1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 128 "struct pfi_kkif *"); 129 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 130 "struct pf_krule *", "struct mbuf *", "int"); 131 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 132 "struct pf_sctp_source *"); 133 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 134 "struct pf_kstate *", "struct pf_sctp_source *"); 135 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 137 "struct mbuf *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 140 "int", "struct pf_keth_rule *", "char *"); 141 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 142 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 143 "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 145 146 /* 147 * Global variables 148 */ 149 150 /* state tables */ 151 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 152 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 153 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 154 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 157 VNET_DEFINE(struct pf_kstatus, pf_status); 158 159 VNET_DEFINE(u_int32_t, ticket_altqs_active); 160 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 161 VNET_DEFINE(int, altqs_inactive_open); 162 VNET_DEFINE(u_int32_t, ticket_pabuf); 163 164 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 165 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 166 VNET_DEFINE(u_char, pf_tcp_secret[16]); 167 #define V_pf_tcp_secret VNET(pf_tcp_secret) 168 VNET_DEFINE(int, pf_tcp_secret_init); 169 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 170 VNET_DEFINE(int, pf_tcp_iss_off); 171 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 172 VNET_DECLARE(int, pf_vnet_active); 173 #define V_pf_vnet_active VNET(pf_vnet_active) 174 175 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 176 #define V_pf_purge_idx VNET(pf_purge_idx) 177 178 #ifdef PF_WANT_32_TO_64_COUNTER 179 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 180 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 181 182 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 183 VNET_DEFINE(size_t, pf_allrulecount); 184 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 185 #endif 186 187 struct pf_sctp_endpoint; 188 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 189 struct pf_sctp_source { 190 sa_family_t af; 191 struct pf_addr addr; 192 TAILQ_ENTRY(pf_sctp_source) entry; 193 }; 194 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 195 struct pf_sctp_endpoint 196 { 197 uint32_t v_tag; 198 struct pf_sctp_sources sources; 199 RB_ENTRY(pf_sctp_endpoint) entry; 200 }; 201 static int 202 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 203 { 204 return (a->v_tag - b->v_tag); 205 } 206 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 207 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 208 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 209 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 210 static struct mtx_padalign pf_sctp_endpoints_mtx; 211 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 212 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 213 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 214 215 /* 216 * Queue for pf_intr() sends. 217 */ 218 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 219 struct pf_send_entry { 220 STAILQ_ENTRY(pf_send_entry) pfse_next; 221 struct mbuf *pfse_m; 222 enum { 223 PFSE_IP, 224 PFSE_IP6, 225 PFSE_ICMP, 226 PFSE_ICMP6, 227 } pfse_type; 228 struct { 229 int type; 230 int code; 231 int mtu; 232 } icmpopts; 233 }; 234 235 STAILQ_HEAD(pf_send_head, pf_send_entry); 236 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 237 #define V_pf_sendqueue VNET(pf_sendqueue) 238 239 static struct mtx_padalign pf_sendqueue_mtx; 240 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 241 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 242 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 243 244 /* 245 * Queue for pf_overload_task() tasks. 246 */ 247 struct pf_overload_entry { 248 SLIST_ENTRY(pf_overload_entry) next; 249 struct pf_addr addr; 250 sa_family_t af; 251 uint8_t dir; 252 struct pf_krule *rule; 253 }; 254 255 SLIST_HEAD(pf_overload_head, pf_overload_entry); 256 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 257 #define V_pf_overloadqueue VNET(pf_overloadqueue) 258 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 259 #define V_pf_overloadtask VNET(pf_overloadtask) 260 261 static struct mtx_padalign pf_overloadqueue_mtx; 262 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 263 "pf overload/flush queue", MTX_DEF); 264 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 265 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 266 267 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 268 struct mtx_padalign pf_unlnkdrules_mtx; 269 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 270 MTX_DEF); 271 272 struct sx pf_config_lock; 273 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 274 275 struct mtx_padalign pf_table_stats_lock; 276 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 277 MTX_DEF); 278 279 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 280 #define V_pf_sources_z VNET(pf_sources_z) 281 uma_zone_t pf_mtag_z; 282 VNET_DEFINE(uma_zone_t, pf_state_z); 283 VNET_DEFINE(uma_zone_t, pf_state_key_z); 284 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 285 286 VNET_DEFINE(struct unrhdr64, pf_stateid); 287 288 static void pf_src_tree_remove_state(struct pf_kstate *); 289 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 290 u_int32_t); 291 static void pf_add_threshold(struct pf_threshold *); 292 static int pf_check_threshold(struct pf_threshold *); 293 294 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 295 u_int16_t *, u_int16_t *, struct pf_addr *, 296 u_int16_t, u_int8_t, sa_family_t); 297 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 298 struct tcphdr *, struct pf_state_peer *); 299 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 300 int *, u_int16_t *, u_int16_t *); 301 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, struct pf_addr *, u_int16_t, 303 u_int16_t *, u_int16_t *, u_int16_t *, 304 u_int16_t *, u_int8_t, sa_family_t); 305 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 306 sa_family_t, struct pf_krule *, int); 307 static void pf_detach_state(struct pf_kstate *); 308 static int pf_state_key_attach(struct pf_state_key *, 309 struct pf_state_key *, struct pf_kstate *); 310 static void pf_state_key_detach(struct pf_kstate *, int); 311 static int pf_state_key_ctor(void *, int, void *, int); 312 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 313 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 314 struct pf_mtag *pf_mtag); 315 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 316 struct pf_krule *, struct mbuf **); 317 static int pf_dummynet_route(struct pf_pdesc *, 318 struct pf_kstate *, struct pf_krule *, 319 struct ifnet *, struct sockaddr *, struct mbuf **); 320 static int pf_test_eth_rule(int, struct pfi_kkif *, 321 struct mbuf **); 322 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 323 struct pfi_kkif *, struct mbuf *, int, 324 struct pf_pdesc *, struct pf_krule **, 325 struct pf_kruleset **, struct inpcb *, int); 326 static int pf_create_state(struct pf_krule *, struct pf_krule *, 327 struct pf_krule *, struct pf_pdesc *, 328 struct pf_ksrc_node *, struct pf_state_key *, 329 struct pf_state_key *, struct mbuf *, int, 330 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 331 struct pf_kstate **, int, u_int16_t, u_int16_t, 332 int, struct pf_krule_slist *, struct pf_udp_mapping *); 333 static int pf_state_key_addr_setup(struct pf_pdesc *, struct mbuf *, 334 int, struct pf_state_key_cmp *, int, struct pf_addr *, 335 int, struct pf_addr *, int); 336 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 337 struct mbuf *, struct pf_pdesc *, 338 struct pf_krule **, struct pf_kruleset **); 339 static int pf_tcp_track_full(struct pf_kstate **, 340 struct pfi_kkif *, struct mbuf *, int, 341 struct pf_pdesc *, u_short *, int *); 342 static int pf_tcp_track_sloppy(struct pf_kstate **, 343 struct pf_pdesc *, u_short *); 344 static int pf_test_state_tcp(struct pf_kstate **, 345 struct pfi_kkif *, struct mbuf *, int, 346 struct pf_pdesc *, u_short *); 347 static int pf_test_state_udp(struct pf_kstate **, 348 struct pfi_kkif *, struct mbuf *, int, 349 struct pf_pdesc *); 350 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 351 struct pf_pdesc *, struct pf_kstate **, struct mbuf *, 352 int, int, struct pfi_kkif *, u_int16_t, u_int16_t, 353 int, int *, int, int); 354 static int pf_test_state_icmp(struct pf_kstate **, 355 struct pfi_kkif *, struct mbuf *, int, 356 struct pf_pdesc *, u_short *); 357 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 358 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 359 struct pfi_kkif *, struct pf_kstate *, int); 360 static int pf_test_state_sctp(struct pf_kstate **, 361 struct pfi_kkif *, struct mbuf *, int, 362 struct pf_pdesc *, u_short *); 363 static int pf_test_state_other(struct pf_kstate **, 364 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 365 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 366 int, u_int16_t); 367 static int pf_check_proto_cksum(struct mbuf *, int, int, 368 u_int8_t, sa_family_t); 369 static void pf_print_state_parts(struct pf_kstate *, 370 struct pf_state_key *, struct pf_state_key *); 371 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 372 bool, u_int8_t); 373 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 374 const struct pf_state_key_cmp *, u_int); 375 static int pf_src_connlimit(struct pf_kstate **); 376 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 377 static void pf_counters_inc(int, 378 struct pf_pdesc *, struct pfi_kkif *, 379 struct pf_kstate *, struct pf_krule *, 380 struct pf_krule *); 381 static void pf_overload_task(void *v, int pending); 382 static u_short pf_insert_src_node(struct pf_ksrc_node **, 383 struct pf_krule *, struct pf_addr *, sa_family_t); 384 static u_int pf_purge_expired_states(u_int, int); 385 static void pf_purge_unlinked_rules(void); 386 static int pf_mtag_uminit(void *, int, int); 387 static void pf_mtag_free(struct m_tag *); 388 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 389 int, struct pf_state_key *); 390 #ifdef INET 391 static void pf_route(struct mbuf **, struct pf_krule *, 392 struct ifnet *, struct pf_kstate *, 393 struct pf_pdesc *, struct inpcb *); 394 #endif /* INET */ 395 #ifdef INET6 396 static void pf_change_a6(struct pf_addr *, u_int16_t *, 397 struct pf_addr *, u_int8_t); 398 static void pf_route6(struct mbuf **, struct pf_krule *, 399 struct ifnet *, struct pf_kstate *, 400 struct pf_pdesc *, struct inpcb *); 401 #endif /* INET6 */ 402 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 403 404 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 405 406 extern int pf_end_threads; 407 extern struct proc *pf_purge_proc; 408 409 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 410 411 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK }; 412 413 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 414 do { \ 415 struct pf_state_key *nk; \ 416 if ((pd->dir) == PF_OUT) \ 417 nk = (_s)->key[PF_SK_STACK]; \ 418 else \ 419 nk = (_s)->key[PF_SK_WIRE]; \ 420 pf_packet_rework_nat(_m, _pd, _off, nk); \ 421 } while (0) 422 423 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 424 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 425 426 #define STATE_LOOKUP(i, k, s, pd) \ 427 do { \ 428 (s) = pf_find_state((i), (k), (pd->dir)); \ 429 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 430 if ((s) == NULL) \ 431 return (PF_DROP); \ 432 if (PACKET_LOOPED(pd)) \ 433 return (PF_PASS); \ 434 } while (0) 435 436 static struct pfi_kkif * 437 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 438 { 439 SDT_PROBE2(pf, ip, , bound_iface, st, k); 440 441 /* Floating unless otherwise specified. */ 442 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 443 return (V_pfi_all); 444 445 /* 446 * Initially set to all, because we don't know what interface we'll be 447 * sending this out when we create the state. 448 */ 449 if (st->rule.ptr->rt == PF_REPLYTO) 450 return (V_pfi_all); 451 452 /* Don't overrule the interface for states created on incoming packets. */ 453 if (st->direction == PF_IN) 454 return (k); 455 456 /* No route-to, so don't overrule. */ 457 if (st->rt != PF_ROUTETO) 458 return (k); 459 460 /* Bind to the route-to interface. */ 461 return (st->rt_kif); 462 } 463 464 #define STATE_INC_COUNTERS(s) \ 465 do { \ 466 struct pf_krule_item *mrm; \ 467 counter_u64_add(s->rule.ptr->states_cur, 1); \ 468 counter_u64_add(s->rule.ptr->states_tot, 1); \ 469 if (s->anchor.ptr != NULL) { \ 470 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 471 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 472 } \ 473 if (s->nat_rule.ptr != NULL) { \ 474 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 475 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 476 } \ 477 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 478 counter_u64_add(mrm->r->states_cur, 1); \ 479 counter_u64_add(mrm->r->states_tot, 1); \ 480 } \ 481 } while (0) 482 483 #define STATE_DEC_COUNTERS(s) \ 484 do { \ 485 struct pf_krule_item *mrm; \ 486 if (s->nat_rule.ptr != NULL) \ 487 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 488 if (s->anchor.ptr != NULL) \ 489 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 490 counter_u64_add(s->rule.ptr->states_cur, -1); \ 491 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 492 counter_u64_add(mrm->r->states_cur, -1); \ 493 } while (0) 494 495 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 496 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 497 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 498 VNET_DEFINE(struct pf_idhash *, pf_idhash); 499 VNET_DEFINE(struct pf_srchash *, pf_srchash); 500 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 501 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 502 503 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 504 "pf(4)"); 505 506 VNET_DEFINE(u_long, pf_hashmask); 507 VNET_DEFINE(u_long, pf_srchashmask); 508 VNET_DEFINE(u_long, pf_udpendpointhashmask); 509 VNET_DEFINE_STATIC(u_long, pf_hashsize); 510 #define V_pf_hashsize VNET(pf_hashsize) 511 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 512 #define V_pf_srchashsize VNET(pf_srchashsize) 513 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 514 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 515 u_long pf_ioctl_maxcount = 65535; 516 517 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 518 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 519 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 520 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 521 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 522 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 523 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 524 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 525 526 VNET_DEFINE(void *, pf_swi_cookie); 527 VNET_DEFINE(struct intr_event *, pf_swi_ie); 528 529 VNET_DEFINE(uint32_t, pf_hashseed); 530 #define V_pf_hashseed VNET(pf_hashseed) 531 532 static void 533 pf_sctp_checksum(struct mbuf *m, int off) 534 { 535 uint32_t sum = 0; 536 537 /* Zero out the checksum, to enable recalculation. */ 538 m_copyback(m, off + offsetof(struct sctphdr, checksum), 539 sizeof(sum), (caddr_t)&sum); 540 541 sum = sctp_calculate_cksum(m, off); 542 543 m_copyback(m, off + offsetof(struct sctphdr, checksum), 544 sizeof(sum), (caddr_t)&sum); 545 } 546 547 int 548 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 549 { 550 551 switch (af) { 552 #ifdef INET 553 case AF_INET: 554 if (a->addr32[0] > b->addr32[0]) 555 return (1); 556 if (a->addr32[0] < b->addr32[0]) 557 return (-1); 558 break; 559 #endif /* INET */ 560 #ifdef INET6 561 case AF_INET6: 562 if (a->addr32[3] > b->addr32[3]) 563 return (1); 564 if (a->addr32[3] < b->addr32[3]) 565 return (-1); 566 if (a->addr32[2] > b->addr32[2]) 567 return (1); 568 if (a->addr32[2] < b->addr32[2]) 569 return (-1); 570 if (a->addr32[1] > b->addr32[1]) 571 return (1); 572 if (a->addr32[1] < b->addr32[1]) 573 return (-1); 574 if (a->addr32[0] > b->addr32[0]) 575 return (1); 576 if (a->addr32[0] < b->addr32[0]) 577 return (-1); 578 break; 579 #endif /* INET6 */ 580 default: 581 panic("%s: unknown address family %u", __func__, af); 582 } 583 return (0); 584 } 585 586 static bool 587 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 588 { 589 switch (af) { 590 case AF_INET: 591 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 592 case AF_INET6: 593 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 594 default: 595 panic("Unknown af %d", af); 596 } 597 } 598 599 static void 600 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 601 struct pf_state_key *nk) 602 { 603 604 switch (pd->proto) { 605 case IPPROTO_TCP: { 606 struct tcphdr *th = &pd->hdr.tcp; 607 608 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 609 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 610 &th->th_sum, &nk->addr[pd->sidx], 611 nk->port[pd->sidx], 0, pd->af); 612 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 613 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 614 &th->th_sum, &nk->addr[pd->didx], 615 nk->port[pd->didx], 0, pd->af); 616 m_copyback(m, off, sizeof(*th), (caddr_t)th); 617 break; 618 } 619 case IPPROTO_UDP: { 620 struct udphdr *uh = &pd->hdr.udp; 621 622 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 623 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 624 &uh->uh_sum, &nk->addr[pd->sidx], 625 nk->port[pd->sidx], 1, pd->af); 626 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 627 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 628 &uh->uh_sum, &nk->addr[pd->didx], 629 nk->port[pd->didx], 1, pd->af); 630 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 631 break; 632 } 633 case IPPROTO_SCTP: { 634 struct sctphdr *sh = &pd->hdr.sctp; 635 uint16_t checksum = 0; 636 637 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 638 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 639 &checksum, &nk->addr[pd->sidx], 640 nk->port[pd->sidx], 1, pd->af); 641 } 642 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 643 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 644 &checksum, &nk->addr[pd->didx], 645 nk->port[pd->didx], 1, pd->af); 646 } 647 648 break; 649 } 650 case IPPROTO_ICMP: { 651 struct icmp *ih = &pd->hdr.icmp; 652 653 if (nk->port[pd->sidx] != ih->icmp_id) { 654 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 655 ih->icmp_cksum, ih->icmp_id, 656 nk->port[pd->sidx], 0); 657 ih->icmp_id = nk->port[pd->sidx]; 658 pd->sport = &ih->icmp_id; 659 660 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 661 } 662 /* FALLTHROUGH */ 663 } 664 default: 665 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 666 switch (pd->af) { 667 case AF_INET: 668 pf_change_a(&pd->src->v4.s_addr, 669 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 670 0); 671 break; 672 case AF_INET6: 673 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 674 break; 675 } 676 } 677 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 678 switch (pd->af) { 679 case AF_INET: 680 pf_change_a(&pd->dst->v4.s_addr, 681 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 682 0); 683 break; 684 case AF_INET6: 685 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 686 break; 687 } 688 } 689 break; 690 } 691 } 692 693 static __inline uint32_t 694 pf_hashkey(const struct pf_state_key *sk) 695 { 696 uint32_t h; 697 698 h = murmur3_32_hash32((const uint32_t *)sk, 699 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 700 V_pf_hashseed); 701 702 return (h & V_pf_hashmask); 703 } 704 705 static __inline uint32_t 706 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 707 { 708 uint32_t h; 709 710 switch (af) { 711 case AF_INET: 712 h = murmur3_32_hash32((uint32_t *)&addr->v4, 713 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 714 break; 715 case AF_INET6: 716 h = murmur3_32_hash32((uint32_t *)&addr->v6, 717 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 718 break; 719 default: 720 panic("%s: unknown address family %u", __func__, af); 721 } 722 723 return (h & V_pf_srchashmask); 724 } 725 726 static inline uint32_t 727 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 728 { 729 uint32_t h; 730 731 h = murmur3_32_hash32((uint32_t *)endpoint, 732 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 733 V_pf_hashseed); 734 return (h & V_pf_udpendpointhashmask); 735 } 736 737 #ifdef ALTQ 738 static int 739 pf_state_hash(struct pf_kstate *s) 740 { 741 u_int32_t hv = (intptr_t)s / sizeof(*s); 742 743 hv ^= crc32(&s->src, sizeof(s->src)); 744 hv ^= crc32(&s->dst, sizeof(s->dst)); 745 if (hv == 0) 746 hv = 1; 747 return (hv); 748 } 749 #endif 750 751 static __inline void 752 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 753 { 754 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 755 s->dst.state = newstate; 756 if (which == PF_PEER_DST) 757 return; 758 if (s->src.state == newstate) 759 return; 760 if (s->creatorid == V_pf_status.hostid && 761 s->key[PF_SK_STACK] != NULL && 762 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 763 !(TCPS_HAVEESTABLISHED(s->src.state) || 764 s->src.state == TCPS_CLOSED) && 765 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 766 atomic_add_32(&V_pf_status.states_halfopen, -1); 767 768 s->src.state = newstate; 769 } 770 771 #ifdef INET6 772 void 773 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 774 { 775 switch (af) { 776 #ifdef INET 777 case AF_INET: 778 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 779 break; 780 #endif /* INET */ 781 case AF_INET6: 782 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 783 break; 784 } 785 } 786 #endif /* INET6 */ 787 788 static void 789 pf_init_threshold(struct pf_threshold *threshold, 790 u_int32_t limit, u_int32_t seconds) 791 { 792 threshold->limit = limit * PF_THRESHOLD_MULT; 793 threshold->seconds = seconds; 794 threshold->count = 0; 795 threshold->last = time_uptime; 796 } 797 798 static void 799 pf_add_threshold(struct pf_threshold *threshold) 800 { 801 u_int32_t t = time_uptime, diff = t - threshold->last; 802 803 if (diff >= threshold->seconds) 804 threshold->count = 0; 805 else 806 threshold->count -= threshold->count * diff / 807 threshold->seconds; 808 threshold->count += PF_THRESHOLD_MULT; 809 threshold->last = t; 810 } 811 812 static int 813 pf_check_threshold(struct pf_threshold *threshold) 814 { 815 return (threshold->count > threshold->limit); 816 } 817 818 static int 819 pf_src_connlimit(struct pf_kstate **state) 820 { 821 struct pf_overload_entry *pfoe; 822 int bad = 0; 823 824 PF_STATE_LOCK_ASSERT(*state); 825 /* 826 * XXXKS: The src node is accessed unlocked! 827 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 828 */ 829 830 (*state)->src_node->conn++; 831 (*state)->src.tcp_est = 1; 832 pf_add_threshold(&(*state)->src_node->conn_rate); 833 834 if ((*state)->rule.ptr->max_src_conn && 835 (*state)->rule.ptr->max_src_conn < 836 (*state)->src_node->conn) { 837 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 838 bad++; 839 } 840 841 if ((*state)->rule.ptr->max_src_conn_rate.limit && 842 pf_check_threshold(&(*state)->src_node->conn_rate)) { 843 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 844 bad++; 845 } 846 847 if (!bad) 848 return (0); 849 850 /* Kill this state. */ 851 (*state)->timeout = PFTM_PURGE; 852 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 853 854 if ((*state)->rule.ptr->overload_tbl == NULL) 855 return (1); 856 857 /* Schedule overloading and flushing task. */ 858 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 859 if (pfoe == NULL) 860 return (1); /* too bad :( */ 861 862 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 863 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 864 pfoe->rule = (*state)->rule.ptr; 865 pfoe->dir = (*state)->direction; 866 PF_OVERLOADQ_LOCK(); 867 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 868 PF_OVERLOADQ_UNLOCK(); 869 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 870 871 return (1); 872 } 873 874 static void 875 pf_overload_task(void *v, int pending) 876 { 877 struct pf_overload_head queue; 878 struct pfr_addr p; 879 struct pf_overload_entry *pfoe, *pfoe1; 880 uint32_t killed = 0; 881 882 CURVNET_SET((struct vnet *)v); 883 884 PF_OVERLOADQ_LOCK(); 885 queue = V_pf_overloadqueue; 886 SLIST_INIT(&V_pf_overloadqueue); 887 PF_OVERLOADQ_UNLOCK(); 888 889 bzero(&p, sizeof(p)); 890 SLIST_FOREACH(pfoe, &queue, next) { 891 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 892 if (V_pf_status.debug >= PF_DEBUG_MISC) { 893 printf("%s: blocking address ", __func__); 894 pf_print_host(&pfoe->addr, 0, pfoe->af); 895 printf("\n"); 896 } 897 898 p.pfra_af = pfoe->af; 899 switch (pfoe->af) { 900 #ifdef INET 901 case AF_INET: 902 p.pfra_net = 32; 903 p.pfra_ip4addr = pfoe->addr.v4; 904 break; 905 #endif 906 #ifdef INET6 907 case AF_INET6: 908 p.pfra_net = 128; 909 p.pfra_ip6addr = pfoe->addr.v6; 910 break; 911 #endif 912 } 913 914 PF_RULES_WLOCK(); 915 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 916 PF_RULES_WUNLOCK(); 917 } 918 919 /* 920 * Remove those entries, that don't need flushing. 921 */ 922 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 923 if (pfoe->rule->flush == 0) { 924 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 925 free(pfoe, M_PFTEMP); 926 } else 927 counter_u64_add( 928 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 929 930 /* If nothing to flush, return. */ 931 if (SLIST_EMPTY(&queue)) { 932 CURVNET_RESTORE(); 933 return; 934 } 935 936 for (int i = 0; i <= V_pf_hashmask; i++) { 937 struct pf_idhash *ih = &V_pf_idhash[i]; 938 struct pf_state_key *sk; 939 struct pf_kstate *s; 940 941 PF_HASHROW_LOCK(ih); 942 LIST_FOREACH(s, &ih->states, entry) { 943 sk = s->key[PF_SK_WIRE]; 944 SLIST_FOREACH(pfoe, &queue, next) 945 if (sk->af == pfoe->af && 946 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 947 pfoe->rule == s->rule.ptr) && 948 ((pfoe->dir == PF_OUT && 949 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 950 (pfoe->dir == PF_IN && 951 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 952 s->timeout = PFTM_PURGE; 953 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 954 killed++; 955 } 956 } 957 PF_HASHROW_UNLOCK(ih); 958 } 959 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 960 free(pfoe, M_PFTEMP); 961 if (V_pf_status.debug >= PF_DEBUG_MISC) 962 printf("%s: %u states killed", __func__, killed); 963 964 CURVNET_RESTORE(); 965 } 966 967 /* 968 * Can return locked on failure, so that we can consistently 969 * allocate and insert a new one. 970 */ 971 struct pf_ksrc_node * 972 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 973 struct pf_srchash **sh, bool returnlocked) 974 { 975 struct pf_ksrc_node *n; 976 977 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 978 979 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 980 PF_HASHROW_LOCK(*sh); 981 LIST_FOREACH(n, &(*sh)->nodes, entry) 982 if (n->rule.ptr == rule && n->af == af && 983 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 984 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 985 break; 986 987 if (n != NULL) { 988 n->states++; 989 PF_HASHROW_UNLOCK(*sh); 990 } else if (returnlocked == false) 991 PF_HASHROW_UNLOCK(*sh); 992 993 return (n); 994 } 995 996 static void 997 pf_free_src_node(struct pf_ksrc_node *sn) 998 { 999 1000 for (int i = 0; i < 2; i++) { 1001 counter_u64_free(sn->bytes[i]); 1002 counter_u64_free(sn->packets[i]); 1003 } 1004 uma_zfree(V_pf_sources_z, sn); 1005 } 1006 1007 static u_short 1008 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 1009 struct pf_addr *src, sa_family_t af) 1010 { 1011 u_short reason = 0; 1012 struct pf_srchash *sh = NULL; 1013 1014 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 1015 rule->rpool.opts & PF_POOL_STICKYADDR), 1016 ("%s for non-tracking rule %p", __func__, rule)); 1017 1018 if (*sn == NULL) 1019 *sn = pf_find_src_node(src, rule, af, &sh, true); 1020 1021 if (*sn == NULL) { 1022 PF_HASHROW_ASSERT(sh); 1023 1024 if (rule->max_src_nodes && 1025 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 1026 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1027 PF_HASHROW_UNLOCK(sh); 1028 reason = PFRES_SRCLIMIT; 1029 goto done; 1030 } 1031 1032 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1033 if ((*sn) == NULL) { 1034 PF_HASHROW_UNLOCK(sh); 1035 reason = PFRES_MEMORY; 1036 goto done; 1037 } 1038 1039 for (int i = 0; i < 2; i++) { 1040 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1041 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1042 1043 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1044 pf_free_src_node(*sn); 1045 PF_HASHROW_UNLOCK(sh); 1046 reason = PFRES_MEMORY; 1047 goto done; 1048 } 1049 } 1050 1051 pf_init_threshold(&(*sn)->conn_rate, 1052 rule->max_src_conn_rate.limit, 1053 rule->max_src_conn_rate.seconds); 1054 1055 MPASS((*sn)->lock == NULL); 1056 (*sn)->lock = &sh->lock; 1057 1058 (*sn)->af = af; 1059 (*sn)->rule.ptr = rule; 1060 PF_ACPY(&(*sn)->addr, src, af); 1061 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1062 (*sn)->creation = time_uptime; 1063 (*sn)->ruletype = rule->action; 1064 (*sn)->states = 1; 1065 if ((*sn)->rule.ptr != NULL) 1066 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1067 PF_HASHROW_UNLOCK(sh); 1068 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1069 } else { 1070 if (rule->max_src_states && 1071 (*sn)->states >= rule->max_src_states) { 1072 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1073 1); 1074 reason = PFRES_SRCLIMIT; 1075 goto done; 1076 } 1077 } 1078 done: 1079 return (reason); 1080 } 1081 1082 void 1083 pf_unlink_src_node(struct pf_ksrc_node *src) 1084 { 1085 PF_SRC_NODE_LOCK_ASSERT(src); 1086 1087 LIST_REMOVE(src, entry); 1088 if (src->rule.ptr) 1089 counter_u64_add(src->rule.ptr->src_nodes, -1); 1090 } 1091 1092 u_int 1093 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1094 { 1095 struct pf_ksrc_node *sn, *tmp; 1096 u_int count = 0; 1097 1098 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1099 pf_free_src_node(sn); 1100 count++; 1101 } 1102 1103 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1104 1105 return (count); 1106 } 1107 1108 void 1109 pf_mtag_initialize(void) 1110 { 1111 1112 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1113 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1114 UMA_ALIGN_PTR, 0); 1115 } 1116 1117 /* Per-vnet data storage structures initialization. */ 1118 void 1119 pf_initialize(void) 1120 { 1121 struct pf_keyhash *kh; 1122 struct pf_idhash *ih; 1123 struct pf_srchash *sh; 1124 struct pf_udpendpointhash *uh; 1125 u_int i; 1126 1127 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1128 V_pf_hashsize = PF_HASHSIZ; 1129 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1130 V_pf_srchashsize = PF_SRCHASHSIZ; 1131 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1132 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1133 1134 V_pf_hashseed = arc4random(); 1135 1136 /* States and state keys storage. */ 1137 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1138 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1139 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1140 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1141 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1142 1143 V_pf_state_key_z = uma_zcreate("pf state keys", 1144 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1145 UMA_ALIGN_PTR, 0); 1146 1147 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1148 M_PFHASH, M_NOWAIT | M_ZERO); 1149 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1150 M_PFHASH, M_NOWAIT | M_ZERO); 1151 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1152 printf("pf: Unable to allocate memory for " 1153 "state_hashsize %lu.\n", V_pf_hashsize); 1154 1155 free(V_pf_keyhash, M_PFHASH); 1156 free(V_pf_idhash, M_PFHASH); 1157 1158 V_pf_hashsize = PF_HASHSIZ; 1159 V_pf_keyhash = mallocarray(V_pf_hashsize, 1160 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1161 V_pf_idhash = mallocarray(V_pf_hashsize, 1162 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1163 } 1164 1165 V_pf_hashmask = V_pf_hashsize - 1; 1166 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1167 i++, kh++, ih++) { 1168 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1169 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1170 } 1171 1172 /* Source nodes. */ 1173 V_pf_sources_z = uma_zcreate("pf source nodes", 1174 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1175 0); 1176 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1177 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1178 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1179 1180 V_pf_srchash = mallocarray(V_pf_srchashsize, 1181 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1182 if (V_pf_srchash == NULL) { 1183 printf("pf: Unable to allocate memory for " 1184 "source_hashsize %lu.\n", V_pf_srchashsize); 1185 1186 V_pf_srchashsize = PF_SRCHASHSIZ; 1187 V_pf_srchash = mallocarray(V_pf_srchashsize, 1188 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1189 } 1190 1191 V_pf_srchashmask = V_pf_srchashsize - 1; 1192 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1193 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1194 1195 1196 /* UDP endpoint mappings. */ 1197 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1198 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1199 UMA_ALIGN_PTR, 0); 1200 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1201 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1202 if (V_pf_udpendpointhash == NULL) { 1203 printf("pf: Unable to allocate memory for " 1204 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1205 1206 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1207 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1208 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1209 } 1210 1211 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1212 for (i = 0, uh = V_pf_udpendpointhash; 1213 i <= V_pf_udpendpointhashmask; 1214 i++, uh++) { 1215 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1216 MTX_DEF | MTX_DUPOK); 1217 } 1218 1219 /* ALTQ */ 1220 TAILQ_INIT(&V_pf_altqs[0]); 1221 TAILQ_INIT(&V_pf_altqs[1]); 1222 TAILQ_INIT(&V_pf_altqs[2]); 1223 TAILQ_INIT(&V_pf_altqs[3]); 1224 TAILQ_INIT(&V_pf_pabuf); 1225 V_pf_altqs_active = &V_pf_altqs[0]; 1226 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1227 V_pf_altqs_inactive = &V_pf_altqs[2]; 1228 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1229 1230 /* Send & overload+flush queues. */ 1231 STAILQ_INIT(&V_pf_sendqueue); 1232 SLIST_INIT(&V_pf_overloadqueue); 1233 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1234 1235 /* Unlinked, but may be referenced rules. */ 1236 TAILQ_INIT(&V_pf_unlinked_rules); 1237 } 1238 1239 void 1240 pf_mtag_cleanup(void) 1241 { 1242 1243 uma_zdestroy(pf_mtag_z); 1244 } 1245 1246 void 1247 pf_cleanup(void) 1248 { 1249 struct pf_keyhash *kh; 1250 struct pf_idhash *ih; 1251 struct pf_srchash *sh; 1252 struct pf_udpendpointhash *uh; 1253 struct pf_send_entry *pfse, *next; 1254 u_int i; 1255 1256 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1257 i <= V_pf_hashmask; 1258 i++, kh++, ih++) { 1259 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1260 __func__)); 1261 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1262 __func__)); 1263 mtx_destroy(&kh->lock); 1264 mtx_destroy(&ih->lock); 1265 } 1266 free(V_pf_keyhash, M_PFHASH); 1267 free(V_pf_idhash, M_PFHASH); 1268 1269 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1270 KASSERT(LIST_EMPTY(&sh->nodes), 1271 ("%s: source node hash not empty", __func__)); 1272 mtx_destroy(&sh->lock); 1273 } 1274 free(V_pf_srchash, M_PFHASH); 1275 1276 for (i = 0, uh = V_pf_udpendpointhash; 1277 i <= V_pf_udpendpointhashmask; 1278 i++, uh++) { 1279 KASSERT(LIST_EMPTY(&uh->endpoints), 1280 ("%s: udp endpoint hash not empty", __func__)); 1281 mtx_destroy(&uh->lock); 1282 } 1283 free(V_pf_udpendpointhash, M_PFHASH); 1284 1285 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1286 m_freem(pfse->pfse_m); 1287 free(pfse, M_PFTEMP); 1288 } 1289 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1290 1291 uma_zdestroy(V_pf_sources_z); 1292 uma_zdestroy(V_pf_state_z); 1293 uma_zdestroy(V_pf_state_key_z); 1294 uma_zdestroy(V_pf_udp_mapping_z); 1295 } 1296 1297 static int 1298 pf_mtag_uminit(void *mem, int size, int how) 1299 { 1300 struct m_tag *t; 1301 1302 t = (struct m_tag *)mem; 1303 t->m_tag_cookie = MTAG_ABI_COMPAT; 1304 t->m_tag_id = PACKET_TAG_PF; 1305 t->m_tag_len = sizeof(struct pf_mtag); 1306 t->m_tag_free = pf_mtag_free; 1307 1308 return (0); 1309 } 1310 1311 static void 1312 pf_mtag_free(struct m_tag *t) 1313 { 1314 1315 uma_zfree(pf_mtag_z, t); 1316 } 1317 1318 struct pf_mtag * 1319 pf_get_mtag(struct mbuf *m) 1320 { 1321 struct m_tag *mtag; 1322 1323 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1324 return ((struct pf_mtag *)(mtag + 1)); 1325 1326 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1327 if (mtag == NULL) 1328 return (NULL); 1329 bzero(mtag + 1, sizeof(struct pf_mtag)); 1330 m_tag_prepend(m, mtag); 1331 1332 return ((struct pf_mtag *)(mtag + 1)); 1333 } 1334 1335 static int 1336 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1337 struct pf_kstate *s) 1338 { 1339 struct pf_keyhash *khs, *khw, *kh; 1340 struct pf_state_key *sk, *cur; 1341 struct pf_kstate *si, *olds = NULL; 1342 int idx; 1343 1344 NET_EPOCH_ASSERT(); 1345 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1346 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1347 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1348 1349 /* 1350 * We need to lock hash slots of both keys. To avoid deadlock 1351 * we always lock the slot with lower address first. Unlock order 1352 * isn't important. 1353 * 1354 * We also need to lock ID hash slot before dropping key 1355 * locks. On success we return with ID hash slot locked. 1356 */ 1357 1358 if (skw == sks) { 1359 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1360 PF_HASHROW_LOCK(khs); 1361 } else { 1362 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1363 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1364 if (khs == khw) { 1365 PF_HASHROW_LOCK(khs); 1366 } else if (khs < khw) { 1367 PF_HASHROW_LOCK(khs); 1368 PF_HASHROW_LOCK(khw); 1369 } else { 1370 PF_HASHROW_LOCK(khw); 1371 PF_HASHROW_LOCK(khs); 1372 } 1373 } 1374 1375 #define KEYS_UNLOCK() do { \ 1376 if (khs != khw) { \ 1377 PF_HASHROW_UNLOCK(khs); \ 1378 PF_HASHROW_UNLOCK(khw); \ 1379 } else \ 1380 PF_HASHROW_UNLOCK(khs); \ 1381 } while (0) 1382 1383 /* 1384 * First run: start with wire key. 1385 */ 1386 sk = skw; 1387 kh = khw; 1388 idx = PF_SK_WIRE; 1389 1390 MPASS(s->lock == NULL); 1391 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1392 1393 keyattach: 1394 LIST_FOREACH(cur, &kh->keys, entry) 1395 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1396 break; 1397 1398 if (cur != NULL) { 1399 /* Key exists. Check for same kif, if none, add to key. */ 1400 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1401 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1402 1403 PF_HASHROW_LOCK(ih); 1404 if (si->kif == s->kif && 1405 si->direction == s->direction) { 1406 if (sk->proto == IPPROTO_TCP && 1407 si->src.state >= TCPS_FIN_WAIT_2 && 1408 si->dst.state >= TCPS_FIN_WAIT_2) { 1409 /* 1410 * New state matches an old >FIN_WAIT_2 1411 * state. We can't drop key hash locks, 1412 * thus we can't unlink it properly. 1413 * 1414 * As a workaround we drop it into 1415 * TCPS_CLOSED state, schedule purge 1416 * ASAP and push it into the very end 1417 * of the slot TAILQ, so that it won't 1418 * conflict with our new state. 1419 */ 1420 pf_set_protostate(si, PF_PEER_BOTH, 1421 TCPS_CLOSED); 1422 si->timeout = PFTM_PURGE; 1423 olds = si; 1424 } else { 1425 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1426 printf("pf: %s key attach " 1427 "failed on %s: ", 1428 (idx == PF_SK_WIRE) ? 1429 "wire" : "stack", 1430 s->kif->pfik_name); 1431 pf_print_state_parts(s, 1432 (idx == PF_SK_WIRE) ? 1433 sk : NULL, 1434 (idx == PF_SK_STACK) ? 1435 sk : NULL); 1436 printf(", existing: "); 1437 pf_print_state_parts(si, 1438 (idx == PF_SK_WIRE) ? 1439 sk : NULL, 1440 (idx == PF_SK_STACK) ? 1441 sk : NULL); 1442 printf("\n"); 1443 } 1444 s->timeout = PFTM_UNLINKED; 1445 PF_HASHROW_UNLOCK(ih); 1446 KEYS_UNLOCK(); 1447 uma_zfree(V_pf_state_key_z, sk); 1448 if (idx == PF_SK_STACK) 1449 pf_detach_state(s); 1450 return (EEXIST); /* collision! */ 1451 } 1452 } 1453 PF_HASHROW_UNLOCK(ih); 1454 } 1455 uma_zfree(V_pf_state_key_z, sk); 1456 s->key[idx] = cur; 1457 } else { 1458 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1459 s->key[idx] = sk; 1460 } 1461 1462 stateattach: 1463 /* List is sorted, if-bound states before floating. */ 1464 if (s->kif == V_pfi_all) 1465 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1466 else 1467 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1468 1469 if (olds) { 1470 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1471 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1472 key_list[idx]); 1473 olds = NULL; 1474 } 1475 1476 /* 1477 * Attach done. See how should we (or should not?) 1478 * attach a second key. 1479 */ 1480 if (sks == skw) { 1481 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1482 idx = PF_SK_STACK; 1483 sks = NULL; 1484 goto stateattach; 1485 } else if (sks != NULL) { 1486 /* 1487 * Continue attaching with stack key. 1488 */ 1489 sk = sks; 1490 kh = khs; 1491 idx = PF_SK_STACK; 1492 sks = NULL; 1493 goto keyattach; 1494 } 1495 1496 PF_STATE_LOCK(s); 1497 KEYS_UNLOCK(); 1498 1499 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1500 ("%s failure", __func__)); 1501 1502 return (0); 1503 #undef KEYS_UNLOCK 1504 } 1505 1506 static void 1507 pf_detach_state(struct pf_kstate *s) 1508 { 1509 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1510 struct pf_keyhash *kh; 1511 1512 NET_EPOCH_ASSERT(); 1513 MPASS(s->timeout >= PFTM_MAX); 1514 1515 pf_sctp_multihome_detach_addr(s); 1516 1517 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1518 V_pflow_export_state_ptr(s); 1519 1520 if (sks != NULL) { 1521 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1522 PF_HASHROW_LOCK(kh); 1523 if (s->key[PF_SK_STACK] != NULL) 1524 pf_state_key_detach(s, PF_SK_STACK); 1525 /* 1526 * If both point to same key, then we are done. 1527 */ 1528 if (sks == s->key[PF_SK_WIRE]) { 1529 pf_state_key_detach(s, PF_SK_WIRE); 1530 PF_HASHROW_UNLOCK(kh); 1531 return; 1532 } 1533 PF_HASHROW_UNLOCK(kh); 1534 } 1535 1536 if (s->key[PF_SK_WIRE] != NULL) { 1537 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1538 PF_HASHROW_LOCK(kh); 1539 if (s->key[PF_SK_WIRE] != NULL) 1540 pf_state_key_detach(s, PF_SK_WIRE); 1541 PF_HASHROW_UNLOCK(kh); 1542 } 1543 } 1544 1545 static void 1546 pf_state_key_detach(struct pf_kstate *s, int idx) 1547 { 1548 struct pf_state_key *sk = s->key[idx]; 1549 #ifdef INVARIANTS 1550 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1551 1552 PF_HASHROW_ASSERT(kh); 1553 #endif 1554 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1555 s->key[idx] = NULL; 1556 1557 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1558 LIST_REMOVE(sk, entry); 1559 uma_zfree(V_pf_state_key_z, sk); 1560 } 1561 } 1562 1563 static int 1564 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1565 { 1566 struct pf_state_key *sk = mem; 1567 1568 bzero(sk, sizeof(struct pf_state_key_cmp)); 1569 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1570 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1571 1572 return (0); 1573 } 1574 1575 static int 1576 pf_state_key_addr_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1577 struct pf_state_key_cmp *key, int sidx, struct pf_addr *saddr, 1578 int didx, struct pf_addr *daddr, int multi) 1579 { 1580 #ifdef INET6 1581 struct nd_neighbor_solicit nd; 1582 struct pf_addr *target; 1583 u_short action, reason; 1584 1585 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1586 goto copy; 1587 1588 switch (pd->hdr.icmp6.icmp6_type) { 1589 case ND_NEIGHBOR_SOLICIT: 1590 if (multi) 1591 return (-1); 1592 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1593 return (-1); 1594 target = (struct pf_addr *)&nd.nd_ns_target; 1595 daddr = target; 1596 break; 1597 case ND_NEIGHBOR_ADVERT: 1598 if (multi) 1599 return (-1); 1600 if (!pf_pull_hdr(m, off, &nd, sizeof(nd), &action, &reason, pd->af)) 1601 return (-1); 1602 target = (struct pf_addr *)&nd.nd_ns_target; 1603 saddr = target; 1604 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1605 key->addr[didx].addr32[0] = 0; 1606 key->addr[didx].addr32[1] = 0; 1607 key->addr[didx].addr32[2] = 0; 1608 key->addr[didx].addr32[3] = 0; 1609 daddr = NULL; /* overwritten */ 1610 } 1611 break; 1612 default: 1613 if (multi == PF_ICMP_MULTI_LINK) { 1614 key->addr[sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1615 key->addr[sidx].addr32[1] = 0; 1616 key->addr[sidx].addr32[2] = 0; 1617 key->addr[sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1618 saddr = NULL; /* overwritten */ 1619 } 1620 } 1621 copy: 1622 #endif 1623 if (saddr) 1624 PF_ACPY(&key->addr[sidx], saddr, pd->af); 1625 if (daddr) 1626 PF_ACPY(&key->addr[didx], daddr, pd->af); 1627 1628 return (0); 1629 } 1630 1631 struct pf_state_key * 1632 pf_state_key_setup(struct pf_pdesc *pd, struct mbuf *m, int off, 1633 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, 1634 u_int16_t dport) 1635 { 1636 struct pf_state_key *sk; 1637 1638 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1639 if (sk == NULL) 1640 return (NULL); 1641 1642 if (pf_state_key_addr_setup(pd, m, off, (struct pf_state_key_cmp *)sk, 1643 pd->sidx, pd->src, pd->didx, pd->dst, 0)) { 1644 uma_zfree(V_pf_state_key_z, sk); 1645 return (NULL); 1646 } 1647 1648 sk->port[pd->sidx] = sport; 1649 sk->port[pd->didx] = dport; 1650 sk->proto = pd->proto; 1651 sk->af = pd->af; 1652 1653 return (sk); 1654 } 1655 1656 struct pf_state_key * 1657 pf_state_key_clone(const struct pf_state_key *orig) 1658 { 1659 struct pf_state_key *sk; 1660 1661 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1662 if (sk == NULL) 1663 return (NULL); 1664 1665 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1666 1667 return (sk); 1668 } 1669 1670 int 1671 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1672 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1673 { 1674 struct pf_idhash *ih; 1675 struct pf_kstate *cur; 1676 int error; 1677 1678 NET_EPOCH_ASSERT(); 1679 1680 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1681 ("%s: sks not pristine", __func__)); 1682 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1683 ("%s: skw not pristine", __func__)); 1684 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1685 1686 s->kif = kif; 1687 s->orig_kif = orig_kif; 1688 1689 if (s->id == 0 && s->creatorid == 0) { 1690 s->id = alloc_unr64(&V_pf_stateid); 1691 s->id = htobe64(s->id); 1692 s->creatorid = V_pf_status.hostid; 1693 } 1694 1695 /* Returns with ID locked on success. */ 1696 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1697 return (error); 1698 1699 ih = &V_pf_idhash[PF_IDHASH(s)]; 1700 PF_HASHROW_ASSERT(ih); 1701 LIST_FOREACH(cur, &ih->states, entry) 1702 if (cur->id == s->id && cur->creatorid == s->creatorid) 1703 break; 1704 1705 if (cur != NULL) { 1706 s->timeout = PFTM_UNLINKED; 1707 PF_HASHROW_UNLOCK(ih); 1708 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1709 printf("pf: state ID collision: " 1710 "id: %016llx creatorid: %08x\n", 1711 (unsigned long long)be64toh(s->id), 1712 ntohl(s->creatorid)); 1713 } 1714 pf_detach_state(s); 1715 return (EEXIST); 1716 } 1717 LIST_INSERT_HEAD(&ih->states, s, entry); 1718 /* One for keys, one for ID hash. */ 1719 refcount_init(&s->refs, 2); 1720 1721 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1722 if (V_pfsync_insert_state_ptr != NULL) 1723 V_pfsync_insert_state_ptr(s); 1724 1725 /* Returns locked. */ 1726 return (0); 1727 } 1728 1729 /* 1730 * Find state by ID: returns with locked row on success. 1731 */ 1732 struct pf_kstate * 1733 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1734 { 1735 struct pf_idhash *ih; 1736 struct pf_kstate *s; 1737 1738 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1739 1740 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1741 1742 PF_HASHROW_LOCK(ih); 1743 LIST_FOREACH(s, &ih->states, entry) 1744 if (s->id == id && s->creatorid == creatorid) 1745 break; 1746 1747 if (s == NULL) 1748 PF_HASHROW_UNLOCK(ih); 1749 1750 return (s); 1751 } 1752 1753 /* 1754 * Find state by key. 1755 * Returns with ID hash slot locked on success. 1756 */ 1757 static struct pf_kstate * 1758 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1759 u_int dir) 1760 { 1761 struct pf_keyhash *kh; 1762 struct pf_state_key *sk; 1763 struct pf_kstate *s; 1764 int idx; 1765 1766 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1767 1768 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1769 1770 PF_HASHROW_LOCK(kh); 1771 LIST_FOREACH(sk, &kh->keys, entry) 1772 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1773 break; 1774 if (sk == NULL) { 1775 PF_HASHROW_UNLOCK(kh); 1776 return (NULL); 1777 } 1778 1779 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1780 1781 /* List is sorted, if-bound states before floating ones. */ 1782 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1783 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1784 PF_STATE_LOCK(s); 1785 PF_HASHROW_UNLOCK(kh); 1786 if (__predict_false(s->timeout >= PFTM_MAX)) { 1787 /* 1788 * State is either being processed by 1789 * pf_unlink_state() in an other thread, or 1790 * is scheduled for immediate expiry. 1791 */ 1792 PF_STATE_UNLOCK(s); 1793 return (NULL); 1794 } 1795 return (s); 1796 } 1797 PF_HASHROW_UNLOCK(kh); 1798 1799 return (NULL); 1800 } 1801 1802 /* 1803 * Returns with ID hash slot locked on success. 1804 */ 1805 struct pf_kstate * 1806 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1807 { 1808 struct pf_keyhash *kh; 1809 struct pf_state_key *sk; 1810 struct pf_kstate *s, *ret = NULL; 1811 int idx, inout = 0; 1812 1813 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1814 1815 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1816 1817 PF_HASHROW_LOCK(kh); 1818 LIST_FOREACH(sk, &kh->keys, entry) 1819 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1820 break; 1821 if (sk == NULL) { 1822 PF_HASHROW_UNLOCK(kh); 1823 return (NULL); 1824 } 1825 switch (dir) { 1826 case PF_IN: 1827 idx = PF_SK_WIRE; 1828 break; 1829 case PF_OUT: 1830 idx = PF_SK_STACK; 1831 break; 1832 case PF_INOUT: 1833 idx = PF_SK_WIRE; 1834 inout = 1; 1835 break; 1836 default: 1837 panic("%s: dir %u", __func__, dir); 1838 } 1839 second_run: 1840 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1841 if (more == NULL) { 1842 PF_STATE_LOCK(s); 1843 PF_HASHROW_UNLOCK(kh); 1844 return (s); 1845 } 1846 1847 if (ret) 1848 (*more)++; 1849 else { 1850 ret = s; 1851 PF_STATE_LOCK(s); 1852 } 1853 } 1854 if (inout == 1) { 1855 inout = 0; 1856 idx = PF_SK_STACK; 1857 goto second_run; 1858 } 1859 PF_HASHROW_UNLOCK(kh); 1860 1861 return (ret); 1862 } 1863 1864 /* 1865 * FIXME 1866 * This routine is inefficient -- locks the state only to unlock immediately on 1867 * return. 1868 * It is racy -- after the state is unlocked nothing stops other threads from 1869 * removing it. 1870 */ 1871 bool 1872 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1873 { 1874 struct pf_kstate *s; 1875 1876 s = pf_find_state_all(key, dir, NULL); 1877 if (s != NULL) { 1878 PF_STATE_UNLOCK(s); 1879 return (true); 1880 } 1881 return (false); 1882 } 1883 1884 struct pf_udp_mapping * 1885 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 1886 struct pf_addr *nat_addr, uint16_t nat_port) 1887 { 1888 struct pf_udp_mapping *mapping; 1889 1890 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 1891 if (mapping == NULL) 1892 return (NULL); 1893 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 1894 mapping->endpoints[0].port = src_port; 1895 mapping->endpoints[0].af = af; 1896 mapping->endpoints[0].mapping = mapping; 1897 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 1898 mapping->endpoints[1].port = nat_port; 1899 mapping->endpoints[1].af = af; 1900 mapping->endpoints[1].mapping = mapping; 1901 refcount_init(&mapping->refs, 1); 1902 return (mapping); 1903 } 1904 1905 int 1906 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 1907 { 1908 struct pf_udpendpointhash *h0, *h1; 1909 struct pf_udp_endpoint *endpoint; 1910 int ret = EEXIST; 1911 1912 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1913 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1914 if (h0 == h1) { 1915 PF_HASHROW_LOCK(h0); 1916 } else if (h0 < h1) { 1917 PF_HASHROW_LOCK(h0); 1918 PF_HASHROW_LOCK(h1); 1919 } else { 1920 PF_HASHROW_LOCK(h1); 1921 PF_HASHROW_LOCK(h0); 1922 } 1923 1924 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 1925 if (bcmp(endpoint, &mapping->endpoints[0], 1926 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1927 break; 1928 } 1929 if (endpoint != NULL) 1930 goto cleanup; 1931 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 1932 if (bcmp(endpoint, &mapping->endpoints[1], 1933 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1934 break; 1935 } 1936 if (endpoint != NULL) 1937 goto cleanup; 1938 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 1939 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 1940 ret = 0; 1941 1942 cleanup: 1943 if (h0 != h1) { 1944 PF_HASHROW_UNLOCK(h0); 1945 PF_HASHROW_UNLOCK(h1); 1946 } else { 1947 PF_HASHROW_UNLOCK(h0); 1948 } 1949 return (ret); 1950 } 1951 1952 void 1953 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 1954 { 1955 /* refcount is synchronized on the source endpoint's row lock */ 1956 struct pf_udpendpointhash *h0, *h1; 1957 1958 if (mapping == NULL) 1959 return; 1960 1961 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 1962 PF_HASHROW_LOCK(h0); 1963 if (refcount_release(&mapping->refs)) { 1964 LIST_REMOVE(&mapping->endpoints[0], entry); 1965 PF_HASHROW_UNLOCK(h0); 1966 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 1967 PF_HASHROW_LOCK(h1); 1968 LIST_REMOVE(&mapping->endpoints[1], entry); 1969 PF_HASHROW_UNLOCK(h1); 1970 1971 uma_zfree(V_pf_udp_mapping_z, mapping); 1972 } else { 1973 PF_HASHROW_UNLOCK(h0); 1974 } 1975 } 1976 1977 1978 struct pf_udp_mapping * 1979 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 1980 { 1981 struct pf_udpendpointhash *uh; 1982 struct pf_udp_endpoint *endpoint; 1983 1984 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 1985 1986 PF_HASHROW_LOCK(uh); 1987 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 1988 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 1989 bcmp(endpoint, &endpoint->mapping->endpoints[0], 1990 sizeof(struct pf_udp_endpoint_cmp)) == 0) 1991 break; 1992 } 1993 if (endpoint == NULL) { 1994 PF_HASHROW_UNLOCK(uh); 1995 return (NULL); 1996 } 1997 refcount_acquire(&endpoint->mapping->refs); 1998 PF_HASHROW_UNLOCK(uh); 1999 return (endpoint->mapping); 2000 } 2001 /* END state table stuff */ 2002 2003 static void 2004 pf_send(struct pf_send_entry *pfse) 2005 { 2006 2007 PF_SENDQ_LOCK(); 2008 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2009 PF_SENDQ_UNLOCK(); 2010 swi_sched(V_pf_swi_cookie, 0); 2011 } 2012 2013 static bool 2014 pf_isforlocal(struct mbuf *m, int af) 2015 { 2016 switch (af) { 2017 #ifdef INET 2018 case AF_INET: { 2019 struct ip *ip = mtod(m, struct ip *); 2020 2021 return (in_localip(ip->ip_dst)); 2022 } 2023 #endif 2024 #ifdef INET6 2025 case AF_INET6: { 2026 struct ip6_hdr *ip6; 2027 struct in6_ifaddr *ia; 2028 ip6 = mtod(m, struct ip6_hdr *); 2029 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2030 if (ia == NULL) 2031 return (false); 2032 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2033 } 2034 #endif 2035 default: 2036 panic("Unsupported af %d", af); 2037 } 2038 2039 return (false); 2040 } 2041 2042 int 2043 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2044 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type) 2045 { 2046 /* 2047 * ICMP types marked with PF_OUT are typically responses to 2048 * PF_IN, and will match states in the opposite direction. 2049 * PF_IN ICMP types need to match a state with that type. 2050 */ 2051 *icmp_dir = PF_OUT; 2052 *multi = PF_ICMP_MULTI_LINK; 2053 /* Queries (and responses) */ 2054 switch (pd->af) { 2055 #ifdef INET 2056 case AF_INET: 2057 switch (type) { 2058 case ICMP_ECHO: 2059 *icmp_dir = PF_IN; 2060 case ICMP_ECHOREPLY: 2061 *virtual_type = ICMP_ECHO; 2062 *virtual_id = pd->hdr.icmp.icmp_id; 2063 break; 2064 2065 case ICMP_TSTAMP: 2066 *icmp_dir = PF_IN; 2067 case ICMP_TSTAMPREPLY: 2068 *virtual_type = ICMP_TSTAMP; 2069 *virtual_id = pd->hdr.icmp.icmp_id; 2070 break; 2071 2072 case ICMP_IREQ: 2073 *icmp_dir = PF_IN; 2074 case ICMP_IREQREPLY: 2075 *virtual_type = ICMP_IREQ; 2076 *virtual_id = pd->hdr.icmp.icmp_id; 2077 break; 2078 2079 case ICMP_MASKREQ: 2080 *icmp_dir = PF_IN; 2081 case ICMP_MASKREPLY: 2082 *virtual_type = ICMP_MASKREQ; 2083 *virtual_id = pd->hdr.icmp.icmp_id; 2084 break; 2085 2086 case ICMP_IPV6_WHEREAREYOU: 2087 *icmp_dir = PF_IN; 2088 case ICMP_IPV6_IAMHERE: 2089 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2090 *virtual_id = 0; /* Nothing sane to match on! */ 2091 break; 2092 2093 case ICMP_MOBILE_REGREQUEST: 2094 *icmp_dir = PF_IN; 2095 case ICMP_MOBILE_REGREPLY: 2096 *virtual_type = ICMP_MOBILE_REGREQUEST; 2097 *virtual_id = 0; /* Nothing sane to match on! */ 2098 break; 2099 2100 case ICMP_ROUTERSOLICIT: 2101 *icmp_dir = PF_IN; 2102 case ICMP_ROUTERADVERT: 2103 *virtual_type = ICMP_ROUTERSOLICIT; 2104 *virtual_id = 0; /* Nothing sane to match on! */ 2105 break; 2106 2107 /* These ICMP types map to other connections */ 2108 case ICMP_UNREACH: 2109 case ICMP_SOURCEQUENCH: 2110 case ICMP_REDIRECT: 2111 case ICMP_TIMXCEED: 2112 case ICMP_PARAMPROB: 2113 /* These will not be used, but set them anyway */ 2114 *icmp_dir = PF_IN; 2115 *virtual_type = type; 2116 *virtual_id = 0; 2117 HTONS(*virtual_type); 2118 return (1); /* These types match to another state */ 2119 2120 /* 2121 * All remaining ICMP types get their own states, 2122 * and will only match in one direction. 2123 */ 2124 default: 2125 *icmp_dir = PF_IN; 2126 *virtual_type = type; 2127 *virtual_id = 0; 2128 break; 2129 } 2130 break; 2131 #endif /* INET */ 2132 #ifdef INET6 2133 case AF_INET6: 2134 switch (type) { 2135 case ICMP6_ECHO_REQUEST: 2136 *icmp_dir = PF_IN; 2137 case ICMP6_ECHO_REPLY: 2138 *virtual_type = ICMP6_ECHO_REQUEST; 2139 *virtual_id = pd->hdr.icmp6.icmp6_id; 2140 break; 2141 2142 case MLD_LISTENER_QUERY: 2143 case MLD_LISTENER_REPORT: { 2144 /* 2145 * Listener Report can be sent by clients 2146 * without an associated Listener Query. 2147 * In addition to that, when Report is sent as a 2148 * reply to a Query its source and destination 2149 * address are different. 2150 */ 2151 *icmp_dir = PF_IN; 2152 *virtual_type = MLD_LISTENER_QUERY; 2153 *virtual_id = 0; 2154 break; 2155 } 2156 case MLD_MTRACE: 2157 *icmp_dir = PF_IN; 2158 case MLD_MTRACE_RESP: 2159 *virtual_type = MLD_MTRACE; 2160 *virtual_id = 0; /* Nothing sane to match on! */ 2161 break; 2162 2163 case ND_NEIGHBOR_SOLICIT: 2164 *icmp_dir = PF_IN; 2165 case ND_NEIGHBOR_ADVERT: { 2166 *virtual_type = ND_NEIGHBOR_SOLICIT; 2167 *virtual_id = 0; 2168 break; 2169 } 2170 2171 /* 2172 * These ICMP types map to other connections. 2173 * ND_REDIRECT can't be in this list because the triggering 2174 * packet header is optional. 2175 */ 2176 case ICMP6_DST_UNREACH: 2177 case ICMP6_PACKET_TOO_BIG: 2178 case ICMP6_TIME_EXCEEDED: 2179 case ICMP6_PARAM_PROB: 2180 /* These will not be used, but set them anyway */ 2181 *icmp_dir = PF_IN; 2182 *virtual_type = type; 2183 *virtual_id = 0; 2184 HTONS(*virtual_type); 2185 return (1); /* These types match to another state */ 2186 /* 2187 * All remaining ICMP6 types get their own states, 2188 * and will only match in one direction. 2189 */ 2190 default: 2191 *icmp_dir = PF_IN; 2192 *virtual_type = type; 2193 *virtual_id = 0; 2194 break; 2195 } 2196 break; 2197 #endif /* INET6 */ 2198 default: 2199 *icmp_dir = PF_IN; 2200 *virtual_type = type; 2201 *virtual_id = 0; 2202 break; 2203 } 2204 HTONS(*virtual_type); 2205 return (0); /* These types match to their own state */ 2206 } 2207 2208 void 2209 pf_intr(void *v) 2210 { 2211 struct epoch_tracker et; 2212 struct pf_send_head queue; 2213 struct pf_send_entry *pfse, *next; 2214 2215 CURVNET_SET((struct vnet *)v); 2216 2217 PF_SENDQ_LOCK(); 2218 queue = V_pf_sendqueue; 2219 STAILQ_INIT(&V_pf_sendqueue); 2220 PF_SENDQ_UNLOCK(); 2221 2222 NET_EPOCH_ENTER(et); 2223 2224 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2225 switch (pfse->pfse_type) { 2226 #ifdef INET 2227 case PFSE_IP: { 2228 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2229 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2230 pfse->pfse_m->m_pkthdr.csum_flags |= 2231 CSUM_IP_VALID | CSUM_IP_CHECKED; 2232 ip_input(pfse->pfse_m); 2233 } else { 2234 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2235 NULL); 2236 } 2237 break; 2238 } 2239 case PFSE_ICMP: 2240 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2241 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2242 break; 2243 #endif /* INET */ 2244 #ifdef INET6 2245 case PFSE_IP6: 2246 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2247 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2248 ip6_input(pfse->pfse_m); 2249 } else { 2250 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2251 NULL, NULL); 2252 } 2253 break; 2254 case PFSE_ICMP6: 2255 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2256 pfse->icmpopts.code, pfse->icmpopts.mtu); 2257 break; 2258 #endif /* INET6 */ 2259 default: 2260 panic("%s: unknown type", __func__); 2261 } 2262 free(pfse, M_PFTEMP); 2263 } 2264 NET_EPOCH_EXIT(et); 2265 CURVNET_RESTORE(); 2266 } 2267 2268 #define pf_purge_thread_period (hz / 10) 2269 2270 #ifdef PF_WANT_32_TO_64_COUNTER 2271 static void 2272 pf_status_counter_u64_periodic(void) 2273 { 2274 2275 PF_RULES_RASSERT(); 2276 2277 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2278 return; 2279 } 2280 2281 for (int i = 0; i < FCNT_MAX; i++) { 2282 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2283 } 2284 } 2285 2286 static void 2287 pf_kif_counter_u64_periodic(void) 2288 { 2289 struct pfi_kkif *kif; 2290 size_t r, run; 2291 2292 PF_RULES_RASSERT(); 2293 2294 if (__predict_false(V_pf_allkifcount == 0)) { 2295 return; 2296 } 2297 2298 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2299 return; 2300 } 2301 2302 run = V_pf_allkifcount / 10; 2303 if (run < 5) 2304 run = 5; 2305 2306 for (r = 0; r < run; r++) { 2307 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2308 if (kif == NULL) { 2309 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2310 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2311 break; 2312 } 2313 2314 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2315 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2316 2317 for (int i = 0; i < 2; i++) { 2318 for (int j = 0; j < 2; j++) { 2319 for (int k = 0; k < 2; k++) { 2320 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2321 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2322 } 2323 } 2324 } 2325 } 2326 } 2327 2328 static void 2329 pf_rule_counter_u64_periodic(void) 2330 { 2331 struct pf_krule *rule; 2332 size_t r, run; 2333 2334 PF_RULES_RASSERT(); 2335 2336 if (__predict_false(V_pf_allrulecount == 0)) { 2337 return; 2338 } 2339 2340 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2341 return; 2342 } 2343 2344 run = V_pf_allrulecount / 10; 2345 if (run < 5) 2346 run = 5; 2347 2348 for (r = 0; r < run; r++) { 2349 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2350 if (rule == NULL) { 2351 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2352 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2353 break; 2354 } 2355 2356 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2357 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2358 2359 pf_counter_u64_periodic(&rule->evaluations); 2360 for (int i = 0; i < 2; i++) { 2361 pf_counter_u64_periodic(&rule->packets[i]); 2362 pf_counter_u64_periodic(&rule->bytes[i]); 2363 } 2364 } 2365 } 2366 2367 static void 2368 pf_counter_u64_periodic_main(void) 2369 { 2370 PF_RULES_RLOCK_TRACKER; 2371 2372 V_pf_counter_periodic_iter++; 2373 2374 PF_RULES_RLOCK(); 2375 pf_counter_u64_critical_enter(); 2376 pf_status_counter_u64_periodic(); 2377 pf_kif_counter_u64_periodic(); 2378 pf_rule_counter_u64_periodic(); 2379 pf_counter_u64_critical_exit(); 2380 PF_RULES_RUNLOCK(); 2381 } 2382 #else 2383 #define pf_counter_u64_periodic_main() do { } while (0) 2384 #endif 2385 2386 void 2387 pf_purge_thread(void *unused __unused) 2388 { 2389 struct epoch_tracker et; 2390 2391 VNET_ITERATOR_DECL(vnet_iter); 2392 2393 sx_xlock(&pf_end_lock); 2394 while (pf_end_threads == 0) { 2395 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2396 2397 VNET_LIST_RLOCK(); 2398 NET_EPOCH_ENTER(et); 2399 VNET_FOREACH(vnet_iter) { 2400 CURVNET_SET(vnet_iter); 2401 2402 /* Wait until V_pf_default_rule is initialized. */ 2403 if (V_pf_vnet_active == 0) { 2404 CURVNET_RESTORE(); 2405 continue; 2406 } 2407 2408 pf_counter_u64_periodic_main(); 2409 2410 /* 2411 * Process 1/interval fraction of the state 2412 * table every run. 2413 */ 2414 V_pf_purge_idx = 2415 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2416 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2417 2418 /* 2419 * Purge other expired types every 2420 * PFTM_INTERVAL seconds. 2421 */ 2422 if (V_pf_purge_idx == 0) { 2423 /* 2424 * Order is important: 2425 * - states and src nodes reference rules 2426 * - states and rules reference kifs 2427 */ 2428 pf_purge_expired_fragments(); 2429 pf_purge_expired_src_nodes(); 2430 pf_purge_unlinked_rules(); 2431 pfi_kkif_purge(); 2432 } 2433 CURVNET_RESTORE(); 2434 } 2435 NET_EPOCH_EXIT(et); 2436 VNET_LIST_RUNLOCK(); 2437 } 2438 2439 pf_end_threads++; 2440 sx_xunlock(&pf_end_lock); 2441 kproc_exit(0); 2442 } 2443 2444 void 2445 pf_unload_vnet_purge(void) 2446 { 2447 2448 /* 2449 * To cleanse up all kifs and rules we need 2450 * two runs: first one clears reference flags, 2451 * then pf_purge_expired_states() doesn't 2452 * raise them, and then second run frees. 2453 */ 2454 pf_purge_unlinked_rules(); 2455 pfi_kkif_purge(); 2456 2457 /* 2458 * Now purge everything. 2459 */ 2460 pf_purge_expired_states(0, V_pf_hashmask); 2461 pf_purge_fragments(UINT_MAX); 2462 pf_purge_expired_src_nodes(); 2463 2464 /* 2465 * Now all kifs & rules should be unreferenced, 2466 * thus should be successfully freed. 2467 */ 2468 pf_purge_unlinked_rules(); 2469 pfi_kkif_purge(); 2470 } 2471 2472 u_int32_t 2473 pf_state_expires(const struct pf_kstate *state) 2474 { 2475 u_int32_t timeout; 2476 u_int32_t start; 2477 u_int32_t end; 2478 u_int32_t states; 2479 2480 /* handle all PFTM_* > PFTM_MAX here */ 2481 if (state->timeout == PFTM_PURGE) 2482 return (time_uptime); 2483 KASSERT(state->timeout != PFTM_UNLINKED, 2484 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2485 KASSERT((state->timeout < PFTM_MAX), 2486 ("pf_state_expires: timeout > PFTM_MAX")); 2487 timeout = state->rule.ptr->timeout[state->timeout]; 2488 if (!timeout) 2489 timeout = V_pf_default_rule.timeout[state->timeout]; 2490 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2491 if (start && state->rule.ptr != &V_pf_default_rule) { 2492 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2493 states = counter_u64_fetch(state->rule.ptr->states_cur); 2494 } else { 2495 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2496 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2497 states = V_pf_status.states; 2498 } 2499 if (end && states > start && start < end) { 2500 if (states < end) { 2501 timeout = (u_int64_t)timeout * (end - states) / 2502 (end - start); 2503 return ((state->expire / 1000) + timeout); 2504 } 2505 else 2506 return (time_uptime); 2507 } 2508 return ((state->expire / 1000) + timeout); 2509 } 2510 2511 void 2512 pf_purge_expired_src_nodes(void) 2513 { 2514 struct pf_ksrc_node_list freelist; 2515 struct pf_srchash *sh; 2516 struct pf_ksrc_node *cur, *next; 2517 int i; 2518 2519 LIST_INIT(&freelist); 2520 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2521 PF_HASHROW_LOCK(sh); 2522 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2523 if (cur->states == 0 && cur->expire <= time_uptime) { 2524 pf_unlink_src_node(cur); 2525 LIST_INSERT_HEAD(&freelist, cur, entry); 2526 } else if (cur->rule.ptr != NULL) 2527 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2528 PF_HASHROW_UNLOCK(sh); 2529 } 2530 2531 pf_free_src_nodes(&freelist); 2532 2533 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2534 } 2535 2536 static void 2537 pf_src_tree_remove_state(struct pf_kstate *s) 2538 { 2539 struct pf_ksrc_node *sn; 2540 uint32_t timeout; 2541 2542 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2543 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2544 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2545 2546 if (s->src_node != NULL) { 2547 sn = s->src_node; 2548 PF_SRC_NODE_LOCK(sn); 2549 if (s->src.tcp_est) 2550 --sn->conn; 2551 if (--sn->states == 0) 2552 sn->expire = time_uptime + timeout; 2553 PF_SRC_NODE_UNLOCK(sn); 2554 } 2555 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2556 sn = s->nat_src_node; 2557 PF_SRC_NODE_LOCK(sn); 2558 if (--sn->states == 0) 2559 sn->expire = time_uptime + timeout; 2560 PF_SRC_NODE_UNLOCK(sn); 2561 } 2562 s->src_node = s->nat_src_node = NULL; 2563 } 2564 2565 /* 2566 * Unlink and potentilly free a state. Function may be 2567 * called with ID hash row locked, but always returns 2568 * unlocked, since it needs to go through key hash locking. 2569 */ 2570 int 2571 pf_unlink_state(struct pf_kstate *s) 2572 { 2573 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2574 2575 NET_EPOCH_ASSERT(); 2576 PF_HASHROW_ASSERT(ih); 2577 2578 if (s->timeout == PFTM_UNLINKED) { 2579 /* 2580 * State is being processed 2581 * by pf_unlink_state() in 2582 * an other thread. 2583 */ 2584 PF_HASHROW_UNLOCK(ih); 2585 return (0); /* XXXGL: undefined actually */ 2586 } 2587 2588 if (s->src.state == PF_TCPS_PROXY_DST) { 2589 /* XXX wire key the right one? */ 2590 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2591 &s->key[PF_SK_WIRE]->addr[1], 2592 &s->key[PF_SK_WIRE]->addr[0], 2593 s->key[PF_SK_WIRE]->port[1], 2594 s->key[PF_SK_WIRE]->port[0], 2595 s->src.seqhi, s->src.seqlo + 1, 2596 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2597 } 2598 2599 LIST_REMOVE(s, entry); 2600 pf_src_tree_remove_state(s); 2601 2602 if (V_pfsync_delete_state_ptr != NULL) 2603 V_pfsync_delete_state_ptr(s); 2604 2605 STATE_DEC_COUNTERS(s); 2606 2607 s->timeout = PFTM_UNLINKED; 2608 2609 /* Ensure we remove it from the list of halfopen states, if needed. */ 2610 if (s->key[PF_SK_STACK] != NULL && 2611 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2612 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2613 2614 PF_HASHROW_UNLOCK(ih); 2615 2616 pf_detach_state(s); 2617 2618 pf_udp_mapping_release(s->udp_mapping); 2619 2620 /* pf_state_insert() initialises refs to 2 */ 2621 return (pf_release_staten(s, 2)); 2622 } 2623 2624 struct pf_kstate * 2625 pf_alloc_state(int flags) 2626 { 2627 2628 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2629 } 2630 2631 void 2632 pf_free_state(struct pf_kstate *cur) 2633 { 2634 struct pf_krule_item *ri; 2635 2636 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2637 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2638 cur->timeout)); 2639 2640 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2641 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2642 free(ri, M_PF_RULE_ITEM); 2643 } 2644 2645 pf_normalize_tcp_cleanup(cur); 2646 uma_zfree(V_pf_state_z, cur); 2647 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2648 } 2649 2650 /* 2651 * Called only from pf_purge_thread(), thus serialized. 2652 */ 2653 static u_int 2654 pf_purge_expired_states(u_int i, int maxcheck) 2655 { 2656 struct pf_idhash *ih; 2657 struct pf_kstate *s; 2658 struct pf_krule_item *mrm; 2659 size_t count __unused; 2660 2661 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2662 2663 /* 2664 * Go through hash and unlink states that expire now. 2665 */ 2666 while (maxcheck > 0) { 2667 count = 0; 2668 ih = &V_pf_idhash[i]; 2669 2670 /* only take the lock if we expect to do work */ 2671 if (!LIST_EMPTY(&ih->states)) { 2672 relock: 2673 PF_HASHROW_LOCK(ih); 2674 LIST_FOREACH(s, &ih->states, entry) { 2675 if (pf_state_expires(s) <= time_uptime) { 2676 V_pf_status.states -= 2677 pf_unlink_state(s); 2678 goto relock; 2679 } 2680 s->rule.ptr->rule_ref |= PFRULE_REFS; 2681 if (s->nat_rule.ptr != NULL) 2682 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2683 if (s->anchor.ptr != NULL) 2684 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2685 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2686 SLIST_FOREACH(mrm, &s->match_rules, entry) 2687 mrm->r->rule_ref |= PFRULE_REFS; 2688 if (s->rt_kif) 2689 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2690 count++; 2691 } 2692 PF_HASHROW_UNLOCK(ih); 2693 } 2694 2695 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2696 2697 /* Return when we hit end of hash. */ 2698 if (++i > V_pf_hashmask) { 2699 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2700 return (0); 2701 } 2702 2703 maxcheck--; 2704 } 2705 2706 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2707 2708 return (i); 2709 } 2710 2711 static void 2712 pf_purge_unlinked_rules(void) 2713 { 2714 struct pf_krulequeue tmpq; 2715 struct pf_krule *r, *r1; 2716 2717 /* 2718 * If we have overloading task pending, then we'd 2719 * better skip purging this time. There is a tiny 2720 * probability that overloading task references 2721 * an already unlinked rule. 2722 */ 2723 PF_OVERLOADQ_LOCK(); 2724 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2725 PF_OVERLOADQ_UNLOCK(); 2726 return; 2727 } 2728 PF_OVERLOADQ_UNLOCK(); 2729 2730 /* 2731 * Do naive mark-and-sweep garbage collecting of old rules. 2732 * Reference flag is raised by pf_purge_expired_states() 2733 * and pf_purge_expired_src_nodes(). 2734 * 2735 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2736 * use a temporary queue. 2737 */ 2738 TAILQ_INIT(&tmpq); 2739 PF_UNLNKDRULES_LOCK(); 2740 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2741 if (!(r->rule_ref & PFRULE_REFS)) { 2742 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2743 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2744 } else 2745 r->rule_ref &= ~PFRULE_REFS; 2746 } 2747 PF_UNLNKDRULES_UNLOCK(); 2748 2749 if (!TAILQ_EMPTY(&tmpq)) { 2750 PF_CONFIG_LOCK(); 2751 PF_RULES_WLOCK(); 2752 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2753 TAILQ_REMOVE(&tmpq, r, entries); 2754 pf_free_rule(r); 2755 } 2756 PF_RULES_WUNLOCK(); 2757 PF_CONFIG_UNLOCK(); 2758 } 2759 } 2760 2761 void 2762 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2763 { 2764 switch (af) { 2765 #ifdef INET 2766 case AF_INET: { 2767 u_int32_t a = ntohl(addr->addr32[0]); 2768 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2769 (a>>8)&255, a&255); 2770 if (p) { 2771 p = ntohs(p); 2772 printf(":%u", p); 2773 } 2774 break; 2775 } 2776 #endif /* INET */ 2777 #ifdef INET6 2778 case AF_INET6: { 2779 u_int16_t b; 2780 u_int8_t i, curstart, curend, maxstart, maxend; 2781 curstart = curend = maxstart = maxend = 255; 2782 for (i = 0; i < 8; i++) { 2783 if (!addr->addr16[i]) { 2784 if (curstart == 255) 2785 curstart = i; 2786 curend = i; 2787 } else { 2788 if ((curend - curstart) > 2789 (maxend - maxstart)) { 2790 maxstart = curstart; 2791 maxend = curend; 2792 } 2793 curstart = curend = 255; 2794 } 2795 } 2796 if ((curend - curstart) > 2797 (maxend - maxstart)) { 2798 maxstart = curstart; 2799 maxend = curend; 2800 } 2801 for (i = 0; i < 8; i++) { 2802 if (i >= maxstart && i <= maxend) { 2803 if (i == 0) 2804 printf(":"); 2805 if (i == maxend) 2806 printf(":"); 2807 } else { 2808 b = ntohs(addr->addr16[i]); 2809 printf("%x", b); 2810 if (i < 7) 2811 printf(":"); 2812 } 2813 } 2814 if (p) { 2815 p = ntohs(p); 2816 printf("[%u]", p); 2817 } 2818 break; 2819 } 2820 #endif /* INET6 */ 2821 } 2822 } 2823 2824 void 2825 pf_print_state(struct pf_kstate *s) 2826 { 2827 pf_print_state_parts(s, NULL, NULL); 2828 } 2829 2830 static void 2831 pf_print_state_parts(struct pf_kstate *s, 2832 struct pf_state_key *skwp, struct pf_state_key *sksp) 2833 { 2834 struct pf_state_key *skw, *sks; 2835 u_int8_t proto, dir; 2836 2837 /* Do our best to fill these, but they're skipped if NULL */ 2838 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2839 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2840 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2841 dir = s ? s->direction : 0; 2842 2843 switch (proto) { 2844 case IPPROTO_IPV4: 2845 printf("IPv4"); 2846 break; 2847 case IPPROTO_IPV6: 2848 printf("IPv6"); 2849 break; 2850 case IPPROTO_TCP: 2851 printf("TCP"); 2852 break; 2853 case IPPROTO_UDP: 2854 printf("UDP"); 2855 break; 2856 case IPPROTO_ICMP: 2857 printf("ICMP"); 2858 break; 2859 case IPPROTO_ICMPV6: 2860 printf("ICMPv6"); 2861 break; 2862 default: 2863 printf("%u", proto); 2864 break; 2865 } 2866 switch (dir) { 2867 case PF_IN: 2868 printf(" in"); 2869 break; 2870 case PF_OUT: 2871 printf(" out"); 2872 break; 2873 } 2874 if (skw) { 2875 printf(" wire: "); 2876 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2877 printf(" "); 2878 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2879 } 2880 if (sks) { 2881 printf(" stack: "); 2882 if (sks != skw) { 2883 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2884 printf(" "); 2885 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2886 } else 2887 printf("-"); 2888 } 2889 if (s) { 2890 if (proto == IPPROTO_TCP) { 2891 printf(" [lo=%u high=%u win=%u modulator=%u", 2892 s->src.seqlo, s->src.seqhi, 2893 s->src.max_win, s->src.seqdiff); 2894 if (s->src.wscale && s->dst.wscale) 2895 printf(" wscale=%u", 2896 s->src.wscale & PF_WSCALE_MASK); 2897 printf("]"); 2898 printf(" [lo=%u high=%u win=%u modulator=%u", 2899 s->dst.seqlo, s->dst.seqhi, 2900 s->dst.max_win, s->dst.seqdiff); 2901 if (s->src.wscale && s->dst.wscale) 2902 printf(" wscale=%u", 2903 s->dst.wscale & PF_WSCALE_MASK); 2904 printf("]"); 2905 } 2906 printf(" %u:%u", s->src.state, s->dst.state); 2907 if (s->rule.ptr) 2908 printf(" @%d", s->rule.ptr->nr); 2909 } 2910 } 2911 2912 void 2913 pf_print_flags(u_int8_t f) 2914 { 2915 if (f) 2916 printf(" "); 2917 if (f & TH_FIN) 2918 printf("F"); 2919 if (f & TH_SYN) 2920 printf("S"); 2921 if (f & TH_RST) 2922 printf("R"); 2923 if (f & TH_PUSH) 2924 printf("P"); 2925 if (f & TH_ACK) 2926 printf("A"); 2927 if (f & TH_URG) 2928 printf("U"); 2929 if (f & TH_ECE) 2930 printf("E"); 2931 if (f & TH_CWR) 2932 printf("W"); 2933 } 2934 2935 #define PF_SET_SKIP_STEPS(i) \ 2936 do { \ 2937 while (head[i] != cur) { \ 2938 head[i]->skip[i].ptr = cur; \ 2939 head[i] = TAILQ_NEXT(head[i], entries); \ 2940 } \ 2941 } while (0) 2942 2943 void 2944 pf_calc_skip_steps(struct pf_krulequeue *rules) 2945 { 2946 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2947 int i; 2948 2949 cur = TAILQ_FIRST(rules); 2950 prev = cur; 2951 for (i = 0; i < PF_SKIP_COUNT; ++i) 2952 head[i] = cur; 2953 while (cur != NULL) { 2954 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2955 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2956 if (cur->direction != prev->direction) 2957 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2958 if (cur->af != prev->af) 2959 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2960 if (cur->proto != prev->proto) 2961 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2962 if (cur->src.neg != prev->src.neg || 2963 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2964 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2965 if (cur->src.port[0] != prev->src.port[0] || 2966 cur->src.port[1] != prev->src.port[1] || 2967 cur->src.port_op != prev->src.port_op) 2968 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2969 if (cur->dst.neg != prev->dst.neg || 2970 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2971 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2972 if (cur->dst.port[0] != prev->dst.port[0] || 2973 cur->dst.port[1] != prev->dst.port[1] || 2974 cur->dst.port_op != prev->dst.port_op) 2975 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2976 2977 prev = cur; 2978 cur = TAILQ_NEXT(cur, entries); 2979 } 2980 for (i = 0; i < PF_SKIP_COUNT; ++i) 2981 PF_SET_SKIP_STEPS(i); 2982 } 2983 2984 int 2985 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2986 { 2987 if (aw1->type != aw2->type) 2988 return (1); 2989 switch (aw1->type) { 2990 case PF_ADDR_ADDRMASK: 2991 case PF_ADDR_RANGE: 2992 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2993 return (1); 2994 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2995 return (1); 2996 return (0); 2997 case PF_ADDR_DYNIFTL: 2998 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2999 case PF_ADDR_NOROUTE: 3000 case PF_ADDR_URPFFAILED: 3001 return (0); 3002 case PF_ADDR_TABLE: 3003 return (aw1->p.tbl != aw2->p.tbl); 3004 default: 3005 printf("invalid address type: %d\n", aw1->type); 3006 return (1); 3007 } 3008 } 3009 3010 /** 3011 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3012 * header isn't always a full checksum. In some cases (i.e. output) it's a 3013 * pseudo-header checksum, which is a partial checksum over src/dst IP 3014 * addresses, protocol number and length. 3015 * 3016 * That means we have the following cases: 3017 * * Input or forwarding: we don't have TSO, the checksum fields are full 3018 * checksums, we need to update the checksum whenever we change anything. 3019 * * Output (i.e. the checksum is a pseudo-header checksum): 3020 * x The field being updated is src/dst address or affects the length of 3021 * the packet. We need to update the pseudo-header checksum (note that this 3022 * checksum is not ones' complement). 3023 * x Some other field is being modified (e.g. src/dst port numbers): We 3024 * don't have to update anything. 3025 **/ 3026 u_int16_t 3027 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3028 { 3029 u_int32_t x; 3030 3031 x = cksum + old - new; 3032 x = (x + (x >> 16)) & 0xffff; 3033 3034 /* optimise: eliminate a branch when not udp */ 3035 if (udp && cksum == 0x0000) 3036 return cksum; 3037 if (udp && x == 0x0000) 3038 x = 0xffff; 3039 3040 return (u_int16_t)(x); 3041 } 3042 3043 static void 3044 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 3045 u_int8_t udp) 3046 { 3047 u_int16_t old = htons(hi ? (*f << 8) : *f); 3048 u_int16_t new = htons(hi ? ( v << 8) : v); 3049 3050 if (*f == v) 3051 return; 3052 3053 *f = v; 3054 3055 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3056 return; 3057 3058 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 3059 } 3060 3061 void 3062 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 3063 bool hi, u_int8_t udp) 3064 { 3065 u_int8_t *fb = (u_int8_t *)f; 3066 u_int8_t *vb = (u_int8_t *)&v; 3067 3068 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3069 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3070 } 3071 3072 void 3073 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 3074 bool hi, u_int8_t udp) 3075 { 3076 u_int8_t *fb = (u_int8_t *)f; 3077 u_int8_t *vb = (u_int8_t *)&v; 3078 3079 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3080 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3081 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 3082 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 3083 } 3084 3085 u_int16_t 3086 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3087 u_int16_t new, u_int8_t udp) 3088 { 3089 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3090 return (cksum); 3091 3092 return (pf_cksum_fixup(cksum, old, new, udp)); 3093 } 3094 3095 static void 3096 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 3097 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 3098 sa_family_t af) 3099 { 3100 struct pf_addr ao; 3101 u_int16_t po = *p; 3102 3103 PF_ACPY(&ao, a, af); 3104 PF_ACPY(a, an, af); 3105 3106 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3107 *pc = ~*pc; 3108 3109 *p = pn; 3110 3111 switch (af) { 3112 #ifdef INET 3113 case AF_INET: 3114 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3115 ao.addr16[0], an->addr16[0], 0), 3116 ao.addr16[1], an->addr16[1], 0); 3117 *p = pn; 3118 3119 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 3120 ao.addr16[0], an->addr16[0], u), 3121 ao.addr16[1], an->addr16[1], u); 3122 3123 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3124 break; 3125 #endif /* INET */ 3126 #ifdef INET6 3127 case AF_INET6: 3128 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3129 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3130 pf_cksum_fixup(pf_cksum_fixup(*pc, 3131 ao.addr16[0], an->addr16[0], u), 3132 ao.addr16[1], an->addr16[1], u), 3133 ao.addr16[2], an->addr16[2], u), 3134 ao.addr16[3], an->addr16[3], u), 3135 ao.addr16[4], an->addr16[4], u), 3136 ao.addr16[5], an->addr16[5], u), 3137 ao.addr16[6], an->addr16[6], u), 3138 ao.addr16[7], an->addr16[7], u); 3139 3140 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 3141 break; 3142 #endif /* INET6 */ 3143 } 3144 3145 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3146 CSUM_DELAY_DATA_IPV6)) { 3147 *pc = ~*pc; 3148 if (! *pc) 3149 *pc = 0xffff; 3150 } 3151 } 3152 3153 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3154 void 3155 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3156 { 3157 u_int32_t ao; 3158 3159 memcpy(&ao, a, sizeof(ao)); 3160 memcpy(a, &an, sizeof(u_int32_t)); 3161 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3162 ao % 65536, an % 65536, u); 3163 } 3164 3165 void 3166 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3167 { 3168 u_int32_t ao; 3169 3170 memcpy(&ao, a, sizeof(ao)); 3171 memcpy(a, &an, sizeof(u_int32_t)); 3172 3173 *c = pf_proto_cksum_fixup(m, 3174 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3175 ao % 65536, an % 65536, udp); 3176 } 3177 3178 #ifdef INET6 3179 static void 3180 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3181 { 3182 struct pf_addr ao; 3183 3184 PF_ACPY(&ao, a, AF_INET6); 3185 PF_ACPY(a, an, AF_INET6); 3186 3187 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3188 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3189 pf_cksum_fixup(pf_cksum_fixup(*c, 3190 ao.addr16[0], an->addr16[0], u), 3191 ao.addr16[1], an->addr16[1], u), 3192 ao.addr16[2], an->addr16[2], u), 3193 ao.addr16[3], an->addr16[3], u), 3194 ao.addr16[4], an->addr16[4], u), 3195 ao.addr16[5], an->addr16[5], u), 3196 ao.addr16[6], an->addr16[6], u), 3197 ao.addr16[7], an->addr16[7], u); 3198 } 3199 #endif /* INET6 */ 3200 3201 static void 3202 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3203 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3204 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3205 { 3206 struct pf_addr oia, ooa; 3207 3208 PF_ACPY(&oia, ia, af); 3209 if (oa) 3210 PF_ACPY(&ooa, oa, af); 3211 3212 /* Change inner protocol port, fix inner protocol checksum. */ 3213 if (ip != NULL) { 3214 u_int16_t oip = *ip; 3215 u_int32_t opc; 3216 3217 if (pc != NULL) 3218 opc = *pc; 3219 *ip = np; 3220 if (pc != NULL) 3221 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3222 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3223 if (pc != NULL) 3224 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3225 } 3226 /* Change inner ip address, fix inner ip and icmp checksums. */ 3227 PF_ACPY(ia, na, af); 3228 switch (af) { 3229 #ifdef INET 3230 case AF_INET: { 3231 u_int32_t oh2c = *h2c; 3232 3233 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3234 oia.addr16[0], ia->addr16[0], 0), 3235 oia.addr16[1], ia->addr16[1], 0); 3236 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3237 oia.addr16[0], ia->addr16[0], 0), 3238 oia.addr16[1], ia->addr16[1], 0); 3239 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3240 break; 3241 } 3242 #endif /* INET */ 3243 #ifdef INET6 3244 case AF_INET6: 3245 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3246 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3247 pf_cksum_fixup(pf_cksum_fixup(*ic, 3248 oia.addr16[0], ia->addr16[0], u), 3249 oia.addr16[1], ia->addr16[1], u), 3250 oia.addr16[2], ia->addr16[2], u), 3251 oia.addr16[3], ia->addr16[3], u), 3252 oia.addr16[4], ia->addr16[4], u), 3253 oia.addr16[5], ia->addr16[5], u), 3254 oia.addr16[6], ia->addr16[6], u), 3255 oia.addr16[7], ia->addr16[7], u); 3256 break; 3257 #endif /* INET6 */ 3258 } 3259 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3260 if (oa) { 3261 PF_ACPY(oa, na, af); 3262 switch (af) { 3263 #ifdef INET 3264 case AF_INET: 3265 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3266 ooa.addr16[0], oa->addr16[0], 0), 3267 ooa.addr16[1], oa->addr16[1], 0); 3268 break; 3269 #endif /* INET */ 3270 #ifdef INET6 3271 case AF_INET6: 3272 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3273 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3274 pf_cksum_fixup(pf_cksum_fixup(*ic, 3275 ooa.addr16[0], oa->addr16[0], u), 3276 ooa.addr16[1], oa->addr16[1], u), 3277 ooa.addr16[2], oa->addr16[2], u), 3278 ooa.addr16[3], oa->addr16[3], u), 3279 ooa.addr16[4], oa->addr16[4], u), 3280 ooa.addr16[5], oa->addr16[5], u), 3281 ooa.addr16[6], oa->addr16[6], u), 3282 ooa.addr16[7], oa->addr16[7], u); 3283 break; 3284 #endif /* INET6 */ 3285 } 3286 } 3287 } 3288 3289 /* 3290 * Need to modulate the sequence numbers in the TCP SACK option 3291 * (credits to Krzysztof Pfaff for report and patch) 3292 */ 3293 static int 3294 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 3295 struct tcphdr *th, struct pf_state_peer *dst) 3296 { 3297 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3298 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3299 int copyback = 0, i, olen; 3300 struct sackblk sack; 3301 3302 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3303 if (hlen < TCPOLEN_SACKLEN || 3304 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3305 return 0; 3306 3307 while (hlen >= TCPOLEN_SACKLEN) { 3308 size_t startoff = opt - opts; 3309 olen = opt[1]; 3310 switch (*opt) { 3311 case TCPOPT_EOL: /* FALLTHROUGH */ 3312 case TCPOPT_NOP: 3313 opt++; 3314 hlen--; 3315 break; 3316 case TCPOPT_SACK: 3317 if (olen > hlen) 3318 olen = hlen; 3319 if (olen >= TCPOLEN_SACKLEN) { 3320 for (i = 2; i + TCPOLEN_SACK <= olen; 3321 i += TCPOLEN_SACK) { 3322 memcpy(&sack, &opt[i], sizeof(sack)); 3323 pf_patch_32_unaligned(m, 3324 &th->th_sum, &sack.start, 3325 htonl(ntohl(sack.start) - dst->seqdiff), 3326 PF_ALGNMNT(startoff), 3327 0); 3328 pf_patch_32_unaligned(m, &th->th_sum, 3329 &sack.end, 3330 htonl(ntohl(sack.end) - dst->seqdiff), 3331 PF_ALGNMNT(startoff), 3332 0); 3333 memcpy(&opt[i], &sack, sizeof(sack)); 3334 } 3335 copyback = 1; 3336 } 3337 /* FALLTHROUGH */ 3338 default: 3339 if (olen < 2) 3340 olen = 2; 3341 hlen -= olen; 3342 opt += olen; 3343 } 3344 } 3345 3346 if (copyback) 3347 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 3348 return (copyback); 3349 } 3350 3351 struct mbuf * 3352 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3353 const struct pf_addr *saddr, const struct pf_addr *daddr, 3354 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3355 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3356 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3357 { 3358 struct mbuf *m; 3359 int len, tlen; 3360 #ifdef INET 3361 struct ip *h = NULL; 3362 #endif /* INET */ 3363 #ifdef INET6 3364 struct ip6_hdr *h6 = NULL; 3365 #endif /* INET6 */ 3366 struct tcphdr *th; 3367 char *opt; 3368 struct pf_mtag *pf_mtag; 3369 3370 len = 0; 3371 th = NULL; 3372 3373 /* maximum segment size tcp option */ 3374 tlen = sizeof(struct tcphdr); 3375 if (mss) 3376 tlen += 4; 3377 3378 switch (af) { 3379 #ifdef INET 3380 case AF_INET: 3381 len = sizeof(struct ip) + tlen; 3382 break; 3383 #endif /* INET */ 3384 #ifdef INET6 3385 case AF_INET6: 3386 len = sizeof(struct ip6_hdr) + tlen; 3387 break; 3388 #endif /* INET6 */ 3389 default: 3390 panic("%s: unsupported af %d", __func__, af); 3391 } 3392 3393 m = m_gethdr(M_NOWAIT, MT_DATA); 3394 if (m == NULL) 3395 return (NULL); 3396 3397 #ifdef MAC 3398 mac_netinet_firewall_send(m); 3399 #endif 3400 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 3401 m_freem(m); 3402 return (NULL); 3403 } 3404 if (skip_firewall) 3405 m->m_flags |= M_SKIP_FIREWALL; 3406 pf_mtag->tag = mtag_tag; 3407 pf_mtag->flags = mtag_flags; 3408 3409 if (rtableid >= 0) 3410 M_SETFIB(m, rtableid); 3411 3412 #ifdef ALTQ 3413 if (r != NULL && r->qid) { 3414 pf_mtag->qid = r->qid; 3415 3416 /* add hints for ecn */ 3417 pf_mtag->hdr = mtod(m, struct ip *); 3418 } 3419 #endif /* ALTQ */ 3420 m->m_data += max_linkhdr; 3421 m->m_pkthdr.len = m->m_len = len; 3422 /* The rest of the stack assumes a rcvif, so provide one. 3423 * This is a locally generated packet, so .. close enough. */ 3424 m->m_pkthdr.rcvif = V_loif; 3425 bzero(m->m_data, len); 3426 switch (af) { 3427 #ifdef INET 3428 case AF_INET: 3429 h = mtod(m, struct ip *); 3430 3431 /* IP header fields included in the TCP checksum */ 3432 h->ip_p = IPPROTO_TCP; 3433 h->ip_len = htons(tlen); 3434 h->ip_src.s_addr = saddr->v4.s_addr; 3435 h->ip_dst.s_addr = daddr->v4.s_addr; 3436 3437 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3438 break; 3439 #endif /* INET */ 3440 #ifdef INET6 3441 case AF_INET6: 3442 h6 = mtod(m, struct ip6_hdr *); 3443 3444 /* IP header fields included in the TCP checksum */ 3445 h6->ip6_nxt = IPPROTO_TCP; 3446 h6->ip6_plen = htons(tlen); 3447 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3448 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3449 3450 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3451 break; 3452 #endif /* INET6 */ 3453 } 3454 3455 /* TCP header */ 3456 th->th_sport = sport; 3457 th->th_dport = dport; 3458 th->th_seq = htonl(seq); 3459 th->th_ack = htonl(ack); 3460 th->th_off = tlen >> 2; 3461 th->th_flags = tcp_flags; 3462 th->th_win = htons(win); 3463 3464 if (mss) { 3465 opt = (char *)(th + 1); 3466 opt[0] = TCPOPT_MAXSEG; 3467 opt[1] = 4; 3468 HTONS(mss); 3469 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3470 } 3471 3472 switch (af) { 3473 #ifdef INET 3474 case AF_INET: 3475 /* TCP checksum */ 3476 th->th_sum = in_cksum(m, len); 3477 3478 /* Finish the IP header */ 3479 h->ip_v = 4; 3480 h->ip_hl = sizeof(*h) >> 2; 3481 h->ip_tos = IPTOS_LOWDELAY; 3482 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3483 h->ip_len = htons(len); 3484 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3485 h->ip_sum = 0; 3486 break; 3487 #endif /* INET */ 3488 #ifdef INET6 3489 case AF_INET6: 3490 /* TCP checksum */ 3491 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3492 sizeof(struct ip6_hdr), tlen); 3493 3494 h6->ip6_vfc |= IPV6_VERSION; 3495 h6->ip6_hlim = IPV6_DEFHLIM; 3496 break; 3497 #endif /* INET6 */ 3498 } 3499 3500 return (m); 3501 } 3502 3503 static void 3504 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3505 uint8_t ttl, int rtableid) 3506 { 3507 struct mbuf *m; 3508 #ifdef INET 3509 struct ip *h = NULL; 3510 #endif /* INET */ 3511 #ifdef INET6 3512 struct ip6_hdr *h6 = NULL; 3513 #endif /* INET6 */ 3514 struct sctphdr *hdr; 3515 struct sctp_chunkhdr *chunk; 3516 struct pf_send_entry *pfse; 3517 int off = 0; 3518 3519 MPASS(af == pd->af); 3520 3521 m = m_gethdr(M_NOWAIT, MT_DATA); 3522 if (m == NULL) 3523 return; 3524 3525 m->m_data += max_linkhdr; 3526 m->m_flags |= M_SKIP_FIREWALL; 3527 /* The rest of the stack assumes a rcvif, so provide one. 3528 * This is a locally generated packet, so .. close enough. */ 3529 m->m_pkthdr.rcvif = V_loif; 3530 3531 /* IPv4|6 header */ 3532 switch (af) { 3533 #ifdef INET 3534 case AF_INET: 3535 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3536 3537 h = mtod(m, struct ip *); 3538 3539 /* IP header fields included in the TCP checksum */ 3540 3541 h->ip_p = IPPROTO_SCTP; 3542 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3543 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3544 h->ip_src = pd->dst->v4; 3545 h->ip_dst = pd->src->v4; 3546 3547 off += sizeof(struct ip); 3548 break; 3549 #endif /* INET */ 3550 #ifdef INET6 3551 case AF_INET6: 3552 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3553 3554 h6 = mtod(m, struct ip6_hdr *); 3555 3556 /* IP header fields included in the TCP checksum */ 3557 h6->ip6_vfc |= IPV6_VERSION; 3558 h6->ip6_nxt = IPPROTO_SCTP; 3559 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3560 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3561 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3562 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3563 3564 off += sizeof(struct ip6_hdr); 3565 break; 3566 #endif /* INET6 */ 3567 } 3568 3569 /* SCTP header */ 3570 hdr = mtodo(m, off); 3571 3572 hdr->src_port = pd->hdr.sctp.dest_port; 3573 hdr->dest_port = pd->hdr.sctp.src_port; 3574 hdr->v_tag = pd->sctp_initiate_tag; 3575 hdr->checksum = 0; 3576 3577 /* Abort chunk. */ 3578 off += sizeof(struct sctphdr); 3579 chunk = mtodo(m, off); 3580 3581 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3582 chunk->chunk_length = htons(sizeof(*chunk)); 3583 3584 /* SCTP checksum */ 3585 off += sizeof(*chunk); 3586 m->m_pkthdr.len = m->m_len = off; 3587 3588 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3589 3590 if (rtableid >= 0) 3591 M_SETFIB(m, rtableid); 3592 3593 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3594 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3595 if (pfse == NULL) { 3596 m_freem(m); 3597 return; 3598 } 3599 3600 switch (af) { 3601 #ifdef INET 3602 case AF_INET: 3603 pfse->pfse_type = PFSE_IP; 3604 break; 3605 #endif /* INET */ 3606 #ifdef INET6 3607 case AF_INET6: 3608 pfse->pfse_type = PFSE_IP6; 3609 break; 3610 #endif /* INET6 */ 3611 } 3612 3613 pfse->pfse_m = m; 3614 pf_send(pfse); 3615 } 3616 3617 void 3618 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3619 const struct pf_addr *saddr, const struct pf_addr *daddr, 3620 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3621 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3622 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3623 { 3624 struct pf_send_entry *pfse; 3625 struct mbuf *m; 3626 3627 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3628 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3629 if (m == NULL) 3630 return; 3631 3632 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3633 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3634 if (pfse == NULL) { 3635 m_freem(m); 3636 return; 3637 } 3638 3639 switch (af) { 3640 #ifdef INET 3641 case AF_INET: 3642 pfse->pfse_type = PFSE_IP; 3643 break; 3644 #endif /* INET */ 3645 #ifdef INET6 3646 case AF_INET6: 3647 pfse->pfse_type = PFSE_IP6; 3648 break; 3649 #endif /* INET6 */ 3650 } 3651 3652 pfse->pfse_m = m; 3653 pf_send(pfse); 3654 } 3655 3656 static void 3657 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3658 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3659 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3660 u_short *reason, int rtableid) 3661 { 3662 struct pf_addr * const saddr = pd->src; 3663 struct pf_addr * const daddr = pd->dst; 3664 sa_family_t af = pd->af; 3665 3666 /* undo NAT changes, if they have taken place */ 3667 if (nr != NULL) { 3668 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3669 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3670 if (pd->sport) 3671 *pd->sport = sk->port[pd->sidx]; 3672 if (pd->dport) 3673 *pd->dport = sk->port[pd->didx]; 3674 if (pd->proto_sum) 3675 *pd->proto_sum = bproto_sum; 3676 if (pd->ip_sum) 3677 *pd->ip_sum = bip_sum; 3678 m_copyback(m, off, hdrlen, pd->hdr.any); 3679 } 3680 if (pd->proto == IPPROTO_TCP && 3681 ((r->rule_flag & PFRULE_RETURNRST) || 3682 (r->rule_flag & PFRULE_RETURN)) && 3683 !(th->th_flags & TH_RST)) { 3684 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3685 int len = 0; 3686 #ifdef INET 3687 struct ip *h4; 3688 #endif 3689 #ifdef INET6 3690 struct ip6_hdr *h6; 3691 #endif 3692 3693 switch (af) { 3694 #ifdef INET 3695 case AF_INET: 3696 h4 = mtod(m, struct ip *); 3697 len = ntohs(h4->ip_len) - off; 3698 break; 3699 #endif 3700 #ifdef INET6 3701 case AF_INET6: 3702 h6 = mtod(m, struct ip6_hdr *); 3703 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3704 break; 3705 #endif 3706 } 3707 3708 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3709 REASON_SET(reason, PFRES_PROTCKSUM); 3710 else { 3711 if (th->th_flags & TH_SYN) 3712 ack++; 3713 if (th->th_flags & TH_FIN) 3714 ack++; 3715 pf_send_tcp(r, af, pd->dst, 3716 pd->src, th->th_dport, th->th_sport, 3717 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3718 r->return_ttl, true, 0, 0, rtableid); 3719 } 3720 } else if (pd->proto == IPPROTO_SCTP && 3721 (r->rule_flag & PFRULE_RETURN)) { 3722 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3723 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3724 r->return_icmp) 3725 pf_send_icmp(m, r->return_icmp >> 8, 3726 r->return_icmp & 255, af, r, rtableid); 3727 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3728 r->return_icmp6) 3729 pf_send_icmp(m, r->return_icmp6 >> 8, 3730 r->return_icmp6 & 255, af, r, rtableid); 3731 } 3732 3733 static int 3734 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3735 { 3736 struct m_tag *mtag; 3737 u_int8_t mpcp; 3738 3739 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3740 if (mtag == NULL) 3741 return (0); 3742 3743 if (prio == PF_PRIO_ZERO) 3744 prio = 0; 3745 3746 mpcp = *(uint8_t *)(mtag + 1); 3747 3748 return (mpcp == prio); 3749 } 3750 3751 static int 3752 pf_icmp_to_bandlim(uint8_t type) 3753 { 3754 switch (type) { 3755 case ICMP_ECHO: 3756 case ICMP_ECHOREPLY: 3757 return (BANDLIM_ICMP_ECHO); 3758 case ICMP_TSTAMP: 3759 case ICMP_TSTAMPREPLY: 3760 return (BANDLIM_ICMP_TSTAMP); 3761 case ICMP_UNREACH: 3762 default: 3763 return (BANDLIM_ICMP_UNREACH); 3764 } 3765 } 3766 3767 static void 3768 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3769 struct pf_krule *r, int rtableid) 3770 { 3771 struct pf_send_entry *pfse; 3772 struct mbuf *m0; 3773 struct pf_mtag *pf_mtag; 3774 3775 /* ICMP packet rate limitation. */ 3776 #ifdef INET6 3777 if (af == AF_INET6) { 3778 if (icmp6_ratelimit(NULL, type, code)) 3779 return; 3780 } 3781 #endif 3782 #ifdef INET 3783 if (af == AF_INET) { 3784 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3785 return; 3786 } 3787 #endif 3788 3789 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3790 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3791 if (pfse == NULL) 3792 return; 3793 3794 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3795 free(pfse, M_PFTEMP); 3796 return; 3797 } 3798 3799 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3800 free(pfse, M_PFTEMP); 3801 return; 3802 } 3803 /* XXX: revisit */ 3804 m0->m_flags |= M_SKIP_FIREWALL; 3805 3806 if (rtableid >= 0) 3807 M_SETFIB(m0, rtableid); 3808 3809 #ifdef ALTQ 3810 if (r->qid) { 3811 pf_mtag->qid = r->qid; 3812 /* add hints for ecn */ 3813 pf_mtag->hdr = mtod(m0, struct ip *); 3814 } 3815 #endif /* ALTQ */ 3816 3817 switch (af) { 3818 #ifdef INET 3819 case AF_INET: 3820 pfse->pfse_type = PFSE_ICMP; 3821 break; 3822 #endif /* INET */ 3823 #ifdef INET6 3824 case AF_INET6: 3825 pfse->pfse_type = PFSE_ICMP6; 3826 break; 3827 #endif /* INET6 */ 3828 } 3829 pfse->pfse_m = m0; 3830 pfse->icmpopts.type = type; 3831 pfse->icmpopts.code = code; 3832 pf_send(pfse); 3833 } 3834 3835 /* 3836 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3837 * If n is 0, they match if they are equal. If n is != 0, they match if they 3838 * are different. 3839 */ 3840 int 3841 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3842 struct pf_addr *b, sa_family_t af) 3843 { 3844 int match = 0; 3845 3846 switch (af) { 3847 #ifdef INET 3848 case AF_INET: 3849 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3850 match++; 3851 break; 3852 #endif /* INET */ 3853 #ifdef INET6 3854 case AF_INET6: 3855 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3856 match++; 3857 break; 3858 #endif /* INET6 */ 3859 } 3860 if (match) { 3861 if (n) 3862 return (0); 3863 else 3864 return (1); 3865 } else { 3866 if (n) 3867 return (1); 3868 else 3869 return (0); 3870 } 3871 } 3872 3873 /* 3874 * Return 1 if b <= a <= e, otherwise return 0. 3875 */ 3876 int 3877 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3878 struct pf_addr *a, sa_family_t af) 3879 { 3880 switch (af) { 3881 #ifdef INET 3882 case AF_INET: 3883 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3884 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3885 return (0); 3886 break; 3887 #endif /* INET */ 3888 #ifdef INET6 3889 case AF_INET6: { 3890 int i; 3891 3892 /* check a >= b */ 3893 for (i = 0; i < 4; ++i) 3894 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3895 break; 3896 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3897 return (0); 3898 /* check a <= e */ 3899 for (i = 0; i < 4; ++i) 3900 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3901 break; 3902 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3903 return (0); 3904 break; 3905 } 3906 #endif /* INET6 */ 3907 } 3908 return (1); 3909 } 3910 3911 static int 3912 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3913 { 3914 switch (op) { 3915 case PF_OP_IRG: 3916 return ((p > a1) && (p < a2)); 3917 case PF_OP_XRG: 3918 return ((p < a1) || (p > a2)); 3919 case PF_OP_RRG: 3920 return ((p >= a1) && (p <= a2)); 3921 case PF_OP_EQ: 3922 return (p == a1); 3923 case PF_OP_NE: 3924 return (p != a1); 3925 case PF_OP_LT: 3926 return (p < a1); 3927 case PF_OP_LE: 3928 return (p <= a1); 3929 case PF_OP_GT: 3930 return (p > a1); 3931 case PF_OP_GE: 3932 return (p >= a1); 3933 } 3934 return (0); /* never reached */ 3935 } 3936 3937 int 3938 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3939 { 3940 NTOHS(a1); 3941 NTOHS(a2); 3942 NTOHS(p); 3943 return (pf_match(op, a1, a2, p)); 3944 } 3945 3946 static int 3947 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3948 { 3949 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3950 return (0); 3951 return (pf_match(op, a1, a2, u)); 3952 } 3953 3954 static int 3955 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3956 { 3957 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3958 return (0); 3959 return (pf_match(op, a1, a2, g)); 3960 } 3961 3962 int 3963 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3964 { 3965 if (*tag == -1) 3966 *tag = mtag; 3967 3968 return ((!r->match_tag_not && r->match_tag == *tag) || 3969 (r->match_tag_not && r->match_tag != *tag)); 3970 } 3971 3972 static int 3973 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 3974 { 3975 struct ifnet *ifp = m->m_pkthdr.rcvif; 3976 struct pfi_kkif *kif; 3977 3978 if (ifp == NULL) 3979 return (0); 3980 3981 kif = (struct pfi_kkif *)ifp->if_pf_kif; 3982 3983 if (kif == NULL) { 3984 DPFPRINTF(PF_DEBUG_URGENT, 3985 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr, 3986 r->rcv_ifname)); 3987 return (0); 3988 } 3989 3990 return (pfi_kkif_match(r->rcv_kif, kif)); 3991 } 3992 3993 int 3994 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3995 { 3996 3997 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3998 3999 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 4000 return (ENOMEM); 4001 4002 pd->pf_mtag->tag = tag; 4003 4004 return (0); 4005 } 4006 4007 #define PF_ANCHOR_STACKSIZE 32 4008 struct pf_kanchor_stackframe { 4009 struct pf_kruleset *rs; 4010 struct pf_krule *r; /* XXX: + match bit */ 4011 struct pf_kanchor *child; 4012 }; 4013 4014 /* 4015 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4016 */ 4017 #define PF_ANCHORSTACK_MATCH 0x00000001 4018 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4019 4020 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4021 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4022 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4023 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4024 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4025 } while (0) 4026 4027 void 4028 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4029 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4030 int *match) 4031 { 4032 struct pf_kanchor_stackframe *f; 4033 4034 PF_RULES_RASSERT(); 4035 4036 if (match) 4037 *match = 0; 4038 if (*depth >= PF_ANCHOR_STACKSIZE) { 4039 printf("%s: anchor stack overflow on %s\n", 4040 __func__, (*r)->anchor->name); 4041 *r = TAILQ_NEXT(*r, entries); 4042 return; 4043 } else if (*depth == 0 && a != NULL) 4044 *a = *r; 4045 f = stack + (*depth)++; 4046 f->rs = *rs; 4047 f->r = *r; 4048 if ((*r)->anchor_wildcard) { 4049 struct pf_kanchor_node *parent = &(*r)->anchor->children; 4050 4051 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 4052 *r = NULL; 4053 return; 4054 } 4055 *rs = &f->child->ruleset; 4056 } else { 4057 f->child = NULL; 4058 *rs = &(*r)->anchor->ruleset; 4059 } 4060 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4061 } 4062 4063 int 4064 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 4065 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 4066 int *match) 4067 { 4068 struct pf_kanchor_stackframe *f; 4069 struct pf_krule *fr; 4070 int quick = 0; 4071 4072 PF_RULES_RASSERT(); 4073 4074 do { 4075 if (*depth <= 0) 4076 break; 4077 f = stack + *depth - 1; 4078 fr = PF_ANCHOR_RULE(f); 4079 if (f->child != NULL) { 4080 /* 4081 * This block traverses through 4082 * a wildcard anchor. 4083 */ 4084 if (match != NULL && *match) { 4085 /* 4086 * If any of "*" matched, then 4087 * "foo/ *" matched, mark frame 4088 * appropriately. 4089 */ 4090 PF_ANCHOR_SET_MATCH(f); 4091 *match = 0; 4092 } 4093 f->child = RB_NEXT(pf_kanchor_node, 4094 &fr->anchor->children, f->child); 4095 if (f->child != NULL) { 4096 *rs = &f->child->ruleset; 4097 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 4098 if (*r == NULL) 4099 continue; 4100 else 4101 break; 4102 } 4103 } 4104 (*depth)--; 4105 if (*depth == 0 && a != NULL) 4106 *a = NULL; 4107 *rs = f->rs; 4108 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 4109 quick = fr->quick; 4110 *r = TAILQ_NEXT(fr, entries); 4111 } while (*r == NULL); 4112 4113 return (quick); 4114 } 4115 4116 struct pf_keth_anchor_stackframe { 4117 struct pf_keth_ruleset *rs; 4118 struct pf_keth_rule *r; /* XXX: + match bit */ 4119 struct pf_keth_anchor *child; 4120 }; 4121 4122 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4123 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4124 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4125 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4126 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4127 } while (0) 4128 4129 void 4130 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4131 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4132 struct pf_keth_rule **a, int *match) 4133 { 4134 struct pf_keth_anchor_stackframe *f; 4135 4136 NET_EPOCH_ASSERT(); 4137 4138 if (match) 4139 *match = 0; 4140 if (*depth >= PF_ANCHOR_STACKSIZE) { 4141 printf("%s: anchor stack overflow on %s\n", 4142 __func__, (*r)->anchor->name); 4143 *r = TAILQ_NEXT(*r, entries); 4144 return; 4145 } else if (*depth == 0 && a != NULL) 4146 *a = *r; 4147 f = stack + (*depth)++; 4148 f->rs = *rs; 4149 f->r = *r; 4150 if ((*r)->anchor_wildcard) { 4151 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4152 4153 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4154 *r = NULL; 4155 return; 4156 } 4157 *rs = &f->child->ruleset; 4158 } else { 4159 f->child = NULL; 4160 *rs = &(*r)->anchor->ruleset; 4161 } 4162 *r = TAILQ_FIRST((*rs)->active.rules); 4163 } 4164 4165 int 4166 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4167 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4168 struct pf_keth_rule **a, int *match) 4169 { 4170 struct pf_keth_anchor_stackframe *f; 4171 struct pf_keth_rule *fr; 4172 int quick = 0; 4173 4174 NET_EPOCH_ASSERT(); 4175 4176 do { 4177 if (*depth <= 0) 4178 break; 4179 f = stack + *depth - 1; 4180 fr = PF_ETH_ANCHOR_RULE(f); 4181 if (f->child != NULL) { 4182 /* 4183 * This block traverses through 4184 * a wildcard anchor. 4185 */ 4186 if (match != NULL && *match) { 4187 /* 4188 * If any of "*" matched, then 4189 * "foo/ *" matched, mark frame 4190 * appropriately. 4191 */ 4192 PF_ETH_ANCHOR_SET_MATCH(f); 4193 *match = 0; 4194 } 4195 f->child = RB_NEXT(pf_keth_anchor_node, 4196 &fr->anchor->children, f->child); 4197 if (f->child != NULL) { 4198 *rs = &f->child->ruleset; 4199 *r = TAILQ_FIRST((*rs)->active.rules); 4200 if (*r == NULL) 4201 continue; 4202 else 4203 break; 4204 } 4205 } 4206 (*depth)--; 4207 if (*depth == 0 && a != NULL) 4208 *a = NULL; 4209 *rs = f->rs; 4210 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4211 quick = fr->quick; 4212 *r = TAILQ_NEXT(fr, entries); 4213 } while (*r == NULL); 4214 4215 return (quick); 4216 } 4217 4218 #ifdef INET6 4219 void 4220 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4221 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4222 { 4223 switch (af) { 4224 #ifdef INET 4225 case AF_INET: 4226 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4227 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4228 break; 4229 #endif /* INET */ 4230 case AF_INET6: 4231 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4232 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4233 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4234 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4235 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4236 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4237 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4238 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4239 break; 4240 } 4241 } 4242 4243 void 4244 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4245 { 4246 switch (af) { 4247 #ifdef INET 4248 case AF_INET: 4249 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4250 break; 4251 #endif /* INET */ 4252 case AF_INET6: 4253 if (addr->addr32[3] == 0xffffffff) { 4254 addr->addr32[3] = 0; 4255 if (addr->addr32[2] == 0xffffffff) { 4256 addr->addr32[2] = 0; 4257 if (addr->addr32[1] == 0xffffffff) { 4258 addr->addr32[1] = 0; 4259 addr->addr32[0] = 4260 htonl(ntohl(addr->addr32[0]) + 1); 4261 } else 4262 addr->addr32[1] = 4263 htonl(ntohl(addr->addr32[1]) + 1); 4264 } else 4265 addr->addr32[2] = 4266 htonl(ntohl(addr->addr32[2]) + 1); 4267 } else 4268 addr->addr32[3] = 4269 htonl(ntohl(addr->addr32[3]) + 1); 4270 break; 4271 } 4272 } 4273 #endif /* INET6 */ 4274 4275 void 4276 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4277 { 4278 /* 4279 * Modern rules use the same flags in rules as they do in states. 4280 */ 4281 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4282 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4283 4284 /* 4285 * Old-style scrub rules have different flags which need to be translated. 4286 */ 4287 if (r->rule_flag & PFRULE_RANDOMID) 4288 a->flags |= PFSTATE_RANDOMID; 4289 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4290 a->flags |= PFSTATE_SETTOS; 4291 a->set_tos = r->set_tos; 4292 } 4293 4294 if (r->qid) 4295 a->qid = r->qid; 4296 if (r->pqid) 4297 a->pqid = r->pqid; 4298 if (r->rtableid >= 0) 4299 a->rtableid = r->rtableid; 4300 a->log |= r->log; 4301 if (r->min_ttl) 4302 a->min_ttl = r->min_ttl; 4303 if (r->max_mss) 4304 a->max_mss = r->max_mss; 4305 if (r->dnpipe) 4306 a->dnpipe = r->dnpipe; 4307 if (r->dnrpipe) 4308 a->dnrpipe = r->dnrpipe; 4309 if (r->dnpipe || r->dnrpipe) { 4310 if (r->free_flags & PFRULE_DN_IS_PIPE) 4311 a->flags |= PFSTATE_DN_IS_PIPE; 4312 else 4313 a->flags &= ~PFSTATE_DN_IS_PIPE; 4314 } 4315 if (r->scrub_flags & PFSTATE_SETPRIO) { 4316 a->set_prio[0] = r->set_prio[0]; 4317 a->set_prio[1] = r->set_prio[1]; 4318 } 4319 } 4320 4321 int 4322 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 4323 { 4324 struct pf_addr *saddr, *daddr; 4325 u_int16_t sport, dport; 4326 struct inpcbinfo *pi; 4327 struct inpcb *inp; 4328 4329 pd->lookup.uid = UID_MAX; 4330 pd->lookup.gid = GID_MAX; 4331 4332 switch (pd->proto) { 4333 case IPPROTO_TCP: 4334 sport = pd->hdr.tcp.th_sport; 4335 dport = pd->hdr.tcp.th_dport; 4336 pi = &V_tcbinfo; 4337 break; 4338 case IPPROTO_UDP: 4339 sport = pd->hdr.udp.uh_sport; 4340 dport = pd->hdr.udp.uh_dport; 4341 pi = &V_udbinfo; 4342 break; 4343 default: 4344 return (-1); 4345 } 4346 if (pd->dir == PF_IN) { 4347 saddr = pd->src; 4348 daddr = pd->dst; 4349 } else { 4350 u_int16_t p; 4351 4352 p = sport; 4353 sport = dport; 4354 dport = p; 4355 saddr = pd->dst; 4356 daddr = pd->src; 4357 } 4358 switch (pd->af) { 4359 #ifdef INET 4360 case AF_INET: 4361 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4362 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4363 if (inp == NULL) { 4364 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4365 daddr->v4, dport, INPLOOKUP_WILDCARD | 4366 INPLOOKUP_RLOCKPCB, NULL, m); 4367 if (inp == NULL) 4368 return (-1); 4369 } 4370 break; 4371 #endif /* INET */ 4372 #ifdef INET6 4373 case AF_INET6: 4374 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4375 dport, INPLOOKUP_RLOCKPCB, NULL, m); 4376 if (inp == NULL) { 4377 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4378 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4379 INPLOOKUP_RLOCKPCB, NULL, m); 4380 if (inp == NULL) 4381 return (-1); 4382 } 4383 break; 4384 #endif /* INET6 */ 4385 4386 default: 4387 return (-1); 4388 } 4389 INP_RLOCK_ASSERT(inp); 4390 pd->lookup.uid = inp->inp_cred->cr_uid; 4391 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4392 INP_RUNLOCK(inp); 4393 4394 return (1); 4395 } 4396 4397 u_int8_t 4398 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4399 { 4400 int hlen; 4401 u_int8_t hdr[60]; 4402 u_int8_t *opt, optlen; 4403 u_int8_t wscale = 0; 4404 4405 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4406 if (hlen <= sizeof(struct tcphdr)) 4407 return (0); 4408 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4409 return (0); 4410 opt = hdr + sizeof(struct tcphdr); 4411 hlen -= sizeof(struct tcphdr); 4412 while (hlen >= 3) { 4413 switch (*opt) { 4414 case TCPOPT_EOL: 4415 case TCPOPT_NOP: 4416 ++opt; 4417 --hlen; 4418 break; 4419 case TCPOPT_WINDOW: 4420 wscale = opt[2]; 4421 if (wscale > TCP_MAX_WINSHIFT) 4422 wscale = TCP_MAX_WINSHIFT; 4423 wscale |= PF_WSCALE_FLAG; 4424 /* FALLTHROUGH */ 4425 default: 4426 optlen = opt[1]; 4427 if (optlen < 2) 4428 optlen = 2; 4429 hlen -= optlen; 4430 opt += optlen; 4431 break; 4432 } 4433 } 4434 return (wscale); 4435 } 4436 4437 u_int16_t 4438 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 4439 { 4440 int hlen; 4441 u_int8_t hdr[60]; 4442 u_int8_t *opt, optlen; 4443 u_int16_t mss = V_tcp_mssdflt; 4444 4445 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 4446 if (hlen <= sizeof(struct tcphdr)) 4447 return (0); 4448 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 4449 return (0); 4450 opt = hdr + sizeof(struct tcphdr); 4451 hlen -= sizeof(struct tcphdr); 4452 while (hlen >= TCPOLEN_MAXSEG) { 4453 switch (*opt) { 4454 case TCPOPT_EOL: 4455 case TCPOPT_NOP: 4456 ++opt; 4457 --hlen; 4458 break; 4459 case TCPOPT_MAXSEG: 4460 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4461 NTOHS(mss); 4462 /* FALLTHROUGH */ 4463 default: 4464 optlen = opt[1]; 4465 if (optlen < 2) 4466 optlen = 2; 4467 hlen -= optlen; 4468 opt += optlen; 4469 break; 4470 } 4471 } 4472 return (mss); 4473 } 4474 4475 static u_int16_t 4476 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4477 { 4478 struct nhop_object *nh; 4479 #ifdef INET6 4480 struct in6_addr dst6; 4481 uint32_t scopeid; 4482 #endif /* INET6 */ 4483 int hlen = 0; 4484 uint16_t mss = 0; 4485 4486 NET_EPOCH_ASSERT(); 4487 4488 switch (af) { 4489 #ifdef INET 4490 case AF_INET: 4491 hlen = sizeof(struct ip); 4492 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4493 if (nh != NULL) 4494 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4495 break; 4496 #endif /* INET */ 4497 #ifdef INET6 4498 case AF_INET6: 4499 hlen = sizeof(struct ip6_hdr); 4500 in6_splitscope(&addr->v6, &dst6, &scopeid); 4501 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4502 if (nh != NULL) 4503 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4504 break; 4505 #endif /* INET6 */ 4506 } 4507 4508 mss = max(V_tcp_mssdflt, mss); 4509 mss = min(mss, offer); 4510 mss = max(mss, 64); /* sanity - at least max opt space */ 4511 return (mss); 4512 } 4513 4514 static u_int32_t 4515 pf_tcp_iss(struct pf_pdesc *pd) 4516 { 4517 MD5_CTX ctx; 4518 u_int32_t digest[4]; 4519 4520 if (V_pf_tcp_secret_init == 0) { 4521 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4522 MD5Init(&V_pf_tcp_secret_ctx); 4523 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4524 sizeof(V_pf_tcp_secret)); 4525 V_pf_tcp_secret_init = 1; 4526 } 4527 4528 ctx = V_pf_tcp_secret_ctx; 4529 4530 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4531 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4532 if (pd->af == AF_INET6) { 4533 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4534 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4535 } else { 4536 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4537 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4538 } 4539 MD5Final((u_char *)digest, &ctx); 4540 V_pf_tcp_iss_off += 4096; 4541 #define ISN_RANDOM_INCREMENT (4096 - 1) 4542 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4543 V_pf_tcp_iss_off); 4544 #undef ISN_RANDOM_INCREMENT 4545 } 4546 4547 static bool 4548 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4549 { 4550 bool match = true; 4551 4552 /* Always matches if not set */ 4553 if (! r->isset) 4554 return (!r->neg); 4555 4556 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4557 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4558 match = false; 4559 break; 4560 } 4561 } 4562 4563 return (match ^ r->neg); 4564 } 4565 4566 static int 4567 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4568 { 4569 if (*tag == -1) 4570 *tag = mtag; 4571 4572 return ((!r->match_tag_not && r->match_tag == *tag) || 4573 (r->match_tag_not && r->match_tag != *tag)); 4574 } 4575 4576 static void 4577 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4578 { 4579 /* If we don't have the interface drop the packet. */ 4580 if (ifp == NULL) { 4581 m_freem(m); 4582 return; 4583 } 4584 4585 switch (ifp->if_type) { 4586 case IFT_ETHER: 4587 case IFT_XETHER: 4588 case IFT_L2VLAN: 4589 case IFT_BRIDGE: 4590 case IFT_IEEE8023ADLAG: 4591 break; 4592 default: 4593 m_freem(m); 4594 return; 4595 } 4596 4597 ifp->if_transmit(ifp, m); 4598 } 4599 4600 static int 4601 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4602 { 4603 #ifdef INET 4604 struct ip ip; 4605 #endif 4606 #ifdef INET6 4607 struct ip6_hdr ip6; 4608 #endif 4609 struct mbuf *m = *m0; 4610 struct ether_header *e; 4611 struct pf_keth_rule *r, *rm, *a = NULL; 4612 struct pf_keth_ruleset *ruleset = NULL; 4613 struct pf_mtag *mtag; 4614 struct pf_keth_ruleq *rules; 4615 struct pf_addr *src = NULL, *dst = NULL; 4616 struct pfi_kkif *bridge_to; 4617 sa_family_t af = 0; 4618 uint16_t proto; 4619 int asd = 0, match = 0; 4620 int tag = -1; 4621 uint8_t action; 4622 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4623 4624 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4625 NET_EPOCH_ASSERT(); 4626 4627 PF_RULES_RLOCK_TRACKER; 4628 4629 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4630 4631 mtag = pf_find_mtag(m); 4632 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4633 /* Dummynet re-injects packets after they've 4634 * completed their delay. We've already 4635 * processed them, so pass unconditionally. */ 4636 4637 /* But only once. We may see the packet multiple times (e.g. 4638 * PFIL_IN/PFIL_OUT). */ 4639 pf_dummynet_flag_remove(m, mtag); 4640 4641 return (PF_PASS); 4642 } 4643 4644 ruleset = V_pf_keth; 4645 rules = ck_pr_load_ptr(&ruleset->active.rules); 4646 r = TAILQ_FIRST(rules); 4647 rm = NULL; 4648 4649 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 4650 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 4651 DPFPRINTF(PF_DEBUG_URGENT, 4652 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)" 4653 ", pullup failed\n")); 4654 return (PF_DROP); 4655 } 4656 e = mtod(m, struct ether_header *); 4657 proto = ntohs(e->ether_type); 4658 4659 switch (proto) { 4660 #ifdef INET 4661 case ETHERTYPE_IP: { 4662 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4663 sizeof(ip))) 4664 return (PF_DROP); 4665 4666 af = AF_INET; 4667 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4668 (caddr_t)&ip); 4669 src = (struct pf_addr *)&ip.ip_src; 4670 dst = (struct pf_addr *)&ip.ip_dst; 4671 break; 4672 } 4673 #endif /* INET */ 4674 #ifdef INET6 4675 case ETHERTYPE_IPV6: { 4676 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4677 sizeof(ip6))) 4678 return (PF_DROP); 4679 4680 af = AF_INET6; 4681 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4682 (caddr_t)&ip6); 4683 src = (struct pf_addr *)&ip6.ip6_src; 4684 dst = (struct pf_addr *)&ip6.ip6_dst; 4685 break; 4686 } 4687 #endif /* INET6 */ 4688 } 4689 4690 PF_RULES_RLOCK(); 4691 4692 while (r != NULL) { 4693 counter_u64_add(r->evaluations, 1); 4694 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4695 4696 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4697 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4698 "kif"); 4699 r = r->skip[PFE_SKIP_IFP].ptr; 4700 } 4701 else if (r->direction && r->direction != dir) { 4702 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4703 "dir"); 4704 r = r->skip[PFE_SKIP_DIR].ptr; 4705 } 4706 else if (r->proto && r->proto != proto) { 4707 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4708 "proto"); 4709 r = r->skip[PFE_SKIP_PROTO].ptr; 4710 } 4711 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4712 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4713 "src"); 4714 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4715 } 4716 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4717 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4718 "dst"); 4719 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4720 } 4721 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4722 r->ipsrc.neg, kif, M_GETFIB(m))) { 4723 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4724 "ip_src"); 4725 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4726 } 4727 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4728 r->ipdst.neg, kif, M_GETFIB(m))) { 4729 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4730 "ip_dst"); 4731 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4732 } 4733 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4734 mtag ? mtag->tag : 0)) { 4735 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4736 "match_tag"); 4737 r = TAILQ_NEXT(r, entries); 4738 } 4739 else { 4740 if (r->tag) 4741 tag = r->tag; 4742 if (r->anchor == NULL) { 4743 /* Rule matches */ 4744 rm = r; 4745 4746 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4747 4748 if (r->quick) 4749 break; 4750 4751 r = TAILQ_NEXT(r, entries); 4752 } else { 4753 pf_step_into_keth_anchor(anchor_stack, &asd, 4754 &ruleset, &r, &a, &match); 4755 } 4756 } 4757 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4758 &ruleset, &r, &a, &match)) 4759 break; 4760 } 4761 4762 r = rm; 4763 4764 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4765 4766 /* Default to pass. */ 4767 if (r == NULL) { 4768 PF_RULES_RUNLOCK(); 4769 return (PF_PASS); 4770 } 4771 4772 /* Execute action. */ 4773 counter_u64_add(r->packets[dir == PF_OUT], 1); 4774 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4775 pf_update_timestamp(r); 4776 4777 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4778 if (r->action == PF_DROP) { 4779 PF_RULES_RUNLOCK(); 4780 return (PF_DROP); 4781 } 4782 4783 if (tag > 0) { 4784 if (mtag == NULL) 4785 mtag = pf_get_mtag(m); 4786 if (mtag == NULL) { 4787 PF_RULES_RUNLOCK(); 4788 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4789 return (PF_DROP); 4790 } 4791 mtag->tag = tag; 4792 } 4793 4794 if (r->qid != 0) { 4795 if (mtag == NULL) 4796 mtag = pf_get_mtag(m); 4797 if (mtag == NULL) { 4798 PF_RULES_RUNLOCK(); 4799 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4800 return (PF_DROP); 4801 } 4802 mtag->qid = r->qid; 4803 } 4804 4805 action = r->action; 4806 bridge_to = r->bridge_to; 4807 4808 /* Dummynet */ 4809 if (r->dnpipe) { 4810 struct ip_fw_args dnflow; 4811 4812 /* Drop packet if dummynet is not loaded. */ 4813 if (ip_dn_io_ptr == NULL) { 4814 PF_RULES_RUNLOCK(); 4815 m_freem(m); 4816 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4817 return (PF_DROP); 4818 } 4819 if (mtag == NULL) 4820 mtag = pf_get_mtag(m); 4821 if (mtag == NULL) { 4822 PF_RULES_RUNLOCK(); 4823 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4824 return (PF_DROP); 4825 } 4826 4827 bzero(&dnflow, sizeof(dnflow)); 4828 4829 /* We don't have port numbers here, so we set 0. That means 4830 * that we'll be somewhat limited in distinguishing flows (i.e. 4831 * only based on IP addresses, not based on port numbers), but 4832 * it's better than nothing. */ 4833 dnflow.f_id.dst_port = 0; 4834 dnflow.f_id.src_port = 0; 4835 dnflow.f_id.proto = 0; 4836 4837 dnflow.rule.info = r->dnpipe; 4838 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4839 if (r->dnflags & PFRULE_DN_IS_PIPE) 4840 dnflow.rule.info |= IPFW_IS_PIPE; 4841 4842 dnflow.f_id.extra = dnflow.rule.info; 4843 4844 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4845 dnflow.flags |= IPFW_ARGS_ETHER; 4846 dnflow.ifp = kif->pfik_ifp; 4847 4848 switch (af) { 4849 case AF_INET: 4850 dnflow.f_id.addr_type = 4; 4851 dnflow.f_id.src_ip = src->v4.s_addr; 4852 dnflow.f_id.dst_ip = dst->v4.s_addr; 4853 break; 4854 case AF_INET6: 4855 dnflow.flags |= IPFW_ARGS_IP6; 4856 dnflow.f_id.addr_type = 6; 4857 dnflow.f_id.src_ip6 = src->v6; 4858 dnflow.f_id.dst_ip6 = dst->v6; 4859 break; 4860 } 4861 4862 PF_RULES_RUNLOCK(); 4863 4864 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4865 ip_dn_io_ptr(m0, &dnflow); 4866 if (*m0 != NULL) 4867 pf_dummynet_flag_remove(m, mtag); 4868 } else { 4869 PF_RULES_RUNLOCK(); 4870 } 4871 4872 if (action == PF_PASS && bridge_to) { 4873 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4874 *m0 = NULL; /* We've eaten the packet. */ 4875 } 4876 4877 return (action); 4878 } 4879 4880 static int 4881 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4882 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4883 struct pf_kruleset **rsm, struct inpcb *inp, int hdrlen) 4884 { 4885 struct pf_krule *nr = NULL; 4886 struct pf_addr * const saddr = pd->src; 4887 struct pf_addr * const daddr = pd->dst; 4888 sa_family_t af = pd->af; 4889 struct pf_krule *r, *a = NULL; 4890 struct pf_kruleset *ruleset = NULL; 4891 struct pf_krule_slist match_rules; 4892 struct pf_krule_item *ri; 4893 struct pf_ksrc_node *nsn = NULL; 4894 struct tcphdr *th = &pd->hdr.tcp; 4895 struct pf_state_key *sk = NULL, *nk = NULL; 4896 u_short reason, transerror; 4897 int rewrite = 0; 4898 int tag = -1; 4899 int asd = 0; 4900 int match = 0; 4901 int state_icmp = 0, icmp_dir, multi; 4902 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id; 4903 u_int16_t bproto_sum = 0, bip_sum = 0; 4904 u_int8_t icmptype = 0, icmpcode = 0; 4905 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4906 struct pf_udp_mapping *udp_mapping = NULL; 4907 4908 PF_RULES_RASSERT(); 4909 4910 SLIST_INIT(&match_rules); 4911 4912 if (inp != NULL) { 4913 INP_LOCK_ASSERT(inp); 4914 pd->lookup.uid = inp->inp_cred->cr_uid; 4915 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4916 pd->lookup.done = 1; 4917 } 4918 4919 switch (pd->proto) { 4920 case IPPROTO_TCP: 4921 sport = th->th_sport; 4922 dport = th->th_dport; 4923 break; 4924 case IPPROTO_UDP: 4925 sport = pd->hdr.udp.uh_sport; 4926 dport = pd->hdr.udp.uh_dport; 4927 break; 4928 case IPPROTO_SCTP: 4929 sport = pd->hdr.sctp.src_port; 4930 dport = pd->hdr.sctp.dest_port; 4931 break; 4932 #ifdef INET 4933 case IPPROTO_ICMP: 4934 MPASS(af == AF_INET); 4935 icmptype = pd->hdr.icmp.icmp_type; 4936 icmpcode = pd->hdr.icmp.icmp_code; 4937 state_icmp = pf_icmp_mapping(pd, icmptype, 4938 &icmp_dir, &multi, &virtual_id, &virtual_type); 4939 if (icmp_dir == PF_IN) { 4940 sport = virtual_id; 4941 dport = virtual_type; 4942 } else { 4943 sport = virtual_type; 4944 dport = virtual_id; 4945 } 4946 break; 4947 #endif /* INET */ 4948 #ifdef INET6 4949 case IPPROTO_ICMPV6: 4950 MPASS(af == AF_INET6); 4951 icmptype = pd->hdr.icmp6.icmp6_type; 4952 icmpcode = pd->hdr.icmp6.icmp6_code; 4953 state_icmp = pf_icmp_mapping(pd, icmptype, 4954 &icmp_dir, &multi, &virtual_id, &virtual_type); 4955 if (icmp_dir == PF_IN) { 4956 sport = virtual_id; 4957 dport = virtual_type; 4958 } else { 4959 sport = virtual_type; 4960 dport = virtual_id; 4961 } 4962 4963 break; 4964 #endif /* INET6 */ 4965 default: 4966 sport = dport = 0; 4967 break; 4968 } 4969 4970 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4971 4972 /* check packet for BINAT/NAT/RDR */ 4973 transerror = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4974 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping); 4975 switch (transerror) { 4976 default: 4977 /* A translation error occurred. */ 4978 REASON_SET(&reason, transerror); 4979 goto cleanup; 4980 case PFRES_MAX: 4981 /* No match. */ 4982 break; 4983 case PFRES_MATCH: 4984 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4985 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4986 4987 if (nr->log) { 4988 PFLOG_PACKET(kif, m, PF_PASS, PFRES_MATCH, nr, a, 4989 ruleset, pd, 1); 4990 } 4991 4992 if (pd->ip_sum) 4993 bip_sum = *pd->ip_sum; 4994 4995 switch (pd->proto) { 4996 case IPPROTO_TCP: 4997 bproto_sum = th->th_sum; 4998 pd->proto_sum = &th->th_sum; 4999 5000 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5001 nk->port[pd->sidx] != sport) { 5002 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 5003 &th->th_sum, &nk->addr[pd->sidx], 5004 nk->port[pd->sidx], 0, af); 5005 pd->sport = &th->th_sport; 5006 sport = th->th_sport; 5007 } 5008 5009 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5010 nk->port[pd->didx] != dport) { 5011 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 5012 &th->th_sum, &nk->addr[pd->didx], 5013 nk->port[pd->didx], 0, af); 5014 dport = th->th_dport; 5015 pd->dport = &th->th_dport; 5016 } 5017 rewrite++; 5018 break; 5019 case IPPROTO_UDP: 5020 bproto_sum = pd->hdr.udp.uh_sum; 5021 pd->proto_sum = &pd->hdr.udp.uh_sum; 5022 5023 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5024 nk->port[pd->sidx] != sport) { 5025 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 5026 pd->ip_sum, &pd->hdr.udp.uh_sum, 5027 &nk->addr[pd->sidx], 5028 nk->port[pd->sidx], 1, af); 5029 sport = pd->hdr.udp.uh_sport; 5030 pd->sport = &pd->hdr.udp.uh_sport; 5031 } 5032 5033 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5034 nk->port[pd->didx] != dport) { 5035 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 5036 pd->ip_sum, &pd->hdr.udp.uh_sum, 5037 &nk->addr[pd->didx], 5038 nk->port[pd->didx], 1, af); 5039 dport = pd->hdr.udp.uh_dport; 5040 pd->dport = &pd->hdr.udp.uh_dport; 5041 } 5042 rewrite++; 5043 break; 5044 case IPPROTO_SCTP: { 5045 uint16_t checksum = 0; 5046 5047 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 5048 nk->port[pd->sidx] != sport) { 5049 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 5050 pd->ip_sum, &checksum, 5051 &nk->addr[pd->sidx], 5052 nk->port[pd->sidx], 1, af); 5053 } 5054 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 5055 nk->port[pd->didx] != dport) { 5056 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 5057 pd->ip_sum, &checksum, 5058 &nk->addr[pd->didx], 5059 nk->port[pd->didx], 1, af); 5060 } 5061 break; 5062 } 5063 #ifdef INET 5064 case IPPROTO_ICMP: 5065 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 5066 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 5067 nk->addr[pd->sidx].v4.s_addr, 0); 5068 5069 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 5070 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 5071 nk->addr[pd->didx].v4.s_addr, 0); 5072 5073 if (virtual_type == htons(ICMP_ECHO) && 5074 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 5075 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 5076 pd->hdr.icmp.icmp_cksum, sport, 5077 nk->port[pd->sidx], 0); 5078 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 5079 pd->sport = &pd->hdr.icmp.icmp_id; 5080 } 5081 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5082 break; 5083 #endif /* INET */ 5084 #ifdef INET6 5085 case IPPROTO_ICMPV6: 5086 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 5087 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 5088 &nk->addr[pd->sidx], 0); 5089 5090 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 5091 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 5092 &nk->addr[pd->didx], 0); 5093 rewrite++; 5094 break; 5095 #endif /* INET */ 5096 default: 5097 switch (af) { 5098 #ifdef INET 5099 case AF_INET: 5100 if (PF_ANEQ(saddr, 5101 &nk->addr[pd->sidx], AF_INET)) 5102 pf_change_a(&saddr->v4.s_addr, 5103 pd->ip_sum, 5104 nk->addr[pd->sidx].v4.s_addr, 0); 5105 5106 if (PF_ANEQ(daddr, 5107 &nk->addr[pd->didx], AF_INET)) 5108 pf_change_a(&daddr->v4.s_addr, 5109 pd->ip_sum, 5110 nk->addr[pd->didx].v4.s_addr, 0); 5111 break; 5112 #endif /* INET */ 5113 #ifdef INET6 5114 case AF_INET6: 5115 if (PF_ANEQ(saddr, 5116 &nk->addr[pd->sidx], AF_INET6)) 5117 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 5118 5119 if (PF_ANEQ(daddr, 5120 &nk->addr[pd->didx], AF_INET6)) 5121 PF_ACPY(daddr, &nk->addr[pd->didx], af); 5122 break; 5123 #endif /* INET */ 5124 } 5125 break; 5126 } 5127 if (nr->natpass) 5128 r = NULL; 5129 pd->nat_rule = nr; 5130 } 5131 5132 while (r != NULL) { 5133 pf_counter_u64_add(&r->evaluations, 1); 5134 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5135 r = r->skip[PF_SKIP_IFP].ptr; 5136 else if (r->direction && r->direction != pd->dir) 5137 r = r->skip[PF_SKIP_DIR].ptr; 5138 else if (r->af && r->af != af) 5139 r = r->skip[PF_SKIP_AF].ptr; 5140 else if (r->proto && r->proto != pd->proto) 5141 r = r->skip[PF_SKIP_PROTO].ptr; 5142 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 5143 r->src.neg, kif, M_GETFIB(m))) 5144 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5145 /* tcp/udp only. port_op always 0 in other cases */ 5146 else if (r->src.port_op && !pf_match_port(r->src.port_op, 5147 r->src.port[0], r->src.port[1], sport)) 5148 r = r->skip[PF_SKIP_SRC_PORT].ptr; 5149 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 5150 r->dst.neg, NULL, M_GETFIB(m))) 5151 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5152 /* tcp/udp only. port_op always 0 in other cases */ 5153 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 5154 r->dst.port[0], r->dst.port[1], dport)) 5155 r = r->skip[PF_SKIP_DST_PORT].ptr; 5156 /* icmp only. type always 0 in other cases */ 5157 else if (r->type && r->type != icmptype + 1) 5158 r = TAILQ_NEXT(r, entries); 5159 /* icmp only. type always 0 in other cases */ 5160 else if (r->code && r->code != icmpcode + 1) 5161 r = TAILQ_NEXT(r, entries); 5162 else if (r->tos && !(r->tos == pd->tos)) 5163 r = TAILQ_NEXT(r, entries); 5164 else if (r->rule_flag & PFRULE_FRAGMENT) 5165 r = TAILQ_NEXT(r, entries); 5166 else if (pd->proto == IPPROTO_TCP && 5167 (r->flagset & th->th_flags) != r->flags) 5168 r = TAILQ_NEXT(r, entries); 5169 /* tcp/udp only. uid.op always 0 in other cases */ 5170 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 5171 pf_socket_lookup(pd, m), 1)) && 5172 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5173 pd->lookup.uid)) 5174 r = TAILQ_NEXT(r, entries); 5175 /* tcp/udp only. gid.op always 0 in other cases */ 5176 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 5177 pf_socket_lookup(pd, m), 1)) && 5178 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5179 pd->lookup.gid)) 5180 r = TAILQ_NEXT(r, entries); 5181 else if (r->prio && 5182 !pf_match_ieee8021q_pcp(r->prio, m)) 5183 r = TAILQ_NEXT(r, entries); 5184 else if (r->prob && 5185 r->prob <= arc4random()) 5186 r = TAILQ_NEXT(r, entries); 5187 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5188 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5189 r = TAILQ_NEXT(r, entries); 5190 else if (r->rcv_kif && !pf_match_rcvif(m, r)) 5191 r = TAILQ_NEXT(r, entries); 5192 else if (r->os_fingerprint != PF_OSFP_ANY && 5193 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 5194 pf_osfp_fingerprint(pd, m, off, th), 5195 r->os_fingerprint))) 5196 r = TAILQ_NEXT(r, entries); 5197 else { 5198 if (r->tag) 5199 tag = r->tag; 5200 if (r->anchor == NULL) { 5201 if (r->action == PF_MATCH) { 5202 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5203 if (ri == NULL) { 5204 REASON_SET(&reason, PFRES_MEMORY); 5205 goto cleanup; 5206 } 5207 ri->r = r; 5208 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5209 pf_counter_u64_critical_enter(); 5210 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5211 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5212 pf_counter_u64_critical_exit(); 5213 pf_rule_to_actions(r, &pd->act); 5214 if (r->log || pd->act.log & PF_LOG_MATCHES) 5215 PFLOG_PACKET(kif, m, 5216 r->action, PFRES_MATCH, r, 5217 a, ruleset, pd, 1); 5218 } else { 5219 match = 1; 5220 *rm = r; 5221 *am = a; 5222 *rsm = ruleset; 5223 if (pd->act.log & PF_LOG_MATCHES) 5224 PFLOG_PACKET(kif, m, 5225 r->action, PFRES_MATCH, r, 5226 a, ruleset, pd, 1); 5227 } 5228 if ((*rm)->quick) 5229 break; 5230 r = TAILQ_NEXT(r, entries); 5231 } else 5232 pf_step_into_anchor(anchor_stack, &asd, 5233 &ruleset, PF_RULESET_FILTER, &r, &a, 5234 &match); 5235 } 5236 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5237 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5238 break; 5239 } 5240 r = *rm; 5241 a = *am; 5242 ruleset = *rsm; 5243 5244 REASON_SET(&reason, PFRES_MATCH); 5245 5246 /* apply actions for last matching pass/block rule */ 5247 pf_rule_to_actions(r, &pd->act); 5248 5249 if (r->log || pd->act.log & PF_LOG_MATCHES) { 5250 if (rewrite) 5251 m_copyback(m, off, hdrlen, pd->hdr.any); 5252 PFLOG_PACKET(kif, m, r->action, reason, r, a, ruleset, pd, 1); 5253 } 5254 5255 if ((r->action == PF_DROP) && 5256 ((r->rule_flag & PFRULE_RETURNRST) || 5257 (r->rule_flag & PFRULE_RETURNICMP) || 5258 (r->rule_flag & PFRULE_RETURN))) { 5259 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 5260 bip_sum, hdrlen, &reason, r->rtableid); 5261 } 5262 5263 if (r->action == PF_DROP) 5264 goto cleanup; 5265 5266 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5267 REASON_SET(&reason, PFRES_MEMORY); 5268 goto cleanup; 5269 } 5270 if (pd->act.rtableid >= 0) 5271 M_SETFIB(m, pd->act.rtableid); 5272 5273 if (!state_icmp && (r->keep_state || nr != NULL || 5274 (pd->flags & PFDESC_TCP_NORM))) { 5275 int action; 5276 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 5277 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 5278 hdrlen, &match_rules, udp_mapping); 5279 if (action != PF_PASS) { 5280 pf_udp_mapping_release(udp_mapping); 5281 if (action == PF_DROP && 5282 (r->rule_flag & PFRULE_RETURN)) 5283 pf_return(r, nr, pd, sk, off, m, th, kif, 5284 bproto_sum, bip_sum, hdrlen, &reason, 5285 pd->act.rtableid); 5286 return (action); 5287 } 5288 } else { 5289 while ((ri = SLIST_FIRST(&match_rules))) { 5290 SLIST_REMOVE_HEAD(&match_rules, entry); 5291 free(ri, M_PF_RULE_ITEM); 5292 } 5293 5294 uma_zfree(V_pf_state_key_z, sk); 5295 uma_zfree(V_pf_state_key_z, nk); 5296 pf_udp_mapping_release(udp_mapping); 5297 } 5298 5299 /* copy back packet headers if we performed NAT operations */ 5300 if (rewrite) 5301 m_copyback(m, off, hdrlen, pd->hdr.any); 5302 5303 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5304 pd->dir == PF_OUT && 5305 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 5306 /* 5307 * We want the state created, but we dont 5308 * want to send this in case a partner 5309 * firewall has to know about it to allow 5310 * replies through it. 5311 */ 5312 return (PF_DEFER); 5313 5314 return (PF_PASS); 5315 5316 cleanup: 5317 while ((ri = SLIST_FIRST(&match_rules))) { 5318 SLIST_REMOVE_HEAD(&match_rules, entry); 5319 free(ri, M_PF_RULE_ITEM); 5320 } 5321 5322 uma_zfree(V_pf_state_key_z, sk); 5323 uma_zfree(V_pf_state_key_z, nk); 5324 pf_udp_mapping_release(udp_mapping); 5325 5326 return (PF_DROP); 5327 } 5328 5329 static int 5330 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 5331 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 5332 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 5333 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 5334 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 5335 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping) 5336 { 5337 struct pf_kstate *s = NULL; 5338 struct pf_ksrc_node *sn = NULL; 5339 struct tcphdr *th = &pd->hdr.tcp; 5340 u_int16_t mss = V_tcp_mssdflt; 5341 u_short reason, sn_reason; 5342 struct pf_krule_item *ri; 5343 5344 /* check maximums */ 5345 if (r->max_states && 5346 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5347 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5348 REASON_SET(&reason, PFRES_MAXSTATES); 5349 goto csfailed; 5350 } 5351 /* src node for filter rule */ 5352 if ((r->rule_flag & PFRULE_SRCTRACK || 5353 r->rpool.opts & PF_POOL_STICKYADDR) && 5354 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 5355 REASON_SET(&reason, sn_reason); 5356 goto csfailed; 5357 } 5358 /* src node for translation rule */ 5359 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 5360 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 5361 pd->af)) != 0 ) { 5362 REASON_SET(&reason, sn_reason); 5363 goto csfailed; 5364 } 5365 s = pf_alloc_state(M_NOWAIT); 5366 if (s == NULL) { 5367 REASON_SET(&reason, PFRES_MEMORY); 5368 goto csfailed; 5369 } 5370 s->rule.ptr = r; 5371 s->nat_rule.ptr = nr; 5372 s->anchor.ptr = a; 5373 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 5374 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 5375 5376 STATE_INC_COUNTERS(s); 5377 if (r->allow_opts) 5378 s->state_flags |= PFSTATE_ALLOWOPTS; 5379 if (r->rule_flag & PFRULE_STATESLOPPY) 5380 s->state_flags |= PFSTATE_SLOPPY; 5381 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 5382 s->state_flags |= PFSTATE_SCRUB_TCP; 5383 if ((r->rule_flag & PFRULE_PFLOW) || 5384 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 5385 s->state_flags |= PFSTATE_PFLOW; 5386 5387 s->act.log = pd->act.log & PF_LOG_ALL; 5388 s->sync_state = PFSYNC_S_NONE; 5389 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 5390 5391 if (nr != NULL) 5392 s->act.log |= nr->log & PF_LOG_ALL; 5393 switch (pd->proto) { 5394 case IPPROTO_TCP: 5395 s->src.seqlo = ntohl(th->th_seq); 5396 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 5397 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 5398 r->keep_state == PF_STATE_MODULATE) { 5399 /* Generate sequence number modulator */ 5400 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 5401 0) 5402 s->src.seqdiff = 1; 5403 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 5404 htonl(s->src.seqlo + s->src.seqdiff), 0); 5405 *rewrite = 1; 5406 } else 5407 s->src.seqdiff = 0; 5408 if (th->th_flags & TH_SYN) { 5409 s->src.seqhi++; 5410 s->src.wscale = pf_get_wscale(m, off, 5411 th->th_off, pd->af); 5412 } 5413 s->src.max_win = MAX(ntohs(th->th_win), 1); 5414 if (s->src.wscale & PF_WSCALE_MASK) { 5415 /* Remove scale factor from initial window */ 5416 int win = s->src.max_win; 5417 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 5418 s->src.max_win = (win - 1) >> 5419 (s->src.wscale & PF_WSCALE_MASK); 5420 } 5421 if (th->th_flags & TH_FIN) 5422 s->src.seqhi++; 5423 s->dst.seqhi = 1; 5424 s->dst.max_win = 1; 5425 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 5426 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 5427 s->timeout = PFTM_TCP_FIRST_PACKET; 5428 atomic_add_32(&V_pf_status.states_halfopen, 1); 5429 break; 5430 case IPPROTO_UDP: 5431 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 5432 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 5433 s->timeout = PFTM_UDP_FIRST_PACKET; 5434 break; 5435 case IPPROTO_SCTP: 5436 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 5437 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 5438 s->timeout = PFTM_SCTP_FIRST_PACKET; 5439 break; 5440 case IPPROTO_ICMP: 5441 #ifdef INET6 5442 case IPPROTO_ICMPV6: 5443 #endif 5444 s->timeout = PFTM_ICMP_FIRST_PACKET; 5445 break; 5446 default: 5447 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 5448 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 5449 s->timeout = PFTM_OTHER_FIRST_PACKET; 5450 } 5451 5452 if (r->rt) { 5453 /* pf_map_addr increases the reason counters */ 5454 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 5455 &s->rt_kif, NULL, &sn)) != 0) 5456 goto csfailed; 5457 s->rt = r->rt; 5458 } 5459 5460 s->creation = s->expire = pf_get_uptime(); 5461 5462 if (sn != NULL) 5463 s->src_node = sn; 5464 if (nsn != NULL) { 5465 /* XXX We only modify one side for now. */ 5466 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 5467 s->nat_src_node = nsn; 5468 } 5469 if (pd->proto == IPPROTO_TCP) { 5470 if (s->state_flags & PFSTATE_SCRUB_TCP && 5471 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 5472 REASON_SET(&reason, PFRES_MEMORY); 5473 goto csfailed; 5474 } 5475 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 5476 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 5477 &s->src, &s->dst, rewrite)) { 5478 /* This really shouldn't happen!!! */ 5479 DPFPRINTF(PF_DEBUG_URGENT, 5480 ("pf_normalize_tcp_stateful failed on first " 5481 "pkt\n")); 5482 goto csfailed; 5483 } 5484 } else if (pd->proto == IPPROTO_SCTP) { 5485 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5486 goto csfailed; 5487 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5488 goto csfailed; 5489 } 5490 s->direction = pd->dir; 5491 5492 /* 5493 * sk/nk could already been setup by pf_get_translation(). 5494 */ 5495 if (nr == NULL) { 5496 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5497 __func__, nr, sk, nk)); 5498 sk = pf_state_key_setup(pd, m, off, pd->src, pd->dst, sport, dport); 5499 if (sk == NULL) 5500 goto csfailed; 5501 nk = sk; 5502 } else 5503 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5504 __func__, nr, sk, nk)); 5505 5506 /* Swap sk/nk for PF_OUT. */ 5507 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5508 (pd->dir == PF_IN) ? sk : nk, 5509 (pd->dir == PF_IN) ? nk : sk, s)) { 5510 REASON_SET(&reason, PFRES_STATEINS); 5511 goto drop; 5512 } else 5513 *sm = s; 5514 5515 if (tag > 0) 5516 s->tag = tag; 5517 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5518 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5519 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5520 /* undo NAT changes, if they have taken place */ 5521 if (nr != NULL) { 5522 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5523 if (pd->dir == PF_OUT) 5524 skt = s->key[PF_SK_STACK]; 5525 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5526 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5527 if (pd->sport) 5528 *pd->sport = skt->port[pd->sidx]; 5529 if (pd->dport) 5530 *pd->dport = skt->port[pd->didx]; 5531 if (pd->proto_sum) 5532 *pd->proto_sum = bproto_sum; 5533 if (pd->ip_sum) 5534 *pd->ip_sum = bip_sum; 5535 m_copyback(m, off, hdrlen, pd->hdr.any); 5536 } 5537 s->src.seqhi = htonl(arc4random()); 5538 /* Find mss option */ 5539 int rtid = M_GETFIB(m); 5540 mss = pf_get_mss(m, off, th->th_off, pd->af); 5541 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5542 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5543 s->src.mss = mss; 5544 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5545 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5546 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5547 pd->act.rtableid); 5548 REASON_SET(&reason, PFRES_SYNPROXY); 5549 return (PF_SYNPROXY_DROP); 5550 } 5551 5552 s->udp_mapping = udp_mapping; 5553 5554 return (PF_PASS); 5555 5556 csfailed: 5557 while ((ri = SLIST_FIRST(match_rules))) { 5558 SLIST_REMOVE_HEAD(match_rules, entry); 5559 free(ri, M_PF_RULE_ITEM); 5560 } 5561 5562 uma_zfree(V_pf_state_key_z, sk); 5563 uma_zfree(V_pf_state_key_z, nk); 5564 5565 if (sn != NULL) { 5566 PF_SRC_NODE_LOCK(sn); 5567 if (--sn->states == 0 && sn->expire == 0) { 5568 pf_unlink_src_node(sn); 5569 uma_zfree(V_pf_sources_z, sn); 5570 counter_u64_add( 5571 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5572 } 5573 PF_SRC_NODE_UNLOCK(sn); 5574 } 5575 5576 if (nsn != sn && nsn != NULL) { 5577 PF_SRC_NODE_LOCK(nsn); 5578 if (--nsn->states == 0 && nsn->expire == 0) { 5579 pf_unlink_src_node(nsn); 5580 uma_zfree(V_pf_sources_z, nsn); 5581 counter_u64_add( 5582 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5583 } 5584 PF_SRC_NODE_UNLOCK(nsn); 5585 } 5586 5587 drop: 5588 if (s != NULL) { 5589 pf_src_tree_remove_state(s); 5590 s->timeout = PFTM_UNLINKED; 5591 STATE_DEC_COUNTERS(s); 5592 pf_free_state(s); 5593 } 5594 5595 return (PF_DROP); 5596 } 5597 5598 static int 5599 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5600 struct mbuf *m, struct pf_pdesc *pd, struct pf_krule **am, 5601 struct pf_kruleset **rsm) 5602 { 5603 struct pf_krule *r, *a = NULL; 5604 struct pf_kruleset *ruleset = NULL; 5605 struct pf_krule_slist match_rules; 5606 struct pf_krule_item *ri; 5607 sa_family_t af = pd->af; 5608 u_short reason; 5609 int tag = -1; 5610 int asd = 0; 5611 int match = 0; 5612 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5613 5614 PF_RULES_RASSERT(); 5615 5616 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5617 SLIST_INIT(&match_rules); 5618 while (r != NULL) { 5619 pf_counter_u64_add(&r->evaluations, 1); 5620 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5621 r = r->skip[PF_SKIP_IFP].ptr; 5622 else if (r->direction && r->direction != pd->dir) 5623 r = r->skip[PF_SKIP_DIR].ptr; 5624 else if (r->af && r->af != af) 5625 r = r->skip[PF_SKIP_AF].ptr; 5626 else if (r->proto && r->proto != pd->proto) 5627 r = r->skip[PF_SKIP_PROTO].ptr; 5628 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5629 r->src.neg, kif, M_GETFIB(m))) 5630 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5631 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5632 r->dst.neg, NULL, M_GETFIB(m))) 5633 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5634 else if (r->tos && !(r->tos == pd->tos)) 5635 r = TAILQ_NEXT(r, entries); 5636 else if (r->os_fingerprint != PF_OSFP_ANY) 5637 r = TAILQ_NEXT(r, entries); 5638 else if (pd->proto == IPPROTO_UDP && 5639 (r->src.port_op || r->dst.port_op)) 5640 r = TAILQ_NEXT(r, entries); 5641 else if (pd->proto == IPPROTO_TCP && 5642 (r->src.port_op || r->dst.port_op || r->flagset)) 5643 r = TAILQ_NEXT(r, entries); 5644 else if ((pd->proto == IPPROTO_ICMP || 5645 pd->proto == IPPROTO_ICMPV6) && 5646 (r->type || r->code)) 5647 r = TAILQ_NEXT(r, entries); 5648 else if (r->prio && 5649 !pf_match_ieee8021q_pcp(r->prio, m)) 5650 r = TAILQ_NEXT(r, entries); 5651 else if (r->prob && r->prob <= 5652 (arc4random() % (UINT_MAX - 1) + 1)) 5653 r = TAILQ_NEXT(r, entries); 5654 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5655 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5656 r = TAILQ_NEXT(r, entries); 5657 else { 5658 if (r->anchor == NULL) { 5659 if (r->action == PF_MATCH) { 5660 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5661 if (ri == NULL) { 5662 REASON_SET(&reason, PFRES_MEMORY); 5663 goto cleanup; 5664 } 5665 ri->r = r; 5666 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5667 pf_counter_u64_critical_enter(); 5668 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5669 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5670 pf_counter_u64_critical_exit(); 5671 pf_rule_to_actions(r, &pd->act); 5672 if (r->log) 5673 PFLOG_PACKET(kif, m, 5674 r->action, PFRES_MATCH, r, 5675 a, ruleset, pd, 1); 5676 } else { 5677 match = 1; 5678 *rm = r; 5679 *am = a; 5680 *rsm = ruleset; 5681 } 5682 if ((*rm)->quick) 5683 break; 5684 r = TAILQ_NEXT(r, entries); 5685 } else 5686 pf_step_into_anchor(anchor_stack, &asd, 5687 &ruleset, PF_RULESET_FILTER, &r, &a, 5688 &match); 5689 } 5690 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5691 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5692 break; 5693 } 5694 r = *rm; 5695 a = *am; 5696 ruleset = *rsm; 5697 5698 REASON_SET(&reason, PFRES_MATCH); 5699 5700 /* apply actions for last matching pass/block rule */ 5701 pf_rule_to_actions(r, &pd->act); 5702 5703 if (r->log) 5704 PFLOG_PACKET(kif, m, r->action, reason, r, a, ruleset, pd, 1); 5705 5706 if (r->action != PF_PASS) 5707 return (PF_DROP); 5708 5709 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5710 REASON_SET(&reason, PFRES_MEMORY); 5711 goto cleanup; 5712 } 5713 5714 return (PF_PASS); 5715 5716 cleanup: 5717 while ((ri = SLIST_FIRST(&match_rules))) { 5718 SLIST_REMOVE_HEAD(&match_rules, entry); 5719 free(ri, M_PF_RULE_ITEM); 5720 } 5721 5722 return (PF_DROP); 5723 } 5724 5725 static int 5726 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5727 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5728 int *copyback) 5729 { 5730 struct tcphdr *th = &pd->hdr.tcp; 5731 struct pf_state_peer *src, *dst; 5732 u_int16_t win = ntohs(th->th_win); 5733 u_int32_t ack, end, data_end, seq, orig_seq; 5734 u_int8_t sws, dws, psrc, pdst; 5735 int ackskew; 5736 5737 if (pd->dir == (*state)->direction) { 5738 src = &(*state)->src; 5739 dst = &(*state)->dst; 5740 psrc = PF_PEER_SRC; 5741 pdst = PF_PEER_DST; 5742 } else { 5743 src = &(*state)->dst; 5744 dst = &(*state)->src; 5745 psrc = PF_PEER_DST; 5746 pdst = PF_PEER_SRC; 5747 } 5748 5749 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5750 sws = src->wscale & PF_WSCALE_MASK; 5751 dws = dst->wscale & PF_WSCALE_MASK; 5752 } else 5753 sws = dws = 0; 5754 5755 /* 5756 * Sequence tracking algorithm from Guido van Rooij's paper: 5757 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5758 * tcp_filtering.ps 5759 */ 5760 5761 orig_seq = seq = ntohl(th->th_seq); 5762 if (src->seqlo == 0) { 5763 /* First packet from this end. Set its state */ 5764 5765 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5766 src->scrub == NULL) { 5767 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5768 REASON_SET(reason, PFRES_MEMORY); 5769 return (PF_DROP); 5770 } 5771 } 5772 5773 /* Deferred generation of sequence number modulator */ 5774 if (dst->seqdiff && !src->seqdiff) { 5775 /* use random iss for the TCP server */ 5776 while ((src->seqdiff = arc4random() - seq) == 0) 5777 ; 5778 ack = ntohl(th->th_ack) - dst->seqdiff; 5779 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5780 src->seqdiff), 0); 5781 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5782 *copyback = 1; 5783 } else { 5784 ack = ntohl(th->th_ack); 5785 } 5786 5787 end = seq + pd->p_len; 5788 if (th->th_flags & TH_SYN) { 5789 end++; 5790 if (dst->wscale & PF_WSCALE_FLAG) { 5791 src->wscale = pf_get_wscale(m, off, th->th_off, 5792 pd->af); 5793 if (src->wscale & PF_WSCALE_FLAG) { 5794 /* Remove scale factor from initial 5795 * window */ 5796 sws = src->wscale & PF_WSCALE_MASK; 5797 win = ((u_int32_t)win + (1 << sws) - 1) 5798 >> sws; 5799 dws = dst->wscale & PF_WSCALE_MASK; 5800 } else { 5801 /* fixup other window */ 5802 dst->max_win = MIN(TCP_MAXWIN, 5803 (u_int32_t)dst->max_win << 5804 (dst->wscale & PF_WSCALE_MASK)); 5805 /* in case of a retrans SYN|ACK */ 5806 dst->wscale = 0; 5807 } 5808 } 5809 } 5810 data_end = end; 5811 if (th->th_flags & TH_FIN) 5812 end++; 5813 5814 src->seqlo = seq; 5815 if (src->state < TCPS_SYN_SENT) 5816 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5817 5818 /* 5819 * May need to slide the window (seqhi may have been set by 5820 * the crappy stack check or if we picked up the connection 5821 * after establishment) 5822 */ 5823 if (src->seqhi == 1 || 5824 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5825 src->seqhi = end + MAX(1, dst->max_win << dws); 5826 if (win > src->max_win) 5827 src->max_win = win; 5828 5829 } else { 5830 ack = ntohl(th->th_ack) - dst->seqdiff; 5831 if (src->seqdiff) { 5832 /* Modulate sequence numbers */ 5833 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5834 src->seqdiff), 0); 5835 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5836 *copyback = 1; 5837 } 5838 end = seq + pd->p_len; 5839 if (th->th_flags & TH_SYN) 5840 end++; 5841 data_end = end; 5842 if (th->th_flags & TH_FIN) 5843 end++; 5844 } 5845 5846 if ((th->th_flags & TH_ACK) == 0) { 5847 /* Let it pass through the ack skew check */ 5848 ack = dst->seqlo; 5849 } else if ((ack == 0 && 5850 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5851 /* broken tcp stacks do not set ack */ 5852 (dst->state < TCPS_SYN_SENT)) { 5853 /* 5854 * Many stacks (ours included) will set the ACK number in an 5855 * FIN|ACK if the SYN times out -- no sequence to ACK. 5856 */ 5857 ack = dst->seqlo; 5858 } 5859 5860 if (seq == end) { 5861 /* Ease sequencing restrictions on no data packets */ 5862 seq = src->seqlo; 5863 data_end = end = seq; 5864 } 5865 5866 ackskew = dst->seqlo - ack; 5867 5868 /* 5869 * Need to demodulate the sequence numbers in any TCP SACK options 5870 * (Selective ACK). We could optionally validate the SACK values 5871 * against the current ACK window, either forwards or backwards, but 5872 * I'm not confident that SACK has been implemented properly 5873 * everywhere. It wouldn't surprise me if several stacks accidentally 5874 * SACK too far backwards of previously ACKed data. There really aren't 5875 * any security implications of bad SACKing unless the target stack 5876 * doesn't validate the option length correctly. Someone trying to 5877 * spoof into a TCP connection won't bother blindly sending SACK 5878 * options anyway. 5879 */ 5880 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5881 if (pf_modulate_sack(m, off, pd, th, dst)) 5882 *copyback = 1; 5883 } 5884 5885 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5886 if (SEQ_GEQ(src->seqhi, data_end) && 5887 /* Last octet inside other's window space */ 5888 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5889 /* Retrans: not more than one window back */ 5890 (ackskew >= -MAXACKWINDOW) && 5891 /* Acking not more than one reassembled fragment backwards */ 5892 (ackskew <= (MAXACKWINDOW << sws)) && 5893 /* Acking not more than one window forward */ 5894 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5895 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5896 /* Require an exact/+1 sequence match on resets when possible */ 5897 5898 if (dst->scrub || src->scrub) { 5899 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5900 *state, src, dst, copyback)) 5901 return (PF_DROP); 5902 } 5903 5904 /* update max window */ 5905 if (src->max_win < win) 5906 src->max_win = win; 5907 /* synchronize sequencing */ 5908 if (SEQ_GT(end, src->seqlo)) 5909 src->seqlo = end; 5910 /* slide the window of what the other end can send */ 5911 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5912 dst->seqhi = ack + MAX((win << sws), 1); 5913 5914 /* update states */ 5915 if (th->th_flags & TH_SYN) 5916 if (src->state < TCPS_SYN_SENT) 5917 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5918 if (th->th_flags & TH_FIN) 5919 if (src->state < TCPS_CLOSING) 5920 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5921 if (th->th_flags & TH_ACK) { 5922 if (dst->state == TCPS_SYN_SENT) { 5923 pf_set_protostate(*state, pdst, 5924 TCPS_ESTABLISHED); 5925 if (src->state == TCPS_ESTABLISHED && 5926 (*state)->src_node != NULL && 5927 pf_src_connlimit(state)) { 5928 REASON_SET(reason, PFRES_SRCLIMIT); 5929 return (PF_DROP); 5930 } 5931 } else if (dst->state == TCPS_CLOSING) 5932 pf_set_protostate(*state, pdst, 5933 TCPS_FIN_WAIT_2); 5934 } 5935 if (th->th_flags & TH_RST) 5936 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5937 5938 /* update expire time */ 5939 (*state)->expire = pf_get_uptime(); 5940 if (src->state >= TCPS_FIN_WAIT_2 && 5941 dst->state >= TCPS_FIN_WAIT_2) 5942 (*state)->timeout = PFTM_TCP_CLOSED; 5943 else if (src->state >= TCPS_CLOSING && 5944 dst->state >= TCPS_CLOSING) 5945 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5946 else if (src->state < TCPS_ESTABLISHED || 5947 dst->state < TCPS_ESTABLISHED) 5948 (*state)->timeout = PFTM_TCP_OPENING; 5949 else if (src->state >= TCPS_CLOSING || 5950 dst->state >= TCPS_CLOSING) 5951 (*state)->timeout = PFTM_TCP_CLOSING; 5952 else 5953 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5954 5955 /* Fall through to PASS packet */ 5956 5957 } else if ((dst->state < TCPS_SYN_SENT || 5958 dst->state >= TCPS_FIN_WAIT_2 || 5959 src->state >= TCPS_FIN_WAIT_2) && 5960 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5961 /* Within a window forward of the originating packet */ 5962 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5963 /* Within a window backward of the originating packet */ 5964 5965 /* 5966 * This currently handles three situations: 5967 * 1) Stupid stacks will shotgun SYNs before their peer 5968 * replies. 5969 * 2) When PF catches an already established stream (the 5970 * firewall rebooted, the state table was flushed, routes 5971 * changed...) 5972 * 3) Packets get funky immediately after the connection 5973 * closes (this should catch Solaris spurious ACK|FINs 5974 * that web servers like to spew after a close) 5975 * 5976 * This must be a little more careful than the above code 5977 * since packet floods will also be caught here. We don't 5978 * update the TTL here to mitigate the damage of a packet 5979 * flood and so the same code can handle awkward establishment 5980 * and a loosened connection close. 5981 * In the establishment case, a correct peer response will 5982 * validate the connection, go through the normal state code 5983 * and keep updating the state TTL. 5984 */ 5985 5986 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5987 printf("pf: loose state match: "); 5988 pf_print_state(*state); 5989 pf_print_flags(th->th_flags); 5990 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5991 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5992 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5993 (unsigned long long)(*state)->packets[1], 5994 pd->dir == PF_IN ? "in" : "out", 5995 pd->dir == (*state)->direction ? "fwd" : "rev"); 5996 } 5997 5998 if (dst->scrub || src->scrub) { 5999 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 6000 *state, src, dst, copyback)) 6001 return (PF_DROP); 6002 } 6003 6004 /* update max window */ 6005 if (src->max_win < win) 6006 src->max_win = win; 6007 /* synchronize sequencing */ 6008 if (SEQ_GT(end, src->seqlo)) 6009 src->seqlo = end; 6010 /* slide the window of what the other end can send */ 6011 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6012 dst->seqhi = ack + MAX((win << sws), 1); 6013 6014 /* 6015 * Cannot set dst->seqhi here since this could be a shotgunned 6016 * SYN and not an already established connection. 6017 */ 6018 6019 if (th->th_flags & TH_FIN) 6020 if (src->state < TCPS_CLOSING) 6021 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6022 if (th->th_flags & TH_RST) 6023 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6024 6025 /* Fall through to PASS packet */ 6026 6027 } else { 6028 if ((*state)->dst.state == TCPS_SYN_SENT && 6029 (*state)->src.state == TCPS_SYN_SENT) { 6030 /* Send RST for state mismatches during handshake */ 6031 if (!(th->th_flags & TH_RST)) 6032 pf_send_tcp((*state)->rule.ptr, pd->af, 6033 pd->dst, pd->src, th->th_dport, 6034 th->th_sport, ntohl(th->th_ack), 0, 6035 TH_RST, 0, 0, 6036 (*state)->rule.ptr->return_ttl, true, 0, 0, 6037 (*state)->act.rtableid); 6038 src->seqlo = 0; 6039 src->seqhi = 1; 6040 src->max_win = 1; 6041 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6042 printf("pf: BAD state: "); 6043 pf_print_state(*state); 6044 pf_print_flags(th->th_flags); 6045 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6046 "pkts=%llu:%llu dir=%s,%s\n", 6047 seq, orig_seq, ack, pd->p_len, ackskew, 6048 (unsigned long long)(*state)->packets[0], 6049 (unsigned long long)(*state)->packets[1], 6050 pd->dir == PF_IN ? "in" : "out", 6051 pd->dir == (*state)->direction ? "fwd" : "rev"); 6052 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6053 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6054 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6055 ' ': '2', 6056 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6057 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6058 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6059 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6060 } 6061 REASON_SET(reason, PFRES_BADSTATE); 6062 return (PF_DROP); 6063 } 6064 6065 return (PF_PASS); 6066 } 6067 6068 static int 6069 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6070 { 6071 struct tcphdr *th = &pd->hdr.tcp; 6072 struct pf_state_peer *src, *dst; 6073 u_int8_t psrc, pdst; 6074 6075 if (pd->dir == (*state)->direction) { 6076 src = &(*state)->src; 6077 dst = &(*state)->dst; 6078 psrc = PF_PEER_SRC; 6079 pdst = PF_PEER_DST; 6080 } else { 6081 src = &(*state)->dst; 6082 dst = &(*state)->src; 6083 psrc = PF_PEER_DST; 6084 pdst = PF_PEER_SRC; 6085 } 6086 6087 if (th->th_flags & TH_SYN) 6088 if (src->state < TCPS_SYN_SENT) 6089 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 6090 if (th->th_flags & TH_FIN) 6091 if (src->state < TCPS_CLOSING) 6092 pf_set_protostate(*state, psrc, TCPS_CLOSING); 6093 if (th->th_flags & TH_ACK) { 6094 if (dst->state == TCPS_SYN_SENT) { 6095 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 6096 if (src->state == TCPS_ESTABLISHED && 6097 (*state)->src_node != NULL && 6098 pf_src_connlimit(state)) { 6099 REASON_SET(reason, PFRES_SRCLIMIT); 6100 return (PF_DROP); 6101 } 6102 } else if (dst->state == TCPS_CLOSING) { 6103 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 6104 } else if (src->state == TCPS_SYN_SENT && 6105 dst->state < TCPS_SYN_SENT) { 6106 /* 6107 * Handle a special sloppy case where we only see one 6108 * half of the connection. If there is a ACK after 6109 * the initial SYN without ever seeing a packet from 6110 * the destination, set the connection to established. 6111 */ 6112 pf_set_protostate(*state, PF_PEER_BOTH, 6113 TCPS_ESTABLISHED); 6114 dst->state = src->state = TCPS_ESTABLISHED; 6115 if ((*state)->src_node != NULL && 6116 pf_src_connlimit(state)) { 6117 REASON_SET(reason, PFRES_SRCLIMIT); 6118 return (PF_DROP); 6119 } 6120 } else if (src->state == TCPS_CLOSING && 6121 dst->state == TCPS_ESTABLISHED && 6122 dst->seqlo == 0) { 6123 /* 6124 * Handle the closing of half connections where we 6125 * don't see the full bidirectional FIN/ACK+ACK 6126 * handshake. 6127 */ 6128 pf_set_protostate(*state, pdst, TCPS_CLOSING); 6129 } 6130 } 6131 if (th->th_flags & TH_RST) 6132 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6133 6134 /* update expire time */ 6135 (*state)->expire = pf_get_uptime(); 6136 if (src->state >= TCPS_FIN_WAIT_2 && 6137 dst->state >= TCPS_FIN_WAIT_2) 6138 (*state)->timeout = PFTM_TCP_CLOSED; 6139 else if (src->state >= TCPS_CLOSING && 6140 dst->state >= TCPS_CLOSING) 6141 (*state)->timeout = PFTM_TCP_FIN_WAIT; 6142 else if (src->state < TCPS_ESTABLISHED || 6143 dst->state < TCPS_ESTABLISHED) 6144 (*state)->timeout = PFTM_TCP_OPENING; 6145 else if (src->state >= TCPS_CLOSING || 6146 dst->state >= TCPS_CLOSING) 6147 (*state)->timeout = PFTM_TCP_CLOSING; 6148 else 6149 (*state)->timeout = PFTM_TCP_ESTABLISHED; 6150 6151 return (PF_PASS); 6152 } 6153 6154 static int 6155 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 6156 { 6157 struct pf_state_key *sk = (*state)->key[pd->didx]; 6158 struct tcphdr *th = &pd->hdr.tcp; 6159 6160 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 6161 if (pd->dir != (*state)->direction) { 6162 REASON_SET(reason, PFRES_SYNPROXY); 6163 return (PF_SYNPROXY_DROP); 6164 } 6165 if (th->th_flags & TH_SYN) { 6166 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 6167 REASON_SET(reason, PFRES_SYNPROXY); 6168 return (PF_DROP); 6169 } 6170 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6171 pd->src, th->th_dport, th->th_sport, 6172 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 6173 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 6174 (*state)->act.rtableid); 6175 REASON_SET(reason, PFRES_SYNPROXY); 6176 return (PF_SYNPROXY_DROP); 6177 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6178 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6179 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6180 REASON_SET(reason, PFRES_SYNPROXY); 6181 return (PF_DROP); 6182 } else if ((*state)->src_node != NULL && 6183 pf_src_connlimit(state)) { 6184 REASON_SET(reason, PFRES_SRCLIMIT); 6185 return (PF_DROP); 6186 } else 6187 pf_set_protostate(*state, PF_PEER_SRC, 6188 PF_TCPS_PROXY_DST); 6189 } 6190 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 6191 if (pd->dir == (*state)->direction) { 6192 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 6193 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 6194 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 6195 REASON_SET(reason, PFRES_SYNPROXY); 6196 return (PF_DROP); 6197 } 6198 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 6199 if ((*state)->dst.seqhi == 1) 6200 (*state)->dst.seqhi = htonl(arc4random()); 6201 pf_send_tcp((*state)->rule.ptr, pd->af, 6202 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6203 sk->port[pd->sidx], sk->port[pd->didx], 6204 (*state)->dst.seqhi, 0, TH_SYN, 0, 6205 (*state)->src.mss, 0, false, (*state)->tag, 0, 6206 (*state)->act.rtableid); 6207 REASON_SET(reason, PFRES_SYNPROXY); 6208 return (PF_SYNPROXY_DROP); 6209 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 6210 (TH_SYN|TH_ACK)) || 6211 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 6212 REASON_SET(reason, PFRES_SYNPROXY); 6213 return (PF_DROP); 6214 } else { 6215 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 6216 (*state)->dst.seqlo = ntohl(th->th_seq); 6217 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 6218 pd->src, th->th_dport, th->th_sport, 6219 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6220 TH_ACK, (*state)->src.max_win, 0, 0, false, 6221 (*state)->tag, 0, (*state)->act.rtableid); 6222 pf_send_tcp((*state)->rule.ptr, pd->af, 6223 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6224 sk->port[pd->sidx], sk->port[pd->didx], 6225 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 6226 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 6227 (*state)->act.rtableid); 6228 (*state)->src.seqdiff = (*state)->dst.seqhi - 6229 (*state)->src.seqlo; 6230 (*state)->dst.seqdiff = (*state)->src.seqhi - 6231 (*state)->dst.seqlo; 6232 (*state)->src.seqhi = (*state)->src.seqlo + 6233 (*state)->dst.max_win; 6234 (*state)->dst.seqhi = (*state)->dst.seqlo + 6235 (*state)->src.max_win; 6236 (*state)->src.wscale = (*state)->dst.wscale = 0; 6237 pf_set_protostate(*state, PF_PEER_BOTH, 6238 TCPS_ESTABLISHED); 6239 REASON_SET(reason, PFRES_SYNPROXY); 6240 return (PF_SYNPROXY_DROP); 6241 } 6242 } 6243 6244 return (PF_PASS); 6245 } 6246 6247 static int 6248 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 6249 struct mbuf *m, int off, struct pf_pdesc *pd, 6250 u_short *reason) 6251 { 6252 struct pf_state_key_cmp key; 6253 struct tcphdr *th = &pd->hdr.tcp; 6254 int copyback = 0; 6255 int action; 6256 struct pf_state_peer *src, *dst; 6257 6258 bzero(&key, sizeof(key)); 6259 key.af = pd->af; 6260 key.proto = IPPROTO_TCP; 6261 if (pd->dir == PF_IN) { /* wire side, straight */ 6262 PF_ACPY(&key.addr[0], pd->src, key.af); 6263 PF_ACPY(&key.addr[1], pd->dst, key.af); 6264 key.port[0] = th->th_sport; 6265 key.port[1] = th->th_dport; 6266 } else { /* stack side, reverse */ 6267 PF_ACPY(&key.addr[1], pd->src, key.af); 6268 PF_ACPY(&key.addr[0], pd->dst, key.af); 6269 key.port[1] = th->th_sport; 6270 key.port[0] = th->th_dport; 6271 } 6272 6273 STATE_LOOKUP(kif, &key, *state, pd); 6274 6275 if (pd->dir == (*state)->direction) { 6276 src = &(*state)->src; 6277 dst = &(*state)->dst; 6278 } else { 6279 src = &(*state)->dst; 6280 dst = &(*state)->src; 6281 } 6282 6283 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 6284 return (action); 6285 6286 if (dst->state >= TCPS_FIN_WAIT_2 && 6287 src->state >= TCPS_FIN_WAIT_2 && 6288 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 6289 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 6290 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 6291 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6292 printf("pf: state reuse "); 6293 pf_print_state(*state); 6294 pf_print_flags(th->th_flags); 6295 printf("\n"); 6296 } 6297 /* XXX make sure it's the same direction ?? */ 6298 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 6299 pf_unlink_state(*state); 6300 *state = NULL; 6301 return (PF_DROP); 6302 } 6303 6304 if ((*state)->state_flags & PFSTATE_SLOPPY) { 6305 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 6306 return (PF_DROP); 6307 } else { 6308 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 6309 ©back) == PF_DROP) 6310 return (PF_DROP); 6311 } 6312 6313 /* translate source/destination address, if necessary */ 6314 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6315 struct pf_state_key *nk = (*state)->key[pd->didx]; 6316 6317 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6318 nk->port[pd->sidx] != th->th_sport) 6319 pf_change_ap(m, pd->src, &th->th_sport, 6320 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 6321 nk->port[pd->sidx], 0, pd->af); 6322 6323 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6324 nk->port[pd->didx] != th->th_dport) 6325 pf_change_ap(m, pd->dst, &th->th_dport, 6326 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 6327 nk->port[pd->didx], 0, pd->af); 6328 copyback = 1; 6329 } 6330 6331 /* Copyback sequence modulation or stateful scrub changes if needed */ 6332 if (copyback) 6333 m_copyback(m, off, sizeof(*th), (caddr_t)th); 6334 6335 return (PF_PASS); 6336 } 6337 6338 static int 6339 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 6340 struct mbuf *m, int off, struct pf_pdesc *pd) 6341 { 6342 struct pf_state_peer *src, *dst; 6343 struct pf_state_key_cmp key; 6344 struct udphdr *uh = &pd->hdr.udp; 6345 uint8_t psrc, pdst; 6346 6347 bzero(&key, sizeof(key)); 6348 key.af = pd->af; 6349 key.proto = IPPROTO_UDP; 6350 if (pd->dir == PF_IN) { /* wire side, straight */ 6351 PF_ACPY(&key.addr[0], pd->src, key.af); 6352 PF_ACPY(&key.addr[1], pd->dst, key.af); 6353 key.port[0] = uh->uh_sport; 6354 key.port[1] = uh->uh_dport; 6355 } else { /* stack side, reverse */ 6356 PF_ACPY(&key.addr[1], pd->src, key.af); 6357 PF_ACPY(&key.addr[0], pd->dst, key.af); 6358 key.port[1] = uh->uh_sport; 6359 key.port[0] = uh->uh_dport; 6360 } 6361 6362 STATE_LOOKUP(kif, &key, *state, pd); 6363 6364 if (pd->dir == (*state)->direction) { 6365 src = &(*state)->src; 6366 dst = &(*state)->dst; 6367 psrc = PF_PEER_SRC; 6368 pdst = PF_PEER_DST; 6369 } else { 6370 src = &(*state)->dst; 6371 dst = &(*state)->src; 6372 psrc = PF_PEER_DST; 6373 pdst = PF_PEER_SRC; 6374 } 6375 6376 /* update states */ 6377 if (src->state < PFUDPS_SINGLE) 6378 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 6379 if (dst->state == PFUDPS_SINGLE) 6380 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 6381 6382 /* update expire time */ 6383 (*state)->expire = pf_get_uptime(); 6384 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 6385 (*state)->timeout = PFTM_UDP_MULTIPLE; 6386 else 6387 (*state)->timeout = PFTM_UDP_SINGLE; 6388 6389 /* translate source/destination address, if necessary */ 6390 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6391 struct pf_state_key *nk = (*state)->key[pd->didx]; 6392 6393 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6394 nk->port[pd->sidx] != uh->uh_sport) 6395 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 6396 &uh->uh_sum, &nk->addr[pd->sidx], 6397 nk->port[pd->sidx], 1, pd->af); 6398 6399 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6400 nk->port[pd->didx] != uh->uh_dport) 6401 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 6402 &uh->uh_sum, &nk->addr[pd->didx], 6403 nk->port[pd->didx], 1, pd->af); 6404 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 6405 } 6406 6407 return (PF_PASS); 6408 } 6409 6410 static int 6411 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 6412 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason) 6413 { 6414 struct pf_state_key_cmp key; 6415 struct pf_state_peer *src, *dst; 6416 struct sctphdr *sh = &pd->hdr.sctp; 6417 u_int8_t psrc; //, pdst; 6418 6419 bzero(&key, sizeof(key)); 6420 key.af = pd->af; 6421 key.proto = IPPROTO_SCTP; 6422 if (pd->dir == PF_IN) { /* wire side, straight */ 6423 PF_ACPY(&key.addr[0], pd->src, key.af); 6424 PF_ACPY(&key.addr[1], pd->dst, key.af); 6425 key.port[0] = sh->src_port; 6426 key.port[1] = sh->dest_port; 6427 } else { /* stack side, reverse */ 6428 PF_ACPY(&key.addr[1], pd->src, key.af); 6429 PF_ACPY(&key.addr[0], pd->dst, key.af); 6430 key.port[1] = sh->src_port; 6431 key.port[0] = sh->dest_port; 6432 } 6433 6434 STATE_LOOKUP(kif, &key, *state, pd); 6435 6436 if (pd->dir == (*state)->direction) { 6437 src = &(*state)->src; 6438 dst = &(*state)->dst; 6439 psrc = PF_PEER_SRC; 6440 } else { 6441 src = &(*state)->dst; 6442 dst = &(*state)->src; 6443 psrc = PF_PEER_DST; 6444 } 6445 6446 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 6447 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 6448 pd->sctp_flags & PFDESC_SCTP_INIT) { 6449 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 6450 pf_unlink_state(*state); 6451 *state = NULL; 6452 return (PF_DROP); 6453 } 6454 6455 /* Track state. */ 6456 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 6457 if (src->state < SCTP_COOKIE_WAIT) { 6458 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 6459 (*state)->timeout = PFTM_SCTP_OPENING; 6460 } 6461 } 6462 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 6463 MPASS(dst->scrub != NULL); 6464 if (dst->scrub->pfss_v_tag == 0) 6465 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 6466 } 6467 6468 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 6469 if (src->state < SCTP_ESTABLISHED) { 6470 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 6471 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 6472 } 6473 } 6474 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 6475 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6476 if (src->state < SCTP_SHUTDOWN_PENDING) { 6477 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 6478 (*state)->timeout = PFTM_SCTP_CLOSING; 6479 } 6480 } 6481 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 6482 pf_set_protostate(*state, psrc, SCTP_CLOSED); 6483 (*state)->timeout = PFTM_SCTP_CLOSED; 6484 } 6485 6486 if (src->scrub != NULL) { 6487 if (src->scrub->pfss_v_tag == 0) { 6488 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 6489 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6490 return (PF_DROP); 6491 } 6492 6493 (*state)->expire = pf_get_uptime(); 6494 6495 /* translate source/destination address, if necessary */ 6496 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6497 uint16_t checksum = 0; 6498 struct pf_state_key *nk = (*state)->key[pd->didx]; 6499 6500 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6501 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6502 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6503 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6504 nk->port[pd->sidx], 1, pd->af); 6505 } 6506 6507 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6508 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6509 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6510 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6511 nk->port[pd->didx], 1, pd->af); 6512 } 6513 } 6514 6515 return (PF_PASS); 6516 } 6517 6518 static void 6519 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6520 { 6521 struct pf_sctp_endpoint key; 6522 struct pf_sctp_endpoint *ep; 6523 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6524 struct pf_sctp_source *i, *tmp; 6525 6526 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6527 return; 6528 6529 PF_SCTP_ENDPOINTS_LOCK(); 6530 6531 key.v_tag = s->dst.scrub->pfss_v_tag; 6532 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6533 if (ep != NULL) { 6534 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6535 if (pf_addr_cmp(&i->addr, 6536 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6537 s->key[PF_SK_WIRE]->af) == 0) { 6538 SDT_PROBE3(pf, sctp, multihome, remove, 6539 key.v_tag, s, i); 6540 TAILQ_REMOVE(&ep->sources, i, entry); 6541 free(i, M_PFTEMP); 6542 break; 6543 } 6544 } 6545 6546 if (TAILQ_EMPTY(&ep->sources)) { 6547 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6548 free(ep, M_PFTEMP); 6549 } 6550 } 6551 6552 /* Other direction. */ 6553 key.v_tag = s->src.scrub->pfss_v_tag; 6554 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6555 if (ep != NULL) { 6556 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6557 if (pf_addr_cmp(&i->addr, 6558 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6559 s->key[PF_SK_WIRE]->af) == 0) { 6560 SDT_PROBE3(pf, sctp, multihome, remove, 6561 key.v_tag, s, i); 6562 TAILQ_REMOVE(&ep->sources, i, entry); 6563 free(i, M_PFTEMP); 6564 break; 6565 } 6566 } 6567 6568 if (TAILQ_EMPTY(&ep->sources)) { 6569 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6570 free(ep, M_PFTEMP); 6571 } 6572 } 6573 6574 PF_SCTP_ENDPOINTS_UNLOCK(); 6575 } 6576 6577 static void 6578 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6579 { 6580 struct pf_sctp_endpoint key = { 6581 .v_tag = v_tag, 6582 }; 6583 struct pf_sctp_source *i; 6584 struct pf_sctp_endpoint *ep; 6585 6586 PF_SCTP_ENDPOINTS_LOCK(); 6587 6588 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6589 if (ep == NULL) { 6590 ep = malloc(sizeof(struct pf_sctp_endpoint), 6591 M_PFTEMP, M_NOWAIT); 6592 if (ep == NULL) { 6593 PF_SCTP_ENDPOINTS_UNLOCK(); 6594 return; 6595 } 6596 6597 ep->v_tag = v_tag; 6598 TAILQ_INIT(&ep->sources); 6599 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6600 } 6601 6602 /* Avoid inserting duplicates. */ 6603 TAILQ_FOREACH(i, &ep->sources, entry) { 6604 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6605 PF_SCTP_ENDPOINTS_UNLOCK(); 6606 return; 6607 } 6608 } 6609 6610 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6611 if (i == NULL) { 6612 PF_SCTP_ENDPOINTS_UNLOCK(); 6613 return; 6614 } 6615 6616 i->af = pd->af; 6617 memcpy(&i->addr, a, sizeof(*a)); 6618 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6619 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6620 6621 PF_SCTP_ENDPOINTS_UNLOCK(); 6622 } 6623 6624 static void 6625 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6626 struct pf_kstate *s, int action) 6627 { 6628 struct pf_sctp_multihome_job *j, *tmp; 6629 struct pf_sctp_source *i; 6630 int ret __unused; 6631 struct pf_kstate *sm = NULL; 6632 struct pf_krule *ra = NULL; 6633 struct pf_krule *r = &V_pf_default_rule; 6634 struct pf_kruleset *rs = NULL; 6635 bool do_extra = true; 6636 6637 PF_RULES_RLOCK_TRACKER; 6638 6639 again: 6640 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6641 if (s == NULL || action != PF_PASS) 6642 goto free; 6643 6644 /* Confirm we don't recurse here. */ 6645 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6646 6647 switch (j->op) { 6648 case SCTP_ADD_IP_ADDRESS: { 6649 uint32_t v_tag = pd->sctp_initiate_tag; 6650 6651 if (v_tag == 0) { 6652 if (s->direction == pd->dir) 6653 v_tag = s->src.scrub->pfss_v_tag; 6654 else 6655 v_tag = s->dst.scrub->pfss_v_tag; 6656 } 6657 6658 /* 6659 * Avoid duplicating states. We'll already have 6660 * created a state based on the source address of 6661 * the packet, but SCTP endpoints may also list this 6662 * address again in the INIT(_ACK) parameters. 6663 */ 6664 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6665 break; 6666 } 6667 6668 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6669 PF_RULES_RLOCK(); 6670 sm = NULL; 6671 /* 6672 * New connections need to be floating, because 6673 * we cannot know what interfaces it will use. 6674 * That's why we pass V_pfi_all rather than kif. 6675 */ 6676 ret = pf_test_rule(&r, &sm, V_pfi_all, 6677 j->m, off, &j->pd, &ra, &rs, NULL, 6678 sizeof(j->pd.hdr.sctp)); 6679 PF_RULES_RUNLOCK(); 6680 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6681 if (ret != PF_DROP && sm != NULL) { 6682 /* Inherit v_tag values. */ 6683 if (sm->direction == s->direction) { 6684 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6685 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6686 } else { 6687 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6688 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6689 } 6690 PF_STATE_UNLOCK(sm); 6691 } else { 6692 /* If we try duplicate inserts? */ 6693 break; 6694 } 6695 6696 /* Only add the address if we've actually allowed the state. */ 6697 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6698 6699 if (! do_extra) { 6700 break; 6701 } 6702 /* 6703 * We need to do this for each of our source addresses. 6704 * Find those based on the verification tag. 6705 */ 6706 struct pf_sctp_endpoint key = { 6707 .v_tag = pd->hdr.sctp.v_tag, 6708 }; 6709 struct pf_sctp_endpoint *ep; 6710 6711 PF_SCTP_ENDPOINTS_LOCK(); 6712 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6713 if (ep == NULL) { 6714 PF_SCTP_ENDPOINTS_UNLOCK(); 6715 break; 6716 } 6717 MPASS(ep != NULL); 6718 6719 TAILQ_FOREACH(i, &ep->sources, entry) { 6720 struct pf_sctp_multihome_job *nj; 6721 6722 /* SCTP can intermingle IPv4 and IPv6. */ 6723 if (i->af != pd->af) 6724 continue; 6725 6726 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6727 if (! nj) { 6728 continue; 6729 } 6730 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6731 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6732 nj->pd.src = &nj->src; 6733 // New destination address! 6734 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6735 nj->pd.dst = &nj->dst; 6736 nj->m = j->m; 6737 nj->op = j->op; 6738 6739 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6740 } 6741 PF_SCTP_ENDPOINTS_UNLOCK(); 6742 6743 break; 6744 } 6745 case SCTP_DEL_IP_ADDRESS: { 6746 struct pf_state_key_cmp key; 6747 uint8_t psrc; 6748 6749 bzero(&key, sizeof(key)); 6750 key.af = j->pd.af; 6751 key.proto = IPPROTO_SCTP; 6752 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6753 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6754 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6755 key.port[0] = j->pd.hdr.sctp.src_port; 6756 key.port[1] = j->pd.hdr.sctp.dest_port; 6757 } else { /* stack side, reverse */ 6758 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6759 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6760 key.port[1] = j->pd.hdr.sctp.src_port; 6761 key.port[0] = j->pd.hdr.sctp.dest_port; 6762 } 6763 6764 sm = pf_find_state(kif, &key, j->pd.dir); 6765 if (sm != NULL) { 6766 PF_STATE_LOCK_ASSERT(sm); 6767 if (j->pd.dir == sm->direction) { 6768 psrc = PF_PEER_SRC; 6769 } else { 6770 psrc = PF_PEER_DST; 6771 } 6772 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6773 sm->timeout = PFTM_SCTP_CLOSING; 6774 PF_STATE_UNLOCK(sm); 6775 } 6776 break; 6777 default: 6778 panic("Unknown op %#x", j->op); 6779 } 6780 } 6781 6782 free: 6783 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6784 free(j, M_PFTEMP); 6785 } 6786 6787 /* We may have inserted extra work while processing the list. */ 6788 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6789 do_extra = false; 6790 goto again; 6791 } 6792 } 6793 6794 static int 6795 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6796 struct pfi_kkif *kif, int op) 6797 { 6798 int off = 0; 6799 struct pf_sctp_multihome_job *job; 6800 6801 while (off < len) { 6802 struct sctp_paramhdr h; 6803 6804 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6805 pd->af)) 6806 return (PF_DROP); 6807 6808 /* Parameters are at least 4 bytes. */ 6809 if (ntohs(h.param_length) < 4) 6810 return (PF_DROP); 6811 6812 switch (ntohs(h.param_type)) { 6813 case SCTP_IPV4_ADDRESS: { 6814 struct in_addr t; 6815 6816 if (ntohs(h.param_length) != 6817 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6818 return (PF_DROP); 6819 6820 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6821 NULL, NULL, pd->af)) 6822 return (PF_DROP); 6823 6824 if (in_nullhost(t)) 6825 t.s_addr = pd->src->v4.s_addr; 6826 6827 /* 6828 * We hold the state lock (idhash) here, which means 6829 * that we can't acquire the keyhash, or we'll get a 6830 * LOR (and potentially double-lock things too). We also 6831 * can't release the state lock here, so instead we'll 6832 * enqueue this for async handling. 6833 * There's a relatively small race here, in that a 6834 * packet using the new addresses could arrive already, 6835 * but that's just though luck for it. 6836 */ 6837 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6838 if (! job) 6839 return (PF_DROP); 6840 6841 memcpy(&job->pd, pd, sizeof(*pd)); 6842 6843 // New source address! 6844 memcpy(&job->src, &t, sizeof(t)); 6845 job->pd.src = &job->src; 6846 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6847 job->pd.dst = &job->dst; 6848 job->m = m; 6849 job->op = op; 6850 6851 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6852 break; 6853 } 6854 #ifdef INET6 6855 case SCTP_IPV6_ADDRESS: { 6856 struct in6_addr t; 6857 6858 if (ntohs(h.param_length) != 6859 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6860 return (PF_DROP); 6861 6862 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6863 NULL, NULL, pd->af)) 6864 return (PF_DROP); 6865 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6866 break; 6867 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6868 memcpy(&t, &pd->src->v6, sizeof(t)); 6869 6870 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6871 if (! job) 6872 return (PF_DROP); 6873 6874 memcpy(&job->pd, pd, sizeof(*pd)); 6875 memcpy(&job->src, &t, sizeof(t)); 6876 job->pd.src = &job->src; 6877 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6878 job->pd.dst = &job->dst; 6879 job->m = m; 6880 job->op = op; 6881 6882 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6883 break; 6884 } 6885 #endif 6886 case SCTP_ADD_IP_ADDRESS: { 6887 int ret; 6888 struct sctp_asconf_paramhdr ah; 6889 6890 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6891 NULL, NULL, pd->af)) 6892 return (PF_DROP); 6893 6894 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6895 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6896 SCTP_ADD_IP_ADDRESS); 6897 if (ret != PF_PASS) 6898 return (ret); 6899 break; 6900 } 6901 case SCTP_DEL_IP_ADDRESS: { 6902 int ret; 6903 struct sctp_asconf_paramhdr ah; 6904 6905 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6906 NULL, NULL, pd->af)) 6907 return (PF_DROP); 6908 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6909 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6910 SCTP_DEL_IP_ADDRESS); 6911 if (ret != PF_PASS) 6912 return (ret); 6913 break; 6914 } 6915 default: 6916 break; 6917 } 6918 6919 off += roundup(ntohs(h.param_length), 4); 6920 } 6921 6922 return (PF_PASS); 6923 } 6924 int 6925 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6926 struct pfi_kkif *kif) 6927 { 6928 start += sizeof(struct sctp_init_chunk); 6929 len -= sizeof(struct sctp_init_chunk); 6930 6931 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6932 } 6933 6934 int 6935 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6936 struct pf_pdesc *pd, struct pfi_kkif *kif) 6937 { 6938 start += sizeof(struct sctp_asconf_chunk); 6939 len -= sizeof(struct sctp_asconf_chunk); 6940 6941 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6942 } 6943 6944 int 6945 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 6946 struct pf_kstate **state, struct mbuf *m, int off, int direction, 6947 struct pfi_kkif *kif, u_int16_t icmpid, u_int16_t type, int icmp_dir, 6948 int *iidx, int multi, int inner) 6949 { 6950 key->af = pd->af; 6951 key->proto = pd->proto; 6952 if (icmp_dir == PF_IN) { 6953 *iidx = pd->sidx; 6954 key->port[pd->sidx] = icmpid; 6955 key->port[pd->didx] = type; 6956 } else { 6957 *iidx = pd->didx; 6958 key->port[pd->sidx] = type; 6959 key->port[pd->didx] = icmpid; 6960 } 6961 if (pf_state_key_addr_setup(pd, m, off, key, pd->sidx, pd->src, 6962 pd->didx, pd->dst, multi)) 6963 return (PF_DROP); 6964 6965 STATE_LOOKUP(kif, key, *state, pd); 6966 6967 if ((*state)->state_flags & PFSTATE_SLOPPY) 6968 return (-1); 6969 6970 /* Is this ICMP message flowing in right direction? */ 6971 if ((*state)->rule.ptr->type && 6972 (((!inner && (*state)->direction == direction) || 6973 (inner && (*state)->direction != direction)) ? 6974 PF_IN : PF_OUT) != icmp_dir) { 6975 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6976 printf("pf: icmp type %d in wrong direction (%d): ", 6977 ntohs(type), icmp_dir); 6978 pf_print_state(*state); 6979 printf("\n"); 6980 } 6981 PF_STATE_UNLOCK(*state); 6982 *state = NULL; 6983 return (PF_DROP); 6984 } 6985 return (-1); 6986 } 6987 6988 static int 6989 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6990 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason) 6991 { 6992 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6993 u_int16_t *icmpsum, virtual_id, virtual_type; 6994 u_int8_t icmptype, icmpcode; 6995 int icmp_dir, iidx, ret, multi; 6996 struct pf_state_key_cmp key; 6997 #ifdef INET 6998 u_int16_t icmpid; 6999 #endif 7000 7001 MPASS(*state == NULL); 7002 7003 bzero(&key, sizeof(key)); 7004 switch (pd->proto) { 7005 #ifdef INET 7006 case IPPROTO_ICMP: 7007 icmptype = pd->hdr.icmp.icmp_type; 7008 icmpcode = pd->hdr.icmp.icmp_code; 7009 icmpid = pd->hdr.icmp.icmp_id; 7010 icmpsum = &pd->hdr.icmp.icmp_cksum; 7011 break; 7012 #endif /* INET */ 7013 #ifdef INET6 7014 case IPPROTO_ICMPV6: 7015 icmptype = pd->hdr.icmp6.icmp6_type; 7016 icmpcode = pd->hdr.icmp6.icmp6_code; 7017 #ifdef INET 7018 icmpid = pd->hdr.icmp6.icmp6_id; 7019 #endif 7020 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7021 break; 7022 #endif /* INET6 */ 7023 } 7024 7025 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi, 7026 &virtual_id, &virtual_type) == 0) { 7027 /* 7028 * ICMP query/reply message not related to a TCP/UDP packet. 7029 * Search for an ICMP state. 7030 */ 7031 ret = pf_icmp_state_lookup(&key, pd, state, m, off, pd->dir, 7032 kif, virtual_id, virtual_type, icmp_dir, &iidx, 7033 PF_ICMP_MULTI_NONE, 0); 7034 if (ret >= 0) { 7035 MPASS(*state == NULL); 7036 if (ret == PF_DROP && pd->af == AF_INET6 && 7037 icmp_dir == PF_OUT) { 7038 ret = pf_icmp_state_lookup(&key, pd, state, m, off, 7039 pd->dir, kif, virtual_id, virtual_type, 7040 icmp_dir, &iidx, multi, 0); 7041 if (ret >= 0) { 7042 MPASS(*state == NULL); 7043 return (ret); 7044 } 7045 } else 7046 return (ret); 7047 } 7048 7049 (*state)->expire = pf_get_uptime(); 7050 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7051 7052 /* translate source/destination address, if necessary */ 7053 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7054 struct pf_state_key *nk = (*state)->key[pd->didx]; 7055 7056 switch (pd->af) { 7057 #ifdef INET 7058 case AF_INET: 7059 if (PF_ANEQ(pd->src, 7060 &nk->addr[pd->sidx], AF_INET)) 7061 pf_change_a(&saddr->v4.s_addr, 7062 pd->ip_sum, 7063 nk->addr[pd->sidx].v4.s_addr, 0); 7064 7065 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 7066 AF_INET)) 7067 pf_change_a(&daddr->v4.s_addr, 7068 pd->ip_sum, 7069 nk->addr[pd->didx].v4.s_addr, 0); 7070 7071 if (nk->port[iidx] != 7072 pd->hdr.icmp.icmp_id) { 7073 pd->hdr.icmp.icmp_cksum = 7074 pf_cksum_fixup( 7075 pd->hdr.icmp.icmp_cksum, icmpid, 7076 nk->port[iidx], 0); 7077 pd->hdr.icmp.icmp_id = 7078 nk->port[iidx]; 7079 } 7080 7081 m_copyback(m, off, ICMP_MINLEN, 7082 (caddr_t )&pd->hdr.icmp); 7083 break; 7084 #endif /* INET */ 7085 #ifdef INET6 7086 case AF_INET6: 7087 if (PF_ANEQ(pd->src, 7088 &nk->addr[pd->sidx], AF_INET6)) 7089 pf_change_a6(saddr, 7090 &pd->hdr.icmp6.icmp6_cksum, 7091 &nk->addr[pd->sidx], 0); 7092 7093 if (PF_ANEQ(pd->dst, 7094 &nk->addr[pd->didx], AF_INET6)) 7095 pf_change_a6(daddr, 7096 &pd->hdr.icmp6.icmp6_cksum, 7097 &nk->addr[pd->didx], 0); 7098 7099 m_copyback(m, off, sizeof(struct icmp6_hdr), 7100 (caddr_t )&pd->hdr.icmp6); 7101 break; 7102 #endif /* INET6 */ 7103 } 7104 } 7105 return (PF_PASS); 7106 7107 } else { 7108 /* 7109 * ICMP error message in response to a TCP/UDP packet. 7110 * Extract the inner TCP/UDP header and search for that state. 7111 */ 7112 7113 struct pf_pdesc pd2; 7114 bzero(&pd2, sizeof pd2); 7115 #ifdef INET 7116 struct ip h2; 7117 #endif /* INET */ 7118 #ifdef INET6 7119 struct ip6_hdr h2_6; 7120 int terminal = 0; 7121 #endif /* INET6 */ 7122 int ipoff2 = 0; 7123 int off2 = 0; 7124 7125 pd2.af = pd->af; 7126 pd2.dir = pd->dir; 7127 /* Payload packet is from the opposite direction. */ 7128 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7129 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7130 switch (pd->af) { 7131 #ifdef INET 7132 case AF_INET: 7133 /* offset of h2 in mbuf chain */ 7134 ipoff2 = off + ICMP_MINLEN; 7135 7136 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 7137 NULL, reason, pd2.af)) { 7138 DPFPRINTF(PF_DEBUG_MISC, 7139 ("pf: ICMP error message too short " 7140 "(ip)\n")); 7141 return (PF_DROP); 7142 } 7143 /* 7144 * ICMP error messages don't refer to non-first 7145 * fragments 7146 */ 7147 if (h2.ip_off & htons(IP_OFFMASK)) { 7148 REASON_SET(reason, PFRES_FRAG); 7149 return (PF_DROP); 7150 } 7151 7152 /* offset of protocol header that follows h2 */ 7153 off2 = ipoff2 + (h2.ip_hl << 2); 7154 7155 pd2.proto = h2.ip_p; 7156 pd2.src = (struct pf_addr *)&h2.ip_src; 7157 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7158 pd2.ip_sum = &h2.ip_sum; 7159 break; 7160 #endif /* INET */ 7161 #ifdef INET6 7162 case AF_INET6: 7163 ipoff2 = off + sizeof(struct icmp6_hdr); 7164 7165 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 7166 NULL, reason, pd2.af)) { 7167 DPFPRINTF(PF_DEBUG_MISC, 7168 ("pf: ICMP error message too short " 7169 "(ip6)\n")); 7170 return (PF_DROP); 7171 } 7172 pd2.proto = h2_6.ip6_nxt; 7173 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7174 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7175 pd2.ip_sum = NULL; 7176 off2 = ipoff2 + sizeof(h2_6); 7177 do { 7178 switch (pd2.proto) { 7179 case IPPROTO_FRAGMENT: 7180 /* 7181 * ICMPv6 error messages for 7182 * non-first fragments 7183 */ 7184 REASON_SET(reason, PFRES_FRAG); 7185 return (PF_DROP); 7186 case IPPROTO_AH: 7187 case IPPROTO_HOPOPTS: 7188 case IPPROTO_ROUTING: 7189 case IPPROTO_DSTOPTS: { 7190 /* get next header and header length */ 7191 struct ip6_ext opt6; 7192 7193 if (!pf_pull_hdr(m, off2, &opt6, 7194 sizeof(opt6), NULL, reason, 7195 pd2.af)) { 7196 DPFPRINTF(PF_DEBUG_MISC, 7197 ("pf: ICMPv6 short opt\n")); 7198 return (PF_DROP); 7199 } 7200 if (pd2.proto == IPPROTO_AH) 7201 off2 += (opt6.ip6e_len + 2) * 4; 7202 else 7203 off2 += (opt6.ip6e_len + 1) * 8; 7204 pd2.proto = opt6.ip6e_nxt; 7205 /* goto the next header */ 7206 break; 7207 } 7208 default: 7209 terminal++; 7210 break; 7211 } 7212 } while (!terminal); 7213 break; 7214 #endif /* INET6 */ 7215 } 7216 7217 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7218 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7219 printf("pf: BAD ICMP %d:%d outer dst: ", 7220 icmptype, icmpcode); 7221 pf_print_host(pd->src, 0, pd->af); 7222 printf(" -> "); 7223 pf_print_host(pd->dst, 0, pd->af); 7224 printf(" inner src: "); 7225 pf_print_host(pd2.src, 0, pd2.af); 7226 printf(" -> "); 7227 pf_print_host(pd2.dst, 0, pd2.af); 7228 printf("\n"); 7229 } 7230 REASON_SET(reason, PFRES_BADSTATE); 7231 return (PF_DROP); 7232 } 7233 7234 switch (pd2.proto) { 7235 case IPPROTO_TCP: { 7236 struct tcphdr th; 7237 u_int32_t seq; 7238 struct pf_state_peer *src, *dst; 7239 u_int8_t dws; 7240 int copyback = 0; 7241 7242 /* 7243 * Only the first 8 bytes of the TCP header can be 7244 * expected. Don't access any TCP header fields after 7245 * th_seq, an ackskew test is not possible. 7246 */ 7247 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 7248 pd2.af)) { 7249 DPFPRINTF(PF_DEBUG_MISC, 7250 ("pf: ICMP error message too short " 7251 "(tcp)\n")); 7252 return (PF_DROP); 7253 } 7254 7255 key.af = pd2.af; 7256 key.proto = IPPROTO_TCP; 7257 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7258 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7259 key.port[pd2.sidx] = th.th_sport; 7260 key.port[pd2.didx] = th.th_dport; 7261 7262 STATE_LOOKUP(kif, &key, *state, pd); 7263 7264 if (pd->dir == (*state)->direction) { 7265 src = &(*state)->dst; 7266 dst = &(*state)->src; 7267 } else { 7268 src = &(*state)->src; 7269 dst = &(*state)->dst; 7270 } 7271 7272 if (src->wscale && dst->wscale) 7273 dws = dst->wscale & PF_WSCALE_MASK; 7274 else 7275 dws = 0; 7276 7277 /* Demodulate sequence number */ 7278 seq = ntohl(th.th_seq) - src->seqdiff; 7279 if (src->seqdiff) { 7280 pf_change_a(&th.th_seq, icmpsum, 7281 htonl(seq), 0); 7282 copyback = 1; 7283 } 7284 7285 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 7286 (!SEQ_GEQ(src->seqhi, seq) || 7287 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 7288 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7289 printf("pf: BAD ICMP %d:%d ", 7290 icmptype, icmpcode); 7291 pf_print_host(pd->src, 0, pd->af); 7292 printf(" -> "); 7293 pf_print_host(pd->dst, 0, pd->af); 7294 printf(" state: "); 7295 pf_print_state(*state); 7296 printf(" seq=%u\n", seq); 7297 } 7298 REASON_SET(reason, PFRES_BADSTATE); 7299 return (PF_DROP); 7300 } else { 7301 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7302 printf("pf: OK ICMP %d:%d ", 7303 icmptype, icmpcode); 7304 pf_print_host(pd->src, 0, pd->af); 7305 printf(" -> "); 7306 pf_print_host(pd->dst, 0, pd->af); 7307 printf(" state: "); 7308 pf_print_state(*state); 7309 printf(" seq=%u\n", seq); 7310 } 7311 } 7312 7313 /* translate source/destination address, if necessary */ 7314 if ((*state)->key[PF_SK_WIRE] != 7315 (*state)->key[PF_SK_STACK]) { 7316 struct pf_state_key *nk = 7317 (*state)->key[pd->didx]; 7318 7319 if (PF_ANEQ(pd2.src, 7320 &nk->addr[pd2.sidx], pd2.af) || 7321 nk->port[pd2.sidx] != th.th_sport) 7322 pf_change_icmp(pd2.src, &th.th_sport, 7323 daddr, &nk->addr[pd2.sidx], 7324 nk->port[pd2.sidx], NULL, 7325 pd2.ip_sum, icmpsum, 7326 pd->ip_sum, 0, pd2.af); 7327 7328 if (PF_ANEQ(pd2.dst, 7329 &nk->addr[pd2.didx], pd2.af) || 7330 nk->port[pd2.didx] != th.th_dport) 7331 pf_change_icmp(pd2.dst, &th.th_dport, 7332 saddr, &nk->addr[pd2.didx], 7333 nk->port[pd2.didx], NULL, 7334 pd2.ip_sum, icmpsum, 7335 pd->ip_sum, 0, pd2.af); 7336 copyback = 1; 7337 } 7338 7339 if (copyback) { 7340 switch (pd2.af) { 7341 #ifdef INET 7342 case AF_INET: 7343 m_copyback(m, off, ICMP_MINLEN, 7344 (caddr_t )&pd->hdr.icmp); 7345 m_copyback(m, ipoff2, sizeof(h2), 7346 (caddr_t )&h2); 7347 break; 7348 #endif /* INET */ 7349 #ifdef INET6 7350 case AF_INET6: 7351 m_copyback(m, off, 7352 sizeof(struct icmp6_hdr), 7353 (caddr_t )&pd->hdr.icmp6); 7354 m_copyback(m, ipoff2, sizeof(h2_6), 7355 (caddr_t )&h2_6); 7356 break; 7357 #endif /* INET6 */ 7358 } 7359 m_copyback(m, off2, 8, (caddr_t)&th); 7360 } 7361 7362 return (PF_PASS); 7363 break; 7364 } 7365 case IPPROTO_UDP: { 7366 struct udphdr uh; 7367 7368 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 7369 NULL, reason, pd2.af)) { 7370 DPFPRINTF(PF_DEBUG_MISC, 7371 ("pf: ICMP error message too short " 7372 "(udp)\n")); 7373 return (PF_DROP); 7374 } 7375 7376 key.af = pd2.af; 7377 key.proto = IPPROTO_UDP; 7378 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7379 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7380 key.port[pd2.sidx] = uh.uh_sport; 7381 key.port[pd2.didx] = uh.uh_dport; 7382 7383 STATE_LOOKUP(kif, &key, *state, pd); 7384 7385 /* translate source/destination address, if necessary */ 7386 if ((*state)->key[PF_SK_WIRE] != 7387 (*state)->key[PF_SK_STACK]) { 7388 struct pf_state_key *nk = 7389 (*state)->key[pd->didx]; 7390 7391 if (PF_ANEQ(pd2.src, 7392 &nk->addr[pd2.sidx], pd2.af) || 7393 nk->port[pd2.sidx] != uh.uh_sport) 7394 pf_change_icmp(pd2.src, &uh.uh_sport, 7395 daddr, &nk->addr[pd2.sidx], 7396 nk->port[pd2.sidx], &uh.uh_sum, 7397 pd2.ip_sum, icmpsum, 7398 pd->ip_sum, 1, pd2.af); 7399 7400 if (PF_ANEQ(pd2.dst, 7401 &nk->addr[pd2.didx], pd2.af) || 7402 nk->port[pd2.didx] != uh.uh_dport) 7403 pf_change_icmp(pd2.dst, &uh.uh_dport, 7404 saddr, &nk->addr[pd2.didx], 7405 nk->port[pd2.didx], &uh.uh_sum, 7406 pd2.ip_sum, icmpsum, 7407 pd->ip_sum, 1, pd2.af); 7408 7409 switch (pd2.af) { 7410 #ifdef INET 7411 case AF_INET: 7412 m_copyback(m, off, ICMP_MINLEN, 7413 (caddr_t )&pd->hdr.icmp); 7414 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7415 break; 7416 #endif /* INET */ 7417 #ifdef INET6 7418 case AF_INET6: 7419 m_copyback(m, off, 7420 sizeof(struct icmp6_hdr), 7421 (caddr_t )&pd->hdr.icmp6); 7422 m_copyback(m, ipoff2, sizeof(h2_6), 7423 (caddr_t )&h2_6); 7424 break; 7425 #endif /* INET6 */ 7426 } 7427 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 7428 } 7429 return (PF_PASS); 7430 break; 7431 } 7432 #ifdef INET 7433 case IPPROTO_ICMP: { 7434 struct icmp *iih = &pd2.hdr.icmp; 7435 7436 if (!pf_pull_hdr(m, off2, iih, ICMP_MINLEN, 7437 NULL, reason, pd2.af)) { 7438 DPFPRINTF(PF_DEBUG_MISC, 7439 ("pf: ICMP error message too short i" 7440 "(icmp)\n")); 7441 return (PF_DROP); 7442 } 7443 7444 icmpid = iih->icmp_id; 7445 pf_icmp_mapping(&pd2, iih->icmp_type, 7446 &icmp_dir, &multi, &virtual_id, &virtual_type); 7447 7448 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7449 pd2.dir, kif, virtual_id, virtual_type, 7450 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7451 if (ret >= 0) { 7452 MPASS(*state == NULL); 7453 return (ret); 7454 } 7455 7456 /* translate source/destination address, if necessary */ 7457 if ((*state)->key[PF_SK_WIRE] != 7458 (*state)->key[PF_SK_STACK]) { 7459 struct pf_state_key *nk = 7460 (*state)->key[pd->didx]; 7461 7462 if (PF_ANEQ(pd2.src, 7463 &nk->addr[pd2.sidx], pd2.af) || 7464 (virtual_type == htons(ICMP_ECHO) && 7465 nk->port[iidx] != iih->icmp_id)) 7466 pf_change_icmp(pd2.src, 7467 (virtual_type == htons(ICMP_ECHO)) ? 7468 &iih->icmp_id : NULL, 7469 daddr, &nk->addr[pd2.sidx], 7470 (virtual_type == htons(ICMP_ECHO)) ? 7471 nk->port[iidx] : 0, NULL, 7472 pd2.ip_sum, icmpsum, 7473 pd->ip_sum, 0, AF_INET); 7474 7475 if (PF_ANEQ(pd2.dst, 7476 &nk->addr[pd2.didx], pd2.af)) 7477 pf_change_icmp(pd2.dst, NULL, NULL, 7478 &nk->addr[pd2.didx], 0, NULL, 7479 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 7480 AF_INET); 7481 7482 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 7483 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7484 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)iih); 7485 } 7486 return (PF_PASS); 7487 break; 7488 } 7489 #endif /* INET */ 7490 #ifdef INET6 7491 case IPPROTO_ICMPV6: { 7492 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 7493 7494 if (!pf_pull_hdr(m, off2, iih, 7495 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 7496 DPFPRINTF(PF_DEBUG_MISC, 7497 ("pf: ICMP error message too short " 7498 "(icmp6)\n")); 7499 return (PF_DROP); 7500 } 7501 7502 pf_icmp_mapping(&pd2, iih->icmp6_type, 7503 &icmp_dir, &multi, &virtual_id, &virtual_type); 7504 7505 ret = pf_icmp_state_lookup(&key, &pd2, state, m, off, 7506 pd->dir, kif, virtual_id, virtual_type, 7507 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1); 7508 if (ret >= 0) { 7509 MPASS(*state == NULL); 7510 if (ret == PF_DROP && pd2.af == AF_INET6 && 7511 icmp_dir == PF_OUT) { 7512 ret = pf_icmp_state_lookup(&key, &pd2, 7513 state, m, off, pd->dir, kif, 7514 virtual_id, virtual_type, 7515 icmp_dir, &iidx, multi, 1); 7516 if (ret >= 0) { 7517 MPASS(*state == NULL); 7518 return (ret); 7519 } 7520 } else 7521 return (ret); 7522 } 7523 7524 /* translate source/destination address, if necessary */ 7525 if ((*state)->key[PF_SK_WIRE] != 7526 (*state)->key[PF_SK_STACK]) { 7527 struct pf_state_key *nk = 7528 (*state)->key[pd->didx]; 7529 7530 if (PF_ANEQ(pd2.src, 7531 &nk->addr[pd2.sidx], pd2.af) || 7532 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 7533 nk->port[pd2.sidx] != iih->icmp6_id)) 7534 pf_change_icmp(pd2.src, 7535 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7536 ? &iih->icmp6_id : NULL, 7537 daddr, &nk->addr[pd2.sidx], 7538 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 7539 ? nk->port[iidx] : 0, NULL, 7540 pd2.ip_sum, icmpsum, 7541 pd->ip_sum, 0, AF_INET6); 7542 7543 if (PF_ANEQ(pd2.dst, 7544 &nk->addr[pd2.didx], pd2.af)) 7545 pf_change_icmp(pd2.dst, NULL, NULL, 7546 &nk->addr[pd2.didx], 0, NULL, 7547 pd2.ip_sum, icmpsum, 7548 pd->ip_sum, 0, AF_INET6); 7549 7550 m_copyback(m, off, sizeof(struct icmp6_hdr), 7551 (caddr_t)&pd->hdr.icmp6); 7552 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 7553 m_copyback(m, off2, sizeof(struct icmp6_hdr), 7554 (caddr_t)iih); 7555 } 7556 return (PF_PASS); 7557 break; 7558 } 7559 #endif /* INET6 */ 7560 default: { 7561 key.af = pd2.af; 7562 key.proto = pd2.proto; 7563 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7564 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7565 key.port[0] = key.port[1] = 0; 7566 7567 STATE_LOOKUP(kif, &key, *state, pd); 7568 7569 /* translate source/destination address, if necessary */ 7570 if ((*state)->key[PF_SK_WIRE] != 7571 (*state)->key[PF_SK_STACK]) { 7572 struct pf_state_key *nk = 7573 (*state)->key[pd->didx]; 7574 7575 if (PF_ANEQ(pd2.src, 7576 &nk->addr[pd2.sidx], pd2.af)) 7577 pf_change_icmp(pd2.src, NULL, daddr, 7578 &nk->addr[pd2.sidx], 0, NULL, 7579 pd2.ip_sum, icmpsum, 7580 pd->ip_sum, 0, pd2.af); 7581 7582 if (PF_ANEQ(pd2.dst, 7583 &nk->addr[pd2.didx], pd2.af)) 7584 pf_change_icmp(pd2.dst, NULL, saddr, 7585 &nk->addr[pd2.didx], 0, NULL, 7586 pd2.ip_sum, icmpsum, 7587 pd->ip_sum, 0, pd2.af); 7588 7589 switch (pd2.af) { 7590 #ifdef INET 7591 case AF_INET: 7592 m_copyback(m, off, ICMP_MINLEN, 7593 (caddr_t)&pd->hdr.icmp); 7594 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7595 break; 7596 #endif /* INET */ 7597 #ifdef INET6 7598 case AF_INET6: 7599 m_copyback(m, off, 7600 sizeof(struct icmp6_hdr), 7601 (caddr_t )&pd->hdr.icmp6); 7602 m_copyback(m, ipoff2, sizeof(h2_6), 7603 (caddr_t )&h2_6); 7604 break; 7605 #endif /* INET6 */ 7606 } 7607 } 7608 return (PF_PASS); 7609 break; 7610 } 7611 } 7612 } 7613 } 7614 7615 static int 7616 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7617 struct mbuf *m, struct pf_pdesc *pd) 7618 { 7619 struct pf_state_peer *src, *dst; 7620 struct pf_state_key_cmp key; 7621 uint8_t psrc, pdst; 7622 7623 bzero(&key, sizeof(key)); 7624 key.af = pd->af; 7625 key.proto = pd->proto; 7626 if (pd->dir == PF_IN) { 7627 PF_ACPY(&key.addr[0], pd->src, key.af); 7628 PF_ACPY(&key.addr[1], pd->dst, key.af); 7629 key.port[0] = key.port[1] = 0; 7630 } else { 7631 PF_ACPY(&key.addr[1], pd->src, key.af); 7632 PF_ACPY(&key.addr[0], pd->dst, key.af); 7633 key.port[1] = key.port[0] = 0; 7634 } 7635 7636 STATE_LOOKUP(kif, &key, *state, pd); 7637 7638 if (pd->dir == (*state)->direction) { 7639 src = &(*state)->src; 7640 dst = &(*state)->dst; 7641 psrc = PF_PEER_SRC; 7642 pdst = PF_PEER_DST; 7643 } else { 7644 src = &(*state)->dst; 7645 dst = &(*state)->src; 7646 psrc = PF_PEER_DST; 7647 pdst = PF_PEER_SRC; 7648 } 7649 7650 /* update states */ 7651 if (src->state < PFOTHERS_SINGLE) 7652 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7653 if (dst->state == PFOTHERS_SINGLE) 7654 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7655 7656 /* update expire time */ 7657 (*state)->expire = pf_get_uptime(); 7658 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7659 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7660 else 7661 (*state)->timeout = PFTM_OTHER_SINGLE; 7662 7663 /* translate source/destination address, if necessary */ 7664 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7665 struct pf_state_key *nk = (*state)->key[pd->didx]; 7666 7667 KASSERT(nk, ("%s: nk is null", __func__)); 7668 KASSERT(pd, ("%s: pd is null", __func__)); 7669 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7670 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7671 switch (pd->af) { 7672 #ifdef INET 7673 case AF_INET: 7674 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7675 pf_change_a(&pd->src->v4.s_addr, 7676 pd->ip_sum, 7677 nk->addr[pd->sidx].v4.s_addr, 7678 0); 7679 7680 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7681 pf_change_a(&pd->dst->v4.s_addr, 7682 pd->ip_sum, 7683 nk->addr[pd->didx].v4.s_addr, 7684 0); 7685 7686 break; 7687 #endif /* INET */ 7688 #ifdef INET6 7689 case AF_INET6: 7690 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) 7691 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7692 7693 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) 7694 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7695 #endif /* INET6 */ 7696 } 7697 } 7698 return (PF_PASS); 7699 } 7700 7701 /* 7702 * ipoff and off are measured from the start of the mbuf chain. 7703 * h must be at "ipoff" on the mbuf chain. 7704 */ 7705 void * 7706 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 7707 u_short *actionp, u_short *reasonp, sa_family_t af) 7708 { 7709 switch (af) { 7710 #ifdef INET 7711 case AF_INET: { 7712 const struct ip *h = mtod(m, struct ip *); 7713 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7714 7715 if (fragoff) { 7716 if (fragoff >= len) 7717 ACTION_SET(actionp, PF_PASS); 7718 else { 7719 ACTION_SET(actionp, PF_DROP); 7720 REASON_SET(reasonp, PFRES_FRAG); 7721 } 7722 return (NULL); 7723 } 7724 if (m->m_pkthdr.len < off + len || 7725 ntohs(h->ip_len) < off + len) { 7726 ACTION_SET(actionp, PF_DROP); 7727 REASON_SET(reasonp, PFRES_SHORT); 7728 return (NULL); 7729 } 7730 break; 7731 } 7732 #endif /* INET */ 7733 #ifdef INET6 7734 case AF_INET6: { 7735 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7736 7737 if (m->m_pkthdr.len < off + len || 7738 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7739 (unsigned)(off + len)) { 7740 ACTION_SET(actionp, PF_DROP); 7741 REASON_SET(reasonp, PFRES_SHORT); 7742 return (NULL); 7743 } 7744 break; 7745 } 7746 #endif /* INET6 */ 7747 } 7748 m_copydata(m, off, len, p); 7749 return (p); 7750 } 7751 7752 int 7753 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7754 int rtableid) 7755 { 7756 struct ifnet *ifp; 7757 7758 /* 7759 * Skip check for addresses with embedded interface scope, 7760 * as they would always match anyway. 7761 */ 7762 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7763 return (1); 7764 7765 if (af != AF_INET && af != AF_INET6) 7766 return (0); 7767 7768 if (kif == V_pfi_all) 7769 return (1); 7770 7771 /* Skip checks for ipsec interfaces */ 7772 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7773 return (1); 7774 7775 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7776 7777 switch (af) { 7778 #ifdef INET6 7779 case AF_INET6: 7780 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7781 ifp)); 7782 #endif 7783 #ifdef INET 7784 case AF_INET: 7785 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7786 ifp)); 7787 #endif 7788 } 7789 7790 return (0); 7791 } 7792 7793 #ifdef INET 7794 static void 7795 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7796 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7797 { 7798 struct mbuf *m0, *m1, *md; 7799 struct sockaddr_in dst; 7800 struct ip *ip; 7801 struct pfi_kkif *nkif = NULL; 7802 struct ifnet *ifp = NULL; 7803 struct pf_addr naddr; 7804 struct pf_ksrc_node *sn = NULL; 7805 int error = 0; 7806 uint16_t ip_len, ip_off; 7807 uint16_t tmp; 7808 int r_rt, r_dir; 7809 7810 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7811 7812 if (s) { 7813 r_rt = s->rt; 7814 r_dir = s->direction; 7815 } else { 7816 r_rt = r->rt; 7817 r_dir = r->direction; 7818 } 7819 7820 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7821 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7822 __func__)); 7823 7824 if ((pd->pf_mtag == NULL && 7825 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7826 pd->pf_mtag->routed++ > 3) { 7827 m0 = *m; 7828 *m = NULL; 7829 goto bad_locked; 7830 } 7831 7832 if (r_rt == PF_DUPTO) { 7833 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7834 if (s == NULL) { 7835 ifp = r->rpool.cur->kif ? 7836 r->rpool.cur->kif->pfik_ifp : NULL; 7837 } else { 7838 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7839 /* If pfsync'd */ 7840 if (ifp == NULL && r->rpool.cur != NULL) 7841 ifp = r->rpool.cur->kif ? 7842 r->rpool.cur->kif->pfik_ifp : NULL; 7843 PF_STATE_UNLOCK(s); 7844 } 7845 if (ifp == oifp) { 7846 /* When the 2nd interface is not skipped */ 7847 return; 7848 } else { 7849 m0 = *m; 7850 *m = NULL; 7851 goto bad; 7852 } 7853 } else { 7854 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7855 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7856 if (s) 7857 PF_STATE_UNLOCK(s); 7858 return; 7859 } 7860 } 7861 } else { 7862 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7863 pf_dummynet(pd, s, r, m); 7864 if (s) 7865 PF_STATE_UNLOCK(s); 7866 return; 7867 } 7868 m0 = *m; 7869 } 7870 7871 ip = mtod(m0, struct ip *); 7872 7873 bzero(&dst, sizeof(dst)); 7874 dst.sin_family = AF_INET; 7875 dst.sin_len = sizeof(dst); 7876 dst.sin_addr = ip->ip_dst; 7877 7878 bzero(&naddr, sizeof(naddr)); 7879 7880 if (s == NULL) { 7881 if (TAILQ_EMPTY(&r->rpool.list)) { 7882 DPFPRINTF(PF_DEBUG_URGENT, 7883 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7884 goto bad_locked; 7885 } 7886 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7887 &naddr, &nkif, NULL, &sn); 7888 if (!PF_AZERO(&naddr, AF_INET)) 7889 dst.sin_addr.s_addr = naddr.v4.s_addr; 7890 ifp = nkif ? nkif->pfik_ifp : NULL; 7891 } else { 7892 struct pfi_kkif *kif; 7893 7894 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7895 dst.sin_addr.s_addr = 7896 s->rt_addr.v4.s_addr; 7897 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7898 kif = s->rt_kif; 7899 /* If pfsync'd */ 7900 if (ifp == NULL && r->rpool.cur != NULL) { 7901 ifp = r->rpool.cur->kif ? 7902 r->rpool.cur->kif->pfik_ifp : NULL; 7903 kif = r->rpool.cur->kif; 7904 } 7905 if (ifp != NULL && kif != NULL && 7906 r->rule_flag & PFRULE_IFBOUND && 7907 r->rt == PF_REPLYTO && 7908 s->kif == V_pfi_all) { 7909 s->kif = kif; 7910 s->orig_kif = oifp->if_pf_kif; 7911 } 7912 7913 PF_STATE_UNLOCK(s); 7914 } 7915 7916 if (ifp == NULL) 7917 goto bad; 7918 7919 if (pd->dir == PF_IN) { 7920 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 7921 &pd->act) != PF_PASS) 7922 goto bad; 7923 else if (m0 == NULL) 7924 goto done; 7925 if (m0->m_len < sizeof(struct ip)) { 7926 DPFPRINTF(PF_DEBUG_URGENT, 7927 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7928 goto bad; 7929 } 7930 ip = mtod(m0, struct ip *); 7931 } 7932 7933 if (ifp->if_flags & IFF_LOOPBACK) 7934 m0->m_flags |= M_SKIP_FIREWALL; 7935 7936 ip_len = ntohs(ip->ip_len); 7937 ip_off = ntohs(ip->ip_off); 7938 7939 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7940 m0->m_pkthdr.csum_flags |= CSUM_IP; 7941 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7942 in_delayed_cksum(m0); 7943 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7944 } 7945 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7946 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7947 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7948 } 7949 7950 if (pd->dir == PF_IN) { 7951 /* 7952 * Make sure dummynet gets the correct direction, in case it needs to 7953 * re-inject later. 7954 */ 7955 pd->dir = PF_OUT; 7956 7957 /* 7958 * The following processing is actually the rest of the inbound processing, even 7959 * though we've marked it as outbound (so we don't look through dummynet) and it 7960 * happens after the outbound processing (pf_test(PF_OUT) above). 7961 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7962 * conclusion about what direction it's processing, and we can't fix it or it 7963 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7964 * decision will pick the right pipe, and everything will mostly work as expected. 7965 */ 7966 tmp = pd->act.dnrpipe; 7967 pd->act.dnrpipe = pd->act.dnpipe; 7968 pd->act.dnpipe = tmp; 7969 } 7970 7971 /* 7972 * If small enough for interface, or the interface will take 7973 * care of the fragmentation for us, we can just send directly. 7974 */ 7975 if (ip_len <= ifp->if_mtu || 7976 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7977 ip->ip_sum = 0; 7978 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7979 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7980 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7981 } 7982 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7983 7984 md = m0; 7985 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7986 if (md != NULL) 7987 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7988 goto done; 7989 } 7990 7991 /* Balk when DF bit is set or the interface didn't support TSO. */ 7992 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7993 error = EMSGSIZE; 7994 KMOD_IPSTAT_INC(ips_cantfrag); 7995 if (r_rt != PF_DUPTO) { 7996 if (s && pd->nat_rule != NULL) 7997 PACKET_UNDO_NAT(m0, pd, 7998 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7999 s); 8000 8001 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 8002 ifp->if_mtu); 8003 goto done; 8004 } else 8005 goto bad; 8006 } 8007 8008 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 8009 if (error) 8010 goto bad; 8011 8012 for (; m0; m0 = m1) { 8013 m1 = m0->m_nextpkt; 8014 m0->m_nextpkt = NULL; 8015 if (error == 0) { 8016 m_clrprotoflags(m0); 8017 md = m0; 8018 pd->pf_mtag = pf_find_mtag(md); 8019 error = pf_dummynet_route(pd, s, r, ifp, 8020 sintosa(&dst), &md); 8021 if (md != NULL) 8022 error = (*ifp->if_output)(ifp, md, 8023 sintosa(&dst), NULL); 8024 } else 8025 m_freem(m0); 8026 } 8027 8028 if (error == 0) 8029 KMOD_IPSTAT_INC(ips_fragmented); 8030 8031 done: 8032 if (r_rt != PF_DUPTO) 8033 *m = NULL; 8034 return; 8035 8036 bad_locked: 8037 if (s) 8038 PF_STATE_UNLOCK(s); 8039 bad: 8040 m_freem(m0); 8041 goto done; 8042 } 8043 #endif /* INET */ 8044 8045 #ifdef INET6 8046 static void 8047 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 8048 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8049 { 8050 struct mbuf *m0, *md; 8051 struct sockaddr_in6 dst; 8052 struct ip6_hdr *ip6; 8053 struct pfi_kkif *nkif = NULL; 8054 struct ifnet *ifp = NULL; 8055 struct pf_addr naddr; 8056 struct pf_ksrc_node *sn = NULL; 8057 int r_rt, r_dir; 8058 8059 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 8060 8061 if (s) { 8062 r_rt = s->rt; 8063 r_dir = s->direction; 8064 } else { 8065 r_rt = r->rt; 8066 r_dir = r->direction; 8067 } 8068 8069 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8070 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8071 __func__)); 8072 8073 if ((pd->pf_mtag == NULL && 8074 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 8075 pd->pf_mtag->routed++ > 3) { 8076 m0 = *m; 8077 *m = NULL; 8078 goto bad_locked; 8079 } 8080 8081 if (r_rt == PF_DUPTO) { 8082 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8083 if (s == NULL) { 8084 ifp = r->rpool.cur->kif ? 8085 r->rpool.cur->kif->pfik_ifp : NULL; 8086 } else { 8087 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8088 /* If pfsync'd */ 8089 if (ifp == NULL && r->rpool.cur != NULL) 8090 ifp = r->rpool.cur->kif ? 8091 r->rpool.cur->kif->pfik_ifp : NULL; 8092 PF_STATE_UNLOCK(s); 8093 } 8094 if (ifp == oifp) { 8095 /* When the 2nd interface is not skipped */ 8096 return; 8097 } else { 8098 m0 = *m; 8099 *m = NULL; 8100 goto bad; 8101 } 8102 } else { 8103 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8104 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 8105 if (s) 8106 PF_STATE_UNLOCK(s); 8107 return; 8108 } 8109 } 8110 } else { 8111 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8112 pf_dummynet(pd, s, r, m); 8113 if (s) 8114 PF_STATE_UNLOCK(s); 8115 return; 8116 } 8117 m0 = *m; 8118 } 8119 8120 ip6 = mtod(m0, struct ip6_hdr *); 8121 8122 bzero(&dst, sizeof(dst)); 8123 dst.sin6_family = AF_INET6; 8124 dst.sin6_len = sizeof(dst); 8125 dst.sin6_addr = ip6->ip6_dst; 8126 8127 bzero(&naddr, sizeof(naddr)); 8128 8129 if (s == NULL) { 8130 if (TAILQ_EMPTY(&r->rpool.list)) { 8131 DPFPRINTF(PF_DEBUG_URGENT, 8132 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 8133 goto bad_locked; 8134 } 8135 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 8136 &naddr, &nkif, NULL, &sn); 8137 if (!PF_AZERO(&naddr, AF_INET6)) 8138 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8139 &naddr, AF_INET6); 8140 ifp = nkif ? nkif->pfik_ifp : NULL; 8141 } else { 8142 struct pfi_kkif *kif; 8143 8144 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 8145 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 8146 &s->rt_addr, AF_INET6); 8147 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 8148 kif = s->rt_kif; 8149 /* If pfsync'd */ 8150 if (ifp == NULL && r->rpool.cur != NULL) { 8151 ifp = r->rpool.cur->kif ? 8152 r->rpool.cur->kif->pfik_ifp : NULL; 8153 kif = r->rpool.cur->kif; 8154 } 8155 if (ifp != NULL && kif != NULL && 8156 r->rule_flag & PFRULE_IFBOUND && 8157 r->rt == PF_REPLYTO && 8158 s->kif == V_pfi_all) { 8159 s->kif = kif; 8160 s->orig_kif = oifp->if_pf_kif; 8161 } 8162 } 8163 8164 if (s) 8165 PF_STATE_UNLOCK(s); 8166 8167 if (ifp == NULL) 8168 goto bad; 8169 8170 if (pd->dir == PF_IN) { 8171 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8172 &pd->act) != PF_PASS) 8173 goto bad; 8174 else if (m0 == NULL) 8175 goto done; 8176 if (m0->m_len < sizeof(struct ip6_hdr)) { 8177 DPFPRINTF(PF_DEBUG_URGENT, 8178 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 8179 __func__)); 8180 goto bad; 8181 } 8182 ip6 = mtod(m0, struct ip6_hdr *); 8183 } 8184 8185 if (ifp->if_flags & IFF_LOOPBACK) 8186 m0->m_flags |= M_SKIP_FIREWALL; 8187 8188 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 8189 ~ifp->if_hwassist) { 8190 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 8191 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 8192 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 8193 } 8194 8195 /* 8196 * If the packet is too large for the outgoing interface, 8197 * send back an icmp6 error. 8198 */ 8199 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 8200 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 8201 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 8202 md = m0; 8203 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 8204 if (md != NULL) 8205 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 8206 } 8207 else { 8208 in6_ifstat_inc(ifp, ifs6_in_toobig); 8209 if (r_rt != PF_DUPTO) { 8210 if (s && pd->nat_rule != NULL) 8211 PACKET_UNDO_NAT(m0, pd, 8212 ((caddr_t)ip6 - m0->m_data) + 8213 sizeof(struct ip6_hdr), s); 8214 8215 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 8216 } else 8217 goto bad; 8218 } 8219 8220 done: 8221 if (r_rt != PF_DUPTO) 8222 *m = NULL; 8223 return; 8224 8225 bad_locked: 8226 if (s) 8227 PF_STATE_UNLOCK(s); 8228 bad: 8229 m_freem(m0); 8230 goto done; 8231 } 8232 #endif /* INET6 */ 8233 8234 /* 8235 * FreeBSD supports cksum offloads for the following drivers. 8236 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 8237 * 8238 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 8239 * network driver performed cksum including pseudo header, need to verify 8240 * csum_data 8241 * CSUM_DATA_VALID : 8242 * network driver performed cksum, needs to additional pseudo header 8243 * cksum computation with partial csum_data(i.e. lack of H/W support for 8244 * pseudo header, for instance sk(4) and possibly gem(4)) 8245 * 8246 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 8247 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 8248 * TCP/UDP layer. 8249 * Also, set csum_data to 0xffff to force cksum validation. 8250 */ 8251 static int 8252 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 8253 { 8254 u_int16_t sum = 0; 8255 int hw_assist = 0; 8256 struct ip *ip; 8257 8258 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 8259 return (1); 8260 if (m->m_pkthdr.len < off + len) 8261 return (1); 8262 8263 switch (p) { 8264 case IPPROTO_TCP: 8265 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8266 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8267 sum = m->m_pkthdr.csum_data; 8268 } else { 8269 ip = mtod(m, struct ip *); 8270 sum = in_pseudo(ip->ip_src.s_addr, 8271 ip->ip_dst.s_addr, htonl((u_short)len + 8272 m->m_pkthdr.csum_data + IPPROTO_TCP)); 8273 } 8274 sum ^= 0xffff; 8275 ++hw_assist; 8276 } 8277 break; 8278 case IPPROTO_UDP: 8279 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 8280 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 8281 sum = m->m_pkthdr.csum_data; 8282 } else { 8283 ip = mtod(m, struct ip *); 8284 sum = in_pseudo(ip->ip_src.s_addr, 8285 ip->ip_dst.s_addr, htonl((u_short)len + 8286 m->m_pkthdr.csum_data + IPPROTO_UDP)); 8287 } 8288 sum ^= 0xffff; 8289 ++hw_assist; 8290 } 8291 break; 8292 case IPPROTO_ICMP: 8293 #ifdef INET6 8294 case IPPROTO_ICMPV6: 8295 #endif /* INET6 */ 8296 break; 8297 default: 8298 return (1); 8299 } 8300 8301 if (!hw_assist) { 8302 switch (af) { 8303 case AF_INET: 8304 if (p == IPPROTO_ICMP) { 8305 if (m->m_len < off) 8306 return (1); 8307 m->m_data += off; 8308 m->m_len -= off; 8309 sum = in_cksum(m, len); 8310 m->m_data -= off; 8311 m->m_len += off; 8312 } else { 8313 if (m->m_len < sizeof(struct ip)) 8314 return (1); 8315 sum = in4_cksum(m, p, off, len); 8316 } 8317 break; 8318 #ifdef INET6 8319 case AF_INET6: 8320 if (m->m_len < sizeof(struct ip6_hdr)) 8321 return (1); 8322 sum = in6_cksum(m, p, off, len); 8323 break; 8324 #endif /* INET6 */ 8325 default: 8326 return (1); 8327 } 8328 } 8329 if (sum) { 8330 switch (p) { 8331 case IPPROTO_TCP: 8332 { 8333 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 8334 break; 8335 } 8336 case IPPROTO_UDP: 8337 { 8338 KMOD_UDPSTAT_INC(udps_badsum); 8339 break; 8340 } 8341 #ifdef INET 8342 case IPPROTO_ICMP: 8343 { 8344 KMOD_ICMPSTAT_INC(icps_checksum); 8345 break; 8346 } 8347 #endif 8348 #ifdef INET6 8349 case IPPROTO_ICMPV6: 8350 { 8351 KMOD_ICMP6STAT_INC(icp6s_checksum); 8352 break; 8353 } 8354 #endif /* INET6 */ 8355 } 8356 return (1); 8357 } else { 8358 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 8359 m->m_pkthdr.csum_flags |= 8360 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 8361 m->m_pkthdr.csum_data = 0xffff; 8362 } 8363 } 8364 return (0); 8365 } 8366 8367 static bool 8368 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 8369 const struct pf_kstate *s, struct ip_fw_args *dnflow) 8370 { 8371 int dndir = r->direction; 8372 8373 if (s && dndir == PF_INOUT) { 8374 dndir = s->direction; 8375 } else if (dndir == PF_INOUT) { 8376 /* Assume primary direction. Happens when we've set dnpipe in 8377 * the ethernet level code. */ 8378 dndir = pd->dir; 8379 } 8380 8381 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 8382 return (false); 8383 8384 memset(dnflow, 0, sizeof(*dnflow)); 8385 8386 if (pd->dport != NULL) 8387 dnflow->f_id.dst_port = ntohs(*pd->dport); 8388 if (pd->sport != NULL) 8389 dnflow->f_id.src_port = ntohs(*pd->sport); 8390 8391 if (pd->dir == PF_IN) 8392 dnflow->flags |= IPFW_ARGS_IN; 8393 else 8394 dnflow->flags |= IPFW_ARGS_OUT; 8395 8396 if (pd->dir != dndir && pd->act.dnrpipe) { 8397 dnflow->rule.info = pd->act.dnrpipe; 8398 } 8399 else if (pd->dir == dndir && pd->act.dnpipe) { 8400 dnflow->rule.info = pd->act.dnpipe; 8401 } 8402 else { 8403 return (false); 8404 } 8405 8406 dnflow->rule.info |= IPFW_IS_DUMMYNET; 8407 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 8408 dnflow->rule.info |= IPFW_IS_PIPE; 8409 8410 dnflow->f_id.proto = pd->proto; 8411 dnflow->f_id.extra = dnflow->rule.info; 8412 switch (pd->af) { 8413 case AF_INET: 8414 dnflow->f_id.addr_type = 4; 8415 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 8416 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 8417 break; 8418 case AF_INET6: 8419 dnflow->flags |= IPFW_ARGS_IP6; 8420 dnflow->f_id.addr_type = 6; 8421 dnflow->f_id.src_ip6 = pd->src->v6; 8422 dnflow->f_id.dst_ip6 = pd->dst->v6; 8423 break; 8424 default: 8425 panic("Invalid AF"); 8426 break; 8427 } 8428 8429 return (true); 8430 } 8431 8432 int 8433 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8434 struct inpcb *inp) 8435 { 8436 struct pfi_kkif *kif; 8437 struct mbuf *m = *m0; 8438 8439 M_ASSERTPKTHDR(m); 8440 MPASS(ifp->if_vnet == curvnet); 8441 NET_EPOCH_ASSERT(); 8442 8443 if (!V_pf_status.running) 8444 return (PF_PASS); 8445 8446 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8447 8448 if (kif == NULL) { 8449 DPFPRINTF(PF_DEBUG_URGENT, 8450 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 8451 return (PF_DROP); 8452 } 8453 if (kif->pfik_flags & PFI_IFLAG_SKIP) 8454 return (PF_PASS); 8455 8456 if (m->m_flags & M_SKIP_FIREWALL) 8457 return (PF_PASS); 8458 8459 if (__predict_false(! M_WRITABLE(*m0))) { 8460 m = *m0 = m_unshare(*m0, M_NOWAIT); 8461 if (*m0 == NULL) 8462 return (PF_DROP); 8463 } 8464 8465 /* Stateless! */ 8466 return (pf_test_eth_rule(dir, kif, m0)); 8467 } 8468 8469 static __inline void 8470 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 8471 { 8472 struct m_tag *mtag; 8473 8474 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 8475 8476 /* dummynet adds this tag, but pf does not need it, 8477 * and keeping it creates unexpected behavior, 8478 * e.g. in case of divert(4) usage right after dummynet. */ 8479 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8480 if (mtag != NULL) 8481 m_tag_delete(m, mtag); 8482 } 8483 8484 static int 8485 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 8486 struct pf_krule *r, struct mbuf **m0) 8487 { 8488 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 8489 } 8490 8491 static int 8492 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 8493 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 8494 struct mbuf **m0) 8495 { 8496 NET_EPOCH_ASSERT(); 8497 8498 if (pd->act.dnpipe || pd->act.dnrpipe) { 8499 struct ip_fw_args dnflow; 8500 if (ip_dn_io_ptr == NULL) { 8501 m_freem(*m0); 8502 *m0 = NULL; 8503 return (ENOMEM); 8504 } 8505 8506 if (pd->pf_mtag == NULL && 8507 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 8508 m_freem(*m0); 8509 *m0 = NULL; 8510 return (ENOMEM); 8511 } 8512 8513 if (ifp != NULL) { 8514 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 8515 8516 pd->pf_mtag->if_index = ifp->if_index; 8517 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 8518 8519 MPASS(sa != NULL); 8520 8521 if (pd->af == AF_INET) 8522 memcpy(&pd->pf_mtag->dst, sa, 8523 sizeof(struct sockaddr_in)); 8524 else 8525 memcpy(&pd->pf_mtag->dst, sa, 8526 sizeof(struct sockaddr_in6)); 8527 } 8528 8529 if (s != NULL && s->nat_rule.ptr != NULL && 8530 s->nat_rule.ptr->action == PF_RDR && 8531 ( 8532 #ifdef INET 8533 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 8534 #endif 8535 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 8536 /* 8537 * If we're redirecting to loopback mark this packet 8538 * as being local. Otherwise it might get dropped 8539 * if dummynet re-injects. 8540 */ 8541 (*m0)->m_pkthdr.rcvif = V_loif; 8542 } 8543 8544 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 8545 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 8546 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 8547 ip_dn_io_ptr(m0, &dnflow); 8548 if (*m0 != NULL) { 8549 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8550 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 8551 } 8552 } 8553 } 8554 8555 return (0); 8556 } 8557 8558 static int 8559 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf *m, 8560 u_short *action, u_short *reason, struct pfi_kkif *kif, struct pf_krule **a, 8561 struct pf_krule **r, struct pf_kruleset **ruleset, int *off, int *hdrlen, 8562 struct pf_rule_actions *default_actions) 8563 { 8564 8565 TAILQ_INIT(&pd->sctp_multihome_jobs); 8566 if (default_actions != NULL) 8567 memcpy(&pd->act, default_actions, sizeof(pd->act)); 8568 pd->pf_mtag = pf_find_mtag(m); 8569 8570 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 8571 pd->act.dnpipe = pd->pf_mtag->dnpipe; 8572 pd->act.flags = pd->pf_mtag->dnflags; 8573 } 8574 8575 pd->af = af; 8576 8577 switch (af) { 8578 #ifdef INET 8579 case AF_INET: { 8580 struct ip *h; 8581 8582 h = mtod(m, struct ip *); 8583 *off = h->ip_hl << 2; 8584 if (*off < (int)sizeof(*h)) { 8585 *action = PF_DROP; 8586 REASON_SET(reason, PFRES_SHORT); 8587 return (-1); 8588 } 8589 pd->src = (struct pf_addr *)&h->ip_src; 8590 pd->dst = (struct pf_addr *)&h->ip_dst; 8591 pd->sport = pd->dport = NULL; 8592 pd->ip_sum = &h->ip_sum; 8593 pd->proto_sum = NULL; 8594 pd->proto = h->ip_p; 8595 pd->dir = dir; 8596 pd->sidx = (dir == PF_IN) ? 0 : 1; 8597 pd->didx = (dir == PF_IN) ? 1 : 0; 8598 pd->tos = h->ip_tos; 8599 pd->tot_len = ntohs(h->ip_len); 8600 pd->act.rtableid = -1; 8601 8602 if (h->ip_hl > 5) /* has options */ 8603 pd->badopts++; 8604 8605 /* fragments not reassembled handled later */ 8606 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 8607 return (0); 8608 8609 break; 8610 } 8611 #endif 8612 #ifdef INET6 8613 case AF_INET6: { 8614 struct ip6_hdr *h; 8615 int terminal = 0; 8616 8617 h = mtod(m, struct ip6_hdr *); 8618 pd->src = (struct pf_addr *)&h->ip6_src; 8619 pd->dst = (struct pf_addr *)&h->ip6_dst; 8620 pd->sport = pd->dport = NULL; 8621 pd->ip_sum = NULL; 8622 pd->proto_sum = NULL; 8623 pd->dir = dir; 8624 pd->sidx = (dir == PF_IN) ? 0 : 1; 8625 pd->didx = (dir == PF_IN) ? 1 : 0; 8626 pd->tos = IPV6_DSCP(h); 8627 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8628 *off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8629 pd->proto = h->ip6_nxt; 8630 pd->act.rtableid = -1; 8631 8632 do { 8633 switch (pd->proto) { 8634 case IPPROTO_FRAGMENT: 8635 if (kif == NULL || r == NULL) /* pflog */ 8636 *action = PF_DROP; 8637 else 8638 *action = pf_test_fragment(r, kif, 8639 m, pd, a, ruleset); 8640 if (*action == PF_DROP) 8641 REASON_SET(reason, PFRES_FRAG); 8642 return (-1); 8643 case IPPROTO_ROUTING: { 8644 struct ip6_rthdr rthdr; 8645 8646 if (pd->badopts++) { 8647 DPFPRINTF(PF_DEBUG_MISC, 8648 ("pf: IPv6 more than one rthdr")); 8649 *action = PF_DROP; 8650 REASON_SET(reason, PFRES_IPOPTIONS); 8651 return (-1); 8652 } 8653 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), 8654 NULL, reason, pd->af)) { 8655 DPFPRINTF(PF_DEBUG_MISC, 8656 ("pf: IPv6 short rthdr")); 8657 *action = PF_DROP; 8658 REASON_SET(reason, PFRES_SHORT); 8659 return (-1); 8660 } 8661 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8662 DPFPRINTF(PF_DEBUG_MISC, 8663 ("pf: IPv6 rthdr0")); 8664 *action = PF_DROP; 8665 REASON_SET(reason, PFRES_IPOPTIONS); 8666 return (-1); 8667 } 8668 /* FALLTHROUGH */ 8669 } 8670 case IPPROTO_AH: 8671 case IPPROTO_HOPOPTS: 8672 case IPPROTO_DSTOPTS: { 8673 /* get next header and header length */ 8674 struct ip6_ext opt6; 8675 8676 if (!pf_pull_hdr(m, *off, &opt6, sizeof(opt6), 8677 NULL, reason, pd->af)) { 8678 DPFPRINTF(PF_DEBUG_MISC, 8679 ("pf: IPv6 short opt")); 8680 *action = PF_DROP; 8681 return (-1); 8682 } 8683 if (pd->proto == IPPROTO_AH) 8684 *off += (opt6.ip6e_len + 2) * 4; 8685 else 8686 *off += (opt6.ip6e_len + 1) * 8; 8687 pd->proto = opt6.ip6e_nxt; 8688 /* goto the next header */ 8689 break; 8690 } 8691 default: 8692 terminal++; 8693 break; 8694 } 8695 } while (!terminal); 8696 8697 break; 8698 } 8699 #endif 8700 default: 8701 panic("pf_setup_pdesc called with illegal af %u", af); 8702 } 8703 8704 switch (pd->proto) { 8705 case IPPROTO_TCP: { 8706 struct tcphdr *th = &pd->hdr.tcp; 8707 8708 if (!pf_pull_hdr(m, *off, th, sizeof(*th), action, 8709 reason, af)) { 8710 *action = PF_DROP; 8711 REASON_SET(reason, PFRES_SHORT); 8712 return (-1); 8713 } 8714 *hdrlen = sizeof(*th); 8715 pd->p_len = pd->tot_len - *off - (th->th_off << 2); 8716 pd->sport = &th->th_sport; 8717 pd->dport = &th->th_dport; 8718 break; 8719 } 8720 case IPPROTO_UDP: { 8721 struct udphdr *uh = &pd->hdr.udp; 8722 8723 if (!pf_pull_hdr(m, *off, uh, sizeof(*uh), action, 8724 reason, af)) { 8725 *action = PF_DROP; 8726 REASON_SET(reason, PFRES_SHORT); 8727 return (-1); 8728 } 8729 *hdrlen = sizeof(*uh); 8730 if (uh->uh_dport == 0 || 8731 ntohs(uh->uh_ulen) > m->m_pkthdr.len - *off || 8732 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 8733 *action = PF_DROP; 8734 REASON_SET(reason, PFRES_SHORT); 8735 return (-1); 8736 } 8737 pd->sport = &uh->uh_sport; 8738 pd->dport = &uh->uh_dport; 8739 break; 8740 } 8741 case IPPROTO_SCTP: { 8742 if (!pf_pull_hdr(m, *off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 8743 action, reason, af)) { 8744 *action = PF_DROP; 8745 REASON_SET(reason, PFRES_SHORT); 8746 return (-1); 8747 } 8748 *hdrlen = sizeof(pd->hdr.sctp); 8749 pd->p_len = pd->tot_len - *off; 8750 8751 pd->sport = &pd->hdr.sctp.src_port; 8752 pd->dport = &pd->hdr.sctp.dest_port; 8753 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 8754 *action = PF_DROP; 8755 REASON_SET(reason, PFRES_SHORT); 8756 return (-1); 8757 } 8758 if (pf_scan_sctp(m, *off, pd, kif) != PF_PASS) { 8759 *action = PF_DROP; 8760 REASON_SET(reason, PFRES_SHORT); 8761 return (-1); 8762 } 8763 break; 8764 } 8765 case IPPROTO_ICMP: { 8766 if (!pf_pull_hdr(m, *off, &pd->hdr.icmp, ICMP_MINLEN, 8767 action, reason, af)) { 8768 *action = PF_DROP; 8769 REASON_SET(reason, PFRES_SHORT); 8770 return (-1); 8771 } 8772 *hdrlen = ICMP_MINLEN; 8773 break; 8774 } 8775 #ifdef INET6 8776 case IPPROTO_ICMPV6: { 8777 size_t icmp_hlen = sizeof(struct icmp6_hdr); 8778 8779 if (!pf_pull_hdr(m, *off, &pd->hdr.icmp6, icmp_hlen, 8780 action, reason, af)) { 8781 *action = PF_DROP; 8782 REASON_SET(reason, PFRES_SHORT); 8783 return (-1); 8784 } 8785 /* ICMP headers we look further into to match state */ 8786 switch (pd->hdr.icmp6.icmp6_type) { 8787 case MLD_LISTENER_QUERY: 8788 case MLD_LISTENER_REPORT: 8789 icmp_hlen = sizeof(struct mld_hdr); 8790 break; 8791 case ND_NEIGHBOR_SOLICIT: 8792 case ND_NEIGHBOR_ADVERT: 8793 icmp_hlen = sizeof(struct nd_neighbor_solicit); 8794 break; 8795 } 8796 if (icmp_hlen > sizeof(struct icmp6_hdr) && 8797 !pf_pull_hdr(m, *off, &pd->hdr.icmp6, icmp_hlen, 8798 action, reason, af)) { 8799 *action = PF_DROP; 8800 REASON_SET(reason, PFRES_SHORT); 8801 return (-1); 8802 } 8803 *hdrlen = icmp_hlen; 8804 break; 8805 } 8806 #endif 8807 } 8808 return (0); 8809 } 8810 8811 static void 8812 pf_counters_inc(int action, struct pf_pdesc *pd, 8813 struct pfi_kkif *kif, struct pf_kstate *s, 8814 struct pf_krule *r, struct pf_krule *a) 8815 { 8816 struct pf_krule *tr, *nr; 8817 int dir = pd->dir; 8818 int dirndx; 8819 8820 pf_counter_u64_critical_enter(); 8821 pf_counter_u64_add_protected( 8822 &kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8823 pd->tot_len); 8824 pf_counter_u64_add_protected( 8825 &kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 8826 1); 8827 8828 if (action == PF_PASS || r->action == PF_DROP) { 8829 dirndx = (dir == PF_OUT); 8830 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8831 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 8832 pf_update_timestamp(r); 8833 8834 if (a != NULL) { 8835 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8836 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 8837 } 8838 if (s != NULL) { 8839 struct pf_krule_item *ri; 8840 8841 if (s->nat_rule.ptr != NULL) { 8842 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8843 1); 8844 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8845 pd->tot_len); 8846 } 8847 if (s->src_node != NULL) { 8848 counter_u64_add(s->src_node->packets[dirndx], 8849 1); 8850 counter_u64_add(s->src_node->bytes[dirndx], 8851 pd->tot_len); 8852 } 8853 if (s->nat_src_node != NULL) { 8854 counter_u64_add(s->nat_src_node->packets[dirndx], 8855 1); 8856 counter_u64_add(s->nat_src_node->bytes[dirndx], 8857 pd->tot_len); 8858 } 8859 dirndx = (dir == s->direction) ? 0 : 1; 8860 s->packets[dirndx]++; 8861 s->bytes[dirndx] += pd->tot_len; 8862 8863 SLIST_FOREACH(ri, &s->match_rules, entry) { 8864 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8865 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 8866 } 8867 } 8868 tr = r; 8869 nr = (s != NULL) ? s->nat_rule.ptr : pd->nat_rule; 8870 if (nr != NULL && r == &V_pf_default_rule) 8871 tr = nr; 8872 if (tr->src.addr.type == PF_ADDR_TABLE) 8873 pfr_update_stats(tr->src.addr.p.tbl, 8874 (s == NULL) ? pd->src : 8875 &s->key[(s->direction == PF_IN)]-> 8876 addr[(s->direction == PF_OUT)], 8877 pd->af, pd->tot_len, dir == PF_OUT, 8878 r->action == PF_PASS, tr->src.neg); 8879 if (tr->dst.addr.type == PF_ADDR_TABLE) 8880 pfr_update_stats(tr->dst.addr.p.tbl, 8881 (s == NULL) ? pd->dst : 8882 &s->key[(s->direction == PF_IN)]-> 8883 addr[(s->direction == PF_IN)], 8884 pd->af, pd->tot_len, dir == PF_OUT, 8885 r->action == PF_PASS, tr->dst.neg); 8886 } 8887 pf_counter_u64_critical_exit(); 8888 } 8889 8890 #if defined(INET) || defined(INET6) 8891 int 8892 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 8893 struct inpcb *inp, struct pf_rule_actions *default_actions) 8894 { 8895 struct pfi_kkif *kif; 8896 u_short action, reason = 0; 8897 struct mbuf *m = *m0; 8898 struct ip *h = NULL; 8899 struct ip6_hdr *h6 = NULL; 8900 struct m_tag *mtag; 8901 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 8902 struct pf_kstate *s = NULL; 8903 struct pf_kruleset *ruleset = NULL; 8904 struct pf_pdesc pd; 8905 int off, hdrlen, use_2nd_queue = 0; 8906 uint16_t tag; 8907 uint8_t rt; 8908 uint8_t ttl; 8909 8910 PF_RULES_RLOCK_TRACKER; 8911 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8912 M_ASSERTPKTHDR(m); 8913 8914 if (!V_pf_status.running) 8915 return (PF_PASS); 8916 8917 PF_RULES_RLOCK(); 8918 8919 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8920 8921 if (__predict_false(kif == NULL)) { 8922 DPFPRINTF(PF_DEBUG_URGENT, 8923 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8924 PF_RULES_RUNLOCK(); 8925 return (PF_DROP); 8926 } 8927 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8928 PF_RULES_RUNLOCK(); 8929 return (PF_PASS); 8930 } 8931 8932 if (m->m_flags & M_SKIP_FIREWALL) { 8933 PF_RULES_RUNLOCK(); 8934 return (PF_PASS); 8935 } 8936 8937 if (__predict_false(! M_WRITABLE(*m0))) { 8938 m = *m0 = m_unshare(*m0, M_NOWAIT); 8939 if (*m0 == NULL) 8940 return (PF_DROP); 8941 } 8942 8943 memset(&pd, 0, sizeof(pd)); 8944 pd.dir = dir; 8945 8946 switch (af) { 8947 #ifdef INET 8948 case AF_INET: 8949 if (__predict_false(m->m_len < sizeof(struct ip)) && 8950 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8951 DPFPRINTF(PF_DEBUG_URGENT, 8952 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8953 PF_RULES_RUNLOCK(); 8954 return (PF_DROP); 8955 } 8956 8957 if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8958 /* We do IP header normalization and packet reassembly here */ 8959 action = PF_DROP; 8960 goto done; 8961 } 8962 m = *m0; /* pf_normalize messes with m0 */ 8963 h = mtod(m, struct ip *); 8964 ttl = h->ip_ttl; 8965 break; 8966 #endif 8967 #ifdef INET6 8968 case AF_INET6: 8969 /* 8970 * If we end up changing IP addresses (e.g. binat) the stack may get 8971 * confused and fail to send the icmp6 packet too big error. Just send 8972 * it here, before we do any NAT. 8973 */ 8974 if (dir == PF_OUT && pflags & PFIL_FWD && IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 8975 PF_RULES_RUNLOCK(); 8976 *m0 = NULL; 8977 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8978 return (PF_DROP); 8979 } 8980 8981 if (__predict_false(m->m_len < sizeof(struct ip6_hdr)) && 8982 (m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 8983 DPFPRINTF(PF_DEBUG_URGENT, 8984 ("pf_test6: m_len < sizeof(struct ip6_hdr)" 8985 ", pullup failed\n")); 8986 PF_RULES_RUNLOCK(); 8987 return (PF_DROP); 8988 } 8989 8990 /* We do IP header normalization and packet reassembly here */ 8991 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8992 action = PF_DROP; 8993 goto done; 8994 } 8995 m = *m0; /* pf_normalize messes with m0 */ 8996 h6 = mtod(m, struct ip6_hdr *); 8997 ttl = h6->ip6_hlim; 8998 break; 8999 #endif 9000 default: 9001 panic("Unknown af %d", af); 9002 } 9003 9004 if (pf_setup_pdesc(af, dir, &pd, m, &action, &reason, kif, &a, &r, 9005 &ruleset, &off, &hdrlen, default_actions) == -1) { 9006 if (action != PF_PASS) 9007 pd.act.log |= PF_LOG_FORCE; 9008 goto done; 9009 } 9010 9011 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 9012 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9013 9014 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 9015 pd.pf_mtag->if_idxgen); 9016 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 9017 PF_RULES_RUNLOCK(); 9018 m_freem(*m0); 9019 *m0 = NULL; 9020 return (PF_PASS); 9021 } 9022 PF_RULES_RUNLOCK(); 9023 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 9024 *m0 = NULL; 9025 return (PF_PASS); 9026 } 9027 9028 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 9029 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 9030 /* Dummynet re-injects packets after they've 9031 * completed their delay. We've already 9032 * processed them, so pass unconditionally. */ 9033 9034 /* But only once. We may see the packet multiple times (e.g. 9035 * PFIL_IN/PFIL_OUT). */ 9036 pf_dummynet_flag_remove(m, pd.pf_mtag); 9037 PF_RULES_RUNLOCK(); 9038 9039 return (PF_PASS); 9040 } 9041 9042 if (__predict_false(ip_divert_ptr != NULL) && 9043 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 9044 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 9045 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 9046 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 9047 if (pd.pf_mtag == NULL && 9048 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9049 action = PF_DROP; 9050 goto done; 9051 } 9052 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 9053 } 9054 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 9055 m->m_flags |= M_FASTFWD_OURS; 9056 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9057 } 9058 m_tag_delete(m, mtag); 9059 9060 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9061 if (mtag != NULL) 9062 m_tag_delete(m, mtag); 9063 } 9064 9065 switch (af) { 9066 #ifdef INET 9067 case AF_INET: 9068 /* handle fragments that didn't get reassembled by normalization */ 9069 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 9070 action = pf_test_fragment(&r, kif, m, &pd, &a, &ruleset); 9071 goto done; 9072 } 9073 break; 9074 #endif 9075 #ifdef INET6 9076 case AF_INET6: 9077 /* 9078 * we do not support jumbogram. if we keep going, zero ip6_plen 9079 * will do something bad, so drop the packet for now. 9080 */ 9081 if (htons(h6->ip6_plen) == 0) { 9082 action = PF_DROP; 9083 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 9084 goto done; 9085 } 9086 break; 9087 #endif 9088 default: 9089 panic("Unknown af %d", af); 9090 } 9091 9092 switch (pd.proto) { 9093 case IPPROTO_TCP: { 9094 /* Respond to SYN with a syncookie. */ 9095 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 9096 pd.dir == PF_IN && pf_synflood_check(&pd)) { 9097 pf_syncookie_send(m, off, &pd); 9098 action = PF_DROP; 9099 break; 9100 } 9101 9102 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 9103 use_2nd_queue = 1; 9104 action = pf_normalize_tcp(kif, m, 0, off, &pd); 9105 if (action == PF_DROP) 9106 goto done; 9107 action = pf_test_state_tcp(&s, kif, m, off, &pd, &reason); 9108 if (action == PF_PASS) { 9109 if (V_pfsync_update_state_ptr != NULL) 9110 V_pfsync_update_state_ptr(s); 9111 r = s->rule.ptr; 9112 a = s->anchor.ptr; 9113 } else if (s == NULL) { 9114 /* Validate remote SYN|ACK, re-create original SYN if 9115 * valid. */ 9116 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 9117 TH_ACK && pf_syncookie_validate(&pd) && 9118 pd.dir == PF_IN) { 9119 struct mbuf *msyn; 9120 9121 msyn = pf_syncookie_recreate_syn(ttl, off, 9122 &pd); 9123 if (msyn == NULL) { 9124 action = PF_DROP; 9125 break; 9126 } 9127 9128 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 9129 &pd.act); 9130 m_freem(msyn); 9131 if (action != PF_PASS) 9132 break; 9133 9134 action = pf_test_state_tcp(&s, kif, m, off, 9135 &pd, &reason); 9136 if (action != PF_PASS || s == NULL) { 9137 action = PF_DROP; 9138 break; 9139 } 9140 9141 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 9142 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 9143 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 9144 action = pf_synproxy(&pd, &s, &reason); 9145 break; 9146 } else { 9147 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9148 &a, &ruleset, inp, hdrlen); 9149 } 9150 } 9151 break; 9152 } 9153 9154 case IPPROTO_UDP: { 9155 action = pf_test_state_udp(&s, kif, m, off, &pd); 9156 if (action == PF_PASS) { 9157 if (V_pfsync_update_state_ptr != NULL) 9158 V_pfsync_update_state_ptr(s); 9159 r = s->rule.ptr; 9160 a = s->anchor.ptr; 9161 } else if (s == NULL) 9162 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9163 &a, &ruleset, inp, hdrlen); 9164 break; 9165 } 9166 9167 case IPPROTO_SCTP: { 9168 action = pf_normalize_sctp(dir, kif, m, 0, off, &pd); 9169 if (action == PF_DROP) 9170 goto done; 9171 action = pf_test_state_sctp(&s, kif, m, off, &pd, 9172 &reason); 9173 if (action == PF_PASS) { 9174 if (V_pfsync_update_state_ptr != NULL) 9175 V_pfsync_update_state_ptr(s); 9176 r = s->rule.ptr; 9177 a = s->anchor.ptr; 9178 } else if (s == NULL) { 9179 action = pf_test_rule(&r, &s, kif, m, off, 9180 &pd, &a, &ruleset, inp, hdrlen); 9181 } 9182 break; 9183 } 9184 9185 case IPPROTO_ICMP: { 9186 if (af != AF_INET) { 9187 action = PF_DROP; 9188 DPFPRINTF(PF_DEBUG_MISC, 9189 ("dropping IPv6 packet with ICMPv4 payload")); 9190 goto done; 9191 } 9192 action = pf_test_state_icmp(&s, kif, m, off, &pd, &reason); 9193 if (action == PF_PASS) { 9194 if (V_pfsync_update_state_ptr != NULL) 9195 V_pfsync_update_state_ptr(s); 9196 r = s->rule.ptr; 9197 a = s->anchor.ptr; 9198 } else if (s == NULL) 9199 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9200 &a, &ruleset, inp, hdrlen); 9201 break; 9202 } 9203 9204 case IPPROTO_ICMPV6: { 9205 if (af != AF_INET6) { 9206 action = PF_DROP; 9207 DPFPRINTF(PF_DEBUG_MISC, 9208 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 9209 goto done; 9210 } 9211 action = pf_test_state_icmp(&s, kif, m, off, &pd, &reason); 9212 if (action == PF_PASS) { 9213 if (V_pfsync_update_state_ptr != NULL) 9214 V_pfsync_update_state_ptr(s); 9215 r = s->rule.ptr; 9216 a = s->anchor.ptr; 9217 } else if (s == NULL) 9218 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9219 &a, &ruleset, inp, hdrlen); 9220 break; 9221 } 9222 9223 default: 9224 action = pf_test_state_other(&s, kif, m, &pd); 9225 if (action == PF_PASS) { 9226 if (V_pfsync_update_state_ptr != NULL) 9227 V_pfsync_update_state_ptr(s); 9228 r = s->rule.ptr; 9229 a = s->anchor.ptr; 9230 } else if (s == NULL) 9231 action = pf_test_rule(&r, &s, kif, m, off, &pd, 9232 &a, &ruleset, inp, hdrlen); 9233 break; 9234 } 9235 9236 done: 9237 PF_RULES_RUNLOCK(); 9238 9239 if (action == PF_PASS && pd.badopts && 9240 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 9241 action = PF_DROP; 9242 REASON_SET(&reason, PFRES_IPOPTIONS); 9243 pd.act.log = PF_LOG_FORCE; 9244 DPFPRINTF(PF_DEBUG_MISC, 9245 ("pf: dropping packet with dangerous headers\n")); 9246 } 9247 9248 if (s) { 9249 uint8_t log = pd.act.log; 9250 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 9251 pd.act.log |= log; 9252 tag = s->tag; 9253 rt = s->rt; 9254 } else { 9255 tag = r->tag; 9256 rt = r->rt; 9257 } 9258 9259 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 9260 action = PF_DROP; 9261 REASON_SET(&reason, PFRES_MEMORY); 9262 } 9263 9264 pf_scrub(m, &pd); 9265 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 9266 pf_normalize_mss(m, off, &pd); 9267 9268 if (pd.act.rtableid >= 0) 9269 M_SETFIB(m, pd.act.rtableid); 9270 9271 if (pd.act.flags & PFSTATE_SETPRIO) { 9272 if (pd.tos & IPTOS_LOWDELAY) 9273 use_2nd_queue = 1; 9274 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 9275 action = PF_DROP; 9276 REASON_SET(&reason, PFRES_MEMORY); 9277 pd.act.log = PF_LOG_FORCE; 9278 DPFPRINTF(PF_DEBUG_MISC, 9279 ("pf: failed to allocate 802.1q mtag\n")); 9280 } 9281 } 9282 9283 #ifdef ALTQ 9284 if (action == PF_PASS && pd.act.qid) { 9285 if (pd.pf_mtag == NULL && 9286 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9287 action = PF_DROP; 9288 REASON_SET(&reason, PFRES_MEMORY); 9289 } else { 9290 if (s != NULL) 9291 pd.pf_mtag->qid_hash = pf_state_hash(s); 9292 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 9293 pd.pf_mtag->qid = pd.act.pqid; 9294 else 9295 pd.pf_mtag->qid = pd.act.qid; 9296 /* Add hints for ecn. */ 9297 if (af == AF_INET) 9298 pd.pf_mtag->hdr = h; 9299 else 9300 pd.pf_mtag->hdr = h6; 9301 } 9302 } 9303 #endif /* ALTQ */ 9304 9305 /* 9306 * connections redirected to loopback should not match sockets 9307 * bound specifically to loopback due to security implications, 9308 * see tcp_input() and in_pcblookup_listen(). 9309 */ 9310 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9311 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9312 (s->nat_rule.ptr->action == PF_RDR || 9313 s->nat_rule.ptr->action == PF_BINAT) && 9314 pf_is_loopback(af, pd.dst)) 9315 m->m_flags |= M_SKIP_FIREWALL; 9316 9317 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 9318 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 9319 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 9320 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 9321 if (mtag != NULL) { 9322 ((struct pf_divert_mtag *)(mtag+1))->port = 9323 ntohs(r->divert.port); 9324 ((struct pf_divert_mtag *)(mtag+1))->idir = 9325 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 9326 PF_DIVERT_MTAG_DIR_OUT; 9327 9328 if (s) 9329 PF_STATE_UNLOCK(s); 9330 9331 m_tag_prepend(m, mtag); 9332 if (m->m_flags & M_FASTFWD_OURS) { 9333 if (pd.pf_mtag == NULL && 9334 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9335 action = PF_DROP; 9336 REASON_SET(&reason, PFRES_MEMORY); 9337 pd.act.log = PF_LOG_FORCE; 9338 DPFPRINTF(PF_DEBUG_MISC, 9339 ("pf: failed to allocate tag\n")); 9340 } else { 9341 pd.pf_mtag->flags |= 9342 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 9343 m->m_flags &= ~M_FASTFWD_OURS; 9344 } 9345 } 9346 ip_divert_ptr(*m0, dir == PF_IN); 9347 *m0 = NULL; 9348 9349 return (action); 9350 } else { 9351 /* XXX: ipfw has the same behaviour! */ 9352 action = PF_DROP; 9353 REASON_SET(&reason, PFRES_MEMORY); 9354 pd.act.log = PF_LOG_FORCE; 9355 DPFPRINTF(PF_DEBUG_MISC, 9356 ("pf: failed to allocate divert tag\n")); 9357 } 9358 } 9359 /* XXX: Anybody working on it?! */ 9360 if (af == AF_INET6 && r->divert.port) 9361 printf("pf: divert(9) is not supported for IPv6\n"); 9362 9363 /* this flag will need revising if the pkt is forwarded */ 9364 if (pd.pf_mtag) 9365 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 9366 9367 if (pd.act.log) { 9368 struct pf_krule *lr; 9369 struct pf_krule_item *ri; 9370 9371 if (s != NULL && s->nat_rule.ptr != NULL && 9372 s->nat_rule.ptr->log & PF_LOG_ALL) 9373 lr = s->nat_rule.ptr; 9374 else 9375 lr = r; 9376 9377 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9378 PFLOG_PACKET(kif, m, action, reason, lr, a, 9379 ruleset, &pd, (s == NULL)); 9380 if (s) { 9381 SLIST_FOREACH(ri, &s->match_rules, entry) 9382 if (ri->r->log & PF_LOG_ALL) 9383 PFLOG_PACKET(kif, m, action, 9384 reason, ri->r, a, ruleset, &pd, 0); 9385 } 9386 } 9387 9388 pf_counters_inc(action, &pd, kif, s, r, a); 9389 9390 switch (action) { 9391 case PF_SYNPROXY_DROP: 9392 m_freem(*m0); 9393 case PF_DEFER: 9394 *m0 = NULL; 9395 action = PF_PASS; 9396 break; 9397 case PF_DROP: 9398 m_freem(*m0); 9399 *m0 = NULL; 9400 break; 9401 default: 9402 if (rt) { 9403 switch (af) { 9404 #ifdef INET 9405 case AF_INET: 9406 /* pf_route() returns unlocked. */ 9407 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 9408 break; 9409 #endif 9410 #ifdef INET6 9411 case AF_INET6: 9412 /* pf_route6() returns unlocked. */ 9413 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9414 break; 9415 #endif 9416 default: 9417 panic("Unknown af %d", af); 9418 } 9419 goto out; 9420 } 9421 if (pf_dummynet(&pd, s, r, m0) != 0) { 9422 action = PF_DROP; 9423 REASON_SET(&reason, PFRES_MEMORY); 9424 } 9425 break; 9426 } 9427 9428 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 9429 9430 if (s && action != PF_DROP) { 9431 if (!s->if_index_in && dir == PF_IN) 9432 s->if_index_in = ifp->if_index; 9433 else if (!s->if_index_out && dir == PF_OUT) 9434 s->if_index_out = ifp->if_index; 9435 } 9436 9437 if (s) 9438 PF_STATE_UNLOCK(s); 9439 9440 #ifdef INET6 9441 /* If reassembled packet passed, create new fragments. */ 9442 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 9443 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9444 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9445 #endif 9446 9447 out: 9448 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9449 9450 return (action); 9451 } 9452 #endif /* INET || INET6 */ 9453