1 /*- 2 * Copyright (c) 2001 Daniel Hartmeier 3 * Copyright (c) 2002 - 2008 Henning Brauer 4 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * - Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * - Redistributions in binary form must reproduce the above 14 * copyright notice, this list of conditions and the following 15 * disclaimer in the documentation and/or other materials provided 16 * with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 26 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_bpf.h" 44 #include "opt_pf.h" 45 46 #include <sys/param.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/hash.h> 50 #include <sys/interrupt.h> 51 #include <sys/kernel.h> 52 #include <sys/kthread.h> 53 #include <sys/limits.h> 54 #include <sys/mbuf.h> 55 #include <sys/md5.h> 56 #include <sys/random.h> 57 #include <sys/refcount.h> 58 #include <sys/socket.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/ucred.h> 62 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> 66 #include <net/if_vlan_var.h> 67 #include <net/route.h> 68 #include <net/radix_mpath.h> 69 #include <net/vnet.h> 70 71 #include <net/pfvar.h> 72 #include <net/if_pflog.h> 73 #include <net/if_pfsync.h> 74 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_var.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/ip.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/icmp_var.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp.h> 84 #include <netinet/tcp_fsm.h> 85 #include <netinet/tcp_seq.h> 86 #include <netinet/tcp_timer.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 91 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 92 93 #ifdef INET6 94 #include <netinet/ip6.h> 95 #include <netinet/icmp6.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_fib.h> 100 #include <netinet6/scope6_var.h> 101 #endif /* INET6 */ 102 103 #include <machine/in_cksum.h> 104 #include <security/mac/mac_framework.h> 105 106 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 107 108 /* 109 * Global variables 110 */ 111 112 /* state tables */ 113 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 114 VNET_DEFINE(struct pf_palist, pf_pabuf); 115 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 116 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 117 VNET_DEFINE(struct pf_kstatus, pf_status); 118 119 VNET_DEFINE(u_int32_t, ticket_altqs_active); 120 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 121 VNET_DEFINE(int, altqs_inactive_open); 122 VNET_DEFINE(u_int32_t, ticket_pabuf); 123 124 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 125 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 126 VNET_DEFINE(u_char, pf_tcp_secret[16]); 127 #define V_pf_tcp_secret VNET(pf_tcp_secret) 128 VNET_DEFINE(int, pf_tcp_secret_init); 129 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 130 VNET_DEFINE(int, pf_tcp_iss_off); 131 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 132 133 /* 134 * Queue for pf_intr() sends. 135 */ 136 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 137 struct pf_send_entry { 138 STAILQ_ENTRY(pf_send_entry) pfse_next; 139 struct mbuf *pfse_m; 140 enum { 141 PFSE_IP, 142 PFSE_IP6, 143 PFSE_ICMP, 144 PFSE_ICMP6, 145 } pfse_type; 146 struct { 147 int type; 148 int code; 149 int mtu; 150 } icmpopts; 151 }; 152 153 STAILQ_HEAD(pf_send_head, pf_send_entry); 154 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 155 #define V_pf_sendqueue VNET(pf_sendqueue) 156 157 static struct mtx pf_sendqueue_mtx; 158 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 159 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 160 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 161 162 /* 163 * Queue for pf_overload_task() tasks. 164 */ 165 struct pf_overload_entry { 166 SLIST_ENTRY(pf_overload_entry) next; 167 struct pf_addr addr; 168 sa_family_t af; 169 uint8_t dir; 170 struct pf_rule *rule; 171 }; 172 173 SLIST_HEAD(pf_overload_head, pf_overload_entry); 174 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 175 #define V_pf_overloadqueue VNET(pf_overloadqueue) 176 static VNET_DEFINE(struct task, pf_overloadtask); 177 #define V_pf_overloadtask VNET(pf_overloadtask) 178 179 static struct mtx pf_overloadqueue_mtx; 180 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 181 "pf overload/flush queue", MTX_DEF); 182 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 183 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 184 185 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 186 struct mtx pf_unlnkdrules_mtx; 187 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 188 MTX_DEF); 189 190 static VNET_DEFINE(uma_zone_t, pf_sources_z); 191 #define V_pf_sources_z VNET(pf_sources_z) 192 uma_zone_t pf_mtag_z; 193 VNET_DEFINE(uma_zone_t, pf_state_z); 194 VNET_DEFINE(uma_zone_t, pf_state_key_z); 195 196 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 197 #define PFID_CPUBITS 8 198 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 199 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 200 #define PFID_MAXID (~PFID_CPUMASK) 201 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 202 203 static void pf_src_tree_remove_state(struct pf_state *); 204 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 205 u_int32_t); 206 static void pf_add_threshold(struct pf_threshold *); 207 static int pf_check_threshold(struct pf_threshold *); 208 209 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 210 u_int16_t *, u_int16_t *, struct pf_addr *, 211 u_int16_t, u_int8_t, sa_family_t); 212 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 213 struct tcphdr *, struct pf_state_peer *); 214 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 215 struct pf_addr *, struct pf_addr *, u_int16_t, 216 u_int16_t *, u_int16_t *, u_int16_t *, 217 u_int16_t *, u_int8_t, sa_family_t); 218 static void pf_send_tcp(struct mbuf *, 219 const struct pf_rule *, sa_family_t, 220 const struct pf_addr *, const struct pf_addr *, 221 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 222 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 223 u_int16_t, struct ifnet *); 224 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 225 sa_family_t, struct pf_rule *); 226 static void pf_detach_state(struct pf_state *); 227 static int pf_state_key_attach(struct pf_state_key *, 228 struct pf_state_key *, struct pf_state *); 229 static void pf_state_key_detach(struct pf_state *, int); 230 static int pf_state_key_ctor(void *, int, void *, int); 231 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 232 static int pf_test_rule(struct pf_rule **, struct pf_state **, 233 int, struct pfi_kif *, struct mbuf *, int, 234 struct pf_pdesc *, struct pf_rule **, 235 struct pf_ruleset **, struct inpcb *); 236 static int pf_create_state(struct pf_rule *, struct pf_rule *, 237 struct pf_rule *, struct pf_pdesc *, 238 struct pf_src_node *, struct pf_state_key *, 239 struct pf_state_key *, struct mbuf *, int, 240 u_int16_t, u_int16_t, int *, struct pfi_kif *, 241 struct pf_state **, int, u_int16_t, u_int16_t, 242 int); 243 static int pf_test_fragment(struct pf_rule **, int, 244 struct pfi_kif *, struct mbuf *, void *, 245 struct pf_pdesc *, struct pf_rule **, 246 struct pf_ruleset **); 247 static int pf_tcp_track_full(struct pf_state_peer *, 248 struct pf_state_peer *, struct pf_state **, 249 struct pfi_kif *, struct mbuf *, int, 250 struct pf_pdesc *, u_short *, int *); 251 static int pf_tcp_track_sloppy(struct pf_state_peer *, 252 struct pf_state_peer *, struct pf_state **, 253 struct pf_pdesc *, u_short *); 254 static int pf_test_state_tcp(struct pf_state **, int, 255 struct pfi_kif *, struct mbuf *, int, 256 void *, struct pf_pdesc *, u_short *); 257 static int pf_test_state_udp(struct pf_state **, int, 258 struct pfi_kif *, struct mbuf *, int, 259 void *, struct pf_pdesc *); 260 static int pf_test_state_icmp(struct pf_state **, int, 261 struct pfi_kif *, struct mbuf *, int, 262 void *, struct pf_pdesc *, u_short *); 263 static int pf_test_state_other(struct pf_state **, int, 264 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 265 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 266 sa_family_t); 267 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 268 sa_family_t); 269 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 270 int, u_int16_t); 271 static int pf_check_proto_cksum(struct mbuf *, int, int, 272 u_int8_t, sa_family_t); 273 static void pf_print_state_parts(struct pf_state *, 274 struct pf_state_key *, struct pf_state_key *); 275 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 276 struct pf_addr_wrap *); 277 static struct pf_state *pf_find_state(struct pfi_kif *, 278 struct pf_state_key_cmp *, u_int); 279 static int pf_src_connlimit(struct pf_state **); 280 static void pf_overload_task(void *v, int pending); 281 static int pf_insert_src_node(struct pf_src_node **, 282 struct pf_rule *, struct pf_addr *, sa_family_t); 283 static u_int pf_purge_expired_states(u_int, int); 284 static void pf_purge_unlinked_rules(void); 285 static int pf_mtag_uminit(void *, int, int); 286 static void pf_mtag_free(struct m_tag *); 287 #ifdef INET 288 static void pf_route(struct mbuf **, struct pf_rule *, int, 289 struct ifnet *, struct pf_state *, 290 struct pf_pdesc *); 291 #endif /* INET */ 292 #ifdef INET6 293 static void pf_change_a6(struct pf_addr *, u_int16_t *, 294 struct pf_addr *, u_int8_t); 295 static void pf_route6(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET6 */ 299 300 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 301 302 VNET_DECLARE(int, pf_end_threads); 303 304 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 305 306 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 307 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 308 309 #define STATE_LOOKUP(i, k, d, s, pd) \ 310 do { \ 311 (s) = pf_find_state((i), (k), (d)); \ 312 if ((s) == NULL) \ 313 return (PF_DROP); \ 314 if (PACKET_LOOPED(pd)) \ 315 return (PF_PASS); \ 316 if ((d) == PF_OUT && \ 317 (((s)->rule.ptr->rt == PF_ROUTETO && \ 318 (s)->rule.ptr->direction == PF_OUT) || \ 319 ((s)->rule.ptr->rt == PF_REPLYTO && \ 320 (s)->rule.ptr->direction == PF_IN)) && \ 321 (s)->rt_kif != NULL && \ 322 (s)->rt_kif != (i)) \ 323 return (PF_PASS); \ 324 } while (0) 325 326 #define BOUND_IFACE(r, k) \ 327 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 328 329 #define STATE_INC_COUNTERS(s) \ 330 do { \ 331 counter_u64_add(s->rule.ptr->states_cur, 1); \ 332 counter_u64_add(s->rule.ptr->states_tot, 1); \ 333 if (s->anchor.ptr != NULL) { \ 334 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 335 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 336 } \ 337 if (s->nat_rule.ptr != NULL) { \ 338 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 339 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 340 } \ 341 } while (0) 342 343 #define STATE_DEC_COUNTERS(s) \ 344 do { \ 345 if (s->nat_rule.ptr != NULL) \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 347 if (s->anchor.ptr != NULL) \ 348 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 349 counter_u64_add(s->rule.ptr->states_cur, -1); \ 350 } while (0) 351 352 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 353 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 354 VNET_DEFINE(struct pf_idhash *, pf_idhash); 355 VNET_DEFINE(struct pf_srchash *, pf_srchash); 356 357 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 358 359 u_long pf_hashmask; 360 u_long pf_srchashmask; 361 static u_long pf_hashsize; 362 static u_long pf_srchashsize; 363 364 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 365 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 366 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 367 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 368 369 VNET_DEFINE(void *, pf_swi_cookie); 370 371 VNET_DEFINE(uint32_t, pf_hashseed); 372 #define V_pf_hashseed VNET(pf_hashseed) 373 374 int 375 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 376 { 377 378 switch (af) { 379 #ifdef INET 380 case AF_INET: 381 if (a->addr32[0] > b->addr32[0]) 382 return (1); 383 if (a->addr32[0] < b->addr32[0]) 384 return (-1); 385 break; 386 #endif /* INET */ 387 #ifdef INET6 388 case AF_INET6: 389 if (a->addr32[3] > b->addr32[3]) 390 return (1); 391 if (a->addr32[3] < b->addr32[3]) 392 return (-1); 393 if (a->addr32[2] > b->addr32[2]) 394 return (1); 395 if (a->addr32[2] < b->addr32[2]) 396 return (-1); 397 if (a->addr32[1] > b->addr32[1]) 398 return (1); 399 if (a->addr32[1] < b->addr32[1]) 400 return (-1); 401 if (a->addr32[0] > b->addr32[0]) 402 return (1); 403 if (a->addr32[0] < b->addr32[0]) 404 return (-1); 405 break; 406 #endif /* INET6 */ 407 default: 408 panic("%s: unknown address family %u", __func__, af); 409 } 410 return (0); 411 } 412 413 static __inline uint32_t 414 pf_hashkey(struct pf_state_key *sk) 415 { 416 uint32_t h; 417 418 h = murmur3_32_hash32((uint32_t *)sk, 419 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 420 V_pf_hashseed); 421 422 return (h & pf_hashmask); 423 } 424 425 static __inline uint32_t 426 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 427 { 428 uint32_t h; 429 430 switch (af) { 431 case AF_INET: 432 h = murmur3_32_hash32((uint32_t *)&addr->v4, 433 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 434 break; 435 case AF_INET6: 436 h = murmur3_32_hash32((uint32_t *)&addr->v6, 437 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 438 break; 439 default: 440 panic("%s: unknown address family %u", __func__, af); 441 } 442 443 return (h & pf_srchashmask); 444 } 445 446 #ifdef ALTQ 447 static int 448 pf_state_hash(struct pf_state *s) 449 { 450 u_int32_t hv = (intptr_t)s / sizeof(*s); 451 452 hv ^= crc32(&s->src, sizeof(s->src)); 453 hv ^= crc32(&s->dst, sizeof(s->dst)); 454 if (hv == 0) 455 hv = 1; 456 return (hv); 457 } 458 #endif 459 460 #ifdef INET6 461 void 462 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 463 { 464 switch (af) { 465 #ifdef INET 466 case AF_INET: 467 dst->addr32[0] = src->addr32[0]; 468 break; 469 #endif /* INET */ 470 case AF_INET6: 471 dst->addr32[0] = src->addr32[0]; 472 dst->addr32[1] = src->addr32[1]; 473 dst->addr32[2] = src->addr32[2]; 474 dst->addr32[3] = src->addr32[3]; 475 break; 476 } 477 } 478 #endif /* INET6 */ 479 480 static void 481 pf_init_threshold(struct pf_threshold *threshold, 482 u_int32_t limit, u_int32_t seconds) 483 { 484 threshold->limit = limit * PF_THRESHOLD_MULT; 485 threshold->seconds = seconds; 486 threshold->count = 0; 487 threshold->last = time_uptime; 488 } 489 490 static void 491 pf_add_threshold(struct pf_threshold *threshold) 492 { 493 u_int32_t t = time_uptime, diff = t - threshold->last; 494 495 if (diff >= threshold->seconds) 496 threshold->count = 0; 497 else 498 threshold->count -= threshold->count * diff / 499 threshold->seconds; 500 threshold->count += PF_THRESHOLD_MULT; 501 threshold->last = t; 502 } 503 504 static int 505 pf_check_threshold(struct pf_threshold *threshold) 506 { 507 return (threshold->count > threshold->limit); 508 } 509 510 static int 511 pf_src_connlimit(struct pf_state **state) 512 { 513 struct pf_overload_entry *pfoe; 514 int bad = 0; 515 516 PF_STATE_LOCK_ASSERT(*state); 517 518 (*state)->src_node->conn++; 519 (*state)->src.tcp_est = 1; 520 pf_add_threshold(&(*state)->src_node->conn_rate); 521 522 if ((*state)->rule.ptr->max_src_conn && 523 (*state)->rule.ptr->max_src_conn < 524 (*state)->src_node->conn) { 525 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 526 bad++; 527 } 528 529 if ((*state)->rule.ptr->max_src_conn_rate.limit && 530 pf_check_threshold(&(*state)->src_node->conn_rate)) { 531 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 532 bad++; 533 } 534 535 if (!bad) 536 return (0); 537 538 /* Kill this state. */ 539 (*state)->timeout = PFTM_PURGE; 540 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 541 542 if ((*state)->rule.ptr->overload_tbl == NULL) 543 return (1); 544 545 /* Schedule overloading and flushing task. */ 546 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 547 if (pfoe == NULL) 548 return (1); /* too bad :( */ 549 550 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 551 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 552 pfoe->rule = (*state)->rule.ptr; 553 pfoe->dir = (*state)->direction; 554 PF_OVERLOADQ_LOCK(); 555 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 556 PF_OVERLOADQ_UNLOCK(); 557 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 558 559 return (1); 560 } 561 562 static void 563 pf_overload_task(void *v, int pending) 564 { 565 struct pf_overload_head queue; 566 struct pfr_addr p; 567 struct pf_overload_entry *pfoe, *pfoe1; 568 uint32_t killed = 0; 569 570 CURVNET_SET((struct vnet *)v); 571 572 PF_OVERLOADQ_LOCK(); 573 queue = V_pf_overloadqueue; 574 SLIST_INIT(&V_pf_overloadqueue); 575 PF_OVERLOADQ_UNLOCK(); 576 577 bzero(&p, sizeof(p)); 578 SLIST_FOREACH(pfoe, &queue, next) { 579 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 580 if (V_pf_status.debug >= PF_DEBUG_MISC) { 581 printf("%s: blocking address ", __func__); 582 pf_print_host(&pfoe->addr, 0, pfoe->af); 583 printf("\n"); 584 } 585 586 p.pfra_af = pfoe->af; 587 switch (pfoe->af) { 588 #ifdef INET 589 case AF_INET: 590 p.pfra_net = 32; 591 p.pfra_ip4addr = pfoe->addr.v4; 592 break; 593 #endif 594 #ifdef INET6 595 case AF_INET6: 596 p.pfra_net = 128; 597 p.pfra_ip6addr = pfoe->addr.v6; 598 break; 599 #endif 600 } 601 602 PF_RULES_WLOCK(); 603 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 604 PF_RULES_WUNLOCK(); 605 } 606 607 /* 608 * Remove those entries, that don't need flushing. 609 */ 610 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 611 if (pfoe->rule->flush == 0) { 612 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 613 free(pfoe, M_PFTEMP); 614 } else 615 counter_u64_add( 616 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 617 618 /* If nothing to flush, return. */ 619 if (SLIST_EMPTY(&queue)) { 620 CURVNET_RESTORE(); 621 return; 622 } 623 624 for (int i = 0; i <= pf_hashmask; i++) { 625 struct pf_idhash *ih = &V_pf_idhash[i]; 626 struct pf_state_key *sk; 627 struct pf_state *s; 628 629 PF_HASHROW_LOCK(ih); 630 LIST_FOREACH(s, &ih->states, entry) { 631 sk = s->key[PF_SK_WIRE]; 632 SLIST_FOREACH(pfoe, &queue, next) 633 if (sk->af == pfoe->af && 634 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 635 pfoe->rule == s->rule.ptr) && 636 ((pfoe->dir == PF_OUT && 637 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 638 (pfoe->dir == PF_IN && 639 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 640 s->timeout = PFTM_PURGE; 641 s->src.state = s->dst.state = TCPS_CLOSED; 642 killed++; 643 } 644 } 645 PF_HASHROW_UNLOCK(ih); 646 } 647 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 648 free(pfoe, M_PFTEMP); 649 if (V_pf_status.debug >= PF_DEBUG_MISC) 650 printf("%s: %u states killed", __func__, killed); 651 652 CURVNET_RESTORE(); 653 } 654 655 /* 656 * Can return locked on failure, so that we can consistently 657 * allocate and insert a new one. 658 */ 659 struct pf_src_node * 660 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 661 int returnlocked) 662 { 663 struct pf_srchash *sh; 664 struct pf_src_node *n; 665 666 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 667 668 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 669 PF_HASHROW_LOCK(sh); 670 LIST_FOREACH(n, &sh->nodes, entry) 671 if (n->rule.ptr == rule && n->af == af && 672 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 673 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 674 break; 675 if (n != NULL) { 676 n->states++; 677 PF_HASHROW_UNLOCK(sh); 678 } else if (returnlocked == 0) 679 PF_HASHROW_UNLOCK(sh); 680 681 return (n); 682 } 683 684 static int 685 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 686 struct pf_addr *src, sa_family_t af) 687 { 688 689 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 690 rule->rpool.opts & PF_POOL_STICKYADDR), 691 ("%s for non-tracking rule %p", __func__, rule)); 692 693 if (*sn == NULL) 694 *sn = pf_find_src_node(src, rule, af, 1); 695 696 if (*sn == NULL) { 697 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 698 699 PF_HASHROW_ASSERT(sh); 700 701 if (!rule->max_src_nodes || 702 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 703 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 704 else 705 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 706 1); 707 if ((*sn) == NULL) { 708 PF_HASHROW_UNLOCK(sh); 709 return (-1); 710 } 711 712 pf_init_threshold(&(*sn)->conn_rate, 713 rule->max_src_conn_rate.limit, 714 rule->max_src_conn_rate.seconds); 715 716 (*sn)->af = af; 717 (*sn)->rule.ptr = rule; 718 PF_ACPY(&(*sn)->addr, src, af); 719 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 720 (*sn)->creation = time_uptime; 721 (*sn)->ruletype = rule->action; 722 (*sn)->states = 1; 723 if ((*sn)->rule.ptr != NULL) 724 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 725 PF_HASHROW_UNLOCK(sh); 726 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 727 } else { 728 if (rule->max_src_states && 729 (*sn)->states >= rule->max_src_states) { 730 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 731 1); 732 return (-1); 733 } 734 } 735 return (0); 736 } 737 738 void 739 pf_unlink_src_node(struct pf_src_node *src) 740 { 741 742 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 743 LIST_REMOVE(src, entry); 744 if (src->rule.ptr) 745 counter_u64_add(src->rule.ptr->src_nodes, -1); 746 } 747 748 u_int 749 pf_free_src_nodes(struct pf_src_node_list *head) 750 { 751 struct pf_src_node *sn, *tmp; 752 u_int count = 0; 753 754 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 755 uma_zfree(V_pf_sources_z, sn); 756 count++; 757 } 758 759 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 760 761 return (count); 762 } 763 764 void 765 pf_mtag_initialize() 766 { 767 768 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 769 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 770 UMA_ALIGN_PTR, 0); 771 } 772 773 /* Per-vnet data storage structures initialization. */ 774 void 775 pf_initialize() 776 { 777 struct pf_keyhash *kh; 778 struct pf_idhash *ih; 779 struct pf_srchash *sh; 780 u_int i; 781 782 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 783 pf_hashsize = PF_HASHSIZ; 784 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 785 pf_srchashsize = PF_HASHSIZ / 4; 786 787 V_pf_hashseed = arc4random(); 788 789 /* States and state keys storage. */ 790 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 791 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 792 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 793 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 794 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 795 796 V_pf_state_key_z = uma_zcreate("pf state keys", 797 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 798 UMA_ALIGN_PTR, 0); 799 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 800 M_PFHASH, M_WAITOK | M_ZERO); 801 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 802 M_PFHASH, M_WAITOK | M_ZERO); 803 pf_hashmask = pf_hashsize - 1; 804 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 805 i++, kh++, ih++) { 806 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 807 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 808 } 809 810 /* Source nodes. */ 811 V_pf_sources_z = uma_zcreate("pf source nodes", 812 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 813 0); 814 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 815 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 816 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 817 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 818 M_PFHASH, M_WAITOK|M_ZERO); 819 pf_srchashmask = pf_srchashsize - 1; 820 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 821 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 822 823 /* ALTQ */ 824 TAILQ_INIT(&V_pf_altqs[0]); 825 TAILQ_INIT(&V_pf_altqs[1]); 826 TAILQ_INIT(&V_pf_pabuf); 827 V_pf_altqs_active = &V_pf_altqs[0]; 828 V_pf_altqs_inactive = &V_pf_altqs[1]; 829 830 /* Send & overload+flush queues. */ 831 STAILQ_INIT(&V_pf_sendqueue); 832 SLIST_INIT(&V_pf_overloadqueue); 833 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 834 835 /* Unlinked, but may be referenced rules. */ 836 TAILQ_INIT(&V_pf_unlinked_rules); 837 } 838 839 void 840 pf_mtag_cleanup() 841 { 842 843 uma_zdestroy(pf_mtag_z); 844 } 845 846 void 847 pf_cleanup() 848 { 849 struct pf_keyhash *kh; 850 struct pf_idhash *ih; 851 struct pf_srchash *sh; 852 struct pf_send_entry *pfse, *next; 853 u_int i; 854 855 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 856 i++, kh++, ih++) { 857 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 858 __func__)); 859 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 860 __func__)); 861 mtx_destroy(&kh->lock); 862 mtx_destroy(&ih->lock); 863 } 864 free(V_pf_keyhash, M_PFHASH); 865 free(V_pf_idhash, M_PFHASH); 866 867 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 868 KASSERT(LIST_EMPTY(&sh->nodes), 869 ("%s: source node hash not empty", __func__)); 870 mtx_destroy(&sh->lock); 871 } 872 free(V_pf_srchash, M_PFHASH); 873 874 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 875 m_freem(pfse->pfse_m); 876 free(pfse, M_PFTEMP); 877 } 878 879 uma_zdestroy(V_pf_sources_z); 880 uma_zdestroy(V_pf_state_z); 881 uma_zdestroy(V_pf_state_key_z); 882 } 883 884 static int 885 pf_mtag_uminit(void *mem, int size, int how) 886 { 887 struct m_tag *t; 888 889 t = (struct m_tag *)mem; 890 t->m_tag_cookie = MTAG_ABI_COMPAT; 891 t->m_tag_id = PACKET_TAG_PF; 892 t->m_tag_len = sizeof(struct pf_mtag); 893 t->m_tag_free = pf_mtag_free; 894 895 return (0); 896 } 897 898 static void 899 pf_mtag_free(struct m_tag *t) 900 { 901 902 uma_zfree(pf_mtag_z, t); 903 } 904 905 struct pf_mtag * 906 pf_get_mtag(struct mbuf *m) 907 { 908 struct m_tag *mtag; 909 910 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 911 return ((struct pf_mtag *)(mtag + 1)); 912 913 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 914 if (mtag == NULL) 915 return (NULL); 916 bzero(mtag + 1, sizeof(struct pf_mtag)); 917 m_tag_prepend(m, mtag); 918 919 return ((struct pf_mtag *)(mtag + 1)); 920 } 921 922 static int 923 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 924 struct pf_state *s) 925 { 926 struct pf_keyhash *khs, *khw, *kh; 927 struct pf_state_key *sk, *cur; 928 struct pf_state *si, *olds = NULL; 929 int idx; 930 931 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 932 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 933 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 934 935 /* 936 * We need to lock hash slots of both keys. To avoid deadlock 937 * we always lock the slot with lower address first. Unlock order 938 * isn't important. 939 * 940 * We also need to lock ID hash slot before dropping key 941 * locks. On success we return with ID hash slot locked. 942 */ 943 944 if (skw == sks) { 945 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 946 PF_HASHROW_LOCK(khs); 947 } else { 948 khs = &V_pf_keyhash[pf_hashkey(sks)]; 949 khw = &V_pf_keyhash[pf_hashkey(skw)]; 950 if (khs == khw) { 951 PF_HASHROW_LOCK(khs); 952 } else if (khs < khw) { 953 PF_HASHROW_LOCK(khs); 954 PF_HASHROW_LOCK(khw); 955 } else { 956 PF_HASHROW_LOCK(khw); 957 PF_HASHROW_LOCK(khs); 958 } 959 } 960 961 #define KEYS_UNLOCK() do { \ 962 if (khs != khw) { \ 963 PF_HASHROW_UNLOCK(khs); \ 964 PF_HASHROW_UNLOCK(khw); \ 965 } else \ 966 PF_HASHROW_UNLOCK(khs); \ 967 } while (0) 968 969 /* 970 * First run: start with wire key. 971 */ 972 sk = skw; 973 kh = khw; 974 idx = PF_SK_WIRE; 975 976 keyattach: 977 LIST_FOREACH(cur, &kh->keys, entry) 978 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 979 break; 980 981 if (cur != NULL) { 982 /* Key exists. Check for same kif, if none, add to key. */ 983 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 984 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 985 986 PF_HASHROW_LOCK(ih); 987 if (si->kif == s->kif && 988 si->direction == s->direction) { 989 if (sk->proto == IPPROTO_TCP && 990 si->src.state >= TCPS_FIN_WAIT_2 && 991 si->dst.state >= TCPS_FIN_WAIT_2) { 992 /* 993 * New state matches an old >FIN_WAIT_2 994 * state. We can't drop key hash locks, 995 * thus we can't unlink it properly. 996 * 997 * As a workaround we drop it into 998 * TCPS_CLOSED state, schedule purge 999 * ASAP and push it into the very end 1000 * of the slot TAILQ, so that it won't 1001 * conflict with our new state. 1002 */ 1003 si->src.state = si->dst.state = 1004 TCPS_CLOSED; 1005 si->timeout = PFTM_PURGE; 1006 olds = si; 1007 } else { 1008 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1009 printf("pf: %s key attach " 1010 "failed on %s: ", 1011 (idx == PF_SK_WIRE) ? 1012 "wire" : "stack", 1013 s->kif->pfik_name); 1014 pf_print_state_parts(s, 1015 (idx == PF_SK_WIRE) ? 1016 sk : NULL, 1017 (idx == PF_SK_STACK) ? 1018 sk : NULL); 1019 printf(", existing: "); 1020 pf_print_state_parts(si, 1021 (idx == PF_SK_WIRE) ? 1022 sk : NULL, 1023 (idx == PF_SK_STACK) ? 1024 sk : NULL); 1025 printf("\n"); 1026 } 1027 PF_HASHROW_UNLOCK(ih); 1028 KEYS_UNLOCK(); 1029 uma_zfree(V_pf_state_key_z, sk); 1030 if (idx == PF_SK_STACK) 1031 pf_detach_state(s); 1032 return (EEXIST); /* collision! */ 1033 } 1034 } 1035 PF_HASHROW_UNLOCK(ih); 1036 } 1037 uma_zfree(V_pf_state_key_z, sk); 1038 s->key[idx] = cur; 1039 } else { 1040 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1041 s->key[idx] = sk; 1042 } 1043 1044 stateattach: 1045 /* List is sorted, if-bound states before floating. */ 1046 if (s->kif == V_pfi_all) 1047 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1048 else 1049 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1050 1051 if (olds) { 1052 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1053 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1054 key_list[idx]); 1055 olds = NULL; 1056 } 1057 1058 /* 1059 * Attach done. See how should we (or should not?) 1060 * attach a second key. 1061 */ 1062 if (sks == skw) { 1063 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1064 idx = PF_SK_STACK; 1065 sks = NULL; 1066 goto stateattach; 1067 } else if (sks != NULL) { 1068 /* 1069 * Continue attaching with stack key. 1070 */ 1071 sk = sks; 1072 kh = khs; 1073 idx = PF_SK_STACK; 1074 sks = NULL; 1075 goto keyattach; 1076 } 1077 1078 PF_STATE_LOCK(s); 1079 KEYS_UNLOCK(); 1080 1081 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1082 ("%s failure", __func__)); 1083 1084 return (0); 1085 #undef KEYS_UNLOCK 1086 } 1087 1088 static void 1089 pf_detach_state(struct pf_state *s) 1090 { 1091 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1092 struct pf_keyhash *kh; 1093 1094 if (sks != NULL) { 1095 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1096 PF_HASHROW_LOCK(kh); 1097 if (s->key[PF_SK_STACK] != NULL) 1098 pf_state_key_detach(s, PF_SK_STACK); 1099 /* 1100 * If both point to same key, then we are done. 1101 */ 1102 if (sks == s->key[PF_SK_WIRE]) { 1103 pf_state_key_detach(s, PF_SK_WIRE); 1104 PF_HASHROW_UNLOCK(kh); 1105 return; 1106 } 1107 PF_HASHROW_UNLOCK(kh); 1108 } 1109 1110 if (s->key[PF_SK_WIRE] != NULL) { 1111 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1112 PF_HASHROW_LOCK(kh); 1113 if (s->key[PF_SK_WIRE] != NULL) 1114 pf_state_key_detach(s, PF_SK_WIRE); 1115 PF_HASHROW_UNLOCK(kh); 1116 } 1117 } 1118 1119 static void 1120 pf_state_key_detach(struct pf_state *s, int idx) 1121 { 1122 struct pf_state_key *sk = s->key[idx]; 1123 #ifdef INVARIANTS 1124 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1125 1126 PF_HASHROW_ASSERT(kh); 1127 #endif 1128 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1129 s->key[idx] = NULL; 1130 1131 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1132 LIST_REMOVE(sk, entry); 1133 uma_zfree(V_pf_state_key_z, sk); 1134 } 1135 } 1136 1137 static int 1138 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1139 { 1140 struct pf_state_key *sk = mem; 1141 1142 bzero(sk, sizeof(struct pf_state_key_cmp)); 1143 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1144 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1145 1146 return (0); 1147 } 1148 1149 struct pf_state_key * 1150 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1151 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1152 { 1153 struct pf_state_key *sk; 1154 1155 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1156 if (sk == NULL) 1157 return (NULL); 1158 1159 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1160 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1161 sk->port[pd->sidx] = sport; 1162 sk->port[pd->didx] = dport; 1163 sk->proto = pd->proto; 1164 sk->af = pd->af; 1165 1166 return (sk); 1167 } 1168 1169 struct pf_state_key * 1170 pf_state_key_clone(struct pf_state_key *orig) 1171 { 1172 struct pf_state_key *sk; 1173 1174 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1175 if (sk == NULL) 1176 return (NULL); 1177 1178 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1179 1180 return (sk); 1181 } 1182 1183 int 1184 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1185 struct pf_state_key *sks, struct pf_state *s) 1186 { 1187 struct pf_idhash *ih; 1188 struct pf_state *cur; 1189 int error; 1190 1191 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1192 ("%s: sks not pristine", __func__)); 1193 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1194 ("%s: skw not pristine", __func__)); 1195 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1196 1197 s->kif = kif; 1198 1199 if (s->id == 0 && s->creatorid == 0) { 1200 /* XXX: should be atomic, but probability of collision low */ 1201 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1202 V_pf_stateid[curcpu] = 1; 1203 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1204 s->id = htobe64(s->id); 1205 s->creatorid = V_pf_status.hostid; 1206 } 1207 1208 /* Returns with ID locked on success. */ 1209 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1210 return (error); 1211 1212 ih = &V_pf_idhash[PF_IDHASH(s)]; 1213 PF_HASHROW_ASSERT(ih); 1214 LIST_FOREACH(cur, &ih->states, entry) 1215 if (cur->id == s->id && cur->creatorid == s->creatorid) 1216 break; 1217 1218 if (cur != NULL) { 1219 PF_HASHROW_UNLOCK(ih); 1220 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1221 printf("pf: state ID collision: " 1222 "id: %016llx creatorid: %08x\n", 1223 (unsigned long long)be64toh(s->id), 1224 ntohl(s->creatorid)); 1225 } 1226 pf_detach_state(s); 1227 return (EEXIST); 1228 } 1229 LIST_INSERT_HEAD(&ih->states, s, entry); 1230 /* One for keys, one for ID hash. */ 1231 refcount_init(&s->refs, 2); 1232 1233 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1234 if (pfsync_insert_state_ptr != NULL) 1235 pfsync_insert_state_ptr(s); 1236 1237 /* Returns locked. */ 1238 return (0); 1239 } 1240 1241 /* 1242 * Find state by ID: returns with locked row on success. 1243 */ 1244 struct pf_state * 1245 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1246 { 1247 struct pf_idhash *ih; 1248 struct pf_state *s; 1249 1250 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1251 1252 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1253 1254 PF_HASHROW_LOCK(ih); 1255 LIST_FOREACH(s, &ih->states, entry) 1256 if (s->id == id && s->creatorid == creatorid) 1257 break; 1258 1259 if (s == NULL) 1260 PF_HASHROW_UNLOCK(ih); 1261 1262 return (s); 1263 } 1264 1265 /* 1266 * Find state by key. 1267 * Returns with ID hash slot locked on success. 1268 */ 1269 static struct pf_state * 1270 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1271 { 1272 struct pf_keyhash *kh; 1273 struct pf_state_key *sk; 1274 struct pf_state *s; 1275 int idx; 1276 1277 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1278 1279 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1280 1281 PF_HASHROW_LOCK(kh); 1282 LIST_FOREACH(sk, &kh->keys, entry) 1283 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1284 break; 1285 if (sk == NULL) { 1286 PF_HASHROW_UNLOCK(kh); 1287 return (NULL); 1288 } 1289 1290 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1291 1292 /* List is sorted, if-bound states before floating ones. */ 1293 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1294 if (s->kif == V_pfi_all || s->kif == kif) { 1295 PF_STATE_LOCK(s); 1296 PF_HASHROW_UNLOCK(kh); 1297 if (s->timeout >= PFTM_MAX) { 1298 /* 1299 * State is either being processed by 1300 * pf_unlink_state() in an other thread, or 1301 * is scheduled for immediate expiry. 1302 */ 1303 PF_STATE_UNLOCK(s); 1304 return (NULL); 1305 } 1306 return (s); 1307 } 1308 PF_HASHROW_UNLOCK(kh); 1309 1310 return (NULL); 1311 } 1312 1313 struct pf_state * 1314 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1315 { 1316 struct pf_keyhash *kh; 1317 struct pf_state_key *sk; 1318 struct pf_state *s, *ret = NULL; 1319 int idx, inout = 0; 1320 1321 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1322 1323 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1324 1325 PF_HASHROW_LOCK(kh); 1326 LIST_FOREACH(sk, &kh->keys, entry) 1327 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1328 break; 1329 if (sk == NULL) { 1330 PF_HASHROW_UNLOCK(kh); 1331 return (NULL); 1332 } 1333 switch (dir) { 1334 case PF_IN: 1335 idx = PF_SK_WIRE; 1336 break; 1337 case PF_OUT: 1338 idx = PF_SK_STACK; 1339 break; 1340 case PF_INOUT: 1341 idx = PF_SK_WIRE; 1342 inout = 1; 1343 break; 1344 default: 1345 panic("%s: dir %u", __func__, dir); 1346 } 1347 second_run: 1348 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1349 if (more == NULL) { 1350 PF_HASHROW_UNLOCK(kh); 1351 return (s); 1352 } 1353 1354 if (ret) 1355 (*more)++; 1356 else 1357 ret = s; 1358 } 1359 if (inout == 1) { 1360 inout = 0; 1361 idx = PF_SK_STACK; 1362 goto second_run; 1363 } 1364 PF_HASHROW_UNLOCK(kh); 1365 1366 return (ret); 1367 } 1368 1369 /* END state table stuff */ 1370 1371 static void 1372 pf_send(struct pf_send_entry *pfse) 1373 { 1374 1375 PF_SENDQ_LOCK(); 1376 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1377 PF_SENDQ_UNLOCK(); 1378 swi_sched(V_pf_swi_cookie, 0); 1379 } 1380 1381 void 1382 pf_intr(void *v) 1383 { 1384 struct pf_send_head queue; 1385 struct pf_send_entry *pfse, *next; 1386 1387 CURVNET_SET((struct vnet *)v); 1388 1389 PF_SENDQ_LOCK(); 1390 queue = V_pf_sendqueue; 1391 STAILQ_INIT(&V_pf_sendqueue); 1392 PF_SENDQ_UNLOCK(); 1393 1394 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1395 switch (pfse->pfse_type) { 1396 #ifdef INET 1397 case PFSE_IP: 1398 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1399 break; 1400 case PFSE_ICMP: 1401 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1402 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1403 break; 1404 #endif /* INET */ 1405 #ifdef INET6 1406 case PFSE_IP6: 1407 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1408 NULL); 1409 break; 1410 case PFSE_ICMP6: 1411 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1412 pfse->icmpopts.code, pfse->icmpopts.mtu); 1413 break; 1414 #endif /* INET6 */ 1415 default: 1416 panic("%s: unknown type", __func__); 1417 } 1418 free(pfse, M_PFTEMP); 1419 } 1420 CURVNET_RESTORE(); 1421 } 1422 1423 void 1424 pf_purge_thread(void *v) 1425 { 1426 u_int idx = 0; 1427 1428 CURVNET_SET((struct vnet *)v); 1429 1430 for (;;) { 1431 PF_RULES_RLOCK(); 1432 rw_sleep(pf_purge_thread, &pf_rules_lock, 0, "pftm", hz / 10); 1433 1434 if (V_pf_end_threads) { 1435 /* 1436 * To cleanse up all kifs and rules we need 1437 * two runs: first one clears reference flags, 1438 * then pf_purge_expired_states() doesn't 1439 * raise them, and then second run frees. 1440 */ 1441 PF_RULES_RUNLOCK(); 1442 pf_purge_unlinked_rules(); 1443 pfi_kif_purge(); 1444 1445 /* 1446 * Now purge everything. 1447 */ 1448 pf_purge_expired_states(0, pf_hashmask); 1449 pf_purge_expired_fragments(); 1450 pf_purge_expired_src_nodes(); 1451 1452 /* 1453 * Now all kifs & rules should be unreferenced, 1454 * thus should be successfully freed. 1455 */ 1456 pf_purge_unlinked_rules(); 1457 pfi_kif_purge(); 1458 1459 /* 1460 * Announce success and exit. 1461 */ 1462 PF_RULES_RLOCK(); 1463 V_pf_end_threads++; 1464 PF_RULES_RUNLOCK(); 1465 wakeup(pf_purge_thread); 1466 kproc_exit(0); 1467 } 1468 PF_RULES_RUNLOCK(); 1469 1470 /* Process 1/interval fraction of the state table every run. */ 1471 idx = pf_purge_expired_states(idx, pf_hashmask / 1472 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1473 1474 /* Purge other expired types every PFTM_INTERVAL seconds. */ 1475 if (idx == 0) { 1476 /* 1477 * Order is important: 1478 * - states and src nodes reference rules 1479 * - states and rules reference kifs 1480 */ 1481 pf_purge_expired_fragments(); 1482 pf_purge_expired_src_nodes(); 1483 pf_purge_unlinked_rules(); 1484 pfi_kif_purge(); 1485 } 1486 } 1487 /* not reached */ 1488 CURVNET_RESTORE(); 1489 } 1490 1491 u_int32_t 1492 pf_state_expires(const struct pf_state *state) 1493 { 1494 u_int32_t timeout; 1495 u_int32_t start; 1496 u_int32_t end; 1497 u_int32_t states; 1498 1499 /* handle all PFTM_* > PFTM_MAX here */ 1500 if (state->timeout == PFTM_PURGE) 1501 return (time_uptime); 1502 KASSERT(state->timeout != PFTM_UNLINKED, 1503 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1504 KASSERT((state->timeout < PFTM_MAX), 1505 ("pf_state_expires: timeout > PFTM_MAX")); 1506 timeout = state->rule.ptr->timeout[state->timeout]; 1507 if (!timeout) 1508 timeout = V_pf_default_rule.timeout[state->timeout]; 1509 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1510 if (start) { 1511 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1512 states = counter_u64_fetch(state->rule.ptr->states_cur); 1513 } else { 1514 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1515 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1516 states = V_pf_status.states; 1517 } 1518 if (end && states > start && start < end) { 1519 if (states < end) 1520 return (state->expire + timeout * (end - states) / 1521 (end - start)); 1522 else 1523 return (time_uptime); 1524 } 1525 return (state->expire + timeout); 1526 } 1527 1528 void 1529 pf_purge_expired_src_nodes() 1530 { 1531 struct pf_src_node_list freelist; 1532 struct pf_srchash *sh; 1533 struct pf_src_node *cur, *next; 1534 int i; 1535 1536 LIST_INIT(&freelist); 1537 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1538 PF_HASHROW_LOCK(sh); 1539 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1540 if (cur->states == 0 && cur->expire <= time_uptime) { 1541 pf_unlink_src_node(cur); 1542 LIST_INSERT_HEAD(&freelist, cur, entry); 1543 } else if (cur->rule.ptr != NULL) 1544 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1545 PF_HASHROW_UNLOCK(sh); 1546 } 1547 1548 pf_free_src_nodes(&freelist); 1549 1550 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1551 } 1552 1553 static void 1554 pf_src_tree_remove_state(struct pf_state *s) 1555 { 1556 struct pf_src_node *sn; 1557 struct pf_srchash *sh; 1558 uint32_t timeout; 1559 1560 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1561 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1562 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1563 1564 if (s->src_node != NULL) { 1565 sn = s->src_node; 1566 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1567 PF_HASHROW_LOCK(sh); 1568 if (s->src.tcp_est) 1569 --sn->conn; 1570 if (--sn->states == 0) 1571 sn->expire = time_uptime + timeout; 1572 PF_HASHROW_UNLOCK(sh); 1573 } 1574 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1575 sn = s->nat_src_node; 1576 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1577 PF_HASHROW_LOCK(sh); 1578 if (--sn->states == 0) 1579 sn->expire = time_uptime + timeout; 1580 PF_HASHROW_UNLOCK(sh); 1581 } 1582 s->src_node = s->nat_src_node = NULL; 1583 } 1584 1585 /* 1586 * Unlink and potentilly free a state. Function may be 1587 * called with ID hash row locked, but always returns 1588 * unlocked, since it needs to go through key hash locking. 1589 */ 1590 int 1591 pf_unlink_state(struct pf_state *s, u_int flags) 1592 { 1593 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1594 1595 if ((flags & PF_ENTER_LOCKED) == 0) 1596 PF_HASHROW_LOCK(ih); 1597 else 1598 PF_HASHROW_ASSERT(ih); 1599 1600 if (s->timeout == PFTM_UNLINKED) { 1601 /* 1602 * State is being processed 1603 * by pf_unlink_state() in 1604 * an other thread. 1605 */ 1606 PF_HASHROW_UNLOCK(ih); 1607 return (0); /* XXXGL: undefined actually */ 1608 } 1609 1610 if (s->src.state == PF_TCPS_PROXY_DST) { 1611 /* XXX wire key the right one? */ 1612 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1613 &s->key[PF_SK_WIRE]->addr[1], 1614 &s->key[PF_SK_WIRE]->addr[0], 1615 s->key[PF_SK_WIRE]->port[1], 1616 s->key[PF_SK_WIRE]->port[0], 1617 s->src.seqhi, s->src.seqlo + 1, 1618 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1619 } 1620 1621 LIST_REMOVE(s, entry); 1622 pf_src_tree_remove_state(s); 1623 1624 if (pfsync_delete_state_ptr != NULL) 1625 pfsync_delete_state_ptr(s); 1626 1627 STATE_DEC_COUNTERS(s); 1628 1629 s->timeout = PFTM_UNLINKED; 1630 1631 PF_HASHROW_UNLOCK(ih); 1632 1633 pf_detach_state(s); 1634 refcount_release(&s->refs); 1635 1636 return (pf_release_state(s)); 1637 } 1638 1639 void 1640 pf_free_state(struct pf_state *cur) 1641 { 1642 1643 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1644 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1645 cur->timeout)); 1646 1647 pf_normalize_tcp_cleanup(cur); 1648 uma_zfree(V_pf_state_z, cur); 1649 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1650 } 1651 1652 /* 1653 * Called only from pf_purge_thread(), thus serialized. 1654 */ 1655 static u_int 1656 pf_purge_expired_states(u_int i, int maxcheck) 1657 { 1658 struct pf_idhash *ih; 1659 struct pf_state *s; 1660 1661 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1662 1663 /* 1664 * Go through hash and unlink states that expire now. 1665 */ 1666 while (maxcheck > 0) { 1667 1668 ih = &V_pf_idhash[i]; 1669 relock: 1670 PF_HASHROW_LOCK(ih); 1671 LIST_FOREACH(s, &ih->states, entry) { 1672 if (pf_state_expires(s) <= time_uptime) { 1673 V_pf_status.states -= 1674 pf_unlink_state(s, PF_ENTER_LOCKED); 1675 goto relock; 1676 } 1677 s->rule.ptr->rule_flag |= PFRULE_REFS; 1678 if (s->nat_rule.ptr != NULL) 1679 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1680 if (s->anchor.ptr != NULL) 1681 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1682 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1683 if (s->rt_kif) 1684 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1685 } 1686 PF_HASHROW_UNLOCK(ih); 1687 1688 /* Return when we hit end of hash. */ 1689 if (++i > pf_hashmask) { 1690 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1691 return (0); 1692 } 1693 1694 maxcheck--; 1695 } 1696 1697 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1698 1699 return (i); 1700 } 1701 1702 static void 1703 pf_purge_unlinked_rules() 1704 { 1705 struct pf_rulequeue tmpq; 1706 struct pf_rule *r, *r1; 1707 1708 /* 1709 * If we have overloading task pending, then we'd 1710 * better skip purging this time. There is a tiny 1711 * probability that overloading task references 1712 * an already unlinked rule. 1713 */ 1714 PF_OVERLOADQ_LOCK(); 1715 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1716 PF_OVERLOADQ_UNLOCK(); 1717 return; 1718 } 1719 PF_OVERLOADQ_UNLOCK(); 1720 1721 /* 1722 * Do naive mark-and-sweep garbage collecting of old rules. 1723 * Reference flag is raised by pf_purge_expired_states() 1724 * and pf_purge_expired_src_nodes(). 1725 * 1726 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1727 * use a temporary queue. 1728 */ 1729 TAILQ_INIT(&tmpq); 1730 PF_UNLNKDRULES_LOCK(); 1731 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1732 if (!(r->rule_flag & PFRULE_REFS)) { 1733 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1734 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1735 } else 1736 r->rule_flag &= ~PFRULE_REFS; 1737 } 1738 PF_UNLNKDRULES_UNLOCK(); 1739 1740 if (!TAILQ_EMPTY(&tmpq)) { 1741 PF_RULES_WLOCK(); 1742 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1743 TAILQ_REMOVE(&tmpq, r, entries); 1744 pf_free_rule(r); 1745 } 1746 PF_RULES_WUNLOCK(); 1747 } 1748 } 1749 1750 void 1751 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1752 { 1753 switch (af) { 1754 #ifdef INET 1755 case AF_INET: { 1756 u_int32_t a = ntohl(addr->addr32[0]); 1757 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1758 (a>>8)&255, a&255); 1759 if (p) { 1760 p = ntohs(p); 1761 printf(":%u", p); 1762 } 1763 break; 1764 } 1765 #endif /* INET */ 1766 #ifdef INET6 1767 case AF_INET6: { 1768 u_int16_t b; 1769 u_int8_t i, curstart, curend, maxstart, maxend; 1770 curstart = curend = maxstart = maxend = 255; 1771 for (i = 0; i < 8; i++) { 1772 if (!addr->addr16[i]) { 1773 if (curstart == 255) 1774 curstart = i; 1775 curend = i; 1776 } else { 1777 if ((curend - curstart) > 1778 (maxend - maxstart)) { 1779 maxstart = curstart; 1780 maxend = curend; 1781 } 1782 curstart = curend = 255; 1783 } 1784 } 1785 if ((curend - curstart) > 1786 (maxend - maxstart)) { 1787 maxstart = curstart; 1788 maxend = curend; 1789 } 1790 for (i = 0; i < 8; i++) { 1791 if (i >= maxstart && i <= maxend) { 1792 if (i == 0) 1793 printf(":"); 1794 if (i == maxend) 1795 printf(":"); 1796 } else { 1797 b = ntohs(addr->addr16[i]); 1798 printf("%x", b); 1799 if (i < 7) 1800 printf(":"); 1801 } 1802 } 1803 if (p) { 1804 p = ntohs(p); 1805 printf("[%u]", p); 1806 } 1807 break; 1808 } 1809 #endif /* INET6 */ 1810 } 1811 } 1812 1813 void 1814 pf_print_state(struct pf_state *s) 1815 { 1816 pf_print_state_parts(s, NULL, NULL); 1817 } 1818 1819 static void 1820 pf_print_state_parts(struct pf_state *s, 1821 struct pf_state_key *skwp, struct pf_state_key *sksp) 1822 { 1823 struct pf_state_key *skw, *sks; 1824 u_int8_t proto, dir; 1825 1826 /* Do our best to fill these, but they're skipped if NULL */ 1827 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1828 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1829 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1830 dir = s ? s->direction : 0; 1831 1832 switch (proto) { 1833 case IPPROTO_IPV4: 1834 printf("IPv4"); 1835 break; 1836 case IPPROTO_IPV6: 1837 printf("IPv6"); 1838 break; 1839 case IPPROTO_TCP: 1840 printf("TCP"); 1841 break; 1842 case IPPROTO_UDP: 1843 printf("UDP"); 1844 break; 1845 case IPPROTO_ICMP: 1846 printf("ICMP"); 1847 break; 1848 case IPPROTO_ICMPV6: 1849 printf("ICMPv6"); 1850 break; 1851 default: 1852 printf("%u", proto); 1853 break; 1854 } 1855 switch (dir) { 1856 case PF_IN: 1857 printf(" in"); 1858 break; 1859 case PF_OUT: 1860 printf(" out"); 1861 break; 1862 } 1863 if (skw) { 1864 printf(" wire: "); 1865 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1866 printf(" "); 1867 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1868 } 1869 if (sks) { 1870 printf(" stack: "); 1871 if (sks != skw) { 1872 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1873 printf(" "); 1874 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1875 } else 1876 printf("-"); 1877 } 1878 if (s) { 1879 if (proto == IPPROTO_TCP) { 1880 printf(" [lo=%u high=%u win=%u modulator=%u", 1881 s->src.seqlo, s->src.seqhi, 1882 s->src.max_win, s->src.seqdiff); 1883 if (s->src.wscale && s->dst.wscale) 1884 printf(" wscale=%u", 1885 s->src.wscale & PF_WSCALE_MASK); 1886 printf("]"); 1887 printf(" [lo=%u high=%u win=%u modulator=%u", 1888 s->dst.seqlo, s->dst.seqhi, 1889 s->dst.max_win, s->dst.seqdiff); 1890 if (s->src.wscale && s->dst.wscale) 1891 printf(" wscale=%u", 1892 s->dst.wscale & PF_WSCALE_MASK); 1893 printf("]"); 1894 } 1895 printf(" %u:%u", s->src.state, s->dst.state); 1896 } 1897 } 1898 1899 void 1900 pf_print_flags(u_int8_t f) 1901 { 1902 if (f) 1903 printf(" "); 1904 if (f & TH_FIN) 1905 printf("F"); 1906 if (f & TH_SYN) 1907 printf("S"); 1908 if (f & TH_RST) 1909 printf("R"); 1910 if (f & TH_PUSH) 1911 printf("P"); 1912 if (f & TH_ACK) 1913 printf("A"); 1914 if (f & TH_URG) 1915 printf("U"); 1916 if (f & TH_ECE) 1917 printf("E"); 1918 if (f & TH_CWR) 1919 printf("W"); 1920 } 1921 1922 #define PF_SET_SKIP_STEPS(i) \ 1923 do { \ 1924 while (head[i] != cur) { \ 1925 head[i]->skip[i].ptr = cur; \ 1926 head[i] = TAILQ_NEXT(head[i], entries); \ 1927 } \ 1928 } while (0) 1929 1930 void 1931 pf_calc_skip_steps(struct pf_rulequeue *rules) 1932 { 1933 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1934 int i; 1935 1936 cur = TAILQ_FIRST(rules); 1937 prev = cur; 1938 for (i = 0; i < PF_SKIP_COUNT; ++i) 1939 head[i] = cur; 1940 while (cur != NULL) { 1941 1942 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1943 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1944 if (cur->direction != prev->direction) 1945 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1946 if (cur->af != prev->af) 1947 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1948 if (cur->proto != prev->proto) 1949 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1950 if (cur->src.neg != prev->src.neg || 1951 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1952 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1953 if (cur->src.port[0] != prev->src.port[0] || 1954 cur->src.port[1] != prev->src.port[1] || 1955 cur->src.port_op != prev->src.port_op) 1956 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1957 if (cur->dst.neg != prev->dst.neg || 1958 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1959 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1960 if (cur->dst.port[0] != prev->dst.port[0] || 1961 cur->dst.port[1] != prev->dst.port[1] || 1962 cur->dst.port_op != prev->dst.port_op) 1963 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1964 1965 prev = cur; 1966 cur = TAILQ_NEXT(cur, entries); 1967 } 1968 for (i = 0; i < PF_SKIP_COUNT; ++i) 1969 PF_SET_SKIP_STEPS(i); 1970 } 1971 1972 static int 1973 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1974 { 1975 if (aw1->type != aw2->type) 1976 return (1); 1977 switch (aw1->type) { 1978 case PF_ADDR_ADDRMASK: 1979 case PF_ADDR_RANGE: 1980 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 1981 return (1); 1982 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 1983 return (1); 1984 return (0); 1985 case PF_ADDR_DYNIFTL: 1986 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 1987 case PF_ADDR_NOROUTE: 1988 case PF_ADDR_URPFFAILED: 1989 return (0); 1990 case PF_ADDR_TABLE: 1991 return (aw1->p.tbl != aw2->p.tbl); 1992 default: 1993 printf("invalid address type: %d\n", aw1->type); 1994 return (1); 1995 } 1996 } 1997 1998 /** 1999 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2000 * header isn't always a full checksum. In some cases (i.e. output) it's a 2001 * pseudo-header checksum, which is a partial checksum over src/dst IP 2002 * addresses, protocol number and length. 2003 * 2004 * That means we have the following cases: 2005 * * Input or forwarding: we don't have TSO, the checksum fields are full 2006 * checksums, we need to update the checksum whenever we change anything. 2007 * * Output (i.e. the checksum is a pseudo-header checksum): 2008 * x The field being updated is src/dst address or affects the length of 2009 * the packet. We need to update the pseudo-header checksum (note that this 2010 * checksum is not ones' complement). 2011 * x Some other field is being modified (e.g. src/dst port numbers): We 2012 * don't have to update anything. 2013 **/ 2014 u_int16_t 2015 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2016 { 2017 u_int32_t l; 2018 2019 if (udp && !cksum) 2020 return (0x0000); 2021 l = cksum + old - new; 2022 l = (l >> 16) + (l & 65535); 2023 l = l & 65535; 2024 if (udp && !l) 2025 return (0xFFFF); 2026 return (l); 2027 } 2028 2029 u_int16_t 2030 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2031 u_int16_t new, u_int8_t udp) 2032 { 2033 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2034 return (cksum); 2035 2036 return (pf_cksum_fixup(cksum, old, new, udp)); 2037 } 2038 2039 static void 2040 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2041 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2042 sa_family_t af) 2043 { 2044 struct pf_addr ao; 2045 u_int16_t po = *p; 2046 2047 PF_ACPY(&ao, a, af); 2048 PF_ACPY(a, an, af); 2049 2050 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2051 *pc = ~*pc; 2052 2053 *p = pn; 2054 2055 switch (af) { 2056 #ifdef INET 2057 case AF_INET: 2058 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2059 ao.addr16[0], an->addr16[0], 0), 2060 ao.addr16[1], an->addr16[1], 0); 2061 *p = pn; 2062 2063 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2064 ao.addr16[0], an->addr16[0], u), 2065 ao.addr16[1], an->addr16[1], u); 2066 2067 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2068 break; 2069 #endif /* INET */ 2070 #ifdef INET6 2071 case AF_INET6: 2072 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2073 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2074 pf_cksum_fixup(pf_cksum_fixup(*pc, 2075 ao.addr16[0], an->addr16[0], u), 2076 ao.addr16[1], an->addr16[1], u), 2077 ao.addr16[2], an->addr16[2], u), 2078 ao.addr16[3], an->addr16[3], u), 2079 ao.addr16[4], an->addr16[4], u), 2080 ao.addr16[5], an->addr16[5], u), 2081 ao.addr16[6], an->addr16[6], u), 2082 ao.addr16[7], an->addr16[7], u); 2083 2084 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2085 break; 2086 #endif /* INET6 */ 2087 } 2088 2089 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2090 CSUM_DELAY_DATA_IPV6)) { 2091 *pc = ~*pc; 2092 if (! *pc) 2093 *pc = 0xffff; 2094 } 2095 } 2096 2097 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2098 void 2099 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2100 { 2101 u_int32_t ao; 2102 2103 memcpy(&ao, a, sizeof(ao)); 2104 memcpy(a, &an, sizeof(u_int32_t)); 2105 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2106 ao % 65536, an % 65536, u); 2107 } 2108 2109 void 2110 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2111 { 2112 u_int32_t ao; 2113 2114 memcpy(&ao, a, sizeof(ao)); 2115 memcpy(a, &an, sizeof(u_int32_t)); 2116 2117 *c = pf_proto_cksum_fixup(m, 2118 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2119 ao % 65536, an % 65536, udp); 2120 } 2121 2122 #ifdef INET6 2123 static void 2124 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2125 { 2126 struct pf_addr ao; 2127 2128 PF_ACPY(&ao, a, AF_INET6); 2129 PF_ACPY(a, an, AF_INET6); 2130 2131 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2132 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2133 pf_cksum_fixup(pf_cksum_fixup(*c, 2134 ao.addr16[0], an->addr16[0], u), 2135 ao.addr16[1], an->addr16[1], u), 2136 ao.addr16[2], an->addr16[2], u), 2137 ao.addr16[3], an->addr16[3], u), 2138 ao.addr16[4], an->addr16[4], u), 2139 ao.addr16[5], an->addr16[5], u), 2140 ao.addr16[6], an->addr16[6], u), 2141 ao.addr16[7], an->addr16[7], u); 2142 } 2143 #endif /* INET6 */ 2144 2145 static void 2146 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2147 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2148 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2149 { 2150 struct pf_addr oia, ooa; 2151 2152 PF_ACPY(&oia, ia, af); 2153 if (oa) 2154 PF_ACPY(&ooa, oa, af); 2155 2156 /* Change inner protocol port, fix inner protocol checksum. */ 2157 if (ip != NULL) { 2158 u_int16_t oip = *ip; 2159 u_int32_t opc; 2160 2161 if (pc != NULL) 2162 opc = *pc; 2163 *ip = np; 2164 if (pc != NULL) 2165 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2166 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2167 if (pc != NULL) 2168 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2169 } 2170 /* Change inner ip address, fix inner ip and icmp checksums. */ 2171 PF_ACPY(ia, na, af); 2172 switch (af) { 2173 #ifdef INET 2174 case AF_INET: { 2175 u_int32_t oh2c = *h2c; 2176 2177 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2178 oia.addr16[0], ia->addr16[0], 0), 2179 oia.addr16[1], ia->addr16[1], 0); 2180 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2181 oia.addr16[0], ia->addr16[0], 0), 2182 oia.addr16[1], ia->addr16[1], 0); 2183 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2184 break; 2185 } 2186 #endif /* INET */ 2187 #ifdef INET6 2188 case AF_INET6: 2189 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2190 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2191 pf_cksum_fixup(pf_cksum_fixup(*ic, 2192 oia.addr16[0], ia->addr16[0], u), 2193 oia.addr16[1], ia->addr16[1], u), 2194 oia.addr16[2], ia->addr16[2], u), 2195 oia.addr16[3], ia->addr16[3], u), 2196 oia.addr16[4], ia->addr16[4], u), 2197 oia.addr16[5], ia->addr16[5], u), 2198 oia.addr16[6], ia->addr16[6], u), 2199 oia.addr16[7], ia->addr16[7], u); 2200 break; 2201 #endif /* INET6 */ 2202 } 2203 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2204 if (oa) { 2205 PF_ACPY(oa, na, af); 2206 switch (af) { 2207 #ifdef INET 2208 case AF_INET: 2209 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2210 ooa.addr16[0], oa->addr16[0], 0), 2211 ooa.addr16[1], oa->addr16[1], 0); 2212 break; 2213 #endif /* INET */ 2214 #ifdef INET6 2215 case AF_INET6: 2216 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2217 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2218 pf_cksum_fixup(pf_cksum_fixup(*ic, 2219 ooa.addr16[0], oa->addr16[0], u), 2220 ooa.addr16[1], oa->addr16[1], u), 2221 ooa.addr16[2], oa->addr16[2], u), 2222 ooa.addr16[3], oa->addr16[3], u), 2223 ooa.addr16[4], oa->addr16[4], u), 2224 ooa.addr16[5], oa->addr16[5], u), 2225 ooa.addr16[6], oa->addr16[6], u), 2226 ooa.addr16[7], oa->addr16[7], u); 2227 break; 2228 #endif /* INET6 */ 2229 } 2230 } 2231 } 2232 2233 2234 /* 2235 * Need to modulate the sequence numbers in the TCP SACK option 2236 * (credits to Krzysztof Pfaff for report and patch) 2237 */ 2238 static int 2239 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2240 struct tcphdr *th, struct pf_state_peer *dst) 2241 { 2242 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2243 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2244 int copyback = 0, i, olen; 2245 struct sackblk sack; 2246 2247 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2248 if (hlen < TCPOLEN_SACKLEN || 2249 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2250 return 0; 2251 2252 while (hlen >= TCPOLEN_SACKLEN) { 2253 olen = opt[1]; 2254 switch (*opt) { 2255 case TCPOPT_EOL: /* FALLTHROUGH */ 2256 case TCPOPT_NOP: 2257 opt++; 2258 hlen--; 2259 break; 2260 case TCPOPT_SACK: 2261 if (olen > hlen) 2262 olen = hlen; 2263 if (olen >= TCPOLEN_SACKLEN) { 2264 for (i = 2; i + TCPOLEN_SACK <= olen; 2265 i += TCPOLEN_SACK) { 2266 memcpy(&sack, &opt[i], sizeof(sack)); 2267 pf_change_proto_a(m, &sack.start, &th->th_sum, 2268 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2269 pf_change_proto_a(m, &sack.end, &th->th_sum, 2270 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2271 memcpy(&opt[i], &sack, sizeof(sack)); 2272 } 2273 copyback = 1; 2274 } 2275 /* FALLTHROUGH */ 2276 default: 2277 if (olen < 2) 2278 olen = 2; 2279 hlen -= olen; 2280 opt += olen; 2281 } 2282 } 2283 2284 if (copyback) 2285 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2286 return (copyback); 2287 } 2288 2289 static void 2290 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2291 const struct pf_addr *saddr, const struct pf_addr *daddr, 2292 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2293 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2294 u_int16_t rtag, struct ifnet *ifp) 2295 { 2296 struct pf_send_entry *pfse; 2297 struct mbuf *m; 2298 int len, tlen; 2299 #ifdef INET 2300 struct ip *h = NULL; 2301 #endif /* INET */ 2302 #ifdef INET6 2303 struct ip6_hdr *h6 = NULL; 2304 #endif /* INET6 */ 2305 struct tcphdr *th; 2306 char *opt; 2307 struct pf_mtag *pf_mtag; 2308 2309 len = 0; 2310 th = NULL; 2311 2312 /* maximum segment size tcp option */ 2313 tlen = sizeof(struct tcphdr); 2314 if (mss) 2315 tlen += 4; 2316 2317 switch (af) { 2318 #ifdef INET 2319 case AF_INET: 2320 len = sizeof(struct ip) + tlen; 2321 break; 2322 #endif /* INET */ 2323 #ifdef INET6 2324 case AF_INET6: 2325 len = sizeof(struct ip6_hdr) + tlen; 2326 break; 2327 #endif /* INET6 */ 2328 default: 2329 panic("%s: unsupported af %d", __func__, af); 2330 } 2331 2332 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2333 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2334 if (pfse == NULL) 2335 return; 2336 m = m_gethdr(M_NOWAIT, MT_DATA); 2337 if (m == NULL) { 2338 free(pfse, M_PFTEMP); 2339 return; 2340 } 2341 #ifdef MAC 2342 mac_netinet_firewall_send(m); 2343 #endif 2344 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2345 free(pfse, M_PFTEMP); 2346 m_freem(m); 2347 return; 2348 } 2349 if (tag) 2350 m->m_flags |= M_SKIP_FIREWALL; 2351 pf_mtag->tag = rtag; 2352 2353 if (r != NULL && r->rtableid >= 0) 2354 M_SETFIB(m, r->rtableid); 2355 2356 #ifdef ALTQ 2357 if (r != NULL && r->qid) { 2358 pf_mtag->qid = r->qid; 2359 2360 /* add hints for ecn */ 2361 pf_mtag->hdr = mtod(m, struct ip *); 2362 } 2363 #endif /* ALTQ */ 2364 m->m_data += max_linkhdr; 2365 m->m_pkthdr.len = m->m_len = len; 2366 m->m_pkthdr.rcvif = NULL; 2367 bzero(m->m_data, len); 2368 switch (af) { 2369 #ifdef INET 2370 case AF_INET: 2371 h = mtod(m, struct ip *); 2372 2373 /* IP header fields included in the TCP checksum */ 2374 h->ip_p = IPPROTO_TCP; 2375 h->ip_len = htons(tlen); 2376 h->ip_src.s_addr = saddr->v4.s_addr; 2377 h->ip_dst.s_addr = daddr->v4.s_addr; 2378 2379 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2380 break; 2381 #endif /* INET */ 2382 #ifdef INET6 2383 case AF_INET6: 2384 h6 = mtod(m, struct ip6_hdr *); 2385 2386 /* IP header fields included in the TCP checksum */ 2387 h6->ip6_nxt = IPPROTO_TCP; 2388 h6->ip6_plen = htons(tlen); 2389 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2390 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2391 2392 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2393 break; 2394 #endif /* INET6 */ 2395 } 2396 2397 /* TCP header */ 2398 th->th_sport = sport; 2399 th->th_dport = dport; 2400 th->th_seq = htonl(seq); 2401 th->th_ack = htonl(ack); 2402 th->th_off = tlen >> 2; 2403 th->th_flags = flags; 2404 th->th_win = htons(win); 2405 2406 if (mss) { 2407 opt = (char *)(th + 1); 2408 opt[0] = TCPOPT_MAXSEG; 2409 opt[1] = 4; 2410 HTONS(mss); 2411 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2412 } 2413 2414 switch (af) { 2415 #ifdef INET 2416 case AF_INET: 2417 /* TCP checksum */ 2418 th->th_sum = in_cksum(m, len); 2419 2420 /* Finish the IP header */ 2421 h->ip_v = 4; 2422 h->ip_hl = sizeof(*h) >> 2; 2423 h->ip_tos = IPTOS_LOWDELAY; 2424 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2425 h->ip_len = htons(len); 2426 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2427 h->ip_sum = 0; 2428 2429 pfse->pfse_type = PFSE_IP; 2430 break; 2431 #endif /* INET */ 2432 #ifdef INET6 2433 case AF_INET6: 2434 /* TCP checksum */ 2435 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2436 sizeof(struct ip6_hdr), tlen); 2437 2438 h6->ip6_vfc |= IPV6_VERSION; 2439 h6->ip6_hlim = IPV6_DEFHLIM; 2440 2441 pfse->pfse_type = PFSE_IP6; 2442 break; 2443 #endif /* INET6 */ 2444 } 2445 pfse->pfse_m = m; 2446 pf_send(pfse); 2447 } 2448 2449 static int 2450 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2451 { 2452 struct m_tag *mtag; 2453 2454 KASSERT(prio <= PF_PRIO_MAX, 2455 ("%s with invalid pcp", __func__)); 2456 2457 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2458 if (mtag == NULL) { 2459 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2460 sizeof(uint8_t), M_NOWAIT); 2461 if (mtag == NULL) 2462 return (ENOMEM); 2463 m_tag_prepend(m, mtag); 2464 } 2465 2466 *(uint8_t *)(mtag + 1) = prio; 2467 return (0); 2468 } 2469 2470 static int 2471 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2472 { 2473 struct m_tag *mtag; 2474 u_int8_t mpcp; 2475 2476 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2477 if (mtag == NULL) 2478 return (0); 2479 2480 if (prio == PF_PRIO_ZERO) 2481 prio = 0; 2482 2483 mpcp = *(uint8_t *)(mtag + 1); 2484 2485 return (mpcp == prio); 2486 } 2487 2488 static void 2489 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2490 struct pf_rule *r) 2491 { 2492 struct pf_send_entry *pfse; 2493 struct mbuf *m0; 2494 struct pf_mtag *pf_mtag; 2495 2496 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2497 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2498 if (pfse == NULL) 2499 return; 2500 2501 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2502 free(pfse, M_PFTEMP); 2503 return; 2504 } 2505 2506 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2507 free(pfse, M_PFTEMP); 2508 return; 2509 } 2510 /* XXX: revisit */ 2511 m0->m_flags |= M_SKIP_FIREWALL; 2512 2513 if (r->rtableid >= 0) 2514 M_SETFIB(m0, r->rtableid); 2515 2516 #ifdef ALTQ 2517 if (r->qid) { 2518 pf_mtag->qid = r->qid; 2519 /* add hints for ecn */ 2520 pf_mtag->hdr = mtod(m0, struct ip *); 2521 } 2522 #endif /* ALTQ */ 2523 2524 switch (af) { 2525 #ifdef INET 2526 case AF_INET: 2527 pfse->pfse_type = PFSE_ICMP; 2528 break; 2529 #endif /* INET */ 2530 #ifdef INET6 2531 case AF_INET6: 2532 pfse->pfse_type = PFSE_ICMP6; 2533 break; 2534 #endif /* INET6 */ 2535 } 2536 pfse->pfse_m = m0; 2537 pfse->icmpopts.type = type; 2538 pfse->icmpopts.code = code; 2539 pf_send(pfse); 2540 } 2541 2542 /* 2543 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2544 * If n is 0, they match if they are equal. If n is != 0, they match if they 2545 * are different. 2546 */ 2547 int 2548 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2549 struct pf_addr *b, sa_family_t af) 2550 { 2551 int match = 0; 2552 2553 switch (af) { 2554 #ifdef INET 2555 case AF_INET: 2556 if ((a->addr32[0] & m->addr32[0]) == 2557 (b->addr32[0] & m->addr32[0])) 2558 match++; 2559 break; 2560 #endif /* INET */ 2561 #ifdef INET6 2562 case AF_INET6: 2563 if (((a->addr32[0] & m->addr32[0]) == 2564 (b->addr32[0] & m->addr32[0])) && 2565 ((a->addr32[1] & m->addr32[1]) == 2566 (b->addr32[1] & m->addr32[1])) && 2567 ((a->addr32[2] & m->addr32[2]) == 2568 (b->addr32[2] & m->addr32[2])) && 2569 ((a->addr32[3] & m->addr32[3]) == 2570 (b->addr32[3] & m->addr32[3]))) 2571 match++; 2572 break; 2573 #endif /* INET6 */ 2574 } 2575 if (match) { 2576 if (n) 2577 return (0); 2578 else 2579 return (1); 2580 } else { 2581 if (n) 2582 return (1); 2583 else 2584 return (0); 2585 } 2586 } 2587 2588 /* 2589 * Return 1 if b <= a <= e, otherwise return 0. 2590 */ 2591 int 2592 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2593 struct pf_addr *a, sa_family_t af) 2594 { 2595 switch (af) { 2596 #ifdef INET 2597 case AF_INET: 2598 if ((a->addr32[0] < b->addr32[0]) || 2599 (a->addr32[0] > e->addr32[0])) 2600 return (0); 2601 break; 2602 #endif /* INET */ 2603 #ifdef INET6 2604 case AF_INET6: { 2605 int i; 2606 2607 /* check a >= b */ 2608 for (i = 0; i < 4; ++i) 2609 if (a->addr32[i] > b->addr32[i]) 2610 break; 2611 else if (a->addr32[i] < b->addr32[i]) 2612 return (0); 2613 /* check a <= e */ 2614 for (i = 0; i < 4; ++i) 2615 if (a->addr32[i] < e->addr32[i]) 2616 break; 2617 else if (a->addr32[i] > e->addr32[i]) 2618 return (0); 2619 break; 2620 } 2621 #endif /* INET6 */ 2622 } 2623 return (1); 2624 } 2625 2626 static int 2627 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2628 { 2629 switch (op) { 2630 case PF_OP_IRG: 2631 return ((p > a1) && (p < a2)); 2632 case PF_OP_XRG: 2633 return ((p < a1) || (p > a2)); 2634 case PF_OP_RRG: 2635 return ((p >= a1) && (p <= a2)); 2636 case PF_OP_EQ: 2637 return (p == a1); 2638 case PF_OP_NE: 2639 return (p != a1); 2640 case PF_OP_LT: 2641 return (p < a1); 2642 case PF_OP_LE: 2643 return (p <= a1); 2644 case PF_OP_GT: 2645 return (p > a1); 2646 case PF_OP_GE: 2647 return (p >= a1); 2648 } 2649 return (0); /* never reached */ 2650 } 2651 2652 int 2653 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2654 { 2655 NTOHS(a1); 2656 NTOHS(a2); 2657 NTOHS(p); 2658 return (pf_match(op, a1, a2, p)); 2659 } 2660 2661 static int 2662 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2663 { 2664 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2665 return (0); 2666 return (pf_match(op, a1, a2, u)); 2667 } 2668 2669 static int 2670 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2671 { 2672 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2673 return (0); 2674 return (pf_match(op, a1, a2, g)); 2675 } 2676 2677 int 2678 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2679 { 2680 if (*tag == -1) 2681 *tag = mtag; 2682 2683 return ((!r->match_tag_not && r->match_tag == *tag) || 2684 (r->match_tag_not && r->match_tag != *tag)); 2685 } 2686 2687 int 2688 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2689 { 2690 2691 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2692 2693 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2694 return (ENOMEM); 2695 2696 pd->pf_mtag->tag = tag; 2697 2698 return (0); 2699 } 2700 2701 #define PF_ANCHOR_STACKSIZE 32 2702 struct pf_anchor_stackframe { 2703 struct pf_ruleset *rs; 2704 struct pf_rule *r; /* XXX: + match bit */ 2705 struct pf_anchor *child; 2706 }; 2707 2708 /* 2709 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2710 */ 2711 #define PF_ANCHORSTACK_MATCH 0x00000001 2712 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2713 2714 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2715 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2716 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2717 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2718 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2719 } while (0) 2720 2721 void 2722 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2723 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2724 int *match) 2725 { 2726 struct pf_anchor_stackframe *f; 2727 2728 PF_RULES_RASSERT(); 2729 2730 if (match) 2731 *match = 0; 2732 if (*depth >= PF_ANCHOR_STACKSIZE) { 2733 printf("%s: anchor stack overflow on %s\n", 2734 __func__, (*r)->anchor->name); 2735 *r = TAILQ_NEXT(*r, entries); 2736 return; 2737 } else if (*depth == 0 && a != NULL) 2738 *a = *r; 2739 f = stack + (*depth)++; 2740 f->rs = *rs; 2741 f->r = *r; 2742 if ((*r)->anchor_wildcard) { 2743 struct pf_anchor_node *parent = &(*r)->anchor->children; 2744 2745 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2746 *r = NULL; 2747 return; 2748 } 2749 *rs = &f->child->ruleset; 2750 } else { 2751 f->child = NULL; 2752 *rs = &(*r)->anchor->ruleset; 2753 } 2754 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2755 } 2756 2757 int 2758 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2759 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2760 int *match) 2761 { 2762 struct pf_anchor_stackframe *f; 2763 struct pf_rule *fr; 2764 int quick = 0; 2765 2766 PF_RULES_RASSERT(); 2767 2768 do { 2769 if (*depth <= 0) 2770 break; 2771 f = stack + *depth - 1; 2772 fr = PF_ANCHOR_RULE(f); 2773 if (f->child != NULL) { 2774 struct pf_anchor_node *parent; 2775 2776 /* 2777 * This block traverses through 2778 * a wildcard anchor. 2779 */ 2780 parent = &fr->anchor->children; 2781 if (match != NULL && *match) { 2782 /* 2783 * If any of "*" matched, then 2784 * "foo/ *" matched, mark frame 2785 * appropriately. 2786 */ 2787 PF_ANCHOR_SET_MATCH(f); 2788 *match = 0; 2789 } 2790 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2791 if (f->child != NULL) { 2792 *rs = &f->child->ruleset; 2793 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2794 if (*r == NULL) 2795 continue; 2796 else 2797 break; 2798 } 2799 } 2800 (*depth)--; 2801 if (*depth == 0 && a != NULL) 2802 *a = NULL; 2803 *rs = f->rs; 2804 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2805 quick = fr->quick; 2806 *r = TAILQ_NEXT(fr, entries); 2807 } while (*r == NULL); 2808 2809 return (quick); 2810 } 2811 2812 #ifdef INET6 2813 void 2814 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2815 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2816 { 2817 switch (af) { 2818 #ifdef INET 2819 case AF_INET: 2820 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2821 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2822 break; 2823 #endif /* INET */ 2824 case AF_INET6: 2825 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2826 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2827 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2828 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2829 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2830 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2831 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2832 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2833 break; 2834 } 2835 } 2836 2837 void 2838 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2839 { 2840 switch (af) { 2841 #ifdef INET 2842 case AF_INET: 2843 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2844 break; 2845 #endif /* INET */ 2846 case AF_INET6: 2847 if (addr->addr32[3] == 0xffffffff) { 2848 addr->addr32[3] = 0; 2849 if (addr->addr32[2] == 0xffffffff) { 2850 addr->addr32[2] = 0; 2851 if (addr->addr32[1] == 0xffffffff) { 2852 addr->addr32[1] = 0; 2853 addr->addr32[0] = 2854 htonl(ntohl(addr->addr32[0]) + 1); 2855 } else 2856 addr->addr32[1] = 2857 htonl(ntohl(addr->addr32[1]) + 1); 2858 } else 2859 addr->addr32[2] = 2860 htonl(ntohl(addr->addr32[2]) + 1); 2861 } else 2862 addr->addr32[3] = 2863 htonl(ntohl(addr->addr32[3]) + 1); 2864 break; 2865 } 2866 } 2867 #endif /* INET6 */ 2868 2869 int 2870 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2871 { 2872 struct pf_addr *saddr, *daddr; 2873 u_int16_t sport, dport; 2874 struct inpcbinfo *pi; 2875 struct inpcb *inp; 2876 2877 pd->lookup.uid = UID_MAX; 2878 pd->lookup.gid = GID_MAX; 2879 2880 switch (pd->proto) { 2881 case IPPROTO_TCP: 2882 if (pd->hdr.tcp == NULL) 2883 return (-1); 2884 sport = pd->hdr.tcp->th_sport; 2885 dport = pd->hdr.tcp->th_dport; 2886 pi = &V_tcbinfo; 2887 break; 2888 case IPPROTO_UDP: 2889 if (pd->hdr.udp == NULL) 2890 return (-1); 2891 sport = pd->hdr.udp->uh_sport; 2892 dport = pd->hdr.udp->uh_dport; 2893 pi = &V_udbinfo; 2894 break; 2895 default: 2896 return (-1); 2897 } 2898 if (direction == PF_IN) { 2899 saddr = pd->src; 2900 daddr = pd->dst; 2901 } else { 2902 u_int16_t p; 2903 2904 p = sport; 2905 sport = dport; 2906 dport = p; 2907 saddr = pd->dst; 2908 daddr = pd->src; 2909 } 2910 switch (pd->af) { 2911 #ifdef INET 2912 case AF_INET: 2913 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2914 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2915 if (inp == NULL) { 2916 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2917 daddr->v4, dport, INPLOOKUP_WILDCARD | 2918 INPLOOKUP_RLOCKPCB, NULL, m); 2919 if (inp == NULL) 2920 return (-1); 2921 } 2922 break; 2923 #endif /* INET */ 2924 #ifdef INET6 2925 case AF_INET6: 2926 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2927 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2928 if (inp == NULL) { 2929 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2930 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2931 INPLOOKUP_RLOCKPCB, NULL, m); 2932 if (inp == NULL) 2933 return (-1); 2934 } 2935 break; 2936 #endif /* INET6 */ 2937 2938 default: 2939 return (-1); 2940 } 2941 INP_RLOCK_ASSERT(inp); 2942 pd->lookup.uid = inp->inp_cred->cr_uid; 2943 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2944 INP_RUNLOCK(inp); 2945 2946 return (1); 2947 } 2948 2949 static u_int8_t 2950 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2951 { 2952 int hlen; 2953 u_int8_t hdr[60]; 2954 u_int8_t *opt, optlen; 2955 u_int8_t wscale = 0; 2956 2957 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2958 if (hlen <= sizeof(struct tcphdr)) 2959 return (0); 2960 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2961 return (0); 2962 opt = hdr + sizeof(struct tcphdr); 2963 hlen -= sizeof(struct tcphdr); 2964 while (hlen >= 3) { 2965 switch (*opt) { 2966 case TCPOPT_EOL: 2967 case TCPOPT_NOP: 2968 ++opt; 2969 --hlen; 2970 break; 2971 case TCPOPT_WINDOW: 2972 wscale = opt[2]; 2973 if (wscale > TCP_MAX_WINSHIFT) 2974 wscale = TCP_MAX_WINSHIFT; 2975 wscale |= PF_WSCALE_FLAG; 2976 /* FALLTHROUGH */ 2977 default: 2978 optlen = opt[1]; 2979 if (optlen < 2) 2980 optlen = 2; 2981 hlen -= optlen; 2982 opt += optlen; 2983 break; 2984 } 2985 } 2986 return (wscale); 2987 } 2988 2989 static u_int16_t 2990 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2991 { 2992 int hlen; 2993 u_int8_t hdr[60]; 2994 u_int8_t *opt, optlen; 2995 u_int16_t mss = V_tcp_mssdflt; 2996 2997 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2998 if (hlen <= sizeof(struct tcphdr)) 2999 return (0); 3000 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3001 return (0); 3002 opt = hdr + sizeof(struct tcphdr); 3003 hlen -= sizeof(struct tcphdr); 3004 while (hlen >= TCPOLEN_MAXSEG) { 3005 switch (*opt) { 3006 case TCPOPT_EOL: 3007 case TCPOPT_NOP: 3008 ++opt; 3009 --hlen; 3010 break; 3011 case TCPOPT_MAXSEG: 3012 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3013 NTOHS(mss); 3014 /* FALLTHROUGH */ 3015 default: 3016 optlen = opt[1]; 3017 if (optlen < 2) 3018 optlen = 2; 3019 hlen -= optlen; 3020 opt += optlen; 3021 break; 3022 } 3023 } 3024 return (mss); 3025 } 3026 3027 static u_int16_t 3028 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3029 { 3030 #ifdef INET 3031 struct nhop4_basic nh4; 3032 #endif /* INET */ 3033 #ifdef INET6 3034 struct nhop6_basic nh6; 3035 struct in6_addr dst6; 3036 uint32_t scopeid; 3037 #endif /* INET6 */ 3038 int hlen = 0; 3039 uint16_t mss = 0; 3040 3041 switch (af) { 3042 #ifdef INET 3043 case AF_INET: 3044 hlen = sizeof(struct ip); 3045 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3046 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3047 break; 3048 #endif /* INET */ 3049 #ifdef INET6 3050 case AF_INET6: 3051 hlen = sizeof(struct ip6_hdr); 3052 in6_splitscope(&addr->v6, &dst6, &scopeid); 3053 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3054 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3055 break; 3056 #endif /* INET6 */ 3057 } 3058 3059 mss = max(V_tcp_mssdflt, mss); 3060 mss = min(mss, offer); 3061 mss = max(mss, 64); /* sanity - at least max opt space */ 3062 return (mss); 3063 } 3064 3065 static u_int32_t 3066 pf_tcp_iss(struct pf_pdesc *pd) 3067 { 3068 MD5_CTX ctx; 3069 u_int32_t digest[4]; 3070 3071 if (V_pf_tcp_secret_init == 0) { 3072 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3073 MD5Init(&V_pf_tcp_secret_ctx); 3074 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3075 sizeof(V_pf_tcp_secret)); 3076 V_pf_tcp_secret_init = 1; 3077 } 3078 3079 ctx = V_pf_tcp_secret_ctx; 3080 3081 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3082 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3083 if (pd->af == AF_INET6) { 3084 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3085 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3086 } else { 3087 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3088 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3089 } 3090 MD5Final((u_char *)digest, &ctx); 3091 V_pf_tcp_iss_off += 4096; 3092 #define ISN_RANDOM_INCREMENT (4096 - 1) 3093 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3094 V_pf_tcp_iss_off); 3095 #undef ISN_RANDOM_INCREMENT 3096 } 3097 3098 static int 3099 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3100 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3101 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3102 { 3103 struct pf_rule *nr = NULL; 3104 struct pf_addr * const saddr = pd->src; 3105 struct pf_addr * const daddr = pd->dst; 3106 sa_family_t af = pd->af; 3107 struct pf_rule *r, *a = NULL; 3108 struct pf_ruleset *ruleset = NULL; 3109 struct pf_src_node *nsn = NULL; 3110 struct tcphdr *th = pd->hdr.tcp; 3111 struct pf_state_key *sk = NULL, *nk = NULL; 3112 u_short reason; 3113 int rewrite = 0, hdrlen = 0; 3114 int tag = -1, rtableid = -1; 3115 int asd = 0; 3116 int match = 0; 3117 int state_icmp = 0; 3118 u_int16_t sport = 0, dport = 0; 3119 u_int16_t bproto_sum = 0, bip_sum = 0; 3120 u_int8_t icmptype = 0, icmpcode = 0; 3121 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3122 3123 PF_RULES_RASSERT(); 3124 3125 if (inp != NULL) { 3126 INP_LOCK_ASSERT(inp); 3127 pd->lookup.uid = inp->inp_cred->cr_uid; 3128 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3129 pd->lookup.done = 1; 3130 } 3131 3132 switch (pd->proto) { 3133 case IPPROTO_TCP: 3134 sport = th->th_sport; 3135 dport = th->th_dport; 3136 hdrlen = sizeof(*th); 3137 break; 3138 case IPPROTO_UDP: 3139 sport = pd->hdr.udp->uh_sport; 3140 dport = pd->hdr.udp->uh_dport; 3141 hdrlen = sizeof(*pd->hdr.udp); 3142 break; 3143 #ifdef INET 3144 case IPPROTO_ICMP: 3145 if (pd->af != AF_INET) 3146 break; 3147 sport = dport = pd->hdr.icmp->icmp_id; 3148 hdrlen = sizeof(*pd->hdr.icmp); 3149 icmptype = pd->hdr.icmp->icmp_type; 3150 icmpcode = pd->hdr.icmp->icmp_code; 3151 3152 if (icmptype == ICMP_UNREACH || 3153 icmptype == ICMP_SOURCEQUENCH || 3154 icmptype == ICMP_REDIRECT || 3155 icmptype == ICMP_TIMXCEED || 3156 icmptype == ICMP_PARAMPROB) 3157 state_icmp++; 3158 break; 3159 #endif /* INET */ 3160 #ifdef INET6 3161 case IPPROTO_ICMPV6: 3162 if (af != AF_INET6) 3163 break; 3164 sport = dport = pd->hdr.icmp6->icmp6_id; 3165 hdrlen = sizeof(*pd->hdr.icmp6); 3166 icmptype = pd->hdr.icmp6->icmp6_type; 3167 icmpcode = pd->hdr.icmp6->icmp6_code; 3168 3169 if (icmptype == ICMP6_DST_UNREACH || 3170 icmptype == ICMP6_PACKET_TOO_BIG || 3171 icmptype == ICMP6_TIME_EXCEEDED || 3172 icmptype == ICMP6_PARAM_PROB) 3173 state_icmp++; 3174 break; 3175 #endif /* INET6 */ 3176 default: 3177 sport = dport = hdrlen = 0; 3178 break; 3179 } 3180 3181 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3182 3183 /* check packet for BINAT/NAT/RDR */ 3184 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3185 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3186 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3187 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3188 3189 if (pd->ip_sum) 3190 bip_sum = *pd->ip_sum; 3191 3192 switch (pd->proto) { 3193 case IPPROTO_TCP: 3194 bproto_sum = th->th_sum; 3195 pd->proto_sum = &th->th_sum; 3196 3197 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3198 nk->port[pd->sidx] != sport) { 3199 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3200 &th->th_sum, &nk->addr[pd->sidx], 3201 nk->port[pd->sidx], 0, af); 3202 pd->sport = &th->th_sport; 3203 sport = th->th_sport; 3204 } 3205 3206 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3207 nk->port[pd->didx] != dport) { 3208 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3209 &th->th_sum, &nk->addr[pd->didx], 3210 nk->port[pd->didx], 0, af); 3211 dport = th->th_dport; 3212 pd->dport = &th->th_dport; 3213 } 3214 rewrite++; 3215 break; 3216 case IPPROTO_UDP: 3217 bproto_sum = pd->hdr.udp->uh_sum; 3218 pd->proto_sum = &pd->hdr.udp->uh_sum; 3219 3220 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3221 nk->port[pd->sidx] != sport) { 3222 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3223 pd->ip_sum, &pd->hdr.udp->uh_sum, 3224 &nk->addr[pd->sidx], 3225 nk->port[pd->sidx], 1, af); 3226 sport = pd->hdr.udp->uh_sport; 3227 pd->sport = &pd->hdr.udp->uh_sport; 3228 } 3229 3230 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3231 nk->port[pd->didx] != dport) { 3232 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3233 pd->ip_sum, &pd->hdr.udp->uh_sum, 3234 &nk->addr[pd->didx], 3235 nk->port[pd->didx], 1, af); 3236 dport = pd->hdr.udp->uh_dport; 3237 pd->dport = &pd->hdr.udp->uh_dport; 3238 } 3239 rewrite++; 3240 break; 3241 #ifdef INET 3242 case IPPROTO_ICMP: 3243 nk->port[0] = nk->port[1]; 3244 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3245 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3246 nk->addr[pd->sidx].v4.s_addr, 0); 3247 3248 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3249 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3250 nk->addr[pd->didx].v4.s_addr, 0); 3251 3252 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3253 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3254 pd->hdr.icmp->icmp_cksum, sport, 3255 nk->port[1], 0); 3256 pd->hdr.icmp->icmp_id = nk->port[1]; 3257 pd->sport = &pd->hdr.icmp->icmp_id; 3258 } 3259 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3260 break; 3261 #endif /* INET */ 3262 #ifdef INET6 3263 case IPPROTO_ICMPV6: 3264 nk->port[0] = nk->port[1]; 3265 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3266 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3267 &nk->addr[pd->sidx], 0); 3268 3269 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3270 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3271 &nk->addr[pd->didx], 0); 3272 rewrite++; 3273 break; 3274 #endif /* INET */ 3275 default: 3276 switch (af) { 3277 #ifdef INET 3278 case AF_INET: 3279 if (PF_ANEQ(saddr, 3280 &nk->addr[pd->sidx], AF_INET)) 3281 pf_change_a(&saddr->v4.s_addr, 3282 pd->ip_sum, 3283 nk->addr[pd->sidx].v4.s_addr, 0); 3284 3285 if (PF_ANEQ(daddr, 3286 &nk->addr[pd->didx], AF_INET)) 3287 pf_change_a(&daddr->v4.s_addr, 3288 pd->ip_sum, 3289 nk->addr[pd->didx].v4.s_addr, 0); 3290 break; 3291 #endif /* INET */ 3292 #ifdef INET6 3293 case AF_INET6: 3294 if (PF_ANEQ(saddr, 3295 &nk->addr[pd->sidx], AF_INET6)) 3296 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3297 3298 if (PF_ANEQ(daddr, 3299 &nk->addr[pd->didx], AF_INET6)) 3300 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3301 break; 3302 #endif /* INET */ 3303 } 3304 break; 3305 } 3306 if (nr->natpass) 3307 r = NULL; 3308 pd->nat_rule = nr; 3309 } 3310 3311 while (r != NULL) { 3312 r->evaluations++; 3313 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3314 r = r->skip[PF_SKIP_IFP].ptr; 3315 else if (r->direction && r->direction != direction) 3316 r = r->skip[PF_SKIP_DIR].ptr; 3317 else if (r->af && r->af != af) 3318 r = r->skip[PF_SKIP_AF].ptr; 3319 else if (r->proto && r->proto != pd->proto) 3320 r = r->skip[PF_SKIP_PROTO].ptr; 3321 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3322 r->src.neg, kif, M_GETFIB(m))) 3323 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3324 /* tcp/udp only. port_op always 0 in other cases */ 3325 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3326 r->src.port[0], r->src.port[1], sport)) 3327 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3328 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3329 r->dst.neg, NULL, M_GETFIB(m))) 3330 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3331 /* tcp/udp only. port_op always 0 in other cases */ 3332 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3333 r->dst.port[0], r->dst.port[1], dport)) 3334 r = r->skip[PF_SKIP_DST_PORT].ptr; 3335 /* icmp only. type always 0 in other cases */ 3336 else if (r->type && r->type != icmptype + 1) 3337 r = TAILQ_NEXT(r, entries); 3338 /* icmp only. type always 0 in other cases */ 3339 else if (r->code && r->code != icmpcode + 1) 3340 r = TAILQ_NEXT(r, entries); 3341 else if (r->tos && !(r->tos == pd->tos)) 3342 r = TAILQ_NEXT(r, entries); 3343 else if (r->rule_flag & PFRULE_FRAGMENT) 3344 r = TAILQ_NEXT(r, entries); 3345 else if (pd->proto == IPPROTO_TCP && 3346 (r->flagset & th->th_flags) != r->flags) 3347 r = TAILQ_NEXT(r, entries); 3348 /* tcp/udp only. uid.op always 0 in other cases */ 3349 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3350 pf_socket_lookup(direction, pd, m), 1)) && 3351 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3352 pd->lookup.uid)) 3353 r = TAILQ_NEXT(r, entries); 3354 /* tcp/udp only. gid.op always 0 in other cases */ 3355 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3356 pf_socket_lookup(direction, pd, m), 1)) && 3357 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3358 pd->lookup.gid)) 3359 r = TAILQ_NEXT(r, entries); 3360 else if (r->prio && 3361 !pf_match_ieee8021q_pcp(r->prio, m)) 3362 r = TAILQ_NEXT(r, entries); 3363 else if (r->prob && 3364 r->prob <= arc4random()) 3365 r = TAILQ_NEXT(r, entries); 3366 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3367 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3368 r = TAILQ_NEXT(r, entries); 3369 else if (r->os_fingerprint != PF_OSFP_ANY && 3370 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3371 pf_osfp_fingerprint(pd, m, off, th), 3372 r->os_fingerprint))) 3373 r = TAILQ_NEXT(r, entries); 3374 else { 3375 if (r->tag) 3376 tag = r->tag; 3377 if (r->rtableid >= 0) 3378 rtableid = r->rtableid; 3379 if (r->anchor == NULL) { 3380 match = 1; 3381 *rm = r; 3382 *am = a; 3383 *rsm = ruleset; 3384 if ((*rm)->quick) 3385 break; 3386 r = TAILQ_NEXT(r, entries); 3387 } else 3388 pf_step_into_anchor(anchor_stack, &asd, 3389 &ruleset, PF_RULESET_FILTER, &r, &a, 3390 &match); 3391 } 3392 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3393 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3394 break; 3395 } 3396 r = *rm; 3397 a = *am; 3398 ruleset = *rsm; 3399 3400 REASON_SET(&reason, PFRES_MATCH); 3401 3402 if (r->log || (nr != NULL && nr->log)) { 3403 if (rewrite) 3404 m_copyback(m, off, hdrlen, pd->hdr.any); 3405 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3406 ruleset, pd, 1); 3407 } 3408 3409 if ((r->action == PF_DROP) && 3410 ((r->rule_flag & PFRULE_RETURNRST) || 3411 (r->rule_flag & PFRULE_RETURNICMP) || 3412 (r->rule_flag & PFRULE_RETURN))) { 3413 /* undo NAT changes, if they have taken place */ 3414 if (nr != NULL) { 3415 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3416 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3417 if (pd->sport) 3418 *pd->sport = sk->port[pd->sidx]; 3419 if (pd->dport) 3420 *pd->dport = sk->port[pd->didx]; 3421 if (pd->proto_sum) 3422 *pd->proto_sum = bproto_sum; 3423 if (pd->ip_sum) 3424 *pd->ip_sum = bip_sum; 3425 m_copyback(m, off, hdrlen, pd->hdr.any); 3426 } 3427 if (pd->proto == IPPROTO_TCP && 3428 ((r->rule_flag & PFRULE_RETURNRST) || 3429 (r->rule_flag & PFRULE_RETURN)) && 3430 !(th->th_flags & TH_RST)) { 3431 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3432 int len = 0; 3433 #ifdef INET 3434 struct ip *h4; 3435 #endif 3436 #ifdef INET6 3437 struct ip6_hdr *h6; 3438 #endif 3439 3440 switch (af) { 3441 #ifdef INET 3442 case AF_INET: 3443 h4 = mtod(m, struct ip *); 3444 len = ntohs(h4->ip_len) - off; 3445 break; 3446 #endif 3447 #ifdef INET6 3448 case AF_INET6: 3449 h6 = mtod(m, struct ip6_hdr *); 3450 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3451 break; 3452 #endif 3453 } 3454 3455 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3456 REASON_SET(&reason, PFRES_PROTCKSUM); 3457 else { 3458 if (th->th_flags & TH_SYN) 3459 ack++; 3460 if (th->th_flags & TH_FIN) 3461 ack++; 3462 pf_send_tcp(m, r, af, pd->dst, 3463 pd->src, th->th_dport, th->th_sport, 3464 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3465 r->return_ttl, 1, 0, kif->pfik_ifp); 3466 } 3467 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3468 r->return_icmp) 3469 pf_send_icmp(m, r->return_icmp >> 8, 3470 r->return_icmp & 255, af, r); 3471 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3472 r->return_icmp6) 3473 pf_send_icmp(m, r->return_icmp6 >> 8, 3474 r->return_icmp6 & 255, af, r); 3475 } 3476 3477 if (r->action == PF_DROP) 3478 goto cleanup; 3479 3480 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3481 REASON_SET(&reason, PFRES_MEMORY); 3482 goto cleanup; 3483 } 3484 if (rtableid >= 0) 3485 M_SETFIB(m, rtableid); 3486 3487 if (!state_icmp && (r->keep_state || nr != NULL || 3488 (pd->flags & PFDESC_TCP_NORM))) { 3489 int action; 3490 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3491 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3492 hdrlen); 3493 if (action != PF_PASS) 3494 return (action); 3495 } else { 3496 if (sk != NULL) 3497 uma_zfree(V_pf_state_key_z, sk); 3498 if (nk != NULL) 3499 uma_zfree(V_pf_state_key_z, nk); 3500 } 3501 3502 /* copy back packet headers if we performed NAT operations */ 3503 if (rewrite) 3504 m_copyback(m, off, hdrlen, pd->hdr.any); 3505 3506 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3507 direction == PF_OUT && 3508 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3509 /* 3510 * We want the state created, but we dont 3511 * want to send this in case a partner 3512 * firewall has to know about it to allow 3513 * replies through it. 3514 */ 3515 return (PF_DEFER); 3516 3517 return (PF_PASS); 3518 3519 cleanup: 3520 if (sk != NULL) 3521 uma_zfree(V_pf_state_key_z, sk); 3522 if (nk != NULL) 3523 uma_zfree(V_pf_state_key_z, nk); 3524 return (PF_DROP); 3525 } 3526 3527 static int 3528 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3529 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3530 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3531 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3532 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3533 { 3534 struct pf_state *s = NULL; 3535 struct pf_src_node *sn = NULL; 3536 struct tcphdr *th = pd->hdr.tcp; 3537 u_int16_t mss = V_tcp_mssdflt; 3538 u_short reason; 3539 3540 /* check maximums */ 3541 if (r->max_states && 3542 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3543 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3544 REASON_SET(&reason, PFRES_MAXSTATES); 3545 return (PF_DROP); 3546 } 3547 /* src node for filter rule */ 3548 if ((r->rule_flag & PFRULE_SRCTRACK || 3549 r->rpool.opts & PF_POOL_STICKYADDR) && 3550 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3551 REASON_SET(&reason, PFRES_SRCLIMIT); 3552 goto csfailed; 3553 } 3554 /* src node for translation rule */ 3555 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3556 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3557 REASON_SET(&reason, PFRES_SRCLIMIT); 3558 goto csfailed; 3559 } 3560 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3561 if (s == NULL) { 3562 REASON_SET(&reason, PFRES_MEMORY); 3563 goto csfailed; 3564 } 3565 s->rule.ptr = r; 3566 s->nat_rule.ptr = nr; 3567 s->anchor.ptr = a; 3568 STATE_INC_COUNTERS(s); 3569 if (r->allow_opts) 3570 s->state_flags |= PFSTATE_ALLOWOPTS; 3571 if (r->rule_flag & PFRULE_STATESLOPPY) 3572 s->state_flags |= PFSTATE_SLOPPY; 3573 s->log = r->log & PF_LOG_ALL; 3574 s->sync_state = PFSYNC_S_NONE; 3575 if (nr != NULL) 3576 s->log |= nr->log & PF_LOG_ALL; 3577 switch (pd->proto) { 3578 case IPPROTO_TCP: 3579 s->src.seqlo = ntohl(th->th_seq); 3580 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3581 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3582 r->keep_state == PF_STATE_MODULATE) { 3583 /* Generate sequence number modulator */ 3584 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3585 0) 3586 s->src.seqdiff = 1; 3587 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3588 htonl(s->src.seqlo + s->src.seqdiff), 0); 3589 *rewrite = 1; 3590 } else 3591 s->src.seqdiff = 0; 3592 if (th->th_flags & TH_SYN) { 3593 s->src.seqhi++; 3594 s->src.wscale = pf_get_wscale(m, off, 3595 th->th_off, pd->af); 3596 } 3597 s->src.max_win = MAX(ntohs(th->th_win), 1); 3598 if (s->src.wscale & PF_WSCALE_MASK) { 3599 /* Remove scale factor from initial window */ 3600 int win = s->src.max_win; 3601 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3602 s->src.max_win = (win - 1) >> 3603 (s->src.wscale & PF_WSCALE_MASK); 3604 } 3605 if (th->th_flags & TH_FIN) 3606 s->src.seqhi++; 3607 s->dst.seqhi = 1; 3608 s->dst.max_win = 1; 3609 s->src.state = TCPS_SYN_SENT; 3610 s->dst.state = TCPS_CLOSED; 3611 s->timeout = PFTM_TCP_FIRST_PACKET; 3612 break; 3613 case IPPROTO_UDP: 3614 s->src.state = PFUDPS_SINGLE; 3615 s->dst.state = PFUDPS_NO_TRAFFIC; 3616 s->timeout = PFTM_UDP_FIRST_PACKET; 3617 break; 3618 case IPPROTO_ICMP: 3619 #ifdef INET6 3620 case IPPROTO_ICMPV6: 3621 #endif 3622 s->timeout = PFTM_ICMP_FIRST_PACKET; 3623 break; 3624 default: 3625 s->src.state = PFOTHERS_SINGLE; 3626 s->dst.state = PFOTHERS_NO_TRAFFIC; 3627 s->timeout = PFTM_OTHER_FIRST_PACKET; 3628 } 3629 3630 if (r->rt && r->rt != PF_FASTROUTE) { 3631 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3632 REASON_SET(&reason, PFRES_MAPFAILED); 3633 pf_src_tree_remove_state(s); 3634 STATE_DEC_COUNTERS(s); 3635 uma_zfree(V_pf_state_z, s); 3636 goto csfailed; 3637 } 3638 s->rt_kif = r->rpool.cur->kif; 3639 } 3640 3641 s->creation = time_uptime; 3642 s->expire = time_uptime; 3643 3644 if (sn != NULL) 3645 s->src_node = sn; 3646 if (nsn != NULL) { 3647 /* XXX We only modify one side for now. */ 3648 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3649 s->nat_src_node = nsn; 3650 } 3651 if (pd->proto == IPPROTO_TCP) { 3652 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3653 off, pd, th, &s->src, &s->dst)) { 3654 REASON_SET(&reason, PFRES_MEMORY); 3655 pf_src_tree_remove_state(s); 3656 STATE_DEC_COUNTERS(s); 3657 uma_zfree(V_pf_state_z, s); 3658 return (PF_DROP); 3659 } 3660 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3661 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3662 &s->src, &s->dst, rewrite)) { 3663 /* This really shouldn't happen!!! */ 3664 DPFPRINTF(PF_DEBUG_URGENT, 3665 ("pf_normalize_tcp_stateful failed on first pkt")); 3666 pf_normalize_tcp_cleanup(s); 3667 pf_src_tree_remove_state(s); 3668 STATE_DEC_COUNTERS(s); 3669 uma_zfree(V_pf_state_z, s); 3670 return (PF_DROP); 3671 } 3672 } 3673 s->direction = pd->dir; 3674 3675 /* 3676 * sk/nk could already been setup by pf_get_translation(). 3677 */ 3678 if (nr == NULL) { 3679 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3680 __func__, nr, sk, nk)); 3681 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3682 if (sk == NULL) 3683 goto csfailed; 3684 nk = sk; 3685 } else 3686 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3687 __func__, nr, sk, nk)); 3688 3689 /* Swap sk/nk for PF_OUT. */ 3690 if (pf_state_insert(BOUND_IFACE(r, kif), 3691 (pd->dir == PF_IN) ? sk : nk, 3692 (pd->dir == PF_IN) ? nk : sk, s)) { 3693 if (pd->proto == IPPROTO_TCP) 3694 pf_normalize_tcp_cleanup(s); 3695 REASON_SET(&reason, PFRES_STATEINS); 3696 pf_src_tree_remove_state(s); 3697 STATE_DEC_COUNTERS(s); 3698 uma_zfree(V_pf_state_z, s); 3699 return (PF_DROP); 3700 } else 3701 *sm = s; 3702 3703 if (tag > 0) 3704 s->tag = tag; 3705 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3706 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3707 s->src.state = PF_TCPS_PROXY_SRC; 3708 /* undo NAT changes, if they have taken place */ 3709 if (nr != NULL) { 3710 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3711 if (pd->dir == PF_OUT) 3712 skt = s->key[PF_SK_STACK]; 3713 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3714 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3715 if (pd->sport) 3716 *pd->sport = skt->port[pd->sidx]; 3717 if (pd->dport) 3718 *pd->dport = skt->port[pd->didx]; 3719 if (pd->proto_sum) 3720 *pd->proto_sum = bproto_sum; 3721 if (pd->ip_sum) 3722 *pd->ip_sum = bip_sum; 3723 m_copyback(m, off, hdrlen, pd->hdr.any); 3724 } 3725 s->src.seqhi = htonl(arc4random()); 3726 /* Find mss option */ 3727 int rtid = M_GETFIB(m); 3728 mss = pf_get_mss(m, off, th->th_off, pd->af); 3729 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3730 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3731 s->src.mss = mss; 3732 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3733 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3734 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3735 REASON_SET(&reason, PFRES_SYNPROXY); 3736 return (PF_SYNPROXY_DROP); 3737 } 3738 3739 return (PF_PASS); 3740 3741 csfailed: 3742 if (sk != NULL) 3743 uma_zfree(V_pf_state_key_z, sk); 3744 if (nk != NULL) 3745 uma_zfree(V_pf_state_key_z, nk); 3746 3747 if (sn != NULL) { 3748 struct pf_srchash *sh; 3749 3750 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3751 PF_HASHROW_LOCK(sh); 3752 if (--sn->states == 0 && sn->expire == 0) { 3753 pf_unlink_src_node(sn); 3754 uma_zfree(V_pf_sources_z, sn); 3755 counter_u64_add( 3756 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3757 } 3758 PF_HASHROW_UNLOCK(sh); 3759 } 3760 3761 if (nsn != sn && nsn != NULL) { 3762 struct pf_srchash *sh; 3763 3764 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3765 PF_HASHROW_LOCK(sh); 3766 if (--nsn->states == 0 && nsn->expire == 0) { 3767 pf_unlink_src_node(nsn); 3768 uma_zfree(V_pf_sources_z, nsn); 3769 counter_u64_add( 3770 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3771 } 3772 PF_HASHROW_UNLOCK(sh); 3773 } 3774 3775 return (PF_DROP); 3776 } 3777 3778 static int 3779 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3780 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3781 struct pf_ruleset **rsm) 3782 { 3783 struct pf_rule *r, *a = NULL; 3784 struct pf_ruleset *ruleset = NULL; 3785 sa_family_t af = pd->af; 3786 u_short reason; 3787 int tag = -1; 3788 int asd = 0; 3789 int match = 0; 3790 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3791 3792 PF_RULES_RASSERT(); 3793 3794 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3795 while (r != NULL) { 3796 r->evaluations++; 3797 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3798 r = r->skip[PF_SKIP_IFP].ptr; 3799 else if (r->direction && r->direction != direction) 3800 r = r->skip[PF_SKIP_DIR].ptr; 3801 else if (r->af && r->af != af) 3802 r = r->skip[PF_SKIP_AF].ptr; 3803 else if (r->proto && r->proto != pd->proto) 3804 r = r->skip[PF_SKIP_PROTO].ptr; 3805 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3806 r->src.neg, kif, M_GETFIB(m))) 3807 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3808 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3809 r->dst.neg, NULL, M_GETFIB(m))) 3810 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3811 else if (r->tos && !(r->tos == pd->tos)) 3812 r = TAILQ_NEXT(r, entries); 3813 else if (r->os_fingerprint != PF_OSFP_ANY) 3814 r = TAILQ_NEXT(r, entries); 3815 else if (pd->proto == IPPROTO_UDP && 3816 (r->src.port_op || r->dst.port_op)) 3817 r = TAILQ_NEXT(r, entries); 3818 else if (pd->proto == IPPROTO_TCP && 3819 (r->src.port_op || r->dst.port_op || r->flagset)) 3820 r = TAILQ_NEXT(r, entries); 3821 else if ((pd->proto == IPPROTO_ICMP || 3822 pd->proto == IPPROTO_ICMPV6) && 3823 (r->type || r->code)) 3824 r = TAILQ_NEXT(r, entries); 3825 else if (r->prio && 3826 !pf_match_ieee8021q_pcp(r->prio, m)) 3827 r = TAILQ_NEXT(r, entries); 3828 else if (r->prob && r->prob <= 3829 (arc4random() % (UINT_MAX - 1) + 1)) 3830 r = TAILQ_NEXT(r, entries); 3831 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3832 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3833 r = TAILQ_NEXT(r, entries); 3834 else { 3835 if (r->anchor == NULL) { 3836 match = 1; 3837 *rm = r; 3838 *am = a; 3839 *rsm = ruleset; 3840 if ((*rm)->quick) 3841 break; 3842 r = TAILQ_NEXT(r, entries); 3843 } else 3844 pf_step_into_anchor(anchor_stack, &asd, 3845 &ruleset, PF_RULESET_FILTER, &r, &a, 3846 &match); 3847 } 3848 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3849 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3850 break; 3851 } 3852 r = *rm; 3853 a = *am; 3854 ruleset = *rsm; 3855 3856 REASON_SET(&reason, PFRES_MATCH); 3857 3858 if (r->log) 3859 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3860 1); 3861 3862 if (r->action != PF_PASS) 3863 return (PF_DROP); 3864 3865 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3866 REASON_SET(&reason, PFRES_MEMORY); 3867 return (PF_DROP); 3868 } 3869 3870 return (PF_PASS); 3871 } 3872 3873 static int 3874 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3875 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3876 struct pf_pdesc *pd, u_short *reason, int *copyback) 3877 { 3878 struct tcphdr *th = pd->hdr.tcp; 3879 u_int16_t win = ntohs(th->th_win); 3880 u_int32_t ack, end, seq, orig_seq; 3881 u_int8_t sws, dws; 3882 int ackskew; 3883 3884 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3885 sws = src->wscale & PF_WSCALE_MASK; 3886 dws = dst->wscale & PF_WSCALE_MASK; 3887 } else 3888 sws = dws = 0; 3889 3890 /* 3891 * Sequence tracking algorithm from Guido van Rooij's paper: 3892 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3893 * tcp_filtering.ps 3894 */ 3895 3896 orig_seq = seq = ntohl(th->th_seq); 3897 if (src->seqlo == 0) { 3898 /* First packet from this end. Set its state */ 3899 3900 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3901 src->scrub == NULL) { 3902 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3903 REASON_SET(reason, PFRES_MEMORY); 3904 return (PF_DROP); 3905 } 3906 } 3907 3908 /* Deferred generation of sequence number modulator */ 3909 if (dst->seqdiff && !src->seqdiff) { 3910 /* use random iss for the TCP server */ 3911 while ((src->seqdiff = arc4random() - seq) == 0) 3912 ; 3913 ack = ntohl(th->th_ack) - dst->seqdiff; 3914 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3915 src->seqdiff), 0); 3916 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3917 *copyback = 1; 3918 } else { 3919 ack = ntohl(th->th_ack); 3920 } 3921 3922 end = seq + pd->p_len; 3923 if (th->th_flags & TH_SYN) { 3924 end++; 3925 if (dst->wscale & PF_WSCALE_FLAG) { 3926 src->wscale = pf_get_wscale(m, off, th->th_off, 3927 pd->af); 3928 if (src->wscale & PF_WSCALE_FLAG) { 3929 /* Remove scale factor from initial 3930 * window */ 3931 sws = src->wscale & PF_WSCALE_MASK; 3932 win = ((u_int32_t)win + (1 << sws) - 1) 3933 >> sws; 3934 dws = dst->wscale & PF_WSCALE_MASK; 3935 } else { 3936 /* fixup other window */ 3937 dst->max_win <<= dst->wscale & 3938 PF_WSCALE_MASK; 3939 /* in case of a retrans SYN|ACK */ 3940 dst->wscale = 0; 3941 } 3942 } 3943 } 3944 if (th->th_flags & TH_FIN) 3945 end++; 3946 3947 src->seqlo = seq; 3948 if (src->state < TCPS_SYN_SENT) 3949 src->state = TCPS_SYN_SENT; 3950 3951 /* 3952 * May need to slide the window (seqhi may have been set by 3953 * the crappy stack check or if we picked up the connection 3954 * after establishment) 3955 */ 3956 if (src->seqhi == 1 || 3957 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3958 src->seqhi = end + MAX(1, dst->max_win << dws); 3959 if (win > src->max_win) 3960 src->max_win = win; 3961 3962 } else { 3963 ack = ntohl(th->th_ack) - dst->seqdiff; 3964 if (src->seqdiff) { 3965 /* Modulate sequence numbers */ 3966 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3967 src->seqdiff), 0); 3968 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3969 *copyback = 1; 3970 } 3971 end = seq + pd->p_len; 3972 if (th->th_flags & TH_SYN) 3973 end++; 3974 if (th->th_flags & TH_FIN) 3975 end++; 3976 } 3977 3978 if ((th->th_flags & TH_ACK) == 0) { 3979 /* Let it pass through the ack skew check */ 3980 ack = dst->seqlo; 3981 } else if ((ack == 0 && 3982 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 3983 /* broken tcp stacks do not set ack */ 3984 (dst->state < TCPS_SYN_SENT)) { 3985 /* 3986 * Many stacks (ours included) will set the ACK number in an 3987 * FIN|ACK if the SYN times out -- no sequence to ACK. 3988 */ 3989 ack = dst->seqlo; 3990 } 3991 3992 if (seq == end) { 3993 /* Ease sequencing restrictions on no data packets */ 3994 seq = src->seqlo; 3995 end = seq; 3996 } 3997 3998 ackskew = dst->seqlo - ack; 3999 4000 4001 /* 4002 * Need to demodulate the sequence numbers in any TCP SACK options 4003 * (Selective ACK). We could optionally validate the SACK values 4004 * against the current ACK window, either forwards or backwards, but 4005 * I'm not confident that SACK has been implemented properly 4006 * everywhere. It wouldn't surprise me if several stacks accidentally 4007 * SACK too far backwards of previously ACKed data. There really aren't 4008 * any security implications of bad SACKing unless the target stack 4009 * doesn't validate the option length correctly. Someone trying to 4010 * spoof into a TCP connection won't bother blindly sending SACK 4011 * options anyway. 4012 */ 4013 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4014 if (pf_modulate_sack(m, off, pd, th, dst)) 4015 *copyback = 1; 4016 } 4017 4018 4019 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4020 if (SEQ_GEQ(src->seqhi, end) && 4021 /* Last octet inside other's window space */ 4022 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4023 /* Retrans: not more than one window back */ 4024 (ackskew >= -MAXACKWINDOW) && 4025 /* Acking not more than one reassembled fragment backwards */ 4026 (ackskew <= (MAXACKWINDOW << sws)) && 4027 /* Acking not more than one window forward */ 4028 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4029 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4030 (pd->flags & PFDESC_IP_REAS) == 0)) { 4031 /* Require an exact/+1 sequence match on resets when possible */ 4032 4033 if (dst->scrub || src->scrub) { 4034 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4035 *state, src, dst, copyback)) 4036 return (PF_DROP); 4037 } 4038 4039 /* update max window */ 4040 if (src->max_win < win) 4041 src->max_win = win; 4042 /* synchronize sequencing */ 4043 if (SEQ_GT(end, src->seqlo)) 4044 src->seqlo = end; 4045 /* slide the window of what the other end can send */ 4046 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4047 dst->seqhi = ack + MAX((win << sws), 1); 4048 4049 4050 /* update states */ 4051 if (th->th_flags & TH_SYN) 4052 if (src->state < TCPS_SYN_SENT) 4053 src->state = TCPS_SYN_SENT; 4054 if (th->th_flags & TH_FIN) 4055 if (src->state < TCPS_CLOSING) 4056 src->state = TCPS_CLOSING; 4057 if (th->th_flags & TH_ACK) { 4058 if (dst->state == TCPS_SYN_SENT) { 4059 dst->state = TCPS_ESTABLISHED; 4060 if (src->state == TCPS_ESTABLISHED && 4061 (*state)->src_node != NULL && 4062 pf_src_connlimit(state)) { 4063 REASON_SET(reason, PFRES_SRCLIMIT); 4064 return (PF_DROP); 4065 } 4066 } else if (dst->state == TCPS_CLOSING) 4067 dst->state = TCPS_FIN_WAIT_2; 4068 } 4069 if (th->th_flags & TH_RST) 4070 src->state = dst->state = TCPS_TIME_WAIT; 4071 4072 /* update expire time */ 4073 (*state)->expire = time_uptime; 4074 if (src->state >= TCPS_FIN_WAIT_2 && 4075 dst->state >= TCPS_FIN_WAIT_2) 4076 (*state)->timeout = PFTM_TCP_CLOSED; 4077 else if (src->state >= TCPS_CLOSING && 4078 dst->state >= TCPS_CLOSING) 4079 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4080 else if (src->state < TCPS_ESTABLISHED || 4081 dst->state < TCPS_ESTABLISHED) 4082 (*state)->timeout = PFTM_TCP_OPENING; 4083 else if (src->state >= TCPS_CLOSING || 4084 dst->state >= TCPS_CLOSING) 4085 (*state)->timeout = PFTM_TCP_CLOSING; 4086 else 4087 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4088 4089 /* Fall through to PASS packet */ 4090 4091 } else if ((dst->state < TCPS_SYN_SENT || 4092 dst->state >= TCPS_FIN_WAIT_2 || 4093 src->state >= TCPS_FIN_WAIT_2) && 4094 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4095 /* Within a window forward of the originating packet */ 4096 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4097 /* Within a window backward of the originating packet */ 4098 4099 /* 4100 * This currently handles three situations: 4101 * 1) Stupid stacks will shotgun SYNs before their peer 4102 * replies. 4103 * 2) When PF catches an already established stream (the 4104 * firewall rebooted, the state table was flushed, routes 4105 * changed...) 4106 * 3) Packets get funky immediately after the connection 4107 * closes (this should catch Solaris spurious ACK|FINs 4108 * that web servers like to spew after a close) 4109 * 4110 * This must be a little more careful than the above code 4111 * since packet floods will also be caught here. We don't 4112 * update the TTL here to mitigate the damage of a packet 4113 * flood and so the same code can handle awkward establishment 4114 * and a loosened connection close. 4115 * In the establishment case, a correct peer response will 4116 * validate the connection, go through the normal state code 4117 * and keep updating the state TTL. 4118 */ 4119 4120 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4121 printf("pf: loose state match: "); 4122 pf_print_state(*state); 4123 pf_print_flags(th->th_flags); 4124 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4125 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4126 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4127 (unsigned long long)(*state)->packets[1], 4128 pd->dir == PF_IN ? "in" : "out", 4129 pd->dir == (*state)->direction ? "fwd" : "rev"); 4130 } 4131 4132 if (dst->scrub || src->scrub) { 4133 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4134 *state, src, dst, copyback)) 4135 return (PF_DROP); 4136 } 4137 4138 /* update max window */ 4139 if (src->max_win < win) 4140 src->max_win = win; 4141 /* synchronize sequencing */ 4142 if (SEQ_GT(end, src->seqlo)) 4143 src->seqlo = end; 4144 /* slide the window of what the other end can send */ 4145 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4146 dst->seqhi = ack + MAX((win << sws), 1); 4147 4148 /* 4149 * Cannot set dst->seqhi here since this could be a shotgunned 4150 * SYN and not an already established connection. 4151 */ 4152 4153 if (th->th_flags & TH_FIN) 4154 if (src->state < TCPS_CLOSING) 4155 src->state = TCPS_CLOSING; 4156 if (th->th_flags & TH_RST) 4157 src->state = dst->state = TCPS_TIME_WAIT; 4158 4159 /* Fall through to PASS packet */ 4160 4161 } else { 4162 if ((*state)->dst.state == TCPS_SYN_SENT && 4163 (*state)->src.state == TCPS_SYN_SENT) { 4164 /* Send RST for state mismatches during handshake */ 4165 if (!(th->th_flags & TH_RST)) 4166 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4167 pd->dst, pd->src, th->th_dport, 4168 th->th_sport, ntohl(th->th_ack), 0, 4169 TH_RST, 0, 0, 4170 (*state)->rule.ptr->return_ttl, 1, 0, 4171 kif->pfik_ifp); 4172 src->seqlo = 0; 4173 src->seqhi = 1; 4174 src->max_win = 1; 4175 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4176 printf("pf: BAD state: "); 4177 pf_print_state(*state); 4178 pf_print_flags(th->th_flags); 4179 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4180 "pkts=%llu:%llu dir=%s,%s\n", 4181 seq, orig_seq, ack, pd->p_len, ackskew, 4182 (unsigned long long)(*state)->packets[0], 4183 (unsigned long long)(*state)->packets[1], 4184 pd->dir == PF_IN ? "in" : "out", 4185 pd->dir == (*state)->direction ? "fwd" : "rev"); 4186 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4187 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4188 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4189 ' ': '2', 4190 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4191 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4192 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4193 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4194 } 4195 REASON_SET(reason, PFRES_BADSTATE); 4196 return (PF_DROP); 4197 } 4198 4199 return (PF_PASS); 4200 } 4201 4202 static int 4203 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4204 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4205 { 4206 struct tcphdr *th = pd->hdr.tcp; 4207 4208 if (th->th_flags & TH_SYN) 4209 if (src->state < TCPS_SYN_SENT) 4210 src->state = TCPS_SYN_SENT; 4211 if (th->th_flags & TH_FIN) 4212 if (src->state < TCPS_CLOSING) 4213 src->state = TCPS_CLOSING; 4214 if (th->th_flags & TH_ACK) { 4215 if (dst->state == TCPS_SYN_SENT) { 4216 dst->state = TCPS_ESTABLISHED; 4217 if (src->state == TCPS_ESTABLISHED && 4218 (*state)->src_node != NULL && 4219 pf_src_connlimit(state)) { 4220 REASON_SET(reason, PFRES_SRCLIMIT); 4221 return (PF_DROP); 4222 } 4223 } else if (dst->state == TCPS_CLOSING) { 4224 dst->state = TCPS_FIN_WAIT_2; 4225 } else if (src->state == TCPS_SYN_SENT && 4226 dst->state < TCPS_SYN_SENT) { 4227 /* 4228 * Handle a special sloppy case where we only see one 4229 * half of the connection. If there is a ACK after 4230 * the initial SYN without ever seeing a packet from 4231 * the destination, set the connection to established. 4232 */ 4233 dst->state = src->state = TCPS_ESTABLISHED; 4234 if ((*state)->src_node != NULL && 4235 pf_src_connlimit(state)) { 4236 REASON_SET(reason, PFRES_SRCLIMIT); 4237 return (PF_DROP); 4238 } 4239 } else if (src->state == TCPS_CLOSING && 4240 dst->state == TCPS_ESTABLISHED && 4241 dst->seqlo == 0) { 4242 /* 4243 * Handle the closing of half connections where we 4244 * don't see the full bidirectional FIN/ACK+ACK 4245 * handshake. 4246 */ 4247 dst->state = TCPS_CLOSING; 4248 } 4249 } 4250 if (th->th_flags & TH_RST) 4251 src->state = dst->state = TCPS_TIME_WAIT; 4252 4253 /* update expire time */ 4254 (*state)->expire = time_uptime; 4255 if (src->state >= TCPS_FIN_WAIT_2 && 4256 dst->state >= TCPS_FIN_WAIT_2) 4257 (*state)->timeout = PFTM_TCP_CLOSED; 4258 else if (src->state >= TCPS_CLOSING && 4259 dst->state >= TCPS_CLOSING) 4260 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4261 else if (src->state < TCPS_ESTABLISHED || 4262 dst->state < TCPS_ESTABLISHED) 4263 (*state)->timeout = PFTM_TCP_OPENING; 4264 else if (src->state >= TCPS_CLOSING || 4265 dst->state >= TCPS_CLOSING) 4266 (*state)->timeout = PFTM_TCP_CLOSING; 4267 else 4268 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4269 4270 return (PF_PASS); 4271 } 4272 4273 static int 4274 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4275 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4276 u_short *reason) 4277 { 4278 struct pf_state_key_cmp key; 4279 struct tcphdr *th = pd->hdr.tcp; 4280 int copyback = 0; 4281 struct pf_state_peer *src, *dst; 4282 struct pf_state_key *sk; 4283 4284 bzero(&key, sizeof(key)); 4285 key.af = pd->af; 4286 key.proto = IPPROTO_TCP; 4287 if (direction == PF_IN) { /* wire side, straight */ 4288 PF_ACPY(&key.addr[0], pd->src, key.af); 4289 PF_ACPY(&key.addr[1], pd->dst, key.af); 4290 key.port[0] = th->th_sport; 4291 key.port[1] = th->th_dport; 4292 } else { /* stack side, reverse */ 4293 PF_ACPY(&key.addr[1], pd->src, key.af); 4294 PF_ACPY(&key.addr[0], pd->dst, key.af); 4295 key.port[1] = th->th_sport; 4296 key.port[0] = th->th_dport; 4297 } 4298 4299 STATE_LOOKUP(kif, &key, direction, *state, pd); 4300 4301 if (direction == (*state)->direction) { 4302 src = &(*state)->src; 4303 dst = &(*state)->dst; 4304 } else { 4305 src = &(*state)->dst; 4306 dst = &(*state)->src; 4307 } 4308 4309 sk = (*state)->key[pd->didx]; 4310 4311 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4312 if (direction != (*state)->direction) { 4313 REASON_SET(reason, PFRES_SYNPROXY); 4314 return (PF_SYNPROXY_DROP); 4315 } 4316 if (th->th_flags & TH_SYN) { 4317 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4318 REASON_SET(reason, PFRES_SYNPROXY); 4319 return (PF_DROP); 4320 } 4321 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4322 pd->src, th->th_dport, th->th_sport, 4323 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4324 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4325 REASON_SET(reason, PFRES_SYNPROXY); 4326 return (PF_SYNPROXY_DROP); 4327 } else if (!(th->th_flags & TH_ACK) || 4328 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4329 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4330 REASON_SET(reason, PFRES_SYNPROXY); 4331 return (PF_DROP); 4332 } else if ((*state)->src_node != NULL && 4333 pf_src_connlimit(state)) { 4334 REASON_SET(reason, PFRES_SRCLIMIT); 4335 return (PF_DROP); 4336 } else 4337 (*state)->src.state = PF_TCPS_PROXY_DST; 4338 } 4339 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4340 if (direction == (*state)->direction) { 4341 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4342 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4343 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4344 REASON_SET(reason, PFRES_SYNPROXY); 4345 return (PF_DROP); 4346 } 4347 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4348 if ((*state)->dst.seqhi == 1) 4349 (*state)->dst.seqhi = htonl(arc4random()); 4350 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4351 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4352 sk->port[pd->sidx], sk->port[pd->didx], 4353 (*state)->dst.seqhi, 0, TH_SYN, 0, 4354 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4355 REASON_SET(reason, PFRES_SYNPROXY); 4356 return (PF_SYNPROXY_DROP); 4357 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4358 (TH_SYN|TH_ACK)) || 4359 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4360 REASON_SET(reason, PFRES_SYNPROXY); 4361 return (PF_DROP); 4362 } else { 4363 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4364 (*state)->dst.seqlo = ntohl(th->th_seq); 4365 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4366 pd->src, th->th_dport, th->th_sport, 4367 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4368 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4369 (*state)->tag, NULL); 4370 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4371 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4372 sk->port[pd->sidx], sk->port[pd->didx], 4373 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4374 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4375 (*state)->src.seqdiff = (*state)->dst.seqhi - 4376 (*state)->src.seqlo; 4377 (*state)->dst.seqdiff = (*state)->src.seqhi - 4378 (*state)->dst.seqlo; 4379 (*state)->src.seqhi = (*state)->src.seqlo + 4380 (*state)->dst.max_win; 4381 (*state)->dst.seqhi = (*state)->dst.seqlo + 4382 (*state)->src.max_win; 4383 (*state)->src.wscale = (*state)->dst.wscale = 0; 4384 (*state)->src.state = (*state)->dst.state = 4385 TCPS_ESTABLISHED; 4386 REASON_SET(reason, PFRES_SYNPROXY); 4387 return (PF_SYNPROXY_DROP); 4388 } 4389 } 4390 4391 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4392 dst->state >= TCPS_FIN_WAIT_2 && 4393 src->state >= TCPS_FIN_WAIT_2) { 4394 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4395 printf("pf: state reuse "); 4396 pf_print_state(*state); 4397 pf_print_flags(th->th_flags); 4398 printf("\n"); 4399 } 4400 /* XXX make sure it's the same direction ?? */ 4401 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4402 pf_unlink_state(*state, PF_ENTER_LOCKED); 4403 *state = NULL; 4404 return (PF_DROP); 4405 } 4406 4407 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4408 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4409 return (PF_DROP); 4410 } else { 4411 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4412 ©back) == PF_DROP) 4413 return (PF_DROP); 4414 } 4415 4416 /* translate source/destination address, if necessary */ 4417 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4418 struct pf_state_key *nk = (*state)->key[pd->didx]; 4419 4420 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4421 nk->port[pd->sidx] != th->th_sport) 4422 pf_change_ap(m, pd->src, &th->th_sport, 4423 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4424 nk->port[pd->sidx], 0, pd->af); 4425 4426 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4427 nk->port[pd->didx] != th->th_dport) 4428 pf_change_ap(m, pd->dst, &th->th_dport, 4429 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4430 nk->port[pd->didx], 0, pd->af); 4431 copyback = 1; 4432 } 4433 4434 /* Copyback sequence modulation or stateful scrub changes if needed */ 4435 if (copyback) 4436 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4437 4438 return (PF_PASS); 4439 } 4440 4441 static int 4442 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4443 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4444 { 4445 struct pf_state_peer *src, *dst; 4446 struct pf_state_key_cmp key; 4447 struct udphdr *uh = pd->hdr.udp; 4448 4449 bzero(&key, sizeof(key)); 4450 key.af = pd->af; 4451 key.proto = IPPROTO_UDP; 4452 if (direction == PF_IN) { /* wire side, straight */ 4453 PF_ACPY(&key.addr[0], pd->src, key.af); 4454 PF_ACPY(&key.addr[1], pd->dst, key.af); 4455 key.port[0] = uh->uh_sport; 4456 key.port[1] = uh->uh_dport; 4457 } else { /* stack side, reverse */ 4458 PF_ACPY(&key.addr[1], pd->src, key.af); 4459 PF_ACPY(&key.addr[0], pd->dst, key.af); 4460 key.port[1] = uh->uh_sport; 4461 key.port[0] = uh->uh_dport; 4462 } 4463 4464 STATE_LOOKUP(kif, &key, direction, *state, pd); 4465 4466 if (direction == (*state)->direction) { 4467 src = &(*state)->src; 4468 dst = &(*state)->dst; 4469 } else { 4470 src = &(*state)->dst; 4471 dst = &(*state)->src; 4472 } 4473 4474 /* update states */ 4475 if (src->state < PFUDPS_SINGLE) 4476 src->state = PFUDPS_SINGLE; 4477 if (dst->state == PFUDPS_SINGLE) 4478 dst->state = PFUDPS_MULTIPLE; 4479 4480 /* update expire time */ 4481 (*state)->expire = time_uptime; 4482 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4483 (*state)->timeout = PFTM_UDP_MULTIPLE; 4484 else 4485 (*state)->timeout = PFTM_UDP_SINGLE; 4486 4487 /* translate source/destination address, if necessary */ 4488 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4489 struct pf_state_key *nk = (*state)->key[pd->didx]; 4490 4491 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4492 nk->port[pd->sidx] != uh->uh_sport) 4493 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4494 &uh->uh_sum, &nk->addr[pd->sidx], 4495 nk->port[pd->sidx], 1, pd->af); 4496 4497 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4498 nk->port[pd->didx] != uh->uh_dport) 4499 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4500 &uh->uh_sum, &nk->addr[pd->didx], 4501 nk->port[pd->didx], 1, pd->af); 4502 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4503 } 4504 4505 return (PF_PASS); 4506 } 4507 4508 static int 4509 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4510 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4511 { 4512 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4513 u_int16_t icmpid = 0, *icmpsum; 4514 u_int8_t icmptype; 4515 int state_icmp = 0; 4516 struct pf_state_key_cmp key; 4517 4518 bzero(&key, sizeof(key)); 4519 switch (pd->proto) { 4520 #ifdef INET 4521 case IPPROTO_ICMP: 4522 icmptype = pd->hdr.icmp->icmp_type; 4523 icmpid = pd->hdr.icmp->icmp_id; 4524 icmpsum = &pd->hdr.icmp->icmp_cksum; 4525 4526 if (icmptype == ICMP_UNREACH || 4527 icmptype == ICMP_SOURCEQUENCH || 4528 icmptype == ICMP_REDIRECT || 4529 icmptype == ICMP_TIMXCEED || 4530 icmptype == ICMP_PARAMPROB) 4531 state_icmp++; 4532 break; 4533 #endif /* INET */ 4534 #ifdef INET6 4535 case IPPROTO_ICMPV6: 4536 icmptype = pd->hdr.icmp6->icmp6_type; 4537 icmpid = pd->hdr.icmp6->icmp6_id; 4538 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4539 4540 if (icmptype == ICMP6_DST_UNREACH || 4541 icmptype == ICMP6_PACKET_TOO_BIG || 4542 icmptype == ICMP6_TIME_EXCEEDED || 4543 icmptype == ICMP6_PARAM_PROB) 4544 state_icmp++; 4545 break; 4546 #endif /* INET6 */ 4547 } 4548 4549 if (!state_icmp) { 4550 4551 /* 4552 * ICMP query/reply message not related to a TCP/UDP packet. 4553 * Search for an ICMP state. 4554 */ 4555 key.af = pd->af; 4556 key.proto = pd->proto; 4557 key.port[0] = key.port[1] = icmpid; 4558 if (direction == PF_IN) { /* wire side, straight */ 4559 PF_ACPY(&key.addr[0], pd->src, key.af); 4560 PF_ACPY(&key.addr[1], pd->dst, key.af); 4561 } else { /* stack side, reverse */ 4562 PF_ACPY(&key.addr[1], pd->src, key.af); 4563 PF_ACPY(&key.addr[0], pd->dst, key.af); 4564 } 4565 4566 STATE_LOOKUP(kif, &key, direction, *state, pd); 4567 4568 (*state)->expire = time_uptime; 4569 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4570 4571 /* translate source/destination address, if necessary */ 4572 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4573 struct pf_state_key *nk = (*state)->key[pd->didx]; 4574 4575 switch (pd->af) { 4576 #ifdef INET 4577 case AF_INET: 4578 if (PF_ANEQ(pd->src, 4579 &nk->addr[pd->sidx], AF_INET)) 4580 pf_change_a(&saddr->v4.s_addr, 4581 pd->ip_sum, 4582 nk->addr[pd->sidx].v4.s_addr, 0); 4583 4584 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4585 AF_INET)) 4586 pf_change_a(&daddr->v4.s_addr, 4587 pd->ip_sum, 4588 nk->addr[pd->didx].v4.s_addr, 0); 4589 4590 if (nk->port[0] != 4591 pd->hdr.icmp->icmp_id) { 4592 pd->hdr.icmp->icmp_cksum = 4593 pf_cksum_fixup( 4594 pd->hdr.icmp->icmp_cksum, icmpid, 4595 nk->port[pd->sidx], 0); 4596 pd->hdr.icmp->icmp_id = 4597 nk->port[pd->sidx]; 4598 } 4599 4600 m_copyback(m, off, ICMP_MINLEN, 4601 (caddr_t )pd->hdr.icmp); 4602 break; 4603 #endif /* INET */ 4604 #ifdef INET6 4605 case AF_INET6: 4606 if (PF_ANEQ(pd->src, 4607 &nk->addr[pd->sidx], AF_INET6)) 4608 pf_change_a6(saddr, 4609 &pd->hdr.icmp6->icmp6_cksum, 4610 &nk->addr[pd->sidx], 0); 4611 4612 if (PF_ANEQ(pd->dst, 4613 &nk->addr[pd->didx], AF_INET6)) 4614 pf_change_a6(daddr, 4615 &pd->hdr.icmp6->icmp6_cksum, 4616 &nk->addr[pd->didx], 0); 4617 4618 m_copyback(m, off, sizeof(struct icmp6_hdr), 4619 (caddr_t )pd->hdr.icmp6); 4620 break; 4621 #endif /* INET6 */ 4622 } 4623 } 4624 return (PF_PASS); 4625 4626 } else { 4627 /* 4628 * ICMP error message in response to a TCP/UDP packet. 4629 * Extract the inner TCP/UDP header and search for that state. 4630 */ 4631 4632 struct pf_pdesc pd2; 4633 bzero(&pd2, sizeof pd2); 4634 #ifdef INET 4635 struct ip h2; 4636 #endif /* INET */ 4637 #ifdef INET6 4638 struct ip6_hdr h2_6; 4639 int terminal = 0; 4640 #endif /* INET6 */ 4641 int ipoff2 = 0; 4642 int off2 = 0; 4643 4644 pd2.af = pd->af; 4645 /* Payload packet is from the opposite direction. */ 4646 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4647 pd2.didx = (direction == PF_IN) ? 0 : 1; 4648 switch (pd->af) { 4649 #ifdef INET 4650 case AF_INET: 4651 /* offset of h2 in mbuf chain */ 4652 ipoff2 = off + ICMP_MINLEN; 4653 4654 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4655 NULL, reason, pd2.af)) { 4656 DPFPRINTF(PF_DEBUG_MISC, 4657 ("pf: ICMP error message too short " 4658 "(ip)\n")); 4659 return (PF_DROP); 4660 } 4661 /* 4662 * ICMP error messages don't refer to non-first 4663 * fragments 4664 */ 4665 if (h2.ip_off & htons(IP_OFFMASK)) { 4666 REASON_SET(reason, PFRES_FRAG); 4667 return (PF_DROP); 4668 } 4669 4670 /* offset of protocol header that follows h2 */ 4671 off2 = ipoff2 + (h2.ip_hl << 2); 4672 4673 pd2.proto = h2.ip_p; 4674 pd2.src = (struct pf_addr *)&h2.ip_src; 4675 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4676 pd2.ip_sum = &h2.ip_sum; 4677 break; 4678 #endif /* INET */ 4679 #ifdef INET6 4680 case AF_INET6: 4681 ipoff2 = off + sizeof(struct icmp6_hdr); 4682 4683 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4684 NULL, reason, pd2.af)) { 4685 DPFPRINTF(PF_DEBUG_MISC, 4686 ("pf: ICMP error message too short " 4687 "(ip6)\n")); 4688 return (PF_DROP); 4689 } 4690 pd2.proto = h2_6.ip6_nxt; 4691 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4692 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4693 pd2.ip_sum = NULL; 4694 off2 = ipoff2 + sizeof(h2_6); 4695 do { 4696 switch (pd2.proto) { 4697 case IPPROTO_FRAGMENT: 4698 /* 4699 * ICMPv6 error messages for 4700 * non-first fragments 4701 */ 4702 REASON_SET(reason, PFRES_FRAG); 4703 return (PF_DROP); 4704 case IPPROTO_AH: 4705 case IPPROTO_HOPOPTS: 4706 case IPPROTO_ROUTING: 4707 case IPPROTO_DSTOPTS: { 4708 /* get next header and header length */ 4709 struct ip6_ext opt6; 4710 4711 if (!pf_pull_hdr(m, off2, &opt6, 4712 sizeof(opt6), NULL, reason, 4713 pd2.af)) { 4714 DPFPRINTF(PF_DEBUG_MISC, 4715 ("pf: ICMPv6 short opt\n")); 4716 return (PF_DROP); 4717 } 4718 if (pd2.proto == IPPROTO_AH) 4719 off2 += (opt6.ip6e_len + 2) * 4; 4720 else 4721 off2 += (opt6.ip6e_len + 1) * 8; 4722 pd2.proto = opt6.ip6e_nxt; 4723 /* goto the next header */ 4724 break; 4725 } 4726 default: 4727 terminal++; 4728 break; 4729 } 4730 } while (!terminal); 4731 break; 4732 #endif /* INET6 */ 4733 } 4734 4735 switch (pd2.proto) { 4736 case IPPROTO_TCP: { 4737 struct tcphdr th; 4738 u_int32_t seq; 4739 struct pf_state_peer *src, *dst; 4740 u_int8_t dws; 4741 int copyback = 0; 4742 4743 /* 4744 * Only the first 8 bytes of the TCP header can be 4745 * expected. Don't access any TCP header fields after 4746 * th_seq, an ackskew test is not possible. 4747 */ 4748 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4749 pd2.af)) { 4750 DPFPRINTF(PF_DEBUG_MISC, 4751 ("pf: ICMP error message too short " 4752 "(tcp)\n")); 4753 return (PF_DROP); 4754 } 4755 4756 key.af = pd2.af; 4757 key.proto = IPPROTO_TCP; 4758 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4759 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4760 key.port[pd2.sidx] = th.th_sport; 4761 key.port[pd2.didx] = th.th_dport; 4762 4763 STATE_LOOKUP(kif, &key, direction, *state, pd); 4764 4765 if (direction == (*state)->direction) { 4766 src = &(*state)->dst; 4767 dst = &(*state)->src; 4768 } else { 4769 src = &(*state)->src; 4770 dst = &(*state)->dst; 4771 } 4772 4773 if (src->wscale && dst->wscale) 4774 dws = dst->wscale & PF_WSCALE_MASK; 4775 else 4776 dws = 0; 4777 4778 /* Demodulate sequence number */ 4779 seq = ntohl(th.th_seq) - src->seqdiff; 4780 if (src->seqdiff) { 4781 pf_change_a(&th.th_seq, icmpsum, 4782 htonl(seq), 0); 4783 copyback = 1; 4784 } 4785 4786 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4787 (!SEQ_GEQ(src->seqhi, seq) || 4788 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4789 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4790 printf("pf: BAD ICMP %d:%d ", 4791 icmptype, pd->hdr.icmp->icmp_code); 4792 pf_print_host(pd->src, 0, pd->af); 4793 printf(" -> "); 4794 pf_print_host(pd->dst, 0, pd->af); 4795 printf(" state: "); 4796 pf_print_state(*state); 4797 printf(" seq=%u\n", seq); 4798 } 4799 REASON_SET(reason, PFRES_BADSTATE); 4800 return (PF_DROP); 4801 } else { 4802 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4803 printf("pf: OK ICMP %d:%d ", 4804 icmptype, pd->hdr.icmp->icmp_code); 4805 pf_print_host(pd->src, 0, pd->af); 4806 printf(" -> "); 4807 pf_print_host(pd->dst, 0, pd->af); 4808 printf(" state: "); 4809 pf_print_state(*state); 4810 printf(" seq=%u\n", seq); 4811 } 4812 } 4813 4814 /* translate source/destination address, if necessary */ 4815 if ((*state)->key[PF_SK_WIRE] != 4816 (*state)->key[PF_SK_STACK]) { 4817 struct pf_state_key *nk = 4818 (*state)->key[pd->didx]; 4819 4820 if (PF_ANEQ(pd2.src, 4821 &nk->addr[pd2.sidx], pd2.af) || 4822 nk->port[pd2.sidx] != th.th_sport) 4823 pf_change_icmp(pd2.src, &th.th_sport, 4824 daddr, &nk->addr[pd2.sidx], 4825 nk->port[pd2.sidx], NULL, 4826 pd2.ip_sum, icmpsum, 4827 pd->ip_sum, 0, pd2.af); 4828 4829 if (PF_ANEQ(pd2.dst, 4830 &nk->addr[pd2.didx], pd2.af) || 4831 nk->port[pd2.didx] != th.th_dport) 4832 pf_change_icmp(pd2.dst, &th.th_dport, 4833 saddr, &nk->addr[pd2.didx], 4834 nk->port[pd2.didx], NULL, 4835 pd2.ip_sum, icmpsum, 4836 pd->ip_sum, 0, pd2.af); 4837 copyback = 1; 4838 } 4839 4840 if (copyback) { 4841 switch (pd2.af) { 4842 #ifdef INET 4843 case AF_INET: 4844 m_copyback(m, off, ICMP_MINLEN, 4845 (caddr_t )pd->hdr.icmp); 4846 m_copyback(m, ipoff2, sizeof(h2), 4847 (caddr_t )&h2); 4848 break; 4849 #endif /* INET */ 4850 #ifdef INET6 4851 case AF_INET6: 4852 m_copyback(m, off, 4853 sizeof(struct icmp6_hdr), 4854 (caddr_t )pd->hdr.icmp6); 4855 m_copyback(m, ipoff2, sizeof(h2_6), 4856 (caddr_t )&h2_6); 4857 break; 4858 #endif /* INET6 */ 4859 } 4860 m_copyback(m, off2, 8, (caddr_t)&th); 4861 } 4862 4863 return (PF_PASS); 4864 break; 4865 } 4866 case IPPROTO_UDP: { 4867 struct udphdr uh; 4868 4869 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4870 NULL, reason, pd2.af)) { 4871 DPFPRINTF(PF_DEBUG_MISC, 4872 ("pf: ICMP error message too short " 4873 "(udp)\n")); 4874 return (PF_DROP); 4875 } 4876 4877 key.af = pd2.af; 4878 key.proto = IPPROTO_UDP; 4879 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4880 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4881 key.port[pd2.sidx] = uh.uh_sport; 4882 key.port[pd2.didx] = uh.uh_dport; 4883 4884 STATE_LOOKUP(kif, &key, direction, *state, pd); 4885 4886 /* translate source/destination address, if necessary */ 4887 if ((*state)->key[PF_SK_WIRE] != 4888 (*state)->key[PF_SK_STACK]) { 4889 struct pf_state_key *nk = 4890 (*state)->key[pd->didx]; 4891 4892 if (PF_ANEQ(pd2.src, 4893 &nk->addr[pd2.sidx], pd2.af) || 4894 nk->port[pd2.sidx] != uh.uh_sport) 4895 pf_change_icmp(pd2.src, &uh.uh_sport, 4896 daddr, &nk->addr[pd2.sidx], 4897 nk->port[pd2.sidx], &uh.uh_sum, 4898 pd2.ip_sum, icmpsum, 4899 pd->ip_sum, 1, pd2.af); 4900 4901 if (PF_ANEQ(pd2.dst, 4902 &nk->addr[pd2.didx], pd2.af) || 4903 nk->port[pd2.didx] != uh.uh_dport) 4904 pf_change_icmp(pd2.dst, &uh.uh_dport, 4905 saddr, &nk->addr[pd2.didx], 4906 nk->port[pd2.didx], &uh.uh_sum, 4907 pd2.ip_sum, icmpsum, 4908 pd->ip_sum, 1, pd2.af); 4909 4910 switch (pd2.af) { 4911 #ifdef INET 4912 case AF_INET: 4913 m_copyback(m, off, ICMP_MINLEN, 4914 (caddr_t )pd->hdr.icmp); 4915 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4916 break; 4917 #endif /* INET */ 4918 #ifdef INET6 4919 case AF_INET6: 4920 m_copyback(m, off, 4921 sizeof(struct icmp6_hdr), 4922 (caddr_t )pd->hdr.icmp6); 4923 m_copyback(m, ipoff2, sizeof(h2_6), 4924 (caddr_t )&h2_6); 4925 break; 4926 #endif /* INET6 */ 4927 } 4928 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4929 } 4930 return (PF_PASS); 4931 break; 4932 } 4933 #ifdef INET 4934 case IPPROTO_ICMP: { 4935 struct icmp iih; 4936 4937 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4938 NULL, reason, pd2.af)) { 4939 DPFPRINTF(PF_DEBUG_MISC, 4940 ("pf: ICMP error message too short i" 4941 "(icmp)\n")); 4942 return (PF_DROP); 4943 } 4944 4945 key.af = pd2.af; 4946 key.proto = IPPROTO_ICMP; 4947 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4948 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4949 key.port[0] = key.port[1] = iih.icmp_id; 4950 4951 STATE_LOOKUP(kif, &key, direction, *state, pd); 4952 4953 /* translate source/destination address, if necessary */ 4954 if ((*state)->key[PF_SK_WIRE] != 4955 (*state)->key[PF_SK_STACK]) { 4956 struct pf_state_key *nk = 4957 (*state)->key[pd->didx]; 4958 4959 if (PF_ANEQ(pd2.src, 4960 &nk->addr[pd2.sidx], pd2.af) || 4961 nk->port[pd2.sidx] != iih.icmp_id) 4962 pf_change_icmp(pd2.src, &iih.icmp_id, 4963 daddr, &nk->addr[pd2.sidx], 4964 nk->port[pd2.sidx], NULL, 4965 pd2.ip_sum, icmpsum, 4966 pd->ip_sum, 0, AF_INET); 4967 4968 if (PF_ANEQ(pd2.dst, 4969 &nk->addr[pd2.didx], pd2.af) || 4970 nk->port[pd2.didx] != iih.icmp_id) 4971 pf_change_icmp(pd2.dst, &iih.icmp_id, 4972 saddr, &nk->addr[pd2.didx], 4973 nk->port[pd2.didx], NULL, 4974 pd2.ip_sum, icmpsum, 4975 pd->ip_sum, 0, AF_INET); 4976 4977 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 4978 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4979 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 4980 } 4981 return (PF_PASS); 4982 break; 4983 } 4984 #endif /* INET */ 4985 #ifdef INET6 4986 case IPPROTO_ICMPV6: { 4987 struct icmp6_hdr iih; 4988 4989 if (!pf_pull_hdr(m, off2, &iih, 4990 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 4991 DPFPRINTF(PF_DEBUG_MISC, 4992 ("pf: ICMP error message too short " 4993 "(icmp6)\n")); 4994 return (PF_DROP); 4995 } 4996 4997 key.af = pd2.af; 4998 key.proto = IPPROTO_ICMPV6; 4999 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5000 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5001 key.port[0] = key.port[1] = iih.icmp6_id; 5002 5003 STATE_LOOKUP(kif, &key, direction, *state, pd); 5004 5005 /* translate source/destination address, if necessary */ 5006 if ((*state)->key[PF_SK_WIRE] != 5007 (*state)->key[PF_SK_STACK]) { 5008 struct pf_state_key *nk = 5009 (*state)->key[pd->didx]; 5010 5011 if (PF_ANEQ(pd2.src, 5012 &nk->addr[pd2.sidx], pd2.af) || 5013 nk->port[pd2.sidx] != iih.icmp6_id) 5014 pf_change_icmp(pd2.src, &iih.icmp6_id, 5015 daddr, &nk->addr[pd2.sidx], 5016 nk->port[pd2.sidx], NULL, 5017 pd2.ip_sum, icmpsum, 5018 pd->ip_sum, 0, AF_INET6); 5019 5020 if (PF_ANEQ(pd2.dst, 5021 &nk->addr[pd2.didx], pd2.af) || 5022 nk->port[pd2.didx] != iih.icmp6_id) 5023 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5024 saddr, &nk->addr[pd2.didx], 5025 nk->port[pd2.didx], NULL, 5026 pd2.ip_sum, icmpsum, 5027 pd->ip_sum, 0, AF_INET6); 5028 5029 m_copyback(m, off, sizeof(struct icmp6_hdr), 5030 (caddr_t)pd->hdr.icmp6); 5031 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5032 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5033 (caddr_t)&iih); 5034 } 5035 return (PF_PASS); 5036 break; 5037 } 5038 #endif /* INET6 */ 5039 default: { 5040 key.af = pd2.af; 5041 key.proto = pd2.proto; 5042 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5043 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5044 key.port[0] = key.port[1] = 0; 5045 5046 STATE_LOOKUP(kif, &key, direction, *state, pd); 5047 5048 /* translate source/destination address, if necessary */ 5049 if ((*state)->key[PF_SK_WIRE] != 5050 (*state)->key[PF_SK_STACK]) { 5051 struct pf_state_key *nk = 5052 (*state)->key[pd->didx]; 5053 5054 if (PF_ANEQ(pd2.src, 5055 &nk->addr[pd2.sidx], pd2.af)) 5056 pf_change_icmp(pd2.src, NULL, daddr, 5057 &nk->addr[pd2.sidx], 0, NULL, 5058 pd2.ip_sum, icmpsum, 5059 pd->ip_sum, 0, pd2.af); 5060 5061 if (PF_ANEQ(pd2.dst, 5062 &nk->addr[pd2.didx], pd2.af)) 5063 pf_change_icmp(pd2.dst, NULL, saddr, 5064 &nk->addr[pd2.didx], 0, NULL, 5065 pd2.ip_sum, icmpsum, 5066 pd->ip_sum, 0, pd2.af); 5067 5068 switch (pd2.af) { 5069 #ifdef INET 5070 case AF_INET: 5071 m_copyback(m, off, ICMP_MINLEN, 5072 (caddr_t)pd->hdr.icmp); 5073 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5074 break; 5075 #endif /* INET */ 5076 #ifdef INET6 5077 case AF_INET6: 5078 m_copyback(m, off, 5079 sizeof(struct icmp6_hdr), 5080 (caddr_t )pd->hdr.icmp6); 5081 m_copyback(m, ipoff2, sizeof(h2_6), 5082 (caddr_t )&h2_6); 5083 break; 5084 #endif /* INET6 */ 5085 } 5086 } 5087 return (PF_PASS); 5088 break; 5089 } 5090 } 5091 } 5092 } 5093 5094 static int 5095 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5096 struct mbuf *m, struct pf_pdesc *pd) 5097 { 5098 struct pf_state_peer *src, *dst; 5099 struct pf_state_key_cmp key; 5100 5101 bzero(&key, sizeof(key)); 5102 key.af = pd->af; 5103 key.proto = pd->proto; 5104 if (direction == PF_IN) { 5105 PF_ACPY(&key.addr[0], pd->src, key.af); 5106 PF_ACPY(&key.addr[1], pd->dst, key.af); 5107 key.port[0] = key.port[1] = 0; 5108 } else { 5109 PF_ACPY(&key.addr[1], pd->src, key.af); 5110 PF_ACPY(&key.addr[0], pd->dst, key.af); 5111 key.port[1] = key.port[0] = 0; 5112 } 5113 5114 STATE_LOOKUP(kif, &key, direction, *state, pd); 5115 5116 if (direction == (*state)->direction) { 5117 src = &(*state)->src; 5118 dst = &(*state)->dst; 5119 } else { 5120 src = &(*state)->dst; 5121 dst = &(*state)->src; 5122 } 5123 5124 /* update states */ 5125 if (src->state < PFOTHERS_SINGLE) 5126 src->state = PFOTHERS_SINGLE; 5127 if (dst->state == PFOTHERS_SINGLE) 5128 dst->state = PFOTHERS_MULTIPLE; 5129 5130 /* update expire time */ 5131 (*state)->expire = time_uptime; 5132 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5133 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5134 else 5135 (*state)->timeout = PFTM_OTHER_SINGLE; 5136 5137 /* translate source/destination address, if necessary */ 5138 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5139 struct pf_state_key *nk = (*state)->key[pd->didx]; 5140 5141 KASSERT(nk, ("%s: nk is null", __func__)); 5142 KASSERT(pd, ("%s: pd is null", __func__)); 5143 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5144 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5145 switch (pd->af) { 5146 #ifdef INET 5147 case AF_INET: 5148 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5149 pf_change_a(&pd->src->v4.s_addr, 5150 pd->ip_sum, 5151 nk->addr[pd->sidx].v4.s_addr, 5152 0); 5153 5154 5155 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5156 pf_change_a(&pd->dst->v4.s_addr, 5157 pd->ip_sum, 5158 nk->addr[pd->didx].v4.s_addr, 5159 0); 5160 5161 break; 5162 #endif /* INET */ 5163 #ifdef INET6 5164 case AF_INET6: 5165 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5166 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5167 5168 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5169 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5170 #endif /* INET6 */ 5171 } 5172 } 5173 return (PF_PASS); 5174 } 5175 5176 /* 5177 * ipoff and off are measured from the start of the mbuf chain. 5178 * h must be at "ipoff" on the mbuf chain. 5179 */ 5180 void * 5181 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5182 u_short *actionp, u_short *reasonp, sa_family_t af) 5183 { 5184 switch (af) { 5185 #ifdef INET 5186 case AF_INET: { 5187 struct ip *h = mtod(m, struct ip *); 5188 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5189 5190 if (fragoff) { 5191 if (fragoff >= len) 5192 ACTION_SET(actionp, PF_PASS); 5193 else { 5194 ACTION_SET(actionp, PF_DROP); 5195 REASON_SET(reasonp, PFRES_FRAG); 5196 } 5197 return (NULL); 5198 } 5199 if (m->m_pkthdr.len < off + len || 5200 ntohs(h->ip_len) < off + len) { 5201 ACTION_SET(actionp, PF_DROP); 5202 REASON_SET(reasonp, PFRES_SHORT); 5203 return (NULL); 5204 } 5205 break; 5206 } 5207 #endif /* INET */ 5208 #ifdef INET6 5209 case AF_INET6: { 5210 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5211 5212 if (m->m_pkthdr.len < off + len || 5213 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5214 (unsigned)(off + len)) { 5215 ACTION_SET(actionp, PF_DROP); 5216 REASON_SET(reasonp, PFRES_SHORT); 5217 return (NULL); 5218 } 5219 break; 5220 } 5221 #endif /* INET6 */ 5222 } 5223 m_copydata(m, off, len, p); 5224 return (p); 5225 } 5226 5227 #ifdef RADIX_MPATH 5228 static int 5229 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5230 int rtableid) 5231 { 5232 struct radix_node_head *rnh; 5233 struct sockaddr_in *dst; 5234 int ret = 1; 5235 int check_mpath; 5236 #ifdef INET6 5237 struct sockaddr_in6 *dst6; 5238 struct route_in6 ro; 5239 #else 5240 struct route ro; 5241 #endif 5242 struct radix_node *rn; 5243 struct rtentry *rt; 5244 struct ifnet *ifp; 5245 5246 check_mpath = 0; 5247 /* XXX: stick to table 0 for now */ 5248 rnh = rt_tables_get_rnh(0, af); 5249 if (rnh != NULL && rn_mpath_capable(rnh)) 5250 check_mpath = 1; 5251 bzero(&ro, sizeof(ro)); 5252 switch (af) { 5253 case AF_INET: 5254 dst = satosin(&ro.ro_dst); 5255 dst->sin_family = AF_INET; 5256 dst->sin_len = sizeof(*dst); 5257 dst->sin_addr = addr->v4; 5258 break; 5259 #ifdef INET6 5260 case AF_INET6: 5261 /* 5262 * Skip check for addresses with embedded interface scope, 5263 * as they would always match anyway. 5264 */ 5265 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5266 goto out; 5267 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5268 dst6->sin6_family = AF_INET6; 5269 dst6->sin6_len = sizeof(*dst6); 5270 dst6->sin6_addr = addr->v6; 5271 break; 5272 #endif /* INET6 */ 5273 default: 5274 return (0); 5275 } 5276 5277 /* Skip checks for ipsec interfaces */ 5278 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5279 goto out; 5280 5281 switch (af) { 5282 #ifdef INET6 5283 case AF_INET6: 5284 in6_rtalloc_ign(&ro, 0, rtableid); 5285 break; 5286 #endif 5287 #ifdef INET 5288 case AF_INET: 5289 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5290 break; 5291 #endif 5292 } 5293 5294 if (ro.ro_rt != NULL) { 5295 /* No interface given, this is a no-route check */ 5296 if (kif == NULL) 5297 goto out; 5298 5299 if (kif->pfik_ifp == NULL) { 5300 ret = 0; 5301 goto out; 5302 } 5303 5304 /* Perform uRPF check if passed input interface */ 5305 ret = 0; 5306 rn = (struct radix_node *)ro.ro_rt; 5307 do { 5308 rt = (struct rtentry *)rn; 5309 ifp = rt->rt_ifp; 5310 5311 if (kif->pfik_ifp == ifp) 5312 ret = 1; 5313 rn = rn_mpath_next(rn); 5314 } while (check_mpath == 1 && rn != NULL && ret == 0); 5315 } else 5316 ret = 0; 5317 out: 5318 if (ro.ro_rt != NULL) 5319 RTFREE(ro.ro_rt); 5320 return (ret); 5321 } 5322 #endif 5323 5324 int 5325 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5326 int rtableid) 5327 { 5328 #ifdef INET 5329 struct nhop4_basic nh4; 5330 #endif 5331 #ifdef INET6 5332 struct nhop6_basic nh6; 5333 #endif 5334 struct ifnet *ifp; 5335 #ifdef RADIX_MPATH 5336 struct radix_node_head *rnh; 5337 5338 /* XXX: stick to table 0 for now */ 5339 rnh = rt_tables_get_rnh(0, af); 5340 if (rnh != NULL && rn_mpath_capable(rnh)) 5341 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5342 #endif 5343 /* 5344 * Skip check for addresses with embedded interface scope, 5345 * as they would always match anyway. 5346 */ 5347 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5348 return (1); 5349 5350 if (af != AF_INET && af != AF_INET6) 5351 return (0); 5352 5353 /* Skip checks for ipsec interfaces */ 5354 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5355 return (1); 5356 5357 ifp = NULL; 5358 5359 switch (af) { 5360 #ifdef INET6 5361 case AF_INET6: 5362 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5363 return (0); 5364 ifp = nh6.nh_ifp; 5365 break; 5366 #endif 5367 #ifdef INET 5368 case AF_INET: 5369 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5370 return (0); 5371 ifp = nh4.nh_ifp; 5372 break; 5373 #endif 5374 } 5375 5376 /* No interface given, this is a no-route check */ 5377 if (kif == NULL) 5378 return (1); 5379 5380 if (kif->pfik_ifp == NULL) 5381 return (0); 5382 5383 /* Perform uRPF check if passed input interface */ 5384 if (kif->pfik_ifp == ifp) 5385 return (1); 5386 return (0); 5387 } 5388 5389 #ifdef INET 5390 static void 5391 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5392 struct pf_state *s, struct pf_pdesc *pd) 5393 { 5394 struct mbuf *m0, *m1; 5395 struct sockaddr_in dst; 5396 struct ip *ip; 5397 struct ifnet *ifp = NULL; 5398 struct pf_addr naddr; 5399 struct pf_src_node *sn = NULL; 5400 int error = 0; 5401 uint16_t ip_len, ip_off; 5402 5403 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5404 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5405 __func__)); 5406 5407 if ((pd->pf_mtag == NULL && 5408 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5409 pd->pf_mtag->routed++ > 3) { 5410 m0 = *m; 5411 *m = NULL; 5412 goto bad_locked; 5413 } 5414 5415 if (r->rt == PF_DUPTO) { 5416 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5417 if (s) 5418 PF_STATE_UNLOCK(s); 5419 return; 5420 } 5421 } else { 5422 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5423 if (s) 5424 PF_STATE_UNLOCK(s); 5425 return; 5426 } 5427 m0 = *m; 5428 } 5429 5430 ip = mtod(m0, struct ip *); 5431 5432 bzero(&dst, sizeof(dst)); 5433 dst.sin_family = AF_INET; 5434 dst.sin_len = sizeof(dst); 5435 dst.sin_addr = ip->ip_dst; 5436 5437 if (r->rt == PF_FASTROUTE) { 5438 struct nhop4_basic nh4; 5439 5440 if (s) 5441 PF_STATE_UNLOCK(s); 5442 5443 if (fib4_lookup_nh_basic(M_GETFIB(m0), ip->ip_dst, 0, 5444 m0->m_pkthdr.flowid, &nh4) != 0) { 5445 KMOD_IPSTAT_INC(ips_noroute); 5446 error = EHOSTUNREACH; 5447 goto bad; 5448 } 5449 5450 ifp = nh4.nh_ifp; 5451 dst.sin_addr = nh4.nh_addr; 5452 } else { 5453 if (TAILQ_EMPTY(&r->rpool.list)) { 5454 DPFPRINTF(PF_DEBUG_URGENT, 5455 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5456 goto bad_locked; 5457 } 5458 if (s == NULL) { 5459 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5460 &naddr, NULL, &sn); 5461 if (!PF_AZERO(&naddr, AF_INET)) 5462 dst.sin_addr.s_addr = naddr.v4.s_addr; 5463 ifp = r->rpool.cur->kif ? 5464 r->rpool.cur->kif->pfik_ifp : NULL; 5465 } else { 5466 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5467 dst.sin_addr.s_addr = 5468 s->rt_addr.v4.s_addr; 5469 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5470 PF_STATE_UNLOCK(s); 5471 } 5472 } 5473 if (ifp == NULL) 5474 goto bad; 5475 5476 if (oifp != ifp) { 5477 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5478 goto bad; 5479 else if (m0 == NULL) 5480 goto done; 5481 if (m0->m_len < sizeof(struct ip)) { 5482 DPFPRINTF(PF_DEBUG_URGENT, 5483 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5484 goto bad; 5485 } 5486 ip = mtod(m0, struct ip *); 5487 } 5488 5489 if (ifp->if_flags & IFF_LOOPBACK) 5490 m0->m_flags |= M_SKIP_FIREWALL; 5491 5492 ip_len = ntohs(ip->ip_len); 5493 ip_off = ntohs(ip->ip_off); 5494 5495 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5496 m0->m_pkthdr.csum_flags |= CSUM_IP; 5497 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5498 in_delayed_cksum(m0); 5499 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5500 } 5501 #ifdef SCTP 5502 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5503 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5504 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5505 } 5506 #endif 5507 5508 /* 5509 * If small enough for interface, or the interface will take 5510 * care of the fragmentation for us, we can just send directly. 5511 */ 5512 if (ip_len <= ifp->if_mtu || 5513 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5514 ip->ip_sum = 0; 5515 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5516 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5517 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5518 } 5519 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5520 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5521 goto done; 5522 } 5523 5524 /* Balk when DF bit is set or the interface didn't support TSO. */ 5525 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5526 error = EMSGSIZE; 5527 KMOD_IPSTAT_INC(ips_cantfrag); 5528 if (r->rt != PF_DUPTO) { 5529 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5530 ifp->if_mtu); 5531 goto done; 5532 } else 5533 goto bad; 5534 } 5535 5536 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5537 if (error) 5538 goto bad; 5539 5540 for (; m0; m0 = m1) { 5541 m1 = m0->m_nextpkt; 5542 m0->m_nextpkt = NULL; 5543 if (error == 0) { 5544 m_clrprotoflags(m0); 5545 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5546 } else 5547 m_freem(m0); 5548 } 5549 5550 if (error == 0) 5551 KMOD_IPSTAT_INC(ips_fragmented); 5552 5553 done: 5554 if (r->rt != PF_DUPTO) 5555 *m = NULL; 5556 return; 5557 5558 bad_locked: 5559 if (s) 5560 PF_STATE_UNLOCK(s); 5561 bad: 5562 m_freem(m0); 5563 goto done; 5564 } 5565 #endif /* INET */ 5566 5567 #ifdef INET6 5568 static void 5569 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5570 struct pf_state *s, struct pf_pdesc *pd) 5571 { 5572 struct mbuf *m0; 5573 struct sockaddr_in6 dst; 5574 struct ip6_hdr *ip6; 5575 struct ifnet *ifp = NULL; 5576 struct pf_addr naddr; 5577 struct pf_src_node *sn = NULL; 5578 5579 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5580 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5581 __func__)); 5582 5583 if ((pd->pf_mtag == NULL && 5584 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5585 pd->pf_mtag->routed++ > 3) { 5586 m0 = *m; 5587 *m = NULL; 5588 goto bad_locked; 5589 } 5590 5591 if (r->rt == PF_DUPTO) { 5592 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5593 if (s) 5594 PF_STATE_UNLOCK(s); 5595 return; 5596 } 5597 } else { 5598 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5599 if (s) 5600 PF_STATE_UNLOCK(s); 5601 return; 5602 } 5603 m0 = *m; 5604 } 5605 5606 ip6 = mtod(m0, struct ip6_hdr *); 5607 5608 bzero(&dst, sizeof(dst)); 5609 dst.sin6_family = AF_INET6; 5610 dst.sin6_len = sizeof(dst); 5611 dst.sin6_addr = ip6->ip6_dst; 5612 5613 /* Cheat. XXX why only in the v6 case??? */ 5614 if (r->rt == PF_FASTROUTE) { 5615 if (s) 5616 PF_STATE_UNLOCK(s); 5617 m0->m_flags |= M_SKIP_FIREWALL; 5618 ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); 5619 *m = NULL; 5620 return; 5621 } 5622 5623 if (TAILQ_EMPTY(&r->rpool.list)) { 5624 DPFPRINTF(PF_DEBUG_URGENT, 5625 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5626 goto bad_locked; 5627 } 5628 if (s == NULL) { 5629 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5630 &naddr, NULL, &sn); 5631 if (!PF_AZERO(&naddr, AF_INET6)) 5632 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5633 &naddr, AF_INET6); 5634 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5635 } else { 5636 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5637 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5638 &s->rt_addr, AF_INET6); 5639 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5640 } 5641 5642 if (s) 5643 PF_STATE_UNLOCK(s); 5644 5645 if (ifp == NULL) 5646 goto bad; 5647 5648 if (oifp != ifp) { 5649 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5650 goto bad; 5651 else if (m0 == NULL) 5652 goto done; 5653 if (m0->m_len < sizeof(struct ip6_hdr)) { 5654 DPFPRINTF(PF_DEBUG_URGENT, 5655 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5656 __func__)); 5657 goto bad; 5658 } 5659 ip6 = mtod(m0, struct ip6_hdr *); 5660 } 5661 5662 if (ifp->if_flags & IFF_LOOPBACK) 5663 m0->m_flags |= M_SKIP_FIREWALL; 5664 5665 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5666 ~ifp->if_hwassist) { 5667 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5668 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5669 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5670 } 5671 5672 /* 5673 * If the packet is too large for the outgoing interface, 5674 * send back an icmp6 error. 5675 */ 5676 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5677 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5678 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5679 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5680 else { 5681 in6_ifstat_inc(ifp, ifs6_in_toobig); 5682 if (r->rt != PF_DUPTO) 5683 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5684 else 5685 goto bad; 5686 } 5687 5688 done: 5689 if (r->rt != PF_DUPTO) 5690 *m = NULL; 5691 return; 5692 5693 bad_locked: 5694 if (s) 5695 PF_STATE_UNLOCK(s); 5696 bad: 5697 m_freem(m0); 5698 goto done; 5699 } 5700 #endif /* INET6 */ 5701 5702 /* 5703 * FreeBSD supports cksum offloads for the following drivers. 5704 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5705 * ti(4), txp(4), xl(4) 5706 * 5707 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5708 * network driver performed cksum including pseudo header, need to verify 5709 * csum_data 5710 * CSUM_DATA_VALID : 5711 * network driver performed cksum, needs to additional pseudo header 5712 * cksum computation with partial csum_data(i.e. lack of H/W support for 5713 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5714 * 5715 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5716 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5717 * TCP/UDP layer. 5718 * Also, set csum_data to 0xffff to force cksum validation. 5719 */ 5720 static int 5721 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5722 { 5723 u_int16_t sum = 0; 5724 int hw_assist = 0; 5725 struct ip *ip; 5726 5727 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5728 return (1); 5729 if (m->m_pkthdr.len < off + len) 5730 return (1); 5731 5732 switch (p) { 5733 case IPPROTO_TCP: 5734 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5735 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5736 sum = m->m_pkthdr.csum_data; 5737 } else { 5738 ip = mtod(m, struct ip *); 5739 sum = in_pseudo(ip->ip_src.s_addr, 5740 ip->ip_dst.s_addr, htonl((u_short)len + 5741 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5742 } 5743 sum ^= 0xffff; 5744 ++hw_assist; 5745 } 5746 break; 5747 case IPPROTO_UDP: 5748 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5749 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5750 sum = m->m_pkthdr.csum_data; 5751 } else { 5752 ip = mtod(m, struct ip *); 5753 sum = in_pseudo(ip->ip_src.s_addr, 5754 ip->ip_dst.s_addr, htonl((u_short)len + 5755 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5756 } 5757 sum ^= 0xffff; 5758 ++hw_assist; 5759 } 5760 break; 5761 case IPPROTO_ICMP: 5762 #ifdef INET6 5763 case IPPROTO_ICMPV6: 5764 #endif /* INET6 */ 5765 break; 5766 default: 5767 return (1); 5768 } 5769 5770 if (!hw_assist) { 5771 switch (af) { 5772 case AF_INET: 5773 if (p == IPPROTO_ICMP) { 5774 if (m->m_len < off) 5775 return (1); 5776 m->m_data += off; 5777 m->m_len -= off; 5778 sum = in_cksum(m, len); 5779 m->m_data -= off; 5780 m->m_len += off; 5781 } else { 5782 if (m->m_len < sizeof(struct ip)) 5783 return (1); 5784 sum = in4_cksum(m, p, off, len); 5785 } 5786 break; 5787 #ifdef INET6 5788 case AF_INET6: 5789 if (m->m_len < sizeof(struct ip6_hdr)) 5790 return (1); 5791 sum = in6_cksum(m, p, off, len); 5792 break; 5793 #endif /* INET6 */ 5794 default: 5795 return (1); 5796 } 5797 } 5798 if (sum) { 5799 switch (p) { 5800 case IPPROTO_TCP: 5801 { 5802 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5803 break; 5804 } 5805 case IPPROTO_UDP: 5806 { 5807 KMOD_UDPSTAT_INC(udps_badsum); 5808 break; 5809 } 5810 #ifdef INET 5811 case IPPROTO_ICMP: 5812 { 5813 KMOD_ICMPSTAT_INC(icps_checksum); 5814 break; 5815 } 5816 #endif 5817 #ifdef INET6 5818 case IPPROTO_ICMPV6: 5819 { 5820 KMOD_ICMP6STAT_INC(icp6s_checksum); 5821 break; 5822 } 5823 #endif /* INET6 */ 5824 } 5825 return (1); 5826 } else { 5827 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5828 m->m_pkthdr.csum_flags |= 5829 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5830 m->m_pkthdr.csum_data = 0xffff; 5831 } 5832 } 5833 return (0); 5834 } 5835 5836 5837 #ifdef INET 5838 int 5839 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5840 { 5841 struct pfi_kif *kif; 5842 u_short action, reason = 0, log = 0; 5843 struct mbuf *m = *m0; 5844 struct ip *h = NULL; 5845 struct m_tag *ipfwtag; 5846 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5847 struct pf_state *s = NULL; 5848 struct pf_ruleset *ruleset = NULL; 5849 struct pf_pdesc pd; 5850 int off, dirndx, pqid = 0; 5851 5852 M_ASSERTPKTHDR(m); 5853 5854 if (!V_pf_status.running) 5855 return (PF_PASS); 5856 5857 memset(&pd, 0, sizeof(pd)); 5858 5859 kif = (struct pfi_kif *)ifp->if_pf_kif; 5860 5861 if (kif == NULL) { 5862 DPFPRINTF(PF_DEBUG_URGENT, 5863 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5864 return (PF_DROP); 5865 } 5866 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5867 return (PF_PASS); 5868 5869 if (m->m_flags & M_SKIP_FIREWALL) 5870 return (PF_PASS); 5871 5872 pd.pf_mtag = pf_find_mtag(m); 5873 5874 PF_RULES_RLOCK(); 5875 5876 if (ip_divert_ptr != NULL && 5877 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5878 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5879 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5880 if (pd.pf_mtag == NULL && 5881 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5882 action = PF_DROP; 5883 goto done; 5884 } 5885 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5886 m_tag_delete(m, ipfwtag); 5887 } 5888 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5889 m->m_flags |= M_FASTFWD_OURS; 5890 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5891 } 5892 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5893 /* We do IP header normalization and packet reassembly here */ 5894 action = PF_DROP; 5895 goto done; 5896 } 5897 m = *m0; /* pf_normalize messes with m0 */ 5898 h = mtod(m, struct ip *); 5899 5900 off = h->ip_hl << 2; 5901 if (off < (int)sizeof(struct ip)) { 5902 action = PF_DROP; 5903 REASON_SET(&reason, PFRES_SHORT); 5904 log = 1; 5905 goto done; 5906 } 5907 5908 pd.src = (struct pf_addr *)&h->ip_src; 5909 pd.dst = (struct pf_addr *)&h->ip_dst; 5910 pd.sport = pd.dport = NULL; 5911 pd.ip_sum = &h->ip_sum; 5912 pd.proto_sum = NULL; 5913 pd.proto = h->ip_p; 5914 pd.dir = dir; 5915 pd.sidx = (dir == PF_IN) ? 0 : 1; 5916 pd.didx = (dir == PF_IN) ? 1 : 0; 5917 pd.af = AF_INET; 5918 pd.tos = h->ip_tos; 5919 pd.tot_len = ntohs(h->ip_len); 5920 5921 /* handle fragments that didn't get reassembled by normalization */ 5922 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5923 action = pf_test_fragment(&r, dir, kif, m, h, 5924 &pd, &a, &ruleset); 5925 goto done; 5926 } 5927 5928 switch (h->ip_p) { 5929 5930 case IPPROTO_TCP: { 5931 struct tcphdr th; 5932 5933 pd.hdr.tcp = &th; 5934 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5935 &action, &reason, AF_INET)) { 5936 log = action != PF_PASS; 5937 goto done; 5938 } 5939 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5940 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5941 pqid = 1; 5942 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5943 if (action == PF_DROP) 5944 goto done; 5945 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5946 &reason); 5947 if (action == PF_PASS) { 5948 if (pfsync_update_state_ptr != NULL) 5949 pfsync_update_state_ptr(s); 5950 r = s->rule.ptr; 5951 a = s->anchor.ptr; 5952 log = s->log; 5953 } else if (s == NULL) 5954 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5955 &a, &ruleset, inp); 5956 break; 5957 } 5958 5959 case IPPROTO_UDP: { 5960 struct udphdr uh; 5961 5962 pd.hdr.udp = &uh; 5963 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5964 &action, &reason, AF_INET)) { 5965 log = action != PF_PASS; 5966 goto done; 5967 } 5968 if (uh.uh_dport == 0 || 5969 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5970 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5971 action = PF_DROP; 5972 REASON_SET(&reason, PFRES_SHORT); 5973 goto done; 5974 } 5975 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5976 if (action == PF_PASS) { 5977 if (pfsync_update_state_ptr != NULL) 5978 pfsync_update_state_ptr(s); 5979 r = s->rule.ptr; 5980 a = s->anchor.ptr; 5981 log = s->log; 5982 } else if (s == NULL) 5983 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5984 &a, &ruleset, inp); 5985 break; 5986 } 5987 5988 case IPPROTO_ICMP: { 5989 struct icmp ih; 5990 5991 pd.hdr.icmp = &ih; 5992 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5993 &action, &reason, AF_INET)) { 5994 log = action != PF_PASS; 5995 goto done; 5996 } 5997 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5998 &reason); 5999 if (action == PF_PASS) { 6000 if (pfsync_update_state_ptr != NULL) 6001 pfsync_update_state_ptr(s); 6002 r = s->rule.ptr; 6003 a = s->anchor.ptr; 6004 log = s->log; 6005 } else if (s == NULL) 6006 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6007 &a, &ruleset, inp); 6008 break; 6009 } 6010 6011 #ifdef INET6 6012 case IPPROTO_ICMPV6: { 6013 action = PF_DROP; 6014 DPFPRINTF(PF_DEBUG_MISC, 6015 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6016 goto done; 6017 } 6018 #endif 6019 6020 default: 6021 action = pf_test_state_other(&s, dir, kif, m, &pd); 6022 if (action == PF_PASS) { 6023 if (pfsync_update_state_ptr != NULL) 6024 pfsync_update_state_ptr(s); 6025 r = s->rule.ptr; 6026 a = s->anchor.ptr; 6027 log = s->log; 6028 } else if (s == NULL) 6029 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6030 &a, &ruleset, inp); 6031 break; 6032 } 6033 6034 done: 6035 PF_RULES_RUNLOCK(); 6036 if (action == PF_PASS && h->ip_hl > 5 && 6037 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6038 action = PF_DROP; 6039 REASON_SET(&reason, PFRES_IPOPTIONS); 6040 log = r->log; 6041 DPFPRINTF(PF_DEBUG_MISC, 6042 ("pf: dropping packet with ip options\n")); 6043 } 6044 6045 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6046 action = PF_DROP; 6047 REASON_SET(&reason, PFRES_MEMORY); 6048 } 6049 if (r->rtableid >= 0) 6050 M_SETFIB(m, r->rtableid); 6051 6052 if (r->scrub_flags & PFSTATE_SETPRIO) { 6053 if (pd.tos & IPTOS_LOWDELAY) 6054 pqid = 1; 6055 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6056 action = PF_DROP; 6057 REASON_SET(&reason, PFRES_MEMORY); 6058 log = 1; 6059 DPFPRINTF(PF_DEBUG_MISC, 6060 ("pf: failed to allocate 802.1q mtag\n")); 6061 } 6062 } 6063 6064 #ifdef ALTQ 6065 if (action == PF_PASS && r->qid) { 6066 if (pd.pf_mtag == NULL && 6067 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6068 action = PF_DROP; 6069 REASON_SET(&reason, PFRES_MEMORY); 6070 } else { 6071 if (s != NULL) 6072 pd.pf_mtag->qid_hash = pf_state_hash(s); 6073 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6074 pd.pf_mtag->qid = r->pqid; 6075 else 6076 pd.pf_mtag->qid = r->qid; 6077 /* Add hints for ecn. */ 6078 pd.pf_mtag->hdr = h; 6079 } 6080 6081 } 6082 #endif /* ALTQ */ 6083 6084 /* 6085 * connections redirected to loopback should not match sockets 6086 * bound specifically to loopback due to security implications, 6087 * see tcp_input() and in_pcblookup_listen(). 6088 */ 6089 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6090 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6091 (s->nat_rule.ptr->action == PF_RDR || 6092 s->nat_rule.ptr->action == PF_BINAT) && 6093 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6094 m->m_flags |= M_SKIP_FIREWALL; 6095 6096 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6097 !PACKET_LOOPED(&pd)) { 6098 6099 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6100 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6101 if (ipfwtag != NULL) { 6102 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6103 ntohs(r->divert.port); 6104 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6105 6106 if (s) 6107 PF_STATE_UNLOCK(s); 6108 6109 m_tag_prepend(m, ipfwtag); 6110 if (m->m_flags & M_FASTFWD_OURS) { 6111 if (pd.pf_mtag == NULL && 6112 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6113 action = PF_DROP; 6114 REASON_SET(&reason, PFRES_MEMORY); 6115 log = 1; 6116 DPFPRINTF(PF_DEBUG_MISC, 6117 ("pf: failed to allocate tag\n")); 6118 } else { 6119 pd.pf_mtag->flags |= 6120 PF_FASTFWD_OURS_PRESENT; 6121 m->m_flags &= ~M_FASTFWD_OURS; 6122 } 6123 } 6124 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6125 *m0 = NULL; 6126 6127 return (action); 6128 } else { 6129 /* XXX: ipfw has the same behaviour! */ 6130 action = PF_DROP; 6131 REASON_SET(&reason, PFRES_MEMORY); 6132 log = 1; 6133 DPFPRINTF(PF_DEBUG_MISC, 6134 ("pf: failed to allocate divert tag\n")); 6135 } 6136 } 6137 6138 if (log) { 6139 struct pf_rule *lr; 6140 6141 if (s != NULL && s->nat_rule.ptr != NULL && 6142 s->nat_rule.ptr->log & PF_LOG_ALL) 6143 lr = s->nat_rule.ptr; 6144 else 6145 lr = r; 6146 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6147 (s == NULL)); 6148 } 6149 6150 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6151 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6152 6153 if (action == PF_PASS || r->action == PF_DROP) { 6154 dirndx = (dir == PF_OUT); 6155 r->packets[dirndx]++; 6156 r->bytes[dirndx] += pd.tot_len; 6157 if (a != NULL) { 6158 a->packets[dirndx]++; 6159 a->bytes[dirndx] += pd.tot_len; 6160 } 6161 if (s != NULL) { 6162 if (s->nat_rule.ptr != NULL) { 6163 s->nat_rule.ptr->packets[dirndx]++; 6164 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6165 } 6166 if (s->src_node != NULL) { 6167 s->src_node->packets[dirndx]++; 6168 s->src_node->bytes[dirndx] += pd.tot_len; 6169 } 6170 if (s->nat_src_node != NULL) { 6171 s->nat_src_node->packets[dirndx]++; 6172 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6173 } 6174 dirndx = (dir == s->direction) ? 0 : 1; 6175 s->packets[dirndx]++; 6176 s->bytes[dirndx] += pd.tot_len; 6177 } 6178 tr = r; 6179 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6180 if (nr != NULL && r == &V_pf_default_rule) 6181 tr = nr; 6182 if (tr->src.addr.type == PF_ADDR_TABLE) 6183 pfr_update_stats(tr->src.addr.p.tbl, 6184 (s == NULL) ? pd.src : 6185 &s->key[(s->direction == PF_IN)]-> 6186 addr[(s->direction == PF_OUT)], 6187 pd.af, pd.tot_len, dir == PF_OUT, 6188 r->action == PF_PASS, tr->src.neg); 6189 if (tr->dst.addr.type == PF_ADDR_TABLE) 6190 pfr_update_stats(tr->dst.addr.p.tbl, 6191 (s == NULL) ? pd.dst : 6192 &s->key[(s->direction == PF_IN)]-> 6193 addr[(s->direction == PF_IN)], 6194 pd.af, pd.tot_len, dir == PF_OUT, 6195 r->action == PF_PASS, tr->dst.neg); 6196 } 6197 6198 switch (action) { 6199 case PF_SYNPROXY_DROP: 6200 m_freem(*m0); 6201 case PF_DEFER: 6202 *m0 = NULL; 6203 action = PF_PASS; 6204 break; 6205 case PF_DROP: 6206 m_freem(*m0); 6207 *m0 = NULL; 6208 break; 6209 default: 6210 /* pf_route() returns unlocked. */ 6211 if (r->rt) { 6212 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6213 return (action); 6214 } 6215 break; 6216 } 6217 if (s) 6218 PF_STATE_UNLOCK(s); 6219 6220 return (action); 6221 } 6222 #endif /* INET */ 6223 6224 #ifdef INET6 6225 int 6226 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6227 { 6228 struct pfi_kif *kif; 6229 u_short action, reason = 0, log = 0; 6230 struct mbuf *m = *m0, *n = NULL; 6231 struct m_tag *mtag; 6232 struct ip6_hdr *h = NULL; 6233 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6234 struct pf_state *s = NULL; 6235 struct pf_ruleset *ruleset = NULL; 6236 struct pf_pdesc pd; 6237 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6238 int fwdir = dir; 6239 6240 M_ASSERTPKTHDR(m); 6241 6242 /* Detect packet forwarding. 6243 * If the input interface is different from the output interface we're 6244 * forwarding. 6245 * We do need to be careful about bridges. If the 6246 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6247 * bridge, so if the input interface is a bridge member and the output 6248 * interface is its bridge or a member of the same bridge we're not 6249 * actually forwarding but bridging. 6250 */ 6251 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6252 (m->m_pkthdr.rcvif->if_bridge == NULL || 6253 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6254 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6255 fwdir = PF_FWD; 6256 6257 if (!V_pf_status.running) 6258 return (PF_PASS); 6259 6260 memset(&pd, 0, sizeof(pd)); 6261 pd.pf_mtag = pf_find_mtag(m); 6262 6263 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6264 return (PF_PASS); 6265 6266 kif = (struct pfi_kif *)ifp->if_pf_kif; 6267 if (kif == NULL) { 6268 DPFPRINTF(PF_DEBUG_URGENT, 6269 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6270 return (PF_DROP); 6271 } 6272 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6273 return (PF_PASS); 6274 6275 if (m->m_flags & M_SKIP_FIREWALL) 6276 return (PF_PASS); 6277 6278 PF_RULES_RLOCK(); 6279 6280 /* We do IP header normalization and packet reassembly here */ 6281 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6282 action = PF_DROP; 6283 goto done; 6284 } 6285 m = *m0; /* pf_normalize messes with m0 */ 6286 h = mtod(m, struct ip6_hdr *); 6287 6288 #if 1 6289 /* 6290 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6291 * will do something bad, so drop the packet for now. 6292 */ 6293 if (htons(h->ip6_plen) == 0) { 6294 action = PF_DROP; 6295 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6296 goto done; 6297 } 6298 #endif 6299 6300 pd.src = (struct pf_addr *)&h->ip6_src; 6301 pd.dst = (struct pf_addr *)&h->ip6_dst; 6302 pd.sport = pd.dport = NULL; 6303 pd.ip_sum = NULL; 6304 pd.proto_sum = NULL; 6305 pd.dir = dir; 6306 pd.sidx = (dir == PF_IN) ? 0 : 1; 6307 pd.didx = (dir == PF_IN) ? 1 : 0; 6308 pd.af = AF_INET6; 6309 pd.tos = 0; 6310 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6311 6312 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6313 pd.proto = h->ip6_nxt; 6314 do { 6315 switch (pd.proto) { 6316 case IPPROTO_FRAGMENT: 6317 action = pf_test_fragment(&r, dir, kif, m, h, 6318 &pd, &a, &ruleset); 6319 if (action == PF_DROP) 6320 REASON_SET(&reason, PFRES_FRAG); 6321 goto done; 6322 case IPPROTO_ROUTING: { 6323 struct ip6_rthdr rthdr; 6324 6325 if (rh_cnt++) { 6326 DPFPRINTF(PF_DEBUG_MISC, 6327 ("pf: IPv6 more than one rthdr\n")); 6328 action = PF_DROP; 6329 REASON_SET(&reason, PFRES_IPOPTIONS); 6330 log = 1; 6331 goto done; 6332 } 6333 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6334 &reason, pd.af)) { 6335 DPFPRINTF(PF_DEBUG_MISC, 6336 ("pf: IPv6 short rthdr\n")); 6337 action = PF_DROP; 6338 REASON_SET(&reason, PFRES_SHORT); 6339 log = 1; 6340 goto done; 6341 } 6342 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6343 DPFPRINTF(PF_DEBUG_MISC, 6344 ("pf: IPv6 rthdr0\n")); 6345 action = PF_DROP; 6346 REASON_SET(&reason, PFRES_IPOPTIONS); 6347 log = 1; 6348 goto done; 6349 } 6350 /* FALLTHROUGH */ 6351 } 6352 case IPPROTO_AH: 6353 case IPPROTO_HOPOPTS: 6354 case IPPROTO_DSTOPTS: { 6355 /* get next header and header length */ 6356 struct ip6_ext opt6; 6357 6358 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6359 NULL, &reason, pd.af)) { 6360 DPFPRINTF(PF_DEBUG_MISC, 6361 ("pf: IPv6 short opt\n")); 6362 action = PF_DROP; 6363 log = 1; 6364 goto done; 6365 } 6366 if (pd.proto == IPPROTO_AH) 6367 off += (opt6.ip6e_len + 2) * 4; 6368 else 6369 off += (opt6.ip6e_len + 1) * 8; 6370 pd.proto = opt6.ip6e_nxt; 6371 /* goto the next header */ 6372 break; 6373 } 6374 default: 6375 terminal++; 6376 break; 6377 } 6378 } while (!terminal); 6379 6380 /* if there's no routing header, use unmodified mbuf for checksumming */ 6381 if (!n) 6382 n = m; 6383 6384 switch (pd.proto) { 6385 6386 case IPPROTO_TCP: { 6387 struct tcphdr th; 6388 6389 pd.hdr.tcp = &th; 6390 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6391 &action, &reason, AF_INET6)) { 6392 log = action != PF_PASS; 6393 goto done; 6394 } 6395 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6396 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6397 if (action == PF_DROP) 6398 goto done; 6399 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6400 &reason); 6401 if (action == PF_PASS) { 6402 if (pfsync_update_state_ptr != NULL) 6403 pfsync_update_state_ptr(s); 6404 r = s->rule.ptr; 6405 a = s->anchor.ptr; 6406 log = s->log; 6407 } else if (s == NULL) 6408 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6409 &a, &ruleset, inp); 6410 break; 6411 } 6412 6413 case IPPROTO_UDP: { 6414 struct udphdr uh; 6415 6416 pd.hdr.udp = &uh; 6417 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6418 &action, &reason, AF_INET6)) { 6419 log = action != PF_PASS; 6420 goto done; 6421 } 6422 if (uh.uh_dport == 0 || 6423 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6424 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6425 action = PF_DROP; 6426 REASON_SET(&reason, PFRES_SHORT); 6427 goto done; 6428 } 6429 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6430 if (action == PF_PASS) { 6431 if (pfsync_update_state_ptr != NULL) 6432 pfsync_update_state_ptr(s); 6433 r = s->rule.ptr; 6434 a = s->anchor.ptr; 6435 log = s->log; 6436 } else if (s == NULL) 6437 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6438 &a, &ruleset, inp); 6439 break; 6440 } 6441 6442 case IPPROTO_ICMP: { 6443 action = PF_DROP; 6444 DPFPRINTF(PF_DEBUG_MISC, 6445 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6446 goto done; 6447 } 6448 6449 case IPPROTO_ICMPV6: { 6450 struct icmp6_hdr ih; 6451 6452 pd.hdr.icmp6 = &ih; 6453 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6454 &action, &reason, AF_INET6)) { 6455 log = action != PF_PASS; 6456 goto done; 6457 } 6458 action = pf_test_state_icmp(&s, dir, kif, 6459 m, off, h, &pd, &reason); 6460 if (action == PF_PASS) { 6461 if (pfsync_update_state_ptr != NULL) 6462 pfsync_update_state_ptr(s); 6463 r = s->rule.ptr; 6464 a = s->anchor.ptr; 6465 log = s->log; 6466 } else if (s == NULL) 6467 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6468 &a, &ruleset, inp); 6469 break; 6470 } 6471 6472 default: 6473 action = pf_test_state_other(&s, dir, kif, m, &pd); 6474 if (action == PF_PASS) { 6475 if (pfsync_update_state_ptr != NULL) 6476 pfsync_update_state_ptr(s); 6477 r = s->rule.ptr; 6478 a = s->anchor.ptr; 6479 log = s->log; 6480 } else if (s == NULL) 6481 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6482 &a, &ruleset, inp); 6483 break; 6484 } 6485 6486 done: 6487 PF_RULES_RUNLOCK(); 6488 if (n != m) { 6489 m_freem(n); 6490 n = NULL; 6491 } 6492 6493 /* handle dangerous IPv6 extension headers. */ 6494 if (action == PF_PASS && rh_cnt && 6495 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6496 action = PF_DROP; 6497 REASON_SET(&reason, PFRES_IPOPTIONS); 6498 log = r->log; 6499 DPFPRINTF(PF_DEBUG_MISC, 6500 ("pf: dropping packet with dangerous v6 headers\n")); 6501 } 6502 6503 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6504 action = PF_DROP; 6505 REASON_SET(&reason, PFRES_MEMORY); 6506 } 6507 if (r->rtableid >= 0) 6508 M_SETFIB(m, r->rtableid); 6509 6510 if (r->scrub_flags & PFSTATE_SETPRIO) { 6511 if (pd.tos & IPTOS_LOWDELAY) 6512 pqid = 1; 6513 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6514 action = PF_DROP; 6515 REASON_SET(&reason, PFRES_MEMORY); 6516 log = 1; 6517 DPFPRINTF(PF_DEBUG_MISC, 6518 ("pf: failed to allocate 802.1q mtag\n")); 6519 } 6520 } 6521 6522 #ifdef ALTQ 6523 if (action == PF_PASS && r->qid) { 6524 if (pd.pf_mtag == NULL && 6525 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6526 action = PF_DROP; 6527 REASON_SET(&reason, PFRES_MEMORY); 6528 } else { 6529 if (s != NULL) 6530 pd.pf_mtag->qid_hash = pf_state_hash(s); 6531 if (pd.tos & IPTOS_LOWDELAY) 6532 pd.pf_mtag->qid = r->pqid; 6533 else 6534 pd.pf_mtag->qid = r->qid; 6535 /* Add hints for ecn. */ 6536 pd.pf_mtag->hdr = h; 6537 } 6538 } 6539 #endif /* ALTQ */ 6540 6541 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6542 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6543 (s->nat_rule.ptr->action == PF_RDR || 6544 s->nat_rule.ptr->action == PF_BINAT) && 6545 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6546 m->m_flags |= M_SKIP_FIREWALL; 6547 6548 /* XXX: Anybody working on it?! */ 6549 if (r->divert.port) 6550 printf("pf: divert(9) is not supported for IPv6\n"); 6551 6552 if (log) { 6553 struct pf_rule *lr; 6554 6555 if (s != NULL && s->nat_rule.ptr != NULL && 6556 s->nat_rule.ptr->log & PF_LOG_ALL) 6557 lr = s->nat_rule.ptr; 6558 else 6559 lr = r; 6560 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6561 &pd, (s == NULL)); 6562 } 6563 6564 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6565 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6566 6567 if (action == PF_PASS || r->action == PF_DROP) { 6568 dirndx = (dir == PF_OUT); 6569 r->packets[dirndx]++; 6570 r->bytes[dirndx] += pd.tot_len; 6571 if (a != NULL) { 6572 a->packets[dirndx]++; 6573 a->bytes[dirndx] += pd.tot_len; 6574 } 6575 if (s != NULL) { 6576 if (s->nat_rule.ptr != NULL) { 6577 s->nat_rule.ptr->packets[dirndx]++; 6578 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6579 } 6580 if (s->src_node != NULL) { 6581 s->src_node->packets[dirndx]++; 6582 s->src_node->bytes[dirndx] += pd.tot_len; 6583 } 6584 if (s->nat_src_node != NULL) { 6585 s->nat_src_node->packets[dirndx]++; 6586 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6587 } 6588 dirndx = (dir == s->direction) ? 0 : 1; 6589 s->packets[dirndx]++; 6590 s->bytes[dirndx] += pd.tot_len; 6591 } 6592 tr = r; 6593 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6594 if (nr != NULL && r == &V_pf_default_rule) 6595 tr = nr; 6596 if (tr->src.addr.type == PF_ADDR_TABLE) 6597 pfr_update_stats(tr->src.addr.p.tbl, 6598 (s == NULL) ? pd.src : 6599 &s->key[(s->direction == PF_IN)]->addr[0], 6600 pd.af, pd.tot_len, dir == PF_OUT, 6601 r->action == PF_PASS, tr->src.neg); 6602 if (tr->dst.addr.type == PF_ADDR_TABLE) 6603 pfr_update_stats(tr->dst.addr.p.tbl, 6604 (s == NULL) ? pd.dst : 6605 &s->key[(s->direction == PF_IN)]->addr[1], 6606 pd.af, pd.tot_len, dir == PF_OUT, 6607 r->action == PF_PASS, tr->dst.neg); 6608 } 6609 6610 switch (action) { 6611 case PF_SYNPROXY_DROP: 6612 m_freem(*m0); 6613 case PF_DEFER: 6614 *m0 = NULL; 6615 action = PF_PASS; 6616 break; 6617 case PF_DROP: 6618 m_freem(*m0); 6619 *m0 = NULL; 6620 break; 6621 default: 6622 /* pf_route6() returns unlocked. */ 6623 if (r->rt) { 6624 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6625 return (action); 6626 } 6627 break; 6628 } 6629 6630 if (s) 6631 PF_STATE_UNLOCK(s); 6632 6633 /* If reassembled packet passed, create new fragments. */ 6634 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6635 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6636 action = pf_refragment6(ifp, m0, mtag); 6637 6638 return (action); 6639 } 6640 #endif /* INET6 */ 6641