1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfvar.h> 74 #include <net/if_pflog.h> 75 #include <net/if_pfsync.h> 76 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_var.h> 79 #include <netinet/in_fib.h> 80 #include <netinet/ip.h> 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_icmp.h> 83 #include <netinet/icmp_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/tcp.h> 86 #include <netinet/tcp_fsm.h> 87 #include <netinet/tcp_seq.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp.h> 91 #include <netinet/udp_var.h> 92 93 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 94 95 #ifdef INET6 96 #include <netinet/ip6.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/nd6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/in6_pcb.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/scope6_var.h> 103 #endif /* INET6 */ 104 105 #include <machine/in_cksum.h> 106 #include <security/mac/mac_framework.h> 107 108 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 109 110 /* 111 * Global variables 112 */ 113 114 /* state tables */ 115 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 116 VNET_DEFINE(struct pf_palist, pf_pabuf); 117 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 119 VNET_DEFINE(struct pf_kstatus, pf_status); 120 121 VNET_DEFINE(u_int32_t, ticket_altqs_active); 122 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 123 VNET_DEFINE(int, altqs_inactive_open); 124 VNET_DEFINE(u_int32_t, ticket_pabuf); 125 126 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 127 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 128 VNET_DEFINE(u_char, pf_tcp_secret[16]); 129 #define V_pf_tcp_secret VNET(pf_tcp_secret) 130 VNET_DEFINE(int, pf_tcp_secret_init); 131 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 132 VNET_DEFINE(int, pf_tcp_iss_off); 133 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 134 VNET_DECLARE(int, pf_vnet_active); 135 #define V_pf_vnet_active VNET(pf_vnet_active) 136 137 static VNET_DEFINE(uint32_t, pf_purge_idx); 138 #define V_pf_purge_idx VNET(pf_purge_idx) 139 140 /* 141 * Queue for pf_intr() sends. 142 */ 143 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 144 struct pf_send_entry { 145 STAILQ_ENTRY(pf_send_entry) pfse_next; 146 struct mbuf *pfse_m; 147 enum { 148 PFSE_IP, 149 PFSE_IP6, 150 PFSE_ICMP, 151 PFSE_ICMP6, 152 } pfse_type; 153 struct { 154 int type; 155 int code; 156 int mtu; 157 } icmpopts; 158 }; 159 160 STAILQ_HEAD(pf_send_head, pf_send_entry); 161 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 162 #define V_pf_sendqueue VNET(pf_sendqueue) 163 164 static struct mtx pf_sendqueue_mtx; 165 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 166 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 167 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 168 169 /* 170 * Queue for pf_overload_task() tasks. 171 */ 172 struct pf_overload_entry { 173 SLIST_ENTRY(pf_overload_entry) next; 174 struct pf_addr addr; 175 sa_family_t af; 176 uint8_t dir; 177 struct pf_rule *rule; 178 }; 179 180 SLIST_HEAD(pf_overload_head, pf_overload_entry); 181 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 182 #define V_pf_overloadqueue VNET(pf_overloadqueue) 183 static VNET_DEFINE(struct task, pf_overloadtask); 184 #define V_pf_overloadtask VNET(pf_overloadtask) 185 186 static struct mtx pf_overloadqueue_mtx; 187 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 188 "pf overload/flush queue", MTX_DEF); 189 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 190 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 191 192 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 193 struct mtx pf_unlnkdrules_mtx; 194 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 195 MTX_DEF); 196 197 static VNET_DEFINE(uma_zone_t, pf_sources_z); 198 #define V_pf_sources_z VNET(pf_sources_z) 199 uma_zone_t pf_mtag_z; 200 VNET_DEFINE(uma_zone_t, pf_state_z); 201 VNET_DEFINE(uma_zone_t, pf_state_key_z); 202 203 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 204 #define PFID_CPUBITS 8 205 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 206 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 207 #define PFID_MAXID (~PFID_CPUMASK) 208 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 209 210 static void pf_src_tree_remove_state(struct pf_state *); 211 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 212 u_int32_t); 213 static void pf_add_threshold(struct pf_threshold *); 214 static int pf_check_threshold(struct pf_threshold *); 215 216 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 217 u_int16_t *, u_int16_t *, struct pf_addr *, 218 u_int16_t, u_int8_t, sa_family_t); 219 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 220 struct tcphdr *, struct pf_state_peer *); 221 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 222 struct pf_addr *, struct pf_addr *, u_int16_t, 223 u_int16_t *, u_int16_t *, u_int16_t *, 224 u_int16_t *, u_int8_t, sa_family_t); 225 static void pf_send_tcp(struct mbuf *, 226 const struct pf_rule *, sa_family_t, 227 const struct pf_addr *, const struct pf_addr *, 228 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 229 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 230 u_int16_t, struct ifnet *); 231 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 232 sa_family_t, struct pf_rule *); 233 static void pf_detach_state(struct pf_state *); 234 static int pf_state_key_attach(struct pf_state_key *, 235 struct pf_state_key *, struct pf_state *); 236 static void pf_state_key_detach(struct pf_state *, int); 237 static int pf_state_key_ctor(void *, int, void *, int); 238 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 239 static int pf_test_rule(struct pf_rule **, struct pf_state **, 240 int, struct pfi_kif *, struct mbuf *, int, 241 struct pf_pdesc *, struct pf_rule **, 242 struct pf_ruleset **, struct inpcb *); 243 static int pf_create_state(struct pf_rule *, struct pf_rule *, 244 struct pf_rule *, struct pf_pdesc *, 245 struct pf_src_node *, struct pf_state_key *, 246 struct pf_state_key *, struct mbuf *, int, 247 u_int16_t, u_int16_t, int *, struct pfi_kif *, 248 struct pf_state **, int, u_int16_t, u_int16_t, 249 int); 250 static int pf_test_fragment(struct pf_rule **, int, 251 struct pfi_kif *, struct mbuf *, void *, 252 struct pf_pdesc *, struct pf_rule **, 253 struct pf_ruleset **); 254 static int pf_tcp_track_full(struct pf_state_peer *, 255 struct pf_state_peer *, struct pf_state **, 256 struct pfi_kif *, struct mbuf *, int, 257 struct pf_pdesc *, u_short *, int *); 258 static int pf_tcp_track_sloppy(struct pf_state_peer *, 259 struct pf_state_peer *, struct pf_state **, 260 struct pf_pdesc *, u_short *); 261 static int pf_test_state_tcp(struct pf_state **, int, 262 struct pfi_kif *, struct mbuf *, int, 263 void *, struct pf_pdesc *, u_short *); 264 static int pf_test_state_udp(struct pf_state **, int, 265 struct pfi_kif *, struct mbuf *, int, 266 void *, struct pf_pdesc *); 267 static int pf_test_state_icmp(struct pf_state **, int, 268 struct pfi_kif *, struct mbuf *, int, 269 void *, struct pf_pdesc *, u_short *); 270 static int pf_test_state_other(struct pf_state **, int, 271 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 272 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 273 sa_family_t); 274 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 275 sa_family_t); 276 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 277 int, u_int16_t); 278 static int pf_check_proto_cksum(struct mbuf *, int, int, 279 u_int8_t, sa_family_t); 280 static void pf_print_state_parts(struct pf_state *, 281 struct pf_state_key *, struct pf_state_key *); 282 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 283 struct pf_addr_wrap *); 284 static struct pf_state *pf_find_state(struct pfi_kif *, 285 struct pf_state_key_cmp *, u_int); 286 static int pf_src_connlimit(struct pf_state **); 287 static void pf_overload_task(void *v, int pending); 288 static int pf_insert_src_node(struct pf_src_node **, 289 struct pf_rule *, struct pf_addr *, sa_family_t); 290 static u_int pf_purge_expired_states(u_int, int); 291 static void pf_purge_unlinked_rules(void); 292 static int pf_mtag_uminit(void *, int, int); 293 static void pf_mtag_free(struct m_tag *); 294 #ifdef INET 295 static void pf_route(struct mbuf **, struct pf_rule *, int, 296 struct ifnet *, struct pf_state *, 297 struct pf_pdesc *); 298 #endif /* INET */ 299 #ifdef INET6 300 static void pf_change_a6(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, u_int8_t); 302 static void pf_route6(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *); 305 #endif /* INET6 */ 306 307 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 308 309 extern int pf_end_threads; 310 extern struct proc *pf_purge_proc; 311 312 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 313 314 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 315 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 316 317 #define STATE_LOOKUP(i, k, d, s, pd) \ 318 do { \ 319 (s) = pf_find_state((i), (k), (d)); \ 320 if ((s) == NULL) \ 321 return (PF_DROP); \ 322 if (PACKET_LOOPED(pd)) \ 323 return (PF_PASS); \ 324 if ((d) == PF_OUT && \ 325 (((s)->rule.ptr->rt == PF_ROUTETO && \ 326 (s)->rule.ptr->direction == PF_OUT) || \ 327 ((s)->rule.ptr->rt == PF_REPLYTO && \ 328 (s)->rule.ptr->direction == PF_IN)) && \ 329 (s)->rt_kif != NULL && \ 330 (s)->rt_kif != (i)) \ 331 return (PF_PASS); \ 332 } while (0) 333 334 #define BOUND_IFACE(r, k) \ 335 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 336 337 #define STATE_INC_COUNTERS(s) \ 338 do { \ 339 counter_u64_add(s->rule.ptr->states_cur, 1); \ 340 counter_u64_add(s->rule.ptr->states_tot, 1); \ 341 if (s->anchor.ptr != NULL) { \ 342 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 343 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 344 } \ 345 if (s->nat_rule.ptr != NULL) { \ 346 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 347 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 348 } \ 349 } while (0) 350 351 #define STATE_DEC_COUNTERS(s) \ 352 do { \ 353 if (s->nat_rule.ptr != NULL) \ 354 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 355 if (s->anchor.ptr != NULL) \ 356 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 357 counter_u64_add(s->rule.ptr->states_cur, -1); \ 358 } while (0) 359 360 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 361 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 362 VNET_DEFINE(struct pf_idhash *, pf_idhash); 363 VNET_DEFINE(struct pf_srchash *, pf_srchash); 364 365 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 366 367 u_long pf_hashmask; 368 u_long pf_srchashmask; 369 static u_long pf_hashsize; 370 static u_long pf_srchashsize; 371 372 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 373 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 374 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 375 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 376 377 VNET_DEFINE(void *, pf_swi_cookie); 378 379 VNET_DEFINE(uint32_t, pf_hashseed); 380 #define V_pf_hashseed VNET(pf_hashseed) 381 382 int 383 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 384 { 385 386 switch (af) { 387 #ifdef INET 388 case AF_INET: 389 if (a->addr32[0] > b->addr32[0]) 390 return (1); 391 if (a->addr32[0] < b->addr32[0]) 392 return (-1); 393 break; 394 #endif /* INET */ 395 #ifdef INET6 396 case AF_INET6: 397 if (a->addr32[3] > b->addr32[3]) 398 return (1); 399 if (a->addr32[3] < b->addr32[3]) 400 return (-1); 401 if (a->addr32[2] > b->addr32[2]) 402 return (1); 403 if (a->addr32[2] < b->addr32[2]) 404 return (-1); 405 if (a->addr32[1] > b->addr32[1]) 406 return (1); 407 if (a->addr32[1] < b->addr32[1]) 408 return (-1); 409 if (a->addr32[0] > b->addr32[0]) 410 return (1); 411 if (a->addr32[0] < b->addr32[0]) 412 return (-1); 413 break; 414 #endif /* INET6 */ 415 default: 416 panic("%s: unknown address family %u", __func__, af); 417 } 418 return (0); 419 } 420 421 static __inline uint32_t 422 pf_hashkey(struct pf_state_key *sk) 423 { 424 uint32_t h; 425 426 h = murmur3_32_hash32((uint32_t *)sk, 427 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 428 V_pf_hashseed); 429 430 return (h & pf_hashmask); 431 } 432 433 static __inline uint32_t 434 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 435 { 436 uint32_t h; 437 438 switch (af) { 439 case AF_INET: 440 h = murmur3_32_hash32((uint32_t *)&addr->v4, 441 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 442 break; 443 case AF_INET6: 444 h = murmur3_32_hash32((uint32_t *)&addr->v6, 445 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 default: 448 panic("%s: unknown address family %u", __func__, af); 449 } 450 451 return (h & pf_srchashmask); 452 } 453 454 #ifdef ALTQ 455 static int 456 pf_state_hash(struct pf_state *s) 457 { 458 u_int32_t hv = (intptr_t)s / sizeof(*s); 459 460 hv ^= crc32(&s->src, sizeof(s->src)); 461 hv ^= crc32(&s->dst, sizeof(s->dst)); 462 if (hv == 0) 463 hv = 1; 464 return (hv); 465 } 466 #endif 467 468 #ifdef INET6 469 void 470 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 471 { 472 switch (af) { 473 #ifdef INET 474 case AF_INET: 475 dst->addr32[0] = src->addr32[0]; 476 break; 477 #endif /* INET */ 478 case AF_INET6: 479 dst->addr32[0] = src->addr32[0]; 480 dst->addr32[1] = src->addr32[1]; 481 dst->addr32[2] = src->addr32[2]; 482 dst->addr32[3] = src->addr32[3]; 483 break; 484 } 485 } 486 #endif /* INET6 */ 487 488 static void 489 pf_init_threshold(struct pf_threshold *threshold, 490 u_int32_t limit, u_int32_t seconds) 491 { 492 threshold->limit = limit * PF_THRESHOLD_MULT; 493 threshold->seconds = seconds; 494 threshold->count = 0; 495 threshold->last = time_uptime; 496 } 497 498 static void 499 pf_add_threshold(struct pf_threshold *threshold) 500 { 501 u_int32_t t = time_uptime, diff = t - threshold->last; 502 503 if (diff >= threshold->seconds) 504 threshold->count = 0; 505 else 506 threshold->count -= threshold->count * diff / 507 threshold->seconds; 508 threshold->count += PF_THRESHOLD_MULT; 509 threshold->last = t; 510 } 511 512 static int 513 pf_check_threshold(struct pf_threshold *threshold) 514 { 515 return (threshold->count > threshold->limit); 516 } 517 518 static int 519 pf_src_connlimit(struct pf_state **state) 520 { 521 struct pf_overload_entry *pfoe; 522 int bad = 0; 523 524 PF_STATE_LOCK_ASSERT(*state); 525 526 (*state)->src_node->conn++; 527 (*state)->src.tcp_est = 1; 528 pf_add_threshold(&(*state)->src_node->conn_rate); 529 530 if ((*state)->rule.ptr->max_src_conn && 531 (*state)->rule.ptr->max_src_conn < 532 (*state)->src_node->conn) { 533 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 534 bad++; 535 } 536 537 if ((*state)->rule.ptr->max_src_conn_rate.limit && 538 pf_check_threshold(&(*state)->src_node->conn_rate)) { 539 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 540 bad++; 541 } 542 543 if (!bad) 544 return (0); 545 546 /* Kill this state. */ 547 (*state)->timeout = PFTM_PURGE; 548 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 549 550 if ((*state)->rule.ptr->overload_tbl == NULL) 551 return (1); 552 553 /* Schedule overloading and flushing task. */ 554 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 555 if (pfoe == NULL) 556 return (1); /* too bad :( */ 557 558 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 559 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 560 pfoe->rule = (*state)->rule.ptr; 561 pfoe->dir = (*state)->direction; 562 PF_OVERLOADQ_LOCK(); 563 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 564 PF_OVERLOADQ_UNLOCK(); 565 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 566 567 return (1); 568 } 569 570 static void 571 pf_overload_task(void *v, int pending) 572 { 573 struct pf_overload_head queue; 574 struct pfr_addr p; 575 struct pf_overload_entry *pfoe, *pfoe1; 576 uint32_t killed = 0; 577 578 CURVNET_SET((struct vnet *)v); 579 580 PF_OVERLOADQ_LOCK(); 581 queue = V_pf_overloadqueue; 582 SLIST_INIT(&V_pf_overloadqueue); 583 PF_OVERLOADQ_UNLOCK(); 584 585 bzero(&p, sizeof(p)); 586 SLIST_FOREACH(pfoe, &queue, next) { 587 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 588 if (V_pf_status.debug >= PF_DEBUG_MISC) { 589 printf("%s: blocking address ", __func__); 590 pf_print_host(&pfoe->addr, 0, pfoe->af); 591 printf("\n"); 592 } 593 594 p.pfra_af = pfoe->af; 595 switch (pfoe->af) { 596 #ifdef INET 597 case AF_INET: 598 p.pfra_net = 32; 599 p.pfra_ip4addr = pfoe->addr.v4; 600 break; 601 #endif 602 #ifdef INET6 603 case AF_INET6: 604 p.pfra_net = 128; 605 p.pfra_ip6addr = pfoe->addr.v6; 606 break; 607 #endif 608 } 609 610 PF_RULES_WLOCK(); 611 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 612 PF_RULES_WUNLOCK(); 613 } 614 615 /* 616 * Remove those entries, that don't need flushing. 617 */ 618 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 619 if (pfoe->rule->flush == 0) { 620 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 621 free(pfoe, M_PFTEMP); 622 } else 623 counter_u64_add( 624 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 625 626 /* If nothing to flush, return. */ 627 if (SLIST_EMPTY(&queue)) { 628 CURVNET_RESTORE(); 629 return; 630 } 631 632 for (int i = 0; i <= pf_hashmask; i++) { 633 struct pf_idhash *ih = &V_pf_idhash[i]; 634 struct pf_state_key *sk; 635 struct pf_state *s; 636 637 PF_HASHROW_LOCK(ih); 638 LIST_FOREACH(s, &ih->states, entry) { 639 sk = s->key[PF_SK_WIRE]; 640 SLIST_FOREACH(pfoe, &queue, next) 641 if (sk->af == pfoe->af && 642 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 643 pfoe->rule == s->rule.ptr) && 644 ((pfoe->dir == PF_OUT && 645 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 646 (pfoe->dir == PF_IN && 647 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 648 s->timeout = PFTM_PURGE; 649 s->src.state = s->dst.state = TCPS_CLOSED; 650 killed++; 651 } 652 } 653 PF_HASHROW_UNLOCK(ih); 654 } 655 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 656 free(pfoe, M_PFTEMP); 657 if (V_pf_status.debug >= PF_DEBUG_MISC) 658 printf("%s: %u states killed", __func__, killed); 659 660 CURVNET_RESTORE(); 661 } 662 663 /* 664 * Can return locked on failure, so that we can consistently 665 * allocate and insert a new one. 666 */ 667 struct pf_src_node * 668 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 669 int returnlocked) 670 { 671 struct pf_srchash *sh; 672 struct pf_src_node *n; 673 674 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 675 676 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 677 PF_HASHROW_LOCK(sh); 678 LIST_FOREACH(n, &sh->nodes, entry) 679 if (n->rule.ptr == rule && n->af == af && 680 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 681 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 682 break; 683 if (n != NULL) { 684 n->states++; 685 PF_HASHROW_UNLOCK(sh); 686 } else if (returnlocked == 0) 687 PF_HASHROW_UNLOCK(sh); 688 689 return (n); 690 } 691 692 static int 693 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 694 struct pf_addr *src, sa_family_t af) 695 { 696 697 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 698 rule->rpool.opts & PF_POOL_STICKYADDR), 699 ("%s for non-tracking rule %p", __func__, rule)); 700 701 if (*sn == NULL) 702 *sn = pf_find_src_node(src, rule, af, 1); 703 704 if (*sn == NULL) { 705 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 706 707 PF_HASHROW_ASSERT(sh); 708 709 if (!rule->max_src_nodes || 710 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 711 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 712 else 713 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 714 1); 715 if ((*sn) == NULL) { 716 PF_HASHROW_UNLOCK(sh); 717 return (-1); 718 } 719 720 pf_init_threshold(&(*sn)->conn_rate, 721 rule->max_src_conn_rate.limit, 722 rule->max_src_conn_rate.seconds); 723 724 (*sn)->af = af; 725 (*sn)->rule.ptr = rule; 726 PF_ACPY(&(*sn)->addr, src, af); 727 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 728 (*sn)->creation = time_uptime; 729 (*sn)->ruletype = rule->action; 730 (*sn)->states = 1; 731 if ((*sn)->rule.ptr != NULL) 732 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 733 PF_HASHROW_UNLOCK(sh); 734 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 735 } else { 736 if (rule->max_src_states && 737 (*sn)->states >= rule->max_src_states) { 738 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 739 1); 740 return (-1); 741 } 742 } 743 return (0); 744 } 745 746 void 747 pf_unlink_src_node(struct pf_src_node *src) 748 { 749 750 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 751 LIST_REMOVE(src, entry); 752 if (src->rule.ptr) 753 counter_u64_add(src->rule.ptr->src_nodes, -1); 754 } 755 756 u_int 757 pf_free_src_nodes(struct pf_src_node_list *head) 758 { 759 struct pf_src_node *sn, *tmp; 760 u_int count = 0; 761 762 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 763 uma_zfree(V_pf_sources_z, sn); 764 count++; 765 } 766 767 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 768 769 return (count); 770 } 771 772 void 773 pf_mtag_initialize() 774 { 775 776 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 777 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 778 UMA_ALIGN_PTR, 0); 779 } 780 781 /* Per-vnet data storage structures initialization. */ 782 void 783 pf_initialize() 784 { 785 struct pf_keyhash *kh; 786 struct pf_idhash *ih; 787 struct pf_srchash *sh; 788 u_int i; 789 790 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 791 pf_hashsize = PF_HASHSIZ; 792 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 793 pf_srchashsize = PF_HASHSIZ / 4; 794 795 V_pf_hashseed = arc4random(); 796 797 /* States and state keys storage. */ 798 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 799 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 800 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 801 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 802 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 803 804 V_pf_state_key_z = uma_zcreate("pf state keys", 805 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 806 UMA_ALIGN_PTR, 0); 807 V_pf_keyhash = malloc(pf_hashsize * sizeof(struct pf_keyhash), 808 M_PFHASH, M_WAITOK | M_ZERO); 809 V_pf_idhash = malloc(pf_hashsize * sizeof(struct pf_idhash), 810 M_PFHASH, M_WAITOK | M_ZERO); 811 pf_hashmask = pf_hashsize - 1; 812 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 813 i++, kh++, ih++) { 814 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 815 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 816 } 817 818 /* Source nodes. */ 819 V_pf_sources_z = uma_zcreate("pf source nodes", 820 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 821 0); 822 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 823 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 824 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 825 V_pf_srchash = malloc(pf_srchashsize * sizeof(struct pf_srchash), 826 M_PFHASH, M_WAITOK|M_ZERO); 827 pf_srchashmask = pf_srchashsize - 1; 828 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 829 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 830 831 /* ALTQ */ 832 TAILQ_INIT(&V_pf_altqs[0]); 833 TAILQ_INIT(&V_pf_altqs[1]); 834 TAILQ_INIT(&V_pf_pabuf); 835 V_pf_altqs_active = &V_pf_altqs[0]; 836 V_pf_altqs_inactive = &V_pf_altqs[1]; 837 838 /* Send & overload+flush queues. */ 839 STAILQ_INIT(&V_pf_sendqueue); 840 SLIST_INIT(&V_pf_overloadqueue); 841 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 842 843 /* Unlinked, but may be referenced rules. */ 844 TAILQ_INIT(&V_pf_unlinked_rules); 845 } 846 847 void 848 pf_mtag_cleanup() 849 { 850 851 uma_zdestroy(pf_mtag_z); 852 } 853 854 void 855 pf_cleanup() 856 { 857 struct pf_keyhash *kh; 858 struct pf_idhash *ih; 859 struct pf_srchash *sh; 860 struct pf_send_entry *pfse, *next; 861 u_int i; 862 863 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 864 i++, kh++, ih++) { 865 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 866 __func__)); 867 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 868 __func__)); 869 mtx_destroy(&kh->lock); 870 mtx_destroy(&ih->lock); 871 } 872 free(V_pf_keyhash, M_PFHASH); 873 free(V_pf_idhash, M_PFHASH); 874 875 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 876 KASSERT(LIST_EMPTY(&sh->nodes), 877 ("%s: source node hash not empty", __func__)); 878 mtx_destroy(&sh->lock); 879 } 880 free(V_pf_srchash, M_PFHASH); 881 882 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 883 m_freem(pfse->pfse_m); 884 free(pfse, M_PFTEMP); 885 } 886 887 uma_zdestroy(V_pf_sources_z); 888 uma_zdestroy(V_pf_state_z); 889 uma_zdestroy(V_pf_state_key_z); 890 } 891 892 static int 893 pf_mtag_uminit(void *mem, int size, int how) 894 { 895 struct m_tag *t; 896 897 t = (struct m_tag *)mem; 898 t->m_tag_cookie = MTAG_ABI_COMPAT; 899 t->m_tag_id = PACKET_TAG_PF; 900 t->m_tag_len = sizeof(struct pf_mtag); 901 t->m_tag_free = pf_mtag_free; 902 903 return (0); 904 } 905 906 static void 907 pf_mtag_free(struct m_tag *t) 908 { 909 910 uma_zfree(pf_mtag_z, t); 911 } 912 913 struct pf_mtag * 914 pf_get_mtag(struct mbuf *m) 915 { 916 struct m_tag *mtag; 917 918 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 919 return ((struct pf_mtag *)(mtag + 1)); 920 921 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 922 if (mtag == NULL) 923 return (NULL); 924 bzero(mtag + 1, sizeof(struct pf_mtag)); 925 m_tag_prepend(m, mtag); 926 927 return ((struct pf_mtag *)(mtag + 1)); 928 } 929 930 static int 931 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 932 struct pf_state *s) 933 { 934 struct pf_keyhash *khs, *khw, *kh; 935 struct pf_state_key *sk, *cur; 936 struct pf_state *si, *olds = NULL; 937 int idx; 938 939 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 940 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 941 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 942 943 /* 944 * We need to lock hash slots of both keys. To avoid deadlock 945 * we always lock the slot with lower address first. Unlock order 946 * isn't important. 947 * 948 * We also need to lock ID hash slot before dropping key 949 * locks. On success we return with ID hash slot locked. 950 */ 951 952 if (skw == sks) { 953 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 954 PF_HASHROW_LOCK(khs); 955 } else { 956 khs = &V_pf_keyhash[pf_hashkey(sks)]; 957 khw = &V_pf_keyhash[pf_hashkey(skw)]; 958 if (khs == khw) { 959 PF_HASHROW_LOCK(khs); 960 } else if (khs < khw) { 961 PF_HASHROW_LOCK(khs); 962 PF_HASHROW_LOCK(khw); 963 } else { 964 PF_HASHROW_LOCK(khw); 965 PF_HASHROW_LOCK(khs); 966 } 967 } 968 969 #define KEYS_UNLOCK() do { \ 970 if (khs != khw) { \ 971 PF_HASHROW_UNLOCK(khs); \ 972 PF_HASHROW_UNLOCK(khw); \ 973 } else \ 974 PF_HASHROW_UNLOCK(khs); \ 975 } while (0) 976 977 /* 978 * First run: start with wire key. 979 */ 980 sk = skw; 981 kh = khw; 982 idx = PF_SK_WIRE; 983 984 keyattach: 985 LIST_FOREACH(cur, &kh->keys, entry) 986 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 987 break; 988 989 if (cur != NULL) { 990 /* Key exists. Check for same kif, if none, add to key. */ 991 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 992 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 993 994 PF_HASHROW_LOCK(ih); 995 if (si->kif == s->kif && 996 si->direction == s->direction) { 997 if (sk->proto == IPPROTO_TCP && 998 si->src.state >= TCPS_FIN_WAIT_2 && 999 si->dst.state >= TCPS_FIN_WAIT_2) { 1000 /* 1001 * New state matches an old >FIN_WAIT_2 1002 * state. We can't drop key hash locks, 1003 * thus we can't unlink it properly. 1004 * 1005 * As a workaround we drop it into 1006 * TCPS_CLOSED state, schedule purge 1007 * ASAP and push it into the very end 1008 * of the slot TAILQ, so that it won't 1009 * conflict with our new state. 1010 */ 1011 si->src.state = si->dst.state = 1012 TCPS_CLOSED; 1013 si->timeout = PFTM_PURGE; 1014 olds = si; 1015 } else { 1016 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1017 printf("pf: %s key attach " 1018 "failed on %s: ", 1019 (idx == PF_SK_WIRE) ? 1020 "wire" : "stack", 1021 s->kif->pfik_name); 1022 pf_print_state_parts(s, 1023 (idx == PF_SK_WIRE) ? 1024 sk : NULL, 1025 (idx == PF_SK_STACK) ? 1026 sk : NULL); 1027 printf(", existing: "); 1028 pf_print_state_parts(si, 1029 (idx == PF_SK_WIRE) ? 1030 sk : NULL, 1031 (idx == PF_SK_STACK) ? 1032 sk : NULL); 1033 printf("\n"); 1034 } 1035 PF_HASHROW_UNLOCK(ih); 1036 KEYS_UNLOCK(); 1037 uma_zfree(V_pf_state_key_z, sk); 1038 if (idx == PF_SK_STACK) 1039 pf_detach_state(s); 1040 return (EEXIST); /* collision! */ 1041 } 1042 } 1043 PF_HASHROW_UNLOCK(ih); 1044 } 1045 uma_zfree(V_pf_state_key_z, sk); 1046 s->key[idx] = cur; 1047 } else { 1048 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1049 s->key[idx] = sk; 1050 } 1051 1052 stateattach: 1053 /* List is sorted, if-bound states before floating. */ 1054 if (s->kif == V_pfi_all) 1055 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1056 else 1057 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1058 1059 if (olds) { 1060 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1061 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1062 key_list[idx]); 1063 olds = NULL; 1064 } 1065 1066 /* 1067 * Attach done. See how should we (or should not?) 1068 * attach a second key. 1069 */ 1070 if (sks == skw) { 1071 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1072 idx = PF_SK_STACK; 1073 sks = NULL; 1074 goto stateattach; 1075 } else if (sks != NULL) { 1076 /* 1077 * Continue attaching with stack key. 1078 */ 1079 sk = sks; 1080 kh = khs; 1081 idx = PF_SK_STACK; 1082 sks = NULL; 1083 goto keyattach; 1084 } 1085 1086 PF_STATE_LOCK(s); 1087 KEYS_UNLOCK(); 1088 1089 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1090 ("%s failure", __func__)); 1091 1092 return (0); 1093 #undef KEYS_UNLOCK 1094 } 1095 1096 static void 1097 pf_detach_state(struct pf_state *s) 1098 { 1099 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1100 struct pf_keyhash *kh; 1101 1102 if (sks != NULL) { 1103 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1104 PF_HASHROW_LOCK(kh); 1105 if (s->key[PF_SK_STACK] != NULL) 1106 pf_state_key_detach(s, PF_SK_STACK); 1107 /* 1108 * If both point to same key, then we are done. 1109 */ 1110 if (sks == s->key[PF_SK_WIRE]) { 1111 pf_state_key_detach(s, PF_SK_WIRE); 1112 PF_HASHROW_UNLOCK(kh); 1113 return; 1114 } 1115 PF_HASHROW_UNLOCK(kh); 1116 } 1117 1118 if (s->key[PF_SK_WIRE] != NULL) { 1119 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1120 PF_HASHROW_LOCK(kh); 1121 if (s->key[PF_SK_WIRE] != NULL) 1122 pf_state_key_detach(s, PF_SK_WIRE); 1123 PF_HASHROW_UNLOCK(kh); 1124 } 1125 } 1126 1127 static void 1128 pf_state_key_detach(struct pf_state *s, int idx) 1129 { 1130 struct pf_state_key *sk = s->key[idx]; 1131 #ifdef INVARIANTS 1132 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1133 1134 PF_HASHROW_ASSERT(kh); 1135 #endif 1136 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1137 s->key[idx] = NULL; 1138 1139 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1140 LIST_REMOVE(sk, entry); 1141 uma_zfree(V_pf_state_key_z, sk); 1142 } 1143 } 1144 1145 static int 1146 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1147 { 1148 struct pf_state_key *sk = mem; 1149 1150 bzero(sk, sizeof(struct pf_state_key_cmp)); 1151 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1152 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1153 1154 return (0); 1155 } 1156 1157 struct pf_state_key * 1158 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1159 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1160 { 1161 struct pf_state_key *sk; 1162 1163 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1164 if (sk == NULL) 1165 return (NULL); 1166 1167 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1168 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1169 sk->port[pd->sidx] = sport; 1170 sk->port[pd->didx] = dport; 1171 sk->proto = pd->proto; 1172 sk->af = pd->af; 1173 1174 return (sk); 1175 } 1176 1177 struct pf_state_key * 1178 pf_state_key_clone(struct pf_state_key *orig) 1179 { 1180 struct pf_state_key *sk; 1181 1182 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1183 if (sk == NULL) 1184 return (NULL); 1185 1186 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1187 1188 return (sk); 1189 } 1190 1191 int 1192 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1193 struct pf_state_key *sks, struct pf_state *s) 1194 { 1195 struct pf_idhash *ih; 1196 struct pf_state *cur; 1197 int error; 1198 1199 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1200 ("%s: sks not pristine", __func__)); 1201 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1202 ("%s: skw not pristine", __func__)); 1203 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1204 1205 s->kif = kif; 1206 1207 if (s->id == 0 && s->creatorid == 0) { 1208 /* XXX: should be atomic, but probability of collision low */ 1209 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1210 V_pf_stateid[curcpu] = 1; 1211 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1212 s->id = htobe64(s->id); 1213 s->creatorid = V_pf_status.hostid; 1214 } 1215 1216 /* Returns with ID locked on success. */ 1217 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1218 return (error); 1219 1220 ih = &V_pf_idhash[PF_IDHASH(s)]; 1221 PF_HASHROW_ASSERT(ih); 1222 LIST_FOREACH(cur, &ih->states, entry) 1223 if (cur->id == s->id && cur->creatorid == s->creatorid) 1224 break; 1225 1226 if (cur != NULL) { 1227 PF_HASHROW_UNLOCK(ih); 1228 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1229 printf("pf: state ID collision: " 1230 "id: %016llx creatorid: %08x\n", 1231 (unsigned long long)be64toh(s->id), 1232 ntohl(s->creatorid)); 1233 } 1234 pf_detach_state(s); 1235 return (EEXIST); 1236 } 1237 LIST_INSERT_HEAD(&ih->states, s, entry); 1238 /* One for keys, one for ID hash. */ 1239 refcount_init(&s->refs, 2); 1240 1241 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1242 if (pfsync_insert_state_ptr != NULL) 1243 pfsync_insert_state_ptr(s); 1244 1245 /* Returns locked. */ 1246 return (0); 1247 } 1248 1249 /* 1250 * Find state by ID: returns with locked row on success. 1251 */ 1252 struct pf_state * 1253 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1254 { 1255 struct pf_idhash *ih; 1256 struct pf_state *s; 1257 1258 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1259 1260 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1261 1262 PF_HASHROW_LOCK(ih); 1263 LIST_FOREACH(s, &ih->states, entry) 1264 if (s->id == id && s->creatorid == creatorid) 1265 break; 1266 1267 if (s == NULL) 1268 PF_HASHROW_UNLOCK(ih); 1269 1270 return (s); 1271 } 1272 1273 /* 1274 * Find state by key. 1275 * Returns with ID hash slot locked on success. 1276 */ 1277 static struct pf_state * 1278 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1279 { 1280 struct pf_keyhash *kh; 1281 struct pf_state_key *sk; 1282 struct pf_state *s; 1283 int idx; 1284 1285 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1286 1287 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1288 1289 PF_HASHROW_LOCK(kh); 1290 LIST_FOREACH(sk, &kh->keys, entry) 1291 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1292 break; 1293 if (sk == NULL) { 1294 PF_HASHROW_UNLOCK(kh); 1295 return (NULL); 1296 } 1297 1298 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1299 1300 /* List is sorted, if-bound states before floating ones. */ 1301 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1302 if (s->kif == V_pfi_all || s->kif == kif) { 1303 PF_STATE_LOCK(s); 1304 PF_HASHROW_UNLOCK(kh); 1305 if (s->timeout >= PFTM_MAX) { 1306 /* 1307 * State is either being processed by 1308 * pf_unlink_state() in an other thread, or 1309 * is scheduled for immediate expiry. 1310 */ 1311 PF_STATE_UNLOCK(s); 1312 return (NULL); 1313 } 1314 return (s); 1315 } 1316 PF_HASHROW_UNLOCK(kh); 1317 1318 return (NULL); 1319 } 1320 1321 struct pf_state * 1322 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1323 { 1324 struct pf_keyhash *kh; 1325 struct pf_state_key *sk; 1326 struct pf_state *s, *ret = NULL; 1327 int idx, inout = 0; 1328 1329 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1330 1331 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1332 1333 PF_HASHROW_LOCK(kh); 1334 LIST_FOREACH(sk, &kh->keys, entry) 1335 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1336 break; 1337 if (sk == NULL) { 1338 PF_HASHROW_UNLOCK(kh); 1339 return (NULL); 1340 } 1341 switch (dir) { 1342 case PF_IN: 1343 idx = PF_SK_WIRE; 1344 break; 1345 case PF_OUT: 1346 idx = PF_SK_STACK; 1347 break; 1348 case PF_INOUT: 1349 idx = PF_SK_WIRE; 1350 inout = 1; 1351 break; 1352 default: 1353 panic("%s: dir %u", __func__, dir); 1354 } 1355 second_run: 1356 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1357 if (more == NULL) { 1358 PF_HASHROW_UNLOCK(kh); 1359 return (s); 1360 } 1361 1362 if (ret) 1363 (*more)++; 1364 else 1365 ret = s; 1366 } 1367 if (inout == 1) { 1368 inout = 0; 1369 idx = PF_SK_STACK; 1370 goto second_run; 1371 } 1372 PF_HASHROW_UNLOCK(kh); 1373 1374 return (ret); 1375 } 1376 1377 /* END state table stuff */ 1378 1379 static void 1380 pf_send(struct pf_send_entry *pfse) 1381 { 1382 1383 PF_SENDQ_LOCK(); 1384 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1385 PF_SENDQ_UNLOCK(); 1386 swi_sched(V_pf_swi_cookie, 0); 1387 } 1388 1389 void 1390 pf_intr(void *v) 1391 { 1392 struct pf_send_head queue; 1393 struct pf_send_entry *pfse, *next; 1394 1395 CURVNET_SET((struct vnet *)v); 1396 1397 PF_SENDQ_LOCK(); 1398 queue = V_pf_sendqueue; 1399 STAILQ_INIT(&V_pf_sendqueue); 1400 PF_SENDQ_UNLOCK(); 1401 1402 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1403 switch (pfse->pfse_type) { 1404 #ifdef INET 1405 case PFSE_IP: 1406 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1407 break; 1408 case PFSE_ICMP: 1409 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1410 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1411 break; 1412 #endif /* INET */ 1413 #ifdef INET6 1414 case PFSE_IP6: 1415 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1416 NULL); 1417 break; 1418 case PFSE_ICMP6: 1419 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1420 pfse->icmpopts.code, pfse->icmpopts.mtu); 1421 break; 1422 #endif /* INET6 */ 1423 default: 1424 panic("%s: unknown type", __func__); 1425 } 1426 free(pfse, M_PFTEMP); 1427 } 1428 CURVNET_RESTORE(); 1429 } 1430 1431 void 1432 pf_purge_thread(void *unused __unused) 1433 { 1434 VNET_ITERATOR_DECL(vnet_iter); 1435 1436 sx_xlock(&pf_end_lock); 1437 while (pf_end_threads == 0) { 1438 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1439 1440 VNET_LIST_RLOCK(); 1441 VNET_FOREACH(vnet_iter) { 1442 CURVNET_SET(vnet_iter); 1443 1444 1445 /* Wait until V_pf_default_rule is initialized. */ 1446 if (V_pf_vnet_active == 0) { 1447 CURVNET_RESTORE(); 1448 continue; 1449 } 1450 1451 /* 1452 * Process 1/interval fraction of the state 1453 * table every run. 1454 */ 1455 V_pf_purge_idx = 1456 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1457 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1458 1459 /* 1460 * Purge other expired types every 1461 * PFTM_INTERVAL seconds. 1462 */ 1463 if (V_pf_purge_idx == 0) { 1464 /* 1465 * Order is important: 1466 * - states and src nodes reference rules 1467 * - states and rules reference kifs 1468 */ 1469 pf_purge_expired_fragments(); 1470 pf_purge_expired_src_nodes(); 1471 pf_purge_unlinked_rules(); 1472 pfi_kif_purge(); 1473 } 1474 CURVNET_RESTORE(); 1475 } 1476 VNET_LIST_RUNLOCK(); 1477 } 1478 1479 pf_end_threads++; 1480 sx_xunlock(&pf_end_lock); 1481 kproc_exit(0); 1482 } 1483 1484 void 1485 pf_unload_vnet_purge(void) 1486 { 1487 1488 /* 1489 * To cleanse up all kifs and rules we need 1490 * two runs: first one clears reference flags, 1491 * then pf_purge_expired_states() doesn't 1492 * raise them, and then second run frees. 1493 */ 1494 pf_purge_unlinked_rules(); 1495 pfi_kif_purge(); 1496 1497 /* 1498 * Now purge everything. 1499 */ 1500 pf_purge_expired_states(0, pf_hashmask); 1501 pf_purge_fragments(UINT_MAX); 1502 pf_purge_expired_src_nodes(); 1503 1504 /* 1505 * Now all kifs & rules should be unreferenced, 1506 * thus should be successfully freed. 1507 */ 1508 pf_purge_unlinked_rules(); 1509 pfi_kif_purge(); 1510 } 1511 1512 1513 u_int32_t 1514 pf_state_expires(const struct pf_state *state) 1515 { 1516 u_int32_t timeout; 1517 u_int32_t start; 1518 u_int32_t end; 1519 u_int32_t states; 1520 1521 /* handle all PFTM_* > PFTM_MAX here */ 1522 if (state->timeout == PFTM_PURGE) 1523 return (time_uptime); 1524 KASSERT(state->timeout != PFTM_UNLINKED, 1525 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1526 KASSERT((state->timeout < PFTM_MAX), 1527 ("pf_state_expires: timeout > PFTM_MAX")); 1528 timeout = state->rule.ptr->timeout[state->timeout]; 1529 if (!timeout) 1530 timeout = V_pf_default_rule.timeout[state->timeout]; 1531 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1532 if (start) { 1533 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1534 states = counter_u64_fetch(state->rule.ptr->states_cur); 1535 } else { 1536 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1537 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1538 states = V_pf_status.states; 1539 } 1540 if (end && states > start && start < end) { 1541 if (states < end) 1542 return (state->expire + timeout * (end - states) / 1543 (end - start)); 1544 else 1545 return (time_uptime); 1546 } 1547 return (state->expire + timeout); 1548 } 1549 1550 void 1551 pf_purge_expired_src_nodes() 1552 { 1553 struct pf_src_node_list freelist; 1554 struct pf_srchash *sh; 1555 struct pf_src_node *cur, *next; 1556 int i; 1557 1558 LIST_INIT(&freelist); 1559 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1560 PF_HASHROW_LOCK(sh); 1561 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1562 if (cur->states == 0 && cur->expire <= time_uptime) { 1563 pf_unlink_src_node(cur); 1564 LIST_INSERT_HEAD(&freelist, cur, entry); 1565 } else if (cur->rule.ptr != NULL) 1566 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1567 PF_HASHROW_UNLOCK(sh); 1568 } 1569 1570 pf_free_src_nodes(&freelist); 1571 1572 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1573 } 1574 1575 static void 1576 pf_src_tree_remove_state(struct pf_state *s) 1577 { 1578 struct pf_src_node *sn; 1579 struct pf_srchash *sh; 1580 uint32_t timeout; 1581 1582 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1583 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1584 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1585 1586 if (s->src_node != NULL) { 1587 sn = s->src_node; 1588 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1589 PF_HASHROW_LOCK(sh); 1590 if (s->src.tcp_est) 1591 --sn->conn; 1592 if (--sn->states == 0) 1593 sn->expire = time_uptime + timeout; 1594 PF_HASHROW_UNLOCK(sh); 1595 } 1596 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1597 sn = s->nat_src_node; 1598 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1599 PF_HASHROW_LOCK(sh); 1600 if (--sn->states == 0) 1601 sn->expire = time_uptime + timeout; 1602 PF_HASHROW_UNLOCK(sh); 1603 } 1604 s->src_node = s->nat_src_node = NULL; 1605 } 1606 1607 /* 1608 * Unlink and potentilly free a state. Function may be 1609 * called with ID hash row locked, but always returns 1610 * unlocked, since it needs to go through key hash locking. 1611 */ 1612 int 1613 pf_unlink_state(struct pf_state *s, u_int flags) 1614 { 1615 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1616 int last; 1617 1618 if ((flags & PF_ENTER_LOCKED) == 0) 1619 PF_HASHROW_LOCK(ih); 1620 else 1621 PF_HASHROW_ASSERT(ih); 1622 1623 if (s->timeout == PFTM_UNLINKED) { 1624 /* 1625 * State is being processed 1626 * by pf_unlink_state() in 1627 * an other thread. 1628 */ 1629 PF_HASHROW_UNLOCK(ih); 1630 return (0); /* XXXGL: undefined actually */ 1631 } 1632 1633 if (s->src.state == PF_TCPS_PROXY_DST) { 1634 /* XXX wire key the right one? */ 1635 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1636 &s->key[PF_SK_WIRE]->addr[1], 1637 &s->key[PF_SK_WIRE]->addr[0], 1638 s->key[PF_SK_WIRE]->port[1], 1639 s->key[PF_SK_WIRE]->port[0], 1640 s->src.seqhi, s->src.seqlo + 1, 1641 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1642 } 1643 1644 LIST_REMOVE(s, entry); 1645 pf_src_tree_remove_state(s); 1646 1647 if (pfsync_delete_state_ptr != NULL) 1648 pfsync_delete_state_ptr(s); 1649 1650 STATE_DEC_COUNTERS(s); 1651 1652 s->timeout = PFTM_UNLINKED; 1653 1654 PF_HASHROW_UNLOCK(ih); 1655 1656 pf_detach_state(s); 1657 last = refcount_release(&s->refs); 1658 KASSERT(last == 0, ("Incorrect state reference count")); 1659 1660 return (pf_release_state(s)); 1661 } 1662 1663 void 1664 pf_free_state(struct pf_state *cur) 1665 { 1666 1667 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1668 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1669 cur->timeout)); 1670 1671 pf_normalize_tcp_cleanup(cur); 1672 uma_zfree(V_pf_state_z, cur); 1673 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1674 } 1675 1676 /* 1677 * Called only from pf_purge_thread(), thus serialized. 1678 */ 1679 static u_int 1680 pf_purge_expired_states(u_int i, int maxcheck) 1681 { 1682 struct pf_idhash *ih; 1683 struct pf_state *s; 1684 1685 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1686 1687 /* 1688 * Go through hash and unlink states that expire now. 1689 */ 1690 while (maxcheck > 0) { 1691 1692 ih = &V_pf_idhash[i]; 1693 relock: 1694 PF_HASHROW_LOCK(ih); 1695 LIST_FOREACH(s, &ih->states, entry) { 1696 if (pf_state_expires(s) <= time_uptime) { 1697 V_pf_status.states -= 1698 pf_unlink_state(s, PF_ENTER_LOCKED); 1699 goto relock; 1700 } 1701 s->rule.ptr->rule_flag |= PFRULE_REFS; 1702 if (s->nat_rule.ptr != NULL) 1703 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1704 if (s->anchor.ptr != NULL) 1705 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1706 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1707 if (s->rt_kif) 1708 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1709 } 1710 PF_HASHROW_UNLOCK(ih); 1711 1712 /* Return when we hit end of hash. */ 1713 if (++i > pf_hashmask) { 1714 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1715 return (0); 1716 } 1717 1718 maxcheck--; 1719 } 1720 1721 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1722 1723 return (i); 1724 } 1725 1726 static void 1727 pf_purge_unlinked_rules() 1728 { 1729 struct pf_rulequeue tmpq; 1730 struct pf_rule *r, *r1; 1731 1732 /* 1733 * If we have overloading task pending, then we'd 1734 * better skip purging this time. There is a tiny 1735 * probability that overloading task references 1736 * an already unlinked rule. 1737 */ 1738 PF_OVERLOADQ_LOCK(); 1739 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1740 PF_OVERLOADQ_UNLOCK(); 1741 return; 1742 } 1743 PF_OVERLOADQ_UNLOCK(); 1744 1745 /* 1746 * Do naive mark-and-sweep garbage collecting of old rules. 1747 * Reference flag is raised by pf_purge_expired_states() 1748 * and pf_purge_expired_src_nodes(). 1749 * 1750 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1751 * use a temporary queue. 1752 */ 1753 TAILQ_INIT(&tmpq); 1754 PF_UNLNKDRULES_LOCK(); 1755 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1756 if (!(r->rule_flag & PFRULE_REFS)) { 1757 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1758 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1759 } else 1760 r->rule_flag &= ~PFRULE_REFS; 1761 } 1762 PF_UNLNKDRULES_UNLOCK(); 1763 1764 if (!TAILQ_EMPTY(&tmpq)) { 1765 PF_RULES_WLOCK(); 1766 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1767 TAILQ_REMOVE(&tmpq, r, entries); 1768 pf_free_rule(r); 1769 } 1770 PF_RULES_WUNLOCK(); 1771 } 1772 } 1773 1774 void 1775 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1776 { 1777 switch (af) { 1778 #ifdef INET 1779 case AF_INET: { 1780 u_int32_t a = ntohl(addr->addr32[0]); 1781 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1782 (a>>8)&255, a&255); 1783 if (p) { 1784 p = ntohs(p); 1785 printf(":%u", p); 1786 } 1787 break; 1788 } 1789 #endif /* INET */ 1790 #ifdef INET6 1791 case AF_INET6: { 1792 u_int16_t b; 1793 u_int8_t i, curstart, curend, maxstart, maxend; 1794 curstart = curend = maxstart = maxend = 255; 1795 for (i = 0; i < 8; i++) { 1796 if (!addr->addr16[i]) { 1797 if (curstart == 255) 1798 curstart = i; 1799 curend = i; 1800 } else { 1801 if ((curend - curstart) > 1802 (maxend - maxstart)) { 1803 maxstart = curstart; 1804 maxend = curend; 1805 } 1806 curstart = curend = 255; 1807 } 1808 } 1809 if ((curend - curstart) > 1810 (maxend - maxstart)) { 1811 maxstart = curstart; 1812 maxend = curend; 1813 } 1814 for (i = 0; i < 8; i++) { 1815 if (i >= maxstart && i <= maxend) { 1816 if (i == 0) 1817 printf(":"); 1818 if (i == maxend) 1819 printf(":"); 1820 } else { 1821 b = ntohs(addr->addr16[i]); 1822 printf("%x", b); 1823 if (i < 7) 1824 printf(":"); 1825 } 1826 } 1827 if (p) { 1828 p = ntohs(p); 1829 printf("[%u]", p); 1830 } 1831 break; 1832 } 1833 #endif /* INET6 */ 1834 } 1835 } 1836 1837 void 1838 pf_print_state(struct pf_state *s) 1839 { 1840 pf_print_state_parts(s, NULL, NULL); 1841 } 1842 1843 static void 1844 pf_print_state_parts(struct pf_state *s, 1845 struct pf_state_key *skwp, struct pf_state_key *sksp) 1846 { 1847 struct pf_state_key *skw, *sks; 1848 u_int8_t proto, dir; 1849 1850 /* Do our best to fill these, but they're skipped if NULL */ 1851 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1852 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1853 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1854 dir = s ? s->direction : 0; 1855 1856 switch (proto) { 1857 case IPPROTO_IPV4: 1858 printf("IPv4"); 1859 break; 1860 case IPPROTO_IPV6: 1861 printf("IPv6"); 1862 break; 1863 case IPPROTO_TCP: 1864 printf("TCP"); 1865 break; 1866 case IPPROTO_UDP: 1867 printf("UDP"); 1868 break; 1869 case IPPROTO_ICMP: 1870 printf("ICMP"); 1871 break; 1872 case IPPROTO_ICMPV6: 1873 printf("ICMPv6"); 1874 break; 1875 default: 1876 printf("%u", proto); 1877 break; 1878 } 1879 switch (dir) { 1880 case PF_IN: 1881 printf(" in"); 1882 break; 1883 case PF_OUT: 1884 printf(" out"); 1885 break; 1886 } 1887 if (skw) { 1888 printf(" wire: "); 1889 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1890 printf(" "); 1891 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1892 } 1893 if (sks) { 1894 printf(" stack: "); 1895 if (sks != skw) { 1896 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1897 printf(" "); 1898 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1899 } else 1900 printf("-"); 1901 } 1902 if (s) { 1903 if (proto == IPPROTO_TCP) { 1904 printf(" [lo=%u high=%u win=%u modulator=%u", 1905 s->src.seqlo, s->src.seqhi, 1906 s->src.max_win, s->src.seqdiff); 1907 if (s->src.wscale && s->dst.wscale) 1908 printf(" wscale=%u", 1909 s->src.wscale & PF_WSCALE_MASK); 1910 printf("]"); 1911 printf(" [lo=%u high=%u win=%u modulator=%u", 1912 s->dst.seqlo, s->dst.seqhi, 1913 s->dst.max_win, s->dst.seqdiff); 1914 if (s->src.wscale && s->dst.wscale) 1915 printf(" wscale=%u", 1916 s->dst.wscale & PF_WSCALE_MASK); 1917 printf("]"); 1918 } 1919 printf(" %u:%u", s->src.state, s->dst.state); 1920 } 1921 } 1922 1923 void 1924 pf_print_flags(u_int8_t f) 1925 { 1926 if (f) 1927 printf(" "); 1928 if (f & TH_FIN) 1929 printf("F"); 1930 if (f & TH_SYN) 1931 printf("S"); 1932 if (f & TH_RST) 1933 printf("R"); 1934 if (f & TH_PUSH) 1935 printf("P"); 1936 if (f & TH_ACK) 1937 printf("A"); 1938 if (f & TH_URG) 1939 printf("U"); 1940 if (f & TH_ECE) 1941 printf("E"); 1942 if (f & TH_CWR) 1943 printf("W"); 1944 } 1945 1946 #define PF_SET_SKIP_STEPS(i) \ 1947 do { \ 1948 while (head[i] != cur) { \ 1949 head[i]->skip[i].ptr = cur; \ 1950 head[i] = TAILQ_NEXT(head[i], entries); \ 1951 } \ 1952 } while (0) 1953 1954 void 1955 pf_calc_skip_steps(struct pf_rulequeue *rules) 1956 { 1957 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1958 int i; 1959 1960 cur = TAILQ_FIRST(rules); 1961 prev = cur; 1962 for (i = 0; i < PF_SKIP_COUNT; ++i) 1963 head[i] = cur; 1964 while (cur != NULL) { 1965 1966 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1967 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1968 if (cur->direction != prev->direction) 1969 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1970 if (cur->af != prev->af) 1971 PF_SET_SKIP_STEPS(PF_SKIP_AF); 1972 if (cur->proto != prev->proto) 1973 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 1974 if (cur->src.neg != prev->src.neg || 1975 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 1976 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 1977 if (cur->src.port[0] != prev->src.port[0] || 1978 cur->src.port[1] != prev->src.port[1] || 1979 cur->src.port_op != prev->src.port_op) 1980 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 1981 if (cur->dst.neg != prev->dst.neg || 1982 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 1983 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 1984 if (cur->dst.port[0] != prev->dst.port[0] || 1985 cur->dst.port[1] != prev->dst.port[1] || 1986 cur->dst.port_op != prev->dst.port_op) 1987 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 1988 1989 prev = cur; 1990 cur = TAILQ_NEXT(cur, entries); 1991 } 1992 for (i = 0; i < PF_SKIP_COUNT; ++i) 1993 PF_SET_SKIP_STEPS(i); 1994 } 1995 1996 static int 1997 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 1998 { 1999 if (aw1->type != aw2->type) 2000 return (1); 2001 switch (aw1->type) { 2002 case PF_ADDR_ADDRMASK: 2003 case PF_ADDR_RANGE: 2004 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2005 return (1); 2006 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2007 return (1); 2008 return (0); 2009 case PF_ADDR_DYNIFTL: 2010 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2011 case PF_ADDR_NOROUTE: 2012 case PF_ADDR_URPFFAILED: 2013 return (0); 2014 case PF_ADDR_TABLE: 2015 return (aw1->p.tbl != aw2->p.tbl); 2016 default: 2017 printf("invalid address type: %d\n", aw1->type); 2018 return (1); 2019 } 2020 } 2021 2022 /** 2023 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2024 * header isn't always a full checksum. In some cases (i.e. output) it's a 2025 * pseudo-header checksum, which is a partial checksum over src/dst IP 2026 * addresses, protocol number and length. 2027 * 2028 * That means we have the following cases: 2029 * * Input or forwarding: we don't have TSO, the checksum fields are full 2030 * checksums, we need to update the checksum whenever we change anything. 2031 * * Output (i.e. the checksum is a pseudo-header checksum): 2032 * x The field being updated is src/dst address or affects the length of 2033 * the packet. We need to update the pseudo-header checksum (note that this 2034 * checksum is not ones' complement). 2035 * x Some other field is being modified (e.g. src/dst port numbers): We 2036 * don't have to update anything. 2037 **/ 2038 u_int16_t 2039 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2040 { 2041 u_int32_t l; 2042 2043 if (udp && !cksum) 2044 return (0x0000); 2045 l = cksum + old - new; 2046 l = (l >> 16) + (l & 65535); 2047 l = l & 65535; 2048 if (udp && !l) 2049 return (0xFFFF); 2050 return (l); 2051 } 2052 2053 u_int16_t 2054 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2055 u_int16_t new, u_int8_t udp) 2056 { 2057 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2058 return (cksum); 2059 2060 return (pf_cksum_fixup(cksum, old, new, udp)); 2061 } 2062 2063 static void 2064 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2065 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2066 sa_family_t af) 2067 { 2068 struct pf_addr ao; 2069 u_int16_t po = *p; 2070 2071 PF_ACPY(&ao, a, af); 2072 PF_ACPY(a, an, af); 2073 2074 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2075 *pc = ~*pc; 2076 2077 *p = pn; 2078 2079 switch (af) { 2080 #ifdef INET 2081 case AF_INET: 2082 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2083 ao.addr16[0], an->addr16[0], 0), 2084 ao.addr16[1], an->addr16[1], 0); 2085 *p = pn; 2086 2087 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2088 ao.addr16[0], an->addr16[0], u), 2089 ao.addr16[1], an->addr16[1], u); 2090 2091 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2092 break; 2093 #endif /* INET */ 2094 #ifdef INET6 2095 case AF_INET6: 2096 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2097 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2098 pf_cksum_fixup(pf_cksum_fixup(*pc, 2099 ao.addr16[0], an->addr16[0], u), 2100 ao.addr16[1], an->addr16[1], u), 2101 ao.addr16[2], an->addr16[2], u), 2102 ao.addr16[3], an->addr16[3], u), 2103 ao.addr16[4], an->addr16[4], u), 2104 ao.addr16[5], an->addr16[5], u), 2105 ao.addr16[6], an->addr16[6], u), 2106 ao.addr16[7], an->addr16[7], u); 2107 2108 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2109 break; 2110 #endif /* INET6 */ 2111 } 2112 2113 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2114 CSUM_DELAY_DATA_IPV6)) { 2115 *pc = ~*pc; 2116 if (! *pc) 2117 *pc = 0xffff; 2118 } 2119 } 2120 2121 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2122 void 2123 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2124 { 2125 u_int32_t ao; 2126 2127 memcpy(&ao, a, sizeof(ao)); 2128 memcpy(a, &an, sizeof(u_int32_t)); 2129 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2130 ao % 65536, an % 65536, u); 2131 } 2132 2133 void 2134 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2135 { 2136 u_int32_t ao; 2137 2138 memcpy(&ao, a, sizeof(ao)); 2139 memcpy(a, &an, sizeof(u_int32_t)); 2140 2141 *c = pf_proto_cksum_fixup(m, 2142 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2143 ao % 65536, an % 65536, udp); 2144 } 2145 2146 #ifdef INET6 2147 static void 2148 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2149 { 2150 struct pf_addr ao; 2151 2152 PF_ACPY(&ao, a, AF_INET6); 2153 PF_ACPY(a, an, AF_INET6); 2154 2155 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2156 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2157 pf_cksum_fixup(pf_cksum_fixup(*c, 2158 ao.addr16[0], an->addr16[0], u), 2159 ao.addr16[1], an->addr16[1], u), 2160 ao.addr16[2], an->addr16[2], u), 2161 ao.addr16[3], an->addr16[3], u), 2162 ao.addr16[4], an->addr16[4], u), 2163 ao.addr16[5], an->addr16[5], u), 2164 ao.addr16[6], an->addr16[6], u), 2165 ao.addr16[7], an->addr16[7], u); 2166 } 2167 #endif /* INET6 */ 2168 2169 static void 2170 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2171 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2172 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2173 { 2174 struct pf_addr oia, ooa; 2175 2176 PF_ACPY(&oia, ia, af); 2177 if (oa) 2178 PF_ACPY(&ooa, oa, af); 2179 2180 /* Change inner protocol port, fix inner protocol checksum. */ 2181 if (ip != NULL) { 2182 u_int16_t oip = *ip; 2183 u_int32_t opc; 2184 2185 if (pc != NULL) 2186 opc = *pc; 2187 *ip = np; 2188 if (pc != NULL) 2189 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2190 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2191 if (pc != NULL) 2192 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2193 } 2194 /* Change inner ip address, fix inner ip and icmp checksums. */ 2195 PF_ACPY(ia, na, af); 2196 switch (af) { 2197 #ifdef INET 2198 case AF_INET: { 2199 u_int32_t oh2c = *h2c; 2200 2201 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2202 oia.addr16[0], ia->addr16[0], 0), 2203 oia.addr16[1], ia->addr16[1], 0); 2204 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2205 oia.addr16[0], ia->addr16[0], 0), 2206 oia.addr16[1], ia->addr16[1], 0); 2207 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2208 break; 2209 } 2210 #endif /* INET */ 2211 #ifdef INET6 2212 case AF_INET6: 2213 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2214 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2215 pf_cksum_fixup(pf_cksum_fixup(*ic, 2216 oia.addr16[0], ia->addr16[0], u), 2217 oia.addr16[1], ia->addr16[1], u), 2218 oia.addr16[2], ia->addr16[2], u), 2219 oia.addr16[3], ia->addr16[3], u), 2220 oia.addr16[4], ia->addr16[4], u), 2221 oia.addr16[5], ia->addr16[5], u), 2222 oia.addr16[6], ia->addr16[6], u), 2223 oia.addr16[7], ia->addr16[7], u); 2224 break; 2225 #endif /* INET6 */ 2226 } 2227 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2228 if (oa) { 2229 PF_ACPY(oa, na, af); 2230 switch (af) { 2231 #ifdef INET 2232 case AF_INET: 2233 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2234 ooa.addr16[0], oa->addr16[0], 0), 2235 ooa.addr16[1], oa->addr16[1], 0); 2236 break; 2237 #endif /* INET */ 2238 #ifdef INET6 2239 case AF_INET6: 2240 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2241 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2242 pf_cksum_fixup(pf_cksum_fixup(*ic, 2243 ooa.addr16[0], oa->addr16[0], u), 2244 ooa.addr16[1], oa->addr16[1], u), 2245 ooa.addr16[2], oa->addr16[2], u), 2246 ooa.addr16[3], oa->addr16[3], u), 2247 ooa.addr16[4], oa->addr16[4], u), 2248 ooa.addr16[5], oa->addr16[5], u), 2249 ooa.addr16[6], oa->addr16[6], u), 2250 ooa.addr16[7], oa->addr16[7], u); 2251 break; 2252 #endif /* INET6 */ 2253 } 2254 } 2255 } 2256 2257 2258 /* 2259 * Need to modulate the sequence numbers in the TCP SACK option 2260 * (credits to Krzysztof Pfaff for report and patch) 2261 */ 2262 static int 2263 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2264 struct tcphdr *th, struct pf_state_peer *dst) 2265 { 2266 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2267 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2268 int copyback = 0, i, olen; 2269 struct sackblk sack; 2270 2271 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2272 if (hlen < TCPOLEN_SACKLEN || 2273 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2274 return 0; 2275 2276 while (hlen >= TCPOLEN_SACKLEN) { 2277 olen = opt[1]; 2278 switch (*opt) { 2279 case TCPOPT_EOL: /* FALLTHROUGH */ 2280 case TCPOPT_NOP: 2281 opt++; 2282 hlen--; 2283 break; 2284 case TCPOPT_SACK: 2285 if (olen > hlen) 2286 olen = hlen; 2287 if (olen >= TCPOLEN_SACKLEN) { 2288 for (i = 2; i + TCPOLEN_SACK <= olen; 2289 i += TCPOLEN_SACK) { 2290 memcpy(&sack, &opt[i], sizeof(sack)); 2291 pf_change_proto_a(m, &sack.start, &th->th_sum, 2292 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2293 pf_change_proto_a(m, &sack.end, &th->th_sum, 2294 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2295 memcpy(&opt[i], &sack, sizeof(sack)); 2296 } 2297 copyback = 1; 2298 } 2299 /* FALLTHROUGH */ 2300 default: 2301 if (olen < 2) 2302 olen = 2; 2303 hlen -= olen; 2304 opt += olen; 2305 } 2306 } 2307 2308 if (copyback) 2309 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2310 return (copyback); 2311 } 2312 2313 static void 2314 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2315 const struct pf_addr *saddr, const struct pf_addr *daddr, 2316 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2317 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2318 u_int16_t rtag, struct ifnet *ifp) 2319 { 2320 struct pf_send_entry *pfse; 2321 struct mbuf *m; 2322 int len, tlen; 2323 #ifdef INET 2324 struct ip *h = NULL; 2325 #endif /* INET */ 2326 #ifdef INET6 2327 struct ip6_hdr *h6 = NULL; 2328 #endif /* INET6 */ 2329 struct tcphdr *th; 2330 char *opt; 2331 struct pf_mtag *pf_mtag; 2332 2333 len = 0; 2334 th = NULL; 2335 2336 /* maximum segment size tcp option */ 2337 tlen = sizeof(struct tcphdr); 2338 if (mss) 2339 tlen += 4; 2340 2341 switch (af) { 2342 #ifdef INET 2343 case AF_INET: 2344 len = sizeof(struct ip) + tlen; 2345 break; 2346 #endif /* INET */ 2347 #ifdef INET6 2348 case AF_INET6: 2349 len = sizeof(struct ip6_hdr) + tlen; 2350 break; 2351 #endif /* INET6 */ 2352 default: 2353 panic("%s: unsupported af %d", __func__, af); 2354 } 2355 2356 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2357 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2358 if (pfse == NULL) 2359 return; 2360 m = m_gethdr(M_NOWAIT, MT_DATA); 2361 if (m == NULL) { 2362 free(pfse, M_PFTEMP); 2363 return; 2364 } 2365 #ifdef MAC 2366 mac_netinet_firewall_send(m); 2367 #endif 2368 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2369 free(pfse, M_PFTEMP); 2370 m_freem(m); 2371 return; 2372 } 2373 if (tag) 2374 m->m_flags |= M_SKIP_FIREWALL; 2375 pf_mtag->tag = rtag; 2376 2377 if (r != NULL && r->rtableid >= 0) 2378 M_SETFIB(m, r->rtableid); 2379 2380 #ifdef ALTQ 2381 if (r != NULL && r->qid) { 2382 pf_mtag->qid = r->qid; 2383 2384 /* add hints for ecn */ 2385 pf_mtag->hdr = mtod(m, struct ip *); 2386 } 2387 #endif /* ALTQ */ 2388 m->m_data += max_linkhdr; 2389 m->m_pkthdr.len = m->m_len = len; 2390 m->m_pkthdr.rcvif = NULL; 2391 bzero(m->m_data, len); 2392 switch (af) { 2393 #ifdef INET 2394 case AF_INET: 2395 h = mtod(m, struct ip *); 2396 2397 /* IP header fields included in the TCP checksum */ 2398 h->ip_p = IPPROTO_TCP; 2399 h->ip_len = htons(tlen); 2400 h->ip_src.s_addr = saddr->v4.s_addr; 2401 h->ip_dst.s_addr = daddr->v4.s_addr; 2402 2403 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2404 break; 2405 #endif /* INET */ 2406 #ifdef INET6 2407 case AF_INET6: 2408 h6 = mtod(m, struct ip6_hdr *); 2409 2410 /* IP header fields included in the TCP checksum */ 2411 h6->ip6_nxt = IPPROTO_TCP; 2412 h6->ip6_plen = htons(tlen); 2413 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2414 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2415 2416 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2417 break; 2418 #endif /* INET6 */ 2419 } 2420 2421 /* TCP header */ 2422 th->th_sport = sport; 2423 th->th_dport = dport; 2424 th->th_seq = htonl(seq); 2425 th->th_ack = htonl(ack); 2426 th->th_off = tlen >> 2; 2427 th->th_flags = flags; 2428 th->th_win = htons(win); 2429 2430 if (mss) { 2431 opt = (char *)(th + 1); 2432 opt[0] = TCPOPT_MAXSEG; 2433 opt[1] = 4; 2434 HTONS(mss); 2435 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2436 } 2437 2438 switch (af) { 2439 #ifdef INET 2440 case AF_INET: 2441 /* TCP checksum */ 2442 th->th_sum = in_cksum(m, len); 2443 2444 /* Finish the IP header */ 2445 h->ip_v = 4; 2446 h->ip_hl = sizeof(*h) >> 2; 2447 h->ip_tos = IPTOS_LOWDELAY; 2448 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2449 h->ip_len = htons(len); 2450 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2451 h->ip_sum = 0; 2452 2453 pfse->pfse_type = PFSE_IP; 2454 break; 2455 #endif /* INET */ 2456 #ifdef INET6 2457 case AF_INET6: 2458 /* TCP checksum */ 2459 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2460 sizeof(struct ip6_hdr), tlen); 2461 2462 h6->ip6_vfc |= IPV6_VERSION; 2463 h6->ip6_hlim = IPV6_DEFHLIM; 2464 2465 pfse->pfse_type = PFSE_IP6; 2466 break; 2467 #endif /* INET6 */ 2468 } 2469 pfse->pfse_m = m; 2470 pf_send(pfse); 2471 } 2472 2473 static int 2474 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2475 { 2476 struct m_tag *mtag; 2477 2478 KASSERT(prio <= PF_PRIO_MAX, 2479 ("%s with invalid pcp", __func__)); 2480 2481 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2482 if (mtag == NULL) { 2483 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2484 sizeof(uint8_t), M_NOWAIT); 2485 if (mtag == NULL) 2486 return (ENOMEM); 2487 m_tag_prepend(m, mtag); 2488 } 2489 2490 *(uint8_t *)(mtag + 1) = prio; 2491 return (0); 2492 } 2493 2494 static int 2495 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2496 { 2497 struct m_tag *mtag; 2498 u_int8_t mpcp; 2499 2500 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2501 if (mtag == NULL) 2502 return (0); 2503 2504 if (prio == PF_PRIO_ZERO) 2505 prio = 0; 2506 2507 mpcp = *(uint8_t *)(mtag + 1); 2508 2509 return (mpcp == prio); 2510 } 2511 2512 static void 2513 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2514 struct pf_rule *r) 2515 { 2516 struct pf_send_entry *pfse; 2517 struct mbuf *m0; 2518 struct pf_mtag *pf_mtag; 2519 2520 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2521 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2522 if (pfse == NULL) 2523 return; 2524 2525 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2526 free(pfse, M_PFTEMP); 2527 return; 2528 } 2529 2530 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2531 free(pfse, M_PFTEMP); 2532 return; 2533 } 2534 /* XXX: revisit */ 2535 m0->m_flags |= M_SKIP_FIREWALL; 2536 2537 if (r->rtableid >= 0) 2538 M_SETFIB(m0, r->rtableid); 2539 2540 #ifdef ALTQ 2541 if (r->qid) { 2542 pf_mtag->qid = r->qid; 2543 /* add hints for ecn */ 2544 pf_mtag->hdr = mtod(m0, struct ip *); 2545 } 2546 #endif /* ALTQ */ 2547 2548 switch (af) { 2549 #ifdef INET 2550 case AF_INET: 2551 pfse->pfse_type = PFSE_ICMP; 2552 break; 2553 #endif /* INET */ 2554 #ifdef INET6 2555 case AF_INET6: 2556 pfse->pfse_type = PFSE_ICMP6; 2557 break; 2558 #endif /* INET6 */ 2559 } 2560 pfse->pfse_m = m0; 2561 pfse->icmpopts.type = type; 2562 pfse->icmpopts.code = code; 2563 pf_send(pfse); 2564 } 2565 2566 /* 2567 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2568 * If n is 0, they match if they are equal. If n is != 0, they match if they 2569 * are different. 2570 */ 2571 int 2572 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2573 struct pf_addr *b, sa_family_t af) 2574 { 2575 int match = 0; 2576 2577 switch (af) { 2578 #ifdef INET 2579 case AF_INET: 2580 if ((a->addr32[0] & m->addr32[0]) == 2581 (b->addr32[0] & m->addr32[0])) 2582 match++; 2583 break; 2584 #endif /* INET */ 2585 #ifdef INET6 2586 case AF_INET6: 2587 if (((a->addr32[0] & m->addr32[0]) == 2588 (b->addr32[0] & m->addr32[0])) && 2589 ((a->addr32[1] & m->addr32[1]) == 2590 (b->addr32[1] & m->addr32[1])) && 2591 ((a->addr32[2] & m->addr32[2]) == 2592 (b->addr32[2] & m->addr32[2])) && 2593 ((a->addr32[3] & m->addr32[3]) == 2594 (b->addr32[3] & m->addr32[3]))) 2595 match++; 2596 break; 2597 #endif /* INET6 */ 2598 } 2599 if (match) { 2600 if (n) 2601 return (0); 2602 else 2603 return (1); 2604 } else { 2605 if (n) 2606 return (1); 2607 else 2608 return (0); 2609 } 2610 } 2611 2612 /* 2613 * Return 1 if b <= a <= e, otherwise return 0. 2614 */ 2615 int 2616 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2617 struct pf_addr *a, sa_family_t af) 2618 { 2619 switch (af) { 2620 #ifdef INET 2621 case AF_INET: 2622 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2623 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2624 return (0); 2625 break; 2626 #endif /* INET */ 2627 #ifdef INET6 2628 case AF_INET6: { 2629 int i; 2630 2631 /* check a >= b */ 2632 for (i = 0; i < 4; ++i) 2633 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2634 break; 2635 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2636 return (0); 2637 /* check a <= e */ 2638 for (i = 0; i < 4; ++i) 2639 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2640 break; 2641 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2642 return (0); 2643 break; 2644 } 2645 #endif /* INET6 */ 2646 } 2647 return (1); 2648 } 2649 2650 static int 2651 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2652 { 2653 switch (op) { 2654 case PF_OP_IRG: 2655 return ((p > a1) && (p < a2)); 2656 case PF_OP_XRG: 2657 return ((p < a1) || (p > a2)); 2658 case PF_OP_RRG: 2659 return ((p >= a1) && (p <= a2)); 2660 case PF_OP_EQ: 2661 return (p == a1); 2662 case PF_OP_NE: 2663 return (p != a1); 2664 case PF_OP_LT: 2665 return (p < a1); 2666 case PF_OP_LE: 2667 return (p <= a1); 2668 case PF_OP_GT: 2669 return (p > a1); 2670 case PF_OP_GE: 2671 return (p >= a1); 2672 } 2673 return (0); /* never reached */ 2674 } 2675 2676 int 2677 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2678 { 2679 NTOHS(a1); 2680 NTOHS(a2); 2681 NTOHS(p); 2682 return (pf_match(op, a1, a2, p)); 2683 } 2684 2685 static int 2686 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2687 { 2688 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2689 return (0); 2690 return (pf_match(op, a1, a2, u)); 2691 } 2692 2693 static int 2694 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2695 { 2696 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2697 return (0); 2698 return (pf_match(op, a1, a2, g)); 2699 } 2700 2701 int 2702 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2703 { 2704 if (*tag == -1) 2705 *tag = mtag; 2706 2707 return ((!r->match_tag_not && r->match_tag == *tag) || 2708 (r->match_tag_not && r->match_tag != *tag)); 2709 } 2710 2711 int 2712 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2713 { 2714 2715 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2716 2717 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2718 return (ENOMEM); 2719 2720 pd->pf_mtag->tag = tag; 2721 2722 return (0); 2723 } 2724 2725 #define PF_ANCHOR_STACKSIZE 32 2726 struct pf_anchor_stackframe { 2727 struct pf_ruleset *rs; 2728 struct pf_rule *r; /* XXX: + match bit */ 2729 struct pf_anchor *child; 2730 }; 2731 2732 /* 2733 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2734 */ 2735 #define PF_ANCHORSTACK_MATCH 0x00000001 2736 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2737 2738 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2739 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2740 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2741 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2742 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2743 } while (0) 2744 2745 void 2746 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2747 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2748 int *match) 2749 { 2750 struct pf_anchor_stackframe *f; 2751 2752 PF_RULES_RASSERT(); 2753 2754 if (match) 2755 *match = 0; 2756 if (*depth >= PF_ANCHOR_STACKSIZE) { 2757 printf("%s: anchor stack overflow on %s\n", 2758 __func__, (*r)->anchor->name); 2759 *r = TAILQ_NEXT(*r, entries); 2760 return; 2761 } else if (*depth == 0 && a != NULL) 2762 *a = *r; 2763 f = stack + (*depth)++; 2764 f->rs = *rs; 2765 f->r = *r; 2766 if ((*r)->anchor_wildcard) { 2767 struct pf_anchor_node *parent = &(*r)->anchor->children; 2768 2769 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2770 *r = NULL; 2771 return; 2772 } 2773 *rs = &f->child->ruleset; 2774 } else { 2775 f->child = NULL; 2776 *rs = &(*r)->anchor->ruleset; 2777 } 2778 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2779 } 2780 2781 int 2782 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2783 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2784 int *match) 2785 { 2786 struct pf_anchor_stackframe *f; 2787 struct pf_rule *fr; 2788 int quick = 0; 2789 2790 PF_RULES_RASSERT(); 2791 2792 do { 2793 if (*depth <= 0) 2794 break; 2795 f = stack + *depth - 1; 2796 fr = PF_ANCHOR_RULE(f); 2797 if (f->child != NULL) { 2798 struct pf_anchor_node *parent; 2799 2800 /* 2801 * This block traverses through 2802 * a wildcard anchor. 2803 */ 2804 parent = &fr->anchor->children; 2805 if (match != NULL && *match) { 2806 /* 2807 * If any of "*" matched, then 2808 * "foo/ *" matched, mark frame 2809 * appropriately. 2810 */ 2811 PF_ANCHOR_SET_MATCH(f); 2812 *match = 0; 2813 } 2814 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2815 if (f->child != NULL) { 2816 *rs = &f->child->ruleset; 2817 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2818 if (*r == NULL) 2819 continue; 2820 else 2821 break; 2822 } 2823 } 2824 (*depth)--; 2825 if (*depth == 0 && a != NULL) 2826 *a = NULL; 2827 *rs = f->rs; 2828 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2829 quick = fr->quick; 2830 *r = TAILQ_NEXT(fr, entries); 2831 } while (*r == NULL); 2832 2833 return (quick); 2834 } 2835 2836 #ifdef INET6 2837 void 2838 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2839 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2840 { 2841 switch (af) { 2842 #ifdef INET 2843 case AF_INET: 2844 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2845 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2846 break; 2847 #endif /* INET */ 2848 case AF_INET6: 2849 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2850 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2851 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2852 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2853 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2854 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2855 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2856 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2857 break; 2858 } 2859 } 2860 2861 void 2862 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2863 { 2864 switch (af) { 2865 #ifdef INET 2866 case AF_INET: 2867 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2868 break; 2869 #endif /* INET */ 2870 case AF_INET6: 2871 if (addr->addr32[3] == 0xffffffff) { 2872 addr->addr32[3] = 0; 2873 if (addr->addr32[2] == 0xffffffff) { 2874 addr->addr32[2] = 0; 2875 if (addr->addr32[1] == 0xffffffff) { 2876 addr->addr32[1] = 0; 2877 addr->addr32[0] = 2878 htonl(ntohl(addr->addr32[0]) + 1); 2879 } else 2880 addr->addr32[1] = 2881 htonl(ntohl(addr->addr32[1]) + 1); 2882 } else 2883 addr->addr32[2] = 2884 htonl(ntohl(addr->addr32[2]) + 1); 2885 } else 2886 addr->addr32[3] = 2887 htonl(ntohl(addr->addr32[3]) + 1); 2888 break; 2889 } 2890 } 2891 #endif /* INET6 */ 2892 2893 int 2894 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2895 { 2896 struct pf_addr *saddr, *daddr; 2897 u_int16_t sport, dport; 2898 struct inpcbinfo *pi; 2899 struct inpcb *inp; 2900 2901 pd->lookup.uid = UID_MAX; 2902 pd->lookup.gid = GID_MAX; 2903 2904 switch (pd->proto) { 2905 case IPPROTO_TCP: 2906 if (pd->hdr.tcp == NULL) 2907 return (-1); 2908 sport = pd->hdr.tcp->th_sport; 2909 dport = pd->hdr.tcp->th_dport; 2910 pi = &V_tcbinfo; 2911 break; 2912 case IPPROTO_UDP: 2913 if (pd->hdr.udp == NULL) 2914 return (-1); 2915 sport = pd->hdr.udp->uh_sport; 2916 dport = pd->hdr.udp->uh_dport; 2917 pi = &V_udbinfo; 2918 break; 2919 default: 2920 return (-1); 2921 } 2922 if (direction == PF_IN) { 2923 saddr = pd->src; 2924 daddr = pd->dst; 2925 } else { 2926 u_int16_t p; 2927 2928 p = sport; 2929 sport = dport; 2930 dport = p; 2931 saddr = pd->dst; 2932 daddr = pd->src; 2933 } 2934 switch (pd->af) { 2935 #ifdef INET 2936 case AF_INET: 2937 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2938 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2939 if (inp == NULL) { 2940 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2941 daddr->v4, dport, INPLOOKUP_WILDCARD | 2942 INPLOOKUP_RLOCKPCB, NULL, m); 2943 if (inp == NULL) 2944 return (-1); 2945 } 2946 break; 2947 #endif /* INET */ 2948 #ifdef INET6 2949 case AF_INET6: 2950 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2951 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2952 if (inp == NULL) { 2953 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2954 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2955 INPLOOKUP_RLOCKPCB, NULL, m); 2956 if (inp == NULL) 2957 return (-1); 2958 } 2959 break; 2960 #endif /* INET6 */ 2961 2962 default: 2963 return (-1); 2964 } 2965 INP_RLOCK_ASSERT(inp); 2966 pd->lookup.uid = inp->inp_cred->cr_uid; 2967 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2968 INP_RUNLOCK(inp); 2969 2970 return (1); 2971 } 2972 2973 static u_int8_t 2974 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 2975 { 2976 int hlen; 2977 u_int8_t hdr[60]; 2978 u_int8_t *opt, optlen; 2979 u_int8_t wscale = 0; 2980 2981 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 2982 if (hlen <= sizeof(struct tcphdr)) 2983 return (0); 2984 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 2985 return (0); 2986 opt = hdr + sizeof(struct tcphdr); 2987 hlen -= sizeof(struct tcphdr); 2988 while (hlen >= 3) { 2989 switch (*opt) { 2990 case TCPOPT_EOL: 2991 case TCPOPT_NOP: 2992 ++opt; 2993 --hlen; 2994 break; 2995 case TCPOPT_WINDOW: 2996 wscale = opt[2]; 2997 if (wscale > TCP_MAX_WINSHIFT) 2998 wscale = TCP_MAX_WINSHIFT; 2999 wscale |= PF_WSCALE_FLAG; 3000 /* FALLTHROUGH */ 3001 default: 3002 optlen = opt[1]; 3003 if (optlen < 2) 3004 optlen = 2; 3005 hlen -= optlen; 3006 opt += optlen; 3007 break; 3008 } 3009 } 3010 return (wscale); 3011 } 3012 3013 static u_int16_t 3014 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3015 { 3016 int hlen; 3017 u_int8_t hdr[60]; 3018 u_int8_t *opt, optlen; 3019 u_int16_t mss = V_tcp_mssdflt; 3020 3021 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3022 if (hlen <= sizeof(struct tcphdr)) 3023 return (0); 3024 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3025 return (0); 3026 opt = hdr + sizeof(struct tcphdr); 3027 hlen -= sizeof(struct tcphdr); 3028 while (hlen >= TCPOLEN_MAXSEG) { 3029 switch (*opt) { 3030 case TCPOPT_EOL: 3031 case TCPOPT_NOP: 3032 ++opt; 3033 --hlen; 3034 break; 3035 case TCPOPT_MAXSEG: 3036 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3037 NTOHS(mss); 3038 /* FALLTHROUGH */ 3039 default: 3040 optlen = opt[1]; 3041 if (optlen < 2) 3042 optlen = 2; 3043 hlen -= optlen; 3044 opt += optlen; 3045 break; 3046 } 3047 } 3048 return (mss); 3049 } 3050 3051 static u_int16_t 3052 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3053 { 3054 #ifdef INET 3055 struct nhop4_basic nh4; 3056 #endif /* INET */ 3057 #ifdef INET6 3058 struct nhop6_basic nh6; 3059 struct in6_addr dst6; 3060 uint32_t scopeid; 3061 #endif /* INET6 */ 3062 int hlen = 0; 3063 uint16_t mss = 0; 3064 3065 switch (af) { 3066 #ifdef INET 3067 case AF_INET: 3068 hlen = sizeof(struct ip); 3069 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3070 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3071 break; 3072 #endif /* INET */ 3073 #ifdef INET6 3074 case AF_INET6: 3075 hlen = sizeof(struct ip6_hdr); 3076 in6_splitscope(&addr->v6, &dst6, &scopeid); 3077 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3078 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3079 break; 3080 #endif /* INET6 */ 3081 } 3082 3083 mss = max(V_tcp_mssdflt, mss); 3084 mss = min(mss, offer); 3085 mss = max(mss, 64); /* sanity - at least max opt space */ 3086 return (mss); 3087 } 3088 3089 static u_int32_t 3090 pf_tcp_iss(struct pf_pdesc *pd) 3091 { 3092 MD5_CTX ctx; 3093 u_int32_t digest[4]; 3094 3095 if (V_pf_tcp_secret_init == 0) { 3096 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3097 MD5Init(&V_pf_tcp_secret_ctx); 3098 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3099 sizeof(V_pf_tcp_secret)); 3100 V_pf_tcp_secret_init = 1; 3101 } 3102 3103 ctx = V_pf_tcp_secret_ctx; 3104 3105 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3106 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3107 if (pd->af == AF_INET6) { 3108 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3109 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3110 } else { 3111 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3112 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3113 } 3114 MD5Final((u_char *)digest, &ctx); 3115 V_pf_tcp_iss_off += 4096; 3116 #define ISN_RANDOM_INCREMENT (4096 - 1) 3117 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3118 V_pf_tcp_iss_off); 3119 #undef ISN_RANDOM_INCREMENT 3120 } 3121 3122 static int 3123 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3124 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3125 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3126 { 3127 struct pf_rule *nr = NULL; 3128 struct pf_addr * const saddr = pd->src; 3129 struct pf_addr * const daddr = pd->dst; 3130 sa_family_t af = pd->af; 3131 struct pf_rule *r, *a = NULL; 3132 struct pf_ruleset *ruleset = NULL; 3133 struct pf_src_node *nsn = NULL; 3134 struct tcphdr *th = pd->hdr.tcp; 3135 struct pf_state_key *sk = NULL, *nk = NULL; 3136 u_short reason; 3137 int rewrite = 0, hdrlen = 0; 3138 int tag = -1, rtableid = -1; 3139 int asd = 0; 3140 int match = 0; 3141 int state_icmp = 0; 3142 u_int16_t sport = 0, dport = 0; 3143 u_int16_t bproto_sum = 0, bip_sum = 0; 3144 u_int8_t icmptype = 0, icmpcode = 0; 3145 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3146 3147 PF_RULES_RASSERT(); 3148 3149 if (inp != NULL) { 3150 INP_LOCK_ASSERT(inp); 3151 pd->lookup.uid = inp->inp_cred->cr_uid; 3152 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3153 pd->lookup.done = 1; 3154 } 3155 3156 switch (pd->proto) { 3157 case IPPROTO_TCP: 3158 sport = th->th_sport; 3159 dport = th->th_dport; 3160 hdrlen = sizeof(*th); 3161 break; 3162 case IPPROTO_UDP: 3163 sport = pd->hdr.udp->uh_sport; 3164 dport = pd->hdr.udp->uh_dport; 3165 hdrlen = sizeof(*pd->hdr.udp); 3166 break; 3167 #ifdef INET 3168 case IPPROTO_ICMP: 3169 if (pd->af != AF_INET) 3170 break; 3171 sport = dport = pd->hdr.icmp->icmp_id; 3172 hdrlen = sizeof(*pd->hdr.icmp); 3173 icmptype = pd->hdr.icmp->icmp_type; 3174 icmpcode = pd->hdr.icmp->icmp_code; 3175 3176 if (icmptype == ICMP_UNREACH || 3177 icmptype == ICMP_SOURCEQUENCH || 3178 icmptype == ICMP_REDIRECT || 3179 icmptype == ICMP_TIMXCEED || 3180 icmptype == ICMP_PARAMPROB) 3181 state_icmp++; 3182 break; 3183 #endif /* INET */ 3184 #ifdef INET6 3185 case IPPROTO_ICMPV6: 3186 if (af != AF_INET6) 3187 break; 3188 sport = dport = pd->hdr.icmp6->icmp6_id; 3189 hdrlen = sizeof(*pd->hdr.icmp6); 3190 icmptype = pd->hdr.icmp6->icmp6_type; 3191 icmpcode = pd->hdr.icmp6->icmp6_code; 3192 3193 if (icmptype == ICMP6_DST_UNREACH || 3194 icmptype == ICMP6_PACKET_TOO_BIG || 3195 icmptype == ICMP6_TIME_EXCEEDED || 3196 icmptype == ICMP6_PARAM_PROB) 3197 state_icmp++; 3198 break; 3199 #endif /* INET6 */ 3200 default: 3201 sport = dport = hdrlen = 0; 3202 break; 3203 } 3204 3205 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3206 3207 /* check packet for BINAT/NAT/RDR */ 3208 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3209 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3210 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3211 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3212 3213 if (pd->ip_sum) 3214 bip_sum = *pd->ip_sum; 3215 3216 switch (pd->proto) { 3217 case IPPROTO_TCP: 3218 bproto_sum = th->th_sum; 3219 pd->proto_sum = &th->th_sum; 3220 3221 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3222 nk->port[pd->sidx] != sport) { 3223 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3224 &th->th_sum, &nk->addr[pd->sidx], 3225 nk->port[pd->sidx], 0, af); 3226 pd->sport = &th->th_sport; 3227 sport = th->th_sport; 3228 } 3229 3230 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3231 nk->port[pd->didx] != dport) { 3232 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3233 &th->th_sum, &nk->addr[pd->didx], 3234 nk->port[pd->didx], 0, af); 3235 dport = th->th_dport; 3236 pd->dport = &th->th_dport; 3237 } 3238 rewrite++; 3239 break; 3240 case IPPROTO_UDP: 3241 bproto_sum = pd->hdr.udp->uh_sum; 3242 pd->proto_sum = &pd->hdr.udp->uh_sum; 3243 3244 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3245 nk->port[pd->sidx] != sport) { 3246 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3247 pd->ip_sum, &pd->hdr.udp->uh_sum, 3248 &nk->addr[pd->sidx], 3249 nk->port[pd->sidx], 1, af); 3250 sport = pd->hdr.udp->uh_sport; 3251 pd->sport = &pd->hdr.udp->uh_sport; 3252 } 3253 3254 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3255 nk->port[pd->didx] != dport) { 3256 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3257 pd->ip_sum, &pd->hdr.udp->uh_sum, 3258 &nk->addr[pd->didx], 3259 nk->port[pd->didx], 1, af); 3260 dport = pd->hdr.udp->uh_dport; 3261 pd->dport = &pd->hdr.udp->uh_dport; 3262 } 3263 rewrite++; 3264 break; 3265 #ifdef INET 3266 case IPPROTO_ICMP: 3267 nk->port[0] = nk->port[1]; 3268 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3269 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3270 nk->addr[pd->sidx].v4.s_addr, 0); 3271 3272 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3273 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3274 nk->addr[pd->didx].v4.s_addr, 0); 3275 3276 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3277 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3278 pd->hdr.icmp->icmp_cksum, sport, 3279 nk->port[1], 0); 3280 pd->hdr.icmp->icmp_id = nk->port[1]; 3281 pd->sport = &pd->hdr.icmp->icmp_id; 3282 } 3283 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3284 break; 3285 #endif /* INET */ 3286 #ifdef INET6 3287 case IPPROTO_ICMPV6: 3288 nk->port[0] = nk->port[1]; 3289 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3290 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3291 &nk->addr[pd->sidx], 0); 3292 3293 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3294 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3295 &nk->addr[pd->didx], 0); 3296 rewrite++; 3297 break; 3298 #endif /* INET */ 3299 default: 3300 switch (af) { 3301 #ifdef INET 3302 case AF_INET: 3303 if (PF_ANEQ(saddr, 3304 &nk->addr[pd->sidx], AF_INET)) 3305 pf_change_a(&saddr->v4.s_addr, 3306 pd->ip_sum, 3307 nk->addr[pd->sidx].v4.s_addr, 0); 3308 3309 if (PF_ANEQ(daddr, 3310 &nk->addr[pd->didx], AF_INET)) 3311 pf_change_a(&daddr->v4.s_addr, 3312 pd->ip_sum, 3313 nk->addr[pd->didx].v4.s_addr, 0); 3314 break; 3315 #endif /* INET */ 3316 #ifdef INET6 3317 case AF_INET6: 3318 if (PF_ANEQ(saddr, 3319 &nk->addr[pd->sidx], AF_INET6)) 3320 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3321 3322 if (PF_ANEQ(daddr, 3323 &nk->addr[pd->didx], AF_INET6)) 3324 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3325 break; 3326 #endif /* INET */ 3327 } 3328 break; 3329 } 3330 if (nr->natpass) 3331 r = NULL; 3332 pd->nat_rule = nr; 3333 } 3334 3335 while (r != NULL) { 3336 r->evaluations++; 3337 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3338 r = r->skip[PF_SKIP_IFP].ptr; 3339 else if (r->direction && r->direction != direction) 3340 r = r->skip[PF_SKIP_DIR].ptr; 3341 else if (r->af && r->af != af) 3342 r = r->skip[PF_SKIP_AF].ptr; 3343 else if (r->proto && r->proto != pd->proto) 3344 r = r->skip[PF_SKIP_PROTO].ptr; 3345 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3346 r->src.neg, kif, M_GETFIB(m))) 3347 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3348 /* tcp/udp only. port_op always 0 in other cases */ 3349 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3350 r->src.port[0], r->src.port[1], sport)) 3351 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3352 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3353 r->dst.neg, NULL, M_GETFIB(m))) 3354 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3355 /* tcp/udp only. port_op always 0 in other cases */ 3356 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3357 r->dst.port[0], r->dst.port[1], dport)) 3358 r = r->skip[PF_SKIP_DST_PORT].ptr; 3359 /* icmp only. type always 0 in other cases */ 3360 else if (r->type && r->type != icmptype + 1) 3361 r = TAILQ_NEXT(r, entries); 3362 /* icmp only. type always 0 in other cases */ 3363 else if (r->code && r->code != icmpcode + 1) 3364 r = TAILQ_NEXT(r, entries); 3365 else if (r->tos && !(r->tos == pd->tos)) 3366 r = TAILQ_NEXT(r, entries); 3367 else if (r->rule_flag & PFRULE_FRAGMENT) 3368 r = TAILQ_NEXT(r, entries); 3369 else if (pd->proto == IPPROTO_TCP && 3370 (r->flagset & th->th_flags) != r->flags) 3371 r = TAILQ_NEXT(r, entries); 3372 /* tcp/udp only. uid.op always 0 in other cases */ 3373 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3374 pf_socket_lookup(direction, pd, m), 1)) && 3375 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3376 pd->lookup.uid)) 3377 r = TAILQ_NEXT(r, entries); 3378 /* tcp/udp only. gid.op always 0 in other cases */ 3379 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3380 pf_socket_lookup(direction, pd, m), 1)) && 3381 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3382 pd->lookup.gid)) 3383 r = TAILQ_NEXT(r, entries); 3384 else if (r->prio && 3385 !pf_match_ieee8021q_pcp(r->prio, m)) 3386 r = TAILQ_NEXT(r, entries); 3387 else if (r->prob && 3388 r->prob <= arc4random()) 3389 r = TAILQ_NEXT(r, entries); 3390 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3391 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3392 r = TAILQ_NEXT(r, entries); 3393 else if (r->os_fingerprint != PF_OSFP_ANY && 3394 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3395 pf_osfp_fingerprint(pd, m, off, th), 3396 r->os_fingerprint))) 3397 r = TAILQ_NEXT(r, entries); 3398 else { 3399 if (r->tag) 3400 tag = r->tag; 3401 if (r->rtableid >= 0) 3402 rtableid = r->rtableid; 3403 if (r->anchor == NULL) { 3404 match = 1; 3405 *rm = r; 3406 *am = a; 3407 *rsm = ruleset; 3408 if ((*rm)->quick) 3409 break; 3410 r = TAILQ_NEXT(r, entries); 3411 } else 3412 pf_step_into_anchor(anchor_stack, &asd, 3413 &ruleset, PF_RULESET_FILTER, &r, &a, 3414 &match); 3415 } 3416 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3417 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3418 break; 3419 } 3420 r = *rm; 3421 a = *am; 3422 ruleset = *rsm; 3423 3424 REASON_SET(&reason, PFRES_MATCH); 3425 3426 if (r->log || (nr != NULL && nr->log)) { 3427 if (rewrite) 3428 m_copyback(m, off, hdrlen, pd->hdr.any); 3429 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3430 ruleset, pd, 1); 3431 } 3432 3433 if ((r->action == PF_DROP) && 3434 ((r->rule_flag & PFRULE_RETURNRST) || 3435 (r->rule_flag & PFRULE_RETURNICMP) || 3436 (r->rule_flag & PFRULE_RETURN))) { 3437 /* undo NAT changes, if they have taken place */ 3438 if (nr != NULL) { 3439 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3440 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3441 if (pd->sport) 3442 *pd->sport = sk->port[pd->sidx]; 3443 if (pd->dport) 3444 *pd->dport = sk->port[pd->didx]; 3445 if (pd->proto_sum) 3446 *pd->proto_sum = bproto_sum; 3447 if (pd->ip_sum) 3448 *pd->ip_sum = bip_sum; 3449 m_copyback(m, off, hdrlen, pd->hdr.any); 3450 } 3451 if (pd->proto == IPPROTO_TCP && 3452 ((r->rule_flag & PFRULE_RETURNRST) || 3453 (r->rule_flag & PFRULE_RETURN)) && 3454 !(th->th_flags & TH_RST)) { 3455 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3456 int len = 0; 3457 #ifdef INET 3458 struct ip *h4; 3459 #endif 3460 #ifdef INET6 3461 struct ip6_hdr *h6; 3462 #endif 3463 3464 switch (af) { 3465 #ifdef INET 3466 case AF_INET: 3467 h4 = mtod(m, struct ip *); 3468 len = ntohs(h4->ip_len) - off; 3469 break; 3470 #endif 3471 #ifdef INET6 3472 case AF_INET6: 3473 h6 = mtod(m, struct ip6_hdr *); 3474 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3475 break; 3476 #endif 3477 } 3478 3479 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3480 REASON_SET(&reason, PFRES_PROTCKSUM); 3481 else { 3482 if (th->th_flags & TH_SYN) 3483 ack++; 3484 if (th->th_flags & TH_FIN) 3485 ack++; 3486 pf_send_tcp(m, r, af, pd->dst, 3487 pd->src, th->th_dport, th->th_sport, 3488 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3489 r->return_ttl, 1, 0, kif->pfik_ifp); 3490 } 3491 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3492 r->return_icmp) 3493 pf_send_icmp(m, r->return_icmp >> 8, 3494 r->return_icmp & 255, af, r); 3495 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3496 r->return_icmp6) 3497 pf_send_icmp(m, r->return_icmp6 >> 8, 3498 r->return_icmp6 & 255, af, r); 3499 } 3500 3501 if (r->action == PF_DROP) 3502 goto cleanup; 3503 3504 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3505 REASON_SET(&reason, PFRES_MEMORY); 3506 goto cleanup; 3507 } 3508 if (rtableid >= 0) 3509 M_SETFIB(m, rtableid); 3510 3511 if (!state_icmp && (r->keep_state || nr != NULL || 3512 (pd->flags & PFDESC_TCP_NORM))) { 3513 int action; 3514 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3515 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3516 hdrlen); 3517 if (action != PF_PASS) 3518 return (action); 3519 } else { 3520 if (sk != NULL) 3521 uma_zfree(V_pf_state_key_z, sk); 3522 if (nk != NULL) 3523 uma_zfree(V_pf_state_key_z, nk); 3524 } 3525 3526 /* copy back packet headers if we performed NAT operations */ 3527 if (rewrite) 3528 m_copyback(m, off, hdrlen, pd->hdr.any); 3529 3530 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3531 direction == PF_OUT && 3532 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3533 /* 3534 * We want the state created, but we dont 3535 * want to send this in case a partner 3536 * firewall has to know about it to allow 3537 * replies through it. 3538 */ 3539 return (PF_DEFER); 3540 3541 return (PF_PASS); 3542 3543 cleanup: 3544 if (sk != NULL) 3545 uma_zfree(V_pf_state_key_z, sk); 3546 if (nk != NULL) 3547 uma_zfree(V_pf_state_key_z, nk); 3548 return (PF_DROP); 3549 } 3550 3551 static int 3552 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3553 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3554 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3555 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3556 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3557 { 3558 struct pf_state *s = NULL; 3559 struct pf_src_node *sn = NULL; 3560 struct tcphdr *th = pd->hdr.tcp; 3561 u_int16_t mss = V_tcp_mssdflt; 3562 u_short reason; 3563 3564 /* check maximums */ 3565 if (r->max_states && 3566 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3567 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3568 REASON_SET(&reason, PFRES_MAXSTATES); 3569 goto csfailed; 3570 } 3571 /* src node for filter rule */ 3572 if ((r->rule_flag & PFRULE_SRCTRACK || 3573 r->rpool.opts & PF_POOL_STICKYADDR) && 3574 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3575 REASON_SET(&reason, PFRES_SRCLIMIT); 3576 goto csfailed; 3577 } 3578 /* src node for translation rule */ 3579 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3580 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3581 REASON_SET(&reason, PFRES_SRCLIMIT); 3582 goto csfailed; 3583 } 3584 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3585 if (s == NULL) { 3586 REASON_SET(&reason, PFRES_MEMORY); 3587 goto csfailed; 3588 } 3589 s->rule.ptr = r; 3590 s->nat_rule.ptr = nr; 3591 s->anchor.ptr = a; 3592 STATE_INC_COUNTERS(s); 3593 if (r->allow_opts) 3594 s->state_flags |= PFSTATE_ALLOWOPTS; 3595 if (r->rule_flag & PFRULE_STATESLOPPY) 3596 s->state_flags |= PFSTATE_SLOPPY; 3597 s->log = r->log & PF_LOG_ALL; 3598 s->sync_state = PFSYNC_S_NONE; 3599 if (nr != NULL) 3600 s->log |= nr->log & PF_LOG_ALL; 3601 switch (pd->proto) { 3602 case IPPROTO_TCP: 3603 s->src.seqlo = ntohl(th->th_seq); 3604 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3605 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3606 r->keep_state == PF_STATE_MODULATE) { 3607 /* Generate sequence number modulator */ 3608 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3609 0) 3610 s->src.seqdiff = 1; 3611 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3612 htonl(s->src.seqlo + s->src.seqdiff), 0); 3613 *rewrite = 1; 3614 } else 3615 s->src.seqdiff = 0; 3616 if (th->th_flags & TH_SYN) { 3617 s->src.seqhi++; 3618 s->src.wscale = pf_get_wscale(m, off, 3619 th->th_off, pd->af); 3620 } 3621 s->src.max_win = MAX(ntohs(th->th_win), 1); 3622 if (s->src.wscale & PF_WSCALE_MASK) { 3623 /* Remove scale factor from initial window */ 3624 int win = s->src.max_win; 3625 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3626 s->src.max_win = (win - 1) >> 3627 (s->src.wscale & PF_WSCALE_MASK); 3628 } 3629 if (th->th_flags & TH_FIN) 3630 s->src.seqhi++; 3631 s->dst.seqhi = 1; 3632 s->dst.max_win = 1; 3633 s->src.state = TCPS_SYN_SENT; 3634 s->dst.state = TCPS_CLOSED; 3635 s->timeout = PFTM_TCP_FIRST_PACKET; 3636 break; 3637 case IPPROTO_UDP: 3638 s->src.state = PFUDPS_SINGLE; 3639 s->dst.state = PFUDPS_NO_TRAFFIC; 3640 s->timeout = PFTM_UDP_FIRST_PACKET; 3641 break; 3642 case IPPROTO_ICMP: 3643 #ifdef INET6 3644 case IPPROTO_ICMPV6: 3645 #endif 3646 s->timeout = PFTM_ICMP_FIRST_PACKET; 3647 break; 3648 default: 3649 s->src.state = PFOTHERS_SINGLE; 3650 s->dst.state = PFOTHERS_NO_TRAFFIC; 3651 s->timeout = PFTM_OTHER_FIRST_PACKET; 3652 } 3653 3654 if (r->rt) { 3655 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3656 REASON_SET(&reason, PFRES_MAPFAILED); 3657 pf_src_tree_remove_state(s); 3658 STATE_DEC_COUNTERS(s); 3659 uma_zfree(V_pf_state_z, s); 3660 goto csfailed; 3661 } 3662 s->rt_kif = r->rpool.cur->kif; 3663 } 3664 3665 s->creation = time_uptime; 3666 s->expire = time_uptime; 3667 3668 if (sn != NULL) 3669 s->src_node = sn; 3670 if (nsn != NULL) { 3671 /* XXX We only modify one side for now. */ 3672 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3673 s->nat_src_node = nsn; 3674 } 3675 if (pd->proto == IPPROTO_TCP) { 3676 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3677 off, pd, th, &s->src, &s->dst)) { 3678 REASON_SET(&reason, PFRES_MEMORY); 3679 pf_src_tree_remove_state(s); 3680 STATE_DEC_COUNTERS(s); 3681 uma_zfree(V_pf_state_z, s); 3682 return (PF_DROP); 3683 } 3684 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3685 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3686 &s->src, &s->dst, rewrite)) { 3687 /* This really shouldn't happen!!! */ 3688 DPFPRINTF(PF_DEBUG_URGENT, 3689 ("pf_normalize_tcp_stateful failed on first pkt")); 3690 pf_normalize_tcp_cleanup(s); 3691 pf_src_tree_remove_state(s); 3692 STATE_DEC_COUNTERS(s); 3693 uma_zfree(V_pf_state_z, s); 3694 return (PF_DROP); 3695 } 3696 } 3697 s->direction = pd->dir; 3698 3699 /* 3700 * sk/nk could already been setup by pf_get_translation(). 3701 */ 3702 if (nr == NULL) { 3703 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3704 __func__, nr, sk, nk)); 3705 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3706 if (sk == NULL) 3707 goto csfailed; 3708 nk = sk; 3709 } else 3710 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3711 __func__, nr, sk, nk)); 3712 3713 /* Swap sk/nk for PF_OUT. */ 3714 if (pf_state_insert(BOUND_IFACE(r, kif), 3715 (pd->dir == PF_IN) ? sk : nk, 3716 (pd->dir == PF_IN) ? nk : sk, s)) { 3717 if (pd->proto == IPPROTO_TCP) 3718 pf_normalize_tcp_cleanup(s); 3719 REASON_SET(&reason, PFRES_STATEINS); 3720 pf_src_tree_remove_state(s); 3721 STATE_DEC_COUNTERS(s); 3722 uma_zfree(V_pf_state_z, s); 3723 return (PF_DROP); 3724 } else 3725 *sm = s; 3726 3727 if (tag > 0) 3728 s->tag = tag; 3729 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3730 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3731 s->src.state = PF_TCPS_PROXY_SRC; 3732 /* undo NAT changes, if they have taken place */ 3733 if (nr != NULL) { 3734 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3735 if (pd->dir == PF_OUT) 3736 skt = s->key[PF_SK_STACK]; 3737 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3738 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3739 if (pd->sport) 3740 *pd->sport = skt->port[pd->sidx]; 3741 if (pd->dport) 3742 *pd->dport = skt->port[pd->didx]; 3743 if (pd->proto_sum) 3744 *pd->proto_sum = bproto_sum; 3745 if (pd->ip_sum) 3746 *pd->ip_sum = bip_sum; 3747 m_copyback(m, off, hdrlen, pd->hdr.any); 3748 } 3749 s->src.seqhi = htonl(arc4random()); 3750 /* Find mss option */ 3751 int rtid = M_GETFIB(m); 3752 mss = pf_get_mss(m, off, th->th_off, pd->af); 3753 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3754 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3755 s->src.mss = mss; 3756 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3757 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3758 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3759 REASON_SET(&reason, PFRES_SYNPROXY); 3760 return (PF_SYNPROXY_DROP); 3761 } 3762 3763 return (PF_PASS); 3764 3765 csfailed: 3766 if (sk != NULL) 3767 uma_zfree(V_pf_state_key_z, sk); 3768 if (nk != NULL) 3769 uma_zfree(V_pf_state_key_z, nk); 3770 3771 if (sn != NULL) { 3772 struct pf_srchash *sh; 3773 3774 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3775 PF_HASHROW_LOCK(sh); 3776 if (--sn->states == 0 && sn->expire == 0) { 3777 pf_unlink_src_node(sn); 3778 uma_zfree(V_pf_sources_z, sn); 3779 counter_u64_add( 3780 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3781 } 3782 PF_HASHROW_UNLOCK(sh); 3783 } 3784 3785 if (nsn != sn && nsn != NULL) { 3786 struct pf_srchash *sh; 3787 3788 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3789 PF_HASHROW_LOCK(sh); 3790 if (--nsn->states == 0 && nsn->expire == 0) { 3791 pf_unlink_src_node(nsn); 3792 uma_zfree(V_pf_sources_z, nsn); 3793 counter_u64_add( 3794 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3795 } 3796 PF_HASHROW_UNLOCK(sh); 3797 } 3798 3799 return (PF_DROP); 3800 } 3801 3802 static int 3803 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3804 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3805 struct pf_ruleset **rsm) 3806 { 3807 struct pf_rule *r, *a = NULL; 3808 struct pf_ruleset *ruleset = NULL; 3809 sa_family_t af = pd->af; 3810 u_short reason; 3811 int tag = -1; 3812 int asd = 0; 3813 int match = 0; 3814 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3815 3816 PF_RULES_RASSERT(); 3817 3818 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3819 while (r != NULL) { 3820 r->evaluations++; 3821 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3822 r = r->skip[PF_SKIP_IFP].ptr; 3823 else if (r->direction && r->direction != direction) 3824 r = r->skip[PF_SKIP_DIR].ptr; 3825 else if (r->af && r->af != af) 3826 r = r->skip[PF_SKIP_AF].ptr; 3827 else if (r->proto && r->proto != pd->proto) 3828 r = r->skip[PF_SKIP_PROTO].ptr; 3829 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3830 r->src.neg, kif, M_GETFIB(m))) 3831 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3832 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3833 r->dst.neg, NULL, M_GETFIB(m))) 3834 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3835 else if (r->tos && !(r->tos == pd->tos)) 3836 r = TAILQ_NEXT(r, entries); 3837 else if (r->os_fingerprint != PF_OSFP_ANY) 3838 r = TAILQ_NEXT(r, entries); 3839 else if (pd->proto == IPPROTO_UDP && 3840 (r->src.port_op || r->dst.port_op)) 3841 r = TAILQ_NEXT(r, entries); 3842 else if (pd->proto == IPPROTO_TCP && 3843 (r->src.port_op || r->dst.port_op || r->flagset)) 3844 r = TAILQ_NEXT(r, entries); 3845 else if ((pd->proto == IPPROTO_ICMP || 3846 pd->proto == IPPROTO_ICMPV6) && 3847 (r->type || r->code)) 3848 r = TAILQ_NEXT(r, entries); 3849 else if (r->prio && 3850 !pf_match_ieee8021q_pcp(r->prio, m)) 3851 r = TAILQ_NEXT(r, entries); 3852 else if (r->prob && r->prob <= 3853 (arc4random() % (UINT_MAX - 1) + 1)) 3854 r = TAILQ_NEXT(r, entries); 3855 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3856 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3857 r = TAILQ_NEXT(r, entries); 3858 else { 3859 if (r->anchor == NULL) { 3860 match = 1; 3861 *rm = r; 3862 *am = a; 3863 *rsm = ruleset; 3864 if ((*rm)->quick) 3865 break; 3866 r = TAILQ_NEXT(r, entries); 3867 } else 3868 pf_step_into_anchor(anchor_stack, &asd, 3869 &ruleset, PF_RULESET_FILTER, &r, &a, 3870 &match); 3871 } 3872 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3873 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3874 break; 3875 } 3876 r = *rm; 3877 a = *am; 3878 ruleset = *rsm; 3879 3880 REASON_SET(&reason, PFRES_MATCH); 3881 3882 if (r->log) 3883 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3884 1); 3885 3886 if (r->action != PF_PASS) 3887 return (PF_DROP); 3888 3889 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3890 REASON_SET(&reason, PFRES_MEMORY); 3891 return (PF_DROP); 3892 } 3893 3894 return (PF_PASS); 3895 } 3896 3897 static int 3898 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3899 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3900 struct pf_pdesc *pd, u_short *reason, int *copyback) 3901 { 3902 struct tcphdr *th = pd->hdr.tcp; 3903 u_int16_t win = ntohs(th->th_win); 3904 u_int32_t ack, end, seq, orig_seq; 3905 u_int8_t sws, dws; 3906 int ackskew; 3907 3908 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3909 sws = src->wscale & PF_WSCALE_MASK; 3910 dws = dst->wscale & PF_WSCALE_MASK; 3911 } else 3912 sws = dws = 0; 3913 3914 /* 3915 * Sequence tracking algorithm from Guido van Rooij's paper: 3916 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3917 * tcp_filtering.ps 3918 */ 3919 3920 orig_seq = seq = ntohl(th->th_seq); 3921 if (src->seqlo == 0) { 3922 /* First packet from this end. Set its state */ 3923 3924 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3925 src->scrub == NULL) { 3926 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3927 REASON_SET(reason, PFRES_MEMORY); 3928 return (PF_DROP); 3929 } 3930 } 3931 3932 /* Deferred generation of sequence number modulator */ 3933 if (dst->seqdiff && !src->seqdiff) { 3934 /* use random iss for the TCP server */ 3935 while ((src->seqdiff = arc4random() - seq) == 0) 3936 ; 3937 ack = ntohl(th->th_ack) - dst->seqdiff; 3938 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3939 src->seqdiff), 0); 3940 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3941 *copyback = 1; 3942 } else { 3943 ack = ntohl(th->th_ack); 3944 } 3945 3946 end = seq + pd->p_len; 3947 if (th->th_flags & TH_SYN) { 3948 end++; 3949 if (dst->wscale & PF_WSCALE_FLAG) { 3950 src->wscale = pf_get_wscale(m, off, th->th_off, 3951 pd->af); 3952 if (src->wscale & PF_WSCALE_FLAG) { 3953 /* Remove scale factor from initial 3954 * window */ 3955 sws = src->wscale & PF_WSCALE_MASK; 3956 win = ((u_int32_t)win + (1 << sws) - 1) 3957 >> sws; 3958 dws = dst->wscale & PF_WSCALE_MASK; 3959 } else { 3960 /* fixup other window */ 3961 dst->max_win <<= dst->wscale & 3962 PF_WSCALE_MASK; 3963 /* in case of a retrans SYN|ACK */ 3964 dst->wscale = 0; 3965 } 3966 } 3967 } 3968 if (th->th_flags & TH_FIN) 3969 end++; 3970 3971 src->seqlo = seq; 3972 if (src->state < TCPS_SYN_SENT) 3973 src->state = TCPS_SYN_SENT; 3974 3975 /* 3976 * May need to slide the window (seqhi may have been set by 3977 * the crappy stack check or if we picked up the connection 3978 * after establishment) 3979 */ 3980 if (src->seqhi == 1 || 3981 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 3982 src->seqhi = end + MAX(1, dst->max_win << dws); 3983 if (win > src->max_win) 3984 src->max_win = win; 3985 3986 } else { 3987 ack = ntohl(th->th_ack) - dst->seqdiff; 3988 if (src->seqdiff) { 3989 /* Modulate sequence numbers */ 3990 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3991 src->seqdiff), 0); 3992 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3993 *copyback = 1; 3994 } 3995 end = seq + pd->p_len; 3996 if (th->th_flags & TH_SYN) 3997 end++; 3998 if (th->th_flags & TH_FIN) 3999 end++; 4000 } 4001 4002 if ((th->th_flags & TH_ACK) == 0) { 4003 /* Let it pass through the ack skew check */ 4004 ack = dst->seqlo; 4005 } else if ((ack == 0 && 4006 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4007 /* broken tcp stacks do not set ack */ 4008 (dst->state < TCPS_SYN_SENT)) { 4009 /* 4010 * Many stacks (ours included) will set the ACK number in an 4011 * FIN|ACK if the SYN times out -- no sequence to ACK. 4012 */ 4013 ack = dst->seqlo; 4014 } 4015 4016 if (seq == end) { 4017 /* Ease sequencing restrictions on no data packets */ 4018 seq = src->seqlo; 4019 end = seq; 4020 } 4021 4022 ackskew = dst->seqlo - ack; 4023 4024 4025 /* 4026 * Need to demodulate the sequence numbers in any TCP SACK options 4027 * (Selective ACK). We could optionally validate the SACK values 4028 * against the current ACK window, either forwards or backwards, but 4029 * I'm not confident that SACK has been implemented properly 4030 * everywhere. It wouldn't surprise me if several stacks accidentally 4031 * SACK too far backwards of previously ACKed data. There really aren't 4032 * any security implications of bad SACKing unless the target stack 4033 * doesn't validate the option length correctly. Someone trying to 4034 * spoof into a TCP connection won't bother blindly sending SACK 4035 * options anyway. 4036 */ 4037 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4038 if (pf_modulate_sack(m, off, pd, th, dst)) 4039 *copyback = 1; 4040 } 4041 4042 4043 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4044 if (SEQ_GEQ(src->seqhi, end) && 4045 /* Last octet inside other's window space */ 4046 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4047 /* Retrans: not more than one window back */ 4048 (ackskew >= -MAXACKWINDOW) && 4049 /* Acking not more than one reassembled fragment backwards */ 4050 (ackskew <= (MAXACKWINDOW << sws)) && 4051 /* Acking not more than one window forward */ 4052 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4053 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4054 (pd->flags & PFDESC_IP_REAS) == 0)) { 4055 /* Require an exact/+1 sequence match on resets when possible */ 4056 4057 if (dst->scrub || src->scrub) { 4058 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4059 *state, src, dst, copyback)) 4060 return (PF_DROP); 4061 } 4062 4063 /* update max window */ 4064 if (src->max_win < win) 4065 src->max_win = win; 4066 /* synchronize sequencing */ 4067 if (SEQ_GT(end, src->seqlo)) 4068 src->seqlo = end; 4069 /* slide the window of what the other end can send */ 4070 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4071 dst->seqhi = ack + MAX((win << sws), 1); 4072 4073 4074 /* update states */ 4075 if (th->th_flags & TH_SYN) 4076 if (src->state < TCPS_SYN_SENT) 4077 src->state = TCPS_SYN_SENT; 4078 if (th->th_flags & TH_FIN) 4079 if (src->state < TCPS_CLOSING) 4080 src->state = TCPS_CLOSING; 4081 if (th->th_flags & TH_ACK) { 4082 if (dst->state == TCPS_SYN_SENT) { 4083 dst->state = TCPS_ESTABLISHED; 4084 if (src->state == TCPS_ESTABLISHED && 4085 (*state)->src_node != NULL && 4086 pf_src_connlimit(state)) { 4087 REASON_SET(reason, PFRES_SRCLIMIT); 4088 return (PF_DROP); 4089 } 4090 } else if (dst->state == TCPS_CLOSING) 4091 dst->state = TCPS_FIN_WAIT_2; 4092 } 4093 if (th->th_flags & TH_RST) 4094 src->state = dst->state = TCPS_TIME_WAIT; 4095 4096 /* update expire time */ 4097 (*state)->expire = time_uptime; 4098 if (src->state >= TCPS_FIN_WAIT_2 && 4099 dst->state >= TCPS_FIN_WAIT_2) 4100 (*state)->timeout = PFTM_TCP_CLOSED; 4101 else if (src->state >= TCPS_CLOSING && 4102 dst->state >= TCPS_CLOSING) 4103 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4104 else if (src->state < TCPS_ESTABLISHED || 4105 dst->state < TCPS_ESTABLISHED) 4106 (*state)->timeout = PFTM_TCP_OPENING; 4107 else if (src->state >= TCPS_CLOSING || 4108 dst->state >= TCPS_CLOSING) 4109 (*state)->timeout = PFTM_TCP_CLOSING; 4110 else 4111 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4112 4113 /* Fall through to PASS packet */ 4114 4115 } else if ((dst->state < TCPS_SYN_SENT || 4116 dst->state >= TCPS_FIN_WAIT_2 || 4117 src->state >= TCPS_FIN_WAIT_2) && 4118 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4119 /* Within a window forward of the originating packet */ 4120 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4121 /* Within a window backward of the originating packet */ 4122 4123 /* 4124 * This currently handles three situations: 4125 * 1) Stupid stacks will shotgun SYNs before their peer 4126 * replies. 4127 * 2) When PF catches an already established stream (the 4128 * firewall rebooted, the state table was flushed, routes 4129 * changed...) 4130 * 3) Packets get funky immediately after the connection 4131 * closes (this should catch Solaris spurious ACK|FINs 4132 * that web servers like to spew after a close) 4133 * 4134 * This must be a little more careful than the above code 4135 * since packet floods will also be caught here. We don't 4136 * update the TTL here to mitigate the damage of a packet 4137 * flood and so the same code can handle awkward establishment 4138 * and a loosened connection close. 4139 * In the establishment case, a correct peer response will 4140 * validate the connection, go through the normal state code 4141 * and keep updating the state TTL. 4142 */ 4143 4144 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4145 printf("pf: loose state match: "); 4146 pf_print_state(*state); 4147 pf_print_flags(th->th_flags); 4148 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4149 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4150 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4151 (unsigned long long)(*state)->packets[1], 4152 pd->dir == PF_IN ? "in" : "out", 4153 pd->dir == (*state)->direction ? "fwd" : "rev"); 4154 } 4155 4156 if (dst->scrub || src->scrub) { 4157 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4158 *state, src, dst, copyback)) 4159 return (PF_DROP); 4160 } 4161 4162 /* update max window */ 4163 if (src->max_win < win) 4164 src->max_win = win; 4165 /* synchronize sequencing */ 4166 if (SEQ_GT(end, src->seqlo)) 4167 src->seqlo = end; 4168 /* slide the window of what the other end can send */ 4169 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4170 dst->seqhi = ack + MAX((win << sws), 1); 4171 4172 /* 4173 * Cannot set dst->seqhi here since this could be a shotgunned 4174 * SYN and not an already established connection. 4175 */ 4176 4177 if (th->th_flags & TH_FIN) 4178 if (src->state < TCPS_CLOSING) 4179 src->state = TCPS_CLOSING; 4180 if (th->th_flags & TH_RST) 4181 src->state = dst->state = TCPS_TIME_WAIT; 4182 4183 /* Fall through to PASS packet */ 4184 4185 } else { 4186 if ((*state)->dst.state == TCPS_SYN_SENT && 4187 (*state)->src.state == TCPS_SYN_SENT) { 4188 /* Send RST for state mismatches during handshake */ 4189 if (!(th->th_flags & TH_RST)) 4190 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4191 pd->dst, pd->src, th->th_dport, 4192 th->th_sport, ntohl(th->th_ack), 0, 4193 TH_RST, 0, 0, 4194 (*state)->rule.ptr->return_ttl, 1, 0, 4195 kif->pfik_ifp); 4196 src->seqlo = 0; 4197 src->seqhi = 1; 4198 src->max_win = 1; 4199 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4200 printf("pf: BAD state: "); 4201 pf_print_state(*state); 4202 pf_print_flags(th->th_flags); 4203 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4204 "pkts=%llu:%llu dir=%s,%s\n", 4205 seq, orig_seq, ack, pd->p_len, ackskew, 4206 (unsigned long long)(*state)->packets[0], 4207 (unsigned long long)(*state)->packets[1], 4208 pd->dir == PF_IN ? "in" : "out", 4209 pd->dir == (*state)->direction ? "fwd" : "rev"); 4210 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4211 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4212 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4213 ' ': '2', 4214 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4215 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4216 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4217 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4218 } 4219 REASON_SET(reason, PFRES_BADSTATE); 4220 return (PF_DROP); 4221 } 4222 4223 return (PF_PASS); 4224 } 4225 4226 static int 4227 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4228 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4229 { 4230 struct tcphdr *th = pd->hdr.tcp; 4231 4232 if (th->th_flags & TH_SYN) 4233 if (src->state < TCPS_SYN_SENT) 4234 src->state = TCPS_SYN_SENT; 4235 if (th->th_flags & TH_FIN) 4236 if (src->state < TCPS_CLOSING) 4237 src->state = TCPS_CLOSING; 4238 if (th->th_flags & TH_ACK) { 4239 if (dst->state == TCPS_SYN_SENT) { 4240 dst->state = TCPS_ESTABLISHED; 4241 if (src->state == TCPS_ESTABLISHED && 4242 (*state)->src_node != NULL && 4243 pf_src_connlimit(state)) { 4244 REASON_SET(reason, PFRES_SRCLIMIT); 4245 return (PF_DROP); 4246 } 4247 } else if (dst->state == TCPS_CLOSING) { 4248 dst->state = TCPS_FIN_WAIT_2; 4249 } else if (src->state == TCPS_SYN_SENT && 4250 dst->state < TCPS_SYN_SENT) { 4251 /* 4252 * Handle a special sloppy case where we only see one 4253 * half of the connection. If there is a ACK after 4254 * the initial SYN without ever seeing a packet from 4255 * the destination, set the connection to established. 4256 */ 4257 dst->state = src->state = TCPS_ESTABLISHED; 4258 if ((*state)->src_node != NULL && 4259 pf_src_connlimit(state)) { 4260 REASON_SET(reason, PFRES_SRCLIMIT); 4261 return (PF_DROP); 4262 } 4263 } else if (src->state == TCPS_CLOSING && 4264 dst->state == TCPS_ESTABLISHED && 4265 dst->seqlo == 0) { 4266 /* 4267 * Handle the closing of half connections where we 4268 * don't see the full bidirectional FIN/ACK+ACK 4269 * handshake. 4270 */ 4271 dst->state = TCPS_CLOSING; 4272 } 4273 } 4274 if (th->th_flags & TH_RST) 4275 src->state = dst->state = TCPS_TIME_WAIT; 4276 4277 /* update expire time */ 4278 (*state)->expire = time_uptime; 4279 if (src->state >= TCPS_FIN_WAIT_2 && 4280 dst->state >= TCPS_FIN_WAIT_2) 4281 (*state)->timeout = PFTM_TCP_CLOSED; 4282 else if (src->state >= TCPS_CLOSING && 4283 dst->state >= TCPS_CLOSING) 4284 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4285 else if (src->state < TCPS_ESTABLISHED || 4286 dst->state < TCPS_ESTABLISHED) 4287 (*state)->timeout = PFTM_TCP_OPENING; 4288 else if (src->state >= TCPS_CLOSING || 4289 dst->state >= TCPS_CLOSING) 4290 (*state)->timeout = PFTM_TCP_CLOSING; 4291 else 4292 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4293 4294 return (PF_PASS); 4295 } 4296 4297 static int 4298 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4299 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4300 u_short *reason) 4301 { 4302 struct pf_state_key_cmp key; 4303 struct tcphdr *th = pd->hdr.tcp; 4304 int copyback = 0; 4305 struct pf_state_peer *src, *dst; 4306 struct pf_state_key *sk; 4307 4308 bzero(&key, sizeof(key)); 4309 key.af = pd->af; 4310 key.proto = IPPROTO_TCP; 4311 if (direction == PF_IN) { /* wire side, straight */ 4312 PF_ACPY(&key.addr[0], pd->src, key.af); 4313 PF_ACPY(&key.addr[1], pd->dst, key.af); 4314 key.port[0] = th->th_sport; 4315 key.port[1] = th->th_dport; 4316 } else { /* stack side, reverse */ 4317 PF_ACPY(&key.addr[1], pd->src, key.af); 4318 PF_ACPY(&key.addr[0], pd->dst, key.af); 4319 key.port[1] = th->th_sport; 4320 key.port[0] = th->th_dport; 4321 } 4322 4323 STATE_LOOKUP(kif, &key, direction, *state, pd); 4324 4325 if (direction == (*state)->direction) { 4326 src = &(*state)->src; 4327 dst = &(*state)->dst; 4328 } else { 4329 src = &(*state)->dst; 4330 dst = &(*state)->src; 4331 } 4332 4333 sk = (*state)->key[pd->didx]; 4334 4335 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4336 if (direction != (*state)->direction) { 4337 REASON_SET(reason, PFRES_SYNPROXY); 4338 return (PF_SYNPROXY_DROP); 4339 } 4340 if (th->th_flags & TH_SYN) { 4341 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4342 REASON_SET(reason, PFRES_SYNPROXY); 4343 return (PF_DROP); 4344 } 4345 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4346 pd->src, th->th_dport, th->th_sport, 4347 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4348 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4349 REASON_SET(reason, PFRES_SYNPROXY); 4350 return (PF_SYNPROXY_DROP); 4351 } else if (!(th->th_flags & TH_ACK) || 4352 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4353 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4354 REASON_SET(reason, PFRES_SYNPROXY); 4355 return (PF_DROP); 4356 } else if ((*state)->src_node != NULL && 4357 pf_src_connlimit(state)) { 4358 REASON_SET(reason, PFRES_SRCLIMIT); 4359 return (PF_DROP); 4360 } else 4361 (*state)->src.state = PF_TCPS_PROXY_DST; 4362 } 4363 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4364 if (direction == (*state)->direction) { 4365 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4366 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4367 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4368 REASON_SET(reason, PFRES_SYNPROXY); 4369 return (PF_DROP); 4370 } 4371 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4372 if ((*state)->dst.seqhi == 1) 4373 (*state)->dst.seqhi = htonl(arc4random()); 4374 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4375 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4376 sk->port[pd->sidx], sk->port[pd->didx], 4377 (*state)->dst.seqhi, 0, TH_SYN, 0, 4378 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4379 REASON_SET(reason, PFRES_SYNPROXY); 4380 return (PF_SYNPROXY_DROP); 4381 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4382 (TH_SYN|TH_ACK)) || 4383 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4384 REASON_SET(reason, PFRES_SYNPROXY); 4385 return (PF_DROP); 4386 } else { 4387 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4388 (*state)->dst.seqlo = ntohl(th->th_seq); 4389 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4390 pd->src, th->th_dport, th->th_sport, 4391 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4392 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4393 (*state)->tag, NULL); 4394 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4395 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4396 sk->port[pd->sidx], sk->port[pd->didx], 4397 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4398 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4399 (*state)->src.seqdiff = (*state)->dst.seqhi - 4400 (*state)->src.seqlo; 4401 (*state)->dst.seqdiff = (*state)->src.seqhi - 4402 (*state)->dst.seqlo; 4403 (*state)->src.seqhi = (*state)->src.seqlo + 4404 (*state)->dst.max_win; 4405 (*state)->dst.seqhi = (*state)->dst.seqlo + 4406 (*state)->src.max_win; 4407 (*state)->src.wscale = (*state)->dst.wscale = 0; 4408 (*state)->src.state = (*state)->dst.state = 4409 TCPS_ESTABLISHED; 4410 REASON_SET(reason, PFRES_SYNPROXY); 4411 return (PF_SYNPROXY_DROP); 4412 } 4413 } 4414 4415 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4416 dst->state >= TCPS_FIN_WAIT_2 && 4417 src->state >= TCPS_FIN_WAIT_2) { 4418 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4419 printf("pf: state reuse "); 4420 pf_print_state(*state); 4421 pf_print_flags(th->th_flags); 4422 printf("\n"); 4423 } 4424 /* XXX make sure it's the same direction ?? */ 4425 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4426 pf_unlink_state(*state, PF_ENTER_LOCKED); 4427 *state = NULL; 4428 return (PF_DROP); 4429 } 4430 4431 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4432 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4433 return (PF_DROP); 4434 } else { 4435 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4436 ©back) == PF_DROP) 4437 return (PF_DROP); 4438 } 4439 4440 /* translate source/destination address, if necessary */ 4441 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4442 struct pf_state_key *nk = (*state)->key[pd->didx]; 4443 4444 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4445 nk->port[pd->sidx] != th->th_sport) 4446 pf_change_ap(m, pd->src, &th->th_sport, 4447 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4448 nk->port[pd->sidx], 0, pd->af); 4449 4450 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4451 nk->port[pd->didx] != th->th_dport) 4452 pf_change_ap(m, pd->dst, &th->th_dport, 4453 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4454 nk->port[pd->didx], 0, pd->af); 4455 copyback = 1; 4456 } 4457 4458 /* Copyback sequence modulation or stateful scrub changes if needed */ 4459 if (copyback) 4460 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4461 4462 return (PF_PASS); 4463 } 4464 4465 static int 4466 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4467 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4468 { 4469 struct pf_state_peer *src, *dst; 4470 struct pf_state_key_cmp key; 4471 struct udphdr *uh = pd->hdr.udp; 4472 4473 bzero(&key, sizeof(key)); 4474 key.af = pd->af; 4475 key.proto = IPPROTO_UDP; 4476 if (direction == PF_IN) { /* wire side, straight */ 4477 PF_ACPY(&key.addr[0], pd->src, key.af); 4478 PF_ACPY(&key.addr[1], pd->dst, key.af); 4479 key.port[0] = uh->uh_sport; 4480 key.port[1] = uh->uh_dport; 4481 } else { /* stack side, reverse */ 4482 PF_ACPY(&key.addr[1], pd->src, key.af); 4483 PF_ACPY(&key.addr[0], pd->dst, key.af); 4484 key.port[1] = uh->uh_sport; 4485 key.port[0] = uh->uh_dport; 4486 } 4487 4488 STATE_LOOKUP(kif, &key, direction, *state, pd); 4489 4490 if (direction == (*state)->direction) { 4491 src = &(*state)->src; 4492 dst = &(*state)->dst; 4493 } else { 4494 src = &(*state)->dst; 4495 dst = &(*state)->src; 4496 } 4497 4498 /* update states */ 4499 if (src->state < PFUDPS_SINGLE) 4500 src->state = PFUDPS_SINGLE; 4501 if (dst->state == PFUDPS_SINGLE) 4502 dst->state = PFUDPS_MULTIPLE; 4503 4504 /* update expire time */ 4505 (*state)->expire = time_uptime; 4506 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4507 (*state)->timeout = PFTM_UDP_MULTIPLE; 4508 else 4509 (*state)->timeout = PFTM_UDP_SINGLE; 4510 4511 /* translate source/destination address, if necessary */ 4512 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4513 struct pf_state_key *nk = (*state)->key[pd->didx]; 4514 4515 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4516 nk->port[pd->sidx] != uh->uh_sport) 4517 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4518 &uh->uh_sum, &nk->addr[pd->sidx], 4519 nk->port[pd->sidx], 1, pd->af); 4520 4521 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4522 nk->port[pd->didx] != uh->uh_dport) 4523 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4524 &uh->uh_sum, &nk->addr[pd->didx], 4525 nk->port[pd->didx], 1, pd->af); 4526 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4527 } 4528 4529 return (PF_PASS); 4530 } 4531 4532 static int 4533 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4534 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4535 { 4536 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4537 u_int16_t icmpid = 0, *icmpsum; 4538 u_int8_t icmptype; 4539 int state_icmp = 0; 4540 struct pf_state_key_cmp key; 4541 4542 bzero(&key, sizeof(key)); 4543 switch (pd->proto) { 4544 #ifdef INET 4545 case IPPROTO_ICMP: 4546 icmptype = pd->hdr.icmp->icmp_type; 4547 icmpid = pd->hdr.icmp->icmp_id; 4548 icmpsum = &pd->hdr.icmp->icmp_cksum; 4549 4550 if (icmptype == ICMP_UNREACH || 4551 icmptype == ICMP_SOURCEQUENCH || 4552 icmptype == ICMP_REDIRECT || 4553 icmptype == ICMP_TIMXCEED || 4554 icmptype == ICMP_PARAMPROB) 4555 state_icmp++; 4556 break; 4557 #endif /* INET */ 4558 #ifdef INET6 4559 case IPPROTO_ICMPV6: 4560 icmptype = pd->hdr.icmp6->icmp6_type; 4561 icmpid = pd->hdr.icmp6->icmp6_id; 4562 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4563 4564 if (icmptype == ICMP6_DST_UNREACH || 4565 icmptype == ICMP6_PACKET_TOO_BIG || 4566 icmptype == ICMP6_TIME_EXCEEDED || 4567 icmptype == ICMP6_PARAM_PROB) 4568 state_icmp++; 4569 break; 4570 #endif /* INET6 */ 4571 } 4572 4573 if (!state_icmp) { 4574 4575 /* 4576 * ICMP query/reply message not related to a TCP/UDP packet. 4577 * Search for an ICMP state. 4578 */ 4579 key.af = pd->af; 4580 key.proto = pd->proto; 4581 key.port[0] = key.port[1] = icmpid; 4582 if (direction == PF_IN) { /* wire side, straight */ 4583 PF_ACPY(&key.addr[0], pd->src, key.af); 4584 PF_ACPY(&key.addr[1], pd->dst, key.af); 4585 } else { /* stack side, reverse */ 4586 PF_ACPY(&key.addr[1], pd->src, key.af); 4587 PF_ACPY(&key.addr[0], pd->dst, key.af); 4588 } 4589 4590 STATE_LOOKUP(kif, &key, direction, *state, pd); 4591 4592 (*state)->expire = time_uptime; 4593 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4594 4595 /* translate source/destination address, if necessary */ 4596 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4597 struct pf_state_key *nk = (*state)->key[pd->didx]; 4598 4599 switch (pd->af) { 4600 #ifdef INET 4601 case AF_INET: 4602 if (PF_ANEQ(pd->src, 4603 &nk->addr[pd->sidx], AF_INET)) 4604 pf_change_a(&saddr->v4.s_addr, 4605 pd->ip_sum, 4606 nk->addr[pd->sidx].v4.s_addr, 0); 4607 4608 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4609 AF_INET)) 4610 pf_change_a(&daddr->v4.s_addr, 4611 pd->ip_sum, 4612 nk->addr[pd->didx].v4.s_addr, 0); 4613 4614 if (nk->port[0] != 4615 pd->hdr.icmp->icmp_id) { 4616 pd->hdr.icmp->icmp_cksum = 4617 pf_cksum_fixup( 4618 pd->hdr.icmp->icmp_cksum, icmpid, 4619 nk->port[pd->sidx], 0); 4620 pd->hdr.icmp->icmp_id = 4621 nk->port[pd->sidx]; 4622 } 4623 4624 m_copyback(m, off, ICMP_MINLEN, 4625 (caddr_t )pd->hdr.icmp); 4626 break; 4627 #endif /* INET */ 4628 #ifdef INET6 4629 case AF_INET6: 4630 if (PF_ANEQ(pd->src, 4631 &nk->addr[pd->sidx], AF_INET6)) 4632 pf_change_a6(saddr, 4633 &pd->hdr.icmp6->icmp6_cksum, 4634 &nk->addr[pd->sidx], 0); 4635 4636 if (PF_ANEQ(pd->dst, 4637 &nk->addr[pd->didx], AF_INET6)) 4638 pf_change_a6(daddr, 4639 &pd->hdr.icmp6->icmp6_cksum, 4640 &nk->addr[pd->didx], 0); 4641 4642 m_copyback(m, off, sizeof(struct icmp6_hdr), 4643 (caddr_t )pd->hdr.icmp6); 4644 break; 4645 #endif /* INET6 */ 4646 } 4647 } 4648 return (PF_PASS); 4649 4650 } else { 4651 /* 4652 * ICMP error message in response to a TCP/UDP packet. 4653 * Extract the inner TCP/UDP header and search for that state. 4654 */ 4655 4656 struct pf_pdesc pd2; 4657 bzero(&pd2, sizeof pd2); 4658 #ifdef INET 4659 struct ip h2; 4660 #endif /* INET */ 4661 #ifdef INET6 4662 struct ip6_hdr h2_6; 4663 int terminal = 0; 4664 #endif /* INET6 */ 4665 int ipoff2 = 0; 4666 int off2 = 0; 4667 4668 pd2.af = pd->af; 4669 /* Payload packet is from the opposite direction. */ 4670 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4671 pd2.didx = (direction == PF_IN) ? 0 : 1; 4672 switch (pd->af) { 4673 #ifdef INET 4674 case AF_INET: 4675 /* offset of h2 in mbuf chain */ 4676 ipoff2 = off + ICMP_MINLEN; 4677 4678 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4679 NULL, reason, pd2.af)) { 4680 DPFPRINTF(PF_DEBUG_MISC, 4681 ("pf: ICMP error message too short " 4682 "(ip)\n")); 4683 return (PF_DROP); 4684 } 4685 /* 4686 * ICMP error messages don't refer to non-first 4687 * fragments 4688 */ 4689 if (h2.ip_off & htons(IP_OFFMASK)) { 4690 REASON_SET(reason, PFRES_FRAG); 4691 return (PF_DROP); 4692 } 4693 4694 /* offset of protocol header that follows h2 */ 4695 off2 = ipoff2 + (h2.ip_hl << 2); 4696 4697 pd2.proto = h2.ip_p; 4698 pd2.src = (struct pf_addr *)&h2.ip_src; 4699 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4700 pd2.ip_sum = &h2.ip_sum; 4701 break; 4702 #endif /* INET */ 4703 #ifdef INET6 4704 case AF_INET6: 4705 ipoff2 = off + sizeof(struct icmp6_hdr); 4706 4707 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4708 NULL, reason, pd2.af)) { 4709 DPFPRINTF(PF_DEBUG_MISC, 4710 ("pf: ICMP error message too short " 4711 "(ip6)\n")); 4712 return (PF_DROP); 4713 } 4714 pd2.proto = h2_6.ip6_nxt; 4715 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4716 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4717 pd2.ip_sum = NULL; 4718 off2 = ipoff2 + sizeof(h2_6); 4719 do { 4720 switch (pd2.proto) { 4721 case IPPROTO_FRAGMENT: 4722 /* 4723 * ICMPv6 error messages for 4724 * non-first fragments 4725 */ 4726 REASON_SET(reason, PFRES_FRAG); 4727 return (PF_DROP); 4728 case IPPROTO_AH: 4729 case IPPROTO_HOPOPTS: 4730 case IPPROTO_ROUTING: 4731 case IPPROTO_DSTOPTS: { 4732 /* get next header and header length */ 4733 struct ip6_ext opt6; 4734 4735 if (!pf_pull_hdr(m, off2, &opt6, 4736 sizeof(opt6), NULL, reason, 4737 pd2.af)) { 4738 DPFPRINTF(PF_DEBUG_MISC, 4739 ("pf: ICMPv6 short opt\n")); 4740 return (PF_DROP); 4741 } 4742 if (pd2.proto == IPPROTO_AH) 4743 off2 += (opt6.ip6e_len + 2) * 4; 4744 else 4745 off2 += (opt6.ip6e_len + 1) * 8; 4746 pd2.proto = opt6.ip6e_nxt; 4747 /* goto the next header */ 4748 break; 4749 } 4750 default: 4751 terminal++; 4752 break; 4753 } 4754 } while (!terminal); 4755 break; 4756 #endif /* INET6 */ 4757 } 4758 4759 switch (pd2.proto) { 4760 case IPPROTO_TCP: { 4761 struct tcphdr th; 4762 u_int32_t seq; 4763 struct pf_state_peer *src, *dst; 4764 u_int8_t dws; 4765 int copyback = 0; 4766 4767 /* 4768 * Only the first 8 bytes of the TCP header can be 4769 * expected. Don't access any TCP header fields after 4770 * th_seq, an ackskew test is not possible. 4771 */ 4772 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4773 pd2.af)) { 4774 DPFPRINTF(PF_DEBUG_MISC, 4775 ("pf: ICMP error message too short " 4776 "(tcp)\n")); 4777 return (PF_DROP); 4778 } 4779 4780 key.af = pd2.af; 4781 key.proto = IPPROTO_TCP; 4782 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4783 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4784 key.port[pd2.sidx] = th.th_sport; 4785 key.port[pd2.didx] = th.th_dport; 4786 4787 STATE_LOOKUP(kif, &key, direction, *state, pd); 4788 4789 if (direction == (*state)->direction) { 4790 src = &(*state)->dst; 4791 dst = &(*state)->src; 4792 } else { 4793 src = &(*state)->src; 4794 dst = &(*state)->dst; 4795 } 4796 4797 if (src->wscale && dst->wscale) 4798 dws = dst->wscale & PF_WSCALE_MASK; 4799 else 4800 dws = 0; 4801 4802 /* Demodulate sequence number */ 4803 seq = ntohl(th.th_seq) - src->seqdiff; 4804 if (src->seqdiff) { 4805 pf_change_a(&th.th_seq, icmpsum, 4806 htonl(seq), 0); 4807 copyback = 1; 4808 } 4809 4810 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4811 (!SEQ_GEQ(src->seqhi, seq) || 4812 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4813 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4814 printf("pf: BAD ICMP %d:%d ", 4815 icmptype, pd->hdr.icmp->icmp_code); 4816 pf_print_host(pd->src, 0, pd->af); 4817 printf(" -> "); 4818 pf_print_host(pd->dst, 0, pd->af); 4819 printf(" state: "); 4820 pf_print_state(*state); 4821 printf(" seq=%u\n", seq); 4822 } 4823 REASON_SET(reason, PFRES_BADSTATE); 4824 return (PF_DROP); 4825 } else { 4826 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4827 printf("pf: OK ICMP %d:%d ", 4828 icmptype, pd->hdr.icmp->icmp_code); 4829 pf_print_host(pd->src, 0, pd->af); 4830 printf(" -> "); 4831 pf_print_host(pd->dst, 0, pd->af); 4832 printf(" state: "); 4833 pf_print_state(*state); 4834 printf(" seq=%u\n", seq); 4835 } 4836 } 4837 4838 /* translate source/destination address, if necessary */ 4839 if ((*state)->key[PF_SK_WIRE] != 4840 (*state)->key[PF_SK_STACK]) { 4841 struct pf_state_key *nk = 4842 (*state)->key[pd->didx]; 4843 4844 if (PF_ANEQ(pd2.src, 4845 &nk->addr[pd2.sidx], pd2.af) || 4846 nk->port[pd2.sidx] != th.th_sport) 4847 pf_change_icmp(pd2.src, &th.th_sport, 4848 daddr, &nk->addr[pd2.sidx], 4849 nk->port[pd2.sidx], NULL, 4850 pd2.ip_sum, icmpsum, 4851 pd->ip_sum, 0, pd2.af); 4852 4853 if (PF_ANEQ(pd2.dst, 4854 &nk->addr[pd2.didx], pd2.af) || 4855 nk->port[pd2.didx] != th.th_dport) 4856 pf_change_icmp(pd2.dst, &th.th_dport, 4857 saddr, &nk->addr[pd2.didx], 4858 nk->port[pd2.didx], NULL, 4859 pd2.ip_sum, icmpsum, 4860 pd->ip_sum, 0, pd2.af); 4861 copyback = 1; 4862 } 4863 4864 if (copyback) { 4865 switch (pd2.af) { 4866 #ifdef INET 4867 case AF_INET: 4868 m_copyback(m, off, ICMP_MINLEN, 4869 (caddr_t )pd->hdr.icmp); 4870 m_copyback(m, ipoff2, sizeof(h2), 4871 (caddr_t )&h2); 4872 break; 4873 #endif /* INET */ 4874 #ifdef INET6 4875 case AF_INET6: 4876 m_copyback(m, off, 4877 sizeof(struct icmp6_hdr), 4878 (caddr_t )pd->hdr.icmp6); 4879 m_copyback(m, ipoff2, sizeof(h2_6), 4880 (caddr_t )&h2_6); 4881 break; 4882 #endif /* INET6 */ 4883 } 4884 m_copyback(m, off2, 8, (caddr_t)&th); 4885 } 4886 4887 return (PF_PASS); 4888 break; 4889 } 4890 case IPPROTO_UDP: { 4891 struct udphdr uh; 4892 4893 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4894 NULL, reason, pd2.af)) { 4895 DPFPRINTF(PF_DEBUG_MISC, 4896 ("pf: ICMP error message too short " 4897 "(udp)\n")); 4898 return (PF_DROP); 4899 } 4900 4901 key.af = pd2.af; 4902 key.proto = IPPROTO_UDP; 4903 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4904 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4905 key.port[pd2.sidx] = uh.uh_sport; 4906 key.port[pd2.didx] = uh.uh_dport; 4907 4908 STATE_LOOKUP(kif, &key, direction, *state, pd); 4909 4910 /* translate source/destination address, if necessary */ 4911 if ((*state)->key[PF_SK_WIRE] != 4912 (*state)->key[PF_SK_STACK]) { 4913 struct pf_state_key *nk = 4914 (*state)->key[pd->didx]; 4915 4916 if (PF_ANEQ(pd2.src, 4917 &nk->addr[pd2.sidx], pd2.af) || 4918 nk->port[pd2.sidx] != uh.uh_sport) 4919 pf_change_icmp(pd2.src, &uh.uh_sport, 4920 daddr, &nk->addr[pd2.sidx], 4921 nk->port[pd2.sidx], &uh.uh_sum, 4922 pd2.ip_sum, icmpsum, 4923 pd->ip_sum, 1, pd2.af); 4924 4925 if (PF_ANEQ(pd2.dst, 4926 &nk->addr[pd2.didx], pd2.af) || 4927 nk->port[pd2.didx] != uh.uh_dport) 4928 pf_change_icmp(pd2.dst, &uh.uh_dport, 4929 saddr, &nk->addr[pd2.didx], 4930 nk->port[pd2.didx], &uh.uh_sum, 4931 pd2.ip_sum, icmpsum, 4932 pd->ip_sum, 1, pd2.af); 4933 4934 switch (pd2.af) { 4935 #ifdef INET 4936 case AF_INET: 4937 m_copyback(m, off, ICMP_MINLEN, 4938 (caddr_t )pd->hdr.icmp); 4939 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4940 break; 4941 #endif /* INET */ 4942 #ifdef INET6 4943 case AF_INET6: 4944 m_copyback(m, off, 4945 sizeof(struct icmp6_hdr), 4946 (caddr_t )pd->hdr.icmp6); 4947 m_copyback(m, ipoff2, sizeof(h2_6), 4948 (caddr_t )&h2_6); 4949 break; 4950 #endif /* INET6 */ 4951 } 4952 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4953 } 4954 return (PF_PASS); 4955 break; 4956 } 4957 #ifdef INET 4958 case IPPROTO_ICMP: { 4959 struct icmp iih; 4960 4961 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4962 NULL, reason, pd2.af)) { 4963 DPFPRINTF(PF_DEBUG_MISC, 4964 ("pf: ICMP error message too short i" 4965 "(icmp)\n")); 4966 return (PF_DROP); 4967 } 4968 4969 key.af = pd2.af; 4970 key.proto = IPPROTO_ICMP; 4971 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4972 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4973 key.port[0] = key.port[1] = iih.icmp_id; 4974 4975 STATE_LOOKUP(kif, &key, direction, *state, pd); 4976 4977 /* translate source/destination address, if necessary */ 4978 if ((*state)->key[PF_SK_WIRE] != 4979 (*state)->key[PF_SK_STACK]) { 4980 struct pf_state_key *nk = 4981 (*state)->key[pd->didx]; 4982 4983 if (PF_ANEQ(pd2.src, 4984 &nk->addr[pd2.sidx], pd2.af) || 4985 nk->port[pd2.sidx] != iih.icmp_id) 4986 pf_change_icmp(pd2.src, &iih.icmp_id, 4987 daddr, &nk->addr[pd2.sidx], 4988 nk->port[pd2.sidx], NULL, 4989 pd2.ip_sum, icmpsum, 4990 pd->ip_sum, 0, AF_INET); 4991 4992 if (PF_ANEQ(pd2.dst, 4993 &nk->addr[pd2.didx], pd2.af) || 4994 nk->port[pd2.didx] != iih.icmp_id) 4995 pf_change_icmp(pd2.dst, &iih.icmp_id, 4996 saddr, &nk->addr[pd2.didx], 4997 nk->port[pd2.didx], NULL, 4998 pd2.ip_sum, icmpsum, 4999 pd->ip_sum, 0, AF_INET); 5000 5001 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5002 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5003 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5004 } 5005 return (PF_PASS); 5006 break; 5007 } 5008 #endif /* INET */ 5009 #ifdef INET6 5010 case IPPROTO_ICMPV6: { 5011 struct icmp6_hdr iih; 5012 5013 if (!pf_pull_hdr(m, off2, &iih, 5014 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5015 DPFPRINTF(PF_DEBUG_MISC, 5016 ("pf: ICMP error message too short " 5017 "(icmp6)\n")); 5018 return (PF_DROP); 5019 } 5020 5021 key.af = pd2.af; 5022 key.proto = IPPROTO_ICMPV6; 5023 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5024 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5025 key.port[0] = key.port[1] = iih.icmp6_id; 5026 5027 STATE_LOOKUP(kif, &key, direction, *state, pd); 5028 5029 /* translate source/destination address, if necessary */ 5030 if ((*state)->key[PF_SK_WIRE] != 5031 (*state)->key[PF_SK_STACK]) { 5032 struct pf_state_key *nk = 5033 (*state)->key[pd->didx]; 5034 5035 if (PF_ANEQ(pd2.src, 5036 &nk->addr[pd2.sidx], pd2.af) || 5037 nk->port[pd2.sidx] != iih.icmp6_id) 5038 pf_change_icmp(pd2.src, &iih.icmp6_id, 5039 daddr, &nk->addr[pd2.sidx], 5040 nk->port[pd2.sidx], NULL, 5041 pd2.ip_sum, icmpsum, 5042 pd->ip_sum, 0, AF_INET6); 5043 5044 if (PF_ANEQ(pd2.dst, 5045 &nk->addr[pd2.didx], pd2.af) || 5046 nk->port[pd2.didx] != iih.icmp6_id) 5047 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5048 saddr, &nk->addr[pd2.didx], 5049 nk->port[pd2.didx], NULL, 5050 pd2.ip_sum, icmpsum, 5051 pd->ip_sum, 0, AF_INET6); 5052 5053 m_copyback(m, off, sizeof(struct icmp6_hdr), 5054 (caddr_t)pd->hdr.icmp6); 5055 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5056 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5057 (caddr_t)&iih); 5058 } 5059 return (PF_PASS); 5060 break; 5061 } 5062 #endif /* INET6 */ 5063 default: { 5064 key.af = pd2.af; 5065 key.proto = pd2.proto; 5066 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5067 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5068 key.port[0] = key.port[1] = 0; 5069 5070 STATE_LOOKUP(kif, &key, direction, *state, pd); 5071 5072 /* translate source/destination address, if necessary */ 5073 if ((*state)->key[PF_SK_WIRE] != 5074 (*state)->key[PF_SK_STACK]) { 5075 struct pf_state_key *nk = 5076 (*state)->key[pd->didx]; 5077 5078 if (PF_ANEQ(pd2.src, 5079 &nk->addr[pd2.sidx], pd2.af)) 5080 pf_change_icmp(pd2.src, NULL, daddr, 5081 &nk->addr[pd2.sidx], 0, NULL, 5082 pd2.ip_sum, icmpsum, 5083 pd->ip_sum, 0, pd2.af); 5084 5085 if (PF_ANEQ(pd2.dst, 5086 &nk->addr[pd2.didx], pd2.af)) 5087 pf_change_icmp(pd2.dst, NULL, saddr, 5088 &nk->addr[pd2.didx], 0, NULL, 5089 pd2.ip_sum, icmpsum, 5090 pd->ip_sum, 0, pd2.af); 5091 5092 switch (pd2.af) { 5093 #ifdef INET 5094 case AF_INET: 5095 m_copyback(m, off, ICMP_MINLEN, 5096 (caddr_t)pd->hdr.icmp); 5097 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5098 break; 5099 #endif /* INET */ 5100 #ifdef INET6 5101 case AF_INET6: 5102 m_copyback(m, off, 5103 sizeof(struct icmp6_hdr), 5104 (caddr_t )pd->hdr.icmp6); 5105 m_copyback(m, ipoff2, sizeof(h2_6), 5106 (caddr_t )&h2_6); 5107 break; 5108 #endif /* INET6 */ 5109 } 5110 } 5111 return (PF_PASS); 5112 break; 5113 } 5114 } 5115 } 5116 } 5117 5118 static int 5119 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5120 struct mbuf *m, struct pf_pdesc *pd) 5121 { 5122 struct pf_state_peer *src, *dst; 5123 struct pf_state_key_cmp key; 5124 5125 bzero(&key, sizeof(key)); 5126 key.af = pd->af; 5127 key.proto = pd->proto; 5128 if (direction == PF_IN) { 5129 PF_ACPY(&key.addr[0], pd->src, key.af); 5130 PF_ACPY(&key.addr[1], pd->dst, key.af); 5131 key.port[0] = key.port[1] = 0; 5132 } else { 5133 PF_ACPY(&key.addr[1], pd->src, key.af); 5134 PF_ACPY(&key.addr[0], pd->dst, key.af); 5135 key.port[1] = key.port[0] = 0; 5136 } 5137 5138 STATE_LOOKUP(kif, &key, direction, *state, pd); 5139 5140 if (direction == (*state)->direction) { 5141 src = &(*state)->src; 5142 dst = &(*state)->dst; 5143 } else { 5144 src = &(*state)->dst; 5145 dst = &(*state)->src; 5146 } 5147 5148 /* update states */ 5149 if (src->state < PFOTHERS_SINGLE) 5150 src->state = PFOTHERS_SINGLE; 5151 if (dst->state == PFOTHERS_SINGLE) 5152 dst->state = PFOTHERS_MULTIPLE; 5153 5154 /* update expire time */ 5155 (*state)->expire = time_uptime; 5156 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5157 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5158 else 5159 (*state)->timeout = PFTM_OTHER_SINGLE; 5160 5161 /* translate source/destination address, if necessary */ 5162 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5163 struct pf_state_key *nk = (*state)->key[pd->didx]; 5164 5165 KASSERT(nk, ("%s: nk is null", __func__)); 5166 KASSERT(pd, ("%s: pd is null", __func__)); 5167 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5168 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5169 switch (pd->af) { 5170 #ifdef INET 5171 case AF_INET: 5172 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5173 pf_change_a(&pd->src->v4.s_addr, 5174 pd->ip_sum, 5175 nk->addr[pd->sidx].v4.s_addr, 5176 0); 5177 5178 5179 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5180 pf_change_a(&pd->dst->v4.s_addr, 5181 pd->ip_sum, 5182 nk->addr[pd->didx].v4.s_addr, 5183 0); 5184 5185 break; 5186 #endif /* INET */ 5187 #ifdef INET6 5188 case AF_INET6: 5189 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5190 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5191 5192 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5193 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5194 #endif /* INET6 */ 5195 } 5196 } 5197 return (PF_PASS); 5198 } 5199 5200 /* 5201 * ipoff and off are measured from the start of the mbuf chain. 5202 * h must be at "ipoff" on the mbuf chain. 5203 */ 5204 void * 5205 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5206 u_short *actionp, u_short *reasonp, sa_family_t af) 5207 { 5208 switch (af) { 5209 #ifdef INET 5210 case AF_INET: { 5211 struct ip *h = mtod(m, struct ip *); 5212 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5213 5214 if (fragoff) { 5215 if (fragoff >= len) 5216 ACTION_SET(actionp, PF_PASS); 5217 else { 5218 ACTION_SET(actionp, PF_DROP); 5219 REASON_SET(reasonp, PFRES_FRAG); 5220 } 5221 return (NULL); 5222 } 5223 if (m->m_pkthdr.len < off + len || 5224 ntohs(h->ip_len) < off + len) { 5225 ACTION_SET(actionp, PF_DROP); 5226 REASON_SET(reasonp, PFRES_SHORT); 5227 return (NULL); 5228 } 5229 break; 5230 } 5231 #endif /* INET */ 5232 #ifdef INET6 5233 case AF_INET6: { 5234 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5235 5236 if (m->m_pkthdr.len < off + len || 5237 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5238 (unsigned)(off + len)) { 5239 ACTION_SET(actionp, PF_DROP); 5240 REASON_SET(reasonp, PFRES_SHORT); 5241 return (NULL); 5242 } 5243 break; 5244 } 5245 #endif /* INET6 */ 5246 } 5247 m_copydata(m, off, len, p); 5248 return (p); 5249 } 5250 5251 #ifdef RADIX_MPATH 5252 static int 5253 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5254 int rtableid) 5255 { 5256 struct radix_node_head *rnh; 5257 struct sockaddr_in *dst; 5258 int ret = 1; 5259 int check_mpath; 5260 #ifdef INET6 5261 struct sockaddr_in6 *dst6; 5262 struct route_in6 ro; 5263 #else 5264 struct route ro; 5265 #endif 5266 struct radix_node *rn; 5267 struct rtentry *rt; 5268 struct ifnet *ifp; 5269 5270 check_mpath = 0; 5271 /* XXX: stick to table 0 for now */ 5272 rnh = rt_tables_get_rnh(0, af); 5273 if (rnh != NULL && rn_mpath_capable(rnh)) 5274 check_mpath = 1; 5275 bzero(&ro, sizeof(ro)); 5276 switch (af) { 5277 case AF_INET: 5278 dst = satosin(&ro.ro_dst); 5279 dst->sin_family = AF_INET; 5280 dst->sin_len = sizeof(*dst); 5281 dst->sin_addr = addr->v4; 5282 break; 5283 #ifdef INET6 5284 case AF_INET6: 5285 /* 5286 * Skip check for addresses with embedded interface scope, 5287 * as they would always match anyway. 5288 */ 5289 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5290 goto out; 5291 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5292 dst6->sin6_family = AF_INET6; 5293 dst6->sin6_len = sizeof(*dst6); 5294 dst6->sin6_addr = addr->v6; 5295 break; 5296 #endif /* INET6 */ 5297 default: 5298 return (0); 5299 } 5300 5301 /* Skip checks for ipsec interfaces */ 5302 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5303 goto out; 5304 5305 switch (af) { 5306 #ifdef INET6 5307 case AF_INET6: 5308 in6_rtalloc_ign(&ro, 0, rtableid); 5309 break; 5310 #endif 5311 #ifdef INET 5312 case AF_INET: 5313 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5314 break; 5315 #endif 5316 } 5317 5318 if (ro.ro_rt != NULL) { 5319 /* No interface given, this is a no-route check */ 5320 if (kif == NULL) 5321 goto out; 5322 5323 if (kif->pfik_ifp == NULL) { 5324 ret = 0; 5325 goto out; 5326 } 5327 5328 /* Perform uRPF check if passed input interface */ 5329 ret = 0; 5330 rn = (struct radix_node *)ro.ro_rt; 5331 do { 5332 rt = (struct rtentry *)rn; 5333 ifp = rt->rt_ifp; 5334 5335 if (kif->pfik_ifp == ifp) 5336 ret = 1; 5337 rn = rn_mpath_next(rn); 5338 } while (check_mpath == 1 && rn != NULL && ret == 0); 5339 } else 5340 ret = 0; 5341 out: 5342 if (ro.ro_rt != NULL) 5343 RTFREE(ro.ro_rt); 5344 return (ret); 5345 } 5346 #endif 5347 5348 int 5349 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5350 int rtableid) 5351 { 5352 #ifdef INET 5353 struct nhop4_basic nh4; 5354 #endif 5355 #ifdef INET6 5356 struct nhop6_basic nh6; 5357 #endif 5358 struct ifnet *ifp; 5359 #ifdef RADIX_MPATH 5360 struct radix_node_head *rnh; 5361 5362 /* XXX: stick to table 0 for now */ 5363 rnh = rt_tables_get_rnh(0, af); 5364 if (rnh != NULL && rn_mpath_capable(rnh)) 5365 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5366 #endif 5367 /* 5368 * Skip check for addresses with embedded interface scope, 5369 * as they would always match anyway. 5370 */ 5371 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5372 return (1); 5373 5374 if (af != AF_INET && af != AF_INET6) 5375 return (0); 5376 5377 /* Skip checks for ipsec interfaces */ 5378 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5379 return (1); 5380 5381 ifp = NULL; 5382 5383 switch (af) { 5384 #ifdef INET6 5385 case AF_INET6: 5386 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5387 return (0); 5388 ifp = nh6.nh_ifp; 5389 break; 5390 #endif 5391 #ifdef INET 5392 case AF_INET: 5393 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5394 return (0); 5395 ifp = nh4.nh_ifp; 5396 break; 5397 #endif 5398 } 5399 5400 /* No interface given, this is a no-route check */ 5401 if (kif == NULL) 5402 return (1); 5403 5404 if (kif->pfik_ifp == NULL) 5405 return (0); 5406 5407 /* Perform uRPF check if passed input interface */ 5408 if (kif->pfik_ifp == ifp) 5409 return (1); 5410 return (0); 5411 } 5412 5413 #ifdef INET 5414 static void 5415 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5416 struct pf_state *s, struct pf_pdesc *pd) 5417 { 5418 struct mbuf *m0, *m1; 5419 struct sockaddr_in dst; 5420 struct ip *ip; 5421 struct ifnet *ifp = NULL; 5422 struct pf_addr naddr; 5423 struct pf_src_node *sn = NULL; 5424 int error = 0; 5425 uint16_t ip_len, ip_off; 5426 5427 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5428 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5429 __func__)); 5430 5431 if ((pd->pf_mtag == NULL && 5432 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5433 pd->pf_mtag->routed++ > 3) { 5434 m0 = *m; 5435 *m = NULL; 5436 goto bad_locked; 5437 } 5438 5439 if (r->rt == PF_DUPTO) { 5440 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5441 if (s) 5442 PF_STATE_UNLOCK(s); 5443 return; 5444 } 5445 } else { 5446 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5447 if (s) 5448 PF_STATE_UNLOCK(s); 5449 return; 5450 } 5451 m0 = *m; 5452 } 5453 5454 ip = mtod(m0, struct ip *); 5455 5456 bzero(&dst, sizeof(dst)); 5457 dst.sin_family = AF_INET; 5458 dst.sin_len = sizeof(dst); 5459 dst.sin_addr = ip->ip_dst; 5460 5461 if (TAILQ_EMPTY(&r->rpool.list)) { 5462 DPFPRINTF(PF_DEBUG_URGENT, 5463 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5464 goto bad_locked; 5465 } 5466 if (s == NULL) { 5467 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5468 &naddr, NULL, &sn); 5469 if (!PF_AZERO(&naddr, AF_INET)) 5470 dst.sin_addr.s_addr = naddr.v4.s_addr; 5471 ifp = r->rpool.cur->kif ? 5472 r->rpool.cur->kif->pfik_ifp : NULL; 5473 } else { 5474 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5475 dst.sin_addr.s_addr = 5476 s->rt_addr.v4.s_addr; 5477 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5478 PF_STATE_UNLOCK(s); 5479 } 5480 if (ifp == NULL) 5481 goto bad; 5482 5483 if (oifp != ifp) { 5484 if (pf_test(PF_OUT, ifp, &m0, NULL) != PF_PASS) 5485 goto bad; 5486 else if (m0 == NULL) 5487 goto done; 5488 if (m0->m_len < sizeof(struct ip)) { 5489 DPFPRINTF(PF_DEBUG_URGENT, 5490 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5491 goto bad; 5492 } 5493 ip = mtod(m0, struct ip *); 5494 } 5495 5496 if (ifp->if_flags & IFF_LOOPBACK) 5497 m0->m_flags |= M_SKIP_FIREWALL; 5498 5499 ip_len = ntohs(ip->ip_len); 5500 ip_off = ntohs(ip->ip_off); 5501 5502 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5503 m0->m_pkthdr.csum_flags |= CSUM_IP; 5504 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5505 in_delayed_cksum(m0); 5506 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5507 } 5508 #ifdef SCTP 5509 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5510 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5511 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5512 } 5513 #endif 5514 5515 /* 5516 * If small enough for interface, or the interface will take 5517 * care of the fragmentation for us, we can just send directly. 5518 */ 5519 if (ip_len <= ifp->if_mtu || 5520 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5521 ip->ip_sum = 0; 5522 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5523 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5524 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5525 } 5526 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5527 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5528 goto done; 5529 } 5530 5531 /* Balk when DF bit is set or the interface didn't support TSO. */ 5532 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5533 error = EMSGSIZE; 5534 KMOD_IPSTAT_INC(ips_cantfrag); 5535 if (r->rt != PF_DUPTO) { 5536 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5537 ifp->if_mtu); 5538 goto done; 5539 } else 5540 goto bad; 5541 } 5542 5543 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5544 if (error) 5545 goto bad; 5546 5547 for (; m0; m0 = m1) { 5548 m1 = m0->m_nextpkt; 5549 m0->m_nextpkt = NULL; 5550 if (error == 0) { 5551 m_clrprotoflags(m0); 5552 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5553 } else 5554 m_freem(m0); 5555 } 5556 5557 if (error == 0) 5558 KMOD_IPSTAT_INC(ips_fragmented); 5559 5560 done: 5561 if (r->rt != PF_DUPTO) 5562 *m = NULL; 5563 return; 5564 5565 bad_locked: 5566 if (s) 5567 PF_STATE_UNLOCK(s); 5568 bad: 5569 m_freem(m0); 5570 goto done; 5571 } 5572 #endif /* INET */ 5573 5574 #ifdef INET6 5575 static void 5576 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5577 struct pf_state *s, struct pf_pdesc *pd) 5578 { 5579 struct mbuf *m0; 5580 struct sockaddr_in6 dst; 5581 struct ip6_hdr *ip6; 5582 struct ifnet *ifp = NULL; 5583 struct pf_addr naddr; 5584 struct pf_src_node *sn = NULL; 5585 5586 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5587 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5588 __func__)); 5589 5590 if ((pd->pf_mtag == NULL && 5591 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5592 pd->pf_mtag->routed++ > 3) { 5593 m0 = *m; 5594 *m = NULL; 5595 goto bad_locked; 5596 } 5597 5598 if (r->rt == PF_DUPTO) { 5599 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5600 if (s) 5601 PF_STATE_UNLOCK(s); 5602 return; 5603 } 5604 } else { 5605 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5606 if (s) 5607 PF_STATE_UNLOCK(s); 5608 return; 5609 } 5610 m0 = *m; 5611 } 5612 5613 ip6 = mtod(m0, struct ip6_hdr *); 5614 5615 bzero(&dst, sizeof(dst)); 5616 dst.sin6_family = AF_INET6; 5617 dst.sin6_len = sizeof(dst); 5618 dst.sin6_addr = ip6->ip6_dst; 5619 5620 if (TAILQ_EMPTY(&r->rpool.list)) { 5621 DPFPRINTF(PF_DEBUG_URGENT, 5622 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5623 goto bad_locked; 5624 } 5625 if (s == NULL) { 5626 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5627 &naddr, NULL, &sn); 5628 if (!PF_AZERO(&naddr, AF_INET6)) 5629 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5630 &naddr, AF_INET6); 5631 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5632 } else { 5633 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5634 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5635 &s->rt_addr, AF_INET6); 5636 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5637 } 5638 5639 if (s) 5640 PF_STATE_UNLOCK(s); 5641 5642 if (ifp == NULL) 5643 goto bad; 5644 5645 if (oifp != ifp) { 5646 if (pf_test6(PF_FWD, ifp, &m0, NULL) != PF_PASS) 5647 goto bad; 5648 else if (m0 == NULL) 5649 goto done; 5650 if (m0->m_len < sizeof(struct ip6_hdr)) { 5651 DPFPRINTF(PF_DEBUG_URGENT, 5652 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5653 __func__)); 5654 goto bad; 5655 } 5656 ip6 = mtod(m0, struct ip6_hdr *); 5657 } 5658 5659 if (ifp->if_flags & IFF_LOOPBACK) 5660 m0->m_flags |= M_SKIP_FIREWALL; 5661 5662 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5663 ~ifp->if_hwassist) { 5664 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5665 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5666 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5667 } 5668 5669 /* 5670 * If the packet is too large for the outgoing interface, 5671 * send back an icmp6 error. 5672 */ 5673 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5674 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5675 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5676 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5677 else { 5678 in6_ifstat_inc(ifp, ifs6_in_toobig); 5679 if (r->rt != PF_DUPTO) 5680 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5681 else 5682 goto bad; 5683 } 5684 5685 done: 5686 if (r->rt != PF_DUPTO) 5687 *m = NULL; 5688 return; 5689 5690 bad_locked: 5691 if (s) 5692 PF_STATE_UNLOCK(s); 5693 bad: 5694 m_freem(m0); 5695 goto done; 5696 } 5697 #endif /* INET6 */ 5698 5699 /* 5700 * FreeBSD supports cksum offloads for the following drivers. 5701 * em(4), fxp(4), ixgb(4), lge(4), ndis(4), nge(4), re(4), 5702 * ti(4), txp(4), xl(4) 5703 * 5704 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5705 * network driver performed cksum including pseudo header, need to verify 5706 * csum_data 5707 * CSUM_DATA_VALID : 5708 * network driver performed cksum, needs to additional pseudo header 5709 * cksum computation with partial csum_data(i.e. lack of H/W support for 5710 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5711 * 5712 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5713 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5714 * TCP/UDP layer. 5715 * Also, set csum_data to 0xffff to force cksum validation. 5716 */ 5717 static int 5718 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5719 { 5720 u_int16_t sum = 0; 5721 int hw_assist = 0; 5722 struct ip *ip; 5723 5724 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5725 return (1); 5726 if (m->m_pkthdr.len < off + len) 5727 return (1); 5728 5729 switch (p) { 5730 case IPPROTO_TCP: 5731 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5732 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5733 sum = m->m_pkthdr.csum_data; 5734 } else { 5735 ip = mtod(m, struct ip *); 5736 sum = in_pseudo(ip->ip_src.s_addr, 5737 ip->ip_dst.s_addr, htonl((u_short)len + 5738 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5739 } 5740 sum ^= 0xffff; 5741 ++hw_assist; 5742 } 5743 break; 5744 case IPPROTO_UDP: 5745 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5746 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5747 sum = m->m_pkthdr.csum_data; 5748 } else { 5749 ip = mtod(m, struct ip *); 5750 sum = in_pseudo(ip->ip_src.s_addr, 5751 ip->ip_dst.s_addr, htonl((u_short)len + 5752 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5753 } 5754 sum ^= 0xffff; 5755 ++hw_assist; 5756 } 5757 break; 5758 case IPPROTO_ICMP: 5759 #ifdef INET6 5760 case IPPROTO_ICMPV6: 5761 #endif /* INET6 */ 5762 break; 5763 default: 5764 return (1); 5765 } 5766 5767 if (!hw_assist) { 5768 switch (af) { 5769 case AF_INET: 5770 if (p == IPPROTO_ICMP) { 5771 if (m->m_len < off) 5772 return (1); 5773 m->m_data += off; 5774 m->m_len -= off; 5775 sum = in_cksum(m, len); 5776 m->m_data -= off; 5777 m->m_len += off; 5778 } else { 5779 if (m->m_len < sizeof(struct ip)) 5780 return (1); 5781 sum = in4_cksum(m, p, off, len); 5782 } 5783 break; 5784 #ifdef INET6 5785 case AF_INET6: 5786 if (m->m_len < sizeof(struct ip6_hdr)) 5787 return (1); 5788 sum = in6_cksum(m, p, off, len); 5789 break; 5790 #endif /* INET6 */ 5791 default: 5792 return (1); 5793 } 5794 } 5795 if (sum) { 5796 switch (p) { 5797 case IPPROTO_TCP: 5798 { 5799 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5800 break; 5801 } 5802 case IPPROTO_UDP: 5803 { 5804 KMOD_UDPSTAT_INC(udps_badsum); 5805 break; 5806 } 5807 #ifdef INET 5808 case IPPROTO_ICMP: 5809 { 5810 KMOD_ICMPSTAT_INC(icps_checksum); 5811 break; 5812 } 5813 #endif 5814 #ifdef INET6 5815 case IPPROTO_ICMPV6: 5816 { 5817 KMOD_ICMP6STAT_INC(icp6s_checksum); 5818 break; 5819 } 5820 #endif /* INET6 */ 5821 } 5822 return (1); 5823 } else { 5824 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5825 m->m_pkthdr.csum_flags |= 5826 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5827 m->m_pkthdr.csum_data = 0xffff; 5828 } 5829 } 5830 return (0); 5831 } 5832 5833 5834 #ifdef INET 5835 int 5836 pf_test(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5837 { 5838 struct pfi_kif *kif; 5839 u_short action, reason = 0, log = 0; 5840 struct mbuf *m = *m0; 5841 struct ip *h = NULL; 5842 struct m_tag *ipfwtag; 5843 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5844 struct pf_state *s = NULL; 5845 struct pf_ruleset *ruleset = NULL; 5846 struct pf_pdesc pd; 5847 int off, dirndx, pqid = 0; 5848 5849 M_ASSERTPKTHDR(m); 5850 5851 if (!V_pf_status.running) 5852 return (PF_PASS); 5853 5854 memset(&pd, 0, sizeof(pd)); 5855 5856 kif = (struct pfi_kif *)ifp->if_pf_kif; 5857 5858 if (kif == NULL) { 5859 DPFPRINTF(PF_DEBUG_URGENT, 5860 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5861 return (PF_DROP); 5862 } 5863 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5864 return (PF_PASS); 5865 5866 if (m->m_flags & M_SKIP_FIREWALL) 5867 return (PF_PASS); 5868 5869 pd.pf_mtag = pf_find_mtag(m); 5870 5871 PF_RULES_RLOCK(); 5872 5873 if (ip_divert_ptr != NULL && 5874 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5875 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5876 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5877 if (pd.pf_mtag == NULL && 5878 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5879 action = PF_DROP; 5880 goto done; 5881 } 5882 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5883 m_tag_delete(m, ipfwtag); 5884 } 5885 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5886 m->m_flags |= M_FASTFWD_OURS; 5887 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5888 } 5889 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5890 /* We do IP header normalization and packet reassembly here */ 5891 action = PF_DROP; 5892 goto done; 5893 } 5894 m = *m0; /* pf_normalize messes with m0 */ 5895 h = mtod(m, struct ip *); 5896 5897 off = h->ip_hl << 2; 5898 if (off < (int)sizeof(struct ip)) { 5899 action = PF_DROP; 5900 REASON_SET(&reason, PFRES_SHORT); 5901 log = 1; 5902 goto done; 5903 } 5904 5905 pd.src = (struct pf_addr *)&h->ip_src; 5906 pd.dst = (struct pf_addr *)&h->ip_dst; 5907 pd.sport = pd.dport = NULL; 5908 pd.ip_sum = &h->ip_sum; 5909 pd.proto_sum = NULL; 5910 pd.proto = h->ip_p; 5911 pd.dir = dir; 5912 pd.sidx = (dir == PF_IN) ? 0 : 1; 5913 pd.didx = (dir == PF_IN) ? 1 : 0; 5914 pd.af = AF_INET; 5915 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5916 pd.tot_len = ntohs(h->ip_len); 5917 5918 /* handle fragments that didn't get reassembled by normalization */ 5919 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5920 action = pf_test_fragment(&r, dir, kif, m, h, 5921 &pd, &a, &ruleset); 5922 goto done; 5923 } 5924 5925 switch (h->ip_p) { 5926 5927 case IPPROTO_TCP: { 5928 struct tcphdr th; 5929 5930 pd.hdr.tcp = &th; 5931 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5932 &action, &reason, AF_INET)) { 5933 log = action != PF_PASS; 5934 goto done; 5935 } 5936 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5937 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5938 pqid = 1; 5939 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5940 if (action == PF_DROP) 5941 goto done; 5942 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5943 &reason); 5944 if (action == PF_PASS) { 5945 if (pfsync_update_state_ptr != NULL) 5946 pfsync_update_state_ptr(s); 5947 r = s->rule.ptr; 5948 a = s->anchor.ptr; 5949 log = s->log; 5950 } else if (s == NULL) 5951 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5952 &a, &ruleset, inp); 5953 break; 5954 } 5955 5956 case IPPROTO_UDP: { 5957 struct udphdr uh; 5958 5959 pd.hdr.udp = &uh; 5960 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5961 &action, &reason, AF_INET)) { 5962 log = action != PF_PASS; 5963 goto done; 5964 } 5965 if (uh.uh_dport == 0 || 5966 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5967 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5968 action = PF_DROP; 5969 REASON_SET(&reason, PFRES_SHORT); 5970 goto done; 5971 } 5972 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5973 if (action == PF_PASS) { 5974 if (pfsync_update_state_ptr != NULL) 5975 pfsync_update_state_ptr(s); 5976 r = s->rule.ptr; 5977 a = s->anchor.ptr; 5978 log = s->log; 5979 } else if (s == NULL) 5980 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5981 &a, &ruleset, inp); 5982 break; 5983 } 5984 5985 case IPPROTO_ICMP: { 5986 struct icmp ih; 5987 5988 pd.hdr.icmp = &ih; 5989 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5990 &action, &reason, AF_INET)) { 5991 log = action != PF_PASS; 5992 goto done; 5993 } 5994 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5995 &reason); 5996 if (action == PF_PASS) { 5997 if (pfsync_update_state_ptr != NULL) 5998 pfsync_update_state_ptr(s); 5999 r = s->rule.ptr; 6000 a = s->anchor.ptr; 6001 log = s->log; 6002 } else if (s == NULL) 6003 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6004 &a, &ruleset, inp); 6005 break; 6006 } 6007 6008 #ifdef INET6 6009 case IPPROTO_ICMPV6: { 6010 action = PF_DROP; 6011 DPFPRINTF(PF_DEBUG_MISC, 6012 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6013 goto done; 6014 } 6015 #endif 6016 6017 default: 6018 action = pf_test_state_other(&s, dir, kif, m, &pd); 6019 if (action == PF_PASS) { 6020 if (pfsync_update_state_ptr != NULL) 6021 pfsync_update_state_ptr(s); 6022 r = s->rule.ptr; 6023 a = s->anchor.ptr; 6024 log = s->log; 6025 } else if (s == NULL) 6026 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6027 &a, &ruleset, inp); 6028 break; 6029 } 6030 6031 done: 6032 PF_RULES_RUNLOCK(); 6033 if (action == PF_PASS && h->ip_hl > 5 && 6034 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6035 action = PF_DROP; 6036 REASON_SET(&reason, PFRES_IPOPTIONS); 6037 log = r->log; 6038 DPFPRINTF(PF_DEBUG_MISC, 6039 ("pf: dropping packet with ip options\n")); 6040 } 6041 6042 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6043 action = PF_DROP; 6044 REASON_SET(&reason, PFRES_MEMORY); 6045 } 6046 if (r->rtableid >= 0) 6047 M_SETFIB(m, r->rtableid); 6048 6049 if (r->scrub_flags & PFSTATE_SETPRIO) { 6050 if (pd.tos & IPTOS_LOWDELAY) 6051 pqid = 1; 6052 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6053 action = PF_DROP; 6054 REASON_SET(&reason, PFRES_MEMORY); 6055 log = 1; 6056 DPFPRINTF(PF_DEBUG_MISC, 6057 ("pf: failed to allocate 802.1q mtag\n")); 6058 } 6059 } 6060 6061 #ifdef ALTQ 6062 if (action == PF_PASS && r->qid) { 6063 if (pd.pf_mtag == NULL && 6064 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6065 action = PF_DROP; 6066 REASON_SET(&reason, PFRES_MEMORY); 6067 } else { 6068 if (s != NULL) 6069 pd.pf_mtag->qid_hash = pf_state_hash(s); 6070 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6071 pd.pf_mtag->qid = r->pqid; 6072 else 6073 pd.pf_mtag->qid = r->qid; 6074 /* Add hints for ecn. */ 6075 pd.pf_mtag->hdr = h; 6076 } 6077 6078 } 6079 #endif /* ALTQ */ 6080 6081 /* 6082 * connections redirected to loopback should not match sockets 6083 * bound specifically to loopback due to security implications, 6084 * see tcp_input() and in_pcblookup_listen(). 6085 */ 6086 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6087 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6088 (s->nat_rule.ptr->action == PF_RDR || 6089 s->nat_rule.ptr->action == PF_BINAT) && 6090 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6091 m->m_flags |= M_SKIP_FIREWALL; 6092 6093 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6094 !PACKET_LOOPED(&pd)) { 6095 6096 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6097 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6098 if (ipfwtag != NULL) { 6099 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6100 ntohs(r->divert.port); 6101 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6102 6103 if (s) 6104 PF_STATE_UNLOCK(s); 6105 6106 m_tag_prepend(m, ipfwtag); 6107 if (m->m_flags & M_FASTFWD_OURS) { 6108 if (pd.pf_mtag == NULL && 6109 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6110 action = PF_DROP; 6111 REASON_SET(&reason, PFRES_MEMORY); 6112 log = 1; 6113 DPFPRINTF(PF_DEBUG_MISC, 6114 ("pf: failed to allocate tag\n")); 6115 } else { 6116 pd.pf_mtag->flags |= 6117 PF_FASTFWD_OURS_PRESENT; 6118 m->m_flags &= ~M_FASTFWD_OURS; 6119 } 6120 } 6121 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6122 *m0 = NULL; 6123 6124 return (action); 6125 } else { 6126 /* XXX: ipfw has the same behaviour! */ 6127 action = PF_DROP; 6128 REASON_SET(&reason, PFRES_MEMORY); 6129 log = 1; 6130 DPFPRINTF(PF_DEBUG_MISC, 6131 ("pf: failed to allocate divert tag\n")); 6132 } 6133 } 6134 6135 if (log) { 6136 struct pf_rule *lr; 6137 6138 if (s != NULL && s->nat_rule.ptr != NULL && 6139 s->nat_rule.ptr->log & PF_LOG_ALL) 6140 lr = s->nat_rule.ptr; 6141 else 6142 lr = r; 6143 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6144 (s == NULL)); 6145 } 6146 6147 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6148 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6149 6150 if (action == PF_PASS || r->action == PF_DROP) { 6151 dirndx = (dir == PF_OUT); 6152 r->packets[dirndx]++; 6153 r->bytes[dirndx] += pd.tot_len; 6154 if (a != NULL) { 6155 a->packets[dirndx]++; 6156 a->bytes[dirndx] += pd.tot_len; 6157 } 6158 if (s != NULL) { 6159 if (s->nat_rule.ptr != NULL) { 6160 s->nat_rule.ptr->packets[dirndx]++; 6161 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6162 } 6163 if (s->src_node != NULL) { 6164 s->src_node->packets[dirndx]++; 6165 s->src_node->bytes[dirndx] += pd.tot_len; 6166 } 6167 if (s->nat_src_node != NULL) { 6168 s->nat_src_node->packets[dirndx]++; 6169 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6170 } 6171 dirndx = (dir == s->direction) ? 0 : 1; 6172 s->packets[dirndx]++; 6173 s->bytes[dirndx] += pd.tot_len; 6174 } 6175 tr = r; 6176 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6177 if (nr != NULL && r == &V_pf_default_rule) 6178 tr = nr; 6179 if (tr->src.addr.type == PF_ADDR_TABLE) 6180 pfr_update_stats(tr->src.addr.p.tbl, 6181 (s == NULL) ? pd.src : 6182 &s->key[(s->direction == PF_IN)]-> 6183 addr[(s->direction == PF_OUT)], 6184 pd.af, pd.tot_len, dir == PF_OUT, 6185 r->action == PF_PASS, tr->src.neg); 6186 if (tr->dst.addr.type == PF_ADDR_TABLE) 6187 pfr_update_stats(tr->dst.addr.p.tbl, 6188 (s == NULL) ? pd.dst : 6189 &s->key[(s->direction == PF_IN)]-> 6190 addr[(s->direction == PF_IN)], 6191 pd.af, pd.tot_len, dir == PF_OUT, 6192 r->action == PF_PASS, tr->dst.neg); 6193 } 6194 6195 switch (action) { 6196 case PF_SYNPROXY_DROP: 6197 m_freem(*m0); 6198 case PF_DEFER: 6199 *m0 = NULL; 6200 action = PF_PASS; 6201 break; 6202 case PF_DROP: 6203 m_freem(*m0); 6204 *m0 = NULL; 6205 break; 6206 default: 6207 /* pf_route() returns unlocked. */ 6208 if (r->rt) { 6209 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6210 return (action); 6211 } 6212 break; 6213 } 6214 if (s) 6215 PF_STATE_UNLOCK(s); 6216 6217 return (action); 6218 } 6219 #endif /* INET */ 6220 6221 #ifdef INET6 6222 int 6223 pf_test6(int dir, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6224 { 6225 struct pfi_kif *kif; 6226 u_short action, reason = 0, log = 0; 6227 struct mbuf *m = *m0, *n = NULL; 6228 struct m_tag *mtag; 6229 struct ip6_hdr *h = NULL; 6230 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6231 struct pf_state *s = NULL; 6232 struct pf_ruleset *ruleset = NULL; 6233 struct pf_pdesc pd; 6234 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6235 int fwdir = dir; 6236 6237 M_ASSERTPKTHDR(m); 6238 6239 /* Detect packet forwarding. 6240 * If the input interface is different from the output interface we're 6241 * forwarding. 6242 * We do need to be careful about bridges. If the 6243 * net.link.bridge.pfil_bridge sysctl is set we can be filtering on a 6244 * bridge, so if the input interface is a bridge member and the output 6245 * interface is its bridge or a member of the same bridge we're not 6246 * actually forwarding but bridging. 6247 */ 6248 if (dir == PF_OUT && m->m_pkthdr.rcvif && ifp != m->m_pkthdr.rcvif && 6249 (m->m_pkthdr.rcvif->if_bridge == NULL || 6250 (m->m_pkthdr.rcvif->if_bridge != ifp->if_softc && 6251 m->m_pkthdr.rcvif->if_bridge != ifp->if_bridge))) 6252 fwdir = PF_FWD; 6253 6254 if (dir == PF_FWD) 6255 dir = PF_OUT; 6256 6257 if (!V_pf_status.running) 6258 return (PF_PASS); 6259 6260 memset(&pd, 0, sizeof(pd)); 6261 pd.pf_mtag = pf_find_mtag(m); 6262 6263 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6264 return (PF_PASS); 6265 6266 kif = (struct pfi_kif *)ifp->if_pf_kif; 6267 if (kif == NULL) { 6268 DPFPRINTF(PF_DEBUG_URGENT, 6269 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6270 return (PF_DROP); 6271 } 6272 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6273 return (PF_PASS); 6274 6275 if (m->m_flags & M_SKIP_FIREWALL) 6276 return (PF_PASS); 6277 6278 PF_RULES_RLOCK(); 6279 6280 /* We do IP header normalization and packet reassembly here */ 6281 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6282 action = PF_DROP; 6283 goto done; 6284 } 6285 m = *m0; /* pf_normalize messes with m0 */ 6286 h = mtod(m, struct ip6_hdr *); 6287 6288 #if 1 6289 /* 6290 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6291 * will do something bad, so drop the packet for now. 6292 */ 6293 if (htons(h->ip6_plen) == 0) { 6294 action = PF_DROP; 6295 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6296 goto done; 6297 } 6298 #endif 6299 6300 pd.src = (struct pf_addr *)&h->ip6_src; 6301 pd.dst = (struct pf_addr *)&h->ip6_dst; 6302 pd.sport = pd.dport = NULL; 6303 pd.ip_sum = NULL; 6304 pd.proto_sum = NULL; 6305 pd.dir = dir; 6306 pd.sidx = (dir == PF_IN) ? 0 : 1; 6307 pd.didx = (dir == PF_IN) ? 1 : 0; 6308 pd.af = AF_INET6; 6309 pd.tos = 0; 6310 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6311 6312 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6313 pd.proto = h->ip6_nxt; 6314 do { 6315 switch (pd.proto) { 6316 case IPPROTO_FRAGMENT: 6317 action = pf_test_fragment(&r, dir, kif, m, h, 6318 &pd, &a, &ruleset); 6319 if (action == PF_DROP) 6320 REASON_SET(&reason, PFRES_FRAG); 6321 goto done; 6322 case IPPROTO_ROUTING: { 6323 struct ip6_rthdr rthdr; 6324 6325 if (rh_cnt++) { 6326 DPFPRINTF(PF_DEBUG_MISC, 6327 ("pf: IPv6 more than one rthdr\n")); 6328 action = PF_DROP; 6329 REASON_SET(&reason, PFRES_IPOPTIONS); 6330 log = 1; 6331 goto done; 6332 } 6333 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6334 &reason, pd.af)) { 6335 DPFPRINTF(PF_DEBUG_MISC, 6336 ("pf: IPv6 short rthdr\n")); 6337 action = PF_DROP; 6338 REASON_SET(&reason, PFRES_SHORT); 6339 log = 1; 6340 goto done; 6341 } 6342 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6343 DPFPRINTF(PF_DEBUG_MISC, 6344 ("pf: IPv6 rthdr0\n")); 6345 action = PF_DROP; 6346 REASON_SET(&reason, PFRES_IPOPTIONS); 6347 log = 1; 6348 goto done; 6349 } 6350 /* FALLTHROUGH */ 6351 } 6352 case IPPROTO_AH: 6353 case IPPROTO_HOPOPTS: 6354 case IPPROTO_DSTOPTS: { 6355 /* get next header and header length */ 6356 struct ip6_ext opt6; 6357 6358 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6359 NULL, &reason, pd.af)) { 6360 DPFPRINTF(PF_DEBUG_MISC, 6361 ("pf: IPv6 short opt\n")); 6362 action = PF_DROP; 6363 log = 1; 6364 goto done; 6365 } 6366 if (pd.proto == IPPROTO_AH) 6367 off += (opt6.ip6e_len + 2) * 4; 6368 else 6369 off += (opt6.ip6e_len + 1) * 8; 6370 pd.proto = opt6.ip6e_nxt; 6371 /* goto the next header */ 6372 break; 6373 } 6374 default: 6375 terminal++; 6376 break; 6377 } 6378 } while (!terminal); 6379 6380 /* if there's no routing header, use unmodified mbuf for checksumming */ 6381 if (!n) 6382 n = m; 6383 6384 switch (pd.proto) { 6385 6386 case IPPROTO_TCP: { 6387 struct tcphdr th; 6388 6389 pd.hdr.tcp = &th; 6390 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6391 &action, &reason, AF_INET6)) { 6392 log = action != PF_PASS; 6393 goto done; 6394 } 6395 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6396 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6397 if (action == PF_DROP) 6398 goto done; 6399 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6400 &reason); 6401 if (action == PF_PASS) { 6402 if (pfsync_update_state_ptr != NULL) 6403 pfsync_update_state_ptr(s); 6404 r = s->rule.ptr; 6405 a = s->anchor.ptr; 6406 log = s->log; 6407 } else if (s == NULL) 6408 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6409 &a, &ruleset, inp); 6410 break; 6411 } 6412 6413 case IPPROTO_UDP: { 6414 struct udphdr uh; 6415 6416 pd.hdr.udp = &uh; 6417 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6418 &action, &reason, AF_INET6)) { 6419 log = action != PF_PASS; 6420 goto done; 6421 } 6422 if (uh.uh_dport == 0 || 6423 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6424 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6425 action = PF_DROP; 6426 REASON_SET(&reason, PFRES_SHORT); 6427 goto done; 6428 } 6429 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6430 if (action == PF_PASS) { 6431 if (pfsync_update_state_ptr != NULL) 6432 pfsync_update_state_ptr(s); 6433 r = s->rule.ptr; 6434 a = s->anchor.ptr; 6435 log = s->log; 6436 } else if (s == NULL) 6437 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6438 &a, &ruleset, inp); 6439 break; 6440 } 6441 6442 case IPPROTO_ICMP: { 6443 action = PF_DROP; 6444 DPFPRINTF(PF_DEBUG_MISC, 6445 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6446 goto done; 6447 } 6448 6449 case IPPROTO_ICMPV6: { 6450 struct icmp6_hdr ih; 6451 6452 pd.hdr.icmp6 = &ih; 6453 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6454 &action, &reason, AF_INET6)) { 6455 log = action != PF_PASS; 6456 goto done; 6457 } 6458 action = pf_test_state_icmp(&s, dir, kif, 6459 m, off, h, &pd, &reason); 6460 if (action == PF_PASS) { 6461 if (pfsync_update_state_ptr != NULL) 6462 pfsync_update_state_ptr(s); 6463 r = s->rule.ptr; 6464 a = s->anchor.ptr; 6465 log = s->log; 6466 } else if (s == NULL) 6467 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6468 &a, &ruleset, inp); 6469 break; 6470 } 6471 6472 default: 6473 action = pf_test_state_other(&s, dir, kif, m, &pd); 6474 if (action == PF_PASS) { 6475 if (pfsync_update_state_ptr != NULL) 6476 pfsync_update_state_ptr(s); 6477 r = s->rule.ptr; 6478 a = s->anchor.ptr; 6479 log = s->log; 6480 } else if (s == NULL) 6481 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6482 &a, &ruleset, inp); 6483 break; 6484 } 6485 6486 done: 6487 PF_RULES_RUNLOCK(); 6488 if (n != m) { 6489 m_freem(n); 6490 n = NULL; 6491 } 6492 6493 /* handle dangerous IPv6 extension headers. */ 6494 if (action == PF_PASS && rh_cnt && 6495 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6496 action = PF_DROP; 6497 REASON_SET(&reason, PFRES_IPOPTIONS); 6498 log = r->log; 6499 DPFPRINTF(PF_DEBUG_MISC, 6500 ("pf: dropping packet with dangerous v6 headers\n")); 6501 } 6502 6503 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6504 action = PF_DROP; 6505 REASON_SET(&reason, PFRES_MEMORY); 6506 } 6507 if (r->rtableid >= 0) 6508 M_SETFIB(m, r->rtableid); 6509 6510 if (r->scrub_flags & PFSTATE_SETPRIO) { 6511 if (pd.tos & IPTOS_LOWDELAY) 6512 pqid = 1; 6513 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6514 action = PF_DROP; 6515 REASON_SET(&reason, PFRES_MEMORY); 6516 log = 1; 6517 DPFPRINTF(PF_DEBUG_MISC, 6518 ("pf: failed to allocate 802.1q mtag\n")); 6519 } 6520 } 6521 6522 #ifdef ALTQ 6523 if (action == PF_PASS && r->qid) { 6524 if (pd.pf_mtag == NULL && 6525 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6526 action = PF_DROP; 6527 REASON_SET(&reason, PFRES_MEMORY); 6528 } else { 6529 if (s != NULL) 6530 pd.pf_mtag->qid_hash = pf_state_hash(s); 6531 if (pd.tos & IPTOS_LOWDELAY) 6532 pd.pf_mtag->qid = r->pqid; 6533 else 6534 pd.pf_mtag->qid = r->qid; 6535 /* Add hints for ecn. */ 6536 pd.pf_mtag->hdr = h; 6537 } 6538 } 6539 #endif /* ALTQ */ 6540 6541 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6542 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6543 (s->nat_rule.ptr->action == PF_RDR || 6544 s->nat_rule.ptr->action == PF_BINAT) && 6545 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6546 m->m_flags |= M_SKIP_FIREWALL; 6547 6548 /* XXX: Anybody working on it?! */ 6549 if (r->divert.port) 6550 printf("pf: divert(9) is not supported for IPv6\n"); 6551 6552 if (log) { 6553 struct pf_rule *lr; 6554 6555 if (s != NULL && s->nat_rule.ptr != NULL && 6556 s->nat_rule.ptr->log & PF_LOG_ALL) 6557 lr = s->nat_rule.ptr; 6558 else 6559 lr = r; 6560 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6561 &pd, (s == NULL)); 6562 } 6563 6564 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6565 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6566 6567 if (action == PF_PASS || r->action == PF_DROP) { 6568 dirndx = (dir == PF_OUT); 6569 r->packets[dirndx]++; 6570 r->bytes[dirndx] += pd.tot_len; 6571 if (a != NULL) { 6572 a->packets[dirndx]++; 6573 a->bytes[dirndx] += pd.tot_len; 6574 } 6575 if (s != NULL) { 6576 if (s->nat_rule.ptr != NULL) { 6577 s->nat_rule.ptr->packets[dirndx]++; 6578 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6579 } 6580 if (s->src_node != NULL) { 6581 s->src_node->packets[dirndx]++; 6582 s->src_node->bytes[dirndx] += pd.tot_len; 6583 } 6584 if (s->nat_src_node != NULL) { 6585 s->nat_src_node->packets[dirndx]++; 6586 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6587 } 6588 dirndx = (dir == s->direction) ? 0 : 1; 6589 s->packets[dirndx]++; 6590 s->bytes[dirndx] += pd.tot_len; 6591 } 6592 tr = r; 6593 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6594 if (nr != NULL && r == &V_pf_default_rule) 6595 tr = nr; 6596 if (tr->src.addr.type == PF_ADDR_TABLE) 6597 pfr_update_stats(tr->src.addr.p.tbl, 6598 (s == NULL) ? pd.src : 6599 &s->key[(s->direction == PF_IN)]->addr[0], 6600 pd.af, pd.tot_len, dir == PF_OUT, 6601 r->action == PF_PASS, tr->src.neg); 6602 if (tr->dst.addr.type == PF_ADDR_TABLE) 6603 pfr_update_stats(tr->dst.addr.p.tbl, 6604 (s == NULL) ? pd.dst : 6605 &s->key[(s->direction == PF_IN)]->addr[1], 6606 pd.af, pd.tot_len, dir == PF_OUT, 6607 r->action == PF_PASS, tr->dst.neg); 6608 } 6609 6610 switch (action) { 6611 case PF_SYNPROXY_DROP: 6612 m_freem(*m0); 6613 case PF_DEFER: 6614 *m0 = NULL; 6615 action = PF_PASS; 6616 break; 6617 case PF_DROP: 6618 m_freem(*m0); 6619 *m0 = NULL; 6620 break; 6621 default: 6622 /* pf_route6() returns unlocked. */ 6623 if (r->rt) { 6624 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6625 return (action); 6626 } 6627 break; 6628 } 6629 6630 if (s) 6631 PF_STATE_UNLOCK(s); 6632 6633 /* If reassembled packet passed, create new fragments. */ 6634 if (action == PF_PASS && *m0 && fwdir == PF_FWD && 6635 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6636 action = pf_refragment6(ifp, m0, mtag); 6637 6638 return (action); 6639 } 6640 #endif /* INET6 */ 6641