1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/taskqueue.h> 65 #include <sys/ucred.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/radix_mpath.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #ifdef SCTP 107 #include <netinet/sctp_crc32.h> 108 #endif 109 110 #include <machine/in_cksum.h> 111 #include <security/mac/mac_framework.h> 112 113 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 114 115 /* 116 * Global variables 117 */ 118 119 /* state tables */ 120 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 121 VNET_DEFINE(struct pf_palist, pf_pabuf); 122 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 123 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 124 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 125 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 126 VNET_DEFINE(struct pf_kstatus, pf_status); 127 128 VNET_DEFINE(u_int32_t, ticket_altqs_active); 129 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 130 VNET_DEFINE(int, altqs_inactive_open); 131 VNET_DEFINE(u_int32_t, ticket_pabuf); 132 133 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 134 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 135 VNET_DEFINE(u_char, pf_tcp_secret[16]); 136 #define V_pf_tcp_secret VNET(pf_tcp_secret) 137 VNET_DEFINE(int, pf_tcp_secret_init); 138 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 139 VNET_DEFINE(int, pf_tcp_iss_off); 140 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 141 VNET_DECLARE(int, pf_vnet_active); 142 #define V_pf_vnet_active VNET(pf_vnet_active) 143 144 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 145 #define V_pf_purge_idx VNET(pf_purge_idx) 146 147 /* 148 * Queue for pf_intr() sends. 149 */ 150 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 151 struct pf_send_entry { 152 STAILQ_ENTRY(pf_send_entry) pfse_next; 153 struct mbuf *pfse_m; 154 enum { 155 PFSE_IP, 156 PFSE_IP6, 157 PFSE_ICMP, 158 PFSE_ICMP6, 159 } pfse_type; 160 struct { 161 int type; 162 int code; 163 int mtu; 164 } icmpopts; 165 }; 166 167 STAILQ_HEAD(pf_send_head, pf_send_entry); 168 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 169 #define V_pf_sendqueue VNET(pf_sendqueue) 170 171 static struct mtx pf_sendqueue_mtx; 172 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 173 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 174 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 175 176 /* 177 * Queue for pf_overload_task() tasks. 178 */ 179 struct pf_overload_entry { 180 SLIST_ENTRY(pf_overload_entry) next; 181 struct pf_addr addr; 182 sa_family_t af; 183 uint8_t dir; 184 struct pf_rule *rule; 185 }; 186 187 SLIST_HEAD(pf_overload_head, pf_overload_entry); 188 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 189 #define V_pf_overloadqueue VNET(pf_overloadqueue) 190 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 191 #define V_pf_overloadtask VNET(pf_overloadtask) 192 193 static struct mtx pf_overloadqueue_mtx; 194 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 195 "pf overload/flush queue", MTX_DEF); 196 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 197 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 198 199 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 200 struct mtx pf_unlnkdrules_mtx; 201 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 202 MTX_DEF); 203 204 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 205 #define V_pf_sources_z VNET(pf_sources_z) 206 uma_zone_t pf_mtag_z; 207 VNET_DEFINE(uma_zone_t, pf_state_z); 208 VNET_DEFINE(uma_zone_t, pf_state_key_z); 209 210 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 211 #define PFID_CPUBITS 8 212 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 213 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 214 #define PFID_MAXID (~PFID_CPUMASK) 215 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 216 217 static void pf_src_tree_remove_state(struct pf_state *); 218 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 219 u_int32_t); 220 static void pf_add_threshold(struct pf_threshold *); 221 static int pf_check_threshold(struct pf_threshold *); 222 223 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 224 u_int16_t *, u_int16_t *, struct pf_addr *, 225 u_int16_t, u_int8_t, sa_family_t); 226 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 227 struct tcphdr *, struct pf_state_peer *); 228 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 229 struct pf_addr *, struct pf_addr *, u_int16_t, 230 u_int16_t *, u_int16_t *, u_int16_t *, 231 u_int16_t *, u_int8_t, sa_family_t); 232 static void pf_send_tcp(struct mbuf *, 233 const struct pf_rule *, sa_family_t, 234 const struct pf_addr *, const struct pf_addr *, 235 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 236 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 237 u_int16_t, struct ifnet *); 238 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 239 sa_family_t, struct pf_rule *); 240 static void pf_detach_state(struct pf_state *); 241 static int pf_state_key_attach(struct pf_state_key *, 242 struct pf_state_key *, struct pf_state *); 243 static void pf_state_key_detach(struct pf_state *, int); 244 static int pf_state_key_ctor(void *, int, void *, int); 245 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 246 static int pf_test_rule(struct pf_rule **, struct pf_state **, 247 int, struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, struct pf_rule **, 249 struct pf_ruleset **, struct inpcb *); 250 static int pf_create_state(struct pf_rule *, struct pf_rule *, 251 struct pf_rule *, struct pf_pdesc *, 252 struct pf_src_node *, struct pf_state_key *, 253 struct pf_state_key *, struct mbuf *, int, 254 u_int16_t, u_int16_t, int *, struct pfi_kif *, 255 struct pf_state **, int, u_int16_t, u_int16_t, 256 int); 257 static int pf_test_fragment(struct pf_rule **, int, 258 struct pfi_kif *, struct mbuf *, void *, 259 struct pf_pdesc *, struct pf_rule **, 260 struct pf_ruleset **); 261 static int pf_tcp_track_full(struct pf_state_peer *, 262 struct pf_state_peer *, struct pf_state **, 263 struct pfi_kif *, struct mbuf *, int, 264 struct pf_pdesc *, u_short *, int *); 265 static int pf_tcp_track_sloppy(struct pf_state_peer *, 266 struct pf_state_peer *, struct pf_state **, 267 struct pf_pdesc *, u_short *); 268 static int pf_test_state_tcp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_udp(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, int, 273 void *, struct pf_pdesc *); 274 static int pf_test_state_icmp(struct pf_state **, int, 275 struct pfi_kif *, struct mbuf *, int, 276 void *, struct pf_pdesc *, u_short *); 277 static int pf_test_state_other(struct pf_state **, int, 278 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 279 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 280 sa_family_t); 281 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 282 sa_family_t); 283 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 284 int, u_int16_t); 285 static int pf_check_proto_cksum(struct mbuf *, int, int, 286 u_int8_t, sa_family_t); 287 static void pf_print_state_parts(struct pf_state *, 288 struct pf_state_key *, struct pf_state_key *); 289 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 290 struct pf_addr_wrap *); 291 static struct pf_state *pf_find_state(struct pfi_kif *, 292 struct pf_state_key_cmp *, u_int); 293 static int pf_src_connlimit(struct pf_state **); 294 static void pf_overload_task(void *v, int pending); 295 static int pf_insert_src_node(struct pf_src_node **, 296 struct pf_rule *, struct pf_addr *, sa_family_t); 297 static u_int pf_purge_expired_states(u_int, int); 298 static void pf_purge_unlinked_rules(void); 299 static int pf_mtag_uminit(void *, int, int); 300 static void pf_mtag_free(struct m_tag *); 301 #ifdef INET 302 static void pf_route(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *, struct inpcb *); 305 #endif /* INET */ 306 #ifdef INET6 307 static void pf_change_a6(struct pf_addr *, u_int16_t *, 308 struct pf_addr *, u_int8_t); 309 static void pf_route6(struct mbuf **, struct pf_rule *, int, 310 struct ifnet *, struct pf_state *, 311 struct pf_pdesc *, struct inpcb *); 312 #endif /* INET6 */ 313 314 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 315 316 extern int pf_end_threads; 317 extern struct proc *pf_purge_proc; 318 319 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 320 321 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 322 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 323 324 #define STATE_LOOKUP(i, k, d, s, pd) \ 325 do { \ 326 (s) = pf_find_state((i), (k), (d)); \ 327 if ((s) == NULL) \ 328 return (PF_DROP); \ 329 if (PACKET_LOOPED(pd)) \ 330 return (PF_PASS); \ 331 if ((d) == PF_OUT && \ 332 (((s)->rule.ptr->rt == PF_ROUTETO && \ 333 (s)->rule.ptr->direction == PF_OUT) || \ 334 ((s)->rule.ptr->rt == PF_REPLYTO && \ 335 (s)->rule.ptr->direction == PF_IN)) && \ 336 (s)->rt_kif != NULL && \ 337 (s)->rt_kif != (i)) \ 338 return (PF_PASS); \ 339 } while (0) 340 341 #define BOUND_IFACE(r, k) \ 342 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 343 344 #define STATE_INC_COUNTERS(s) \ 345 do { \ 346 counter_u64_add(s->rule.ptr->states_cur, 1); \ 347 counter_u64_add(s->rule.ptr->states_tot, 1); \ 348 if (s->anchor.ptr != NULL) { \ 349 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 350 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 351 } \ 352 if (s->nat_rule.ptr != NULL) { \ 353 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 354 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 355 } \ 356 } while (0) 357 358 #define STATE_DEC_COUNTERS(s) \ 359 do { \ 360 if (s->nat_rule.ptr != NULL) \ 361 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 362 if (s->anchor.ptr != NULL) \ 363 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 364 counter_u64_add(s->rule.ptr->states_cur, -1); \ 365 } while (0) 366 367 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 368 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 369 VNET_DEFINE(struct pf_idhash *, pf_idhash); 370 VNET_DEFINE(struct pf_srchash *, pf_srchash); 371 372 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 373 374 u_long pf_hashmask; 375 u_long pf_srchashmask; 376 static u_long pf_hashsize; 377 static u_long pf_srchashsize; 378 u_long pf_ioctl_maxcount = 65535; 379 380 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 381 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 382 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 383 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 384 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 385 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 386 387 VNET_DEFINE(void *, pf_swi_cookie); 388 389 VNET_DEFINE(uint32_t, pf_hashseed); 390 #define V_pf_hashseed VNET(pf_hashseed) 391 392 int 393 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 394 { 395 396 switch (af) { 397 #ifdef INET 398 case AF_INET: 399 if (a->addr32[0] > b->addr32[0]) 400 return (1); 401 if (a->addr32[0] < b->addr32[0]) 402 return (-1); 403 break; 404 #endif /* INET */ 405 #ifdef INET6 406 case AF_INET6: 407 if (a->addr32[3] > b->addr32[3]) 408 return (1); 409 if (a->addr32[3] < b->addr32[3]) 410 return (-1); 411 if (a->addr32[2] > b->addr32[2]) 412 return (1); 413 if (a->addr32[2] < b->addr32[2]) 414 return (-1); 415 if (a->addr32[1] > b->addr32[1]) 416 return (1); 417 if (a->addr32[1] < b->addr32[1]) 418 return (-1); 419 if (a->addr32[0] > b->addr32[0]) 420 return (1); 421 if (a->addr32[0] < b->addr32[0]) 422 return (-1); 423 break; 424 #endif /* INET6 */ 425 default: 426 panic("%s: unknown address family %u", __func__, af); 427 } 428 return (0); 429 } 430 431 static __inline uint32_t 432 pf_hashkey(struct pf_state_key *sk) 433 { 434 uint32_t h; 435 436 h = murmur3_32_hash32((uint32_t *)sk, 437 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 438 V_pf_hashseed); 439 440 return (h & pf_hashmask); 441 } 442 443 static __inline uint32_t 444 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 445 { 446 uint32_t h; 447 448 switch (af) { 449 case AF_INET: 450 h = murmur3_32_hash32((uint32_t *)&addr->v4, 451 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 452 break; 453 case AF_INET6: 454 h = murmur3_32_hash32((uint32_t *)&addr->v6, 455 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 456 break; 457 default: 458 panic("%s: unknown address family %u", __func__, af); 459 } 460 461 return (h & pf_srchashmask); 462 } 463 464 #ifdef ALTQ 465 static int 466 pf_state_hash(struct pf_state *s) 467 { 468 u_int32_t hv = (intptr_t)s / sizeof(*s); 469 470 hv ^= crc32(&s->src, sizeof(s->src)); 471 hv ^= crc32(&s->dst, sizeof(s->dst)); 472 if (hv == 0) 473 hv = 1; 474 return (hv); 475 } 476 #endif 477 478 #ifdef INET6 479 void 480 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 481 { 482 switch (af) { 483 #ifdef INET 484 case AF_INET: 485 dst->addr32[0] = src->addr32[0]; 486 break; 487 #endif /* INET */ 488 case AF_INET6: 489 dst->addr32[0] = src->addr32[0]; 490 dst->addr32[1] = src->addr32[1]; 491 dst->addr32[2] = src->addr32[2]; 492 dst->addr32[3] = src->addr32[3]; 493 break; 494 } 495 } 496 #endif /* INET6 */ 497 498 static void 499 pf_init_threshold(struct pf_threshold *threshold, 500 u_int32_t limit, u_int32_t seconds) 501 { 502 threshold->limit = limit * PF_THRESHOLD_MULT; 503 threshold->seconds = seconds; 504 threshold->count = 0; 505 threshold->last = time_uptime; 506 } 507 508 static void 509 pf_add_threshold(struct pf_threshold *threshold) 510 { 511 u_int32_t t = time_uptime, diff = t - threshold->last; 512 513 if (diff >= threshold->seconds) 514 threshold->count = 0; 515 else 516 threshold->count -= threshold->count * diff / 517 threshold->seconds; 518 threshold->count += PF_THRESHOLD_MULT; 519 threshold->last = t; 520 } 521 522 static int 523 pf_check_threshold(struct pf_threshold *threshold) 524 { 525 return (threshold->count > threshold->limit); 526 } 527 528 static int 529 pf_src_connlimit(struct pf_state **state) 530 { 531 struct pf_overload_entry *pfoe; 532 int bad = 0; 533 534 PF_STATE_LOCK_ASSERT(*state); 535 536 (*state)->src_node->conn++; 537 (*state)->src.tcp_est = 1; 538 pf_add_threshold(&(*state)->src_node->conn_rate); 539 540 if ((*state)->rule.ptr->max_src_conn && 541 (*state)->rule.ptr->max_src_conn < 542 (*state)->src_node->conn) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 544 bad++; 545 } 546 547 if ((*state)->rule.ptr->max_src_conn_rate.limit && 548 pf_check_threshold(&(*state)->src_node->conn_rate)) { 549 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 550 bad++; 551 } 552 553 if (!bad) 554 return (0); 555 556 /* Kill this state. */ 557 (*state)->timeout = PFTM_PURGE; 558 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 559 560 if ((*state)->rule.ptr->overload_tbl == NULL) 561 return (1); 562 563 /* Schedule overloading and flushing task. */ 564 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 565 if (pfoe == NULL) 566 return (1); /* too bad :( */ 567 568 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 569 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 570 pfoe->rule = (*state)->rule.ptr; 571 pfoe->dir = (*state)->direction; 572 PF_OVERLOADQ_LOCK(); 573 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 574 PF_OVERLOADQ_UNLOCK(); 575 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 576 577 return (1); 578 } 579 580 static void 581 pf_overload_task(void *v, int pending) 582 { 583 struct pf_overload_head queue; 584 struct pfr_addr p; 585 struct pf_overload_entry *pfoe, *pfoe1; 586 uint32_t killed = 0; 587 588 CURVNET_SET((struct vnet *)v); 589 590 PF_OVERLOADQ_LOCK(); 591 queue = V_pf_overloadqueue; 592 SLIST_INIT(&V_pf_overloadqueue); 593 PF_OVERLOADQ_UNLOCK(); 594 595 bzero(&p, sizeof(p)); 596 SLIST_FOREACH(pfoe, &queue, next) { 597 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 598 if (V_pf_status.debug >= PF_DEBUG_MISC) { 599 printf("%s: blocking address ", __func__); 600 pf_print_host(&pfoe->addr, 0, pfoe->af); 601 printf("\n"); 602 } 603 604 p.pfra_af = pfoe->af; 605 switch (pfoe->af) { 606 #ifdef INET 607 case AF_INET: 608 p.pfra_net = 32; 609 p.pfra_ip4addr = pfoe->addr.v4; 610 break; 611 #endif 612 #ifdef INET6 613 case AF_INET6: 614 p.pfra_net = 128; 615 p.pfra_ip6addr = pfoe->addr.v6; 616 break; 617 #endif 618 } 619 620 PF_RULES_WLOCK(); 621 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 622 PF_RULES_WUNLOCK(); 623 } 624 625 /* 626 * Remove those entries, that don't need flushing. 627 */ 628 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 629 if (pfoe->rule->flush == 0) { 630 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 631 free(pfoe, M_PFTEMP); 632 } else 633 counter_u64_add( 634 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 635 636 /* If nothing to flush, return. */ 637 if (SLIST_EMPTY(&queue)) { 638 CURVNET_RESTORE(); 639 return; 640 } 641 642 for (int i = 0; i <= pf_hashmask; i++) { 643 struct pf_idhash *ih = &V_pf_idhash[i]; 644 struct pf_state_key *sk; 645 struct pf_state *s; 646 647 PF_HASHROW_LOCK(ih); 648 LIST_FOREACH(s, &ih->states, entry) { 649 sk = s->key[PF_SK_WIRE]; 650 SLIST_FOREACH(pfoe, &queue, next) 651 if (sk->af == pfoe->af && 652 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 653 pfoe->rule == s->rule.ptr) && 654 ((pfoe->dir == PF_OUT && 655 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 656 (pfoe->dir == PF_IN && 657 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 658 s->timeout = PFTM_PURGE; 659 s->src.state = s->dst.state = TCPS_CLOSED; 660 killed++; 661 } 662 } 663 PF_HASHROW_UNLOCK(ih); 664 } 665 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 666 free(pfoe, M_PFTEMP); 667 if (V_pf_status.debug >= PF_DEBUG_MISC) 668 printf("%s: %u states killed", __func__, killed); 669 670 CURVNET_RESTORE(); 671 } 672 673 /* 674 * Can return locked on failure, so that we can consistently 675 * allocate and insert a new one. 676 */ 677 struct pf_src_node * 678 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 679 int returnlocked) 680 { 681 struct pf_srchash *sh; 682 struct pf_src_node *n; 683 684 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 685 686 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 687 PF_HASHROW_LOCK(sh); 688 LIST_FOREACH(n, &sh->nodes, entry) 689 if (n->rule.ptr == rule && n->af == af && 690 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 691 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 692 break; 693 if (n != NULL) { 694 n->states++; 695 PF_HASHROW_UNLOCK(sh); 696 } else if (returnlocked == 0) 697 PF_HASHROW_UNLOCK(sh); 698 699 return (n); 700 } 701 702 static int 703 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 704 struct pf_addr *src, sa_family_t af) 705 { 706 707 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 708 rule->rpool.opts & PF_POOL_STICKYADDR), 709 ("%s for non-tracking rule %p", __func__, rule)); 710 711 if (*sn == NULL) 712 *sn = pf_find_src_node(src, rule, af, 1); 713 714 if (*sn == NULL) { 715 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 716 717 PF_HASHROW_ASSERT(sh); 718 719 if (!rule->max_src_nodes || 720 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 721 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 722 else 723 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 724 1); 725 if ((*sn) == NULL) { 726 PF_HASHROW_UNLOCK(sh); 727 return (-1); 728 } 729 730 pf_init_threshold(&(*sn)->conn_rate, 731 rule->max_src_conn_rate.limit, 732 rule->max_src_conn_rate.seconds); 733 734 (*sn)->af = af; 735 (*sn)->rule.ptr = rule; 736 PF_ACPY(&(*sn)->addr, src, af); 737 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 738 (*sn)->creation = time_uptime; 739 (*sn)->ruletype = rule->action; 740 (*sn)->states = 1; 741 if ((*sn)->rule.ptr != NULL) 742 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 743 PF_HASHROW_UNLOCK(sh); 744 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 745 } else { 746 if (rule->max_src_states && 747 (*sn)->states >= rule->max_src_states) { 748 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 749 1); 750 return (-1); 751 } 752 } 753 return (0); 754 } 755 756 void 757 pf_unlink_src_node(struct pf_src_node *src) 758 { 759 760 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 761 LIST_REMOVE(src, entry); 762 if (src->rule.ptr) 763 counter_u64_add(src->rule.ptr->src_nodes, -1); 764 } 765 766 u_int 767 pf_free_src_nodes(struct pf_src_node_list *head) 768 { 769 struct pf_src_node *sn, *tmp; 770 u_int count = 0; 771 772 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 773 uma_zfree(V_pf_sources_z, sn); 774 count++; 775 } 776 777 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 778 779 return (count); 780 } 781 782 void 783 pf_mtag_initialize() 784 { 785 786 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 787 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 788 UMA_ALIGN_PTR, 0); 789 } 790 791 /* Per-vnet data storage structures initialization. */ 792 void 793 pf_initialize() 794 { 795 struct pf_keyhash *kh; 796 struct pf_idhash *ih; 797 struct pf_srchash *sh; 798 u_int i; 799 800 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 801 pf_hashsize = PF_HASHSIZ; 802 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 803 pf_srchashsize = PF_SRCHASHSIZ; 804 805 V_pf_hashseed = arc4random(); 806 807 /* States and state keys storage. */ 808 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 809 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 810 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 811 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 812 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 813 814 V_pf_state_key_z = uma_zcreate("pf state keys", 815 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 816 UMA_ALIGN_PTR, 0); 817 818 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 819 M_PFHASH, M_NOWAIT | M_ZERO); 820 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 821 M_PFHASH, M_NOWAIT | M_ZERO); 822 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 823 printf("pf: Unable to allocate memory for " 824 "state_hashsize %lu.\n", pf_hashsize); 825 826 free(V_pf_keyhash, M_PFHASH); 827 free(V_pf_idhash, M_PFHASH); 828 829 pf_hashsize = PF_HASHSIZ; 830 V_pf_keyhash = mallocarray(pf_hashsize, 831 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 832 V_pf_idhash = mallocarray(pf_hashsize, 833 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 834 } 835 836 pf_hashmask = pf_hashsize - 1; 837 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 838 i++, kh++, ih++) { 839 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 840 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 841 } 842 843 /* Source nodes. */ 844 V_pf_sources_z = uma_zcreate("pf source nodes", 845 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 846 0); 847 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 848 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 849 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 850 851 V_pf_srchash = mallocarray(pf_srchashsize, 852 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 853 if (V_pf_srchash == NULL) { 854 printf("pf: Unable to allocate memory for " 855 "source_hashsize %lu.\n", pf_srchashsize); 856 857 pf_srchashsize = PF_SRCHASHSIZ; 858 V_pf_srchash = mallocarray(pf_srchashsize, 859 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 860 } 861 862 pf_srchashmask = pf_srchashsize - 1; 863 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 864 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 865 866 /* ALTQ */ 867 TAILQ_INIT(&V_pf_altqs[0]); 868 TAILQ_INIT(&V_pf_altqs[1]); 869 TAILQ_INIT(&V_pf_altqs[2]); 870 TAILQ_INIT(&V_pf_altqs[3]); 871 TAILQ_INIT(&V_pf_pabuf); 872 V_pf_altqs_active = &V_pf_altqs[0]; 873 V_pf_altq_ifs_active = &V_pf_altqs[1]; 874 V_pf_altqs_inactive = &V_pf_altqs[2]; 875 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 876 877 /* Send & overload+flush queues. */ 878 STAILQ_INIT(&V_pf_sendqueue); 879 SLIST_INIT(&V_pf_overloadqueue); 880 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 881 882 /* Unlinked, but may be referenced rules. */ 883 TAILQ_INIT(&V_pf_unlinked_rules); 884 } 885 886 void 887 pf_mtag_cleanup() 888 { 889 890 uma_zdestroy(pf_mtag_z); 891 } 892 893 void 894 pf_cleanup() 895 { 896 struct pf_keyhash *kh; 897 struct pf_idhash *ih; 898 struct pf_srchash *sh; 899 struct pf_send_entry *pfse, *next; 900 u_int i; 901 902 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 903 i++, kh++, ih++) { 904 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 905 __func__)); 906 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 907 __func__)); 908 mtx_destroy(&kh->lock); 909 mtx_destroy(&ih->lock); 910 } 911 free(V_pf_keyhash, M_PFHASH); 912 free(V_pf_idhash, M_PFHASH); 913 914 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 915 KASSERT(LIST_EMPTY(&sh->nodes), 916 ("%s: source node hash not empty", __func__)); 917 mtx_destroy(&sh->lock); 918 } 919 free(V_pf_srchash, M_PFHASH); 920 921 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 922 m_freem(pfse->pfse_m); 923 free(pfse, M_PFTEMP); 924 } 925 926 uma_zdestroy(V_pf_sources_z); 927 uma_zdestroy(V_pf_state_z); 928 uma_zdestroy(V_pf_state_key_z); 929 } 930 931 static int 932 pf_mtag_uminit(void *mem, int size, int how) 933 { 934 struct m_tag *t; 935 936 t = (struct m_tag *)mem; 937 t->m_tag_cookie = MTAG_ABI_COMPAT; 938 t->m_tag_id = PACKET_TAG_PF; 939 t->m_tag_len = sizeof(struct pf_mtag); 940 t->m_tag_free = pf_mtag_free; 941 942 return (0); 943 } 944 945 static void 946 pf_mtag_free(struct m_tag *t) 947 { 948 949 uma_zfree(pf_mtag_z, t); 950 } 951 952 struct pf_mtag * 953 pf_get_mtag(struct mbuf *m) 954 { 955 struct m_tag *mtag; 956 957 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 958 return ((struct pf_mtag *)(mtag + 1)); 959 960 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 961 if (mtag == NULL) 962 return (NULL); 963 bzero(mtag + 1, sizeof(struct pf_mtag)); 964 m_tag_prepend(m, mtag); 965 966 return ((struct pf_mtag *)(mtag + 1)); 967 } 968 969 static int 970 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 971 struct pf_state *s) 972 { 973 struct pf_keyhash *khs, *khw, *kh; 974 struct pf_state_key *sk, *cur; 975 struct pf_state *si, *olds = NULL; 976 int idx; 977 978 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 979 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 980 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 981 982 /* 983 * We need to lock hash slots of both keys. To avoid deadlock 984 * we always lock the slot with lower address first. Unlock order 985 * isn't important. 986 * 987 * We also need to lock ID hash slot before dropping key 988 * locks. On success we return with ID hash slot locked. 989 */ 990 991 if (skw == sks) { 992 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 993 PF_HASHROW_LOCK(khs); 994 } else { 995 khs = &V_pf_keyhash[pf_hashkey(sks)]; 996 khw = &V_pf_keyhash[pf_hashkey(skw)]; 997 if (khs == khw) { 998 PF_HASHROW_LOCK(khs); 999 } else if (khs < khw) { 1000 PF_HASHROW_LOCK(khs); 1001 PF_HASHROW_LOCK(khw); 1002 } else { 1003 PF_HASHROW_LOCK(khw); 1004 PF_HASHROW_LOCK(khs); 1005 } 1006 } 1007 1008 #define KEYS_UNLOCK() do { \ 1009 if (khs != khw) { \ 1010 PF_HASHROW_UNLOCK(khs); \ 1011 PF_HASHROW_UNLOCK(khw); \ 1012 } else \ 1013 PF_HASHROW_UNLOCK(khs); \ 1014 } while (0) 1015 1016 /* 1017 * First run: start with wire key. 1018 */ 1019 sk = skw; 1020 kh = khw; 1021 idx = PF_SK_WIRE; 1022 1023 keyattach: 1024 LIST_FOREACH(cur, &kh->keys, entry) 1025 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1026 break; 1027 1028 if (cur != NULL) { 1029 /* Key exists. Check for same kif, if none, add to key. */ 1030 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1031 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1032 1033 PF_HASHROW_LOCK(ih); 1034 if (si->kif == s->kif && 1035 si->direction == s->direction) { 1036 if (sk->proto == IPPROTO_TCP && 1037 si->src.state >= TCPS_FIN_WAIT_2 && 1038 si->dst.state >= TCPS_FIN_WAIT_2) { 1039 /* 1040 * New state matches an old >FIN_WAIT_2 1041 * state. We can't drop key hash locks, 1042 * thus we can't unlink it properly. 1043 * 1044 * As a workaround we drop it into 1045 * TCPS_CLOSED state, schedule purge 1046 * ASAP and push it into the very end 1047 * of the slot TAILQ, so that it won't 1048 * conflict with our new state. 1049 */ 1050 si->src.state = si->dst.state = 1051 TCPS_CLOSED; 1052 si->timeout = PFTM_PURGE; 1053 olds = si; 1054 } else { 1055 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1056 printf("pf: %s key attach " 1057 "failed on %s: ", 1058 (idx == PF_SK_WIRE) ? 1059 "wire" : "stack", 1060 s->kif->pfik_name); 1061 pf_print_state_parts(s, 1062 (idx == PF_SK_WIRE) ? 1063 sk : NULL, 1064 (idx == PF_SK_STACK) ? 1065 sk : NULL); 1066 printf(", existing: "); 1067 pf_print_state_parts(si, 1068 (idx == PF_SK_WIRE) ? 1069 sk : NULL, 1070 (idx == PF_SK_STACK) ? 1071 sk : NULL); 1072 printf("\n"); 1073 } 1074 PF_HASHROW_UNLOCK(ih); 1075 KEYS_UNLOCK(); 1076 uma_zfree(V_pf_state_key_z, sk); 1077 if (idx == PF_SK_STACK) 1078 pf_detach_state(s); 1079 return (EEXIST); /* collision! */ 1080 } 1081 } 1082 PF_HASHROW_UNLOCK(ih); 1083 } 1084 uma_zfree(V_pf_state_key_z, sk); 1085 s->key[idx] = cur; 1086 } else { 1087 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1088 s->key[idx] = sk; 1089 } 1090 1091 stateattach: 1092 /* List is sorted, if-bound states before floating. */ 1093 if (s->kif == V_pfi_all) 1094 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1095 else 1096 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1097 1098 if (olds) { 1099 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1100 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1101 key_list[idx]); 1102 olds = NULL; 1103 } 1104 1105 /* 1106 * Attach done. See how should we (or should not?) 1107 * attach a second key. 1108 */ 1109 if (sks == skw) { 1110 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1111 idx = PF_SK_STACK; 1112 sks = NULL; 1113 goto stateattach; 1114 } else if (sks != NULL) { 1115 /* 1116 * Continue attaching with stack key. 1117 */ 1118 sk = sks; 1119 kh = khs; 1120 idx = PF_SK_STACK; 1121 sks = NULL; 1122 goto keyattach; 1123 } 1124 1125 PF_STATE_LOCK(s); 1126 KEYS_UNLOCK(); 1127 1128 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1129 ("%s failure", __func__)); 1130 1131 return (0); 1132 #undef KEYS_UNLOCK 1133 } 1134 1135 static void 1136 pf_detach_state(struct pf_state *s) 1137 { 1138 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1139 struct pf_keyhash *kh; 1140 1141 if (sks != NULL) { 1142 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1143 PF_HASHROW_LOCK(kh); 1144 if (s->key[PF_SK_STACK] != NULL) 1145 pf_state_key_detach(s, PF_SK_STACK); 1146 /* 1147 * If both point to same key, then we are done. 1148 */ 1149 if (sks == s->key[PF_SK_WIRE]) { 1150 pf_state_key_detach(s, PF_SK_WIRE); 1151 PF_HASHROW_UNLOCK(kh); 1152 return; 1153 } 1154 PF_HASHROW_UNLOCK(kh); 1155 } 1156 1157 if (s->key[PF_SK_WIRE] != NULL) { 1158 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1159 PF_HASHROW_LOCK(kh); 1160 if (s->key[PF_SK_WIRE] != NULL) 1161 pf_state_key_detach(s, PF_SK_WIRE); 1162 PF_HASHROW_UNLOCK(kh); 1163 } 1164 } 1165 1166 static void 1167 pf_state_key_detach(struct pf_state *s, int idx) 1168 { 1169 struct pf_state_key *sk = s->key[idx]; 1170 #ifdef INVARIANTS 1171 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1172 1173 PF_HASHROW_ASSERT(kh); 1174 #endif 1175 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1176 s->key[idx] = NULL; 1177 1178 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1179 LIST_REMOVE(sk, entry); 1180 uma_zfree(V_pf_state_key_z, sk); 1181 } 1182 } 1183 1184 static int 1185 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1186 { 1187 struct pf_state_key *sk = mem; 1188 1189 bzero(sk, sizeof(struct pf_state_key_cmp)); 1190 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1191 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1192 1193 return (0); 1194 } 1195 1196 struct pf_state_key * 1197 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1198 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1199 { 1200 struct pf_state_key *sk; 1201 1202 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1203 if (sk == NULL) 1204 return (NULL); 1205 1206 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1207 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1208 sk->port[pd->sidx] = sport; 1209 sk->port[pd->didx] = dport; 1210 sk->proto = pd->proto; 1211 sk->af = pd->af; 1212 1213 return (sk); 1214 } 1215 1216 struct pf_state_key * 1217 pf_state_key_clone(struct pf_state_key *orig) 1218 { 1219 struct pf_state_key *sk; 1220 1221 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1222 if (sk == NULL) 1223 return (NULL); 1224 1225 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1226 1227 return (sk); 1228 } 1229 1230 int 1231 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1232 struct pf_state_key *sks, struct pf_state *s) 1233 { 1234 struct pf_idhash *ih; 1235 struct pf_state *cur; 1236 int error; 1237 1238 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1239 ("%s: sks not pristine", __func__)); 1240 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1241 ("%s: skw not pristine", __func__)); 1242 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1243 1244 s->kif = kif; 1245 1246 if (s->id == 0 && s->creatorid == 0) { 1247 /* XXX: should be atomic, but probability of collision low */ 1248 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1249 V_pf_stateid[curcpu] = 1; 1250 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1251 s->id = htobe64(s->id); 1252 s->creatorid = V_pf_status.hostid; 1253 } 1254 1255 /* Returns with ID locked on success. */ 1256 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1257 return (error); 1258 1259 ih = &V_pf_idhash[PF_IDHASH(s)]; 1260 PF_HASHROW_ASSERT(ih); 1261 LIST_FOREACH(cur, &ih->states, entry) 1262 if (cur->id == s->id && cur->creatorid == s->creatorid) 1263 break; 1264 1265 if (cur != NULL) { 1266 PF_HASHROW_UNLOCK(ih); 1267 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1268 printf("pf: state ID collision: " 1269 "id: %016llx creatorid: %08x\n", 1270 (unsigned long long)be64toh(s->id), 1271 ntohl(s->creatorid)); 1272 } 1273 pf_detach_state(s); 1274 return (EEXIST); 1275 } 1276 LIST_INSERT_HEAD(&ih->states, s, entry); 1277 /* One for keys, one for ID hash. */ 1278 refcount_init(&s->refs, 2); 1279 1280 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1281 if (V_pfsync_insert_state_ptr != NULL) 1282 V_pfsync_insert_state_ptr(s); 1283 1284 /* Returns locked. */ 1285 return (0); 1286 } 1287 1288 /* 1289 * Find state by ID: returns with locked row on success. 1290 */ 1291 struct pf_state * 1292 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1293 { 1294 struct pf_idhash *ih; 1295 struct pf_state *s; 1296 1297 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1298 1299 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1300 1301 PF_HASHROW_LOCK(ih); 1302 LIST_FOREACH(s, &ih->states, entry) 1303 if (s->id == id && s->creatorid == creatorid) 1304 break; 1305 1306 if (s == NULL) 1307 PF_HASHROW_UNLOCK(ih); 1308 1309 return (s); 1310 } 1311 1312 /* 1313 * Find state by key. 1314 * Returns with ID hash slot locked on success. 1315 */ 1316 static struct pf_state * 1317 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1318 { 1319 struct pf_keyhash *kh; 1320 struct pf_state_key *sk; 1321 struct pf_state *s; 1322 int idx; 1323 1324 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1325 1326 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1327 1328 PF_HASHROW_LOCK(kh); 1329 LIST_FOREACH(sk, &kh->keys, entry) 1330 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1331 break; 1332 if (sk == NULL) { 1333 PF_HASHROW_UNLOCK(kh); 1334 return (NULL); 1335 } 1336 1337 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1338 1339 /* List is sorted, if-bound states before floating ones. */ 1340 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1341 if (s->kif == V_pfi_all || s->kif == kif) { 1342 PF_STATE_LOCK(s); 1343 PF_HASHROW_UNLOCK(kh); 1344 if (s->timeout >= PFTM_MAX) { 1345 /* 1346 * State is either being processed by 1347 * pf_unlink_state() in an other thread, or 1348 * is scheduled for immediate expiry. 1349 */ 1350 PF_STATE_UNLOCK(s); 1351 return (NULL); 1352 } 1353 return (s); 1354 } 1355 PF_HASHROW_UNLOCK(kh); 1356 1357 return (NULL); 1358 } 1359 1360 struct pf_state * 1361 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1362 { 1363 struct pf_keyhash *kh; 1364 struct pf_state_key *sk; 1365 struct pf_state *s, *ret = NULL; 1366 int idx, inout = 0; 1367 1368 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1369 1370 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1371 1372 PF_HASHROW_LOCK(kh); 1373 LIST_FOREACH(sk, &kh->keys, entry) 1374 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1375 break; 1376 if (sk == NULL) { 1377 PF_HASHROW_UNLOCK(kh); 1378 return (NULL); 1379 } 1380 switch (dir) { 1381 case PF_IN: 1382 idx = PF_SK_WIRE; 1383 break; 1384 case PF_OUT: 1385 idx = PF_SK_STACK; 1386 break; 1387 case PF_INOUT: 1388 idx = PF_SK_WIRE; 1389 inout = 1; 1390 break; 1391 default: 1392 panic("%s: dir %u", __func__, dir); 1393 } 1394 second_run: 1395 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1396 if (more == NULL) { 1397 PF_HASHROW_UNLOCK(kh); 1398 return (s); 1399 } 1400 1401 if (ret) 1402 (*more)++; 1403 else 1404 ret = s; 1405 } 1406 if (inout == 1) { 1407 inout = 0; 1408 idx = PF_SK_STACK; 1409 goto second_run; 1410 } 1411 PF_HASHROW_UNLOCK(kh); 1412 1413 return (ret); 1414 } 1415 1416 /* END state table stuff */ 1417 1418 static void 1419 pf_send(struct pf_send_entry *pfse) 1420 { 1421 1422 PF_SENDQ_LOCK(); 1423 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1424 PF_SENDQ_UNLOCK(); 1425 swi_sched(V_pf_swi_cookie, 0); 1426 } 1427 1428 void 1429 pf_intr(void *v) 1430 { 1431 struct pf_send_head queue; 1432 struct pf_send_entry *pfse, *next; 1433 1434 CURVNET_SET((struct vnet *)v); 1435 1436 PF_SENDQ_LOCK(); 1437 queue = V_pf_sendqueue; 1438 STAILQ_INIT(&V_pf_sendqueue); 1439 PF_SENDQ_UNLOCK(); 1440 1441 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1442 switch (pfse->pfse_type) { 1443 #ifdef INET 1444 case PFSE_IP: 1445 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1446 break; 1447 case PFSE_ICMP: 1448 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1449 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1450 break; 1451 #endif /* INET */ 1452 #ifdef INET6 1453 case PFSE_IP6: 1454 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1455 NULL); 1456 break; 1457 case PFSE_ICMP6: 1458 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1459 pfse->icmpopts.code, pfse->icmpopts.mtu); 1460 break; 1461 #endif /* INET6 */ 1462 default: 1463 panic("%s: unknown type", __func__); 1464 } 1465 free(pfse, M_PFTEMP); 1466 } 1467 CURVNET_RESTORE(); 1468 } 1469 1470 void 1471 pf_purge_thread(void *unused __unused) 1472 { 1473 VNET_ITERATOR_DECL(vnet_iter); 1474 1475 sx_xlock(&pf_end_lock); 1476 while (pf_end_threads == 0) { 1477 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1478 1479 VNET_LIST_RLOCK(); 1480 VNET_FOREACH(vnet_iter) { 1481 CURVNET_SET(vnet_iter); 1482 1483 1484 /* Wait until V_pf_default_rule is initialized. */ 1485 if (V_pf_vnet_active == 0) { 1486 CURVNET_RESTORE(); 1487 continue; 1488 } 1489 1490 /* 1491 * Process 1/interval fraction of the state 1492 * table every run. 1493 */ 1494 V_pf_purge_idx = 1495 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1496 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1497 1498 /* 1499 * Purge other expired types every 1500 * PFTM_INTERVAL seconds. 1501 */ 1502 if (V_pf_purge_idx == 0) { 1503 /* 1504 * Order is important: 1505 * - states and src nodes reference rules 1506 * - states and rules reference kifs 1507 */ 1508 pf_purge_expired_fragments(); 1509 pf_purge_expired_src_nodes(); 1510 pf_purge_unlinked_rules(); 1511 pfi_kif_purge(); 1512 } 1513 CURVNET_RESTORE(); 1514 } 1515 VNET_LIST_RUNLOCK(); 1516 } 1517 1518 pf_end_threads++; 1519 sx_xunlock(&pf_end_lock); 1520 kproc_exit(0); 1521 } 1522 1523 void 1524 pf_unload_vnet_purge(void) 1525 { 1526 1527 /* 1528 * To cleanse up all kifs and rules we need 1529 * two runs: first one clears reference flags, 1530 * then pf_purge_expired_states() doesn't 1531 * raise them, and then second run frees. 1532 */ 1533 pf_purge_unlinked_rules(); 1534 pfi_kif_purge(); 1535 1536 /* 1537 * Now purge everything. 1538 */ 1539 pf_purge_expired_states(0, pf_hashmask); 1540 pf_purge_fragments(UINT_MAX); 1541 pf_purge_expired_src_nodes(); 1542 1543 /* 1544 * Now all kifs & rules should be unreferenced, 1545 * thus should be successfully freed. 1546 */ 1547 pf_purge_unlinked_rules(); 1548 pfi_kif_purge(); 1549 } 1550 1551 1552 u_int32_t 1553 pf_state_expires(const struct pf_state *state) 1554 { 1555 u_int32_t timeout; 1556 u_int32_t start; 1557 u_int32_t end; 1558 u_int32_t states; 1559 1560 /* handle all PFTM_* > PFTM_MAX here */ 1561 if (state->timeout == PFTM_PURGE) 1562 return (time_uptime); 1563 KASSERT(state->timeout != PFTM_UNLINKED, 1564 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1565 KASSERT((state->timeout < PFTM_MAX), 1566 ("pf_state_expires: timeout > PFTM_MAX")); 1567 timeout = state->rule.ptr->timeout[state->timeout]; 1568 if (!timeout) 1569 timeout = V_pf_default_rule.timeout[state->timeout]; 1570 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1571 if (start && state->rule.ptr != &V_pf_default_rule) { 1572 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1573 states = counter_u64_fetch(state->rule.ptr->states_cur); 1574 } else { 1575 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1576 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1577 states = V_pf_status.states; 1578 } 1579 if (end && states > start && start < end) { 1580 if (states < end) { 1581 timeout = (u_int64_t)timeout * (end - states) / 1582 (end - start); 1583 return (state->expire + timeout); 1584 } 1585 else 1586 return (time_uptime); 1587 } 1588 return (state->expire + timeout); 1589 } 1590 1591 void 1592 pf_purge_expired_src_nodes() 1593 { 1594 struct pf_src_node_list freelist; 1595 struct pf_srchash *sh; 1596 struct pf_src_node *cur, *next; 1597 int i; 1598 1599 LIST_INIT(&freelist); 1600 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1601 PF_HASHROW_LOCK(sh); 1602 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1603 if (cur->states == 0 && cur->expire <= time_uptime) { 1604 pf_unlink_src_node(cur); 1605 LIST_INSERT_HEAD(&freelist, cur, entry); 1606 } else if (cur->rule.ptr != NULL) 1607 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1608 PF_HASHROW_UNLOCK(sh); 1609 } 1610 1611 pf_free_src_nodes(&freelist); 1612 1613 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1614 } 1615 1616 static void 1617 pf_src_tree_remove_state(struct pf_state *s) 1618 { 1619 struct pf_src_node *sn; 1620 struct pf_srchash *sh; 1621 uint32_t timeout; 1622 1623 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1624 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1625 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1626 1627 if (s->src_node != NULL) { 1628 sn = s->src_node; 1629 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1630 PF_HASHROW_LOCK(sh); 1631 if (s->src.tcp_est) 1632 --sn->conn; 1633 if (--sn->states == 0) 1634 sn->expire = time_uptime + timeout; 1635 PF_HASHROW_UNLOCK(sh); 1636 } 1637 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1638 sn = s->nat_src_node; 1639 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1640 PF_HASHROW_LOCK(sh); 1641 if (--sn->states == 0) 1642 sn->expire = time_uptime + timeout; 1643 PF_HASHROW_UNLOCK(sh); 1644 } 1645 s->src_node = s->nat_src_node = NULL; 1646 } 1647 1648 /* 1649 * Unlink and potentilly free a state. Function may be 1650 * called with ID hash row locked, but always returns 1651 * unlocked, since it needs to go through key hash locking. 1652 */ 1653 int 1654 pf_unlink_state(struct pf_state *s, u_int flags) 1655 { 1656 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1657 1658 if ((flags & PF_ENTER_LOCKED) == 0) 1659 PF_HASHROW_LOCK(ih); 1660 else 1661 PF_HASHROW_ASSERT(ih); 1662 1663 if (s->timeout == PFTM_UNLINKED) { 1664 /* 1665 * State is being processed 1666 * by pf_unlink_state() in 1667 * an other thread. 1668 */ 1669 PF_HASHROW_UNLOCK(ih); 1670 return (0); /* XXXGL: undefined actually */ 1671 } 1672 1673 if (s->src.state == PF_TCPS_PROXY_DST) { 1674 /* XXX wire key the right one? */ 1675 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1676 &s->key[PF_SK_WIRE]->addr[1], 1677 &s->key[PF_SK_WIRE]->addr[0], 1678 s->key[PF_SK_WIRE]->port[1], 1679 s->key[PF_SK_WIRE]->port[0], 1680 s->src.seqhi, s->src.seqlo + 1, 1681 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1682 } 1683 1684 LIST_REMOVE(s, entry); 1685 pf_src_tree_remove_state(s); 1686 1687 if (V_pfsync_delete_state_ptr != NULL) 1688 V_pfsync_delete_state_ptr(s); 1689 1690 STATE_DEC_COUNTERS(s); 1691 1692 s->timeout = PFTM_UNLINKED; 1693 1694 PF_HASHROW_UNLOCK(ih); 1695 1696 pf_detach_state(s); 1697 /* pf_state_insert() initialises refs to 2, so we can never release the 1698 * last reference here, only in pf_release_state(). */ 1699 (void)refcount_release(&s->refs); 1700 1701 return (pf_release_state(s)); 1702 } 1703 1704 void 1705 pf_free_state(struct pf_state *cur) 1706 { 1707 1708 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1709 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1710 cur->timeout)); 1711 1712 pf_normalize_tcp_cleanup(cur); 1713 uma_zfree(V_pf_state_z, cur); 1714 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1715 } 1716 1717 /* 1718 * Called only from pf_purge_thread(), thus serialized. 1719 */ 1720 static u_int 1721 pf_purge_expired_states(u_int i, int maxcheck) 1722 { 1723 struct pf_idhash *ih; 1724 struct pf_state *s; 1725 1726 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1727 1728 /* 1729 * Go through hash and unlink states that expire now. 1730 */ 1731 while (maxcheck > 0) { 1732 1733 ih = &V_pf_idhash[i]; 1734 1735 /* only take the lock if we expect to do work */ 1736 if (!LIST_EMPTY(&ih->states)) { 1737 relock: 1738 PF_HASHROW_LOCK(ih); 1739 LIST_FOREACH(s, &ih->states, entry) { 1740 if (pf_state_expires(s) <= time_uptime) { 1741 V_pf_status.states -= 1742 pf_unlink_state(s, PF_ENTER_LOCKED); 1743 goto relock; 1744 } 1745 s->rule.ptr->rule_flag |= PFRULE_REFS; 1746 if (s->nat_rule.ptr != NULL) 1747 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1748 if (s->anchor.ptr != NULL) 1749 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1750 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1751 if (s->rt_kif) 1752 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1753 } 1754 PF_HASHROW_UNLOCK(ih); 1755 } 1756 1757 /* Return when we hit end of hash. */ 1758 if (++i > pf_hashmask) { 1759 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1760 return (0); 1761 } 1762 1763 maxcheck--; 1764 } 1765 1766 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1767 1768 return (i); 1769 } 1770 1771 static void 1772 pf_purge_unlinked_rules() 1773 { 1774 struct pf_rulequeue tmpq; 1775 struct pf_rule *r, *r1; 1776 1777 /* 1778 * If we have overloading task pending, then we'd 1779 * better skip purging this time. There is a tiny 1780 * probability that overloading task references 1781 * an already unlinked rule. 1782 */ 1783 PF_OVERLOADQ_LOCK(); 1784 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1785 PF_OVERLOADQ_UNLOCK(); 1786 return; 1787 } 1788 PF_OVERLOADQ_UNLOCK(); 1789 1790 /* 1791 * Do naive mark-and-sweep garbage collecting of old rules. 1792 * Reference flag is raised by pf_purge_expired_states() 1793 * and pf_purge_expired_src_nodes(). 1794 * 1795 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1796 * use a temporary queue. 1797 */ 1798 TAILQ_INIT(&tmpq); 1799 PF_UNLNKDRULES_LOCK(); 1800 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1801 if (!(r->rule_flag & PFRULE_REFS)) { 1802 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1803 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1804 } else 1805 r->rule_flag &= ~PFRULE_REFS; 1806 } 1807 PF_UNLNKDRULES_UNLOCK(); 1808 1809 if (!TAILQ_EMPTY(&tmpq)) { 1810 PF_RULES_WLOCK(); 1811 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1812 TAILQ_REMOVE(&tmpq, r, entries); 1813 pf_free_rule(r); 1814 } 1815 PF_RULES_WUNLOCK(); 1816 } 1817 } 1818 1819 void 1820 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1821 { 1822 switch (af) { 1823 #ifdef INET 1824 case AF_INET: { 1825 u_int32_t a = ntohl(addr->addr32[0]); 1826 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1827 (a>>8)&255, a&255); 1828 if (p) { 1829 p = ntohs(p); 1830 printf(":%u", p); 1831 } 1832 break; 1833 } 1834 #endif /* INET */ 1835 #ifdef INET6 1836 case AF_INET6: { 1837 u_int16_t b; 1838 u_int8_t i, curstart, curend, maxstart, maxend; 1839 curstart = curend = maxstart = maxend = 255; 1840 for (i = 0; i < 8; i++) { 1841 if (!addr->addr16[i]) { 1842 if (curstart == 255) 1843 curstart = i; 1844 curend = i; 1845 } else { 1846 if ((curend - curstart) > 1847 (maxend - maxstart)) { 1848 maxstart = curstart; 1849 maxend = curend; 1850 } 1851 curstart = curend = 255; 1852 } 1853 } 1854 if ((curend - curstart) > 1855 (maxend - maxstart)) { 1856 maxstart = curstart; 1857 maxend = curend; 1858 } 1859 for (i = 0; i < 8; i++) { 1860 if (i >= maxstart && i <= maxend) { 1861 if (i == 0) 1862 printf(":"); 1863 if (i == maxend) 1864 printf(":"); 1865 } else { 1866 b = ntohs(addr->addr16[i]); 1867 printf("%x", b); 1868 if (i < 7) 1869 printf(":"); 1870 } 1871 } 1872 if (p) { 1873 p = ntohs(p); 1874 printf("[%u]", p); 1875 } 1876 break; 1877 } 1878 #endif /* INET6 */ 1879 } 1880 } 1881 1882 void 1883 pf_print_state(struct pf_state *s) 1884 { 1885 pf_print_state_parts(s, NULL, NULL); 1886 } 1887 1888 static void 1889 pf_print_state_parts(struct pf_state *s, 1890 struct pf_state_key *skwp, struct pf_state_key *sksp) 1891 { 1892 struct pf_state_key *skw, *sks; 1893 u_int8_t proto, dir; 1894 1895 /* Do our best to fill these, but they're skipped if NULL */ 1896 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1897 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1898 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1899 dir = s ? s->direction : 0; 1900 1901 switch (proto) { 1902 case IPPROTO_IPV4: 1903 printf("IPv4"); 1904 break; 1905 case IPPROTO_IPV6: 1906 printf("IPv6"); 1907 break; 1908 case IPPROTO_TCP: 1909 printf("TCP"); 1910 break; 1911 case IPPROTO_UDP: 1912 printf("UDP"); 1913 break; 1914 case IPPROTO_ICMP: 1915 printf("ICMP"); 1916 break; 1917 case IPPROTO_ICMPV6: 1918 printf("ICMPv6"); 1919 break; 1920 default: 1921 printf("%u", proto); 1922 break; 1923 } 1924 switch (dir) { 1925 case PF_IN: 1926 printf(" in"); 1927 break; 1928 case PF_OUT: 1929 printf(" out"); 1930 break; 1931 } 1932 if (skw) { 1933 printf(" wire: "); 1934 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1935 printf(" "); 1936 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1937 } 1938 if (sks) { 1939 printf(" stack: "); 1940 if (sks != skw) { 1941 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1942 printf(" "); 1943 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1944 } else 1945 printf("-"); 1946 } 1947 if (s) { 1948 if (proto == IPPROTO_TCP) { 1949 printf(" [lo=%u high=%u win=%u modulator=%u", 1950 s->src.seqlo, s->src.seqhi, 1951 s->src.max_win, s->src.seqdiff); 1952 if (s->src.wscale && s->dst.wscale) 1953 printf(" wscale=%u", 1954 s->src.wscale & PF_WSCALE_MASK); 1955 printf("]"); 1956 printf(" [lo=%u high=%u win=%u modulator=%u", 1957 s->dst.seqlo, s->dst.seqhi, 1958 s->dst.max_win, s->dst.seqdiff); 1959 if (s->src.wscale && s->dst.wscale) 1960 printf(" wscale=%u", 1961 s->dst.wscale & PF_WSCALE_MASK); 1962 printf("]"); 1963 } 1964 printf(" %u:%u", s->src.state, s->dst.state); 1965 } 1966 } 1967 1968 void 1969 pf_print_flags(u_int8_t f) 1970 { 1971 if (f) 1972 printf(" "); 1973 if (f & TH_FIN) 1974 printf("F"); 1975 if (f & TH_SYN) 1976 printf("S"); 1977 if (f & TH_RST) 1978 printf("R"); 1979 if (f & TH_PUSH) 1980 printf("P"); 1981 if (f & TH_ACK) 1982 printf("A"); 1983 if (f & TH_URG) 1984 printf("U"); 1985 if (f & TH_ECE) 1986 printf("E"); 1987 if (f & TH_CWR) 1988 printf("W"); 1989 } 1990 1991 #define PF_SET_SKIP_STEPS(i) \ 1992 do { \ 1993 while (head[i] != cur) { \ 1994 head[i]->skip[i].ptr = cur; \ 1995 head[i] = TAILQ_NEXT(head[i], entries); \ 1996 } \ 1997 } while (0) 1998 1999 void 2000 pf_calc_skip_steps(struct pf_rulequeue *rules) 2001 { 2002 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 2003 int i; 2004 2005 cur = TAILQ_FIRST(rules); 2006 prev = cur; 2007 for (i = 0; i < PF_SKIP_COUNT; ++i) 2008 head[i] = cur; 2009 while (cur != NULL) { 2010 2011 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2012 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2013 if (cur->direction != prev->direction) 2014 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2015 if (cur->af != prev->af) 2016 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2017 if (cur->proto != prev->proto) 2018 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2019 if (cur->src.neg != prev->src.neg || 2020 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2021 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2022 if (cur->src.port[0] != prev->src.port[0] || 2023 cur->src.port[1] != prev->src.port[1] || 2024 cur->src.port_op != prev->src.port_op) 2025 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2026 if (cur->dst.neg != prev->dst.neg || 2027 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2028 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2029 if (cur->dst.port[0] != prev->dst.port[0] || 2030 cur->dst.port[1] != prev->dst.port[1] || 2031 cur->dst.port_op != prev->dst.port_op) 2032 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2033 2034 prev = cur; 2035 cur = TAILQ_NEXT(cur, entries); 2036 } 2037 for (i = 0; i < PF_SKIP_COUNT; ++i) 2038 PF_SET_SKIP_STEPS(i); 2039 } 2040 2041 static int 2042 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2043 { 2044 if (aw1->type != aw2->type) 2045 return (1); 2046 switch (aw1->type) { 2047 case PF_ADDR_ADDRMASK: 2048 case PF_ADDR_RANGE: 2049 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2050 return (1); 2051 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2052 return (1); 2053 return (0); 2054 case PF_ADDR_DYNIFTL: 2055 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2056 case PF_ADDR_NOROUTE: 2057 case PF_ADDR_URPFFAILED: 2058 return (0); 2059 case PF_ADDR_TABLE: 2060 return (aw1->p.tbl != aw2->p.tbl); 2061 default: 2062 printf("invalid address type: %d\n", aw1->type); 2063 return (1); 2064 } 2065 } 2066 2067 /** 2068 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2069 * header isn't always a full checksum. In some cases (i.e. output) it's a 2070 * pseudo-header checksum, which is a partial checksum over src/dst IP 2071 * addresses, protocol number and length. 2072 * 2073 * That means we have the following cases: 2074 * * Input or forwarding: we don't have TSO, the checksum fields are full 2075 * checksums, we need to update the checksum whenever we change anything. 2076 * * Output (i.e. the checksum is a pseudo-header checksum): 2077 * x The field being updated is src/dst address or affects the length of 2078 * the packet. We need to update the pseudo-header checksum (note that this 2079 * checksum is not ones' complement). 2080 * x Some other field is being modified (e.g. src/dst port numbers): We 2081 * don't have to update anything. 2082 **/ 2083 u_int16_t 2084 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2085 { 2086 u_int32_t l; 2087 2088 if (udp && !cksum) 2089 return (0x0000); 2090 l = cksum + old - new; 2091 l = (l >> 16) + (l & 65535); 2092 l = l & 65535; 2093 if (udp && !l) 2094 return (0xFFFF); 2095 return (l); 2096 } 2097 2098 u_int16_t 2099 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2100 u_int16_t new, u_int8_t udp) 2101 { 2102 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2103 return (cksum); 2104 2105 return (pf_cksum_fixup(cksum, old, new, udp)); 2106 } 2107 2108 static void 2109 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2110 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2111 sa_family_t af) 2112 { 2113 struct pf_addr ao; 2114 u_int16_t po = *p; 2115 2116 PF_ACPY(&ao, a, af); 2117 PF_ACPY(a, an, af); 2118 2119 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2120 *pc = ~*pc; 2121 2122 *p = pn; 2123 2124 switch (af) { 2125 #ifdef INET 2126 case AF_INET: 2127 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2128 ao.addr16[0], an->addr16[0], 0), 2129 ao.addr16[1], an->addr16[1], 0); 2130 *p = pn; 2131 2132 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2133 ao.addr16[0], an->addr16[0], u), 2134 ao.addr16[1], an->addr16[1], u); 2135 2136 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2137 break; 2138 #endif /* INET */ 2139 #ifdef INET6 2140 case AF_INET6: 2141 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2142 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2143 pf_cksum_fixup(pf_cksum_fixup(*pc, 2144 ao.addr16[0], an->addr16[0], u), 2145 ao.addr16[1], an->addr16[1], u), 2146 ao.addr16[2], an->addr16[2], u), 2147 ao.addr16[3], an->addr16[3], u), 2148 ao.addr16[4], an->addr16[4], u), 2149 ao.addr16[5], an->addr16[5], u), 2150 ao.addr16[6], an->addr16[6], u), 2151 ao.addr16[7], an->addr16[7], u); 2152 2153 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2154 break; 2155 #endif /* INET6 */ 2156 } 2157 2158 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2159 CSUM_DELAY_DATA_IPV6)) { 2160 *pc = ~*pc; 2161 if (! *pc) 2162 *pc = 0xffff; 2163 } 2164 } 2165 2166 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2167 void 2168 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2169 { 2170 u_int32_t ao; 2171 2172 memcpy(&ao, a, sizeof(ao)); 2173 memcpy(a, &an, sizeof(u_int32_t)); 2174 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2175 ao % 65536, an % 65536, u); 2176 } 2177 2178 void 2179 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2180 { 2181 u_int32_t ao; 2182 2183 memcpy(&ao, a, sizeof(ao)); 2184 memcpy(a, &an, sizeof(u_int32_t)); 2185 2186 *c = pf_proto_cksum_fixup(m, 2187 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2188 ao % 65536, an % 65536, udp); 2189 } 2190 2191 #ifdef INET6 2192 static void 2193 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2194 { 2195 struct pf_addr ao; 2196 2197 PF_ACPY(&ao, a, AF_INET6); 2198 PF_ACPY(a, an, AF_INET6); 2199 2200 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2201 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2202 pf_cksum_fixup(pf_cksum_fixup(*c, 2203 ao.addr16[0], an->addr16[0], u), 2204 ao.addr16[1], an->addr16[1], u), 2205 ao.addr16[2], an->addr16[2], u), 2206 ao.addr16[3], an->addr16[3], u), 2207 ao.addr16[4], an->addr16[4], u), 2208 ao.addr16[5], an->addr16[5], u), 2209 ao.addr16[6], an->addr16[6], u), 2210 ao.addr16[7], an->addr16[7], u); 2211 } 2212 #endif /* INET6 */ 2213 2214 static void 2215 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2216 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2217 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2218 { 2219 struct pf_addr oia, ooa; 2220 2221 PF_ACPY(&oia, ia, af); 2222 if (oa) 2223 PF_ACPY(&ooa, oa, af); 2224 2225 /* Change inner protocol port, fix inner protocol checksum. */ 2226 if (ip != NULL) { 2227 u_int16_t oip = *ip; 2228 u_int32_t opc; 2229 2230 if (pc != NULL) 2231 opc = *pc; 2232 *ip = np; 2233 if (pc != NULL) 2234 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2235 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2236 if (pc != NULL) 2237 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2238 } 2239 /* Change inner ip address, fix inner ip and icmp checksums. */ 2240 PF_ACPY(ia, na, af); 2241 switch (af) { 2242 #ifdef INET 2243 case AF_INET: { 2244 u_int32_t oh2c = *h2c; 2245 2246 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2247 oia.addr16[0], ia->addr16[0], 0), 2248 oia.addr16[1], ia->addr16[1], 0); 2249 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2250 oia.addr16[0], ia->addr16[0], 0), 2251 oia.addr16[1], ia->addr16[1], 0); 2252 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2253 break; 2254 } 2255 #endif /* INET */ 2256 #ifdef INET6 2257 case AF_INET6: 2258 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2259 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2260 pf_cksum_fixup(pf_cksum_fixup(*ic, 2261 oia.addr16[0], ia->addr16[0], u), 2262 oia.addr16[1], ia->addr16[1], u), 2263 oia.addr16[2], ia->addr16[2], u), 2264 oia.addr16[3], ia->addr16[3], u), 2265 oia.addr16[4], ia->addr16[4], u), 2266 oia.addr16[5], ia->addr16[5], u), 2267 oia.addr16[6], ia->addr16[6], u), 2268 oia.addr16[7], ia->addr16[7], u); 2269 break; 2270 #endif /* INET6 */ 2271 } 2272 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2273 if (oa) { 2274 PF_ACPY(oa, na, af); 2275 switch (af) { 2276 #ifdef INET 2277 case AF_INET: 2278 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2279 ooa.addr16[0], oa->addr16[0], 0), 2280 ooa.addr16[1], oa->addr16[1], 0); 2281 break; 2282 #endif /* INET */ 2283 #ifdef INET6 2284 case AF_INET6: 2285 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2286 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2287 pf_cksum_fixup(pf_cksum_fixup(*ic, 2288 ooa.addr16[0], oa->addr16[0], u), 2289 ooa.addr16[1], oa->addr16[1], u), 2290 ooa.addr16[2], oa->addr16[2], u), 2291 ooa.addr16[3], oa->addr16[3], u), 2292 ooa.addr16[4], oa->addr16[4], u), 2293 ooa.addr16[5], oa->addr16[5], u), 2294 ooa.addr16[6], oa->addr16[6], u), 2295 ooa.addr16[7], oa->addr16[7], u); 2296 break; 2297 #endif /* INET6 */ 2298 } 2299 } 2300 } 2301 2302 2303 /* 2304 * Need to modulate the sequence numbers in the TCP SACK option 2305 * (credits to Krzysztof Pfaff for report and patch) 2306 */ 2307 static int 2308 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2309 struct tcphdr *th, struct pf_state_peer *dst) 2310 { 2311 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2312 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2313 int copyback = 0, i, olen; 2314 struct sackblk sack; 2315 2316 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2317 if (hlen < TCPOLEN_SACKLEN || 2318 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2319 return 0; 2320 2321 while (hlen >= TCPOLEN_SACKLEN) { 2322 olen = opt[1]; 2323 switch (*opt) { 2324 case TCPOPT_EOL: /* FALLTHROUGH */ 2325 case TCPOPT_NOP: 2326 opt++; 2327 hlen--; 2328 break; 2329 case TCPOPT_SACK: 2330 if (olen > hlen) 2331 olen = hlen; 2332 if (olen >= TCPOLEN_SACKLEN) { 2333 for (i = 2; i + TCPOLEN_SACK <= olen; 2334 i += TCPOLEN_SACK) { 2335 memcpy(&sack, &opt[i], sizeof(sack)); 2336 pf_change_proto_a(m, &sack.start, &th->th_sum, 2337 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2338 pf_change_proto_a(m, &sack.end, &th->th_sum, 2339 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2340 memcpy(&opt[i], &sack, sizeof(sack)); 2341 } 2342 copyback = 1; 2343 } 2344 /* FALLTHROUGH */ 2345 default: 2346 if (olen < 2) 2347 olen = 2; 2348 hlen -= olen; 2349 opt += olen; 2350 } 2351 } 2352 2353 if (copyback) 2354 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2355 return (copyback); 2356 } 2357 2358 static void 2359 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2360 const struct pf_addr *saddr, const struct pf_addr *daddr, 2361 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2362 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2363 u_int16_t rtag, struct ifnet *ifp) 2364 { 2365 struct pf_send_entry *pfse; 2366 struct mbuf *m; 2367 int len, tlen; 2368 #ifdef INET 2369 struct ip *h = NULL; 2370 #endif /* INET */ 2371 #ifdef INET6 2372 struct ip6_hdr *h6 = NULL; 2373 #endif /* INET6 */ 2374 struct tcphdr *th; 2375 char *opt; 2376 struct pf_mtag *pf_mtag; 2377 2378 len = 0; 2379 th = NULL; 2380 2381 /* maximum segment size tcp option */ 2382 tlen = sizeof(struct tcphdr); 2383 if (mss) 2384 tlen += 4; 2385 2386 switch (af) { 2387 #ifdef INET 2388 case AF_INET: 2389 len = sizeof(struct ip) + tlen; 2390 break; 2391 #endif /* INET */ 2392 #ifdef INET6 2393 case AF_INET6: 2394 len = sizeof(struct ip6_hdr) + tlen; 2395 break; 2396 #endif /* INET6 */ 2397 default: 2398 panic("%s: unsupported af %d", __func__, af); 2399 } 2400 2401 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2402 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2403 if (pfse == NULL) 2404 return; 2405 m = m_gethdr(M_NOWAIT, MT_DATA); 2406 if (m == NULL) { 2407 free(pfse, M_PFTEMP); 2408 return; 2409 } 2410 #ifdef MAC 2411 mac_netinet_firewall_send(m); 2412 #endif 2413 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2414 free(pfse, M_PFTEMP); 2415 m_freem(m); 2416 return; 2417 } 2418 if (tag) 2419 m->m_flags |= M_SKIP_FIREWALL; 2420 pf_mtag->tag = rtag; 2421 2422 if (r != NULL && r->rtableid >= 0) 2423 M_SETFIB(m, r->rtableid); 2424 2425 #ifdef ALTQ 2426 if (r != NULL && r->qid) { 2427 pf_mtag->qid = r->qid; 2428 2429 /* add hints for ecn */ 2430 pf_mtag->hdr = mtod(m, struct ip *); 2431 } 2432 #endif /* ALTQ */ 2433 m->m_data += max_linkhdr; 2434 m->m_pkthdr.len = m->m_len = len; 2435 m->m_pkthdr.rcvif = NULL; 2436 bzero(m->m_data, len); 2437 switch (af) { 2438 #ifdef INET 2439 case AF_INET: 2440 h = mtod(m, struct ip *); 2441 2442 /* IP header fields included in the TCP checksum */ 2443 h->ip_p = IPPROTO_TCP; 2444 h->ip_len = htons(tlen); 2445 h->ip_src.s_addr = saddr->v4.s_addr; 2446 h->ip_dst.s_addr = daddr->v4.s_addr; 2447 2448 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2449 break; 2450 #endif /* INET */ 2451 #ifdef INET6 2452 case AF_INET6: 2453 h6 = mtod(m, struct ip6_hdr *); 2454 2455 /* IP header fields included in the TCP checksum */ 2456 h6->ip6_nxt = IPPROTO_TCP; 2457 h6->ip6_plen = htons(tlen); 2458 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2459 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2460 2461 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2462 break; 2463 #endif /* INET6 */ 2464 } 2465 2466 /* TCP header */ 2467 th->th_sport = sport; 2468 th->th_dport = dport; 2469 th->th_seq = htonl(seq); 2470 th->th_ack = htonl(ack); 2471 th->th_off = tlen >> 2; 2472 th->th_flags = flags; 2473 th->th_win = htons(win); 2474 2475 if (mss) { 2476 opt = (char *)(th + 1); 2477 opt[0] = TCPOPT_MAXSEG; 2478 opt[1] = 4; 2479 HTONS(mss); 2480 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2481 } 2482 2483 switch (af) { 2484 #ifdef INET 2485 case AF_INET: 2486 /* TCP checksum */ 2487 th->th_sum = in_cksum(m, len); 2488 2489 /* Finish the IP header */ 2490 h->ip_v = 4; 2491 h->ip_hl = sizeof(*h) >> 2; 2492 h->ip_tos = IPTOS_LOWDELAY; 2493 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2494 h->ip_len = htons(len); 2495 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2496 h->ip_sum = 0; 2497 2498 pfse->pfse_type = PFSE_IP; 2499 break; 2500 #endif /* INET */ 2501 #ifdef INET6 2502 case AF_INET6: 2503 /* TCP checksum */ 2504 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2505 sizeof(struct ip6_hdr), tlen); 2506 2507 h6->ip6_vfc |= IPV6_VERSION; 2508 h6->ip6_hlim = IPV6_DEFHLIM; 2509 2510 pfse->pfse_type = PFSE_IP6; 2511 break; 2512 #endif /* INET6 */ 2513 } 2514 pfse->pfse_m = m; 2515 pf_send(pfse); 2516 } 2517 2518 static void 2519 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2520 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2521 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2522 u_short *reason) 2523 { 2524 struct pf_addr * const saddr = pd->src; 2525 struct pf_addr * const daddr = pd->dst; 2526 sa_family_t af = pd->af; 2527 2528 /* undo NAT changes, if they have taken place */ 2529 if (nr != NULL) { 2530 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2531 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2532 if (pd->sport) 2533 *pd->sport = sk->port[pd->sidx]; 2534 if (pd->dport) 2535 *pd->dport = sk->port[pd->didx]; 2536 if (pd->proto_sum) 2537 *pd->proto_sum = bproto_sum; 2538 if (pd->ip_sum) 2539 *pd->ip_sum = bip_sum; 2540 m_copyback(m, off, hdrlen, pd->hdr.any); 2541 } 2542 if (pd->proto == IPPROTO_TCP && 2543 ((r->rule_flag & PFRULE_RETURNRST) || 2544 (r->rule_flag & PFRULE_RETURN)) && 2545 !(th->th_flags & TH_RST)) { 2546 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2547 int len = 0; 2548 #ifdef INET 2549 struct ip *h4; 2550 #endif 2551 #ifdef INET6 2552 struct ip6_hdr *h6; 2553 #endif 2554 2555 switch (af) { 2556 #ifdef INET 2557 case AF_INET: 2558 h4 = mtod(m, struct ip *); 2559 len = ntohs(h4->ip_len) - off; 2560 break; 2561 #endif 2562 #ifdef INET6 2563 case AF_INET6: 2564 h6 = mtod(m, struct ip6_hdr *); 2565 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2566 break; 2567 #endif 2568 } 2569 2570 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2571 REASON_SET(reason, PFRES_PROTCKSUM); 2572 else { 2573 if (th->th_flags & TH_SYN) 2574 ack++; 2575 if (th->th_flags & TH_FIN) 2576 ack++; 2577 pf_send_tcp(m, r, af, pd->dst, 2578 pd->src, th->th_dport, th->th_sport, 2579 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2580 r->return_ttl, 1, 0, kif->pfik_ifp); 2581 } 2582 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2583 r->return_icmp) 2584 pf_send_icmp(m, r->return_icmp >> 8, 2585 r->return_icmp & 255, af, r); 2586 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2587 r->return_icmp6) 2588 pf_send_icmp(m, r->return_icmp6 >> 8, 2589 r->return_icmp6 & 255, af, r); 2590 } 2591 2592 2593 static int 2594 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2595 { 2596 struct m_tag *mtag; 2597 2598 KASSERT(prio <= PF_PRIO_MAX, 2599 ("%s with invalid pcp", __func__)); 2600 2601 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2602 if (mtag == NULL) { 2603 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2604 sizeof(uint8_t), M_NOWAIT); 2605 if (mtag == NULL) 2606 return (ENOMEM); 2607 m_tag_prepend(m, mtag); 2608 } 2609 2610 *(uint8_t *)(mtag + 1) = prio; 2611 return (0); 2612 } 2613 2614 static int 2615 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2616 { 2617 struct m_tag *mtag; 2618 u_int8_t mpcp; 2619 2620 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2621 if (mtag == NULL) 2622 return (0); 2623 2624 if (prio == PF_PRIO_ZERO) 2625 prio = 0; 2626 2627 mpcp = *(uint8_t *)(mtag + 1); 2628 2629 return (mpcp == prio); 2630 } 2631 2632 static void 2633 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2634 struct pf_rule *r) 2635 { 2636 struct pf_send_entry *pfse; 2637 struct mbuf *m0; 2638 struct pf_mtag *pf_mtag; 2639 2640 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2641 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2642 if (pfse == NULL) 2643 return; 2644 2645 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2646 free(pfse, M_PFTEMP); 2647 return; 2648 } 2649 2650 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2651 free(pfse, M_PFTEMP); 2652 return; 2653 } 2654 /* XXX: revisit */ 2655 m0->m_flags |= M_SKIP_FIREWALL; 2656 2657 if (r->rtableid >= 0) 2658 M_SETFIB(m0, r->rtableid); 2659 2660 #ifdef ALTQ 2661 if (r->qid) { 2662 pf_mtag->qid = r->qid; 2663 /* add hints for ecn */ 2664 pf_mtag->hdr = mtod(m0, struct ip *); 2665 } 2666 #endif /* ALTQ */ 2667 2668 switch (af) { 2669 #ifdef INET 2670 case AF_INET: 2671 pfse->pfse_type = PFSE_ICMP; 2672 break; 2673 #endif /* INET */ 2674 #ifdef INET6 2675 case AF_INET6: 2676 pfse->pfse_type = PFSE_ICMP6; 2677 break; 2678 #endif /* INET6 */ 2679 } 2680 pfse->pfse_m = m0; 2681 pfse->icmpopts.type = type; 2682 pfse->icmpopts.code = code; 2683 pf_send(pfse); 2684 } 2685 2686 /* 2687 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2688 * If n is 0, they match if they are equal. If n is != 0, they match if they 2689 * are different. 2690 */ 2691 int 2692 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2693 struct pf_addr *b, sa_family_t af) 2694 { 2695 int match = 0; 2696 2697 switch (af) { 2698 #ifdef INET 2699 case AF_INET: 2700 if ((a->addr32[0] & m->addr32[0]) == 2701 (b->addr32[0] & m->addr32[0])) 2702 match++; 2703 break; 2704 #endif /* INET */ 2705 #ifdef INET6 2706 case AF_INET6: 2707 if (((a->addr32[0] & m->addr32[0]) == 2708 (b->addr32[0] & m->addr32[0])) && 2709 ((a->addr32[1] & m->addr32[1]) == 2710 (b->addr32[1] & m->addr32[1])) && 2711 ((a->addr32[2] & m->addr32[2]) == 2712 (b->addr32[2] & m->addr32[2])) && 2713 ((a->addr32[3] & m->addr32[3]) == 2714 (b->addr32[3] & m->addr32[3]))) 2715 match++; 2716 break; 2717 #endif /* INET6 */ 2718 } 2719 if (match) { 2720 if (n) 2721 return (0); 2722 else 2723 return (1); 2724 } else { 2725 if (n) 2726 return (1); 2727 else 2728 return (0); 2729 } 2730 } 2731 2732 /* 2733 * Return 1 if b <= a <= e, otherwise return 0. 2734 */ 2735 int 2736 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2737 struct pf_addr *a, sa_family_t af) 2738 { 2739 switch (af) { 2740 #ifdef INET 2741 case AF_INET: 2742 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2743 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2744 return (0); 2745 break; 2746 #endif /* INET */ 2747 #ifdef INET6 2748 case AF_INET6: { 2749 int i; 2750 2751 /* check a >= b */ 2752 for (i = 0; i < 4; ++i) 2753 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2754 break; 2755 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2756 return (0); 2757 /* check a <= e */ 2758 for (i = 0; i < 4; ++i) 2759 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2760 break; 2761 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2762 return (0); 2763 break; 2764 } 2765 #endif /* INET6 */ 2766 } 2767 return (1); 2768 } 2769 2770 static int 2771 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2772 { 2773 switch (op) { 2774 case PF_OP_IRG: 2775 return ((p > a1) && (p < a2)); 2776 case PF_OP_XRG: 2777 return ((p < a1) || (p > a2)); 2778 case PF_OP_RRG: 2779 return ((p >= a1) && (p <= a2)); 2780 case PF_OP_EQ: 2781 return (p == a1); 2782 case PF_OP_NE: 2783 return (p != a1); 2784 case PF_OP_LT: 2785 return (p < a1); 2786 case PF_OP_LE: 2787 return (p <= a1); 2788 case PF_OP_GT: 2789 return (p > a1); 2790 case PF_OP_GE: 2791 return (p >= a1); 2792 } 2793 return (0); /* never reached */ 2794 } 2795 2796 int 2797 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2798 { 2799 NTOHS(a1); 2800 NTOHS(a2); 2801 NTOHS(p); 2802 return (pf_match(op, a1, a2, p)); 2803 } 2804 2805 static int 2806 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2807 { 2808 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2809 return (0); 2810 return (pf_match(op, a1, a2, u)); 2811 } 2812 2813 static int 2814 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2815 { 2816 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2817 return (0); 2818 return (pf_match(op, a1, a2, g)); 2819 } 2820 2821 int 2822 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2823 { 2824 if (*tag == -1) 2825 *tag = mtag; 2826 2827 return ((!r->match_tag_not && r->match_tag == *tag) || 2828 (r->match_tag_not && r->match_tag != *tag)); 2829 } 2830 2831 int 2832 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2833 { 2834 2835 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2836 2837 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2838 return (ENOMEM); 2839 2840 pd->pf_mtag->tag = tag; 2841 2842 return (0); 2843 } 2844 2845 #define PF_ANCHOR_STACKSIZE 32 2846 struct pf_anchor_stackframe { 2847 struct pf_ruleset *rs; 2848 struct pf_rule *r; /* XXX: + match bit */ 2849 struct pf_anchor *child; 2850 }; 2851 2852 /* 2853 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2854 */ 2855 #define PF_ANCHORSTACK_MATCH 0x00000001 2856 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2857 2858 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2859 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2860 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2861 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2862 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2863 } while (0) 2864 2865 void 2866 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2867 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2868 int *match) 2869 { 2870 struct pf_anchor_stackframe *f; 2871 2872 PF_RULES_RASSERT(); 2873 2874 if (match) 2875 *match = 0; 2876 if (*depth >= PF_ANCHOR_STACKSIZE) { 2877 printf("%s: anchor stack overflow on %s\n", 2878 __func__, (*r)->anchor->name); 2879 *r = TAILQ_NEXT(*r, entries); 2880 return; 2881 } else if (*depth == 0 && a != NULL) 2882 *a = *r; 2883 f = stack + (*depth)++; 2884 f->rs = *rs; 2885 f->r = *r; 2886 if ((*r)->anchor_wildcard) { 2887 struct pf_anchor_node *parent = &(*r)->anchor->children; 2888 2889 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2890 *r = NULL; 2891 return; 2892 } 2893 *rs = &f->child->ruleset; 2894 } else { 2895 f->child = NULL; 2896 *rs = &(*r)->anchor->ruleset; 2897 } 2898 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2899 } 2900 2901 int 2902 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2903 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2904 int *match) 2905 { 2906 struct pf_anchor_stackframe *f; 2907 struct pf_rule *fr; 2908 int quick = 0; 2909 2910 PF_RULES_RASSERT(); 2911 2912 do { 2913 if (*depth <= 0) 2914 break; 2915 f = stack + *depth - 1; 2916 fr = PF_ANCHOR_RULE(f); 2917 if (f->child != NULL) { 2918 struct pf_anchor_node *parent; 2919 2920 /* 2921 * This block traverses through 2922 * a wildcard anchor. 2923 */ 2924 parent = &fr->anchor->children; 2925 if (match != NULL && *match) { 2926 /* 2927 * If any of "*" matched, then 2928 * "foo/ *" matched, mark frame 2929 * appropriately. 2930 */ 2931 PF_ANCHOR_SET_MATCH(f); 2932 *match = 0; 2933 } 2934 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2935 if (f->child != NULL) { 2936 *rs = &f->child->ruleset; 2937 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2938 if (*r == NULL) 2939 continue; 2940 else 2941 break; 2942 } 2943 } 2944 (*depth)--; 2945 if (*depth == 0 && a != NULL) 2946 *a = NULL; 2947 *rs = f->rs; 2948 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2949 quick = fr->quick; 2950 *r = TAILQ_NEXT(fr, entries); 2951 } while (*r == NULL); 2952 2953 return (quick); 2954 } 2955 2956 #ifdef INET6 2957 void 2958 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2959 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2960 { 2961 switch (af) { 2962 #ifdef INET 2963 case AF_INET: 2964 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2965 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2966 break; 2967 #endif /* INET */ 2968 case AF_INET6: 2969 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2970 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2971 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2972 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2973 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2974 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2975 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2976 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2977 break; 2978 } 2979 } 2980 2981 void 2982 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2983 { 2984 switch (af) { 2985 #ifdef INET 2986 case AF_INET: 2987 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2988 break; 2989 #endif /* INET */ 2990 case AF_INET6: 2991 if (addr->addr32[3] == 0xffffffff) { 2992 addr->addr32[3] = 0; 2993 if (addr->addr32[2] == 0xffffffff) { 2994 addr->addr32[2] = 0; 2995 if (addr->addr32[1] == 0xffffffff) { 2996 addr->addr32[1] = 0; 2997 addr->addr32[0] = 2998 htonl(ntohl(addr->addr32[0]) + 1); 2999 } else 3000 addr->addr32[1] = 3001 htonl(ntohl(addr->addr32[1]) + 1); 3002 } else 3003 addr->addr32[2] = 3004 htonl(ntohl(addr->addr32[2]) + 1); 3005 } else 3006 addr->addr32[3] = 3007 htonl(ntohl(addr->addr32[3]) + 1); 3008 break; 3009 } 3010 } 3011 #endif /* INET6 */ 3012 3013 int 3014 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3015 { 3016 struct pf_addr *saddr, *daddr; 3017 u_int16_t sport, dport; 3018 struct inpcbinfo *pi; 3019 struct inpcb *inp; 3020 3021 pd->lookup.uid = UID_MAX; 3022 pd->lookup.gid = GID_MAX; 3023 3024 switch (pd->proto) { 3025 case IPPROTO_TCP: 3026 if (pd->hdr.tcp == NULL) 3027 return (-1); 3028 sport = pd->hdr.tcp->th_sport; 3029 dport = pd->hdr.tcp->th_dport; 3030 pi = &V_tcbinfo; 3031 break; 3032 case IPPROTO_UDP: 3033 if (pd->hdr.udp == NULL) 3034 return (-1); 3035 sport = pd->hdr.udp->uh_sport; 3036 dport = pd->hdr.udp->uh_dport; 3037 pi = &V_udbinfo; 3038 break; 3039 default: 3040 return (-1); 3041 } 3042 if (direction == PF_IN) { 3043 saddr = pd->src; 3044 daddr = pd->dst; 3045 } else { 3046 u_int16_t p; 3047 3048 p = sport; 3049 sport = dport; 3050 dport = p; 3051 saddr = pd->dst; 3052 daddr = pd->src; 3053 } 3054 switch (pd->af) { 3055 #ifdef INET 3056 case AF_INET: 3057 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3058 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3059 if (inp == NULL) { 3060 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3061 daddr->v4, dport, INPLOOKUP_WILDCARD | 3062 INPLOOKUP_RLOCKPCB, NULL, m); 3063 if (inp == NULL) 3064 return (-1); 3065 } 3066 break; 3067 #endif /* INET */ 3068 #ifdef INET6 3069 case AF_INET6: 3070 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3071 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3072 if (inp == NULL) { 3073 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3074 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3075 INPLOOKUP_RLOCKPCB, NULL, m); 3076 if (inp == NULL) 3077 return (-1); 3078 } 3079 break; 3080 #endif /* INET6 */ 3081 3082 default: 3083 return (-1); 3084 } 3085 INP_RLOCK_ASSERT(inp); 3086 pd->lookup.uid = inp->inp_cred->cr_uid; 3087 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3088 INP_RUNLOCK(inp); 3089 3090 return (1); 3091 } 3092 3093 static u_int8_t 3094 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3095 { 3096 int hlen; 3097 u_int8_t hdr[60]; 3098 u_int8_t *opt, optlen; 3099 u_int8_t wscale = 0; 3100 3101 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3102 if (hlen <= sizeof(struct tcphdr)) 3103 return (0); 3104 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3105 return (0); 3106 opt = hdr + sizeof(struct tcphdr); 3107 hlen -= sizeof(struct tcphdr); 3108 while (hlen >= 3) { 3109 switch (*opt) { 3110 case TCPOPT_EOL: 3111 case TCPOPT_NOP: 3112 ++opt; 3113 --hlen; 3114 break; 3115 case TCPOPT_WINDOW: 3116 wscale = opt[2]; 3117 if (wscale > TCP_MAX_WINSHIFT) 3118 wscale = TCP_MAX_WINSHIFT; 3119 wscale |= PF_WSCALE_FLAG; 3120 /* FALLTHROUGH */ 3121 default: 3122 optlen = opt[1]; 3123 if (optlen < 2) 3124 optlen = 2; 3125 hlen -= optlen; 3126 opt += optlen; 3127 break; 3128 } 3129 } 3130 return (wscale); 3131 } 3132 3133 static u_int16_t 3134 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3135 { 3136 int hlen; 3137 u_int8_t hdr[60]; 3138 u_int8_t *opt, optlen; 3139 u_int16_t mss = V_tcp_mssdflt; 3140 3141 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3142 if (hlen <= sizeof(struct tcphdr)) 3143 return (0); 3144 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3145 return (0); 3146 opt = hdr + sizeof(struct tcphdr); 3147 hlen -= sizeof(struct tcphdr); 3148 while (hlen >= TCPOLEN_MAXSEG) { 3149 switch (*opt) { 3150 case TCPOPT_EOL: 3151 case TCPOPT_NOP: 3152 ++opt; 3153 --hlen; 3154 break; 3155 case TCPOPT_MAXSEG: 3156 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3157 NTOHS(mss); 3158 /* FALLTHROUGH */ 3159 default: 3160 optlen = opt[1]; 3161 if (optlen < 2) 3162 optlen = 2; 3163 hlen -= optlen; 3164 opt += optlen; 3165 break; 3166 } 3167 } 3168 return (mss); 3169 } 3170 3171 static u_int16_t 3172 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3173 { 3174 #ifdef INET 3175 struct nhop4_basic nh4; 3176 #endif /* INET */ 3177 #ifdef INET6 3178 struct nhop6_basic nh6; 3179 struct in6_addr dst6; 3180 uint32_t scopeid; 3181 #endif /* INET6 */ 3182 int hlen = 0; 3183 uint16_t mss = 0; 3184 3185 switch (af) { 3186 #ifdef INET 3187 case AF_INET: 3188 hlen = sizeof(struct ip); 3189 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3190 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3191 break; 3192 #endif /* INET */ 3193 #ifdef INET6 3194 case AF_INET6: 3195 hlen = sizeof(struct ip6_hdr); 3196 in6_splitscope(&addr->v6, &dst6, &scopeid); 3197 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3198 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3199 break; 3200 #endif /* INET6 */ 3201 } 3202 3203 mss = max(V_tcp_mssdflt, mss); 3204 mss = min(mss, offer); 3205 mss = max(mss, 64); /* sanity - at least max opt space */ 3206 return (mss); 3207 } 3208 3209 static u_int32_t 3210 pf_tcp_iss(struct pf_pdesc *pd) 3211 { 3212 MD5_CTX ctx; 3213 u_int32_t digest[4]; 3214 3215 if (V_pf_tcp_secret_init == 0) { 3216 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3217 MD5Init(&V_pf_tcp_secret_ctx); 3218 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3219 sizeof(V_pf_tcp_secret)); 3220 V_pf_tcp_secret_init = 1; 3221 } 3222 3223 ctx = V_pf_tcp_secret_ctx; 3224 3225 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3226 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3227 if (pd->af == AF_INET6) { 3228 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3229 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3230 } else { 3231 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3232 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3233 } 3234 MD5Final((u_char *)digest, &ctx); 3235 V_pf_tcp_iss_off += 4096; 3236 #define ISN_RANDOM_INCREMENT (4096 - 1) 3237 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3238 V_pf_tcp_iss_off); 3239 #undef ISN_RANDOM_INCREMENT 3240 } 3241 3242 static int 3243 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3244 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3245 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3246 { 3247 struct pf_rule *nr = NULL; 3248 struct pf_addr * const saddr = pd->src; 3249 struct pf_addr * const daddr = pd->dst; 3250 sa_family_t af = pd->af; 3251 struct pf_rule *r, *a = NULL; 3252 struct pf_ruleset *ruleset = NULL; 3253 struct pf_src_node *nsn = NULL; 3254 struct tcphdr *th = pd->hdr.tcp; 3255 struct pf_state_key *sk = NULL, *nk = NULL; 3256 u_short reason; 3257 int rewrite = 0, hdrlen = 0; 3258 int tag = -1, rtableid = -1; 3259 int asd = 0; 3260 int match = 0; 3261 int state_icmp = 0; 3262 u_int16_t sport = 0, dport = 0; 3263 u_int16_t bproto_sum = 0, bip_sum = 0; 3264 u_int8_t icmptype = 0, icmpcode = 0; 3265 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3266 3267 PF_RULES_RASSERT(); 3268 3269 if (inp != NULL) { 3270 INP_LOCK_ASSERT(inp); 3271 pd->lookup.uid = inp->inp_cred->cr_uid; 3272 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3273 pd->lookup.done = 1; 3274 } 3275 3276 switch (pd->proto) { 3277 case IPPROTO_TCP: 3278 sport = th->th_sport; 3279 dport = th->th_dport; 3280 hdrlen = sizeof(*th); 3281 break; 3282 case IPPROTO_UDP: 3283 sport = pd->hdr.udp->uh_sport; 3284 dport = pd->hdr.udp->uh_dport; 3285 hdrlen = sizeof(*pd->hdr.udp); 3286 break; 3287 #ifdef INET 3288 case IPPROTO_ICMP: 3289 if (pd->af != AF_INET) 3290 break; 3291 sport = dport = pd->hdr.icmp->icmp_id; 3292 hdrlen = sizeof(*pd->hdr.icmp); 3293 icmptype = pd->hdr.icmp->icmp_type; 3294 icmpcode = pd->hdr.icmp->icmp_code; 3295 3296 if (icmptype == ICMP_UNREACH || 3297 icmptype == ICMP_SOURCEQUENCH || 3298 icmptype == ICMP_REDIRECT || 3299 icmptype == ICMP_TIMXCEED || 3300 icmptype == ICMP_PARAMPROB) 3301 state_icmp++; 3302 break; 3303 #endif /* INET */ 3304 #ifdef INET6 3305 case IPPROTO_ICMPV6: 3306 if (af != AF_INET6) 3307 break; 3308 sport = dport = pd->hdr.icmp6->icmp6_id; 3309 hdrlen = sizeof(*pd->hdr.icmp6); 3310 icmptype = pd->hdr.icmp6->icmp6_type; 3311 icmpcode = pd->hdr.icmp6->icmp6_code; 3312 3313 if (icmptype == ICMP6_DST_UNREACH || 3314 icmptype == ICMP6_PACKET_TOO_BIG || 3315 icmptype == ICMP6_TIME_EXCEEDED || 3316 icmptype == ICMP6_PARAM_PROB) 3317 state_icmp++; 3318 break; 3319 #endif /* INET6 */ 3320 default: 3321 sport = dport = hdrlen = 0; 3322 break; 3323 } 3324 3325 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3326 3327 /* check packet for BINAT/NAT/RDR */ 3328 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3329 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3330 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3331 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3332 3333 if (pd->ip_sum) 3334 bip_sum = *pd->ip_sum; 3335 3336 switch (pd->proto) { 3337 case IPPROTO_TCP: 3338 bproto_sum = th->th_sum; 3339 pd->proto_sum = &th->th_sum; 3340 3341 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3342 nk->port[pd->sidx] != sport) { 3343 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3344 &th->th_sum, &nk->addr[pd->sidx], 3345 nk->port[pd->sidx], 0, af); 3346 pd->sport = &th->th_sport; 3347 sport = th->th_sport; 3348 } 3349 3350 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3351 nk->port[pd->didx] != dport) { 3352 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3353 &th->th_sum, &nk->addr[pd->didx], 3354 nk->port[pd->didx], 0, af); 3355 dport = th->th_dport; 3356 pd->dport = &th->th_dport; 3357 } 3358 rewrite++; 3359 break; 3360 case IPPROTO_UDP: 3361 bproto_sum = pd->hdr.udp->uh_sum; 3362 pd->proto_sum = &pd->hdr.udp->uh_sum; 3363 3364 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3365 nk->port[pd->sidx] != sport) { 3366 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3367 pd->ip_sum, &pd->hdr.udp->uh_sum, 3368 &nk->addr[pd->sidx], 3369 nk->port[pd->sidx], 1, af); 3370 sport = pd->hdr.udp->uh_sport; 3371 pd->sport = &pd->hdr.udp->uh_sport; 3372 } 3373 3374 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3375 nk->port[pd->didx] != dport) { 3376 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3377 pd->ip_sum, &pd->hdr.udp->uh_sum, 3378 &nk->addr[pd->didx], 3379 nk->port[pd->didx], 1, af); 3380 dport = pd->hdr.udp->uh_dport; 3381 pd->dport = &pd->hdr.udp->uh_dport; 3382 } 3383 rewrite++; 3384 break; 3385 #ifdef INET 3386 case IPPROTO_ICMP: 3387 nk->port[0] = nk->port[1]; 3388 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3389 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3390 nk->addr[pd->sidx].v4.s_addr, 0); 3391 3392 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3393 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3394 nk->addr[pd->didx].v4.s_addr, 0); 3395 3396 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3397 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3398 pd->hdr.icmp->icmp_cksum, sport, 3399 nk->port[1], 0); 3400 pd->hdr.icmp->icmp_id = nk->port[1]; 3401 pd->sport = &pd->hdr.icmp->icmp_id; 3402 } 3403 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3404 break; 3405 #endif /* INET */ 3406 #ifdef INET6 3407 case IPPROTO_ICMPV6: 3408 nk->port[0] = nk->port[1]; 3409 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3410 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3411 &nk->addr[pd->sidx], 0); 3412 3413 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3414 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3415 &nk->addr[pd->didx], 0); 3416 rewrite++; 3417 break; 3418 #endif /* INET */ 3419 default: 3420 switch (af) { 3421 #ifdef INET 3422 case AF_INET: 3423 if (PF_ANEQ(saddr, 3424 &nk->addr[pd->sidx], AF_INET)) 3425 pf_change_a(&saddr->v4.s_addr, 3426 pd->ip_sum, 3427 nk->addr[pd->sidx].v4.s_addr, 0); 3428 3429 if (PF_ANEQ(daddr, 3430 &nk->addr[pd->didx], AF_INET)) 3431 pf_change_a(&daddr->v4.s_addr, 3432 pd->ip_sum, 3433 nk->addr[pd->didx].v4.s_addr, 0); 3434 break; 3435 #endif /* INET */ 3436 #ifdef INET6 3437 case AF_INET6: 3438 if (PF_ANEQ(saddr, 3439 &nk->addr[pd->sidx], AF_INET6)) 3440 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3441 3442 if (PF_ANEQ(daddr, 3443 &nk->addr[pd->didx], AF_INET6)) 3444 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3445 break; 3446 #endif /* INET */ 3447 } 3448 break; 3449 } 3450 if (nr->natpass) 3451 r = NULL; 3452 pd->nat_rule = nr; 3453 } 3454 3455 while (r != NULL) { 3456 r->evaluations++; 3457 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3458 r = r->skip[PF_SKIP_IFP].ptr; 3459 else if (r->direction && r->direction != direction) 3460 r = r->skip[PF_SKIP_DIR].ptr; 3461 else if (r->af && r->af != af) 3462 r = r->skip[PF_SKIP_AF].ptr; 3463 else if (r->proto && r->proto != pd->proto) 3464 r = r->skip[PF_SKIP_PROTO].ptr; 3465 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3466 r->src.neg, kif, M_GETFIB(m))) 3467 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3468 /* tcp/udp only. port_op always 0 in other cases */ 3469 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3470 r->src.port[0], r->src.port[1], sport)) 3471 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3472 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3473 r->dst.neg, NULL, M_GETFIB(m))) 3474 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3475 /* tcp/udp only. port_op always 0 in other cases */ 3476 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3477 r->dst.port[0], r->dst.port[1], dport)) 3478 r = r->skip[PF_SKIP_DST_PORT].ptr; 3479 /* icmp only. type always 0 in other cases */ 3480 else if (r->type && r->type != icmptype + 1) 3481 r = TAILQ_NEXT(r, entries); 3482 /* icmp only. type always 0 in other cases */ 3483 else if (r->code && r->code != icmpcode + 1) 3484 r = TAILQ_NEXT(r, entries); 3485 else if (r->tos && !(r->tos == pd->tos)) 3486 r = TAILQ_NEXT(r, entries); 3487 else if (r->rule_flag & PFRULE_FRAGMENT) 3488 r = TAILQ_NEXT(r, entries); 3489 else if (pd->proto == IPPROTO_TCP && 3490 (r->flagset & th->th_flags) != r->flags) 3491 r = TAILQ_NEXT(r, entries); 3492 /* tcp/udp only. uid.op always 0 in other cases */ 3493 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3494 pf_socket_lookup(direction, pd, m), 1)) && 3495 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3496 pd->lookup.uid)) 3497 r = TAILQ_NEXT(r, entries); 3498 /* tcp/udp only. gid.op always 0 in other cases */ 3499 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3500 pf_socket_lookup(direction, pd, m), 1)) && 3501 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3502 pd->lookup.gid)) 3503 r = TAILQ_NEXT(r, entries); 3504 else if (r->prio && 3505 !pf_match_ieee8021q_pcp(r->prio, m)) 3506 r = TAILQ_NEXT(r, entries); 3507 else if (r->prob && 3508 r->prob <= arc4random()) 3509 r = TAILQ_NEXT(r, entries); 3510 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3511 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3512 r = TAILQ_NEXT(r, entries); 3513 else if (r->os_fingerprint != PF_OSFP_ANY && 3514 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3515 pf_osfp_fingerprint(pd, m, off, th), 3516 r->os_fingerprint))) 3517 r = TAILQ_NEXT(r, entries); 3518 else { 3519 if (r->tag) 3520 tag = r->tag; 3521 if (r->rtableid >= 0) 3522 rtableid = r->rtableid; 3523 if (r->anchor == NULL) { 3524 match = 1; 3525 *rm = r; 3526 *am = a; 3527 *rsm = ruleset; 3528 if ((*rm)->quick) 3529 break; 3530 r = TAILQ_NEXT(r, entries); 3531 } else 3532 pf_step_into_anchor(anchor_stack, &asd, 3533 &ruleset, PF_RULESET_FILTER, &r, &a, 3534 &match); 3535 } 3536 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3537 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3538 break; 3539 } 3540 r = *rm; 3541 a = *am; 3542 ruleset = *rsm; 3543 3544 REASON_SET(&reason, PFRES_MATCH); 3545 3546 if (r->log || (nr != NULL && nr->log)) { 3547 if (rewrite) 3548 m_copyback(m, off, hdrlen, pd->hdr.any); 3549 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3550 ruleset, pd, 1); 3551 } 3552 3553 if ((r->action == PF_DROP) && 3554 ((r->rule_flag & PFRULE_RETURNRST) || 3555 (r->rule_flag & PFRULE_RETURNICMP) || 3556 (r->rule_flag & PFRULE_RETURN))) { 3557 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3558 bip_sum, hdrlen, &reason); 3559 } 3560 3561 if (r->action == PF_DROP) 3562 goto cleanup; 3563 3564 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3565 REASON_SET(&reason, PFRES_MEMORY); 3566 goto cleanup; 3567 } 3568 if (rtableid >= 0) 3569 M_SETFIB(m, rtableid); 3570 3571 if (!state_icmp && (r->keep_state || nr != NULL || 3572 (pd->flags & PFDESC_TCP_NORM))) { 3573 int action; 3574 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3575 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3576 hdrlen); 3577 if (action != PF_PASS) { 3578 if (action == PF_DROP && 3579 (r->rule_flag & PFRULE_RETURN)) 3580 pf_return(r, nr, pd, sk, off, m, th, kif, 3581 bproto_sum, bip_sum, hdrlen, &reason); 3582 return (action); 3583 } 3584 } else { 3585 if (sk != NULL) 3586 uma_zfree(V_pf_state_key_z, sk); 3587 if (nk != NULL) 3588 uma_zfree(V_pf_state_key_z, nk); 3589 } 3590 3591 /* copy back packet headers if we performed NAT operations */ 3592 if (rewrite) 3593 m_copyback(m, off, hdrlen, pd->hdr.any); 3594 3595 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3596 direction == PF_OUT && 3597 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3598 /* 3599 * We want the state created, but we dont 3600 * want to send this in case a partner 3601 * firewall has to know about it to allow 3602 * replies through it. 3603 */ 3604 return (PF_DEFER); 3605 3606 return (PF_PASS); 3607 3608 cleanup: 3609 if (sk != NULL) 3610 uma_zfree(V_pf_state_key_z, sk); 3611 if (nk != NULL) 3612 uma_zfree(V_pf_state_key_z, nk); 3613 return (PF_DROP); 3614 } 3615 3616 static int 3617 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3618 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3619 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3620 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3621 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3622 { 3623 struct pf_state *s = NULL; 3624 struct pf_src_node *sn = NULL; 3625 struct tcphdr *th = pd->hdr.tcp; 3626 u_int16_t mss = V_tcp_mssdflt; 3627 u_short reason; 3628 3629 /* check maximums */ 3630 if (r->max_states && 3631 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3632 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3633 REASON_SET(&reason, PFRES_MAXSTATES); 3634 goto csfailed; 3635 } 3636 /* src node for filter rule */ 3637 if ((r->rule_flag & PFRULE_SRCTRACK || 3638 r->rpool.opts & PF_POOL_STICKYADDR) && 3639 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3640 REASON_SET(&reason, PFRES_SRCLIMIT); 3641 goto csfailed; 3642 } 3643 /* src node for translation rule */ 3644 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3645 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3646 REASON_SET(&reason, PFRES_SRCLIMIT); 3647 goto csfailed; 3648 } 3649 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3650 if (s == NULL) { 3651 REASON_SET(&reason, PFRES_MEMORY); 3652 goto csfailed; 3653 } 3654 s->rule.ptr = r; 3655 s->nat_rule.ptr = nr; 3656 s->anchor.ptr = a; 3657 STATE_INC_COUNTERS(s); 3658 if (r->allow_opts) 3659 s->state_flags |= PFSTATE_ALLOWOPTS; 3660 if (r->rule_flag & PFRULE_STATESLOPPY) 3661 s->state_flags |= PFSTATE_SLOPPY; 3662 s->log = r->log & PF_LOG_ALL; 3663 s->sync_state = PFSYNC_S_NONE; 3664 if (nr != NULL) 3665 s->log |= nr->log & PF_LOG_ALL; 3666 switch (pd->proto) { 3667 case IPPROTO_TCP: 3668 s->src.seqlo = ntohl(th->th_seq); 3669 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3670 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3671 r->keep_state == PF_STATE_MODULATE) { 3672 /* Generate sequence number modulator */ 3673 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3674 0) 3675 s->src.seqdiff = 1; 3676 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3677 htonl(s->src.seqlo + s->src.seqdiff), 0); 3678 *rewrite = 1; 3679 } else 3680 s->src.seqdiff = 0; 3681 if (th->th_flags & TH_SYN) { 3682 s->src.seqhi++; 3683 s->src.wscale = pf_get_wscale(m, off, 3684 th->th_off, pd->af); 3685 } 3686 s->src.max_win = MAX(ntohs(th->th_win), 1); 3687 if (s->src.wscale & PF_WSCALE_MASK) { 3688 /* Remove scale factor from initial window */ 3689 int win = s->src.max_win; 3690 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3691 s->src.max_win = (win - 1) >> 3692 (s->src.wscale & PF_WSCALE_MASK); 3693 } 3694 if (th->th_flags & TH_FIN) 3695 s->src.seqhi++; 3696 s->dst.seqhi = 1; 3697 s->dst.max_win = 1; 3698 s->src.state = TCPS_SYN_SENT; 3699 s->dst.state = TCPS_CLOSED; 3700 s->timeout = PFTM_TCP_FIRST_PACKET; 3701 break; 3702 case IPPROTO_UDP: 3703 s->src.state = PFUDPS_SINGLE; 3704 s->dst.state = PFUDPS_NO_TRAFFIC; 3705 s->timeout = PFTM_UDP_FIRST_PACKET; 3706 break; 3707 case IPPROTO_ICMP: 3708 #ifdef INET6 3709 case IPPROTO_ICMPV6: 3710 #endif 3711 s->timeout = PFTM_ICMP_FIRST_PACKET; 3712 break; 3713 default: 3714 s->src.state = PFOTHERS_SINGLE; 3715 s->dst.state = PFOTHERS_NO_TRAFFIC; 3716 s->timeout = PFTM_OTHER_FIRST_PACKET; 3717 } 3718 3719 if (r->rt) { 3720 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3721 REASON_SET(&reason, PFRES_MAPFAILED); 3722 pf_src_tree_remove_state(s); 3723 STATE_DEC_COUNTERS(s); 3724 uma_zfree(V_pf_state_z, s); 3725 goto csfailed; 3726 } 3727 s->rt_kif = r->rpool.cur->kif; 3728 } 3729 3730 s->creation = time_uptime; 3731 s->expire = time_uptime; 3732 3733 if (sn != NULL) 3734 s->src_node = sn; 3735 if (nsn != NULL) { 3736 /* XXX We only modify one side for now. */ 3737 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3738 s->nat_src_node = nsn; 3739 } 3740 if (pd->proto == IPPROTO_TCP) { 3741 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3742 off, pd, th, &s->src, &s->dst)) { 3743 REASON_SET(&reason, PFRES_MEMORY); 3744 pf_src_tree_remove_state(s); 3745 STATE_DEC_COUNTERS(s); 3746 uma_zfree(V_pf_state_z, s); 3747 return (PF_DROP); 3748 } 3749 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3750 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3751 &s->src, &s->dst, rewrite)) { 3752 /* This really shouldn't happen!!! */ 3753 DPFPRINTF(PF_DEBUG_URGENT, 3754 ("pf_normalize_tcp_stateful failed on first pkt")); 3755 pf_normalize_tcp_cleanup(s); 3756 pf_src_tree_remove_state(s); 3757 STATE_DEC_COUNTERS(s); 3758 uma_zfree(V_pf_state_z, s); 3759 return (PF_DROP); 3760 } 3761 } 3762 s->direction = pd->dir; 3763 3764 /* 3765 * sk/nk could already been setup by pf_get_translation(). 3766 */ 3767 if (nr == NULL) { 3768 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3769 __func__, nr, sk, nk)); 3770 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3771 if (sk == NULL) 3772 goto csfailed; 3773 nk = sk; 3774 } else 3775 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3776 __func__, nr, sk, nk)); 3777 3778 /* Swap sk/nk for PF_OUT. */ 3779 if (pf_state_insert(BOUND_IFACE(r, kif), 3780 (pd->dir == PF_IN) ? sk : nk, 3781 (pd->dir == PF_IN) ? nk : sk, s)) { 3782 if (pd->proto == IPPROTO_TCP) 3783 pf_normalize_tcp_cleanup(s); 3784 REASON_SET(&reason, PFRES_STATEINS); 3785 pf_src_tree_remove_state(s); 3786 STATE_DEC_COUNTERS(s); 3787 uma_zfree(V_pf_state_z, s); 3788 return (PF_DROP); 3789 } else 3790 *sm = s; 3791 3792 if (tag > 0) 3793 s->tag = tag; 3794 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3795 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3796 s->src.state = PF_TCPS_PROXY_SRC; 3797 /* undo NAT changes, if they have taken place */ 3798 if (nr != NULL) { 3799 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3800 if (pd->dir == PF_OUT) 3801 skt = s->key[PF_SK_STACK]; 3802 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3803 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3804 if (pd->sport) 3805 *pd->sport = skt->port[pd->sidx]; 3806 if (pd->dport) 3807 *pd->dport = skt->port[pd->didx]; 3808 if (pd->proto_sum) 3809 *pd->proto_sum = bproto_sum; 3810 if (pd->ip_sum) 3811 *pd->ip_sum = bip_sum; 3812 m_copyback(m, off, hdrlen, pd->hdr.any); 3813 } 3814 s->src.seqhi = htonl(arc4random()); 3815 /* Find mss option */ 3816 int rtid = M_GETFIB(m); 3817 mss = pf_get_mss(m, off, th->th_off, pd->af); 3818 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3819 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3820 s->src.mss = mss; 3821 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3822 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3823 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3824 REASON_SET(&reason, PFRES_SYNPROXY); 3825 return (PF_SYNPROXY_DROP); 3826 } 3827 3828 return (PF_PASS); 3829 3830 csfailed: 3831 if (sk != NULL) 3832 uma_zfree(V_pf_state_key_z, sk); 3833 if (nk != NULL) 3834 uma_zfree(V_pf_state_key_z, nk); 3835 3836 if (sn != NULL) { 3837 struct pf_srchash *sh; 3838 3839 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3840 PF_HASHROW_LOCK(sh); 3841 if (--sn->states == 0 && sn->expire == 0) { 3842 pf_unlink_src_node(sn); 3843 uma_zfree(V_pf_sources_z, sn); 3844 counter_u64_add( 3845 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3846 } 3847 PF_HASHROW_UNLOCK(sh); 3848 } 3849 3850 if (nsn != sn && nsn != NULL) { 3851 struct pf_srchash *sh; 3852 3853 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3854 PF_HASHROW_LOCK(sh); 3855 if (--nsn->states == 0 && nsn->expire == 0) { 3856 pf_unlink_src_node(nsn); 3857 uma_zfree(V_pf_sources_z, nsn); 3858 counter_u64_add( 3859 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3860 } 3861 PF_HASHROW_UNLOCK(sh); 3862 } 3863 3864 return (PF_DROP); 3865 } 3866 3867 static int 3868 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3869 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3870 struct pf_ruleset **rsm) 3871 { 3872 struct pf_rule *r, *a = NULL; 3873 struct pf_ruleset *ruleset = NULL; 3874 sa_family_t af = pd->af; 3875 u_short reason; 3876 int tag = -1; 3877 int asd = 0; 3878 int match = 0; 3879 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3880 3881 PF_RULES_RASSERT(); 3882 3883 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3884 while (r != NULL) { 3885 r->evaluations++; 3886 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3887 r = r->skip[PF_SKIP_IFP].ptr; 3888 else if (r->direction && r->direction != direction) 3889 r = r->skip[PF_SKIP_DIR].ptr; 3890 else if (r->af && r->af != af) 3891 r = r->skip[PF_SKIP_AF].ptr; 3892 else if (r->proto && r->proto != pd->proto) 3893 r = r->skip[PF_SKIP_PROTO].ptr; 3894 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3895 r->src.neg, kif, M_GETFIB(m))) 3896 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3897 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3898 r->dst.neg, NULL, M_GETFIB(m))) 3899 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3900 else if (r->tos && !(r->tos == pd->tos)) 3901 r = TAILQ_NEXT(r, entries); 3902 else if (r->os_fingerprint != PF_OSFP_ANY) 3903 r = TAILQ_NEXT(r, entries); 3904 else if (pd->proto == IPPROTO_UDP && 3905 (r->src.port_op || r->dst.port_op)) 3906 r = TAILQ_NEXT(r, entries); 3907 else if (pd->proto == IPPROTO_TCP && 3908 (r->src.port_op || r->dst.port_op || r->flagset)) 3909 r = TAILQ_NEXT(r, entries); 3910 else if ((pd->proto == IPPROTO_ICMP || 3911 pd->proto == IPPROTO_ICMPV6) && 3912 (r->type || r->code)) 3913 r = TAILQ_NEXT(r, entries); 3914 else if (r->prio && 3915 !pf_match_ieee8021q_pcp(r->prio, m)) 3916 r = TAILQ_NEXT(r, entries); 3917 else if (r->prob && r->prob <= 3918 (arc4random() % (UINT_MAX - 1) + 1)) 3919 r = TAILQ_NEXT(r, entries); 3920 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3921 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3922 r = TAILQ_NEXT(r, entries); 3923 else { 3924 if (r->anchor == NULL) { 3925 match = 1; 3926 *rm = r; 3927 *am = a; 3928 *rsm = ruleset; 3929 if ((*rm)->quick) 3930 break; 3931 r = TAILQ_NEXT(r, entries); 3932 } else 3933 pf_step_into_anchor(anchor_stack, &asd, 3934 &ruleset, PF_RULESET_FILTER, &r, &a, 3935 &match); 3936 } 3937 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3938 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3939 break; 3940 } 3941 r = *rm; 3942 a = *am; 3943 ruleset = *rsm; 3944 3945 REASON_SET(&reason, PFRES_MATCH); 3946 3947 if (r->log) 3948 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3949 1); 3950 3951 if (r->action != PF_PASS) 3952 return (PF_DROP); 3953 3954 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3955 REASON_SET(&reason, PFRES_MEMORY); 3956 return (PF_DROP); 3957 } 3958 3959 return (PF_PASS); 3960 } 3961 3962 static int 3963 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3964 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3965 struct pf_pdesc *pd, u_short *reason, int *copyback) 3966 { 3967 struct tcphdr *th = pd->hdr.tcp; 3968 u_int16_t win = ntohs(th->th_win); 3969 u_int32_t ack, end, seq, orig_seq; 3970 u_int8_t sws, dws; 3971 int ackskew; 3972 3973 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3974 sws = src->wscale & PF_WSCALE_MASK; 3975 dws = dst->wscale & PF_WSCALE_MASK; 3976 } else 3977 sws = dws = 0; 3978 3979 /* 3980 * Sequence tracking algorithm from Guido van Rooij's paper: 3981 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3982 * tcp_filtering.ps 3983 */ 3984 3985 orig_seq = seq = ntohl(th->th_seq); 3986 if (src->seqlo == 0) { 3987 /* First packet from this end. Set its state */ 3988 3989 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3990 src->scrub == NULL) { 3991 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3992 REASON_SET(reason, PFRES_MEMORY); 3993 return (PF_DROP); 3994 } 3995 } 3996 3997 /* Deferred generation of sequence number modulator */ 3998 if (dst->seqdiff && !src->seqdiff) { 3999 /* use random iss for the TCP server */ 4000 while ((src->seqdiff = arc4random() - seq) == 0) 4001 ; 4002 ack = ntohl(th->th_ack) - dst->seqdiff; 4003 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4004 src->seqdiff), 0); 4005 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4006 *copyback = 1; 4007 } else { 4008 ack = ntohl(th->th_ack); 4009 } 4010 4011 end = seq + pd->p_len; 4012 if (th->th_flags & TH_SYN) { 4013 end++; 4014 if (dst->wscale & PF_WSCALE_FLAG) { 4015 src->wscale = pf_get_wscale(m, off, th->th_off, 4016 pd->af); 4017 if (src->wscale & PF_WSCALE_FLAG) { 4018 /* Remove scale factor from initial 4019 * window */ 4020 sws = src->wscale & PF_WSCALE_MASK; 4021 win = ((u_int32_t)win + (1 << sws) - 1) 4022 >> sws; 4023 dws = dst->wscale & PF_WSCALE_MASK; 4024 } else { 4025 /* fixup other window */ 4026 dst->max_win <<= dst->wscale & 4027 PF_WSCALE_MASK; 4028 /* in case of a retrans SYN|ACK */ 4029 dst->wscale = 0; 4030 } 4031 } 4032 } 4033 if (th->th_flags & TH_FIN) 4034 end++; 4035 4036 src->seqlo = seq; 4037 if (src->state < TCPS_SYN_SENT) 4038 src->state = TCPS_SYN_SENT; 4039 4040 /* 4041 * May need to slide the window (seqhi may have been set by 4042 * the crappy stack check or if we picked up the connection 4043 * after establishment) 4044 */ 4045 if (src->seqhi == 1 || 4046 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4047 src->seqhi = end + MAX(1, dst->max_win << dws); 4048 if (win > src->max_win) 4049 src->max_win = win; 4050 4051 } else { 4052 ack = ntohl(th->th_ack) - dst->seqdiff; 4053 if (src->seqdiff) { 4054 /* Modulate sequence numbers */ 4055 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4056 src->seqdiff), 0); 4057 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4058 *copyback = 1; 4059 } 4060 end = seq + pd->p_len; 4061 if (th->th_flags & TH_SYN) 4062 end++; 4063 if (th->th_flags & TH_FIN) 4064 end++; 4065 } 4066 4067 if ((th->th_flags & TH_ACK) == 0) { 4068 /* Let it pass through the ack skew check */ 4069 ack = dst->seqlo; 4070 } else if ((ack == 0 && 4071 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4072 /* broken tcp stacks do not set ack */ 4073 (dst->state < TCPS_SYN_SENT)) { 4074 /* 4075 * Many stacks (ours included) will set the ACK number in an 4076 * FIN|ACK if the SYN times out -- no sequence to ACK. 4077 */ 4078 ack = dst->seqlo; 4079 } 4080 4081 if (seq == end) { 4082 /* Ease sequencing restrictions on no data packets */ 4083 seq = src->seqlo; 4084 end = seq; 4085 } 4086 4087 ackskew = dst->seqlo - ack; 4088 4089 4090 /* 4091 * Need to demodulate the sequence numbers in any TCP SACK options 4092 * (Selective ACK). We could optionally validate the SACK values 4093 * against the current ACK window, either forwards or backwards, but 4094 * I'm not confident that SACK has been implemented properly 4095 * everywhere. It wouldn't surprise me if several stacks accidentally 4096 * SACK too far backwards of previously ACKed data. There really aren't 4097 * any security implications of bad SACKing unless the target stack 4098 * doesn't validate the option length correctly. Someone trying to 4099 * spoof into a TCP connection won't bother blindly sending SACK 4100 * options anyway. 4101 */ 4102 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4103 if (pf_modulate_sack(m, off, pd, th, dst)) 4104 *copyback = 1; 4105 } 4106 4107 4108 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4109 if (SEQ_GEQ(src->seqhi, end) && 4110 /* Last octet inside other's window space */ 4111 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4112 /* Retrans: not more than one window back */ 4113 (ackskew >= -MAXACKWINDOW) && 4114 /* Acking not more than one reassembled fragment backwards */ 4115 (ackskew <= (MAXACKWINDOW << sws)) && 4116 /* Acking not more than one window forward */ 4117 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4118 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4119 (pd->flags & PFDESC_IP_REAS) == 0)) { 4120 /* Require an exact/+1 sequence match on resets when possible */ 4121 4122 if (dst->scrub || src->scrub) { 4123 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4124 *state, src, dst, copyback)) 4125 return (PF_DROP); 4126 } 4127 4128 /* update max window */ 4129 if (src->max_win < win) 4130 src->max_win = win; 4131 /* synchronize sequencing */ 4132 if (SEQ_GT(end, src->seqlo)) 4133 src->seqlo = end; 4134 /* slide the window of what the other end can send */ 4135 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4136 dst->seqhi = ack + MAX((win << sws), 1); 4137 4138 4139 /* update states */ 4140 if (th->th_flags & TH_SYN) 4141 if (src->state < TCPS_SYN_SENT) 4142 src->state = TCPS_SYN_SENT; 4143 if (th->th_flags & TH_FIN) 4144 if (src->state < TCPS_CLOSING) 4145 src->state = TCPS_CLOSING; 4146 if (th->th_flags & TH_ACK) { 4147 if (dst->state == TCPS_SYN_SENT) { 4148 dst->state = TCPS_ESTABLISHED; 4149 if (src->state == TCPS_ESTABLISHED && 4150 (*state)->src_node != NULL && 4151 pf_src_connlimit(state)) { 4152 REASON_SET(reason, PFRES_SRCLIMIT); 4153 return (PF_DROP); 4154 } 4155 } else if (dst->state == TCPS_CLOSING) 4156 dst->state = TCPS_FIN_WAIT_2; 4157 } 4158 if (th->th_flags & TH_RST) 4159 src->state = dst->state = TCPS_TIME_WAIT; 4160 4161 /* update expire time */ 4162 (*state)->expire = time_uptime; 4163 if (src->state >= TCPS_FIN_WAIT_2 && 4164 dst->state >= TCPS_FIN_WAIT_2) 4165 (*state)->timeout = PFTM_TCP_CLOSED; 4166 else if (src->state >= TCPS_CLOSING && 4167 dst->state >= TCPS_CLOSING) 4168 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4169 else if (src->state < TCPS_ESTABLISHED || 4170 dst->state < TCPS_ESTABLISHED) 4171 (*state)->timeout = PFTM_TCP_OPENING; 4172 else if (src->state >= TCPS_CLOSING || 4173 dst->state >= TCPS_CLOSING) 4174 (*state)->timeout = PFTM_TCP_CLOSING; 4175 else 4176 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4177 4178 /* Fall through to PASS packet */ 4179 4180 } else if ((dst->state < TCPS_SYN_SENT || 4181 dst->state >= TCPS_FIN_WAIT_2 || 4182 src->state >= TCPS_FIN_WAIT_2) && 4183 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4184 /* Within a window forward of the originating packet */ 4185 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4186 /* Within a window backward of the originating packet */ 4187 4188 /* 4189 * This currently handles three situations: 4190 * 1) Stupid stacks will shotgun SYNs before their peer 4191 * replies. 4192 * 2) When PF catches an already established stream (the 4193 * firewall rebooted, the state table was flushed, routes 4194 * changed...) 4195 * 3) Packets get funky immediately after the connection 4196 * closes (this should catch Solaris spurious ACK|FINs 4197 * that web servers like to spew after a close) 4198 * 4199 * This must be a little more careful than the above code 4200 * since packet floods will also be caught here. We don't 4201 * update the TTL here to mitigate the damage of a packet 4202 * flood and so the same code can handle awkward establishment 4203 * and a loosened connection close. 4204 * In the establishment case, a correct peer response will 4205 * validate the connection, go through the normal state code 4206 * and keep updating the state TTL. 4207 */ 4208 4209 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4210 printf("pf: loose state match: "); 4211 pf_print_state(*state); 4212 pf_print_flags(th->th_flags); 4213 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4214 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4215 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4216 (unsigned long long)(*state)->packets[1], 4217 pd->dir == PF_IN ? "in" : "out", 4218 pd->dir == (*state)->direction ? "fwd" : "rev"); 4219 } 4220 4221 if (dst->scrub || src->scrub) { 4222 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4223 *state, src, dst, copyback)) 4224 return (PF_DROP); 4225 } 4226 4227 /* update max window */ 4228 if (src->max_win < win) 4229 src->max_win = win; 4230 /* synchronize sequencing */ 4231 if (SEQ_GT(end, src->seqlo)) 4232 src->seqlo = end; 4233 /* slide the window of what the other end can send */ 4234 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4235 dst->seqhi = ack + MAX((win << sws), 1); 4236 4237 /* 4238 * Cannot set dst->seqhi here since this could be a shotgunned 4239 * SYN and not an already established connection. 4240 */ 4241 4242 if (th->th_flags & TH_FIN) 4243 if (src->state < TCPS_CLOSING) 4244 src->state = TCPS_CLOSING; 4245 if (th->th_flags & TH_RST) 4246 src->state = dst->state = TCPS_TIME_WAIT; 4247 4248 /* Fall through to PASS packet */ 4249 4250 } else { 4251 if ((*state)->dst.state == TCPS_SYN_SENT && 4252 (*state)->src.state == TCPS_SYN_SENT) { 4253 /* Send RST for state mismatches during handshake */ 4254 if (!(th->th_flags & TH_RST)) 4255 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4256 pd->dst, pd->src, th->th_dport, 4257 th->th_sport, ntohl(th->th_ack), 0, 4258 TH_RST, 0, 0, 4259 (*state)->rule.ptr->return_ttl, 1, 0, 4260 kif->pfik_ifp); 4261 src->seqlo = 0; 4262 src->seqhi = 1; 4263 src->max_win = 1; 4264 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4265 printf("pf: BAD state: "); 4266 pf_print_state(*state); 4267 pf_print_flags(th->th_flags); 4268 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4269 "pkts=%llu:%llu dir=%s,%s\n", 4270 seq, orig_seq, ack, pd->p_len, ackskew, 4271 (unsigned long long)(*state)->packets[0], 4272 (unsigned long long)(*state)->packets[1], 4273 pd->dir == PF_IN ? "in" : "out", 4274 pd->dir == (*state)->direction ? "fwd" : "rev"); 4275 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4276 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4277 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4278 ' ': '2', 4279 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4280 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4281 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4282 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4283 } 4284 REASON_SET(reason, PFRES_BADSTATE); 4285 return (PF_DROP); 4286 } 4287 4288 return (PF_PASS); 4289 } 4290 4291 static int 4292 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4293 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4294 { 4295 struct tcphdr *th = pd->hdr.tcp; 4296 4297 if (th->th_flags & TH_SYN) 4298 if (src->state < TCPS_SYN_SENT) 4299 src->state = TCPS_SYN_SENT; 4300 if (th->th_flags & TH_FIN) 4301 if (src->state < TCPS_CLOSING) 4302 src->state = TCPS_CLOSING; 4303 if (th->th_flags & TH_ACK) { 4304 if (dst->state == TCPS_SYN_SENT) { 4305 dst->state = TCPS_ESTABLISHED; 4306 if (src->state == TCPS_ESTABLISHED && 4307 (*state)->src_node != NULL && 4308 pf_src_connlimit(state)) { 4309 REASON_SET(reason, PFRES_SRCLIMIT); 4310 return (PF_DROP); 4311 } 4312 } else if (dst->state == TCPS_CLOSING) { 4313 dst->state = TCPS_FIN_WAIT_2; 4314 } else if (src->state == TCPS_SYN_SENT && 4315 dst->state < TCPS_SYN_SENT) { 4316 /* 4317 * Handle a special sloppy case where we only see one 4318 * half of the connection. If there is a ACK after 4319 * the initial SYN without ever seeing a packet from 4320 * the destination, set the connection to established. 4321 */ 4322 dst->state = src->state = TCPS_ESTABLISHED; 4323 if ((*state)->src_node != NULL && 4324 pf_src_connlimit(state)) { 4325 REASON_SET(reason, PFRES_SRCLIMIT); 4326 return (PF_DROP); 4327 } 4328 } else if (src->state == TCPS_CLOSING && 4329 dst->state == TCPS_ESTABLISHED && 4330 dst->seqlo == 0) { 4331 /* 4332 * Handle the closing of half connections where we 4333 * don't see the full bidirectional FIN/ACK+ACK 4334 * handshake. 4335 */ 4336 dst->state = TCPS_CLOSING; 4337 } 4338 } 4339 if (th->th_flags & TH_RST) 4340 src->state = dst->state = TCPS_TIME_WAIT; 4341 4342 /* update expire time */ 4343 (*state)->expire = time_uptime; 4344 if (src->state >= TCPS_FIN_WAIT_2 && 4345 dst->state >= TCPS_FIN_WAIT_2) 4346 (*state)->timeout = PFTM_TCP_CLOSED; 4347 else if (src->state >= TCPS_CLOSING && 4348 dst->state >= TCPS_CLOSING) 4349 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4350 else if (src->state < TCPS_ESTABLISHED || 4351 dst->state < TCPS_ESTABLISHED) 4352 (*state)->timeout = PFTM_TCP_OPENING; 4353 else if (src->state >= TCPS_CLOSING || 4354 dst->state >= TCPS_CLOSING) 4355 (*state)->timeout = PFTM_TCP_CLOSING; 4356 else 4357 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4358 4359 return (PF_PASS); 4360 } 4361 4362 static int 4363 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4364 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4365 u_short *reason) 4366 { 4367 struct pf_state_key_cmp key; 4368 struct tcphdr *th = pd->hdr.tcp; 4369 int copyback = 0; 4370 struct pf_state_peer *src, *dst; 4371 struct pf_state_key *sk; 4372 4373 bzero(&key, sizeof(key)); 4374 key.af = pd->af; 4375 key.proto = IPPROTO_TCP; 4376 if (direction == PF_IN) { /* wire side, straight */ 4377 PF_ACPY(&key.addr[0], pd->src, key.af); 4378 PF_ACPY(&key.addr[1], pd->dst, key.af); 4379 key.port[0] = th->th_sport; 4380 key.port[1] = th->th_dport; 4381 } else { /* stack side, reverse */ 4382 PF_ACPY(&key.addr[1], pd->src, key.af); 4383 PF_ACPY(&key.addr[0], pd->dst, key.af); 4384 key.port[1] = th->th_sport; 4385 key.port[0] = th->th_dport; 4386 } 4387 4388 STATE_LOOKUP(kif, &key, direction, *state, pd); 4389 4390 if (direction == (*state)->direction) { 4391 src = &(*state)->src; 4392 dst = &(*state)->dst; 4393 } else { 4394 src = &(*state)->dst; 4395 dst = &(*state)->src; 4396 } 4397 4398 sk = (*state)->key[pd->didx]; 4399 4400 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4401 if (direction != (*state)->direction) { 4402 REASON_SET(reason, PFRES_SYNPROXY); 4403 return (PF_SYNPROXY_DROP); 4404 } 4405 if (th->th_flags & TH_SYN) { 4406 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4407 REASON_SET(reason, PFRES_SYNPROXY); 4408 return (PF_DROP); 4409 } 4410 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4411 pd->src, th->th_dport, th->th_sport, 4412 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4413 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4414 REASON_SET(reason, PFRES_SYNPROXY); 4415 return (PF_SYNPROXY_DROP); 4416 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4417 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4418 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4419 REASON_SET(reason, PFRES_SYNPROXY); 4420 return (PF_DROP); 4421 } else if ((*state)->src_node != NULL && 4422 pf_src_connlimit(state)) { 4423 REASON_SET(reason, PFRES_SRCLIMIT); 4424 return (PF_DROP); 4425 } else 4426 (*state)->src.state = PF_TCPS_PROXY_DST; 4427 } 4428 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4429 if (direction == (*state)->direction) { 4430 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4431 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4432 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4433 REASON_SET(reason, PFRES_SYNPROXY); 4434 return (PF_DROP); 4435 } 4436 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4437 if ((*state)->dst.seqhi == 1) 4438 (*state)->dst.seqhi = htonl(arc4random()); 4439 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4440 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4441 sk->port[pd->sidx], sk->port[pd->didx], 4442 (*state)->dst.seqhi, 0, TH_SYN, 0, 4443 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4444 REASON_SET(reason, PFRES_SYNPROXY); 4445 return (PF_SYNPROXY_DROP); 4446 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4447 (TH_SYN|TH_ACK)) || 4448 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4449 REASON_SET(reason, PFRES_SYNPROXY); 4450 return (PF_DROP); 4451 } else { 4452 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4453 (*state)->dst.seqlo = ntohl(th->th_seq); 4454 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4455 pd->src, th->th_dport, th->th_sport, 4456 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4457 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4458 (*state)->tag, NULL); 4459 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4460 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4461 sk->port[pd->sidx], sk->port[pd->didx], 4462 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4463 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4464 (*state)->src.seqdiff = (*state)->dst.seqhi - 4465 (*state)->src.seqlo; 4466 (*state)->dst.seqdiff = (*state)->src.seqhi - 4467 (*state)->dst.seqlo; 4468 (*state)->src.seqhi = (*state)->src.seqlo + 4469 (*state)->dst.max_win; 4470 (*state)->dst.seqhi = (*state)->dst.seqlo + 4471 (*state)->src.max_win; 4472 (*state)->src.wscale = (*state)->dst.wscale = 0; 4473 (*state)->src.state = (*state)->dst.state = 4474 TCPS_ESTABLISHED; 4475 REASON_SET(reason, PFRES_SYNPROXY); 4476 return (PF_SYNPROXY_DROP); 4477 } 4478 } 4479 4480 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4481 dst->state >= TCPS_FIN_WAIT_2 && 4482 src->state >= TCPS_FIN_WAIT_2) { 4483 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4484 printf("pf: state reuse "); 4485 pf_print_state(*state); 4486 pf_print_flags(th->th_flags); 4487 printf("\n"); 4488 } 4489 /* XXX make sure it's the same direction ?? */ 4490 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4491 pf_unlink_state(*state, PF_ENTER_LOCKED); 4492 *state = NULL; 4493 return (PF_DROP); 4494 } 4495 4496 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4497 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4498 return (PF_DROP); 4499 } else { 4500 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4501 ©back) == PF_DROP) 4502 return (PF_DROP); 4503 } 4504 4505 /* translate source/destination address, if necessary */ 4506 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4507 struct pf_state_key *nk = (*state)->key[pd->didx]; 4508 4509 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4510 nk->port[pd->sidx] != th->th_sport) 4511 pf_change_ap(m, pd->src, &th->th_sport, 4512 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4513 nk->port[pd->sidx], 0, pd->af); 4514 4515 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4516 nk->port[pd->didx] != th->th_dport) 4517 pf_change_ap(m, pd->dst, &th->th_dport, 4518 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4519 nk->port[pd->didx], 0, pd->af); 4520 copyback = 1; 4521 } 4522 4523 /* Copyback sequence modulation or stateful scrub changes if needed */ 4524 if (copyback) 4525 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4526 4527 return (PF_PASS); 4528 } 4529 4530 static int 4531 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4532 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4533 { 4534 struct pf_state_peer *src, *dst; 4535 struct pf_state_key_cmp key; 4536 struct udphdr *uh = pd->hdr.udp; 4537 4538 bzero(&key, sizeof(key)); 4539 key.af = pd->af; 4540 key.proto = IPPROTO_UDP; 4541 if (direction == PF_IN) { /* wire side, straight */ 4542 PF_ACPY(&key.addr[0], pd->src, key.af); 4543 PF_ACPY(&key.addr[1], pd->dst, key.af); 4544 key.port[0] = uh->uh_sport; 4545 key.port[1] = uh->uh_dport; 4546 } else { /* stack side, reverse */ 4547 PF_ACPY(&key.addr[1], pd->src, key.af); 4548 PF_ACPY(&key.addr[0], pd->dst, key.af); 4549 key.port[1] = uh->uh_sport; 4550 key.port[0] = uh->uh_dport; 4551 } 4552 4553 STATE_LOOKUP(kif, &key, direction, *state, pd); 4554 4555 if (direction == (*state)->direction) { 4556 src = &(*state)->src; 4557 dst = &(*state)->dst; 4558 } else { 4559 src = &(*state)->dst; 4560 dst = &(*state)->src; 4561 } 4562 4563 /* update states */ 4564 if (src->state < PFUDPS_SINGLE) 4565 src->state = PFUDPS_SINGLE; 4566 if (dst->state == PFUDPS_SINGLE) 4567 dst->state = PFUDPS_MULTIPLE; 4568 4569 /* update expire time */ 4570 (*state)->expire = time_uptime; 4571 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4572 (*state)->timeout = PFTM_UDP_MULTIPLE; 4573 else 4574 (*state)->timeout = PFTM_UDP_SINGLE; 4575 4576 /* translate source/destination address, if necessary */ 4577 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4578 struct pf_state_key *nk = (*state)->key[pd->didx]; 4579 4580 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4581 nk->port[pd->sidx] != uh->uh_sport) 4582 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4583 &uh->uh_sum, &nk->addr[pd->sidx], 4584 nk->port[pd->sidx], 1, pd->af); 4585 4586 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4587 nk->port[pd->didx] != uh->uh_dport) 4588 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4589 &uh->uh_sum, &nk->addr[pd->didx], 4590 nk->port[pd->didx], 1, pd->af); 4591 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4592 } 4593 4594 return (PF_PASS); 4595 } 4596 4597 static int 4598 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4599 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4600 { 4601 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4602 u_int16_t icmpid = 0, *icmpsum; 4603 u_int8_t icmptype, icmpcode; 4604 int state_icmp = 0; 4605 struct pf_state_key_cmp key; 4606 4607 bzero(&key, sizeof(key)); 4608 switch (pd->proto) { 4609 #ifdef INET 4610 case IPPROTO_ICMP: 4611 icmptype = pd->hdr.icmp->icmp_type; 4612 icmpcode = pd->hdr.icmp->icmp_code; 4613 icmpid = pd->hdr.icmp->icmp_id; 4614 icmpsum = &pd->hdr.icmp->icmp_cksum; 4615 4616 if (icmptype == ICMP_UNREACH || 4617 icmptype == ICMP_SOURCEQUENCH || 4618 icmptype == ICMP_REDIRECT || 4619 icmptype == ICMP_TIMXCEED || 4620 icmptype == ICMP_PARAMPROB) 4621 state_icmp++; 4622 break; 4623 #endif /* INET */ 4624 #ifdef INET6 4625 case IPPROTO_ICMPV6: 4626 icmptype = pd->hdr.icmp6->icmp6_type; 4627 icmpcode = pd->hdr.icmp6->icmp6_code; 4628 icmpid = pd->hdr.icmp6->icmp6_id; 4629 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4630 4631 if (icmptype == ICMP6_DST_UNREACH || 4632 icmptype == ICMP6_PACKET_TOO_BIG || 4633 icmptype == ICMP6_TIME_EXCEEDED || 4634 icmptype == ICMP6_PARAM_PROB) 4635 state_icmp++; 4636 break; 4637 #endif /* INET6 */ 4638 } 4639 4640 if (!state_icmp) { 4641 4642 /* 4643 * ICMP query/reply message not related to a TCP/UDP packet. 4644 * Search for an ICMP state. 4645 */ 4646 key.af = pd->af; 4647 key.proto = pd->proto; 4648 key.port[0] = key.port[1] = icmpid; 4649 if (direction == PF_IN) { /* wire side, straight */ 4650 PF_ACPY(&key.addr[0], pd->src, key.af); 4651 PF_ACPY(&key.addr[1], pd->dst, key.af); 4652 } else { /* stack side, reverse */ 4653 PF_ACPY(&key.addr[1], pd->src, key.af); 4654 PF_ACPY(&key.addr[0], pd->dst, key.af); 4655 } 4656 4657 STATE_LOOKUP(kif, &key, direction, *state, pd); 4658 4659 (*state)->expire = time_uptime; 4660 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4661 4662 /* translate source/destination address, if necessary */ 4663 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4664 struct pf_state_key *nk = (*state)->key[pd->didx]; 4665 4666 switch (pd->af) { 4667 #ifdef INET 4668 case AF_INET: 4669 if (PF_ANEQ(pd->src, 4670 &nk->addr[pd->sidx], AF_INET)) 4671 pf_change_a(&saddr->v4.s_addr, 4672 pd->ip_sum, 4673 nk->addr[pd->sidx].v4.s_addr, 0); 4674 4675 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4676 AF_INET)) 4677 pf_change_a(&daddr->v4.s_addr, 4678 pd->ip_sum, 4679 nk->addr[pd->didx].v4.s_addr, 0); 4680 4681 if (nk->port[0] != 4682 pd->hdr.icmp->icmp_id) { 4683 pd->hdr.icmp->icmp_cksum = 4684 pf_cksum_fixup( 4685 pd->hdr.icmp->icmp_cksum, icmpid, 4686 nk->port[pd->sidx], 0); 4687 pd->hdr.icmp->icmp_id = 4688 nk->port[pd->sidx]; 4689 } 4690 4691 m_copyback(m, off, ICMP_MINLEN, 4692 (caddr_t )pd->hdr.icmp); 4693 break; 4694 #endif /* INET */ 4695 #ifdef INET6 4696 case AF_INET6: 4697 if (PF_ANEQ(pd->src, 4698 &nk->addr[pd->sidx], AF_INET6)) 4699 pf_change_a6(saddr, 4700 &pd->hdr.icmp6->icmp6_cksum, 4701 &nk->addr[pd->sidx], 0); 4702 4703 if (PF_ANEQ(pd->dst, 4704 &nk->addr[pd->didx], AF_INET6)) 4705 pf_change_a6(daddr, 4706 &pd->hdr.icmp6->icmp6_cksum, 4707 &nk->addr[pd->didx], 0); 4708 4709 m_copyback(m, off, sizeof(struct icmp6_hdr), 4710 (caddr_t )pd->hdr.icmp6); 4711 break; 4712 #endif /* INET6 */ 4713 } 4714 } 4715 return (PF_PASS); 4716 4717 } else { 4718 /* 4719 * ICMP error message in response to a TCP/UDP packet. 4720 * Extract the inner TCP/UDP header and search for that state. 4721 */ 4722 4723 struct pf_pdesc pd2; 4724 bzero(&pd2, sizeof pd2); 4725 #ifdef INET 4726 struct ip h2; 4727 #endif /* INET */ 4728 #ifdef INET6 4729 struct ip6_hdr h2_6; 4730 int terminal = 0; 4731 #endif /* INET6 */ 4732 int ipoff2 = 0; 4733 int off2 = 0; 4734 4735 pd2.af = pd->af; 4736 /* Payload packet is from the opposite direction. */ 4737 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4738 pd2.didx = (direction == PF_IN) ? 0 : 1; 4739 switch (pd->af) { 4740 #ifdef INET 4741 case AF_INET: 4742 /* offset of h2 in mbuf chain */ 4743 ipoff2 = off + ICMP_MINLEN; 4744 4745 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4746 NULL, reason, pd2.af)) { 4747 DPFPRINTF(PF_DEBUG_MISC, 4748 ("pf: ICMP error message too short " 4749 "(ip)\n")); 4750 return (PF_DROP); 4751 } 4752 /* 4753 * ICMP error messages don't refer to non-first 4754 * fragments 4755 */ 4756 if (h2.ip_off & htons(IP_OFFMASK)) { 4757 REASON_SET(reason, PFRES_FRAG); 4758 return (PF_DROP); 4759 } 4760 4761 /* offset of protocol header that follows h2 */ 4762 off2 = ipoff2 + (h2.ip_hl << 2); 4763 4764 pd2.proto = h2.ip_p; 4765 pd2.src = (struct pf_addr *)&h2.ip_src; 4766 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4767 pd2.ip_sum = &h2.ip_sum; 4768 break; 4769 #endif /* INET */ 4770 #ifdef INET6 4771 case AF_INET6: 4772 ipoff2 = off + sizeof(struct icmp6_hdr); 4773 4774 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4775 NULL, reason, pd2.af)) { 4776 DPFPRINTF(PF_DEBUG_MISC, 4777 ("pf: ICMP error message too short " 4778 "(ip6)\n")); 4779 return (PF_DROP); 4780 } 4781 pd2.proto = h2_6.ip6_nxt; 4782 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4783 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4784 pd2.ip_sum = NULL; 4785 off2 = ipoff2 + sizeof(h2_6); 4786 do { 4787 switch (pd2.proto) { 4788 case IPPROTO_FRAGMENT: 4789 /* 4790 * ICMPv6 error messages for 4791 * non-first fragments 4792 */ 4793 REASON_SET(reason, PFRES_FRAG); 4794 return (PF_DROP); 4795 case IPPROTO_AH: 4796 case IPPROTO_HOPOPTS: 4797 case IPPROTO_ROUTING: 4798 case IPPROTO_DSTOPTS: { 4799 /* get next header and header length */ 4800 struct ip6_ext opt6; 4801 4802 if (!pf_pull_hdr(m, off2, &opt6, 4803 sizeof(opt6), NULL, reason, 4804 pd2.af)) { 4805 DPFPRINTF(PF_DEBUG_MISC, 4806 ("pf: ICMPv6 short opt\n")); 4807 return (PF_DROP); 4808 } 4809 if (pd2.proto == IPPROTO_AH) 4810 off2 += (opt6.ip6e_len + 2) * 4; 4811 else 4812 off2 += (opt6.ip6e_len + 1) * 8; 4813 pd2.proto = opt6.ip6e_nxt; 4814 /* goto the next header */ 4815 break; 4816 } 4817 default: 4818 terminal++; 4819 break; 4820 } 4821 } while (!terminal); 4822 break; 4823 #endif /* INET6 */ 4824 } 4825 4826 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4827 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4828 printf("pf: BAD ICMP %d:%d outer dst: ", 4829 icmptype, icmpcode); 4830 pf_print_host(pd->src, 0, pd->af); 4831 printf(" -> "); 4832 pf_print_host(pd->dst, 0, pd->af); 4833 printf(" inner src: "); 4834 pf_print_host(pd2.src, 0, pd2.af); 4835 printf(" -> "); 4836 pf_print_host(pd2.dst, 0, pd2.af); 4837 printf("\n"); 4838 } 4839 REASON_SET(reason, PFRES_BADSTATE); 4840 return (PF_DROP); 4841 } 4842 4843 switch (pd2.proto) { 4844 case IPPROTO_TCP: { 4845 struct tcphdr th; 4846 u_int32_t seq; 4847 struct pf_state_peer *src, *dst; 4848 u_int8_t dws; 4849 int copyback = 0; 4850 4851 /* 4852 * Only the first 8 bytes of the TCP header can be 4853 * expected. Don't access any TCP header fields after 4854 * th_seq, an ackskew test is not possible. 4855 */ 4856 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4857 pd2.af)) { 4858 DPFPRINTF(PF_DEBUG_MISC, 4859 ("pf: ICMP error message too short " 4860 "(tcp)\n")); 4861 return (PF_DROP); 4862 } 4863 4864 key.af = pd2.af; 4865 key.proto = IPPROTO_TCP; 4866 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4867 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4868 key.port[pd2.sidx] = th.th_sport; 4869 key.port[pd2.didx] = th.th_dport; 4870 4871 STATE_LOOKUP(kif, &key, direction, *state, pd); 4872 4873 if (direction == (*state)->direction) { 4874 src = &(*state)->dst; 4875 dst = &(*state)->src; 4876 } else { 4877 src = &(*state)->src; 4878 dst = &(*state)->dst; 4879 } 4880 4881 if (src->wscale && dst->wscale) 4882 dws = dst->wscale & PF_WSCALE_MASK; 4883 else 4884 dws = 0; 4885 4886 /* Demodulate sequence number */ 4887 seq = ntohl(th.th_seq) - src->seqdiff; 4888 if (src->seqdiff) { 4889 pf_change_a(&th.th_seq, icmpsum, 4890 htonl(seq), 0); 4891 copyback = 1; 4892 } 4893 4894 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4895 (!SEQ_GEQ(src->seqhi, seq) || 4896 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4897 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4898 printf("pf: BAD ICMP %d:%d ", 4899 icmptype, icmpcode); 4900 pf_print_host(pd->src, 0, pd->af); 4901 printf(" -> "); 4902 pf_print_host(pd->dst, 0, pd->af); 4903 printf(" state: "); 4904 pf_print_state(*state); 4905 printf(" seq=%u\n", seq); 4906 } 4907 REASON_SET(reason, PFRES_BADSTATE); 4908 return (PF_DROP); 4909 } else { 4910 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4911 printf("pf: OK ICMP %d:%d ", 4912 icmptype, icmpcode); 4913 pf_print_host(pd->src, 0, pd->af); 4914 printf(" -> "); 4915 pf_print_host(pd->dst, 0, pd->af); 4916 printf(" state: "); 4917 pf_print_state(*state); 4918 printf(" seq=%u\n", seq); 4919 } 4920 } 4921 4922 /* translate source/destination address, if necessary */ 4923 if ((*state)->key[PF_SK_WIRE] != 4924 (*state)->key[PF_SK_STACK]) { 4925 struct pf_state_key *nk = 4926 (*state)->key[pd->didx]; 4927 4928 if (PF_ANEQ(pd2.src, 4929 &nk->addr[pd2.sidx], pd2.af) || 4930 nk->port[pd2.sidx] != th.th_sport) 4931 pf_change_icmp(pd2.src, &th.th_sport, 4932 daddr, &nk->addr[pd2.sidx], 4933 nk->port[pd2.sidx], NULL, 4934 pd2.ip_sum, icmpsum, 4935 pd->ip_sum, 0, pd2.af); 4936 4937 if (PF_ANEQ(pd2.dst, 4938 &nk->addr[pd2.didx], pd2.af) || 4939 nk->port[pd2.didx] != th.th_dport) 4940 pf_change_icmp(pd2.dst, &th.th_dport, 4941 saddr, &nk->addr[pd2.didx], 4942 nk->port[pd2.didx], NULL, 4943 pd2.ip_sum, icmpsum, 4944 pd->ip_sum, 0, pd2.af); 4945 copyback = 1; 4946 } 4947 4948 if (copyback) { 4949 switch (pd2.af) { 4950 #ifdef INET 4951 case AF_INET: 4952 m_copyback(m, off, ICMP_MINLEN, 4953 (caddr_t )pd->hdr.icmp); 4954 m_copyback(m, ipoff2, sizeof(h2), 4955 (caddr_t )&h2); 4956 break; 4957 #endif /* INET */ 4958 #ifdef INET6 4959 case AF_INET6: 4960 m_copyback(m, off, 4961 sizeof(struct icmp6_hdr), 4962 (caddr_t )pd->hdr.icmp6); 4963 m_copyback(m, ipoff2, sizeof(h2_6), 4964 (caddr_t )&h2_6); 4965 break; 4966 #endif /* INET6 */ 4967 } 4968 m_copyback(m, off2, 8, (caddr_t)&th); 4969 } 4970 4971 return (PF_PASS); 4972 break; 4973 } 4974 case IPPROTO_UDP: { 4975 struct udphdr uh; 4976 4977 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4978 NULL, reason, pd2.af)) { 4979 DPFPRINTF(PF_DEBUG_MISC, 4980 ("pf: ICMP error message too short " 4981 "(udp)\n")); 4982 return (PF_DROP); 4983 } 4984 4985 key.af = pd2.af; 4986 key.proto = IPPROTO_UDP; 4987 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4988 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4989 key.port[pd2.sidx] = uh.uh_sport; 4990 key.port[pd2.didx] = uh.uh_dport; 4991 4992 STATE_LOOKUP(kif, &key, direction, *state, pd); 4993 4994 /* translate source/destination address, if necessary */ 4995 if ((*state)->key[PF_SK_WIRE] != 4996 (*state)->key[PF_SK_STACK]) { 4997 struct pf_state_key *nk = 4998 (*state)->key[pd->didx]; 4999 5000 if (PF_ANEQ(pd2.src, 5001 &nk->addr[pd2.sidx], pd2.af) || 5002 nk->port[pd2.sidx] != uh.uh_sport) 5003 pf_change_icmp(pd2.src, &uh.uh_sport, 5004 daddr, &nk->addr[pd2.sidx], 5005 nk->port[pd2.sidx], &uh.uh_sum, 5006 pd2.ip_sum, icmpsum, 5007 pd->ip_sum, 1, pd2.af); 5008 5009 if (PF_ANEQ(pd2.dst, 5010 &nk->addr[pd2.didx], pd2.af) || 5011 nk->port[pd2.didx] != uh.uh_dport) 5012 pf_change_icmp(pd2.dst, &uh.uh_dport, 5013 saddr, &nk->addr[pd2.didx], 5014 nk->port[pd2.didx], &uh.uh_sum, 5015 pd2.ip_sum, icmpsum, 5016 pd->ip_sum, 1, pd2.af); 5017 5018 switch (pd2.af) { 5019 #ifdef INET 5020 case AF_INET: 5021 m_copyback(m, off, ICMP_MINLEN, 5022 (caddr_t )pd->hdr.icmp); 5023 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5024 break; 5025 #endif /* INET */ 5026 #ifdef INET6 5027 case AF_INET6: 5028 m_copyback(m, off, 5029 sizeof(struct icmp6_hdr), 5030 (caddr_t )pd->hdr.icmp6); 5031 m_copyback(m, ipoff2, sizeof(h2_6), 5032 (caddr_t )&h2_6); 5033 break; 5034 #endif /* INET6 */ 5035 } 5036 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5037 } 5038 return (PF_PASS); 5039 break; 5040 } 5041 #ifdef INET 5042 case IPPROTO_ICMP: { 5043 struct icmp iih; 5044 5045 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5046 NULL, reason, pd2.af)) { 5047 DPFPRINTF(PF_DEBUG_MISC, 5048 ("pf: ICMP error message too short i" 5049 "(icmp)\n")); 5050 return (PF_DROP); 5051 } 5052 5053 key.af = pd2.af; 5054 key.proto = IPPROTO_ICMP; 5055 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5056 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5057 key.port[0] = key.port[1] = iih.icmp_id; 5058 5059 STATE_LOOKUP(kif, &key, direction, *state, pd); 5060 5061 /* translate source/destination address, if necessary */ 5062 if ((*state)->key[PF_SK_WIRE] != 5063 (*state)->key[PF_SK_STACK]) { 5064 struct pf_state_key *nk = 5065 (*state)->key[pd->didx]; 5066 5067 if (PF_ANEQ(pd2.src, 5068 &nk->addr[pd2.sidx], pd2.af) || 5069 nk->port[pd2.sidx] != iih.icmp_id) 5070 pf_change_icmp(pd2.src, &iih.icmp_id, 5071 daddr, &nk->addr[pd2.sidx], 5072 nk->port[pd2.sidx], NULL, 5073 pd2.ip_sum, icmpsum, 5074 pd->ip_sum, 0, AF_INET); 5075 5076 if (PF_ANEQ(pd2.dst, 5077 &nk->addr[pd2.didx], pd2.af) || 5078 nk->port[pd2.didx] != iih.icmp_id) 5079 pf_change_icmp(pd2.dst, &iih.icmp_id, 5080 saddr, &nk->addr[pd2.didx], 5081 nk->port[pd2.didx], NULL, 5082 pd2.ip_sum, icmpsum, 5083 pd->ip_sum, 0, AF_INET); 5084 5085 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5086 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5087 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5088 } 5089 return (PF_PASS); 5090 break; 5091 } 5092 #endif /* INET */ 5093 #ifdef INET6 5094 case IPPROTO_ICMPV6: { 5095 struct icmp6_hdr iih; 5096 5097 if (!pf_pull_hdr(m, off2, &iih, 5098 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5099 DPFPRINTF(PF_DEBUG_MISC, 5100 ("pf: ICMP error message too short " 5101 "(icmp6)\n")); 5102 return (PF_DROP); 5103 } 5104 5105 key.af = pd2.af; 5106 key.proto = IPPROTO_ICMPV6; 5107 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5108 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5109 key.port[0] = key.port[1] = iih.icmp6_id; 5110 5111 STATE_LOOKUP(kif, &key, direction, *state, pd); 5112 5113 /* translate source/destination address, if necessary */ 5114 if ((*state)->key[PF_SK_WIRE] != 5115 (*state)->key[PF_SK_STACK]) { 5116 struct pf_state_key *nk = 5117 (*state)->key[pd->didx]; 5118 5119 if (PF_ANEQ(pd2.src, 5120 &nk->addr[pd2.sidx], pd2.af) || 5121 nk->port[pd2.sidx] != iih.icmp6_id) 5122 pf_change_icmp(pd2.src, &iih.icmp6_id, 5123 daddr, &nk->addr[pd2.sidx], 5124 nk->port[pd2.sidx], NULL, 5125 pd2.ip_sum, icmpsum, 5126 pd->ip_sum, 0, AF_INET6); 5127 5128 if (PF_ANEQ(pd2.dst, 5129 &nk->addr[pd2.didx], pd2.af) || 5130 nk->port[pd2.didx] != iih.icmp6_id) 5131 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5132 saddr, &nk->addr[pd2.didx], 5133 nk->port[pd2.didx], NULL, 5134 pd2.ip_sum, icmpsum, 5135 pd->ip_sum, 0, AF_INET6); 5136 5137 m_copyback(m, off, sizeof(struct icmp6_hdr), 5138 (caddr_t)pd->hdr.icmp6); 5139 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5140 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5141 (caddr_t)&iih); 5142 } 5143 return (PF_PASS); 5144 break; 5145 } 5146 #endif /* INET6 */ 5147 default: { 5148 key.af = pd2.af; 5149 key.proto = pd2.proto; 5150 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5151 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5152 key.port[0] = key.port[1] = 0; 5153 5154 STATE_LOOKUP(kif, &key, direction, *state, pd); 5155 5156 /* translate source/destination address, if necessary */ 5157 if ((*state)->key[PF_SK_WIRE] != 5158 (*state)->key[PF_SK_STACK]) { 5159 struct pf_state_key *nk = 5160 (*state)->key[pd->didx]; 5161 5162 if (PF_ANEQ(pd2.src, 5163 &nk->addr[pd2.sidx], pd2.af)) 5164 pf_change_icmp(pd2.src, NULL, daddr, 5165 &nk->addr[pd2.sidx], 0, NULL, 5166 pd2.ip_sum, icmpsum, 5167 pd->ip_sum, 0, pd2.af); 5168 5169 if (PF_ANEQ(pd2.dst, 5170 &nk->addr[pd2.didx], pd2.af)) 5171 pf_change_icmp(pd2.dst, NULL, saddr, 5172 &nk->addr[pd2.didx], 0, NULL, 5173 pd2.ip_sum, icmpsum, 5174 pd->ip_sum, 0, pd2.af); 5175 5176 switch (pd2.af) { 5177 #ifdef INET 5178 case AF_INET: 5179 m_copyback(m, off, ICMP_MINLEN, 5180 (caddr_t)pd->hdr.icmp); 5181 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5182 break; 5183 #endif /* INET */ 5184 #ifdef INET6 5185 case AF_INET6: 5186 m_copyback(m, off, 5187 sizeof(struct icmp6_hdr), 5188 (caddr_t )pd->hdr.icmp6); 5189 m_copyback(m, ipoff2, sizeof(h2_6), 5190 (caddr_t )&h2_6); 5191 break; 5192 #endif /* INET6 */ 5193 } 5194 } 5195 return (PF_PASS); 5196 break; 5197 } 5198 } 5199 } 5200 } 5201 5202 static int 5203 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5204 struct mbuf *m, struct pf_pdesc *pd) 5205 { 5206 struct pf_state_peer *src, *dst; 5207 struct pf_state_key_cmp key; 5208 5209 bzero(&key, sizeof(key)); 5210 key.af = pd->af; 5211 key.proto = pd->proto; 5212 if (direction == PF_IN) { 5213 PF_ACPY(&key.addr[0], pd->src, key.af); 5214 PF_ACPY(&key.addr[1], pd->dst, key.af); 5215 key.port[0] = key.port[1] = 0; 5216 } else { 5217 PF_ACPY(&key.addr[1], pd->src, key.af); 5218 PF_ACPY(&key.addr[0], pd->dst, key.af); 5219 key.port[1] = key.port[0] = 0; 5220 } 5221 5222 STATE_LOOKUP(kif, &key, direction, *state, pd); 5223 5224 if (direction == (*state)->direction) { 5225 src = &(*state)->src; 5226 dst = &(*state)->dst; 5227 } else { 5228 src = &(*state)->dst; 5229 dst = &(*state)->src; 5230 } 5231 5232 /* update states */ 5233 if (src->state < PFOTHERS_SINGLE) 5234 src->state = PFOTHERS_SINGLE; 5235 if (dst->state == PFOTHERS_SINGLE) 5236 dst->state = PFOTHERS_MULTIPLE; 5237 5238 /* update expire time */ 5239 (*state)->expire = time_uptime; 5240 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5241 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5242 else 5243 (*state)->timeout = PFTM_OTHER_SINGLE; 5244 5245 /* translate source/destination address, if necessary */ 5246 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5247 struct pf_state_key *nk = (*state)->key[pd->didx]; 5248 5249 KASSERT(nk, ("%s: nk is null", __func__)); 5250 KASSERT(pd, ("%s: pd is null", __func__)); 5251 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5252 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5253 switch (pd->af) { 5254 #ifdef INET 5255 case AF_INET: 5256 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5257 pf_change_a(&pd->src->v4.s_addr, 5258 pd->ip_sum, 5259 nk->addr[pd->sidx].v4.s_addr, 5260 0); 5261 5262 5263 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5264 pf_change_a(&pd->dst->v4.s_addr, 5265 pd->ip_sum, 5266 nk->addr[pd->didx].v4.s_addr, 5267 0); 5268 5269 break; 5270 #endif /* INET */ 5271 #ifdef INET6 5272 case AF_INET6: 5273 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5274 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5275 5276 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5277 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5278 #endif /* INET6 */ 5279 } 5280 } 5281 return (PF_PASS); 5282 } 5283 5284 /* 5285 * ipoff and off are measured from the start of the mbuf chain. 5286 * h must be at "ipoff" on the mbuf chain. 5287 */ 5288 void * 5289 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5290 u_short *actionp, u_short *reasonp, sa_family_t af) 5291 { 5292 switch (af) { 5293 #ifdef INET 5294 case AF_INET: { 5295 struct ip *h = mtod(m, struct ip *); 5296 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5297 5298 if (fragoff) { 5299 if (fragoff >= len) 5300 ACTION_SET(actionp, PF_PASS); 5301 else { 5302 ACTION_SET(actionp, PF_DROP); 5303 REASON_SET(reasonp, PFRES_FRAG); 5304 } 5305 return (NULL); 5306 } 5307 if (m->m_pkthdr.len < off + len || 5308 ntohs(h->ip_len) < off + len) { 5309 ACTION_SET(actionp, PF_DROP); 5310 REASON_SET(reasonp, PFRES_SHORT); 5311 return (NULL); 5312 } 5313 break; 5314 } 5315 #endif /* INET */ 5316 #ifdef INET6 5317 case AF_INET6: { 5318 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5319 5320 if (m->m_pkthdr.len < off + len || 5321 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5322 (unsigned)(off + len)) { 5323 ACTION_SET(actionp, PF_DROP); 5324 REASON_SET(reasonp, PFRES_SHORT); 5325 return (NULL); 5326 } 5327 break; 5328 } 5329 #endif /* INET6 */ 5330 } 5331 m_copydata(m, off, len, p); 5332 return (p); 5333 } 5334 5335 #ifdef RADIX_MPATH 5336 static int 5337 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5338 int rtableid) 5339 { 5340 struct radix_node_head *rnh; 5341 struct sockaddr_in *dst; 5342 int ret = 1; 5343 int check_mpath; 5344 #ifdef INET6 5345 struct sockaddr_in6 *dst6; 5346 struct route_in6 ro; 5347 #else 5348 struct route ro; 5349 #endif 5350 struct radix_node *rn; 5351 struct rtentry *rt; 5352 struct ifnet *ifp; 5353 5354 check_mpath = 0; 5355 /* XXX: stick to table 0 for now */ 5356 rnh = rt_tables_get_rnh(0, af); 5357 if (rnh != NULL && rn_mpath_capable(rnh)) 5358 check_mpath = 1; 5359 bzero(&ro, sizeof(ro)); 5360 switch (af) { 5361 case AF_INET: 5362 dst = satosin(&ro.ro_dst); 5363 dst->sin_family = AF_INET; 5364 dst->sin_len = sizeof(*dst); 5365 dst->sin_addr = addr->v4; 5366 break; 5367 #ifdef INET6 5368 case AF_INET6: 5369 /* 5370 * Skip check for addresses with embedded interface scope, 5371 * as they would always match anyway. 5372 */ 5373 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5374 goto out; 5375 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5376 dst6->sin6_family = AF_INET6; 5377 dst6->sin6_len = sizeof(*dst6); 5378 dst6->sin6_addr = addr->v6; 5379 break; 5380 #endif /* INET6 */ 5381 default: 5382 return (0); 5383 } 5384 5385 /* Skip checks for ipsec interfaces */ 5386 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5387 goto out; 5388 5389 switch (af) { 5390 #ifdef INET6 5391 case AF_INET6: 5392 in6_rtalloc_ign(&ro, 0, rtableid); 5393 break; 5394 #endif 5395 #ifdef INET 5396 case AF_INET: 5397 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5398 break; 5399 #endif 5400 } 5401 5402 if (ro.ro_rt != NULL) { 5403 /* No interface given, this is a no-route check */ 5404 if (kif == NULL) 5405 goto out; 5406 5407 if (kif->pfik_ifp == NULL) { 5408 ret = 0; 5409 goto out; 5410 } 5411 5412 /* Perform uRPF check if passed input interface */ 5413 ret = 0; 5414 rn = (struct radix_node *)ro.ro_rt; 5415 do { 5416 rt = (struct rtentry *)rn; 5417 ifp = rt->rt_ifp; 5418 5419 if (kif->pfik_ifp == ifp) 5420 ret = 1; 5421 rn = rn_mpath_next(rn); 5422 } while (check_mpath == 1 && rn != NULL && ret == 0); 5423 } else 5424 ret = 0; 5425 out: 5426 if (ro.ro_rt != NULL) 5427 RTFREE(ro.ro_rt); 5428 return (ret); 5429 } 5430 #endif 5431 5432 int 5433 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5434 int rtableid) 5435 { 5436 #ifdef INET 5437 struct nhop4_basic nh4; 5438 #endif 5439 #ifdef INET6 5440 struct nhop6_basic nh6; 5441 #endif 5442 struct ifnet *ifp; 5443 #ifdef RADIX_MPATH 5444 struct radix_node_head *rnh; 5445 5446 /* XXX: stick to table 0 for now */ 5447 rnh = rt_tables_get_rnh(0, af); 5448 if (rnh != NULL && rn_mpath_capable(rnh)) 5449 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5450 #endif 5451 /* 5452 * Skip check for addresses with embedded interface scope, 5453 * as they would always match anyway. 5454 */ 5455 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5456 return (1); 5457 5458 if (af != AF_INET && af != AF_INET6) 5459 return (0); 5460 5461 /* Skip checks for ipsec interfaces */ 5462 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5463 return (1); 5464 5465 ifp = NULL; 5466 5467 switch (af) { 5468 #ifdef INET6 5469 case AF_INET6: 5470 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5471 return (0); 5472 ifp = nh6.nh_ifp; 5473 break; 5474 #endif 5475 #ifdef INET 5476 case AF_INET: 5477 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5478 return (0); 5479 ifp = nh4.nh_ifp; 5480 break; 5481 #endif 5482 } 5483 5484 /* No interface given, this is a no-route check */ 5485 if (kif == NULL) 5486 return (1); 5487 5488 if (kif->pfik_ifp == NULL) 5489 return (0); 5490 5491 /* Perform uRPF check if passed input interface */ 5492 if (kif->pfik_ifp == ifp) 5493 return (1); 5494 return (0); 5495 } 5496 5497 #ifdef INET 5498 static void 5499 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5500 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5501 { 5502 struct mbuf *m0, *m1; 5503 struct sockaddr_in dst; 5504 struct ip *ip; 5505 struct ifnet *ifp = NULL; 5506 struct pf_addr naddr; 5507 struct pf_src_node *sn = NULL; 5508 int error = 0; 5509 uint16_t ip_len, ip_off; 5510 5511 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5512 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5513 __func__)); 5514 5515 if ((pd->pf_mtag == NULL && 5516 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5517 pd->pf_mtag->routed++ > 3) { 5518 m0 = *m; 5519 *m = NULL; 5520 goto bad_locked; 5521 } 5522 5523 if (r->rt == PF_DUPTO) { 5524 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5525 if (s) 5526 PF_STATE_UNLOCK(s); 5527 return; 5528 } 5529 } else { 5530 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5531 if (s) 5532 PF_STATE_UNLOCK(s); 5533 return; 5534 } 5535 m0 = *m; 5536 } 5537 5538 ip = mtod(m0, struct ip *); 5539 5540 bzero(&dst, sizeof(dst)); 5541 dst.sin_family = AF_INET; 5542 dst.sin_len = sizeof(dst); 5543 dst.sin_addr = ip->ip_dst; 5544 5545 bzero(&naddr, sizeof(naddr)); 5546 5547 if (TAILQ_EMPTY(&r->rpool.list)) { 5548 DPFPRINTF(PF_DEBUG_URGENT, 5549 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5550 goto bad_locked; 5551 } 5552 if (s == NULL) { 5553 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5554 &naddr, NULL, &sn); 5555 if (!PF_AZERO(&naddr, AF_INET)) 5556 dst.sin_addr.s_addr = naddr.v4.s_addr; 5557 ifp = r->rpool.cur->kif ? 5558 r->rpool.cur->kif->pfik_ifp : NULL; 5559 } else { 5560 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5561 dst.sin_addr.s_addr = 5562 s->rt_addr.v4.s_addr; 5563 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5564 PF_STATE_UNLOCK(s); 5565 } 5566 if (ifp == NULL) 5567 goto bad; 5568 5569 if (oifp != ifp) { 5570 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5571 goto bad; 5572 else if (m0 == NULL) 5573 goto done; 5574 if (m0->m_len < sizeof(struct ip)) { 5575 DPFPRINTF(PF_DEBUG_URGENT, 5576 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5577 goto bad; 5578 } 5579 ip = mtod(m0, struct ip *); 5580 } 5581 5582 if (ifp->if_flags & IFF_LOOPBACK) 5583 m0->m_flags |= M_SKIP_FIREWALL; 5584 5585 ip_len = ntohs(ip->ip_len); 5586 ip_off = ntohs(ip->ip_off); 5587 5588 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5589 m0->m_pkthdr.csum_flags |= CSUM_IP; 5590 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5591 in_delayed_cksum(m0); 5592 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5593 } 5594 #ifdef SCTP 5595 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5596 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5597 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5598 } 5599 #endif 5600 5601 /* 5602 * If small enough for interface, or the interface will take 5603 * care of the fragmentation for us, we can just send directly. 5604 */ 5605 if (ip_len <= ifp->if_mtu || 5606 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5607 ip->ip_sum = 0; 5608 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5609 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5610 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5611 } 5612 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5613 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5614 goto done; 5615 } 5616 5617 /* Balk when DF bit is set or the interface didn't support TSO. */ 5618 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5619 error = EMSGSIZE; 5620 KMOD_IPSTAT_INC(ips_cantfrag); 5621 if (r->rt != PF_DUPTO) { 5622 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5623 ifp->if_mtu); 5624 goto done; 5625 } else 5626 goto bad; 5627 } 5628 5629 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5630 if (error) 5631 goto bad; 5632 5633 for (; m0; m0 = m1) { 5634 m1 = m0->m_nextpkt; 5635 m0->m_nextpkt = NULL; 5636 if (error == 0) { 5637 m_clrprotoflags(m0); 5638 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5639 } else 5640 m_freem(m0); 5641 } 5642 5643 if (error == 0) 5644 KMOD_IPSTAT_INC(ips_fragmented); 5645 5646 done: 5647 if (r->rt != PF_DUPTO) 5648 *m = NULL; 5649 return; 5650 5651 bad_locked: 5652 if (s) 5653 PF_STATE_UNLOCK(s); 5654 bad: 5655 m_freem(m0); 5656 goto done; 5657 } 5658 #endif /* INET */ 5659 5660 #ifdef INET6 5661 static void 5662 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5663 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5664 { 5665 struct mbuf *m0; 5666 struct sockaddr_in6 dst; 5667 struct ip6_hdr *ip6; 5668 struct ifnet *ifp = NULL; 5669 struct pf_addr naddr; 5670 struct pf_src_node *sn = NULL; 5671 5672 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5673 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5674 __func__)); 5675 5676 if ((pd->pf_mtag == NULL && 5677 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5678 pd->pf_mtag->routed++ > 3) { 5679 m0 = *m; 5680 *m = NULL; 5681 goto bad_locked; 5682 } 5683 5684 if (r->rt == PF_DUPTO) { 5685 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5686 if (s) 5687 PF_STATE_UNLOCK(s); 5688 return; 5689 } 5690 } else { 5691 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5692 if (s) 5693 PF_STATE_UNLOCK(s); 5694 return; 5695 } 5696 m0 = *m; 5697 } 5698 5699 ip6 = mtod(m0, struct ip6_hdr *); 5700 5701 bzero(&dst, sizeof(dst)); 5702 dst.sin6_family = AF_INET6; 5703 dst.sin6_len = sizeof(dst); 5704 dst.sin6_addr = ip6->ip6_dst; 5705 5706 bzero(&naddr, sizeof(naddr)); 5707 5708 if (TAILQ_EMPTY(&r->rpool.list)) { 5709 DPFPRINTF(PF_DEBUG_URGENT, 5710 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5711 goto bad_locked; 5712 } 5713 if (s == NULL) { 5714 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5715 &naddr, NULL, &sn); 5716 if (!PF_AZERO(&naddr, AF_INET6)) 5717 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5718 &naddr, AF_INET6); 5719 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5720 } else { 5721 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5722 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5723 &s->rt_addr, AF_INET6); 5724 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5725 } 5726 5727 if (s) 5728 PF_STATE_UNLOCK(s); 5729 5730 if (ifp == NULL) 5731 goto bad; 5732 5733 if (oifp != ifp) { 5734 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5735 goto bad; 5736 else if (m0 == NULL) 5737 goto done; 5738 if (m0->m_len < sizeof(struct ip6_hdr)) { 5739 DPFPRINTF(PF_DEBUG_URGENT, 5740 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5741 __func__)); 5742 goto bad; 5743 } 5744 ip6 = mtod(m0, struct ip6_hdr *); 5745 } 5746 5747 if (ifp->if_flags & IFF_LOOPBACK) 5748 m0->m_flags |= M_SKIP_FIREWALL; 5749 5750 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5751 ~ifp->if_hwassist) { 5752 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5753 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5754 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5755 } 5756 5757 /* 5758 * If the packet is too large for the outgoing interface, 5759 * send back an icmp6 error. 5760 */ 5761 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5762 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5763 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5764 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5765 else { 5766 in6_ifstat_inc(ifp, ifs6_in_toobig); 5767 if (r->rt != PF_DUPTO) 5768 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5769 else 5770 goto bad; 5771 } 5772 5773 done: 5774 if (r->rt != PF_DUPTO) 5775 *m = NULL; 5776 return; 5777 5778 bad_locked: 5779 if (s) 5780 PF_STATE_UNLOCK(s); 5781 bad: 5782 m_freem(m0); 5783 goto done; 5784 } 5785 #endif /* INET6 */ 5786 5787 /* 5788 * FreeBSD supports cksum offloads for the following drivers. 5789 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5790 * 5791 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5792 * network driver performed cksum including pseudo header, need to verify 5793 * csum_data 5794 * CSUM_DATA_VALID : 5795 * network driver performed cksum, needs to additional pseudo header 5796 * cksum computation with partial csum_data(i.e. lack of H/W support for 5797 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5798 * 5799 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5800 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5801 * TCP/UDP layer. 5802 * Also, set csum_data to 0xffff to force cksum validation. 5803 */ 5804 static int 5805 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5806 { 5807 u_int16_t sum = 0; 5808 int hw_assist = 0; 5809 struct ip *ip; 5810 5811 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5812 return (1); 5813 if (m->m_pkthdr.len < off + len) 5814 return (1); 5815 5816 switch (p) { 5817 case IPPROTO_TCP: 5818 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5819 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5820 sum = m->m_pkthdr.csum_data; 5821 } else { 5822 ip = mtod(m, struct ip *); 5823 sum = in_pseudo(ip->ip_src.s_addr, 5824 ip->ip_dst.s_addr, htonl((u_short)len + 5825 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5826 } 5827 sum ^= 0xffff; 5828 ++hw_assist; 5829 } 5830 break; 5831 case IPPROTO_UDP: 5832 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5833 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5834 sum = m->m_pkthdr.csum_data; 5835 } else { 5836 ip = mtod(m, struct ip *); 5837 sum = in_pseudo(ip->ip_src.s_addr, 5838 ip->ip_dst.s_addr, htonl((u_short)len + 5839 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5840 } 5841 sum ^= 0xffff; 5842 ++hw_assist; 5843 } 5844 break; 5845 case IPPROTO_ICMP: 5846 #ifdef INET6 5847 case IPPROTO_ICMPV6: 5848 #endif /* INET6 */ 5849 break; 5850 default: 5851 return (1); 5852 } 5853 5854 if (!hw_assist) { 5855 switch (af) { 5856 case AF_INET: 5857 if (p == IPPROTO_ICMP) { 5858 if (m->m_len < off) 5859 return (1); 5860 m->m_data += off; 5861 m->m_len -= off; 5862 sum = in_cksum(m, len); 5863 m->m_data -= off; 5864 m->m_len += off; 5865 } else { 5866 if (m->m_len < sizeof(struct ip)) 5867 return (1); 5868 sum = in4_cksum(m, p, off, len); 5869 } 5870 break; 5871 #ifdef INET6 5872 case AF_INET6: 5873 if (m->m_len < sizeof(struct ip6_hdr)) 5874 return (1); 5875 sum = in6_cksum(m, p, off, len); 5876 break; 5877 #endif /* INET6 */ 5878 default: 5879 return (1); 5880 } 5881 } 5882 if (sum) { 5883 switch (p) { 5884 case IPPROTO_TCP: 5885 { 5886 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5887 break; 5888 } 5889 case IPPROTO_UDP: 5890 { 5891 KMOD_UDPSTAT_INC(udps_badsum); 5892 break; 5893 } 5894 #ifdef INET 5895 case IPPROTO_ICMP: 5896 { 5897 KMOD_ICMPSTAT_INC(icps_checksum); 5898 break; 5899 } 5900 #endif 5901 #ifdef INET6 5902 case IPPROTO_ICMPV6: 5903 { 5904 KMOD_ICMP6STAT_INC(icp6s_checksum); 5905 break; 5906 } 5907 #endif /* INET6 */ 5908 } 5909 return (1); 5910 } else { 5911 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5912 m->m_pkthdr.csum_flags |= 5913 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5914 m->m_pkthdr.csum_data = 0xffff; 5915 } 5916 } 5917 return (0); 5918 } 5919 5920 5921 #ifdef INET 5922 int 5923 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5924 { 5925 struct pfi_kif *kif; 5926 u_short action, reason = 0, log = 0; 5927 struct mbuf *m = *m0; 5928 struct ip *h = NULL; 5929 struct m_tag *ipfwtag; 5930 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5931 struct pf_state *s = NULL; 5932 struct pf_ruleset *ruleset = NULL; 5933 struct pf_pdesc pd; 5934 int off, dirndx, pqid = 0; 5935 5936 PF_RULES_RLOCK_TRACKER; 5937 5938 M_ASSERTPKTHDR(m); 5939 5940 if (!V_pf_status.running) 5941 return (PF_PASS); 5942 5943 memset(&pd, 0, sizeof(pd)); 5944 5945 kif = (struct pfi_kif *)ifp->if_pf_kif; 5946 5947 if (kif == NULL) { 5948 DPFPRINTF(PF_DEBUG_URGENT, 5949 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5950 return (PF_DROP); 5951 } 5952 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5953 return (PF_PASS); 5954 5955 if (m->m_flags & M_SKIP_FIREWALL) 5956 return (PF_PASS); 5957 5958 pd.pf_mtag = pf_find_mtag(m); 5959 5960 PF_RULES_RLOCK(); 5961 5962 if (ip_divert_ptr != NULL && 5963 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5964 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5965 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5966 if (pd.pf_mtag == NULL && 5967 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5968 action = PF_DROP; 5969 goto done; 5970 } 5971 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5972 m_tag_delete(m, ipfwtag); 5973 } 5974 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5975 m->m_flags |= M_FASTFWD_OURS; 5976 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5977 } 5978 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5979 /* We do IP header normalization and packet reassembly here */ 5980 action = PF_DROP; 5981 goto done; 5982 } 5983 m = *m0; /* pf_normalize messes with m0 */ 5984 h = mtod(m, struct ip *); 5985 5986 off = h->ip_hl << 2; 5987 if (off < (int)sizeof(struct ip)) { 5988 action = PF_DROP; 5989 REASON_SET(&reason, PFRES_SHORT); 5990 log = 1; 5991 goto done; 5992 } 5993 5994 pd.src = (struct pf_addr *)&h->ip_src; 5995 pd.dst = (struct pf_addr *)&h->ip_dst; 5996 pd.sport = pd.dport = NULL; 5997 pd.ip_sum = &h->ip_sum; 5998 pd.proto_sum = NULL; 5999 pd.proto = h->ip_p; 6000 pd.dir = dir; 6001 pd.sidx = (dir == PF_IN) ? 0 : 1; 6002 pd.didx = (dir == PF_IN) ? 1 : 0; 6003 pd.af = AF_INET; 6004 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6005 pd.tot_len = ntohs(h->ip_len); 6006 6007 /* handle fragments that didn't get reassembled by normalization */ 6008 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6009 action = pf_test_fragment(&r, dir, kif, m, h, 6010 &pd, &a, &ruleset); 6011 goto done; 6012 } 6013 6014 switch (h->ip_p) { 6015 6016 case IPPROTO_TCP: { 6017 struct tcphdr th; 6018 6019 pd.hdr.tcp = &th; 6020 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6021 &action, &reason, AF_INET)) { 6022 log = action != PF_PASS; 6023 goto done; 6024 } 6025 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6026 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6027 pqid = 1; 6028 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6029 if (action == PF_DROP) 6030 goto done; 6031 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6032 &reason); 6033 if (action == PF_PASS) { 6034 if (V_pfsync_update_state_ptr != NULL) 6035 V_pfsync_update_state_ptr(s); 6036 r = s->rule.ptr; 6037 a = s->anchor.ptr; 6038 log = s->log; 6039 } else if (s == NULL) 6040 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6041 &a, &ruleset, inp); 6042 break; 6043 } 6044 6045 case IPPROTO_UDP: { 6046 struct udphdr uh; 6047 6048 pd.hdr.udp = &uh; 6049 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6050 &action, &reason, AF_INET)) { 6051 log = action != PF_PASS; 6052 goto done; 6053 } 6054 if (uh.uh_dport == 0 || 6055 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6056 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6057 action = PF_DROP; 6058 REASON_SET(&reason, PFRES_SHORT); 6059 goto done; 6060 } 6061 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6062 if (action == PF_PASS) { 6063 if (V_pfsync_update_state_ptr != NULL) 6064 V_pfsync_update_state_ptr(s); 6065 r = s->rule.ptr; 6066 a = s->anchor.ptr; 6067 log = s->log; 6068 } else if (s == NULL) 6069 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6070 &a, &ruleset, inp); 6071 break; 6072 } 6073 6074 case IPPROTO_ICMP: { 6075 struct icmp ih; 6076 6077 pd.hdr.icmp = &ih; 6078 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6079 &action, &reason, AF_INET)) { 6080 log = action != PF_PASS; 6081 goto done; 6082 } 6083 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6084 &reason); 6085 if (action == PF_PASS) { 6086 if (V_pfsync_update_state_ptr != NULL) 6087 V_pfsync_update_state_ptr(s); 6088 r = s->rule.ptr; 6089 a = s->anchor.ptr; 6090 log = s->log; 6091 } else if (s == NULL) 6092 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6093 &a, &ruleset, inp); 6094 break; 6095 } 6096 6097 #ifdef INET6 6098 case IPPROTO_ICMPV6: { 6099 action = PF_DROP; 6100 DPFPRINTF(PF_DEBUG_MISC, 6101 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6102 goto done; 6103 } 6104 #endif 6105 6106 default: 6107 action = pf_test_state_other(&s, dir, kif, m, &pd); 6108 if (action == PF_PASS) { 6109 if (V_pfsync_update_state_ptr != NULL) 6110 V_pfsync_update_state_ptr(s); 6111 r = s->rule.ptr; 6112 a = s->anchor.ptr; 6113 log = s->log; 6114 } else if (s == NULL) 6115 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6116 &a, &ruleset, inp); 6117 break; 6118 } 6119 6120 done: 6121 PF_RULES_RUNLOCK(); 6122 if (action == PF_PASS && h->ip_hl > 5 && 6123 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6124 action = PF_DROP; 6125 REASON_SET(&reason, PFRES_IPOPTIONS); 6126 log = r->log; 6127 DPFPRINTF(PF_DEBUG_MISC, 6128 ("pf: dropping packet with ip options\n")); 6129 } 6130 6131 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6132 action = PF_DROP; 6133 REASON_SET(&reason, PFRES_MEMORY); 6134 } 6135 if (r->rtableid >= 0) 6136 M_SETFIB(m, r->rtableid); 6137 6138 if (r->scrub_flags & PFSTATE_SETPRIO) { 6139 if (pd.tos & IPTOS_LOWDELAY) 6140 pqid = 1; 6141 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6142 action = PF_DROP; 6143 REASON_SET(&reason, PFRES_MEMORY); 6144 log = 1; 6145 DPFPRINTF(PF_DEBUG_MISC, 6146 ("pf: failed to allocate 802.1q mtag\n")); 6147 } 6148 } 6149 6150 #ifdef ALTQ 6151 if (action == PF_PASS && r->qid) { 6152 if (pd.pf_mtag == NULL && 6153 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6154 action = PF_DROP; 6155 REASON_SET(&reason, PFRES_MEMORY); 6156 } else { 6157 if (s != NULL) 6158 pd.pf_mtag->qid_hash = pf_state_hash(s); 6159 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6160 pd.pf_mtag->qid = r->pqid; 6161 else 6162 pd.pf_mtag->qid = r->qid; 6163 /* Add hints for ecn. */ 6164 pd.pf_mtag->hdr = h; 6165 } 6166 6167 } 6168 #endif /* ALTQ */ 6169 6170 /* 6171 * connections redirected to loopback should not match sockets 6172 * bound specifically to loopback due to security implications, 6173 * see tcp_input() and in_pcblookup_listen(). 6174 */ 6175 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6176 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6177 (s->nat_rule.ptr->action == PF_RDR || 6178 s->nat_rule.ptr->action == PF_BINAT) && 6179 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6180 m->m_flags |= M_SKIP_FIREWALL; 6181 6182 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6183 !PACKET_LOOPED(&pd)) { 6184 6185 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6186 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6187 if (ipfwtag != NULL) { 6188 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6189 ntohs(r->divert.port); 6190 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6191 6192 if (s) 6193 PF_STATE_UNLOCK(s); 6194 6195 m_tag_prepend(m, ipfwtag); 6196 if (m->m_flags & M_FASTFWD_OURS) { 6197 if (pd.pf_mtag == NULL && 6198 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6199 action = PF_DROP; 6200 REASON_SET(&reason, PFRES_MEMORY); 6201 log = 1; 6202 DPFPRINTF(PF_DEBUG_MISC, 6203 ("pf: failed to allocate tag\n")); 6204 } else { 6205 pd.pf_mtag->flags |= 6206 PF_FASTFWD_OURS_PRESENT; 6207 m->m_flags &= ~M_FASTFWD_OURS; 6208 } 6209 } 6210 ip_divert_ptr(*m0, dir == PF_IN); 6211 *m0 = NULL; 6212 6213 return (action); 6214 } else { 6215 /* XXX: ipfw has the same behaviour! */ 6216 action = PF_DROP; 6217 REASON_SET(&reason, PFRES_MEMORY); 6218 log = 1; 6219 DPFPRINTF(PF_DEBUG_MISC, 6220 ("pf: failed to allocate divert tag\n")); 6221 } 6222 } 6223 6224 if (log) { 6225 struct pf_rule *lr; 6226 6227 if (s != NULL && s->nat_rule.ptr != NULL && 6228 s->nat_rule.ptr->log & PF_LOG_ALL) 6229 lr = s->nat_rule.ptr; 6230 else 6231 lr = r; 6232 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6233 (s == NULL)); 6234 } 6235 6236 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6237 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6238 6239 if (action == PF_PASS || r->action == PF_DROP) { 6240 dirndx = (dir == PF_OUT); 6241 r->packets[dirndx]++; 6242 r->bytes[dirndx] += pd.tot_len; 6243 if (a != NULL) { 6244 a->packets[dirndx]++; 6245 a->bytes[dirndx] += pd.tot_len; 6246 } 6247 if (s != NULL) { 6248 if (s->nat_rule.ptr != NULL) { 6249 s->nat_rule.ptr->packets[dirndx]++; 6250 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6251 } 6252 if (s->src_node != NULL) { 6253 s->src_node->packets[dirndx]++; 6254 s->src_node->bytes[dirndx] += pd.tot_len; 6255 } 6256 if (s->nat_src_node != NULL) { 6257 s->nat_src_node->packets[dirndx]++; 6258 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6259 } 6260 dirndx = (dir == s->direction) ? 0 : 1; 6261 s->packets[dirndx]++; 6262 s->bytes[dirndx] += pd.tot_len; 6263 } 6264 tr = r; 6265 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6266 if (nr != NULL && r == &V_pf_default_rule) 6267 tr = nr; 6268 if (tr->src.addr.type == PF_ADDR_TABLE) 6269 pfr_update_stats(tr->src.addr.p.tbl, 6270 (s == NULL) ? pd.src : 6271 &s->key[(s->direction == PF_IN)]-> 6272 addr[(s->direction == PF_OUT)], 6273 pd.af, pd.tot_len, dir == PF_OUT, 6274 r->action == PF_PASS, tr->src.neg); 6275 if (tr->dst.addr.type == PF_ADDR_TABLE) 6276 pfr_update_stats(tr->dst.addr.p.tbl, 6277 (s == NULL) ? pd.dst : 6278 &s->key[(s->direction == PF_IN)]-> 6279 addr[(s->direction == PF_IN)], 6280 pd.af, pd.tot_len, dir == PF_OUT, 6281 r->action == PF_PASS, tr->dst.neg); 6282 } 6283 6284 switch (action) { 6285 case PF_SYNPROXY_DROP: 6286 m_freem(*m0); 6287 case PF_DEFER: 6288 *m0 = NULL; 6289 action = PF_PASS; 6290 break; 6291 case PF_DROP: 6292 m_freem(*m0); 6293 *m0 = NULL; 6294 break; 6295 default: 6296 /* pf_route() returns unlocked. */ 6297 if (r->rt) { 6298 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6299 return (action); 6300 } 6301 break; 6302 } 6303 if (s) 6304 PF_STATE_UNLOCK(s); 6305 6306 return (action); 6307 } 6308 #endif /* INET */ 6309 6310 #ifdef INET6 6311 int 6312 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6313 { 6314 struct pfi_kif *kif; 6315 u_short action, reason = 0, log = 0; 6316 struct mbuf *m = *m0, *n = NULL; 6317 struct m_tag *mtag; 6318 struct ip6_hdr *h = NULL; 6319 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6320 struct pf_state *s = NULL; 6321 struct pf_ruleset *ruleset = NULL; 6322 struct pf_pdesc pd; 6323 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6324 6325 PF_RULES_RLOCK_TRACKER; 6326 M_ASSERTPKTHDR(m); 6327 6328 if (!V_pf_status.running) 6329 return (PF_PASS); 6330 6331 memset(&pd, 0, sizeof(pd)); 6332 pd.pf_mtag = pf_find_mtag(m); 6333 6334 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6335 return (PF_PASS); 6336 6337 kif = (struct pfi_kif *)ifp->if_pf_kif; 6338 if (kif == NULL) { 6339 DPFPRINTF(PF_DEBUG_URGENT, 6340 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6341 return (PF_DROP); 6342 } 6343 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6344 return (PF_PASS); 6345 6346 if (m->m_flags & M_SKIP_FIREWALL) 6347 return (PF_PASS); 6348 6349 PF_RULES_RLOCK(); 6350 6351 /* We do IP header normalization and packet reassembly here */ 6352 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6353 action = PF_DROP; 6354 goto done; 6355 } 6356 m = *m0; /* pf_normalize messes with m0 */ 6357 h = mtod(m, struct ip6_hdr *); 6358 6359 /* 6360 * we do not support jumbogram. if we keep going, zero ip6_plen 6361 * will do something bad, so drop the packet for now. 6362 */ 6363 if (htons(h->ip6_plen) == 0) { 6364 action = PF_DROP; 6365 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6366 goto done; 6367 } 6368 6369 pd.src = (struct pf_addr *)&h->ip6_src; 6370 pd.dst = (struct pf_addr *)&h->ip6_dst; 6371 pd.sport = pd.dport = NULL; 6372 pd.ip_sum = NULL; 6373 pd.proto_sum = NULL; 6374 pd.dir = dir; 6375 pd.sidx = (dir == PF_IN) ? 0 : 1; 6376 pd.didx = (dir == PF_IN) ? 1 : 0; 6377 pd.af = AF_INET6; 6378 pd.tos = 0; 6379 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6380 6381 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6382 pd.proto = h->ip6_nxt; 6383 do { 6384 switch (pd.proto) { 6385 case IPPROTO_FRAGMENT: 6386 action = pf_test_fragment(&r, dir, kif, m, h, 6387 &pd, &a, &ruleset); 6388 if (action == PF_DROP) 6389 REASON_SET(&reason, PFRES_FRAG); 6390 goto done; 6391 case IPPROTO_ROUTING: { 6392 struct ip6_rthdr rthdr; 6393 6394 if (rh_cnt++) { 6395 DPFPRINTF(PF_DEBUG_MISC, 6396 ("pf: IPv6 more than one rthdr\n")); 6397 action = PF_DROP; 6398 REASON_SET(&reason, PFRES_IPOPTIONS); 6399 log = 1; 6400 goto done; 6401 } 6402 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6403 &reason, pd.af)) { 6404 DPFPRINTF(PF_DEBUG_MISC, 6405 ("pf: IPv6 short rthdr\n")); 6406 action = PF_DROP; 6407 REASON_SET(&reason, PFRES_SHORT); 6408 log = 1; 6409 goto done; 6410 } 6411 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6412 DPFPRINTF(PF_DEBUG_MISC, 6413 ("pf: IPv6 rthdr0\n")); 6414 action = PF_DROP; 6415 REASON_SET(&reason, PFRES_IPOPTIONS); 6416 log = 1; 6417 goto done; 6418 } 6419 /* FALLTHROUGH */ 6420 } 6421 case IPPROTO_AH: 6422 case IPPROTO_HOPOPTS: 6423 case IPPROTO_DSTOPTS: { 6424 /* get next header and header length */ 6425 struct ip6_ext opt6; 6426 6427 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6428 NULL, &reason, pd.af)) { 6429 DPFPRINTF(PF_DEBUG_MISC, 6430 ("pf: IPv6 short opt\n")); 6431 action = PF_DROP; 6432 log = 1; 6433 goto done; 6434 } 6435 if (pd.proto == IPPROTO_AH) 6436 off += (opt6.ip6e_len + 2) * 4; 6437 else 6438 off += (opt6.ip6e_len + 1) * 8; 6439 pd.proto = opt6.ip6e_nxt; 6440 /* goto the next header */ 6441 break; 6442 } 6443 default: 6444 terminal++; 6445 break; 6446 } 6447 } while (!terminal); 6448 6449 /* if there's no routing header, use unmodified mbuf for checksumming */ 6450 if (!n) 6451 n = m; 6452 6453 switch (pd.proto) { 6454 6455 case IPPROTO_TCP: { 6456 struct tcphdr th; 6457 6458 pd.hdr.tcp = &th; 6459 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6460 &action, &reason, AF_INET6)) { 6461 log = action != PF_PASS; 6462 goto done; 6463 } 6464 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6465 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6466 if (action == PF_DROP) 6467 goto done; 6468 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6469 &reason); 6470 if (action == PF_PASS) { 6471 if (V_pfsync_update_state_ptr != NULL) 6472 V_pfsync_update_state_ptr(s); 6473 r = s->rule.ptr; 6474 a = s->anchor.ptr; 6475 log = s->log; 6476 } else if (s == NULL) 6477 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6478 &a, &ruleset, inp); 6479 break; 6480 } 6481 6482 case IPPROTO_UDP: { 6483 struct udphdr uh; 6484 6485 pd.hdr.udp = &uh; 6486 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6487 &action, &reason, AF_INET6)) { 6488 log = action != PF_PASS; 6489 goto done; 6490 } 6491 if (uh.uh_dport == 0 || 6492 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6493 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6494 action = PF_DROP; 6495 REASON_SET(&reason, PFRES_SHORT); 6496 goto done; 6497 } 6498 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6499 if (action == PF_PASS) { 6500 if (V_pfsync_update_state_ptr != NULL) 6501 V_pfsync_update_state_ptr(s); 6502 r = s->rule.ptr; 6503 a = s->anchor.ptr; 6504 log = s->log; 6505 } else if (s == NULL) 6506 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6507 &a, &ruleset, inp); 6508 break; 6509 } 6510 6511 case IPPROTO_ICMP: { 6512 action = PF_DROP; 6513 DPFPRINTF(PF_DEBUG_MISC, 6514 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6515 goto done; 6516 } 6517 6518 case IPPROTO_ICMPV6: { 6519 struct icmp6_hdr ih; 6520 6521 pd.hdr.icmp6 = &ih; 6522 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6523 &action, &reason, AF_INET6)) { 6524 log = action != PF_PASS; 6525 goto done; 6526 } 6527 action = pf_test_state_icmp(&s, dir, kif, 6528 m, off, h, &pd, &reason); 6529 if (action == PF_PASS) { 6530 if (V_pfsync_update_state_ptr != NULL) 6531 V_pfsync_update_state_ptr(s); 6532 r = s->rule.ptr; 6533 a = s->anchor.ptr; 6534 log = s->log; 6535 } else if (s == NULL) 6536 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6537 &a, &ruleset, inp); 6538 break; 6539 } 6540 6541 default: 6542 action = pf_test_state_other(&s, dir, kif, m, &pd); 6543 if (action == PF_PASS) { 6544 if (V_pfsync_update_state_ptr != NULL) 6545 V_pfsync_update_state_ptr(s); 6546 r = s->rule.ptr; 6547 a = s->anchor.ptr; 6548 log = s->log; 6549 } else if (s == NULL) 6550 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6551 &a, &ruleset, inp); 6552 break; 6553 } 6554 6555 done: 6556 PF_RULES_RUNLOCK(); 6557 if (n != m) { 6558 m_freem(n); 6559 n = NULL; 6560 } 6561 6562 /* handle dangerous IPv6 extension headers. */ 6563 if (action == PF_PASS && rh_cnt && 6564 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6565 action = PF_DROP; 6566 REASON_SET(&reason, PFRES_IPOPTIONS); 6567 log = r->log; 6568 DPFPRINTF(PF_DEBUG_MISC, 6569 ("pf: dropping packet with dangerous v6 headers\n")); 6570 } 6571 6572 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6573 action = PF_DROP; 6574 REASON_SET(&reason, PFRES_MEMORY); 6575 } 6576 if (r->rtableid >= 0) 6577 M_SETFIB(m, r->rtableid); 6578 6579 if (r->scrub_flags & PFSTATE_SETPRIO) { 6580 if (pd.tos & IPTOS_LOWDELAY) 6581 pqid = 1; 6582 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6583 action = PF_DROP; 6584 REASON_SET(&reason, PFRES_MEMORY); 6585 log = 1; 6586 DPFPRINTF(PF_DEBUG_MISC, 6587 ("pf: failed to allocate 802.1q mtag\n")); 6588 } 6589 } 6590 6591 #ifdef ALTQ 6592 if (action == PF_PASS && r->qid) { 6593 if (pd.pf_mtag == NULL && 6594 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6595 action = PF_DROP; 6596 REASON_SET(&reason, PFRES_MEMORY); 6597 } else { 6598 if (s != NULL) 6599 pd.pf_mtag->qid_hash = pf_state_hash(s); 6600 if (pd.tos & IPTOS_LOWDELAY) 6601 pd.pf_mtag->qid = r->pqid; 6602 else 6603 pd.pf_mtag->qid = r->qid; 6604 /* Add hints for ecn. */ 6605 pd.pf_mtag->hdr = h; 6606 } 6607 } 6608 #endif /* ALTQ */ 6609 6610 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6611 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6612 (s->nat_rule.ptr->action == PF_RDR || 6613 s->nat_rule.ptr->action == PF_BINAT) && 6614 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6615 m->m_flags |= M_SKIP_FIREWALL; 6616 6617 /* XXX: Anybody working on it?! */ 6618 if (r->divert.port) 6619 printf("pf: divert(9) is not supported for IPv6\n"); 6620 6621 if (log) { 6622 struct pf_rule *lr; 6623 6624 if (s != NULL && s->nat_rule.ptr != NULL && 6625 s->nat_rule.ptr->log & PF_LOG_ALL) 6626 lr = s->nat_rule.ptr; 6627 else 6628 lr = r; 6629 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6630 &pd, (s == NULL)); 6631 } 6632 6633 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6634 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6635 6636 if (action == PF_PASS || r->action == PF_DROP) { 6637 dirndx = (dir == PF_OUT); 6638 r->packets[dirndx]++; 6639 r->bytes[dirndx] += pd.tot_len; 6640 if (a != NULL) { 6641 a->packets[dirndx]++; 6642 a->bytes[dirndx] += pd.tot_len; 6643 } 6644 if (s != NULL) { 6645 if (s->nat_rule.ptr != NULL) { 6646 s->nat_rule.ptr->packets[dirndx]++; 6647 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6648 } 6649 if (s->src_node != NULL) { 6650 s->src_node->packets[dirndx]++; 6651 s->src_node->bytes[dirndx] += pd.tot_len; 6652 } 6653 if (s->nat_src_node != NULL) { 6654 s->nat_src_node->packets[dirndx]++; 6655 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6656 } 6657 dirndx = (dir == s->direction) ? 0 : 1; 6658 s->packets[dirndx]++; 6659 s->bytes[dirndx] += pd.tot_len; 6660 } 6661 tr = r; 6662 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6663 if (nr != NULL && r == &V_pf_default_rule) 6664 tr = nr; 6665 if (tr->src.addr.type == PF_ADDR_TABLE) 6666 pfr_update_stats(tr->src.addr.p.tbl, 6667 (s == NULL) ? pd.src : 6668 &s->key[(s->direction == PF_IN)]->addr[0], 6669 pd.af, pd.tot_len, dir == PF_OUT, 6670 r->action == PF_PASS, tr->src.neg); 6671 if (tr->dst.addr.type == PF_ADDR_TABLE) 6672 pfr_update_stats(tr->dst.addr.p.tbl, 6673 (s == NULL) ? pd.dst : 6674 &s->key[(s->direction == PF_IN)]->addr[1], 6675 pd.af, pd.tot_len, dir == PF_OUT, 6676 r->action == PF_PASS, tr->dst.neg); 6677 } 6678 6679 switch (action) { 6680 case PF_SYNPROXY_DROP: 6681 m_freem(*m0); 6682 case PF_DEFER: 6683 *m0 = NULL; 6684 action = PF_PASS; 6685 break; 6686 case PF_DROP: 6687 m_freem(*m0); 6688 *m0 = NULL; 6689 break; 6690 default: 6691 /* pf_route6() returns unlocked. */ 6692 if (r->rt) { 6693 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6694 return (action); 6695 } 6696 break; 6697 } 6698 6699 if (s) 6700 PF_STATE_UNLOCK(s); 6701 6702 /* If reassembled packet passed, create new fragments. */ 6703 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6704 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6705 action = pf_refragment6(ifp, m0, mtag); 6706 6707 return (action); 6708 } 6709 #endif /* INET6 */ 6710