_SYNPROXY); 3758 return (PF_SYNPROXY_DROP); 3759 } 3760 3761 return (PF_PASS); 3762 3763 csfailed: 3764 if (sk != NULL) 3765 uma_zfree(V_pf_state_key_z, sk); 3766 if (nk != NULL) 3767 uma_zfree(V_pf_state_key_z, nk); 3768 3769 if (sn != NULL) { 3770 struct pf_srchash *sh; 3771 3772 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3773 PF_HASHROW_LOCK(sh); 3774 if (--sn->states == 0 && sn->expire == 0) { 3775 pf_unlink_src_node(sn); 3776 uma_zfree(V_pf_sources_z, sn); 3777 counter_u64_add( 3778 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3779 } 3780 PF_HASHROW_UNLOCK(sh); 3781 } 3782 3783 if (nsn != sn && nsn != NULL) { 3784 struct pf_srchash *sh; 3785 3786 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3787 PF_HASHROW_LOCK(sh); 3788 if (--nsn->states == 0 && nsn->expire == 0) { 3789 pf_unlink_src_node(nsn); 3790 uma_zfree(V_pf_sources_z, nsn); 3791 counter_u64_add( 3792 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3793 } 3794 PF_HASHROW_UNLOCK(sh); 3795 } 3796 3797 return (PF_DROP); 3798 } 3799 3800 static int 3801 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3802 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3803 struct pf_ruleset **rsm) 3804 { 3805 struct pf_rule *r, *a = NULL; 3806 struct pf_ruleset *ruleset = NULL; 3807 sa_family_t af = pd->af; 3808 u_short reason; 3809 int tag = -1; 3810 int asd = 0; 3811 int match = 0; 3812 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3813 3814 PF_RULES_RASSERT(); 3815 3816 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3817 while (r != NULL) { 3818 r->evaluations++; 3819 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3820 r = r->skip[PF_SKIP_IFP].ptr; 3821 else if (r->direction && r->direction != direction) 3822 r = r->skip[PF_SKIP_DIR].ptr; 3823 else if (r->af && r->af != af) 3824 r = r->skip[PF_SKIP_AF].ptr; 3825 else if (r->proto && r->proto != pd->proto) 3826 r = r->skip[PF_SKIP_PROTO].ptr; 3827 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3828 r->src.neg, kif, M_GETFIB(m))) 3829 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3830 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3831 r->dst.neg, NULL, M_GETFIB(m))) 3832 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3833 else if (r->tos && !(r->tos == pd->tos)) 3834 r = TAILQ_NEXT(r, entries); 3835 else if (r->os_fingerprint != PF_OSFP_ANY) 3836 r = TAILQ_NEXT(r, entries); 3837 else if (pd->proto == IPPROTO_UDP && 3838 (r->src.port_op || r->dst.port_op)) 3839 r = TAILQ_NEXT(r, entries); 3840 else if (pd->proto == IPPROTO_TCP && 3841 (r->src.port_op || r->dst.port_op || r->flagset)) 3842 r = TAILQ_NEXT(r, entries); 3843 else if ((pd->proto == IPPROTO_ICMP || 3844 pd->proto == IPPROTO_ICMPV6) && 3845 (r->type || r->code)) 3846 r = TAILQ_NEXT(r, entries); 3847 else if (r->prio && 3848 !pf_match_ieee8021q_pcp(r->prio, m)) 3849 r = TAILQ_NEXT(r, entries); 3850 else if (r->prob && r->prob <= 3851 (arc4random() % (UINT_MAX - 1) + 1)) 3852 r = TAILQ_NEXT(r, entries); 3853 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3854 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3855 r = TAILQ_NEXT(r, entries); 3856 else { 3857 if (r->anchor == NULL) { 3858 match = 1; 3859 *rm = r; 3860 *am = a; 3861 *rsm = ruleset; 3862 if ((*rm)->quick) 3863 break; 3864 r = TAILQ_NEXT(r, entries); 3865 } else 3866 pf_step_into_anchor(anchor_stack, &asd, 3867 &ruleset, PF_RULESET_FILTER, &r, &a, 3868 &match); 3869 } 3870 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3871 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3872 break; 3873 } 3874 r = *rm; 3875 a = *am; 3876 ruleset = *rsm; 3877 3878 REASON_SET(&reason, PFRES_MATCH); 3879 3880 if (r->log) 3881 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3882 1); 3883 3884 if (r->action != PF_PASS) 3885 return (PF_DROP); 3886 3887 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3888 REASON_SET(&reason, PFRES_MEMORY); 3889 return (PF_DROP); 3890 } 3891 3892 return (PF_PASS); 3893 } 3894 3895 static int 3896 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3897 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3898 struct pf_pdesc *pd, u_short *reason, int *copyback) 3899 { 3900 struct tcphdr *th = pd->hdr.tcp; 3901 u_int16_t win = ntohs(th->th_win); 3902 u_int32_t ack, end, seq, orig_seq; 3903 u_int8_t sws, dws; 3904 int ackskew; 3905 3906 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3907 sws = src->wscale & PF_WSCALE_MASK; 3908 dws = dst->wscale & PF_WSCALE_MASK; 3909 } else 3910 sws = dws = 0; 3911 3912 /* 3913 * Sequence tracking algorithm from Guido van Rooij's paper: 3914 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3915 * tcp_filtering.ps 3916 */ 3917 3918 orig_seq = seq = ntohl(th->th_seq); 3919 if (src->seqlo == 0) { 3920 /* First packet from this end. Set its state */ 3921 3922 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3923 src->scrub == NULL) { 3924 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3925 REASON_SET(reason, PFRES_MEMORY); 3926 return (PF_DROP); 3927 } 3928 } 3929 3930 /* Deferred generation of sequence number modulator */ 3931 if (dst->seqdiff && !src->seqdiff) { 3932 /* use random iss for the TCP server */ 3933 while ((src->seqdiff = arc4random() - seq) == 0) 3934 ; 3935 ack = ntohl(th->th_ack) - dst->seqdiff; 3936 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3937 src->seqdiff), 0); 3938 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3939 *copyback = 1; 3940 } else { 3941 ack = ntohl(th->th_ack); 3942 } 3943 3944 end = seq + pd->p_len; 3945 if (th->th_flags & TH_SYN) { 3946 end++; 3947 if (dst->wscale & PF_WSCALE_FLAG) { 3948 src->wscale = pf_get_wscale(m, off, th->th_off, 3949 pd->af); 3950 if (src->wscale & PF_WSCALE_FLAG) { 3951 /* Remove scale factor from initial 3952 * window */ 3953 sws = src->wscale & PF_WSCALE_MASK; 3954 win = ((u_int32_t)win + (1 << sws) - 1) 3955 >> sws; 3956 dws = dst->wscale & PF_WSCALE_MASK; 3957 } else { 3958 /* fixup other window */ 3959 dst->max_win <<= dst->wscale & 3960 PF_WSCALE_MASK; 3961 /* in case of a retrans SYN|ACK */ 3962 dst->wscale = 0; 3963 } 3964 } 3965 } 3966 if (th->th_flags & TH_FIN) 3967 end++; 3968 3969 src->seqlo = seq; 3970 if (src->state < TCPS_SYN_SENT) 3971 src->state = TCPS_SYN_SENT; 3972 3973 /* 3974 * May need to slide the window (seqhi may have been set by 3975 * the crappy stack check or if we picked up the connection 3976 * after establishment) 3977 */ 3978 if (src->seqhi == 1 || 3979 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3980 src->seqhi = end + MAX(1, dst->max_win << dws); 3981 if (win > src->max_win) 3982 src->max_win = win; 3983 3984 } else { 3985 ack = ntohl(th->th_ack) - dst->seqdiff; 3986 if (src->seqdiff) { 3987 /* Modulate sequence numbers */ 3988 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3989 src->seqdiff), 0); 3990 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3991 *copyback = 1; 3992 } 3993 end = seq + pd->p_len; 3994 if (th->th_flags & TH_SYN) 3995 end++; 3996 if (th->th_flags & TH_FIN) 3997 end++; 3998 } 3999 4000 if ((th->th_flags & TH_ACK) == 0) { 4001 /* Let it pass through the ack skew check */ 4002 ack = dst->seqlo; 4003 } else if ((ack == 0 && 4004 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4005 /* broken tcp stacks do not set ack */ 4006 (dst->state < TCPS_SYN_SENT)) { 4007 /* 4008 * Many stacks (ours included) will set the ACK number in an 4009 * FIN|ACK if the SYN times out -- no sequence to ACK. 4010 */ 4011 ack = dst->seqlo; 4012 } 4013 4014 if (seq == end) { 4015 /* Ease sequencing restrictions on no data packets */ 4016 seq = src->seqlo; 4017 end = seq; 4018 } 4019 4020 ackskew = dst->seqlo - ack; 4021 4022 4023 /* 4024 * Need to demodulate the sequence numbers in any TCP SACK options 4025 * (Selective ACK). We could optionally validate the SACK values 4026 * against the current ACK window, either forwards or backwards, but 4027 * I'm not confident that SACK has been implemented properly 4028 * everywhere. It wouldn't surprise me if several stacks accidentally 4029 * SACK too far backwards of previously ACKed data. There really aren't 4030 * any security implications of bad SACKing unless the target stack 4031 * doesn't validate the option length correctly. Someone trying to 4032 * spoof into a TCP connection won't bother blindly sending SACK 4033 * options anyway. 4034 */ 4035 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4036 if (pf_modulate_sack(m, off, pd, th, dst)) 4037 *copyback = 1; 4038 } 4039 4040 4041 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4042 if (SEQ_GEQ(src->seqhi, end) && 4043 /* Last octet inside other's window space */ 4044 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4045 /* Retrans: not more than one window back */ 4046 (ackskew >= -MAXACKWINDOW) && 4047 /* Acking not more than one reassembled fragment backwards */ 4048 (ackskew <= (MAXACKWINDOW << sws)) && 4049 /* Acking not more than one window forward */ 4050 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4051 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4052 (pd->flags & PFDESC_IP_REAS) == 0)) { 4053 /* Require an exact/+1 sequence match on resets when possible */ 4054 4055 if (dst->scrub || src->scrub) { 4056 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4057 *state, src, dst, copyback)) 4058 return (PF_DROP); 4059 } 4060 4061 /* update max window */ 4062 if (src->max_win < win) 4063 src->max_win = win; 4064 /* synchronize sequencing */ 4065 if (SEQ_GT(end, src->seqlo)) 4066 src->seqlo = end; 4067 /* slide the window of what the other end can send */ 4068 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4069 dst->seqhi = ack + MAX((win << sws), 1); 4070 4071 4072 /* update states */ 4073 if (th->th_flags & TH_SYN) 4074 if (src->state < TCPS_SYN_SENT) 4075 src->state = TCPS_SYN_SENT; 4076 if (th->th_flags & TH_FIN) 4077 if (src->state < TCPS_CLOSING) 4078 src->state = TCPS_CLOSING; 4079 if (th->th_flags & TH_ACK) { 4080 if (dst->state == TCPS_SYN_SENT) { 4081 dst->state = TCPS_ESTABLISHED; 4082 if (src->state == TCPS_ESTABLISHED && 4083 (*state)->src_node != NULL && 4084 pf_src_connlimit(state)) { 4085 REASON_SET(reason, PFRES_SRCLIMIT); 4086 return (PF_DROP); 4087 } 4088 } else if (dst->state == TCPS_CLOSING) 4089 dst->state = TCPS_FIN_WAIT_2; 4090 } 4091 if (th->th_flags & TH_RST) 4092 src->state = dst->state = TCPS_TIME_WAIT; 4093 4094 /* update expire time */ 4095 (*state)->expire = time_uptime; 4096 if (src->state >= TCPS_FIN_WAIT_2 && 4097 dst->state >= TCPS_FIN_WAIT_2) 4098 (*state)->timeout = PFTM_TCP_CLOSED; 4099 else if (src->state >= TCPS_CLOSING && 4100 dst->state >= TCPS_CLOSING) 4101 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4102 else if (src->state < TCPS_ESTABLISHED || 4103 dst->state < TCPS_ESTABLISHED) 4104 (*state)->timeout = PFTM_TCP_OPENING; 4105 else if (src->state >= TCPS_CLOSING || 4106 dst->state >= TCPS_CLOSING) 4107 (*state)->timeout = PFTM_TCP_CLOSING; 4108 else 4109 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4110 4111 /* Fall through to PASS packet */ 4112 4113 } else if ((dst->state < TCPS_SYN_SENT || 4114 dst->state >= TCPS_FIN_WAIT_2 || 4115 src->state >= TCPS_FIN_WAIT_2) && 4116 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4117 /* Within a window forward of the originating packet */ 4118 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4119 /* Within a window backward of the originating packet */ 4120 4121 /* 4122 * This currently handles three situations: 4123 * 1) Stupid stacks will shotgun SYNs before their peer 4124 * replies. 4125 * 2) When PF catches an already established stream (the 4126 * firewall rebooted, the state table was flushed, routes 4127 * changed...) 4128 * 3) Packets get funky immediately after the connection 4129 * closes (this should catch Solaris spurious ACK|FINs 4130 * that web servers like to spew after a close) 4131 * 4132 * This must be a little more careful than the above code 4133 * since packet floods will also be caught here. We don't 4134 * update the TTL here to mitigate the damage of a packet 4135 * flood and so the same code can handle awkward establishment 4136 * and a loosened connection close. 4137 * In the establishment case, a correct peer response will 4138 * validate the connection, go through the normal state code 4139 * and keep updating the state TTL. 4140 */ 4141 4142 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4143 printf("pf: loose state match: "); 4144 pf_print_state(*state); 4145 pf_print_flags(th->th_flags); 4146 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4147 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4148 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4149 (unsigned long long)(*state)->packets[1], 4150 pd->dir == PF_IN ? "in" : "out", 4151 pd->dir == (*state)->direction ? "fwd" : "rev"); 4152 } 4153 4154 if (dst->scrub || src->scrub) { 4155 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4156 *state, src, dst, copyback)) 4157 return (PF_DROP); 4158 } 4159 4160 /* update max window */ 4161 if (src->max_win < win) 4162 src->max_win = win; 4163 /* synchronize sequencing */ 4164 if (SEQ_GT(end, src->seqlo)) 4165 src->seqlo = end; 4166 /* slide the window of what the other end can send */ 4167 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4168 dst->seqhi = ack + MAX((win << sws), 1); 4169 4170 /* 4171 * Cannot set dst->seqhi here since this could be a shotgunned 4172 * SYN and not an already established connection. 4173 */ 4174 4175 if (th->th_flags & TH_FIN) 4176 if (src->state < TCPS_CLOSING) 4177 src->state = TCPS_CLOSING; 4178 if (th->th_flags & TH_RST) 4179 src->state = dst->state = TCPS_TIME_WAIT; 4180 4181 /* Fall through to PASS packet */ 4182 4183 } else { 4184 if ((*state)->dst.state == TCPS_SYN_SENT && 4185 (*state)->src.state == TCPS_SYN_SENT) { 4186 /* Send RST for state mismatches during handshake */ 4187 if (!(th->th_flags & TH_RST)) 4188 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4189 pd->dst, pd->src, th->th_dport, 4190 th->th_sport, ntohl(th->th_ack), 0, 4191 TH_RST, 0, 0, 4192 (*state)->rule.ptr->return_ttl, 1, 0, 4193 kif->pfik_ifp); 4194 src->seqlo = 0; 4195 src->seqhi = 1; 4196 src->max_win = 1; 4197 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4198 printf("pf: BAD state: "); 4199 pf_print_state(*state); 4200 pf_print_flags(th->th_flags); 4201 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4202 "pkts=%llu:%llu dir=%s,%s\n", 4203 seq, orig_seq, ack, pd->p_len, ackskew, 4204 (unsigned long long)(*state)->packets[0], 4205 (unsigned long long)(*state)->packets[1], 4206 pd->dir == PF_IN ? "in" : "out", 4207 pd->dir == (*state)->direction ? "fwd" : "rev"); 4208 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4209 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4210 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4211 ' ': '2', 4212 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4213 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4214 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4215 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4216 } 4217 REASON_SET(reason, PFRES_BADSTATE); 4218 return (PF_DROP); 4219 } 4220 4221 return (PF_PASS); 4222 } 4223 4224 static int 4225 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4226 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4227 { 4228 struct tcphdr *th = pd->hdr.tcp; 4229 4230 if (th->th_flags & TH_SYN) 4231 if (src->state < TCPS_SYN_SENT) 4232 src->state = TCPS_SYN_SENT; 4233 if (th->th_flags & TH_FIN) 4234 if (src->state < TCPS_CLOSING) 4235 src->state = TCPS_CLOSING; 4236 if (th->th_flags & TH_ACK) { 4237 if (dst->state == TCPS_SYN_SENT) { 4238 dst->state = TCPS_ESTABLISHED; 4239 if (src->state == TCPS_ESTABLISHED && 4240 (*state)->src_node != NULL && 4241 pf_src_connlimit(state)) { 4242 REASON_SET(reason, PFRES_SRCLIMIT); 4243 return (PF_DROP); 4244 } 4245 } else if (dst->state == TCPS_CLOSING) { 4246 dst->state = TCPS_FIN_WAIT_2; 4247 } else if (src->state == TCPS_SYN_SENT && 4248 dst->state < TCPS_SYN_SENT) { 4249 /* 4250 * Handle a special sloppy case where we only see one 4251 * half of the connection. If there is a ACK after 4252 * the initial SYN without ever seeing a packet from 4253 * the destination, set the connection to established. 4254 */ 4255 dst->state = src->state = TCPS_ESTABLISHED; 4256 if ((*state)->src_node != NULL && 4257 pf_src_connlimit(state)) { 4258 REASON_SET(reason, PFRES_SRCLIMIT); 4259 return (PF_DROP); 4260 } 4261 } else if (src->state == TCPS_CLOSING && 4262 dst->state == TCPS_ESTABLISHED && 4263 dst->seqlo == 0) { 4264 /* 4265 * Handle the closing of half connections where we 4266 * don't see the full bidirectional FIN/ACK+ACK 4267 * handshake. 4268 */ 4269 dst->state = TCPS_CLOSING; 4270 } 4271 } 4272 if (th->th_flags & TH_RST) 4273 src->state = dst->state = TCPS_TIME_WAIT; 4274 4275 /* update expire time */ 4276 (*state)->expire = time_uptime; 4277 if (src->state >= TCPS_FIN_WAIT_2 && 4278 dst->state >= TCPS_FIN_WAIT_2) 4279 (*state)->timeout = PFTM_TCP_CLOSED; 4280 else if (src->state >= TCPS_CLOSING && 4281 dst->state >= TCPS_CLOSING) 4282 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4283 else if (src->state < TCPS_ESTABLISHED || 4284 dst->state < TCPS_ESTABLISHED) 4285 (*state)->timeout = PFTM_TCP_OPENING; 4286 else if (src->state >= TCPS_CLOSING || 4287 dst->state >= TCPS_CLOSING) 4288 (*state)->timeout = PFTM_TCP_CLOSING; 4289 else 4290 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4291 4292 return (PF_PASS); 4293 } 4294 4295 static int 4296 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4297 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4298 u_short *reason) 4299 { 4300 struct pf_state_key_cmp key; 4301 struct tcphdr *th = pd->hdr.tcp; 4302 int copyback = 0; 4303 struct pf_state_peer *src, *dst; 4304 struct pf_state_key *sk; 4305 4306 bzero(&key, sizeof(key)); 4307 key.af = pd->af; 4308 key.proto = IPPROTO_TCP; 4309 if (direction == PF_IN) { /* wire side, straight */ 4310 PF_ACPY(&key.addr[0], pd->src, key.af); 4311 PF_ACPY(&key.addr[1], pd->dst, key.af); 4312 key.port[0] = th->th_sport; 4313 key.port[1] = th->th_dport; 4314 } else { /* stack side, reverse */ 4315 PF_ACPY(&key.addr[1], pd->src, key.af); 4316 PF_ACPY(&key.addr[0], pd->dst, key.af); 4317 key.port[1] = th->th_sport; 4318 key.port[0] = th->th_dport; 4319 } 4320 4321 STATE_LOOKUP(kif, &key, direction, *state, pd); 4322 4323 if (direction == (*state)->direction) { 4324 src = &(*state)->src; 4325 dst = &(*state)->dst; 4326 } else { 4327 src = &(*state)->dst; 4328 dst = &(*state)->src; 4329 } 4330 4331 sk = (*state)->key[pd->didx]; 4332 4333 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4334 if (direction != (*state)->direction) { 4335 REASON_SET(reason, PFRES_SYNPROXY); 4336 return (PF_SYNPROXY_DROP); 4337 } 4338 if (th->th_flags & TH_SYN) { 4339 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4340 REASON_SET(reason, PFRES_SYNPROXY); 4341 return (PF_DROP); 4342 } 4343 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4344 pd->src, th->th_dport, th->th_sport, 4345 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4346 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4347 REASON_SET(reason, PFRES_SYNPROXY); 4348 return (PF_SYNPROXY_DROP); 4349 } else if (!(th->th_flags & TH_ACK) || 4350 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4351 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4352 REASON_SET(reason, PFRES_SYNPROXY); 4353 return (PF_DROP); 4354 } else if ((*state)->src_node != NULL && 4355 pf_src_connlimit(state)) { 4356 REASON_SET(reason, PFRES_SRCLIMIT); 4357 return (PF_DROP); 4358 } else 4359 (*state)->src.state = PF_TCPS_PROXY_DST; 4360 } 4361 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4362 if (direction == (*state)->direction) { 4363 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4364 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4365 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4366 REASON_SET(reason, PFRES_SYNPROXY); 4367 return (PF_DROP); 4368 } 4369 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4370 if ((*state)->dst.seqhi == 1) 4371 (*state)->dst.seqhi = htonl(arc4random()); 4372 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4373 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4374 sk->port[pd->sidx], sk->port[pd->didx], 4375 (*state)->dst.seqhi, 0, TH_SYN, 0, 4376 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4377 REASON_SET(reason, PFRES_SYNPROXY); 4378 return (PF_SYNPROXY_DROP); 4379 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4380 (TH_SYN|TH_ACK)) || 4381 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4382 REASON_SET(reason, PFRES_SYNPROXY); 4383 return (PF_DROP); 4384 } else { 4385 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4386 (*state)->dst.seqlo = ntohl(th->th_seq); 4387 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4388 pd->src, th->th_dport, th->th_sport, 4389 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4390 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4391 (*state)->tag, NULL); 4392 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4393 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4394 sk->port[pd->sidx], sk->port[pd->didx], 4395 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4396 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4397 (*state)->src.seqdiff = (*state)->dst.seqhi - 4398 (*state)->src.seqlo; 4399 (*state)->dst.seqdiff = (*state)->src.seqhi - 4400 (*state)->dst.seqlo; 4401 (*state)->src.seqhi = (*state)->src.seqlo + 4402 (*state)->dst.max_win; 4403 (*state)->dst.seqhi = (*state)->dst.seqlo + 4404 (*state)->src.max_win; 4405 (*state)->src.wscale = (*state)->dst.wscale = 0; 4406 (*state)->src.state = (*state)->dst.state = 4407 TCPS_ESTABLISHED; 4408 REASON_SET(reason, PFRES_SYNPROXY); 4409 return (PF_SYNPROXY_DROP); 4410 } 4411 } 4412 4413 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4414 dst->state >= TCPS_FIN_WAIT_2 && 4415 src->state >= TCPS_FIN_WAIT_2) { 4416 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4417 printf("pf: state reuse "); 4418 pf_print_state(*state); 4419 pf_print_flags(th->th_flags); 4420 printf("\n"); 4421 } 4422 /* XXX make sure it's the same direction ?? */ 4423 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4424 pf_unlink_state(*state, PF_ENTER_LOCKED); 4425 *state = NULL; 4426 return (PF_DROP); 4427 } 4428 4429 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4430 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4431 return (PF_DROP); 4432 } else { 4433 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4434 ©back) == PF_DROP) 4435 return (PF_DROP); 4436 } 4437 4438 /* translate source/destination address, if necessary */ 4439 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4440 struct pf_state_key *nk = (*state)->key[pd->didx]; 4441 4442 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4443 nk->port[pd->sidx] != th->th_sport) 4444 pf_change_ap(m, pd->src, &th->th_sport, 4445 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4446 nk->port[pd->sidx], 0, pd->af); 4447 4448 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4449 nk->port[pd->didx] != th->th_dport) 4450 pf_change_ap(m, pd->dst, &th->th_dport, 4451 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4452 nk->port[pd->didx], 0, pd->af); 4453 copyback = 1; 4454 } 4455 4456 /* Copyback sequence modulation or stateful scrub changes if needed */ 4457 if (copyback) 4458 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4459 4460 return (PF_PASS); 4461 } 4462 4463 static int 4464 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4465 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4466 { 4467 struct pf_state_peer *src, *dst; 4468 struct pf_state_key_cmp key; 4469 struct udphdr *uh = pd->hdr.udp; 4470 4471 bzero(&key, sizeof(key)); 4472 key.af = pd->af; 4473 key.proto = IPPROTO_UDP; 4474 if (direction == PF_IN) { /* wire side, straight */ 4475 PF_ACPY(&key.addr[0], pd->src, key.af); 4476 PF_ACPY(&key.addr[1], pd->dst, key.af); 4477 key.port[0] = uh->uh_sport; 4478 key.port[1] = uh->uh_dport; 4479 } else { /* stack side, reverse */ 4480 PF_ACPY(&key.addr[1], pd->src, key.af); 4481 PF_ACPY(&key.addr[0], pd->dst, key.af); 4482 key.port[1] = uh->uh_sport; 4483 key.port[0] = uh->uh_dport; 4484 } 4485 4486 STATE_LOOKUP(kif, &key, direction, *state, pd); 4487 4488 if (direction == (*state)->direction) { 4489 src = &(*state)->src; 4490 dst = &(*state)->dst; 4491 } else { 4492 src = &(*state)->dst; 4493 dst = &(*state)->src; 4494 } 4495 4496 /* update states */ 4497 if (src->state < PFUDPS_SINGLE) 4498 src->state = PFUDPS_SINGLE; 4499 if (dst->state == PFUDPS_SINGLE) 4500 dst->state = PFUDPS_MULTIPLE; 4501 4502 /* update expire time */ 4503 (*state)->expire = time_uptime; 4504 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4505 (*state)->timeout = PFTM_UDP_MULTIPLE; 4506 else 4507 (*state)->timeout = PFTM_UDP_SINGLE; 4508 4509 /* translate source/destination address, if necessary */ 4510 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4511 struct pf_state_key *nk = (*state)->key[pd->didx]; 4512 4513 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4514 nk->port[pd->sidx] != uh->uh_sport) 4515 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4516 &uh->uh_sum, &nk->addr[pd->sidx], 4517 nk->port[pd->sidx], 1, pd->af); 4518 4519 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4520 nk->port[pd->didx] != uh->uh_dport) 4521 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4522 &uh->uh_sum, &nk->addr[pd->didx], 4523 nk->port[pd->didx], 1, pd->af); 4524 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4525 } 4526 4527 return (PF_PASS); 4528 } 4529 4530 static int 4531 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4532 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4533 { 4534 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4535 u_int16_t icmpid = 0, *icmpsum; 4536 u_int8_t icmptype; 4537 int state_icmp = 0; 4538 struct pf_state_key_cmp key; 4539 4540 bzero(&key, sizeof(key)); 4541 switch (pd->proto) { 4542 #ifdef INET 4543 case IPPROTO_ICMP: 4544 icmptype = pd->hdr.icmp->icmp_type; 4545 icmpid = pd->hdr.icmp->icmp_id; 4546 icmpsum = &pd->hdr.icmp->icmp_cksum; 4547 4548 if (icmptype == ICMP_UNREACH || 4549 icmptype == ICMP_SOURCEQUENCH || 4550 icmptype == ICMP_REDIRECT || 4551 icmptype == ICMP_TIMXCEED || 4552 icmptype == ICMP_PARAMPROB) 4553 state_icmp++; 4554 break; 4555 #endif /* INET */ 4556 #ifdef INET6 4557 case IPPROTO_ICMPV6: 4558 icmptype = pd->hdr.icmp6->icmp6_type; 4559 icmpid = pd->hdr.icmp6->icmp6_id; 4560 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4561 4562 if (icmptype == ICMP6_DST_UNREACH || 4563 icmptype == ICMP6_PACKET_TOO_BIG || 4564 icmptype == ICMP6_TIME_EXCEEDED || 4565 icmptype == ICMP6_PARAM_PROB) 4566 state_icmp++; 4567 break; 4568 #endif /* INET6 */ 4569 } 4570 4571 if (!state_icmp) { 4572 4573 /* 4574 * ICMP query/reply message not related to a TCP/UDP packet. 4575 * Search for an ICMP state. 4576 */ 4577 key.af = pd->af; 4578 key.proto = pd->proto; 4579 key.port[0] = key.port[1] = icmpid; 4580 if (direction == PF_IN) { /* wire side, straight */ 4581 PF_ACPY(&key.addr[0], pd->src, key.af); 4582 PF_ACPY(&key.addr[1], pd->dst, key.af); 4583 } else { /* stack side, reverse */ 4584 PF_ACPY(&key.addr[1], pd->src, key.af); 4585 PF_ACPY(&key.addr[0], pd->dst, key.af); 4586 } 4587 4588 STATE_LOOKUP(kif, &key, direction, *state, pd); 4589 4590 (*state)->expire = time_uptime; 4591 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4592 4593 /* translate source/destination address, if necessary */ 4594 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4595 struct pf_state_key *nk = (*state)->key[pd->didx]; 4596 4597 switch (pd->af) { 4598 #ifdef INET 4599 case AF_INET: 4600 if (PF_ANEQ(pd->src, 4601 &nk->addr[pd->sidx], AF_INET)) 4602 pf_change_a(&saddr->v4.s_addr, 4603 pd->ip_sum, 4604 nk->addr[pd->sidx].v4.s_addr, 0); 4605 4606 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4607 AF_INET)) 4608 pf_change_a(&daddr->v4.s_addr, 4609 pd->ip_sum, 4610 nk->addr[pd->didx].v4.s_addr, 0); 4611 4612 if (nk->port[0] != 4613 pd->hdr.icmp->icmp_id) { 4614 pd->hdr.icmp->icmp_cksum = 4615 pf_cksum_fixup( 4616 pd->hdr.icmp->icmp_cksum, icmpid, 4617 nk->port[pd->sidx], 0); 4618 pd->hdr.icmp->icmp_id = 4619 nk->port[pd->sidx]; 4620 } 4621 4622 m_copyback(m, off, ICMP_MINLEN, 4623 (caddr_t )pd->hdr.icmp); 4624 break; 4625 #endif /* INET */ 4626 #ifdef INET6 4627 case AF_INET6: 4628 if (PF_ANEQ(pd->src, 4629 &nk->addr[pd->sidx], AF_INET6)) 4630 pf_change_a6(saddr, 4631 &pd->hdr.icmp6->icmp6_cksum, 4632 &nk->addr[pd->sidx], 0); 4633 4634 if (PF_ANEQ(pd->dst, 4635 &nk->addr[pd->didx], AF_INET6)) 4636 pf_change_a6(daddr, 4637 &pd->hdr.icmp6->icmp6_cksum, 4638 &nk->addr[pd->didx], 0); 4639 4640 m_copyback(m, off, sizeof(struct icmp6_hdr), 4641 (caddr_t )pd->hdr.icmp6); 4642 break; 4643 #endif /* INET6 */ 4644 } 4645 } 4646 return (PF_PASS); 4647 4648 } else { 4649 /* 4650 * ICMP error message in response to a TCP/UDP packet. 4651 * Extract the inner TCP/UDP header and search for that state. 4652 */ 4653 4654 struct pf_pdesc pd2; 4655 bzero(&pd2, sizeof pd2); 4656 #ifdef INET 4657 struct ip h2; 4658 #endif /* INET */ 4659 #ifdef INET6 4660 struct ip6_hdr h2_6; 4661 int terminal = 0; 4662 #endif /* INET6 */ 4663 int ipoff2 = 0; 4664 int off2 = 0; 4665 4666 pd2.af = pd->af; 4667 /* Payload packet is from the opposite direction. */ 4668 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4669 pd2.didx = (direction == PF_IN) ? 0 : 1; 4670 switch (pd->af) { 4671 #ifdef INET 4672 case AF_INET: 4673 /* offset of h2 in mbuf chain */ 4674 ipoff2 = off + ICMP_MINLEN; 4675 4676 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4677 NULL, reason, pd2.af)) { 4678 DPFPRINTF(PF_DEBUG_MISC, 4679 ("pf: ICMP error message too short " 4680 "(ip)\n")); 4681 return (PF_DROP); 4682 } 4683 /* 4684 * ICMP error messages don't refer to non-first 4685 * fragments 4686 */ 4687 if (h2.ip_off & htons(IP_OFFMASK)) { 4688 REASON_SET(reason, PFRES_FRAG); 4689 return (PF_DROP); 4690 } 4691 4692 /* offset of protocol header that follows h2 */ 4693 off2 = ipoff2 + (h2.ip_hl << 2); 4694 4695 pd2.proto = h2.ip_p; 4696 pd2.src = (struct pf_addr *)&h2.ip_src; 4697 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4698 pd2.ip_sum = &h2.ip_sum; 4699 break; 4700 #endif /* INET */ 4701 #ifdef INET6 4702 case AF_INET6: 4703 ipoff2 = off + sizeof(struct icmp6_hdr); 4704 4705 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4706 NULL, reason, pd2.af)) { 4707 DPFPRINTF(PF_DEBUG_MISC, 4708 ("pf: ICMP error message too short " 4709 "(ip6)\n")); 4710 return (PF_DROP); 4711 } 4712 pd2.proto = h2_6.ip6_nxt; 4713 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4714 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4715 pd2.ip_sum = NULL; 4716 off2 = ipoff2 + sizeof(h2_6); 4717 do { 4718 switch (pd2.proto) { 4719 case IPPROTO_FRAGMENT: 4720 /* 4721 * ICMPv6 error messages for 4722 * non-first fragments 4723 */ 4724 REASON_SET(reason, PFRES_FRAG); 4725 return (PF_DROP); 4726 case IPPROTO_AH: 4727 case IPPROTO_HOPOPTS: 4728 case IPPROTO_ROUTING: 4729 case IPPROTO_DSTOPTS: { 4730 /* get next header and header length */ 4731 struct ip6_ext opt6; 4732 4733 if (!pf_pull_hdr(m, off2, &opt6, 4734 sizeof(opt6), NULL, reason, 4735 pd2.af)) { 4736 DPFPRINTF(PF_DEBUG_MISC, 4737 ("pf: ICMPv6 short opt\n")); 4738 return (PF_DROP); 4739 } 4740 if (pd2.proto == IPPROTO_AH) 4741 off2 += (opt6.ip6e_len + 2) * 4; 4742 else 4743 off2 += (opt6.ip6e_len + 1) * 8; 4744 pd2.proto = opt6.ip6e_nxt; 4745 /* goto the next header */ 4746 break; 4747 } 4748 default: 4749 terminal++; 4750 break; 4751 } 4752 } while (!terminal); 4753 break; 4754 #endif /* INET6 */ 4755 } 4756 4757 switch (pd2.proto) { 4758 case IPPROTO_TCP: { 4759 struct tcphdr th; 4760 u_int32_t seq; 4761 struct pf_state_peer *src, *dst; 4762 u_int8_t dws; 4763 int copyback = 0; 4764 4765 /* 4766 * Only the first 8 bytes of the TCP header can be 4767 * expected. Don't access any TCP header fields after 4768 * th_seq, an ackskew test is not possible. 4769 */ 4770 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4771 pd2.af)) { 4772 DPFPRINTF(PF_DEBUG_MISC, 4773 ("pf: ICMP error message too short " 4774 "(tcp)\n")); 4775 return (PF_DROP); 4776 } 4777 4778 key.af = pd2.af; 4779 key.proto = IPPROTO_TCP; 4780 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4781 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4782 key.port[pd2.sidx] = th.th_sport; 4783 key.port[pd2.didx] = th.th_dport; 4784 4785 STATE_LOOKUP(kif, &key, direction, *state, pd); 4786 4787 if (direction == (*state)->direction) { 4788 src = &(*state)->dst; 4789 dst = &(*state)->src; 4790 } else { 4791 src = &(*state)->src; 4792 dst = &(*state)->dst; 4793 } 4794 4795 if (src->wscale && dst->wscale) 4796 dws = dst->wscale & PF_WSCALE_MASK; 4797 else 4798 dws = 0; 4799 4800 /* Demodulate sequence number */ 4801 seq = ntohl(th.th_seq) - src->seqdiff; 4802 if (src->seqdiff) { 4803 pf_change_a(&th.th_seq, icmpsum, 4804 htonl(seq), 0); 4805 copyback = 1; 4806 } 4807 4808 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4809 (!SEQ_GEQ(src->seqhi, seq) || 4810 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4811 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4812 printf("pf: BAD ICMP %d:%d ", 4813 icmptype, pd->hdr.icmp->icmp_code); 4814 pf_print_host(pd->src, 0, pd->af); 4815 printf(" -> "); 4816 pf_print_host(pd->dst, 0, pd->af); 4817 printf(" state: "); 4818 pf_print_state(*state); 4819 printf(" seq=%u\n", seq); 4820 } 4821 REASON_SET(reason, PFRES_BADSTATE); 4822 return (PF_DROP); 4823 } else { 4824 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4825 printf("pf: OK ICMP %d:%d ", 4826 icmptype, pd->hdr.icmp->icmp_code); 4827 pf_print_host(pd->src, 0, pd->af); 4828 printf(" -> "); 4829 pf_print_host(pd->dst, 0, pd->af); 4830 printf(" state: "); 4831 pf_print_state(*state); 4832 printf(" seq=%u\n", seq); 4833 } 4834 } 4835 4836 /* translate source/destination address, if necessary */ 4837 if ((*state)->key[PF_SK_WIRE] != 4838 (*state)->key[PF_SK_STACK]) { 4839 struct pf_state_key *nk = 4840 (*state)->key[pd->didx]; 4841 4842 if (PF_ANEQ(pd2.src, 4843 &nk->addr[pd2.sidx], pd2.af) || 4844 nk->port[pd2.sidx] != th.th_sport) 4845 pf_change_icmp(pd2.src, &th.th_sport, 4846 daddr, &nk->addr[pd2.sidx], 4847 nk->port[pd2.sidx], NULL, 4848 pd2.ip_sum, icmpsum, 4849 pd->ip_sum, 0, pd2.af); 4850 4851 if (PF_ANEQ(pd2.dst, 4852 &nk->addr[pd2.didx], pd2.af) || 4853 nk->port[pd2.didx] != th.th_dport) 4854 pf_change_icmp(pd2.dst, &th.th_dport, 4855 saddr, &nk->addr[pd2.didx], 4856 nk->port[pd2.didx], NULL, 4857 pd2.ip_sum, icmpsum, 4858 pd->ip_sum, 0, pd2.af); 4859 copyback = 1; 4860 } 4861 4862 if (copyback) { 4863 switch (pd2.af) { 4864 #ifdef INET 4865 case AF_INET: 4866 m_copyback(m, off, ICMP_MINLEN, 4867 (caddr_t )pd->hdr.icmp); 4868 m_copyback(m, ipoff2, sizeof(h2), 4869 (caddr_t )&h2); 4870 break; 4871 #endif /* INET */ 4872 #ifdef INET6 4873 case AF_INET6: 4874 m_copyback(m, off, 4875 sizeof(struct icmp6_hdr), 4876 (caddr_t )pd->hdr.icmp6); 4877 m_copyback(m, ipoff2, sizeof(h2_6), 4878 (caddr_t )&h2_6); 4879 break; 4880 #endif /* INET6 */ 4881 } 4882 m_copyback(m, off2, 8, (caddr_t)&th); 4883 } 4884 4885 return (PF_PASS); 4886 break; 4887 } 4888 case IPPROTO_UDP: { 4889 struct udphdr uh; 4890 4891 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4892 NULL, reason, pd2.af)) { 4893 DPFPRINTF(PF_DEBUG_MISC, 4894 ("pf: ICMP error message too short " 4895 "(udp)\n")); 4896 return (PF_DROP); 4897 } 4898 4899 key.af = pd2.af; 4900 key.proto = IPPROTO_UDP; 4901 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4902 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4903 key.port[pd2.sidx] = uh.uh_sport; 4904 key.port[pd2.didx] = uh.uh_dport; 4905 4906 STATE_LOOKUP(kif, &key, direction, *state, pd); 4907 4908 /* translate source/destination address, if necessary */ 4909 if ((*state)->key[PF_SK_WIRE] != 4910 (*state)->key[PF_SK_STACK]) { 4911 struct pf_state_key *nk = 4912 (*state)->key[pd->didx]; 4913 4914 if (PF_ANEQ(pd2.src, 4915 &nk->addr[pd2.sidx], pd2.af) || 4916 nk->port[pd2.sidx] != uh.uh_sport) 4917 pf_change_icmp(pd2.src, &uh.uh_sport, 4918 daddr, &nk->addr[pd2.sidx], 4919 nk->port[pd2.sidx], &uh.uh_sum, 4920 pd2.ip_sum, icmpsum, 4921 pd->ip_sum, 1, pd2.af); 4922 4923 if (PF_ANEQ(pd2.dst, 4924 &nk->addr[pd2.didx], pd2.af) || 4925 nk->port[pd2.didx] != uh.uh_dport) 4926 pf_change_icmp(pd2.dst, &uh.uh_dport, 4927 saddr, &nk->addr[pd2.didx], 4928 nk->port[pd2.didx], &uh.uh_sum, 4929 pd2.ip_sum, icmpsum, 4930 pd->ip_sum, 1, pd2.af); 4931 4932 switch (pd2.af) { 4933 #ifdef INET 4934 case AF_INET: 4935 m_copyback(m, off, ICMP_MINLEN, 4936 (caddr_t )pd->hdr.icmp); 4937 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4938 break; 4939 #endif /* INET */ 4940 #ifdef INET6 4941 case AF_INET6: 4942 m_copyback(m, off, 4943 sizeof(struct icmp6_hdr), 4944 (caddr_t )pd->hdr.icmp6); 4945 m_copyback(m, ipoff2, sizeof(h2_6), 4946 (caddr_t )&h2_6); 4947 break; 4948 #endif /* INET6 */ 4949 } 4950 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4951 } 4952 return (PF_PASS); 4953 break; 4954 } 4955 #ifdef INET 4956 case IPPROTO_ICMP: { 4957 struct icmp iih; 4958 4959 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4960 NULL, reason, pd2.af)) { 4961 DPFPRINTF(PF_DEBUG_MISC, 4962 ("pf: ICMP error message too short i" 4963 "(icmp)\n")); 4964 return (PF_DROP); 4965 } 4966 4967 key.af = pd2.af; 4968 key.proto = IPPROTO_ICMP; 4969 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4970 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4971 key.port[0] = key.port[1] = iih.icmp_id; 4972 4973 STATE_LOOKUP(kif, &key, direction, *state, pd); 4974 4975 /* translate source/destination address, if necessary */ 4976 if ((*state)->key[PF_SK_WIRE] != 4977 (*state)->key[PF_SK_STACK]) { 4978 struct pf_state_key *nk = 4979 (*state)->key[pd->didx]; 4980 4981 if (PF_ANEQ(pd2.src, 4982 &nk->addr[pd2.sidx], pd2.af) || 4983 nk->port[pd2.sidx] != iih.icmp_id) 4984 pf_change_icmp(pd2.src, &iih.icmp_id, 4985 daddr, &nk->addr[pd2.sidx], 4986 nk->port[pd2.sidx], NULL, 4987 pd2.ip_sum, icmpsum, 4988 pd->ip_sum, 0, AF_INET); 4989 4990 if (PF_ANEQ(pd2.dst, 4991 &nk->addr[pd2.didx], pd2.af) || 4992 nk->port[pd2.didx] != iih.icmp_id) 4993 pf_change_icmp(pd2.dst, &iih.icmp_id, 4994 saddr, &nk->addr[pd2.didx], 4995 nk->port[pd2.didx], NULL, 4996 pd2.ip_sum, icmpsum, 4997 pd->ip_sum, 0, AF_INET); 4998 4999 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5000 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5001 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5002 } 5003 return (PF_PASS); 5004 break; 5005 } 5006 #endif /* INET */ 5007 #ifdef INET6 5008 case IPPROTO_ICMPV6: { 5009 struct icmp6_hdr iih; 5010 5011 if (!pf_pull_hdr(m, off2, &iih, 5012 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5013 DPFPRINTF(PF_DEBUG_MISC, 5014 ("pf: ICMP error message too short " 5015 "(icmp6)\n")); 5016 return (PF_DROP); 5017 } 5018 5019 key.af = pd2.af; 5020 key.proto = IPPROTO_ICMPV6; 5021 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5022 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5023 key.port[0] = key.port[1] = iih.icmp6_id; 5024 5025 STATE_LOOKUP(kif, &key, direction, *state, pd); 5026 5027 /* translate source/destination address, if necessary */ 5028 if ((*state)->key[PF_SK_WIRE] != 5029 (*state)->key[PF_SK_STACK]) { 5030 struct pf_state_key *nk = 5031 (*state)->key[pd->didx]; 5032 5033 if (PF_ANEQ(pd2.src, 5034 &nk->addr[pd2.sidx], pd2.af) || 5035 nk->port[pd2.sidx] != iih.icmp6_id) 5036 pf_change_icmp(pd2.src, &iih.icmp6_id, 5037 daddr, &nk->addr[pd2.sidx], 5038 nk->port[pd2.sidx], NULL, 5039 pd2.ip_sum, icmpsum, 5040 pd->ip_sum, 0, AF_INET6); 5041 5042 if (PF_ANEQ(pd2.dst, 5043 &nk->addr[pd2.didx], pd2.af) || 5044 nk->port[pd2.didx] != iih.icmp6_id) 5045 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5046 saddr, &nk->addr[pd2.didx], 5047 nk->port[pd2.didx], NULL, 5048 pd2.ip_sum, icmpsum, 5049 pd->ip_sum, 0, AF_INET6); 5050 5051 m_copyback(m, off, sizeof(struct icmp6_hdr), 5052 (caddr_t)pd->hdr.icmp6); 5053 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5054 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5055 (caddr_t)&iih); 5056 } 5057 return (PF_PASS); 5058 break; 5059 } 5060 #endif /* INET6 */ 5061 default: { 5062 key.af = pd2.af; 5063 key.proto = pd2.proto; 5064 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5065 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5066 key.port[0] = key.port[1] = 0; 5067 5068 STATE_LOOKUP(kif, &key, direction, *state, pd); 5069 5070 /* translate source/destination address, if necessary */ 5071 if ((*state)->key[PF_SK_WIRE] != 5072 (*state)->key[PF_SK_STACK]) { 5073 struct pf_state_key *nk = 5074 (*state)->key[pd->didx]; 5075 5076 if (PF_ANEQ(pd2.src, 5077 &nk->addr[pd2.sidx], pd2.af)) 5078 pf_change_icmp(pd2.src, NULL, daddr, 5079 &nk->addr[pd2.sidx], 0, NULL, 5080 pd2.ip_sum, icmpsum, 5081 pd->ip_sum, 0, pd2.af); 5082 5083 if (PF_ANEQ(pd2.dst, 5084 &nk->addr[pd2.didx], pd2.af)) 5085 pf_change_icmp(pd2.dst, NULL, saddr, 5086 &nk->addr[pd2.didx], 0, NULL, 5087 pd2.ip_sum, icmpsum, 5088 pd->ip_sum, 0, pd2.af); 5089 5090 switch (pd2.af) { 5091 #ifdef INET 5092 case AF_INET: 5093 m_copyback(m, off, ICMP_MINLEN, 5094 (caddr_t)pd->hdr.icmp); 5095 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5096 break; 5097 #endif /* INET */ 5098 #ifdef INET6 5099 case AF_INET6: 5100 m_copyback(m, off, 5101 sizeof(struct icmp6_hdr), 5102 (caddr_t )pd->hdr.icmp6); 5103 m_copyback(m, ipoff2, sizeof(h2_6), 5104 (caddr_t )&h2_6); 5105 break; 5106 #endif /* INET6 */ 5107 } 5108 } 5109 return (PF_PASS); 5110 break; 5111 } 5112 } 5113 } 5114 } 5115 5116 static int 5117 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5118 struct mbuf *m, struct pf_pdesc *pd) 5119 { 5120 struct pf_state_peer *src, *dst; 5121 struct pf_state_key_cmp key; 5122 5123 bzero(&key, sizeof(key)); 5124 key.af = pd->af; 5125 key.proto = pd->proto; 5126 if (direction == PF_IN) { 5127 PF_ACPY(&key.addr[0], pd->src, key.af); 5128 PF_ACPY(&key.addr[1], pd->dst, key.af); 5129 key.port[0] = key.port[1] = 0; 5130 } else { 5131 PF_ACPY(&key.addr[1], pd->src, key.af); 5132 PF_ACPY(&key.addr[0], pd->dst, key.af); 5133 key.port[1] = key.port[0] = 0; 5134 } 5135 5136 STATE_LOOKUP(kif, &key, direction, *state, pd); 5137 5138 if (direction == (*state)->direction) { 5139 src = &(*state)->src; 5140 dst = &(*state)->dst; 5141 } else { 5142 src = &(*state)->dst; 5143 dst = &(*state)->src; 5144 } 5145 5146 /* update states */ 5147 if (src->state < PFOTHERS_SINGLE) 5148 src->state = PFOTHERS_SINGLE; 5149 if (dst->state == PFOTHERS_SINGLE) 5150 dst->state = PFOTHERS_MULTIPLE; 5151 5152 /* update expire time */ 5153 (*state)->expire = time_uptime; 5154 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5155 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5156 else 5157 (*state)->timeout = PFTM_OTHER_SINGLE; 5158 5159 /* translate source/destination address, if necessary */ 5160 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5161 struct pf_state_key *nk = (*state)->key[pd->didx]; 5162 5163 KASSERT(nk, ("%s: nk is null", __func__)); 5164 KASSERT(pd, ("%s: pd is null", __func__)); 5165 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5166 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5167 switch (pd->af) { 5168 #ifdef INET 5169 case AF_INET: 5170 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5171 pf_change_a(&pd->src->v4.s_addr, 5172 pd->ip_sum, 5173 nk->addr[pd->sidx].v4.s_addr, 5174 0); 5175 5176 5177 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5178 pf_change_a(&pd->dst->v4.s_addr, 5179 pd->ip_sum, 5180 nk->addr[pd->didx].v4.s_addr, 5181 0); 5182 5183 break; 5184 #endif /* INET */ 5185 #ifdef INET6 5186 case AF_INET6: 5187 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5188 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5189 5190 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5191 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5192 #endif /* INET6 */ 5193 } 5194 } 5195 return (PF_PASS); 5196 } 5197 5198 /* 5199 * ipoff and off are measured from the start of the mbuf chain. 5200 * h must be at "ipoff" on the mbuf chain. 5201 */ 5202 void * 5203 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5204 u_short *actionp, u_short *reasonp, sa_family_t af) 5205 { 5206 switch (af) { 5207 #ifdef INET 5208 case AF_INET: { 5209 struct ip *h = mtod(m, struct ip *); 5210 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5211 5212 if (fragoff) { 5213 if (fragoff >= len) 5214 ACTION_SET(actionp, PF_PASS); 5215 else { 5216 ACTION_SET(actionp, PF_DROP); 5217 REASON_SET(reasonp, PFRES_FRAG); 5218 } 5219 return (NULL); 5220 } 5221 if (m->m_pkthdr.len < off + len || 5222 ntohs(h->ip_len) < off + len) { 5223 ACTION_SET(actionp, PF_DROP); 5224 REASON_SET(reasonp, PFRES_SHORT); 5225 return (NULL); 5226 } 5227 break; 5228 } 5229 #endif /* INET */ 5230 #ifdef INET6 5231 case AF_INET6: { 5232 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5233 5234 if (m->m_pkthdr.len < off + len || 5235 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5236 (unsigned)(off + len)) { 5237 ACTION_SET(actionp, PF_DROP); 5238 REASON_SET(reasonp, PFRES_SHORT); 5239 return (NULL); 5240 } 5241 break; 5242 } 5243 #endif /* INET6 */ 5244 } 5245 m_copydata(m, off, len, p); 5246 return (p); 5247 } 5248 5249 #ifdef RADIX_MPATH 5250 static int 5251 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5252 int rtableid) 5253 { 5254 struct radix_node_head *rnh; 5255 struct sockaddr_in *dst; 5256 int ret = 1; 5257 int check_mpath; 5258 #ifdef INET6 5259 struct sockaddr_in6 *dst6; 5260 struct route_in6 ro; 5261 #else 5262 struct route ro; 5263 #endif 5264 struct radix_node *rn; 5265 struct rtentry *rt; 5266 struct ifnet *ifp; 5267 5268 check_mpath = 0; 5269 /* XXX: stick to table 0 for now */ 5270 rnh = rt_tables_get_rnh(0, af); 5271 if (rnh != NULL && rn_mpath_capable(rnh)) 5272 check_mpath = 1; 5273 bzero(&ro, sizeof(ro)); 5274 switch (af) { 5275 case AF_INET: 5276 dst = satosin(&ro.ro_dst); 5277 dst->sin_family = AF_INET; 5278 dst->sin_len = sizeof(*dst); 5279 dst->sin_addr = addr->v4; 5280 break; 5281 #ifdef INET6 5282 case AF_INET6: 5283 /* 5284 * Skip check for addresses with embedded interface scope, 5285 * as they would always match anyway. 5286 */ 5287 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5288 goto out; 5289 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5290 dst6->sin6_family = AF_INET6; 5291 dst6->sin6_len = sizeof(*dst6); 5292 dst6->sin6_addr = addr->v6; 5293 break; 5294 #endif /* INET6 */ 5295 default: 5296 return (0); 5297 } 5298 5299 /* Skip checks for ipsec interfaces */ 5300 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5301 goto out; 5302 5303 switch (af) { 5304 #ifdef INET6 5305 case AF_INET6: 5306 in6_rtalloc_ign(&ro, 0, rtableid); 5307 break; 5308 #endif 5309 #ifdef INET 5310 case AF_INET: 5311 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5312 break; 5313 #endif 5314 } 5315 5316 if (ro.ro_rt != NULL) { 5317 /* No interface given, this is a no-route check */ 5318 if (kif == NULL) 5319 goto out; 5320 5321 if (kif->pfik_ifp == NULL) { 5322 ret = 0; 5323 goto out; 5324 } 5325 5326 /* Perform uRPF check if passed input interface */ 5327 ret = 0; 5328 rn = (struct radix_node *)ro.ro_rt; 5329 do { 5330 rt = (struct rtentry *)rn; 5331 ifp = rt->rt_ifp; 5332 5333 if (kif->pfik_ifp == ifp) 5334 ret = 1; 5335 rn = rn_mpath_next(rn); 5336 } while (check_mpath == 1 && rn != NULL && ret == 0); 5337 } else 5338 ret = 0; 5339 out: 5340 if (ro.ro_rt != NULL) 5341 RTFREE(ro.ro_rt); 5342 return (ret); 5343 } 5344 #endif 5345 5346 int 5347 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5348 int rtableid) 5349 { 5350 #ifdef INET 5351 struct nhop4_basic nh4; 5352 #endif 5353 #ifdef INET6 5354 struct nhop6_basic nh6; 5355 #endif 5356 struct ifnet *ifp; 5357 #ifdef RADIX_MPATH 5358 struct radix_node_head *rnh; 5359 5360 /* XXX: stick to table 0 for now */ 5361 rnh = rt_tables_get_rnh(0, af); 5362 if (rnh != NULL && rn_mpath_capable(rnh)) 5363 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5364 #endif 5365 /* 5366 * Skip check for addresses with embedded interface scope, 5367 * as they would always match anyway. 5368 */ 5369 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5370 return (1); 5371 5372 if (af != AF_INET && af != AF_INET6) 5373 return (0); 5374 5375 /* Skip checks for ipsec interfaces */ 5376 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5377 return (1); 5378 5379 ifp = NULL; 5380 5381 switch (af) { 5382 #ifdef INET6 5383 case AF_INET6: 5384 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5385 return (0); 5386 ifp = nh6.nh_ifp; 5387 break; 5388 #endif 5389 #ifdef INET 5390 case AF_INET: 5391 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5392 return (0); 5393 ifp = nh4.nh_ifp; 5394 break; 5395 #endif 5396 } 5397 5398 /* No interface given, this is a no-route check */ 5399 if (kif == NULL) 5400 return (1); 5401 5402 if (kif->pfik_ifp == NULL) 5403 return (0); 5404 5405 /* Perform uRPF check if passed input interface */ 5406 if (kif->pfik_ifp == ifp) 5407 return (1); 5408 return (0); 5409 } 5410 5411 #ifdef INET 5412 static void 5413 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5414 struct pf_state *s, struct pf_pdesc *pd) 5415 { 5416 struct mbuf *m0, *m1; 5417 struct sockaddr_in dst; 5418 struct ip *ip; 5419 struct ifnet *ifp = NULL; 5420 struct pf_addr naddr; 5421 struct pf_src_node *sn = NULL; 5422 int error = 0; 5423 uint16_t ip_len, ip_off; 5424 5425 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5426 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5427 __func__)); 5428 5429 if ((pd->pf_mtag == NULL && 5430 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5431 pd->pf_mtag->routed++ > 3) { 5432 m0 = *m; 5433 *m = NULL; 5434 goto bad_locked; 5435 } 5436 5437 if (r->rt == PF_DUPTO) { 5438 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5439 if (s) 5440 PF_STATE_UNLOCK(s); 5441 return; 5442 } 5443 } else { 5444 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5445 if (s) 5446 PF_STATE_UNLOCK(s); 5447 return; 5448 } 5449 m0 = *m; 5450 } 5451 5452 ip = mtod(m0, struct ip *); 5453 5454 bzero(&dst, sizeof(dst)); 5455 dst.sin_family = AF_INET; 5456 dst.sin_len = sizeof(dst); 5457 dst.sin_addr = ip->ip_dst; 5458 5459 if (TAILQ_EMPTY(&r->rpool.list)) { 5460 DPFPRINTF(PF_DEBUG_URGENT, 5461 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5462 goto bad_locked; 5463 } 5464 if (s == NULL) { 5465 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5466 &naddr, NULL, &sn); 5467 if (!PF_AZERO(&naddr, AF_INET)) 5468 dst.sin_addr.s_addr = naddr.v4.s_addr; 5469 ifp = r->rpool.cur->kif ? 5470 r->rpool.cur->kif->pfik_ifp : NULL; 5471 } else { 5472 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5473 dst.sin_addr.s_addr = 5474 s->rt_addr.v4.s_addr; 5475 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5476 PF_STATE_UNLOCK(s); 5477 } 5478 if (ifp == NULL) 5479 goto bad; 5480 5481 if (oifp != ifp) { 5482 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5483 goto bad; 5484 else if (m0 == NULL) 5485 goto done; 5486 if (m0->m_len < sizeof(struct ip)) { 5487 DPFPRINTF(PF_DEBUG_URGENT, 5488 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5489 goto bad; 5490 } 5491 ip = mtod(m0, struct ip *); 5492 } 5493 5494 if (ifp->if_flags & IFF_LOOPBACK) 5495 m0->m_flags |= M_SKIP_FIREWALL; 5496 5497 ip_len = ntohs(ip->ip_len); 5498 ip_off = ntohs(ip->ip_off); 5499 5500 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5501 m0->m_pkthdr.csum_flags |= CSUM_IP; 5502 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5503 in_delayed_cksum(m0); 5504 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5505 } 5506 #ifdef SCTP 5507 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5508 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5509 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5510 } 5511 #endif 5512 5513 /* 5514 * If small enough for interface, or the interface will take 5515 * care of the fragmentation for us, we can just send directly. 5516 */ 5517 if (ip_len <= ifp->if_mtu || 5518 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5519 ip->ip_sum = 0; 5520 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5521 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5522 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5523 } 5524 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5525 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5526 goto done; 5527 } 5528 5529 /* Balk when DF bit is set or the interface didn't support TSO. */ 5530 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5531 error = EMSGSIZE; 5532 KMOD_IPSTAT_INC(ips_cantfrag); 5533 if (r->rt != PF_DUPTO) { 5534 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5535 ifp->if_mtu); 5536 goto done; 5537 } else 5538 goto bad; 5539 } 5540 5541 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5542 if (error) 5543 goto bad; 5544 5545 for (; m0; m0 = m1) { 5546 m1 = m0->m_nextpkt; 5547 m0->m_nextpkt = NULL; 5548 if (error == 0) { 5549 m_clrprotoflags(m0); 5550 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5551 } else 5552 m_freem(m0); 5553 } 5554 5555 if (error == 0) 5556 KMOD_IPSTAT_INC(ips_fragmented); 5557 5558 done: 5559 if (r->rt != PF_DUPTO) 5560 *m = NULL; 5561 return; 5562 5563 bad_locked: 5564 if (s) 5565 PF_STATE_UNLOCK(s); 5566 bad: 5567 m_freem(m0); 5568 goto done; 5569 } 5570 #endif /* INET */ 5571 5572 #ifdef INET6 5573 static void 5574 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5575 struct pf_state *s, struct pf_pdesc *pd) 5576 { 5577 struct mbuf *m0; 5578 struct sockaddr_in6 dst; 5579 struct ip6_hdr *ip6; 5580 struct ifnet *ifp = NULL; 5581 struct pf_addr naddr; 5582 struct pf_src_node *sn = NULL; 5583 5584 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5585 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5586 __func__)); 5587 5588 if ((pd->pf_mtag == NULL && 5589 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5590 pd->pf_mtag->routed++ > 3) { 5591 m0 = *m; 5592 *m = NULL; 5593 goto bad_locked; 5594 } 5595 5596 if (r->rt == PF_DUPTO) { 5597 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5598 if (s) 5599 PF_STATE_UNLOCK(s); 5600 return; 5601 } 5602 } else { 5603 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5604 if (s) 5605 PF_STATE_UNLOCK(s); 5606 return; 5607 } 5608 m0 = *m; 5609 } 5610 5611 ip6 = mtod(m0, struct ip6_hdr *); 5612 5613 bzero(&dst, sizeof(dst)); 5614 dst.sin6_family = AF_INET6; 5615 dst.sin6_len = sizeof(dst); 5616 dst.sin6_addr = ip6->ip6_dst; 5617 5618 if (TAILQ_EMPTY(&r->rpool.list)) { 5619 DPFPRINTF(PF_DEBUG_URGENT, 5620 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5621 goto bad_locked; 5622 } 5623 if (s == NULL) { 5624 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5625 &naddr, NULL, &sn); 5626 if (!PF_AZERO(&naddr, AF_INET6)) 5627 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5628 &naddr, AF_INET6); 5629 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5630 } else { 5631 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5632 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5633 &s->rt_addr, AF_INET6); 5634 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5635 } 5636 5637 if (s) 5638 PF_STATE_UNLOCK(s); 5639 5640 if (ifp == NULL) 5641 goto bad; 5642 5643 if (oifp != ifp) { 5644 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5645 goto bad; 5646 else if (m0 == NULL) 5647 goto done; 5648 if (m0->m_len < sizeof(struct ip6_hdr)) { 5649 DPFPRINTF(PF_DEBUG_URGENT, 5650 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5651 __func__)); 5652 goto bad; 5653 } 5654 ip6 = mtod(m0, struct ip6_hdr *); 5655 } 5656 5657 if (ifp->if_flags & IFF_LOOPBACK) 5658 m0->m_flags |= M_SKIP_FIREWALL; 5659 5660 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5661 ~ifp->if_hwassist) { 5662 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5663 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5664 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5665 } 5666 5667 /* 5668 * If the packet is too large for the outgoing interface, 5669 * send back an icmp6 error. 5670 */ 5671 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5672 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5673 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5674 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5675 else { 5676 in6_ifstat_inc(ifp, ifs6_in_toobig); 5677 if (r->rt != PF_DUPTO) 5678 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5679 else 5680 goto bad; 5681 } 5682 5683 done: 5684 if (r->rt != PF_DUPTO) 5685 *m = NULL; 5686 return; 5687 5688 bad_locked: 5689 if (s) 5690 PF_STATE_UNLOCK(s); 5691 bad: 5692 m_freem(m0); 5693 goto done; 5694 } 5695 #endif /* INET6 */ 5696 5697 /* 5698 * FreeBSD supports cksum offloads for the following drivers. 5699 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5700 * ti(4), txp(4), xl(4) 5701 * 5702 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5703 * network driver performed cksum including pseudo header, need to verify 5704 * csum_data 5705 * CSUM_DATA_VALID : 5706 * network driver performed cksum, needs to additional pseudo header 5707 * cksum computation with partial csum_data(i.e. lack of H/W support for 5708 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5709 * 5710 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5711 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5712 * TCP/UDP layer. 5713 * Also, set csum_data to 0xffff to force cksum validation. 5714 */ 5715 static int 5716 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5717 { 5718 u_int16_t sum = 0; 5719 int hw_assist = 0; 5720 struct ip *ip; 5721 5722 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5723 return (1); 5724 if (m->m_pkthdr.len < off + len) 5725 return (1); 5726 5727 switch (p) { 5728 case IPPROTO_TCP: 5729 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5730 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5731 sum = m->m_pkthdr.csum_data; 5732 } else { 5733 ip = mtod(m, struct ip *); 5734 sum = in_pseudo(ip->ip_src.s_addr, 5735 ip->ip_dst.s_addr, htonl((u_short)len + 5736 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5737 } 5738 sum ^= 0xffff; 5739 ++hw_assist; 5740 } 5741 break; 5742 case IPPROTO_UDP: 5743 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5744 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5745 sum = m->m_pkthdr.csum_data; 5746 } else { 5747 ip = mtod(m, struct ip *); 5748 sum = in_pseudo(ip->ip_src.s_addr, 5749 ip->ip_dst.s_addr, htonl((u_short)len + 5750 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5751 } 5752 sum ^= 0xffff; 5753 ++hw_assist; 5754 } 5755 break; 5756 case IPPROTO_ICMP: 5757 #ifdef INET6 5758 case IPPROTO_ICMPV6: 5759 #endif /* INET6 */ 5760 break; 5761 default: 5762 return (1); 5763 } 5764 5765 if (!hw_assist) { 5766 switch (af) { 5767 case AF_INET: 5768 if (p == IPPROTO_ICMP) { 5769 if (m->m_len < off) 5770 return (1); 5771 m->m_data += off; 5772 m->m_len -= off; 5773 sum = in_cksum(m, len); 5774 m->m_data -= off; 5775 m->m_len += off; 5776 } else { 5777 if (m->m_len < sizeof(struct ip)) 5778 return (1); 5779 sum = in4_cksum(m, p, off, len); 5780 } 5781 break; 5782 #ifdef INET6 5783 case AF_INET6: 5784 if (m->m_len < sizeof(struct ip6_hdr)) 5785 return (1); 5786 sum = in6_cksum(m, p, off, len); 5787 break; 5788 #endif /* INET6 */ 5789 default: 5790 return (1); 5791 } 5792 } 5793 if (sum) { 5794 switch (p) { 5795 case IPPROTO_TCP: 5796 { 5797 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5798 break; 5799 } 5800 case IPPROTO_UDP: 5801 { 5802 KMOD_UDPSTAT_INC(udps_badsum); 5803 break; 5804 } 5805 #ifdef INET 5806 case IPPROTO_ICMP: 5807 { 5808 KMOD_ICMPSTAT_INC(icps_checksum); 5809 break; 5810 } 5811 #endif 5812 #ifdef INET6 5813 case IPPROTO_ICMPV6: 5814 { 5815 KMOD_ICMP6STAT_INC(icp6s_checksum); 5816 break; 5817 } 5818 #endif /* INET6 */ 5819 } 5820 return (1); 5821 } else { 5822 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5823 m->m_pkthdr.csum_flags |= 5824 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5825 m->m_pkthdr.csum_data = 0xffff; 5826 } 5827 } 5828 return (0); 5829 } 5830 5831 5832 #ifdef INET 5833 int 5834 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5835 { 5836 struct pfi_kif *kif; 5837 u_short action, reason = 0, log = 0; 5838 struct mbuf *m = *m0; 5839 struct ip *h = NULL; 5840 struct m_tag *ipfwtag; 5841 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5842 struct pf_state *s = NULL; 5843 struct pf_ruleset *ruleset = NULL; 5844 struct pf_pdesc pd; 5845 int off, dirndx, pqid = 0; 5846 5847 M_ASSERTPKTHDR(m); 5848 5849 if (!V_pf_status.running) 5850 return (PF_PASS); 5851 5852 memset(&pd, 0, sizeof(pd)); 5853 5854 kif = (struct pfi_kif *)ifp->if_pf_kif; 5855 5856 if (kif == NULL) { 5857 DPFPRINTF(PF_DEBUG_URGENT, 5858 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5859 return (PF_DROP); 5860 } 5861 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5862 return (PF_PASS); 5863 5864 if (m->m_flags & M_SKIP_FIREWALL) 5865 return (PF_PASS); 5866 5867 pd.pf_mtag = pf_find_mtag(m); 5868 5869 PF_RULES_RLOCK(); 5870 5871 if (ip_divert_ptr != NULL && 5872 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5873 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5874 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5875 if (pd.pf_mtag == NULL && 5876 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5877 action = PF_DROP; 5878 goto done; 5879 } 5880 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5881 m_tag_delete(m, ipfwtag); 5882 } 5883 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5884 m->m_flags |= M_FASTFWD_OURS; 5885 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5886 } 5887 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5888 /* We do IP header normalization and packet reassembly here */ 5889 action = PF_DROP; 5890 goto done; 5891 } 5892 m = *m0; /* pf_normalize messes with m0 */ 5893 h = mtod(m, struct ip *); 5894 5895 off = h->ip_hl << 2; 5896 if (off < (int)sizeof(struct ip)) { 5897 action = PF_DROP; 5898 REASON_SET(&reason, PFRES_SHORT); 5899 log = 1; 5900 goto done; 5901 } 5902 5903 pd.src = (struct pf_addr *)&h->ip_src; 5904 pd.dst = (struct pf_addr *)&h->ip_dst; 5905 pd.sport = pd.dport = NULL; 5906 pd.ip_sum = &h->ip_sum; 5907 pd.proto_sum = NULL; 5908 pd.proto = h->ip_p; 5909 pd.dir = dir; 5910 pd.sidx = (dir == PF_IN) ? 0 : 1; 5911 pd.didx = (dir == PF_IN) ? 1 : 0; 5912 pd.af = AF_INET; 5913 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5914 pd.tot_len = ntohs(h->ip_len); 5915 5916 /* handle fragments that didn't get reassembled by normalization */ 5917 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5918 action = pf_test_fragment(&r, dir, kif, m, h, 5919 &pd, &a, &ruleset); 5920 goto done; 5921 } 5922 5923 switch (h->ip_p) { 5924 5925 case IPPROTO_TCP: { 5926 struct tcphdr th; 5927 5928 pd.hdr.tcp = &th; 5929 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5930 &action, &reason, AF_INET)) { 5931 log = action != PF_PASS; 5932 goto done; 5933 } 5934 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5935 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5936 pqid = 1; 5937 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5938 if (action == PF_DROP) 5939 goto done; 5940 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5941 &reason); 5942 if (action == PF_PASS) { 5943 if (pfsync_update_state_ptr != NULL) 5944 pfsync_update_state_ptr(s); 5945 r = s->rule.ptr; 5946 a = s->anchor.ptr; 5947 log = s->log; 5948 } else if (s == NULL) 5949 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5950 &a, &ruleset, inp); 5951 break; 5952 } 5953 5954 case IPPROTO_UDP: { 5955 struct udphdr uh; 5956 5957 pd.hdr.udp = &uh; 5958 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5959 &action, &reason, AF_INET)) { 5960 log = action != PF_PASS; 5961 goto done; 5962 } 5963 if (uh.uh_dport == 0 || 5964 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5965 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5966 action = PF_DROP; 5967 REASON_SET(&reason, PFRES_SHORT); 5968 goto done; 5969 } 5970 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5971 if (action == PF_PASS) { 5972 if (pfsync_update_state_ptr != NULL) 5973 pfsync_update_state_ptr(s); 5974 r = s->rule.ptr; 5975 a = s->anchor.ptr; 5976 log = s->log; 5977 } else if (s == NULL) 5978 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5979 &a, &ruleset, inp); 5980 break; 5981 } 5982 5983 case IPPROTO_ICMP: { 5984 struct icmp ih; 5985 5986 pd.hdr.icmp = &ih; 5987 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5988 &action, &reason, AF_INET)) { 5989 log = action != PF_PASS; 5990 goto done; 5991 } 5992 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5993 &reason); 5994 if (action == PF_PASS) { 5995 if (pfsync_update_state_ptr != NULL) 5996 pfsync_update_state_ptr(s); 5997 r = s->rule.ptr; 5998 a = s->anchor.ptr; 5999 log = s->log; 6000 } else if (s == NULL) 6001 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6002 &a, &ruleset, inp); 6003 break; 6004 } 6005 6006 #ifdef INET6 6007 case IPPROTO_ICMPV6: { 6008 action = PF_DROP; 6009 DPFPRINTF(PF_DEBUG_MISC, 6010 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6011 goto done; 6012 } 6013 #endif 6014 6015 default: 6016 action = pf_test_state_other(&s, dir, kif, m, &pd); 6017 if (action == PF_PASS) { 6018 if (pfsync_update_state_ptr != NULL) 6019 pfsync_update_state_ptr(s); 6020 r = s->rule.ptr; 6021 a = s->anchor.ptr; 6022 log = s->log; 6023 } else if (s == NULL) 6024 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6025 &a, &ruleset, inp); 6026 break; 6027 } 6028 6029 done: 6030 PF_RULES_RUNLOCK(); 6031 if (action == PF_PASS && h->ip_hl > 5 && 6032 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6033 action = PF_DROP; 6034 REASON_SET(&reason, PFRES_IPOPTIONS); 6035 log = r->log; 6036 DPFPRINTF(PF_DEBUG_MISC, 6037 ("pf: dropping packet with ip options\n")); 6038 } 6039 6040 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6041 action = PF_DROP; 6042 REASON_SET(&reason, PFRES_MEMORY); 6043 } 6044 if (r->rtableid >= 0) 6045 M_SETFIB(m, r->rtableid); 6046 6047 if (r->scrub_flags & PFSTATE_SETPRIO) { 6048 if (pd.tos & IPTOS_LOWDELAY) 6049 pqid = 1; 6050 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6051 action = PF_DROP; 6052 REASON_SET(&reason, PFRES_MEMORY); 6053 log = 1; 6054 DPFPRINTF(PF_DEBUG_MISC, 6055 ("pf: failed to allocate 802.1q mtag\n")); 6056 } 6057 } 6058 6059 #ifdef ALTQ 6060 if (action == PF_PASS && r->qid) { 6061 if (pd.pf_mtag == NULL && 6062 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6063 action = PF_DROP; 6064 REASON_SET(&reason, PFRES_MEMORY); 6065 } else { 6066 if (s != NULL) 6067 pd.pf_mtag->qid_hash = pf_state_hash(s); 6068 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6069 pd.pf_mtag->qid = r->pqid; 6070 else 6071 pd.pf_mtag->qid = r->qid; 6072 /* Add hints for ecn. */ 6073 pd.pf_mtag->hdr = h; 6074 } 6075 6076 } 6077 #endif /* ALTQ */ 6078 6079 /* 6080 * connections redirected to loopback should not match sockets 6081 * bound specifically to loopback due to security implications, 6082 * see tcp_input() and in_pcblookup_listen(). 6083 */ 6084 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6085 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6086 (s->nat_rule.ptr->action == PF_RDR || 6087 s->nat_rule.ptr->action == PF_BINAT) && 6088 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6089 m->m_flags |= M_SKIP_FIREWALL; 6090 6091 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6092 !PACKET_LOOPED(&pd)) { 6093 6094 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6095 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6096 if (ipfwtag != NULL) { 6097 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6098 ntohs(r->divert.port); 6099 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6100 6101 if (s) 6102 PF_STATE_UNLOCK(s); 6103 6104 m_tag_prepend(m, ipfwtag); 6105 if (m->m_flags & M_FASTFWD_OURS) { 6106 if (pd.pf_mtag == NULL && 6107 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6108 action = PF_DROP; 6109 REASON_SET(&reason, PFRES_MEMORY); 6110 log = 1; 6111 DPFPRINTF(PF_DEBUG_MISC, 6112 ("pf: failed to allocate tag\n")); 6113 } else { 6114 pd.pf_mtag->flags |= 6115 PF_FASTFWD_OURS_PRESENT; 6116 m->m_flags &= ~M_FASTFWD_OURS; 6117 } 6118 } 6119 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6120 *m0 = NULL; 6121 6122 return (action); 6123 } else { 6124 /* XXX: ipfw has the same behaviour! */ 6125 action = PF_DROP; 6126 REASON_SET(&reason, PFRES_MEMORY); 6127 log = 1; 6128 DPFPRINTF(PF_DEBUG_MISC, 6129 ("pf: failed to allocate divert tag\n")); 6130 } 6131 } 6132 6133 if (log) { 6134 struct pf_rule *lr; 6135 6136 if (s != NULL && s->nat_rule.ptr != NULL && 6137 s->nat_rule.ptr->log & PF_LOG_ALL) 6138 lr = s->nat_rule.ptr; 6139 else 6140 lr = r; 6141 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6142 (s == NULL)); 6143 } 6144 6145 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6146 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6147 6148 if (action == PF_PASS || r->action == PF_DROP) { 6149 dirndx = (dir == PF_OUT); 6150 r->packets[dirndx]++; 6151 r->bytes[dirndx] += pd.tot_len; 6152 if (a != NULL) { 6153 a->packets[dirndx]++; 6154 a->bytes[dirndx] += pd.tot_len; 6155 } 6156 if (s != NULL) { 6157 if (s->nat_rule.ptr != NULL) { 6158 s->nat_rule.ptr->packets[dirndx]++; 6159 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6160 } 6161 if (s->src_node != NULL) { 6162 s->src_node->packets[dirndx]++; 6163 s->src_node->bytes[dirndx] += pd.tot_len; 6164 } 6165 if (s->nat_src_node != NULL) { 6166 s->nat_src_node->packets[dirndx]++; 6167 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6168 } 6169 dirndx = (dir == s->direction) ? 0 : 1; 6170 s->packets[dirndx]++; 6171 s->bytes[dirndx] += pd.tot_len; 6172 } 6173 tr = r; 6174 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6175 if (nr != NULL && r == &V_pf_default_rule) 6176 tr = nr; 6177 if (tr->src.addr.type == PF_ADDR_TABLE) 6178 pfr_update_stats(tr->src.addr.p.tbl, 6179 (s == NULL) ? pd.src : 6180 &s->key[(s->direction == PF_IN)]-> 6181 addr[(s->direction == PF_OUT)], 6182 pd.af, pd.tot_len, dir == PF_OUT, 6183 r->action == PF_PASS, tr->src.neg); 6184 if (tr->dst.addr.type == PF_ADDR_TABLE) 6185 pfr_update_stats(tr->dst.addr.p.tbl, 6186 (s == NULL) ? pd.dst : 6187 &s->key[(s->direction == PF_IN)]-> 6188 addr[(s->direction == PF_IN)], 6189 pd.af, pd.tot_len, dir == PF_OUT, 6190 r->action == PF_PASS, tr->dst.neg); 6191 } 6192 6193 switch (action) { 6194 case PF_SYNPROXY_DROP: 6195 m_freem(*m0); 6196 case PF_DEFER: 6197 *m0 = NULL; 6198 action = PF_PASS; 6199 break; 6200 case PF_DROP: 6201 m_freem(*m0); 6202 *m0 = NULL; 6203 break; 6204 default: 6205 /* pf_route() returns unlocked. */ 6206 if (r->rt) { 6207 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6208 return (action); 6209 } 6210 break; 6211 } 6212 if (s) 6213 PF_STATE_UNLOCK(s); 6214 6215 return (action); 6216 } 6217 #endif /* INET */ 6218 6219 #ifdef INET6 6220 int 6221 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6222 { 6223 struct pfi_kif *kif; 6224 u_short action, reason = 0, log = 0; 6225 struct mbuf *m = *m0, *n = NULL; 6226 struct m_tag *mtag; 6227 struct ip6_hdr *h = NULL; 6228 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6229 struct pf_state *s = NULL; 6230 struct pf_ruleset *ruleset = NULL; 6231 struct pf_pdesc pd; 6232 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6233 int fwdir = dir; 6234 6235 M_ASSERTPKTHDR(m); 6236 6237 /* Detect packet forwarding. 6238 * If the input interface is different from the output interface we're 6239 * forwarding. 6240 * We do need to be careful about bridges. If the 6241 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6242 * bridge, so if the input interface is a bridge member and the output 6243 * interface is its bridge or a member of the same bridge we're not 6244 * actually forwarding but bridging. 6245 */ 6246 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6247 (m->m_pkthdr.rcvif->if_bridge == NULL || 6248 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6249 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6250 fwdir = PF_FWD; 6251 6252 if (dir == PF_FWD) 6253 dir = PF_OUT; 6254 6255 if (!V_pf_status.running) 6256 return (PF_PASS); 6257 6258 memset(&pd, 0, sizeof(pd)); 6259 pd.pf_mtag = pf_find_mtag(m); 6260 6261 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6262 return (PF_PASS); 6263 6264 kif = (struct pfi_kif *)ifp->if_pf_kif; 6265 if (kif == NULL) { 6266 DPFPRINTF(PF_DEBUG_URGENT, 6267 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6268 return (PF_DROP); 6269 } 6270 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6271 return (PF_PASS); 6272 6273 if (m->m_flags & M_SKIP_FIREWALL) 6274 return (PF_PASS); 6275 6276 PF_RULES_RLOCK(); 6277 6278 /* We do IP header normalization and packet reassembly here */ 6279 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6280 action = PF_DROP; 6281 goto done; 6282 } 6283 m = *m0; /* pf_normalize messes with m0 */ 6284 h = mtod(m, struct ip6_hdr *); 6285 6286 #if 1 6287 /* 6288 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6289 * will do something bad, so drop the packet for now. 6290 */ 6291 if (htons(h->ip6_plen) == 0) { 6292 action = PF_DROP; 6293 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6294 goto done; 6295 } 6296 #endif 6297 6298 pd.src = (struct pf_addr *)&h->ip6_src; 6299 pd.dst = (struct pf_addr *)&h->ip6_dst; 6300 pd.sport = pd.dport = NULL; 6301 pd.ip_sum = NULL; 6302 pd.proto_sum = NULL; 6303 pd.dir = dir; 6304 pd.sidx = (dir == PF_IN) ? 0 : 1; 6305 pd.didx = (dir == PF_IN) ? 1 : 0; 6306 pd.af = AF_INET6; 6307 pd.tos = 0; 6308 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6309 6310 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6311 pd.proto = h->ip6_nxt; 6312 do { 6313 switch (pd.proto) { 6314 case IPPROTO_FRAGMENT: 6315 action = pf_test_fragment(&r, dir, kif, m, h, 6316 &pd, &a, &ruleset); 6317 if (action == PF_DROP) 6318 REASON_SET(&reason, PFRES_FRAG); 6319 goto done; 6320 case IPPROTO_ROUTING: { 6321 struct ip6_rthdr rthdr; 6322 6323 if (rh_cnt++) { 6324 DPFPRINTF(PF_DEBUG_MISC, 6325 ("pf: IPv6 more than one rthdr\n")); 6326 action = PF_DROP; 6327 REASON_SET(&reason, PFRES_IPOPTIONS); 6328 log = 1; 6329 goto done; 6330 } 6331 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6332 &reason, pd.af)) { 6333 DPFPRINTF(PF_DEBUG_MISC, 6334 ("pf: IPv6 short rthdr\n")); 6335 action = PF_DROP; 6336 REASON_SET(&reason, PFRES_SHORT); 6337 log = 1; 6338 goto done; 6339 } 6340 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6341 DPFPRINTF(PF_DEBUG_MISC, 6342 ("pf: IPv6 rthdr0\n")); 6343 action = PF_DROP; 6344 REASON_SET(&reason, PFRES_IPOPTIONS); 6345 log = 1; 6346 goto done; 6347 } 6348 /* FALLTHROUGH */ 6349 } 6350 case IPPROTO_AH: 6351 case IPPROTO_HOPOPTS: 6352 case IPPROTO_DSTOPTS: { 6353 /* get next header and header length */ 6354 struct ip6_ext opt6; 6355 6356 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6357 NULL, &reason, pd.af)) { 6358 DPFPRINTF(PF_DEBUG_MISC, 6359 ("pf: IPv6 short opt\n")); 6360 action = PF_DROP; 6361 log = 1; 6362 goto done; 6363 } 6364 if (pd.proto == IPPROTO_AH) 6365 off += (opt6.ip6e_len + 2) * 4; 6366 else 6367 off += (opt6.ip6e_len + 1) * 8; 6368 pd.proto = opt6.ip6e_nxt; 6369 /* goto the next header */ 6370 break; 6371 } 6372 default: 6373 terminal++; 6374 break; 6375 } 6376 } while (!terminal); 6377 6378 /* if there's no routing header, use unmodified mbuf for checksumming */ 6379 if (!n) 6380 n = m; 6381 6382 switch (pd.proto) { 6383 6384 case IPPROTO_TCP: { 6385 struct tcphdr th; 6386 6387 pd.hdr.tcp = &th; 6388 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6389 &action, &reason, AF_INET6)) { 6390 log = action != PF_PASS; 6391 goto done; 6392 } 6393 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6394 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6395 if (action == PF_DROP) 6396 goto done; 6397 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6398 &reason); 6399 if (action == PF_PASS) { 6400 if (pfsync_update_state_ptr != NULL) 6401 pfsync_update_state_ptr(s); 6402 r = s->rule.ptr; 6403 a = s->anchor.ptr; 6404 log = s->log; 6405 } else if (s == NULL) 6406 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6407 &a, &ruleset, inp); 6408 break; 6409 } 6410 6411 case IPPROTO_UDP: { 6412 struct udphdr uh; 6413 6414 pd.hdr.udp = &uh; 6415 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6416 &action, &reason, AF_INET6)) { 6417 log = action != PF_PASS; 6418 goto done; 6419 } 6420 if (uh.uh_dport == 0 || 6421 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6422 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6423 action = PF_DROP; 6424 REASON_SET(&reason, PFRES_SHORT); 6425 goto done; 6426 } 6427 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6428 if (action == PF_PASS) { 6429 if (pfsync_update_state_ptr != NULL) 6430 pfsync_update_state_ptr(s); 6431 r = s->rule.ptr; 6432 a = s->anchor.ptr; 6433 log = s->log; 6434 } else if (s == NULL) 6435 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6436 &a, &ruleset, inp); 6437 break; 6438 } 6439 6440 case IPPROTO_ICMP: { 6441 action = PF_DROP; 6442 DPFPRINTF(PF_DEBUG_MISC, 6443 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6444 goto done; 6445 } 6446 6447 case IPPROTO_ICMPV6: { 6448 struct icmp6_hdr ih; 6449 6450 pd.hdr.icmp6 = &ih; 6451 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6452 &action, &reason, AF_INET6)) { 6453 log = action != PF_PASS; 6454 goto done; 6455 } 6456 action = pf_test_state_icmp(&s, dir, kif, 6457 m, off, h, &pd, &reason); 6458 if (action == PF_PASS) { 6459 if (pfsync_update_state_ptr != NULL) 6460 pfsync_update_state_ptr(s); 6461 r = s->rule.ptr; 6462 a = s->anchor.ptr; 6463 log = s->log; 6464 } else if (s == NULL) 6465 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6466 &a, &ruleset, inp); 6467 break; 6468 } 6469 6470 default: 6471 action = pf_test_state_other(&s, dir, kif, m, &pd); 6472 if (action == PF_PASS) { 6473 if (pfsync_update_state_ptr != NULL) 6474 pfsync_update_state_ptr(s); 6475 r = s->rule.ptr; 6476 a = s->anchor.ptr; 6477 log = s->log; 6478 } else if (s == NULL) 6479 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6480 &a, &ruleset, inp); 6481 break; 6482 } 6483 6484 done: 6485 PF_RULES_RUNLOCK(); 6486 if (n != m) { 6487 m_freem(n); 6488 n = NULL; 6489 } 6490 6491 /* handle dangerous IPv6 extension headers. */ 6492 if (action == PF_PASS && rh_cnt && 6493 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6494 action = PF_DROP; 6495 REASON_SET(&reason, PFRES_IPOPTIONS); 6496 log = r->log; 6497 DPFPRINTF(PF_DEBUG_MISC, 6498 ("pf: dropping packet with dangerous v6 headers\n")); 6499 } 6500 6501 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6502 action = PF_DROP; 6503 REASON_SET(&reason, PFRES_MEMORY); 6504 } 6505 if (r->rtableid >= 0) 6506 M_SETFIB(m, r->rtableid); 6507 6508 if (r->scrub_flags & PFSTATE_SETPRIO) { 6509 if (pd.tos & IPTOS_LOWDELAY) 6510 pqid = 1; 6511 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6512 action = PF_DROP; 6513 REASON_SET(&reason, PFRES_MEMORY); 6514 log = 1; 6515 DPFPRINTF(PF_DEBUG_MISC, 6516 ("pf: failed to allocate 802.1q mtag\n")); 6517 } 6518 } 6519 6520 #ifdef ALTQ 6521 if (action == PF_PASS && r->qid) { 6522 if (pd.pf_mtag == NULL && 6523 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6524 action = PF_DROP; 6525 REASON_SET(&reason, PFRES_MEMORY); 6526 } else { 6527 if (s != NULL) 6528 pd.pf_mtag->qid_hash = pf_state_hash(s); 6529 if (pd.tos & IPTOS_LOWDELAY) 6530 pd.pf_mtag->qid = r->pqid; 6531 else 6532 pd.pf_mtag->qid = r->qid; 6533 /* Add hints for ecn. */ 6534 pd.pf_mtag->hdr = h; 6535 } 6536 } 6537 #endif /* ALTQ */ 6538 6539 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6540 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6541 (s->nat_rule.ptr->action == PF_RDR || 6542 s->nat_rule.ptr->action == PF_BINAT) && 6543 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6544 m->m_flags |= M_SKIP_FIREWALL; 6545 6546 /* XXX: Anybody working on it?! */ 6547 if (r->divert.port) 6548 printf("pf: divert(9) is not supported for IPv6\n"); 6549 6550 if (log) { 6551 struct pf_rule *lr; 6552 6553 if (s != NULL && s->nat_rule.ptr != NULL && 6554 s->nat_rule.ptr->log & PF_LOG_ALL) 6555 lr = s->nat_rule.ptr; 6556 else 6557 lr = r; 6558 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6559 &pd, (s == NULL)); 6560 } 6561 6562 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6563 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6564 6565 if (action == PF_PASS || r->action == PF_DROP) { 6566 dirndx = (dir == PF_OUT); 6567 r->packets[dirndx]++; 6568 r->bytes[dirndx] += pd.tot_len; 6569 if (a != NULL) { 6570 a->packets[dirndx]++; 6571 a->bytes[dirndx] += pd.tot_len; 6572 } 6573 if (s != NULL) { 6574 if (s->nat_rule.ptr != NULL) { 6575 s->nat_rule.ptr->packets[dirndx]++; 6576 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6577 } 6578 if (s->src_node != NULL) { 6579 s->src_node->packets[dirndx]++; 6580 s->src_node->bytes[dirndx] += pd.tot_len; 6581 } 6582 if (s->nat_src_node != NULL) { 6583 s->nat_src_node->packets[dirndx]++; 6584 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6585 } 6586 dirndx = (dir == s->direction) ? 0 : 1; 6587 s->packets[dirndx]++; 6588 s->bytes[dirndx] += pd.tot_len; 6589 } 6590 tr = r; 6591 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6592 if (nr != NULL && r == &V_pf_default_rule) 6593 tr = nr; 6594 if (tr->src.addr.type == PF_ADDR_TABLE) 6595 pfr_update_stats(tr->src.addr.p.tbl, 6596 (s == NULL) ? pd.src : 6597 &s->key[(s->direction == PF_IN)]->addr[0], 6598 pd.af, pd.tot_len, dir == PF_OUT, 6599 r->action == PF_PASS, tr->src.neg); 6600 if (tr->dst.addr.type == PF_ADDR_TABLE) 6601 pfr_update_stats(tr->dst.addr.p.tbl, 6602 (s == NULL) ? pd.dst : 6603 &s->key[(s->direction == PF_IN)]->addr[1], 6604 pd.af, pd.tot_len, dir == PF_OUT, 6605 r->action == PF_PASS, tr->dst.neg); 6606 } 6607 6608 switch (action) { 6609 case PF_SYNPROXY_DROP: 6610 m_freem(*m0); 6611 case PF_DEFER: 6612 *m0 = NULL; 6613 action = PF_PASS; 6614 break; 6615 case PF_DROP: 6616 m_freem(*m0); 6617 *m0 = NULL; 6618 break; 6619 default: 6620 /* pf_route6() returns unlocked. */ 6621 if (r->rt) { 6622 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6623 return (action); 6624 } 6625 break; 6626 } 6627 6628 if (s) 6629 PF_STATE_UNLOCK(s); 6630 6631 /* If reassembled packet passed, create new fragments. */ 6632 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6633 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6634 action = pf_refragment6(ifp, m0, mtag); 6635 6636 return (action); 6637 } 6638 #endif /* INET6 */ 6639