1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 132 "struct pf_krule *", "struct mbuf *", "int"); 133 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 134 "struct pf_sctp_source *"); 135 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 136 "struct pf_kstate *", "struct pf_sctp_source *"); 137 138 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 139 "struct mbuf *"); 140 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 141 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 142 "int", "struct pf_keth_rule *", "char *"); 143 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 144 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 145 "int", "struct pf_keth_rule *"); 146 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 147 148 /* 149 * Global variables 150 */ 151 152 /* state tables */ 153 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 154 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 155 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 156 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 157 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 158 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 159 VNET_DEFINE(struct pf_kstatus, pf_status); 160 161 VNET_DEFINE(u_int32_t, ticket_altqs_active); 162 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 163 VNET_DEFINE(int, altqs_inactive_open); 164 VNET_DEFINE(u_int32_t, ticket_pabuf); 165 166 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 167 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 168 VNET_DEFINE(u_char, pf_tcp_secret[16]); 169 #define V_pf_tcp_secret VNET(pf_tcp_secret) 170 VNET_DEFINE(int, pf_tcp_secret_init); 171 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 172 VNET_DEFINE(int, pf_tcp_iss_off); 173 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 174 VNET_DECLARE(int, pf_vnet_active); 175 #define V_pf_vnet_active VNET(pf_vnet_active) 176 177 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 178 #define V_pf_purge_idx VNET(pf_purge_idx) 179 180 #ifdef PF_WANT_32_TO_64_COUNTER 181 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 182 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 183 184 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 185 VNET_DEFINE(size_t, pf_allrulecount); 186 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 187 #endif 188 189 struct pf_sctp_endpoint; 190 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 191 struct pf_sctp_source { 192 sa_family_t af; 193 struct pf_addr addr; 194 TAILQ_ENTRY(pf_sctp_source) entry; 195 }; 196 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 197 struct pf_sctp_endpoint 198 { 199 uint32_t v_tag; 200 struct pf_sctp_sources sources; 201 RB_ENTRY(pf_sctp_endpoint) entry; 202 }; 203 static int 204 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 205 { 206 return (a->v_tag - b->v_tag); 207 } 208 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 209 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 210 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 211 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 212 static struct mtx_padalign pf_sctp_endpoints_mtx; 213 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 214 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 215 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 216 217 /* 218 * Queue for pf_intr() sends. 219 */ 220 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 221 struct pf_send_entry { 222 STAILQ_ENTRY(pf_send_entry) pfse_next; 223 struct mbuf *pfse_m; 224 enum { 225 PFSE_IP, 226 PFSE_IP6, 227 PFSE_ICMP, 228 PFSE_ICMP6, 229 } pfse_type; 230 struct { 231 int type; 232 int code; 233 int mtu; 234 } icmpopts; 235 }; 236 237 STAILQ_HEAD(pf_send_head, pf_send_entry); 238 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 239 #define V_pf_sendqueue VNET(pf_sendqueue) 240 241 static struct mtx_padalign pf_sendqueue_mtx; 242 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 243 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 244 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 245 246 /* 247 * Queue for pf_overload_task() tasks. 248 */ 249 struct pf_overload_entry { 250 SLIST_ENTRY(pf_overload_entry) next; 251 struct pf_addr addr; 252 sa_family_t af; 253 uint8_t dir; 254 struct pf_krule *rule; 255 }; 256 257 SLIST_HEAD(pf_overload_head, pf_overload_entry); 258 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 259 #define V_pf_overloadqueue VNET(pf_overloadqueue) 260 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 261 #define V_pf_overloadtask VNET(pf_overloadtask) 262 263 static struct mtx_padalign pf_overloadqueue_mtx; 264 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 265 "pf overload/flush queue", MTX_DEF); 266 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 267 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 268 269 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 270 struct mtx_padalign pf_unlnkdrules_mtx; 271 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 272 MTX_DEF); 273 274 struct sx pf_config_lock; 275 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 276 277 struct mtx_padalign pf_table_stats_lock; 278 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 279 MTX_DEF); 280 281 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 282 #define V_pf_sources_z VNET(pf_sources_z) 283 uma_zone_t pf_mtag_z; 284 VNET_DEFINE(uma_zone_t, pf_state_z); 285 VNET_DEFINE(uma_zone_t, pf_state_key_z); 286 287 VNET_DEFINE(struct unrhdr64, pf_stateid); 288 289 static void pf_src_tree_remove_state(struct pf_kstate *); 290 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 291 u_int32_t); 292 static void pf_add_threshold(struct pf_threshold *); 293 static int pf_check_threshold(struct pf_threshold *); 294 295 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 296 u_int16_t *, u_int16_t *, struct pf_addr *, 297 u_int16_t, u_int8_t, sa_family_t); 298 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 299 struct tcphdr *, struct pf_state_peer *); 300 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 301 struct pf_addr *, struct pf_addr *, u_int16_t, 302 u_int16_t *, u_int16_t *, u_int16_t *, 303 u_int16_t *, u_int8_t, sa_family_t); 304 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 305 sa_family_t, struct pf_krule *, int); 306 static void pf_detach_state(struct pf_kstate *); 307 static int pf_state_key_attach(struct pf_state_key *, 308 struct pf_state_key *, struct pf_kstate *); 309 static void pf_state_key_detach(struct pf_kstate *, int); 310 static int pf_state_key_ctor(void *, int, void *, int); 311 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 312 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 313 struct pf_mtag *pf_mtag); 314 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 315 struct pf_krule *, struct mbuf **); 316 static int pf_dummynet_route(struct pf_pdesc *, 317 struct pf_kstate *, struct pf_krule *, 318 struct ifnet *, struct sockaddr *, struct mbuf **); 319 static int pf_test_eth_rule(int, struct pfi_kkif *, 320 struct mbuf **); 321 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 322 struct pfi_kkif *, struct mbuf *, int, 323 struct pf_pdesc *, struct pf_krule **, 324 struct pf_kruleset **, struct inpcb *); 325 static int pf_create_state(struct pf_krule *, struct pf_krule *, 326 struct pf_krule *, struct pf_pdesc *, 327 struct pf_ksrc_node *, struct pf_state_key *, 328 struct pf_state_key *, struct mbuf *, int, 329 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 330 struct pf_kstate **, int, u_int16_t, u_int16_t, 331 int, struct pf_krule_slist *); 332 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 333 struct mbuf *, void *, struct pf_pdesc *, 334 struct pf_krule **, struct pf_kruleset **); 335 static int pf_tcp_track_full(struct pf_kstate **, 336 struct pfi_kkif *, struct mbuf *, int, 337 struct pf_pdesc *, u_short *, int *); 338 static int pf_tcp_track_sloppy(struct pf_kstate **, 339 struct pf_pdesc *, u_short *); 340 static int pf_test_state_tcp(struct pf_kstate **, 341 struct pfi_kkif *, struct mbuf *, int, 342 void *, struct pf_pdesc *, u_short *); 343 static int pf_test_state_udp(struct pf_kstate **, 344 struct pfi_kkif *, struct mbuf *, int, 345 void *, struct pf_pdesc *); 346 static int pf_test_state_icmp(struct pf_kstate **, 347 struct pfi_kkif *, struct mbuf *, int, 348 void *, struct pf_pdesc *, u_short *); 349 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 350 static void pf_sctp_multihome_delayed(struct pf_pdesc *, int, 351 struct pfi_kkif *, struct pf_kstate *, int); 352 static int pf_test_state_sctp(struct pf_kstate **, 353 struct pfi_kkif *, struct mbuf *, int, 354 void *, struct pf_pdesc *, u_short *); 355 static int pf_test_state_other(struct pf_kstate **, 356 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 357 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 358 int, u_int16_t); 359 static int pf_check_proto_cksum(struct mbuf *, int, int, 360 u_int8_t, sa_family_t); 361 static void pf_print_state_parts(struct pf_kstate *, 362 struct pf_state_key *, struct pf_state_key *); 363 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 364 bool, u_int8_t); 365 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 366 const struct pf_state_key_cmp *, u_int); 367 static int pf_src_connlimit(struct pf_kstate **); 368 static void pf_overload_task(void *v, int pending); 369 static u_short pf_insert_src_node(struct pf_ksrc_node **, 370 struct pf_krule *, struct pf_addr *, sa_family_t); 371 static u_int pf_purge_expired_states(u_int, int); 372 static void pf_purge_unlinked_rules(void); 373 static int pf_mtag_uminit(void *, int, int); 374 static void pf_mtag_free(struct m_tag *); 375 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 376 int, struct pf_state_key *); 377 #ifdef INET 378 static void pf_route(struct mbuf **, struct pf_krule *, 379 struct ifnet *, struct pf_kstate *, 380 struct pf_pdesc *, struct inpcb *); 381 #endif /* INET */ 382 #ifdef INET6 383 static void pf_change_a6(struct pf_addr *, u_int16_t *, 384 struct pf_addr *, u_int8_t); 385 static void pf_route6(struct mbuf **, struct pf_krule *, 386 struct ifnet *, struct pf_kstate *, 387 struct pf_pdesc *, struct inpcb *); 388 #endif /* INET6 */ 389 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 390 391 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 392 393 extern int pf_end_threads; 394 extern struct proc *pf_purge_proc; 395 396 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 397 398 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 399 do { \ 400 struct pf_state_key *nk; \ 401 if ((pd->dir) == PF_OUT) \ 402 nk = (_s)->key[PF_SK_STACK]; \ 403 else \ 404 nk = (_s)->key[PF_SK_WIRE]; \ 405 pf_packet_rework_nat(_m, _pd, _off, nk); \ 406 } while (0) 407 408 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 409 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 410 411 #define STATE_LOOKUP(i, k, s, pd) \ 412 do { \ 413 (s) = pf_find_state((i), (k), (pd->dir)); \ 414 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 415 if ((s) == NULL) \ 416 return (PF_DROP); \ 417 if (PACKET_LOOPED(pd)) \ 418 return (PF_PASS); \ 419 } while (0) 420 421 static struct pfi_kkif * 422 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k) 423 { 424 SDT_PROBE2(pf, ip, , bound_iface, st, k); 425 426 /* Floating unless otherwise specified. */ 427 if (! (st->rule.ptr->rule_flag & PFRULE_IFBOUND)) 428 return (V_pfi_all); 429 430 /* 431 * Initially set to all, because we don't know what interface we'll be 432 * sending this out when we create the state. 433 */ 434 if (st->rule.ptr->rt == PF_REPLYTO) 435 return (V_pfi_all); 436 437 /* Don't overrule the interface for states created on incoming packets. */ 438 if (st->direction == PF_IN) 439 return (k); 440 441 /* No route-to, so don't overrule. */ 442 if (st->rt != PF_ROUTETO) 443 return (k); 444 445 /* Bind to the route-to interface. */ 446 return (st->rt_kif); 447 } 448 449 #define STATE_INC_COUNTERS(s) \ 450 do { \ 451 struct pf_krule_item *mrm; \ 452 counter_u64_add(s->rule.ptr->states_cur, 1); \ 453 counter_u64_add(s->rule.ptr->states_tot, 1); \ 454 if (s->anchor.ptr != NULL) { \ 455 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 456 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 457 } \ 458 if (s->nat_rule.ptr != NULL) { \ 459 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 460 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 461 } \ 462 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 463 counter_u64_add(mrm->r->states_cur, 1); \ 464 counter_u64_add(mrm->r->states_tot, 1); \ 465 } \ 466 } while (0) 467 468 #define STATE_DEC_COUNTERS(s) \ 469 do { \ 470 struct pf_krule_item *mrm; \ 471 if (s->nat_rule.ptr != NULL) \ 472 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 473 if (s->anchor.ptr != NULL) \ 474 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 475 counter_u64_add(s->rule.ptr->states_cur, -1); \ 476 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 477 counter_u64_add(mrm->r->states_cur, -1); \ 478 } while (0) 479 480 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 481 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 482 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 483 VNET_DEFINE(struct pf_idhash *, pf_idhash); 484 VNET_DEFINE(struct pf_srchash *, pf_srchash); 485 486 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 487 "pf(4)"); 488 489 VNET_DEFINE(u_long, pf_hashmask); 490 VNET_DEFINE(u_long, pf_srchashmask); 491 VNET_DEFINE_STATIC(u_long, pf_hashsize); 492 #define V_pf_hashsize VNET(pf_hashsize) 493 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 494 #define V_pf_srchashsize VNET(pf_srchashsize) 495 u_long pf_ioctl_maxcount = 65535; 496 497 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 498 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 499 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 500 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 501 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 502 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 503 504 VNET_DEFINE(void *, pf_swi_cookie); 505 VNET_DEFINE(struct intr_event *, pf_swi_ie); 506 507 VNET_DEFINE(uint32_t, pf_hashseed); 508 #define V_pf_hashseed VNET(pf_hashseed) 509 510 static void 511 pf_sctp_checksum(struct mbuf *m, int off) 512 { 513 uint32_t sum = 0; 514 515 /* Zero out the checksum, to enable recalculation. */ 516 m_copyback(m, off + offsetof(struct sctphdr, checksum), 517 sizeof(sum), (caddr_t)&sum); 518 519 sum = sctp_calculate_cksum(m, off); 520 521 m_copyback(m, off + offsetof(struct sctphdr, checksum), 522 sizeof(sum), (caddr_t)&sum); 523 } 524 525 int 526 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 527 { 528 529 switch (af) { 530 #ifdef INET 531 case AF_INET: 532 if (a->addr32[0] > b->addr32[0]) 533 return (1); 534 if (a->addr32[0] < b->addr32[0]) 535 return (-1); 536 break; 537 #endif /* INET */ 538 #ifdef INET6 539 case AF_INET6: 540 if (a->addr32[3] > b->addr32[3]) 541 return (1); 542 if (a->addr32[3] < b->addr32[3]) 543 return (-1); 544 if (a->addr32[2] > b->addr32[2]) 545 return (1); 546 if (a->addr32[2] < b->addr32[2]) 547 return (-1); 548 if (a->addr32[1] > b->addr32[1]) 549 return (1); 550 if (a->addr32[1] < b->addr32[1]) 551 return (-1); 552 if (a->addr32[0] > b->addr32[0]) 553 return (1); 554 if (a->addr32[0] < b->addr32[0]) 555 return (-1); 556 break; 557 #endif /* INET6 */ 558 default: 559 panic("%s: unknown address family %u", __func__, af); 560 } 561 return (0); 562 } 563 564 static void 565 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 566 struct pf_state_key *nk) 567 { 568 569 switch (pd->proto) { 570 case IPPROTO_TCP: { 571 struct tcphdr *th = &pd->hdr.tcp; 572 573 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 574 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 575 &th->th_sum, &nk->addr[pd->sidx], 576 nk->port[pd->sidx], 0, pd->af); 577 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 578 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 579 &th->th_sum, &nk->addr[pd->didx], 580 nk->port[pd->didx], 0, pd->af); 581 m_copyback(m, off, sizeof(*th), (caddr_t)th); 582 break; 583 } 584 case IPPROTO_UDP: { 585 struct udphdr *uh = &pd->hdr.udp; 586 587 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 588 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 589 &uh->uh_sum, &nk->addr[pd->sidx], 590 nk->port[pd->sidx], 1, pd->af); 591 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 592 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 593 &uh->uh_sum, &nk->addr[pd->didx], 594 nk->port[pd->didx], 1, pd->af); 595 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 596 break; 597 } 598 case IPPROTO_SCTP: { 599 struct sctphdr *sh = &pd->hdr.sctp; 600 uint16_t checksum = 0; 601 602 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 603 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 604 &checksum, &nk->addr[pd->sidx], 605 nk->port[pd->sidx], 1, pd->af); 606 } 607 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 608 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 609 &checksum, &nk->addr[pd->didx], 610 nk->port[pd->didx], 1, pd->af); 611 } 612 613 break; 614 } 615 case IPPROTO_ICMP: { 616 struct icmp *ih = &pd->hdr.icmp; 617 618 if (nk->port[pd->sidx] != ih->icmp_id) { 619 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 620 ih->icmp_cksum, ih->icmp_id, 621 nk->port[pd->sidx], 0); 622 ih->icmp_id = nk->port[pd->sidx]; 623 pd->sport = &ih->icmp_id; 624 625 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 626 } 627 /* FALLTHROUGH */ 628 } 629 default: 630 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 631 switch (pd->af) { 632 case AF_INET: 633 pf_change_a(&pd->src->v4.s_addr, 634 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 635 0); 636 break; 637 case AF_INET6: 638 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 639 break; 640 } 641 } 642 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 643 switch (pd->af) { 644 case AF_INET: 645 pf_change_a(&pd->dst->v4.s_addr, 646 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 647 0); 648 break; 649 case AF_INET6: 650 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 651 break; 652 } 653 } 654 break; 655 } 656 } 657 658 static __inline uint32_t 659 pf_hashkey(const struct pf_state_key *sk) 660 { 661 uint32_t h; 662 663 h = murmur3_32_hash32((const uint32_t *)sk, 664 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 665 V_pf_hashseed); 666 667 return (h & V_pf_hashmask); 668 } 669 670 static __inline uint32_t 671 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 672 { 673 uint32_t h; 674 675 switch (af) { 676 case AF_INET: 677 h = murmur3_32_hash32((uint32_t *)&addr->v4, 678 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 679 break; 680 case AF_INET6: 681 h = murmur3_32_hash32((uint32_t *)&addr->v6, 682 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 683 break; 684 default: 685 panic("%s: unknown address family %u", __func__, af); 686 } 687 688 return (h & V_pf_srchashmask); 689 } 690 691 #ifdef ALTQ 692 static int 693 pf_state_hash(struct pf_kstate *s) 694 { 695 u_int32_t hv = (intptr_t)s / sizeof(*s); 696 697 hv ^= crc32(&s->src, sizeof(s->src)); 698 hv ^= crc32(&s->dst, sizeof(s->dst)); 699 if (hv == 0) 700 hv = 1; 701 return (hv); 702 } 703 #endif 704 705 static __inline void 706 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 707 { 708 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 709 s->dst.state = newstate; 710 if (which == PF_PEER_DST) 711 return; 712 if (s->src.state == newstate) 713 return; 714 if (s->creatorid == V_pf_status.hostid && 715 s->key[PF_SK_STACK] != NULL && 716 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 717 !(TCPS_HAVEESTABLISHED(s->src.state) || 718 s->src.state == TCPS_CLOSED) && 719 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 720 atomic_add_32(&V_pf_status.states_halfopen, -1); 721 722 s->src.state = newstate; 723 } 724 725 #ifdef INET6 726 void 727 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 728 { 729 switch (af) { 730 #ifdef INET 731 case AF_INET: 732 memcpy(&dst->v4, &src->v4, sizeof(dst->v4)); 733 break; 734 #endif /* INET */ 735 case AF_INET6: 736 memcpy(&dst->v6, &src->v6, sizeof(dst->v6)); 737 break; 738 } 739 } 740 #endif /* INET6 */ 741 742 static void 743 pf_init_threshold(struct pf_threshold *threshold, 744 u_int32_t limit, u_int32_t seconds) 745 { 746 threshold->limit = limit * PF_THRESHOLD_MULT; 747 threshold->seconds = seconds; 748 threshold->count = 0; 749 threshold->last = time_uptime; 750 } 751 752 static void 753 pf_add_threshold(struct pf_threshold *threshold) 754 { 755 u_int32_t t = time_uptime, diff = t - threshold->last; 756 757 if (diff >= threshold->seconds) 758 threshold->count = 0; 759 else 760 threshold->count -= threshold->count * diff / 761 threshold->seconds; 762 threshold->count += PF_THRESHOLD_MULT; 763 threshold->last = t; 764 } 765 766 static int 767 pf_check_threshold(struct pf_threshold *threshold) 768 { 769 return (threshold->count > threshold->limit); 770 } 771 772 static int 773 pf_src_connlimit(struct pf_kstate **state) 774 { 775 struct pf_overload_entry *pfoe; 776 int bad = 0; 777 778 PF_STATE_LOCK_ASSERT(*state); 779 /* 780 * XXXKS: The src node is accessed unlocked! 781 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 782 */ 783 784 (*state)->src_node->conn++; 785 (*state)->src.tcp_est = 1; 786 pf_add_threshold(&(*state)->src_node->conn_rate); 787 788 if ((*state)->rule.ptr->max_src_conn && 789 (*state)->rule.ptr->max_src_conn < 790 (*state)->src_node->conn) { 791 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 792 bad++; 793 } 794 795 if ((*state)->rule.ptr->max_src_conn_rate.limit && 796 pf_check_threshold(&(*state)->src_node->conn_rate)) { 797 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 798 bad++; 799 } 800 801 if (!bad) 802 return (0); 803 804 /* Kill this state. */ 805 (*state)->timeout = PFTM_PURGE; 806 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 807 808 if ((*state)->rule.ptr->overload_tbl == NULL) 809 return (1); 810 811 /* Schedule overloading and flushing task. */ 812 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 813 if (pfoe == NULL) 814 return (1); /* too bad :( */ 815 816 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 817 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 818 pfoe->rule = (*state)->rule.ptr; 819 pfoe->dir = (*state)->direction; 820 PF_OVERLOADQ_LOCK(); 821 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 822 PF_OVERLOADQ_UNLOCK(); 823 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 824 825 return (1); 826 } 827 828 static void 829 pf_overload_task(void *v, int pending) 830 { 831 struct pf_overload_head queue; 832 struct pfr_addr p; 833 struct pf_overload_entry *pfoe, *pfoe1; 834 uint32_t killed = 0; 835 836 CURVNET_SET((struct vnet *)v); 837 838 PF_OVERLOADQ_LOCK(); 839 queue = V_pf_overloadqueue; 840 SLIST_INIT(&V_pf_overloadqueue); 841 PF_OVERLOADQ_UNLOCK(); 842 843 bzero(&p, sizeof(p)); 844 SLIST_FOREACH(pfoe, &queue, next) { 845 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 846 if (V_pf_status.debug >= PF_DEBUG_MISC) { 847 printf("%s: blocking address ", __func__); 848 pf_print_host(&pfoe->addr, 0, pfoe->af); 849 printf("\n"); 850 } 851 852 p.pfra_af = pfoe->af; 853 switch (pfoe->af) { 854 #ifdef INET 855 case AF_INET: 856 p.pfra_net = 32; 857 p.pfra_ip4addr = pfoe->addr.v4; 858 break; 859 #endif 860 #ifdef INET6 861 case AF_INET6: 862 p.pfra_net = 128; 863 p.pfra_ip6addr = pfoe->addr.v6; 864 break; 865 #endif 866 } 867 868 PF_RULES_WLOCK(); 869 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 870 PF_RULES_WUNLOCK(); 871 } 872 873 /* 874 * Remove those entries, that don't need flushing. 875 */ 876 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 877 if (pfoe->rule->flush == 0) { 878 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 879 free(pfoe, M_PFTEMP); 880 } else 881 counter_u64_add( 882 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 883 884 /* If nothing to flush, return. */ 885 if (SLIST_EMPTY(&queue)) { 886 CURVNET_RESTORE(); 887 return; 888 } 889 890 for (int i = 0; i <= V_pf_hashmask; i++) { 891 struct pf_idhash *ih = &V_pf_idhash[i]; 892 struct pf_state_key *sk; 893 struct pf_kstate *s; 894 895 PF_HASHROW_LOCK(ih); 896 LIST_FOREACH(s, &ih->states, entry) { 897 sk = s->key[PF_SK_WIRE]; 898 SLIST_FOREACH(pfoe, &queue, next) 899 if (sk->af == pfoe->af && 900 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 901 pfoe->rule == s->rule.ptr) && 902 ((pfoe->dir == PF_OUT && 903 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 904 (pfoe->dir == PF_IN && 905 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 906 s->timeout = PFTM_PURGE; 907 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 908 killed++; 909 } 910 } 911 PF_HASHROW_UNLOCK(ih); 912 } 913 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 914 free(pfoe, M_PFTEMP); 915 if (V_pf_status.debug >= PF_DEBUG_MISC) 916 printf("%s: %u states killed", __func__, killed); 917 918 CURVNET_RESTORE(); 919 } 920 921 /* 922 * Can return locked on failure, so that we can consistently 923 * allocate and insert a new one. 924 */ 925 struct pf_ksrc_node * 926 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 927 struct pf_srchash **sh, bool returnlocked) 928 { 929 struct pf_ksrc_node *n; 930 931 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 932 933 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 934 PF_HASHROW_LOCK(*sh); 935 LIST_FOREACH(n, &(*sh)->nodes, entry) 936 if (n->rule.ptr == rule && n->af == af && 937 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 938 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 939 break; 940 941 if (n != NULL) { 942 n->states++; 943 PF_HASHROW_UNLOCK(*sh); 944 } else if (returnlocked == false) 945 PF_HASHROW_UNLOCK(*sh); 946 947 return (n); 948 } 949 950 static void 951 pf_free_src_node(struct pf_ksrc_node *sn) 952 { 953 954 for (int i = 0; i < 2; i++) { 955 counter_u64_free(sn->bytes[i]); 956 counter_u64_free(sn->packets[i]); 957 } 958 uma_zfree(V_pf_sources_z, sn); 959 } 960 961 static u_short 962 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 963 struct pf_addr *src, sa_family_t af) 964 { 965 u_short reason = 0; 966 struct pf_srchash *sh = NULL; 967 968 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 969 rule->rpool.opts & PF_POOL_STICKYADDR), 970 ("%s for non-tracking rule %p", __func__, rule)); 971 972 if (*sn == NULL) 973 *sn = pf_find_src_node(src, rule, af, &sh, true); 974 975 if (*sn == NULL) { 976 PF_HASHROW_ASSERT(sh); 977 978 if (rule->max_src_nodes && 979 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 980 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 981 PF_HASHROW_UNLOCK(sh); 982 reason = PFRES_SRCLIMIT; 983 goto done; 984 } 985 986 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 987 if ((*sn) == NULL) { 988 PF_HASHROW_UNLOCK(sh); 989 reason = PFRES_MEMORY; 990 goto done; 991 } 992 993 for (int i = 0; i < 2; i++) { 994 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 995 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 996 997 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 998 pf_free_src_node(*sn); 999 PF_HASHROW_UNLOCK(sh); 1000 reason = PFRES_MEMORY; 1001 goto done; 1002 } 1003 } 1004 1005 pf_init_threshold(&(*sn)->conn_rate, 1006 rule->max_src_conn_rate.limit, 1007 rule->max_src_conn_rate.seconds); 1008 1009 MPASS((*sn)->lock == NULL); 1010 (*sn)->lock = &sh->lock; 1011 1012 (*sn)->af = af; 1013 (*sn)->rule.ptr = rule; 1014 PF_ACPY(&(*sn)->addr, src, af); 1015 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 1016 (*sn)->creation = time_uptime; 1017 (*sn)->ruletype = rule->action; 1018 (*sn)->states = 1; 1019 if ((*sn)->rule.ptr != NULL) 1020 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 1021 PF_HASHROW_UNLOCK(sh); 1022 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1023 } else { 1024 if (rule->max_src_states && 1025 (*sn)->states >= rule->max_src_states) { 1026 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1027 1); 1028 reason = PFRES_SRCLIMIT; 1029 goto done; 1030 } 1031 } 1032 done: 1033 return (reason); 1034 } 1035 1036 void 1037 pf_unlink_src_node(struct pf_ksrc_node *src) 1038 { 1039 PF_SRC_NODE_LOCK_ASSERT(src); 1040 1041 LIST_REMOVE(src, entry); 1042 if (src->rule.ptr) 1043 counter_u64_add(src->rule.ptr->src_nodes, -1); 1044 } 1045 1046 u_int 1047 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1048 { 1049 struct pf_ksrc_node *sn, *tmp; 1050 u_int count = 0; 1051 1052 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1053 pf_free_src_node(sn); 1054 count++; 1055 } 1056 1057 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1058 1059 return (count); 1060 } 1061 1062 void 1063 pf_mtag_initialize(void) 1064 { 1065 1066 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1067 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1068 UMA_ALIGN_PTR, 0); 1069 } 1070 1071 /* Per-vnet data storage structures initialization. */ 1072 void 1073 pf_initialize(void) 1074 { 1075 struct pf_keyhash *kh; 1076 struct pf_idhash *ih; 1077 struct pf_srchash *sh; 1078 u_int i; 1079 1080 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1081 V_pf_hashsize = PF_HASHSIZ; 1082 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1083 V_pf_srchashsize = PF_SRCHASHSIZ; 1084 1085 V_pf_hashseed = arc4random(); 1086 1087 /* States and state keys storage. */ 1088 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1089 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1090 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1091 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1092 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1093 1094 V_pf_state_key_z = uma_zcreate("pf state keys", 1095 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1096 UMA_ALIGN_PTR, 0); 1097 1098 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1099 M_PFHASH, M_NOWAIT | M_ZERO); 1100 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1101 M_PFHASH, M_NOWAIT | M_ZERO); 1102 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1103 printf("pf: Unable to allocate memory for " 1104 "state_hashsize %lu.\n", V_pf_hashsize); 1105 1106 free(V_pf_keyhash, M_PFHASH); 1107 free(V_pf_idhash, M_PFHASH); 1108 1109 V_pf_hashsize = PF_HASHSIZ; 1110 V_pf_keyhash = mallocarray(V_pf_hashsize, 1111 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1112 V_pf_idhash = mallocarray(V_pf_hashsize, 1113 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1114 } 1115 1116 V_pf_hashmask = V_pf_hashsize - 1; 1117 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1118 i++, kh++, ih++) { 1119 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1120 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1121 } 1122 1123 /* Source nodes. */ 1124 V_pf_sources_z = uma_zcreate("pf source nodes", 1125 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1126 0); 1127 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1128 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1129 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1130 1131 V_pf_srchash = mallocarray(V_pf_srchashsize, 1132 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1133 if (V_pf_srchash == NULL) { 1134 printf("pf: Unable to allocate memory for " 1135 "source_hashsize %lu.\n", V_pf_srchashsize); 1136 1137 V_pf_srchashsize = PF_SRCHASHSIZ; 1138 V_pf_srchash = mallocarray(V_pf_srchashsize, 1139 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1140 } 1141 1142 V_pf_srchashmask = V_pf_srchashsize - 1; 1143 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1144 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1145 1146 /* ALTQ */ 1147 TAILQ_INIT(&V_pf_altqs[0]); 1148 TAILQ_INIT(&V_pf_altqs[1]); 1149 TAILQ_INIT(&V_pf_altqs[2]); 1150 TAILQ_INIT(&V_pf_altqs[3]); 1151 TAILQ_INIT(&V_pf_pabuf); 1152 V_pf_altqs_active = &V_pf_altqs[0]; 1153 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1154 V_pf_altqs_inactive = &V_pf_altqs[2]; 1155 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1156 1157 /* Send & overload+flush queues. */ 1158 STAILQ_INIT(&V_pf_sendqueue); 1159 SLIST_INIT(&V_pf_overloadqueue); 1160 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1161 1162 /* Unlinked, but may be referenced rules. */ 1163 TAILQ_INIT(&V_pf_unlinked_rules); 1164 } 1165 1166 void 1167 pf_mtag_cleanup(void) 1168 { 1169 1170 uma_zdestroy(pf_mtag_z); 1171 } 1172 1173 void 1174 pf_cleanup(void) 1175 { 1176 struct pf_keyhash *kh; 1177 struct pf_idhash *ih; 1178 struct pf_srchash *sh; 1179 struct pf_send_entry *pfse, *next; 1180 u_int i; 1181 1182 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1183 i++, kh++, ih++) { 1184 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1185 __func__)); 1186 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1187 __func__)); 1188 mtx_destroy(&kh->lock); 1189 mtx_destroy(&ih->lock); 1190 } 1191 free(V_pf_keyhash, M_PFHASH); 1192 free(V_pf_idhash, M_PFHASH); 1193 1194 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1195 KASSERT(LIST_EMPTY(&sh->nodes), 1196 ("%s: source node hash not empty", __func__)); 1197 mtx_destroy(&sh->lock); 1198 } 1199 free(V_pf_srchash, M_PFHASH); 1200 1201 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1202 m_freem(pfse->pfse_m); 1203 free(pfse, M_PFTEMP); 1204 } 1205 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1206 1207 uma_zdestroy(V_pf_sources_z); 1208 uma_zdestroy(V_pf_state_z); 1209 uma_zdestroy(V_pf_state_key_z); 1210 } 1211 1212 static int 1213 pf_mtag_uminit(void *mem, int size, int how) 1214 { 1215 struct m_tag *t; 1216 1217 t = (struct m_tag *)mem; 1218 t->m_tag_cookie = MTAG_ABI_COMPAT; 1219 t->m_tag_id = PACKET_TAG_PF; 1220 t->m_tag_len = sizeof(struct pf_mtag); 1221 t->m_tag_free = pf_mtag_free; 1222 1223 return (0); 1224 } 1225 1226 static void 1227 pf_mtag_free(struct m_tag *t) 1228 { 1229 1230 uma_zfree(pf_mtag_z, t); 1231 } 1232 1233 struct pf_mtag * 1234 pf_get_mtag(struct mbuf *m) 1235 { 1236 struct m_tag *mtag; 1237 1238 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1239 return ((struct pf_mtag *)(mtag + 1)); 1240 1241 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1242 if (mtag == NULL) 1243 return (NULL); 1244 bzero(mtag + 1, sizeof(struct pf_mtag)); 1245 m_tag_prepend(m, mtag); 1246 1247 return ((struct pf_mtag *)(mtag + 1)); 1248 } 1249 1250 static int 1251 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1252 struct pf_kstate *s) 1253 { 1254 struct pf_keyhash *khs, *khw, *kh; 1255 struct pf_state_key *sk, *cur; 1256 struct pf_kstate *si, *olds = NULL; 1257 int idx; 1258 1259 NET_EPOCH_ASSERT(); 1260 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1261 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1262 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1263 1264 /* 1265 * We need to lock hash slots of both keys. To avoid deadlock 1266 * we always lock the slot with lower address first. Unlock order 1267 * isn't important. 1268 * 1269 * We also need to lock ID hash slot before dropping key 1270 * locks. On success we return with ID hash slot locked. 1271 */ 1272 1273 if (skw == sks) { 1274 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1275 PF_HASHROW_LOCK(khs); 1276 } else { 1277 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1278 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1279 if (khs == khw) { 1280 PF_HASHROW_LOCK(khs); 1281 } else if (khs < khw) { 1282 PF_HASHROW_LOCK(khs); 1283 PF_HASHROW_LOCK(khw); 1284 } else { 1285 PF_HASHROW_LOCK(khw); 1286 PF_HASHROW_LOCK(khs); 1287 } 1288 } 1289 1290 #define KEYS_UNLOCK() do { \ 1291 if (khs != khw) { \ 1292 PF_HASHROW_UNLOCK(khs); \ 1293 PF_HASHROW_UNLOCK(khw); \ 1294 } else \ 1295 PF_HASHROW_UNLOCK(khs); \ 1296 } while (0) 1297 1298 /* 1299 * First run: start with wire key. 1300 */ 1301 sk = skw; 1302 kh = khw; 1303 idx = PF_SK_WIRE; 1304 1305 MPASS(s->lock == NULL); 1306 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1307 1308 keyattach: 1309 LIST_FOREACH(cur, &kh->keys, entry) 1310 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1311 break; 1312 1313 if (cur != NULL) { 1314 /* Key exists. Check for same kif, if none, add to key. */ 1315 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1316 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1317 1318 PF_HASHROW_LOCK(ih); 1319 if (si->kif == s->kif && 1320 si->direction == s->direction) { 1321 if (sk->proto == IPPROTO_TCP && 1322 si->src.state >= TCPS_FIN_WAIT_2 && 1323 si->dst.state >= TCPS_FIN_WAIT_2) { 1324 /* 1325 * New state matches an old >FIN_WAIT_2 1326 * state. We can't drop key hash locks, 1327 * thus we can't unlink it properly. 1328 * 1329 * As a workaround we drop it into 1330 * TCPS_CLOSED state, schedule purge 1331 * ASAP and push it into the very end 1332 * of the slot TAILQ, so that it won't 1333 * conflict with our new state. 1334 */ 1335 pf_set_protostate(si, PF_PEER_BOTH, 1336 TCPS_CLOSED); 1337 si->timeout = PFTM_PURGE; 1338 olds = si; 1339 } else { 1340 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1341 printf("pf: %s key attach " 1342 "failed on %s: ", 1343 (idx == PF_SK_WIRE) ? 1344 "wire" : "stack", 1345 s->kif->pfik_name); 1346 pf_print_state_parts(s, 1347 (idx == PF_SK_WIRE) ? 1348 sk : NULL, 1349 (idx == PF_SK_STACK) ? 1350 sk : NULL); 1351 printf(", existing: "); 1352 pf_print_state_parts(si, 1353 (idx == PF_SK_WIRE) ? 1354 sk : NULL, 1355 (idx == PF_SK_STACK) ? 1356 sk : NULL); 1357 printf("\n"); 1358 } 1359 s->timeout = PFTM_UNLINKED; 1360 PF_HASHROW_UNLOCK(ih); 1361 KEYS_UNLOCK(); 1362 uma_zfree(V_pf_state_key_z, sk); 1363 if (idx == PF_SK_STACK) 1364 pf_detach_state(s); 1365 return (EEXIST); /* collision! */ 1366 } 1367 } 1368 PF_HASHROW_UNLOCK(ih); 1369 } 1370 uma_zfree(V_pf_state_key_z, sk); 1371 s->key[idx] = cur; 1372 } else { 1373 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1374 s->key[idx] = sk; 1375 } 1376 1377 stateattach: 1378 /* List is sorted, if-bound states before floating. */ 1379 if (s->kif == V_pfi_all) 1380 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1381 else 1382 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1383 1384 if (olds) { 1385 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1386 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1387 key_list[idx]); 1388 olds = NULL; 1389 } 1390 1391 /* 1392 * Attach done. See how should we (or should not?) 1393 * attach a second key. 1394 */ 1395 if (sks == skw) { 1396 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1397 idx = PF_SK_STACK; 1398 sks = NULL; 1399 goto stateattach; 1400 } else if (sks != NULL) { 1401 /* 1402 * Continue attaching with stack key. 1403 */ 1404 sk = sks; 1405 kh = khs; 1406 idx = PF_SK_STACK; 1407 sks = NULL; 1408 goto keyattach; 1409 } 1410 1411 PF_STATE_LOCK(s); 1412 KEYS_UNLOCK(); 1413 1414 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1415 ("%s failure", __func__)); 1416 1417 return (0); 1418 #undef KEYS_UNLOCK 1419 } 1420 1421 static void 1422 pf_detach_state(struct pf_kstate *s) 1423 { 1424 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1425 struct pf_keyhash *kh; 1426 1427 NET_EPOCH_ASSERT(); 1428 MPASS(s->timeout >= PFTM_MAX); 1429 1430 pf_sctp_multihome_detach_addr(s); 1431 1432 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1433 V_pflow_export_state_ptr(s); 1434 1435 if (sks != NULL) { 1436 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1437 PF_HASHROW_LOCK(kh); 1438 if (s->key[PF_SK_STACK] != NULL) 1439 pf_state_key_detach(s, PF_SK_STACK); 1440 /* 1441 * If both point to same key, then we are done. 1442 */ 1443 if (sks == s->key[PF_SK_WIRE]) { 1444 pf_state_key_detach(s, PF_SK_WIRE); 1445 PF_HASHROW_UNLOCK(kh); 1446 return; 1447 } 1448 PF_HASHROW_UNLOCK(kh); 1449 } 1450 1451 if (s->key[PF_SK_WIRE] != NULL) { 1452 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1453 PF_HASHROW_LOCK(kh); 1454 if (s->key[PF_SK_WIRE] != NULL) 1455 pf_state_key_detach(s, PF_SK_WIRE); 1456 PF_HASHROW_UNLOCK(kh); 1457 } 1458 } 1459 1460 static void 1461 pf_state_key_detach(struct pf_kstate *s, int idx) 1462 { 1463 struct pf_state_key *sk = s->key[idx]; 1464 #ifdef INVARIANTS 1465 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1466 1467 PF_HASHROW_ASSERT(kh); 1468 #endif 1469 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1470 s->key[idx] = NULL; 1471 1472 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1473 LIST_REMOVE(sk, entry); 1474 uma_zfree(V_pf_state_key_z, sk); 1475 } 1476 } 1477 1478 static int 1479 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1480 { 1481 struct pf_state_key *sk = mem; 1482 1483 bzero(sk, sizeof(struct pf_state_key_cmp)); 1484 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1485 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1486 1487 return (0); 1488 } 1489 1490 struct pf_state_key * 1491 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1492 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1493 { 1494 struct pf_state_key *sk; 1495 1496 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1497 if (sk == NULL) 1498 return (NULL); 1499 1500 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1501 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1502 sk->port[pd->sidx] = sport; 1503 sk->port[pd->didx] = dport; 1504 sk->proto = pd->proto; 1505 sk->af = pd->af; 1506 1507 return (sk); 1508 } 1509 1510 struct pf_state_key * 1511 pf_state_key_clone(const struct pf_state_key *orig) 1512 { 1513 struct pf_state_key *sk; 1514 1515 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1516 if (sk == NULL) 1517 return (NULL); 1518 1519 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1520 1521 return (sk); 1522 } 1523 1524 int 1525 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1526 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1527 { 1528 struct pf_idhash *ih; 1529 struct pf_kstate *cur; 1530 int error; 1531 1532 NET_EPOCH_ASSERT(); 1533 1534 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1535 ("%s: sks not pristine", __func__)); 1536 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1537 ("%s: skw not pristine", __func__)); 1538 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1539 1540 s->kif = kif; 1541 s->orig_kif = orig_kif; 1542 1543 if (s->id == 0 && s->creatorid == 0) { 1544 s->id = alloc_unr64(&V_pf_stateid); 1545 s->id = htobe64(s->id); 1546 s->creatorid = V_pf_status.hostid; 1547 } 1548 1549 /* Returns with ID locked on success. */ 1550 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1551 return (error); 1552 1553 ih = &V_pf_idhash[PF_IDHASH(s)]; 1554 PF_HASHROW_ASSERT(ih); 1555 LIST_FOREACH(cur, &ih->states, entry) 1556 if (cur->id == s->id && cur->creatorid == s->creatorid) 1557 break; 1558 1559 if (cur != NULL) { 1560 s->timeout = PFTM_UNLINKED; 1561 PF_HASHROW_UNLOCK(ih); 1562 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1563 printf("pf: state ID collision: " 1564 "id: %016llx creatorid: %08x\n", 1565 (unsigned long long)be64toh(s->id), 1566 ntohl(s->creatorid)); 1567 } 1568 pf_detach_state(s); 1569 return (EEXIST); 1570 } 1571 LIST_INSERT_HEAD(&ih->states, s, entry); 1572 /* One for keys, one for ID hash. */ 1573 refcount_init(&s->refs, 2); 1574 1575 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1576 if (V_pfsync_insert_state_ptr != NULL) 1577 V_pfsync_insert_state_ptr(s); 1578 1579 /* Returns locked. */ 1580 return (0); 1581 } 1582 1583 /* 1584 * Find state by ID: returns with locked row on success. 1585 */ 1586 struct pf_kstate * 1587 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1588 { 1589 struct pf_idhash *ih; 1590 struct pf_kstate *s; 1591 1592 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1593 1594 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))]; 1595 1596 PF_HASHROW_LOCK(ih); 1597 LIST_FOREACH(s, &ih->states, entry) 1598 if (s->id == id && s->creatorid == creatorid) 1599 break; 1600 1601 if (s == NULL) 1602 PF_HASHROW_UNLOCK(ih); 1603 1604 return (s); 1605 } 1606 1607 /* 1608 * Find state by key. 1609 * Returns with ID hash slot locked on success. 1610 */ 1611 static struct pf_kstate * 1612 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1613 u_int dir) 1614 { 1615 struct pf_keyhash *kh; 1616 struct pf_state_key *sk; 1617 struct pf_kstate *s; 1618 int idx; 1619 1620 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1621 1622 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1623 1624 PF_HASHROW_LOCK(kh); 1625 LIST_FOREACH(sk, &kh->keys, entry) 1626 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1627 break; 1628 if (sk == NULL) { 1629 PF_HASHROW_UNLOCK(kh); 1630 return (NULL); 1631 } 1632 1633 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1634 1635 /* List is sorted, if-bound states before floating ones. */ 1636 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1637 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1638 PF_STATE_LOCK(s); 1639 PF_HASHROW_UNLOCK(kh); 1640 if (__predict_false(s->timeout >= PFTM_MAX)) { 1641 /* 1642 * State is either being processed by 1643 * pf_unlink_state() in an other thread, or 1644 * is scheduled for immediate expiry. 1645 */ 1646 PF_STATE_UNLOCK(s); 1647 return (NULL); 1648 } 1649 return (s); 1650 } 1651 PF_HASHROW_UNLOCK(kh); 1652 1653 return (NULL); 1654 } 1655 1656 /* 1657 * Returns with ID hash slot locked on success. 1658 */ 1659 struct pf_kstate * 1660 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1661 { 1662 struct pf_keyhash *kh; 1663 struct pf_state_key *sk; 1664 struct pf_kstate *s, *ret = NULL; 1665 int idx, inout = 0; 1666 1667 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1668 1669 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1670 1671 PF_HASHROW_LOCK(kh); 1672 LIST_FOREACH(sk, &kh->keys, entry) 1673 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1674 break; 1675 if (sk == NULL) { 1676 PF_HASHROW_UNLOCK(kh); 1677 return (NULL); 1678 } 1679 switch (dir) { 1680 case PF_IN: 1681 idx = PF_SK_WIRE; 1682 break; 1683 case PF_OUT: 1684 idx = PF_SK_STACK; 1685 break; 1686 case PF_INOUT: 1687 idx = PF_SK_WIRE; 1688 inout = 1; 1689 break; 1690 default: 1691 panic("%s: dir %u", __func__, dir); 1692 } 1693 second_run: 1694 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1695 if (more == NULL) { 1696 PF_STATE_LOCK(s); 1697 PF_HASHROW_UNLOCK(kh); 1698 return (s); 1699 } 1700 1701 if (ret) 1702 (*more)++; 1703 else { 1704 ret = s; 1705 PF_STATE_LOCK(s); 1706 } 1707 } 1708 if (inout == 1) { 1709 inout = 0; 1710 idx = PF_SK_STACK; 1711 goto second_run; 1712 } 1713 PF_HASHROW_UNLOCK(kh); 1714 1715 return (ret); 1716 } 1717 1718 /* 1719 * FIXME 1720 * This routine is inefficient -- locks the state only to unlock immediately on 1721 * return. 1722 * It is racy -- after the state is unlocked nothing stops other threads from 1723 * removing it. 1724 */ 1725 bool 1726 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 1727 { 1728 struct pf_kstate *s; 1729 1730 s = pf_find_state_all(key, dir, NULL); 1731 if (s != NULL) { 1732 PF_STATE_UNLOCK(s); 1733 return (true); 1734 } 1735 return (false); 1736 } 1737 1738 /* END state table stuff */ 1739 1740 static void 1741 pf_send(struct pf_send_entry *pfse) 1742 { 1743 1744 PF_SENDQ_LOCK(); 1745 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1746 PF_SENDQ_UNLOCK(); 1747 swi_sched(V_pf_swi_cookie, 0); 1748 } 1749 1750 static bool 1751 pf_isforlocal(struct mbuf *m, int af) 1752 { 1753 switch (af) { 1754 #ifdef INET 1755 case AF_INET: { 1756 struct ip *ip = mtod(m, struct ip *); 1757 1758 return (in_localip(ip->ip_dst)); 1759 } 1760 #endif 1761 #ifdef INET6 1762 case AF_INET6: { 1763 struct ip6_hdr *ip6; 1764 struct in6_ifaddr *ia; 1765 ip6 = mtod(m, struct ip6_hdr *); 1766 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1767 if (ia == NULL) 1768 return (false); 1769 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1770 } 1771 #endif 1772 default: 1773 panic("Unsupported af %d", af); 1774 } 1775 1776 return (false); 1777 } 1778 1779 void 1780 pf_intr(void *v) 1781 { 1782 struct epoch_tracker et; 1783 struct pf_send_head queue; 1784 struct pf_send_entry *pfse, *next; 1785 1786 CURVNET_SET((struct vnet *)v); 1787 1788 PF_SENDQ_LOCK(); 1789 queue = V_pf_sendqueue; 1790 STAILQ_INIT(&V_pf_sendqueue); 1791 PF_SENDQ_UNLOCK(); 1792 1793 NET_EPOCH_ENTER(et); 1794 1795 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1796 switch (pfse->pfse_type) { 1797 #ifdef INET 1798 case PFSE_IP: { 1799 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1800 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1801 pfse->pfse_m->m_pkthdr.csum_flags |= 1802 CSUM_IP_VALID | CSUM_IP_CHECKED; 1803 ip_input(pfse->pfse_m); 1804 } else { 1805 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1806 NULL); 1807 } 1808 break; 1809 } 1810 case PFSE_ICMP: 1811 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1812 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1813 break; 1814 #endif /* INET */ 1815 #ifdef INET6 1816 case PFSE_IP6: 1817 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1818 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1819 ip6_input(pfse->pfse_m); 1820 } else { 1821 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1822 NULL, NULL); 1823 } 1824 break; 1825 case PFSE_ICMP6: 1826 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1827 pfse->icmpopts.code, pfse->icmpopts.mtu); 1828 break; 1829 #endif /* INET6 */ 1830 default: 1831 panic("%s: unknown type", __func__); 1832 } 1833 free(pfse, M_PFTEMP); 1834 } 1835 NET_EPOCH_EXIT(et); 1836 CURVNET_RESTORE(); 1837 } 1838 1839 #define pf_purge_thread_period (hz / 10) 1840 1841 #ifdef PF_WANT_32_TO_64_COUNTER 1842 static void 1843 pf_status_counter_u64_periodic(void) 1844 { 1845 1846 PF_RULES_RASSERT(); 1847 1848 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1849 return; 1850 } 1851 1852 for (int i = 0; i < FCNT_MAX; i++) { 1853 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1854 } 1855 } 1856 1857 static void 1858 pf_kif_counter_u64_periodic(void) 1859 { 1860 struct pfi_kkif *kif; 1861 size_t r, run; 1862 1863 PF_RULES_RASSERT(); 1864 1865 if (__predict_false(V_pf_allkifcount == 0)) { 1866 return; 1867 } 1868 1869 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1870 return; 1871 } 1872 1873 run = V_pf_allkifcount / 10; 1874 if (run < 5) 1875 run = 5; 1876 1877 for (r = 0; r < run; r++) { 1878 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1879 if (kif == NULL) { 1880 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1881 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1882 break; 1883 } 1884 1885 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1886 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1887 1888 for (int i = 0; i < 2; i++) { 1889 for (int j = 0; j < 2; j++) { 1890 for (int k = 0; k < 2; k++) { 1891 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1892 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1893 } 1894 } 1895 } 1896 } 1897 } 1898 1899 static void 1900 pf_rule_counter_u64_periodic(void) 1901 { 1902 struct pf_krule *rule; 1903 size_t r, run; 1904 1905 PF_RULES_RASSERT(); 1906 1907 if (__predict_false(V_pf_allrulecount == 0)) { 1908 return; 1909 } 1910 1911 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1912 return; 1913 } 1914 1915 run = V_pf_allrulecount / 10; 1916 if (run < 5) 1917 run = 5; 1918 1919 for (r = 0; r < run; r++) { 1920 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1921 if (rule == NULL) { 1922 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1923 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1924 break; 1925 } 1926 1927 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1928 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1929 1930 pf_counter_u64_periodic(&rule->evaluations); 1931 for (int i = 0; i < 2; i++) { 1932 pf_counter_u64_periodic(&rule->packets[i]); 1933 pf_counter_u64_periodic(&rule->bytes[i]); 1934 } 1935 } 1936 } 1937 1938 static void 1939 pf_counter_u64_periodic_main(void) 1940 { 1941 PF_RULES_RLOCK_TRACKER; 1942 1943 V_pf_counter_periodic_iter++; 1944 1945 PF_RULES_RLOCK(); 1946 pf_counter_u64_critical_enter(); 1947 pf_status_counter_u64_periodic(); 1948 pf_kif_counter_u64_periodic(); 1949 pf_rule_counter_u64_periodic(); 1950 pf_counter_u64_critical_exit(); 1951 PF_RULES_RUNLOCK(); 1952 } 1953 #else 1954 #define pf_counter_u64_periodic_main() do { } while (0) 1955 #endif 1956 1957 void 1958 pf_purge_thread(void *unused __unused) 1959 { 1960 struct epoch_tracker et; 1961 1962 VNET_ITERATOR_DECL(vnet_iter); 1963 1964 sx_xlock(&pf_end_lock); 1965 while (pf_end_threads == 0) { 1966 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1967 1968 VNET_LIST_RLOCK(); 1969 NET_EPOCH_ENTER(et); 1970 VNET_FOREACH(vnet_iter) { 1971 CURVNET_SET(vnet_iter); 1972 1973 /* Wait until V_pf_default_rule is initialized. */ 1974 if (V_pf_vnet_active == 0) { 1975 CURVNET_RESTORE(); 1976 continue; 1977 } 1978 1979 pf_counter_u64_periodic_main(); 1980 1981 /* 1982 * Process 1/interval fraction of the state 1983 * table every run. 1984 */ 1985 V_pf_purge_idx = 1986 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 1987 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1988 1989 /* 1990 * Purge other expired types every 1991 * PFTM_INTERVAL seconds. 1992 */ 1993 if (V_pf_purge_idx == 0) { 1994 /* 1995 * Order is important: 1996 * - states and src nodes reference rules 1997 * - states and rules reference kifs 1998 */ 1999 pf_purge_expired_fragments(); 2000 pf_purge_expired_src_nodes(); 2001 pf_purge_unlinked_rules(); 2002 pfi_kkif_purge(); 2003 } 2004 CURVNET_RESTORE(); 2005 } 2006 NET_EPOCH_EXIT(et); 2007 VNET_LIST_RUNLOCK(); 2008 } 2009 2010 pf_end_threads++; 2011 sx_xunlock(&pf_end_lock); 2012 kproc_exit(0); 2013 } 2014 2015 void 2016 pf_unload_vnet_purge(void) 2017 { 2018 2019 /* 2020 * To cleanse up all kifs and rules we need 2021 * two runs: first one clears reference flags, 2022 * then pf_purge_expired_states() doesn't 2023 * raise them, and then second run frees. 2024 */ 2025 pf_purge_unlinked_rules(); 2026 pfi_kkif_purge(); 2027 2028 /* 2029 * Now purge everything. 2030 */ 2031 pf_purge_expired_states(0, V_pf_hashmask); 2032 pf_purge_fragments(UINT_MAX); 2033 pf_purge_expired_src_nodes(); 2034 2035 /* 2036 * Now all kifs & rules should be unreferenced, 2037 * thus should be successfully freed. 2038 */ 2039 pf_purge_unlinked_rules(); 2040 pfi_kkif_purge(); 2041 } 2042 2043 u_int32_t 2044 pf_state_expires(const struct pf_kstate *state) 2045 { 2046 u_int32_t timeout; 2047 u_int32_t start; 2048 u_int32_t end; 2049 u_int32_t states; 2050 2051 /* handle all PFTM_* > PFTM_MAX here */ 2052 if (state->timeout == PFTM_PURGE) 2053 return (time_uptime); 2054 KASSERT(state->timeout != PFTM_UNLINKED, 2055 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2056 KASSERT((state->timeout < PFTM_MAX), 2057 ("pf_state_expires: timeout > PFTM_MAX")); 2058 timeout = state->rule.ptr->timeout[state->timeout]; 2059 if (!timeout) 2060 timeout = V_pf_default_rule.timeout[state->timeout]; 2061 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 2062 if (start && state->rule.ptr != &V_pf_default_rule) { 2063 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 2064 states = counter_u64_fetch(state->rule.ptr->states_cur); 2065 } else { 2066 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2067 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2068 states = V_pf_status.states; 2069 } 2070 if (end && states > start && start < end) { 2071 if (states < end) { 2072 timeout = (u_int64_t)timeout * (end - states) / 2073 (end - start); 2074 return ((state->expire / 1000) + timeout); 2075 } 2076 else 2077 return (time_uptime); 2078 } 2079 return ((state->expire / 1000) + timeout); 2080 } 2081 2082 void 2083 pf_purge_expired_src_nodes(void) 2084 { 2085 struct pf_ksrc_node_list freelist; 2086 struct pf_srchash *sh; 2087 struct pf_ksrc_node *cur, *next; 2088 int i; 2089 2090 LIST_INIT(&freelist); 2091 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2092 PF_HASHROW_LOCK(sh); 2093 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2094 if (cur->states == 0 && cur->expire <= time_uptime) { 2095 pf_unlink_src_node(cur); 2096 LIST_INSERT_HEAD(&freelist, cur, entry); 2097 } else if (cur->rule.ptr != NULL) 2098 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2099 PF_HASHROW_UNLOCK(sh); 2100 } 2101 2102 pf_free_src_nodes(&freelist); 2103 2104 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2105 } 2106 2107 static void 2108 pf_src_tree_remove_state(struct pf_kstate *s) 2109 { 2110 struct pf_ksrc_node *sn; 2111 uint32_t timeout; 2112 2113 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2114 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2115 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2116 2117 if (s->src_node != NULL) { 2118 sn = s->src_node; 2119 PF_SRC_NODE_LOCK(sn); 2120 if (s->src.tcp_est) 2121 --sn->conn; 2122 if (--sn->states == 0) 2123 sn->expire = time_uptime + timeout; 2124 PF_SRC_NODE_UNLOCK(sn); 2125 } 2126 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2127 sn = s->nat_src_node; 2128 PF_SRC_NODE_LOCK(sn); 2129 if (--sn->states == 0) 2130 sn->expire = time_uptime + timeout; 2131 PF_SRC_NODE_UNLOCK(sn); 2132 } 2133 s->src_node = s->nat_src_node = NULL; 2134 } 2135 2136 /* 2137 * Unlink and potentilly free a state. Function may be 2138 * called with ID hash row locked, but always returns 2139 * unlocked, since it needs to go through key hash locking. 2140 */ 2141 int 2142 pf_unlink_state(struct pf_kstate *s) 2143 { 2144 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2145 2146 NET_EPOCH_ASSERT(); 2147 PF_HASHROW_ASSERT(ih); 2148 2149 if (s->timeout == PFTM_UNLINKED) { 2150 /* 2151 * State is being processed 2152 * by pf_unlink_state() in 2153 * an other thread. 2154 */ 2155 PF_HASHROW_UNLOCK(ih); 2156 return (0); /* XXXGL: undefined actually */ 2157 } 2158 2159 if (s->src.state == PF_TCPS_PROXY_DST) { 2160 /* XXX wire key the right one? */ 2161 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2162 &s->key[PF_SK_WIRE]->addr[1], 2163 &s->key[PF_SK_WIRE]->addr[0], 2164 s->key[PF_SK_WIRE]->port[1], 2165 s->key[PF_SK_WIRE]->port[0], 2166 s->src.seqhi, s->src.seqlo + 1, 2167 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2168 } 2169 2170 LIST_REMOVE(s, entry); 2171 pf_src_tree_remove_state(s); 2172 2173 if (V_pfsync_delete_state_ptr != NULL) 2174 V_pfsync_delete_state_ptr(s); 2175 2176 STATE_DEC_COUNTERS(s); 2177 2178 s->timeout = PFTM_UNLINKED; 2179 2180 /* Ensure we remove it from the list of halfopen states, if needed. */ 2181 if (s->key[PF_SK_STACK] != NULL && 2182 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2183 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2184 2185 PF_HASHROW_UNLOCK(ih); 2186 2187 pf_detach_state(s); 2188 /* pf_state_insert() initialises refs to 2 */ 2189 return (pf_release_staten(s, 2)); 2190 } 2191 2192 struct pf_kstate * 2193 pf_alloc_state(int flags) 2194 { 2195 2196 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2197 } 2198 2199 void 2200 pf_free_state(struct pf_kstate *cur) 2201 { 2202 struct pf_krule_item *ri; 2203 2204 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2205 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2206 cur->timeout)); 2207 2208 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2209 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2210 free(ri, M_PF_RULE_ITEM); 2211 } 2212 2213 pf_normalize_tcp_cleanup(cur); 2214 uma_zfree(V_pf_state_z, cur); 2215 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2216 } 2217 2218 /* 2219 * Called only from pf_purge_thread(), thus serialized. 2220 */ 2221 static u_int 2222 pf_purge_expired_states(u_int i, int maxcheck) 2223 { 2224 struct pf_idhash *ih; 2225 struct pf_kstate *s; 2226 struct pf_krule_item *mrm; 2227 size_t count __unused; 2228 2229 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2230 2231 /* 2232 * Go through hash and unlink states that expire now. 2233 */ 2234 while (maxcheck > 0) { 2235 count = 0; 2236 ih = &V_pf_idhash[i]; 2237 2238 /* only take the lock if we expect to do work */ 2239 if (!LIST_EMPTY(&ih->states)) { 2240 relock: 2241 PF_HASHROW_LOCK(ih); 2242 LIST_FOREACH(s, &ih->states, entry) { 2243 if (pf_state_expires(s) <= time_uptime) { 2244 V_pf_status.states -= 2245 pf_unlink_state(s); 2246 goto relock; 2247 } 2248 s->rule.ptr->rule_ref |= PFRULE_REFS; 2249 if (s->nat_rule.ptr != NULL) 2250 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2251 if (s->anchor.ptr != NULL) 2252 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2253 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2254 SLIST_FOREACH(mrm, &s->match_rules, entry) 2255 mrm->r->rule_ref |= PFRULE_REFS; 2256 if (s->rt_kif) 2257 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2258 count++; 2259 } 2260 PF_HASHROW_UNLOCK(ih); 2261 } 2262 2263 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2264 2265 /* Return when we hit end of hash. */ 2266 if (++i > V_pf_hashmask) { 2267 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2268 return (0); 2269 } 2270 2271 maxcheck--; 2272 } 2273 2274 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2275 2276 return (i); 2277 } 2278 2279 static void 2280 pf_purge_unlinked_rules(void) 2281 { 2282 struct pf_krulequeue tmpq; 2283 struct pf_krule *r, *r1; 2284 2285 /* 2286 * If we have overloading task pending, then we'd 2287 * better skip purging this time. There is a tiny 2288 * probability that overloading task references 2289 * an already unlinked rule. 2290 */ 2291 PF_OVERLOADQ_LOCK(); 2292 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2293 PF_OVERLOADQ_UNLOCK(); 2294 return; 2295 } 2296 PF_OVERLOADQ_UNLOCK(); 2297 2298 /* 2299 * Do naive mark-and-sweep garbage collecting of old rules. 2300 * Reference flag is raised by pf_purge_expired_states() 2301 * and pf_purge_expired_src_nodes(). 2302 * 2303 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2304 * use a temporary queue. 2305 */ 2306 TAILQ_INIT(&tmpq); 2307 PF_UNLNKDRULES_LOCK(); 2308 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2309 if (!(r->rule_ref & PFRULE_REFS)) { 2310 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2311 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2312 } else 2313 r->rule_ref &= ~PFRULE_REFS; 2314 } 2315 PF_UNLNKDRULES_UNLOCK(); 2316 2317 if (!TAILQ_EMPTY(&tmpq)) { 2318 PF_CONFIG_LOCK(); 2319 PF_RULES_WLOCK(); 2320 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2321 TAILQ_REMOVE(&tmpq, r, entries); 2322 pf_free_rule(r); 2323 } 2324 PF_RULES_WUNLOCK(); 2325 PF_CONFIG_UNLOCK(); 2326 } 2327 } 2328 2329 void 2330 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2331 { 2332 switch (af) { 2333 #ifdef INET 2334 case AF_INET: { 2335 u_int32_t a = ntohl(addr->addr32[0]); 2336 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2337 (a>>8)&255, a&255); 2338 if (p) { 2339 p = ntohs(p); 2340 printf(":%u", p); 2341 } 2342 break; 2343 } 2344 #endif /* INET */ 2345 #ifdef INET6 2346 case AF_INET6: { 2347 u_int16_t b; 2348 u_int8_t i, curstart, curend, maxstart, maxend; 2349 curstart = curend = maxstart = maxend = 255; 2350 for (i = 0; i < 8; i++) { 2351 if (!addr->addr16[i]) { 2352 if (curstart == 255) 2353 curstart = i; 2354 curend = i; 2355 } else { 2356 if ((curend - curstart) > 2357 (maxend - maxstart)) { 2358 maxstart = curstart; 2359 maxend = curend; 2360 } 2361 curstart = curend = 255; 2362 } 2363 } 2364 if ((curend - curstart) > 2365 (maxend - maxstart)) { 2366 maxstart = curstart; 2367 maxend = curend; 2368 } 2369 for (i = 0; i < 8; i++) { 2370 if (i >= maxstart && i <= maxend) { 2371 if (i == 0) 2372 printf(":"); 2373 if (i == maxend) 2374 printf(":"); 2375 } else { 2376 b = ntohs(addr->addr16[i]); 2377 printf("%x", b); 2378 if (i < 7) 2379 printf(":"); 2380 } 2381 } 2382 if (p) { 2383 p = ntohs(p); 2384 printf("[%u]", p); 2385 } 2386 break; 2387 } 2388 #endif /* INET6 */ 2389 } 2390 } 2391 2392 void 2393 pf_print_state(struct pf_kstate *s) 2394 { 2395 pf_print_state_parts(s, NULL, NULL); 2396 } 2397 2398 static void 2399 pf_print_state_parts(struct pf_kstate *s, 2400 struct pf_state_key *skwp, struct pf_state_key *sksp) 2401 { 2402 struct pf_state_key *skw, *sks; 2403 u_int8_t proto, dir; 2404 2405 /* Do our best to fill these, but they're skipped if NULL */ 2406 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2407 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2408 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2409 dir = s ? s->direction : 0; 2410 2411 switch (proto) { 2412 case IPPROTO_IPV4: 2413 printf("IPv4"); 2414 break; 2415 case IPPROTO_IPV6: 2416 printf("IPv6"); 2417 break; 2418 case IPPROTO_TCP: 2419 printf("TCP"); 2420 break; 2421 case IPPROTO_UDP: 2422 printf("UDP"); 2423 break; 2424 case IPPROTO_ICMP: 2425 printf("ICMP"); 2426 break; 2427 case IPPROTO_ICMPV6: 2428 printf("ICMPv6"); 2429 break; 2430 default: 2431 printf("%u", proto); 2432 break; 2433 } 2434 switch (dir) { 2435 case PF_IN: 2436 printf(" in"); 2437 break; 2438 case PF_OUT: 2439 printf(" out"); 2440 break; 2441 } 2442 if (skw) { 2443 printf(" wire: "); 2444 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2445 printf(" "); 2446 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2447 } 2448 if (sks) { 2449 printf(" stack: "); 2450 if (sks != skw) { 2451 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2452 printf(" "); 2453 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2454 } else 2455 printf("-"); 2456 } 2457 if (s) { 2458 if (proto == IPPROTO_TCP) { 2459 printf(" [lo=%u high=%u win=%u modulator=%u", 2460 s->src.seqlo, s->src.seqhi, 2461 s->src.max_win, s->src.seqdiff); 2462 if (s->src.wscale && s->dst.wscale) 2463 printf(" wscale=%u", 2464 s->src.wscale & PF_WSCALE_MASK); 2465 printf("]"); 2466 printf(" [lo=%u high=%u win=%u modulator=%u", 2467 s->dst.seqlo, s->dst.seqhi, 2468 s->dst.max_win, s->dst.seqdiff); 2469 if (s->src.wscale && s->dst.wscale) 2470 printf(" wscale=%u", 2471 s->dst.wscale & PF_WSCALE_MASK); 2472 printf("]"); 2473 } 2474 printf(" %u:%u", s->src.state, s->dst.state); 2475 } 2476 } 2477 2478 void 2479 pf_print_flags(u_int8_t f) 2480 { 2481 if (f) 2482 printf(" "); 2483 if (f & TH_FIN) 2484 printf("F"); 2485 if (f & TH_SYN) 2486 printf("S"); 2487 if (f & TH_RST) 2488 printf("R"); 2489 if (f & TH_PUSH) 2490 printf("P"); 2491 if (f & TH_ACK) 2492 printf("A"); 2493 if (f & TH_URG) 2494 printf("U"); 2495 if (f & TH_ECE) 2496 printf("E"); 2497 if (f & TH_CWR) 2498 printf("W"); 2499 } 2500 2501 #define PF_SET_SKIP_STEPS(i) \ 2502 do { \ 2503 while (head[i] != cur) { \ 2504 head[i]->skip[i].ptr = cur; \ 2505 head[i] = TAILQ_NEXT(head[i], entries); \ 2506 } \ 2507 } while (0) 2508 2509 void 2510 pf_calc_skip_steps(struct pf_krulequeue *rules) 2511 { 2512 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2513 int i; 2514 2515 cur = TAILQ_FIRST(rules); 2516 prev = cur; 2517 for (i = 0; i < PF_SKIP_COUNT; ++i) 2518 head[i] = cur; 2519 while (cur != NULL) { 2520 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2521 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2522 if (cur->direction != prev->direction) 2523 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2524 if (cur->af != prev->af) 2525 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2526 if (cur->proto != prev->proto) 2527 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2528 if (cur->src.neg != prev->src.neg || 2529 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2530 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2531 if (cur->src.port[0] != prev->src.port[0] || 2532 cur->src.port[1] != prev->src.port[1] || 2533 cur->src.port_op != prev->src.port_op) 2534 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2535 if (cur->dst.neg != prev->dst.neg || 2536 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2537 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2538 if (cur->dst.port[0] != prev->dst.port[0] || 2539 cur->dst.port[1] != prev->dst.port[1] || 2540 cur->dst.port_op != prev->dst.port_op) 2541 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2542 2543 prev = cur; 2544 cur = TAILQ_NEXT(cur, entries); 2545 } 2546 for (i = 0; i < PF_SKIP_COUNT; ++i) 2547 PF_SET_SKIP_STEPS(i); 2548 } 2549 2550 int 2551 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2552 { 2553 if (aw1->type != aw2->type) 2554 return (1); 2555 switch (aw1->type) { 2556 case PF_ADDR_ADDRMASK: 2557 case PF_ADDR_RANGE: 2558 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2559 return (1); 2560 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2561 return (1); 2562 return (0); 2563 case PF_ADDR_DYNIFTL: 2564 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2565 case PF_ADDR_NOROUTE: 2566 case PF_ADDR_URPFFAILED: 2567 return (0); 2568 case PF_ADDR_TABLE: 2569 return (aw1->p.tbl != aw2->p.tbl); 2570 default: 2571 printf("invalid address type: %d\n", aw1->type); 2572 return (1); 2573 } 2574 } 2575 2576 /** 2577 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2578 * header isn't always a full checksum. In some cases (i.e. output) it's a 2579 * pseudo-header checksum, which is a partial checksum over src/dst IP 2580 * addresses, protocol number and length. 2581 * 2582 * That means we have the following cases: 2583 * * Input or forwarding: we don't have TSO, the checksum fields are full 2584 * checksums, we need to update the checksum whenever we change anything. 2585 * * Output (i.e. the checksum is a pseudo-header checksum): 2586 * x The field being updated is src/dst address or affects the length of 2587 * the packet. We need to update the pseudo-header checksum (note that this 2588 * checksum is not ones' complement). 2589 * x Some other field is being modified (e.g. src/dst port numbers): We 2590 * don't have to update anything. 2591 **/ 2592 u_int16_t 2593 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2594 { 2595 u_int32_t x; 2596 2597 x = cksum + old - new; 2598 x = (x + (x >> 16)) & 0xffff; 2599 2600 /* optimise: eliminate a branch when not udp */ 2601 if (udp && cksum == 0x0000) 2602 return cksum; 2603 if (udp && x == 0x0000) 2604 x = 0xffff; 2605 2606 return (u_int16_t)(x); 2607 } 2608 2609 static void 2610 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2611 u_int8_t udp) 2612 { 2613 u_int16_t old = htons(hi ? (*f << 8) : *f); 2614 u_int16_t new = htons(hi ? ( v << 8) : v); 2615 2616 if (*f == v) 2617 return; 2618 2619 *f = v; 2620 2621 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2622 return; 2623 2624 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2625 } 2626 2627 void 2628 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2629 bool hi, u_int8_t udp) 2630 { 2631 u_int8_t *fb = (u_int8_t *)f; 2632 u_int8_t *vb = (u_int8_t *)&v; 2633 2634 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2635 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2636 } 2637 2638 void 2639 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2640 bool hi, u_int8_t udp) 2641 { 2642 u_int8_t *fb = (u_int8_t *)f; 2643 u_int8_t *vb = (u_int8_t *)&v; 2644 2645 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2646 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2647 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2648 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2649 } 2650 2651 u_int16_t 2652 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2653 u_int16_t new, u_int8_t udp) 2654 { 2655 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2656 return (cksum); 2657 2658 return (pf_cksum_fixup(cksum, old, new, udp)); 2659 } 2660 2661 static void 2662 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2663 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2664 sa_family_t af) 2665 { 2666 struct pf_addr ao; 2667 u_int16_t po = *p; 2668 2669 PF_ACPY(&ao, a, af); 2670 PF_ACPY(a, an, af); 2671 2672 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2673 *pc = ~*pc; 2674 2675 *p = pn; 2676 2677 switch (af) { 2678 #ifdef INET 2679 case AF_INET: 2680 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2681 ao.addr16[0], an->addr16[0], 0), 2682 ao.addr16[1], an->addr16[1], 0); 2683 *p = pn; 2684 2685 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2686 ao.addr16[0], an->addr16[0], u), 2687 ao.addr16[1], an->addr16[1], u); 2688 2689 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2690 break; 2691 #endif /* INET */ 2692 #ifdef INET6 2693 case AF_INET6: 2694 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2695 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2696 pf_cksum_fixup(pf_cksum_fixup(*pc, 2697 ao.addr16[0], an->addr16[0], u), 2698 ao.addr16[1], an->addr16[1], u), 2699 ao.addr16[2], an->addr16[2], u), 2700 ao.addr16[3], an->addr16[3], u), 2701 ao.addr16[4], an->addr16[4], u), 2702 ao.addr16[5], an->addr16[5], u), 2703 ao.addr16[6], an->addr16[6], u), 2704 ao.addr16[7], an->addr16[7], u); 2705 2706 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2707 break; 2708 #endif /* INET6 */ 2709 } 2710 2711 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2712 CSUM_DELAY_DATA_IPV6)) { 2713 *pc = ~*pc; 2714 if (! *pc) 2715 *pc = 0xffff; 2716 } 2717 } 2718 2719 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2720 void 2721 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2722 { 2723 u_int32_t ao; 2724 2725 memcpy(&ao, a, sizeof(ao)); 2726 memcpy(a, &an, sizeof(u_int32_t)); 2727 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2728 ao % 65536, an % 65536, u); 2729 } 2730 2731 void 2732 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2733 { 2734 u_int32_t ao; 2735 2736 memcpy(&ao, a, sizeof(ao)); 2737 memcpy(a, &an, sizeof(u_int32_t)); 2738 2739 *c = pf_proto_cksum_fixup(m, 2740 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2741 ao % 65536, an % 65536, udp); 2742 } 2743 2744 #ifdef INET6 2745 static void 2746 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2747 { 2748 struct pf_addr ao; 2749 2750 PF_ACPY(&ao, a, AF_INET6); 2751 PF_ACPY(a, an, AF_INET6); 2752 2753 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2754 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2755 pf_cksum_fixup(pf_cksum_fixup(*c, 2756 ao.addr16[0], an->addr16[0], u), 2757 ao.addr16[1], an->addr16[1], u), 2758 ao.addr16[2], an->addr16[2], u), 2759 ao.addr16[3], an->addr16[3], u), 2760 ao.addr16[4], an->addr16[4], u), 2761 ao.addr16[5], an->addr16[5], u), 2762 ao.addr16[6], an->addr16[6], u), 2763 ao.addr16[7], an->addr16[7], u); 2764 } 2765 #endif /* INET6 */ 2766 2767 static void 2768 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2769 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2770 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2771 { 2772 struct pf_addr oia, ooa; 2773 2774 PF_ACPY(&oia, ia, af); 2775 if (oa) 2776 PF_ACPY(&ooa, oa, af); 2777 2778 /* Change inner protocol port, fix inner protocol checksum. */ 2779 if (ip != NULL) { 2780 u_int16_t oip = *ip; 2781 u_int32_t opc; 2782 2783 if (pc != NULL) 2784 opc = *pc; 2785 *ip = np; 2786 if (pc != NULL) 2787 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2788 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2789 if (pc != NULL) 2790 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2791 } 2792 /* Change inner ip address, fix inner ip and icmp checksums. */ 2793 PF_ACPY(ia, na, af); 2794 switch (af) { 2795 #ifdef INET 2796 case AF_INET: { 2797 u_int32_t oh2c = *h2c; 2798 2799 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2800 oia.addr16[0], ia->addr16[0], 0), 2801 oia.addr16[1], ia->addr16[1], 0); 2802 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2803 oia.addr16[0], ia->addr16[0], 0), 2804 oia.addr16[1], ia->addr16[1], 0); 2805 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2806 break; 2807 } 2808 #endif /* INET */ 2809 #ifdef INET6 2810 case AF_INET6: 2811 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2812 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2813 pf_cksum_fixup(pf_cksum_fixup(*ic, 2814 oia.addr16[0], ia->addr16[0], u), 2815 oia.addr16[1], ia->addr16[1], u), 2816 oia.addr16[2], ia->addr16[2], u), 2817 oia.addr16[3], ia->addr16[3], u), 2818 oia.addr16[4], ia->addr16[4], u), 2819 oia.addr16[5], ia->addr16[5], u), 2820 oia.addr16[6], ia->addr16[6], u), 2821 oia.addr16[7], ia->addr16[7], u); 2822 break; 2823 #endif /* INET6 */ 2824 } 2825 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2826 if (oa) { 2827 PF_ACPY(oa, na, af); 2828 switch (af) { 2829 #ifdef INET 2830 case AF_INET: 2831 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2832 ooa.addr16[0], oa->addr16[0], 0), 2833 ooa.addr16[1], oa->addr16[1], 0); 2834 break; 2835 #endif /* INET */ 2836 #ifdef INET6 2837 case AF_INET6: 2838 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2839 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2840 pf_cksum_fixup(pf_cksum_fixup(*ic, 2841 ooa.addr16[0], oa->addr16[0], u), 2842 ooa.addr16[1], oa->addr16[1], u), 2843 ooa.addr16[2], oa->addr16[2], u), 2844 ooa.addr16[3], oa->addr16[3], u), 2845 ooa.addr16[4], oa->addr16[4], u), 2846 ooa.addr16[5], oa->addr16[5], u), 2847 ooa.addr16[6], oa->addr16[6], u), 2848 ooa.addr16[7], oa->addr16[7], u); 2849 break; 2850 #endif /* INET6 */ 2851 } 2852 } 2853 } 2854 2855 /* 2856 * Need to modulate the sequence numbers in the TCP SACK option 2857 * (credits to Krzysztof Pfaff for report and patch) 2858 */ 2859 static int 2860 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2861 struct tcphdr *th, struct pf_state_peer *dst) 2862 { 2863 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2864 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2865 int copyback = 0, i, olen; 2866 struct sackblk sack; 2867 2868 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2869 if (hlen < TCPOLEN_SACKLEN || 2870 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2871 return 0; 2872 2873 while (hlen >= TCPOLEN_SACKLEN) { 2874 size_t startoff = opt - opts; 2875 olen = opt[1]; 2876 switch (*opt) { 2877 case TCPOPT_EOL: /* FALLTHROUGH */ 2878 case TCPOPT_NOP: 2879 opt++; 2880 hlen--; 2881 break; 2882 case TCPOPT_SACK: 2883 if (olen > hlen) 2884 olen = hlen; 2885 if (olen >= TCPOLEN_SACKLEN) { 2886 for (i = 2; i + TCPOLEN_SACK <= olen; 2887 i += TCPOLEN_SACK) { 2888 memcpy(&sack, &opt[i], sizeof(sack)); 2889 pf_patch_32_unaligned(m, 2890 &th->th_sum, &sack.start, 2891 htonl(ntohl(sack.start) - dst->seqdiff), 2892 PF_ALGNMNT(startoff), 2893 0); 2894 pf_patch_32_unaligned(m, &th->th_sum, 2895 &sack.end, 2896 htonl(ntohl(sack.end) - dst->seqdiff), 2897 PF_ALGNMNT(startoff), 2898 0); 2899 memcpy(&opt[i], &sack, sizeof(sack)); 2900 } 2901 copyback = 1; 2902 } 2903 /* FALLTHROUGH */ 2904 default: 2905 if (olen < 2) 2906 olen = 2; 2907 hlen -= olen; 2908 opt += olen; 2909 } 2910 } 2911 2912 if (copyback) 2913 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2914 return (copyback); 2915 } 2916 2917 struct mbuf * 2918 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2919 const struct pf_addr *saddr, const struct pf_addr *daddr, 2920 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2921 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2922 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2923 { 2924 struct mbuf *m; 2925 int len, tlen; 2926 #ifdef INET 2927 struct ip *h = NULL; 2928 #endif /* INET */ 2929 #ifdef INET6 2930 struct ip6_hdr *h6 = NULL; 2931 #endif /* INET6 */ 2932 struct tcphdr *th; 2933 char *opt; 2934 struct pf_mtag *pf_mtag; 2935 2936 len = 0; 2937 th = NULL; 2938 2939 /* maximum segment size tcp option */ 2940 tlen = sizeof(struct tcphdr); 2941 if (mss) 2942 tlen += 4; 2943 2944 switch (af) { 2945 #ifdef INET 2946 case AF_INET: 2947 len = sizeof(struct ip) + tlen; 2948 break; 2949 #endif /* INET */ 2950 #ifdef INET6 2951 case AF_INET6: 2952 len = sizeof(struct ip6_hdr) + tlen; 2953 break; 2954 #endif /* INET6 */ 2955 default: 2956 panic("%s: unsupported af %d", __func__, af); 2957 } 2958 2959 m = m_gethdr(M_NOWAIT, MT_DATA); 2960 if (m == NULL) 2961 return (NULL); 2962 2963 #ifdef MAC 2964 mac_netinet_firewall_send(m); 2965 #endif 2966 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2967 m_freem(m); 2968 return (NULL); 2969 } 2970 if (skip_firewall) 2971 m->m_flags |= M_SKIP_FIREWALL; 2972 pf_mtag->tag = mtag_tag; 2973 pf_mtag->flags = mtag_flags; 2974 2975 if (rtableid >= 0) 2976 M_SETFIB(m, rtableid); 2977 2978 #ifdef ALTQ 2979 if (r != NULL && r->qid) { 2980 pf_mtag->qid = r->qid; 2981 2982 /* add hints for ecn */ 2983 pf_mtag->hdr = mtod(m, struct ip *); 2984 } 2985 #endif /* ALTQ */ 2986 m->m_data += max_linkhdr; 2987 m->m_pkthdr.len = m->m_len = len; 2988 /* The rest of the stack assumes a rcvif, so provide one. 2989 * This is a locally generated packet, so .. close enough. */ 2990 m->m_pkthdr.rcvif = V_loif; 2991 bzero(m->m_data, len); 2992 switch (af) { 2993 #ifdef INET 2994 case AF_INET: 2995 h = mtod(m, struct ip *); 2996 2997 /* IP header fields included in the TCP checksum */ 2998 h->ip_p = IPPROTO_TCP; 2999 h->ip_len = htons(tlen); 3000 h->ip_src.s_addr = saddr->v4.s_addr; 3001 h->ip_dst.s_addr = daddr->v4.s_addr; 3002 3003 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 3004 break; 3005 #endif /* INET */ 3006 #ifdef INET6 3007 case AF_INET6: 3008 h6 = mtod(m, struct ip6_hdr *); 3009 3010 /* IP header fields included in the TCP checksum */ 3011 h6->ip6_nxt = IPPROTO_TCP; 3012 h6->ip6_plen = htons(tlen); 3013 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 3014 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 3015 3016 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 3017 break; 3018 #endif /* INET6 */ 3019 } 3020 3021 /* TCP header */ 3022 th->th_sport = sport; 3023 th->th_dport = dport; 3024 th->th_seq = htonl(seq); 3025 th->th_ack = htonl(ack); 3026 th->th_off = tlen >> 2; 3027 th->th_flags = tcp_flags; 3028 th->th_win = htons(win); 3029 3030 if (mss) { 3031 opt = (char *)(th + 1); 3032 opt[0] = TCPOPT_MAXSEG; 3033 opt[1] = 4; 3034 HTONS(mss); 3035 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 3036 } 3037 3038 switch (af) { 3039 #ifdef INET 3040 case AF_INET: 3041 /* TCP checksum */ 3042 th->th_sum = in_cksum(m, len); 3043 3044 /* Finish the IP header */ 3045 h->ip_v = 4; 3046 h->ip_hl = sizeof(*h) >> 2; 3047 h->ip_tos = IPTOS_LOWDELAY; 3048 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 3049 h->ip_len = htons(len); 3050 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3051 h->ip_sum = 0; 3052 break; 3053 #endif /* INET */ 3054 #ifdef INET6 3055 case AF_INET6: 3056 /* TCP checksum */ 3057 th->th_sum = in6_cksum(m, IPPROTO_TCP, 3058 sizeof(struct ip6_hdr), tlen); 3059 3060 h6->ip6_vfc |= IPV6_VERSION; 3061 h6->ip6_hlim = IPV6_DEFHLIM; 3062 break; 3063 #endif /* INET6 */ 3064 } 3065 3066 return (m); 3067 } 3068 3069 static void 3070 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 3071 uint8_t ttl, int rtableid) 3072 { 3073 struct mbuf *m; 3074 #ifdef INET 3075 struct ip *h = NULL; 3076 #endif /* INET */ 3077 #ifdef INET6 3078 struct ip6_hdr *h6 = NULL; 3079 #endif /* INET6 */ 3080 struct sctphdr *hdr; 3081 struct sctp_chunkhdr *chunk; 3082 struct pf_send_entry *pfse; 3083 int off = 0; 3084 3085 MPASS(af == pd->af); 3086 3087 m = m_gethdr(M_NOWAIT, MT_DATA); 3088 if (m == NULL) 3089 return; 3090 3091 m->m_data += max_linkhdr; 3092 m->m_flags |= M_SKIP_FIREWALL; 3093 /* The rest of the stack assumes a rcvif, so provide one. 3094 * This is a locally generated packet, so .. close enough. */ 3095 m->m_pkthdr.rcvif = V_loif; 3096 3097 /* IPv4|6 header */ 3098 switch (af) { 3099 #ifdef INET 3100 case AF_INET: 3101 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3102 3103 h = mtod(m, struct ip *); 3104 3105 /* IP header fields included in the TCP checksum */ 3106 3107 h->ip_p = IPPROTO_SCTP; 3108 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3109 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3110 h->ip_src = pd->dst->v4; 3111 h->ip_dst = pd->src->v4; 3112 3113 off += sizeof(struct ip); 3114 break; 3115 #endif /* INET */ 3116 #ifdef INET6 3117 case AF_INET6: 3118 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3119 3120 h6 = mtod(m, struct ip6_hdr *); 3121 3122 /* IP header fields included in the TCP checksum */ 3123 h6->ip6_vfc |= IPV6_VERSION; 3124 h6->ip6_nxt = IPPROTO_SCTP; 3125 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3126 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3127 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3128 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3129 3130 off += sizeof(struct ip6_hdr); 3131 break; 3132 #endif /* INET6 */ 3133 } 3134 3135 /* SCTP header */ 3136 hdr = mtodo(m, off); 3137 3138 hdr->src_port = pd->hdr.sctp.dest_port; 3139 hdr->dest_port = pd->hdr.sctp.src_port; 3140 hdr->v_tag = pd->sctp_initiate_tag; 3141 hdr->checksum = 0; 3142 3143 /* Abort chunk. */ 3144 off += sizeof(struct sctphdr); 3145 chunk = mtodo(m, off); 3146 3147 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3148 chunk->chunk_length = htons(sizeof(*chunk)); 3149 3150 /* SCTP checksum */ 3151 off += sizeof(*chunk); 3152 m->m_pkthdr.len = m->m_len = off; 3153 3154 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 3155 3156 if (rtableid >= 0) 3157 M_SETFIB(m, rtableid); 3158 3159 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3160 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3161 if (pfse == NULL) { 3162 m_freem(m); 3163 return; 3164 } 3165 3166 switch (af) { 3167 #ifdef INET 3168 case AF_INET: 3169 pfse->pfse_type = PFSE_IP; 3170 break; 3171 #endif /* INET */ 3172 #ifdef INET6 3173 case AF_INET6: 3174 pfse->pfse_type = PFSE_IP6; 3175 break; 3176 #endif /* INET6 */ 3177 } 3178 3179 pfse->pfse_m = m; 3180 pf_send(pfse); 3181 } 3182 3183 void 3184 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3185 const struct pf_addr *saddr, const struct pf_addr *daddr, 3186 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3187 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3188 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3189 { 3190 struct pf_send_entry *pfse; 3191 struct mbuf *m; 3192 3193 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3194 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3195 if (m == NULL) 3196 return; 3197 3198 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3199 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3200 if (pfse == NULL) { 3201 m_freem(m); 3202 return; 3203 } 3204 3205 switch (af) { 3206 #ifdef INET 3207 case AF_INET: 3208 pfse->pfse_type = PFSE_IP; 3209 break; 3210 #endif /* INET */ 3211 #ifdef INET6 3212 case AF_INET6: 3213 pfse->pfse_type = PFSE_IP6; 3214 break; 3215 #endif /* INET6 */ 3216 } 3217 3218 pfse->pfse_m = m; 3219 pf_send(pfse); 3220 } 3221 3222 static void 3223 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3224 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3225 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3226 u_short *reason, int rtableid) 3227 { 3228 struct pf_addr * const saddr = pd->src; 3229 struct pf_addr * const daddr = pd->dst; 3230 sa_family_t af = pd->af; 3231 3232 /* undo NAT changes, if they have taken place */ 3233 if (nr != NULL) { 3234 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3235 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3236 if (pd->sport) 3237 *pd->sport = sk->port[pd->sidx]; 3238 if (pd->dport) 3239 *pd->dport = sk->port[pd->didx]; 3240 if (pd->proto_sum) 3241 *pd->proto_sum = bproto_sum; 3242 if (pd->ip_sum) 3243 *pd->ip_sum = bip_sum; 3244 m_copyback(m, off, hdrlen, pd->hdr.any); 3245 } 3246 if (pd->proto == IPPROTO_TCP && 3247 ((r->rule_flag & PFRULE_RETURNRST) || 3248 (r->rule_flag & PFRULE_RETURN)) && 3249 !(th->th_flags & TH_RST)) { 3250 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3251 int len = 0; 3252 #ifdef INET 3253 struct ip *h4; 3254 #endif 3255 #ifdef INET6 3256 struct ip6_hdr *h6; 3257 #endif 3258 3259 switch (af) { 3260 #ifdef INET 3261 case AF_INET: 3262 h4 = mtod(m, struct ip *); 3263 len = ntohs(h4->ip_len) - off; 3264 break; 3265 #endif 3266 #ifdef INET6 3267 case AF_INET6: 3268 h6 = mtod(m, struct ip6_hdr *); 3269 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3270 break; 3271 #endif 3272 } 3273 3274 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3275 REASON_SET(reason, PFRES_PROTCKSUM); 3276 else { 3277 if (th->th_flags & TH_SYN) 3278 ack++; 3279 if (th->th_flags & TH_FIN) 3280 ack++; 3281 pf_send_tcp(r, af, pd->dst, 3282 pd->src, th->th_dport, th->th_sport, 3283 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3284 r->return_ttl, true, 0, 0, rtableid); 3285 } 3286 } else if (pd->proto == IPPROTO_SCTP && 3287 (r->rule_flag & PFRULE_RETURN)) { 3288 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3289 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3290 r->return_icmp) 3291 pf_send_icmp(m, r->return_icmp >> 8, 3292 r->return_icmp & 255, af, r, rtableid); 3293 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3294 r->return_icmp6) 3295 pf_send_icmp(m, r->return_icmp6 >> 8, 3296 r->return_icmp6 & 255, af, r, rtableid); 3297 } 3298 3299 static int 3300 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3301 { 3302 struct m_tag *mtag; 3303 u_int8_t mpcp; 3304 3305 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3306 if (mtag == NULL) 3307 return (0); 3308 3309 if (prio == PF_PRIO_ZERO) 3310 prio = 0; 3311 3312 mpcp = *(uint8_t *)(mtag + 1); 3313 3314 return (mpcp == prio); 3315 } 3316 3317 static int 3318 pf_icmp_to_bandlim(uint8_t type) 3319 { 3320 switch (type) { 3321 case ICMP_ECHO: 3322 case ICMP_ECHOREPLY: 3323 return (BANDLIM_ICMP_ECHO); 3324 case ICMP_TSTAMP: 3325 case ICMP_TSTAMPREPLY: 3326 return (BANDLIM_ICMP_TSTAMP); 3327 case ICMP_UNREACH: 3328 default: 3329 return (BANDLIM_ICMP_UNREACH); 3330 } 3331 } 3332 3333 static void 3334 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3335 struct pf_krule *r, int rtableid) 3336 { 3337 struct pf_send_entry *pfse; 3338 struct mbuf *m0; 3339 struct pf_mtag *pf_mtag; 3340 3341 /* ICMP packet rate limitation. */ 3342 #ifdef INET6 3343 if (af == AF_INET6) { 3344 if (icmp6_ratelimit(NULL, type, code)) 3345 return; 3346 } 3347 #endif 3348 #ifdef INET 3349 if (af == AF_INET) { 3350 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3351 return; 3352 } 3353 #endif 3354 3355 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3356 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3357 if (pfse == NULL) 3358 return; 3359 3360 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3361 free(pfse, M_PFTEMP); 3362 return; 3363 } 3364 3365 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3366 free(pfse, M_PFTEMP); 3367 return; 3368 } 3369 /* XXX: revisit */ 3370 m0->m_flags |= M_SKIP_FIREWALL; 3371 3372 if (rtableid >= 0) 3373 M_SETFIB(m0, rtableid); 3374 3375 #ifdef ALTQ 3376 if (r->qid) { 3377 pf_mtag->qid = r->qid; 3378 /* add hints for ecn */ 3379 pf_mtag->hdr = mtod(m0, struct ip *); 3380 } 3381 #endif /* ALTQ */ 3382 3383 switch (af) { 3384 #ifdef INET 3385 case AF_INET: 3386 pfse->pfse_type = PFSE_ICMP; 3387 break; 3388 #endif /* INET */ 3389 #ifdef INET6 3390 case AF_INET6: 3391 pfse->pfse_type = PFSE_ICMP6; 3392 break; 3393 #endif /* INET6 */ 3394 } 3395 pfse->pfse_m = m0; 3396 pfse->icmpopts.type = type; 3397 pfse->icmpopts.code = code; 3398 pf_send(pfse); 3399 } 3400 3401 /* 3402 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3403 * If n is 0, they match if they are equal. If n is != 0, they match if they 3404 * are different. 3405 */ 3406 int 3407 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3408 struct pf_addr *b, sa_family_t af) 3409 { 3410 int match = 0; 3411 3412 switch (af) { 3413 #ifdef INET 3414 case AF_INET: 3415 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 3416 match++; 3417 break; 3418 #endif /* INET */ 3419 #ifdef INET6 3420 case AF_INET6: 3421 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 3422 match++; 3423 break; 3424 #endif /* INET6 */ 3425 } 3426 if (match) { 3427 if (n) 3428 return (0); 3429 else 3430 return (1); 3431 } else { 3432 if (n) 3433 return (1); 3434 else 3435 return (0); 3436 } 3437 } 3438 3439 /* 3440 * Return 1 if b <= a <= e, otherwise return 0. 3441 */ 3442 int 3443 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3444 struct pf_addr *a, sa_family_t af) 3445 { 3446 switch (af) { 3447 #ifdef INET 3448 case AF_INET: 3449 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3450 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3451 return (0); 3452 break; 3453 #endif /* INET */ 3454 #ifdef INET6 3455 case AF_INET6: { 3456 int i; 3457 3458 /* check a >= b */ 3459 for (i = 0; i < 4; ++i) 3460 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3461 break; 3462 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3463 return (0); 3464 /* check a <= e */ 3465 for (i = 0; i < 4; ++i) 3466 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3467 break; 3468 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3469 return (0); 3470 break; 3471 } 3472 #endif /* INET6 */ 3473 } 3474 return (1); 3475 } 3476 3477 static int 3478 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3479 { 3480 switch (op) { 3481 case PF_OP_IRG: 3482 return ((p > a1) && (p < a2)); 3483 case PF_OP_XRG: 3484 return ((p < a1) || (p > a2)); 3485 case PF_OP_RRG: 3486 return ((p >= a1) && (p <= a2)); 3487 case PF_OP_EQ: 3488 return (p == a1); 3489 case PF_OP_NE: 3490 return (p != a1); 3491 case PF_OP_LT: 3492 return (p < a1); 3493 case PF_OP_LE: 3494 return (p <= a1); 3495 case PF_OP_GT: 3496 return (p > a1); 3497 case PF_OP_GE: 3498 return (p >= a1); 3499 } 3500 return (0); /* never reached */ 3501 } 3502 3503 int 3504 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3505 { 3506 NTOHS(a1); 3507 NTOHS(a2); 3508 NTOHS(p); 3509 return (pf_match(op, a1, a2, p)); 3510 } 3511 3512 static int 3513 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3514 { 3515 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3516 return (0); 3517 return (pf_match(op, a1, a2, u)); 3518 } 3519 3520 static int 3521 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3522 { 3523 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3524 return (0); 3525 return (pf_match(op, a1, a2, g)); 3526 } 3527 3528 int 3529 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3530 { 3531 if (*tag == -1) 3532 *tag = mtag; 3533 3534 return ((!r->match_tag_not && r->match_tag == *tag) || 3535 (r->match_tag_not && r->match_tag != *tag)); 3536 } 3537 3538 int 3539 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3540 { 3541 3542 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3543 3544 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3545 return (ENOMEM); 3546 3547 pd->pf_mtag->tag = tag; 3548 3549 return (0); 3550 } 3551 3552 #define PF_ANCHOR_STACKSIZE 32 3553 struct pf_kanchor_stackframe { 3554 struct pf_kruleset *rs; 3555 struct pf_krule *r; /* XXX: + match bit */ 3556 struct pf_kanchor *child; 3557 }; 3558 3559 /* 3560 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3561 */ 3562 #define PF_ANCHORSTACK_MATCH 0x00000001 3563 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3564 3565 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3566 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3567 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3568 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3569 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3570 } while (0) 3571 3572 void 3573 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3574 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3575 int *match) 3576 { 3577 struct pf_kanchor_stackframe *f; 3578 3579 PF_RULES_RASSERT(); 3580 3581 if (match) 3582 *match = 0; 3583 if (*depth >= PF_ANCHOR_STACKSIZE) { 3584 printf("%s: anchor stack overflow on %s\n", 3585 __func__, (*r)->anchor->name); 3586 *r = TAILQ_NEXT(*r, entries); 3587 return; 3588 } else if (*depth == 0 && a != NULL) 3589 *a = *r; 3590 f = stack + (*depth)++; 3591 f->rs = *rs; 3592 f->r = *r; 3593 if ((*r)->anchor_wildcard) { 3594 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3595 3596 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3597 *r = NULL; 3598 return; 3599 } 3600 *rs = &f->child->ruleset; 3601 } else { 3602 f->child = NULL; 3603 *rs = &(*r)->anchor->ruleset; 3604 } 3605 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3606 } 3607 3608 int 3609 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3610 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3611 int *match) 3612 { 3613 struct pf_kanchor_stackframe *f; 3614 struct pf_krule *fr; 3615 int quick = 0; 3616 3617 PF_RULES_RASSERT(); 3618 3619 do { 3620 if (*depth <= 0) 3621 break; 3622 f = stack + *depth - 1; 3623 fr = PF_ANCHOR_RULE(f); 3624 if (f->child != NULL) { 3625 /* 3626 * This block traverses through 3627 * a wildcard anchor. 3628 */ 3629 if (match != NULL && *match) { 3630 /* 3631 * If any of "*" matched, then 3632 * "foo/ *" matched, mark frame 3633 * appropriately. 3634 */ 3635 PF_ANCHOR_SET_MATCH(f); 3636 *match = 0; 3637 } 3638 f->child = RB_NEXT(pf_kanchor_node, 3639 &fr->anchor->children, f->child); 3640 if (f->child != NULL) { 3641 *rs = &f->child->ruleset; 3642 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3643 if (*r == NULL) 3644 continue; 3645 else 3646 break; 3647 } 3648 } 3649 (*depth)--; 3650 if (*depth == 0 && a != NULL) 3651 *a = NULL; 3652 *rs = f->rs; 3653 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3654 quick = fr->quick; 3655 *r = TAILQ_NEXT(fr, entries); 3656 } while (*r == NULL); 3657 3658 return (quick); 3659 } 3660 3661 struct pf_keth_anchor_stackframe { 3662 struct pf_keth_ruleset *rs; 3663 struct pf_keth_rule *r; /* XXX: + match bit */ 3664 struct pf_keth_anchor *child; 3665 }; 3666 3667 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3668 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3669 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3670 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3671 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3672 } while (0) 3673 3674 void 3675 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3676 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3677 struct pf_keth_rule **a, int *match) 3678 { 3679 struct pf_keth_anchor_stackframe *f; 3680 3681 NET_EPOCH_ASSERT(); 3682 3683 if (match) 3684 *match = 0; 3685 if (*depth >= PF_ANCHOR_STACKSIZE) { 3686 printf("%s: anchor stack overflow on %s\n", 3687 __func__, (*r)->anchor->name); 3688 *r = TAILQ_NEXT(*r, entries); 3689 return; 3690 } else if (*depth == 0 && a != NULL) 3691 *a = *r; 3692 f = stack + (*depth)++; 3693 f->rs = *rs; 3694 f->r = *r; 3695 if ((*r)->anchor_wildcard) { 3696 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3697 3698 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3699 *r = NULL; 3700 return; 3701 } 3702 *rs = &f->child->ruleset; 3703 } else { 3704 f->child = NULL; 3705 *rs = &(*r)->anchor->ruleset; 3706 } 3707 *r = TAILQ_FIRST((*rs)->active.rules); 3708 } 3709 3710 int 3711 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3712 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3713 struct pf_keth_rule **a, int *match) 3714 { 3715 struct pf_keth_anchor_stackframe *f; 3716 struct pf_keth_rule *fr; 3717 int quick = 0; 3718 3719 NET_EPOCH_ASSERT(); 3720 3721 do { 3722 if (*depth <= 0) 3723 break; 3724 f = stack + *depth - 1; 3725 fr = PF_ETH_ANCHOR_RULE(f); 3726 if (f->child != NULL) { 3727 /* 3728 * This block traverses through 3729 * a wildcard anchor. 3730 */ 3731 if (match != NULL && *match) { 3732 /* 3733 * If any of "*" matched, then 3734 * "foo/ *" matched, mark frame 3735 * appropriately. 3736 */ 3737 PF_ETH_ANCHOR_SET_MATCH(f); 3738 *match = 0; 3739 } 3740 f->child = RB_NEXT(pf_keth_anchor_node, 3741 &fr->anchor->children, f->child); 3742 if (f->child != NULL) { 3743 *rs = &f->child->ruleset; 3744 *r = TAILQ_FIRST((*rs)->active.rules); 3745 if (*r == NULL) 3746 continue; 3747 else 3748 break; 3749 } 3750 } 3751 (*depth)--; 3752 if (*depth == 0 && a != NULL) 3753 *a = NULL; 3754 *rs = f->rs; 3755 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3756 quick = fr->quick; 3757 *r = TAILQ_NEXT(fr, entries); 3758 } while (*r == NULL); 3759 3760 return (quick); 3761 } 3762 3763 #ifdef INET6 3764 void 3765 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3766 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3767 { 3768 switch (af) { 3769 #ifdef INET 3770 case AF_INET: 3771 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3772 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3773 break; 3774 #endif /* INET */ 3775 case AF_INET6: 3776 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3777 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3778 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3779 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3780 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3781 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3782 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3783 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3784 break; 3785 } 3786 } 3787 3788 void 3789 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3790 { 3791 switch (af) { 3792 #ifdef INET 3793 case AF_INET: 3794 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3795 break; 3796 #endif /* INET */ 3797 case AF_INET6: 3798 if (addr->addr32[3] == 0xffffffff) { 3799 addr->addr32[3] = 0; 3800 if (addr->addr32[2] == 0xffffffff) { 3801 addr->addr32[2] = 0; 3802 if (addr->addr32[1] == 0xffffffff) { 3803 addr->addr32[1] = 0; 3804 addr->addr32[0] = 3805 htonl(ntohl(addr->addr32[0]) + 1); 3806 } else 3807 addr->addr32[1] = 3808 htonl(ntohl(addr->addr32[1]) + 1); 3809 } else 3810 addr->addr32[2] = 3811 htonl(ntohl(addr->addr32[2]) + 1); 3812 } else 3813 addr->addr32[3] = 3814 htonl(ntohl(addr->addr32[3]) + 1); 3815 break; 3816 } 3817 } 3818 #endif /* INET6 */ 3819 3820 void 3821 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3822 { 3823 /* 3824 * Modern rules use the same flags in rules as they do in states. 3825 */ 3826 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3827 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3828 3829 /* 3830 * Old-style scrub rules have different flags which need to be translated. 3831 */ 3832 if (r->rule_flag & PFRULE_RANDOMID) 3833 a->flags |= PFSTATE_RANDOMID; 3834 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3835 a->flags |= PFSTATE_SETTOS; 3836 a->set_tos = r->set_tos; 3837 } 3838 3839 if (r->qid) 3840 a->qid = r->qid; 3841 if (r->pqid) 3842 a->pqid = r->pqid; 3843 if (r->rtableid >= 0) 3844 a->rtableid = r->rtableid; 3845 a->log |= r->log; 3846 if (r->min_ttl) 3847 a->min_ttl = r->min_ttl; 3848 if (r->max_mss) 3849 a->max_mss = r->max_mss; 3850 if (r->dnpipe) 3851 a->dnpipe = r->dnpipe; 3852 if (r->dnrpipe) 3853 a->dnrpipe = r->dnrpipe; 3854 if (r->dnpipe || r->dnrpipe) { 3855 if (r->free_flags & PFRULE_DN_IS_PIPE) 3856 a->flags |= PFSTATE_DN_IS_PIPE; 3857 else 3858 a->flags &= ~PFSTATE_DN_IS_PIPE; 3859 } 3860 if (r->scrub_flags & PFSTATE_SETPRIO) { 3861 a->set_prio[0] = r->set_prio[0]; 3862 a->set_prio[1] = r->set_prio[1]; 3863 } 3864 } 3865 3866 int 3867 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3868 { 3869 struct pf_addr *saddr, *daddr; 3870 u_int16_t sport, dport; 3871 struct inpcbinfo *pi; 3872 struct inpcb *inp; 3873 3874 pd->lookup.uid = UID_MAX; 3875 pd->lookup.gid = GID_MAX; 3876 3877 switch (pd->proto) { 3878 case IPPROTO_TCP: 3879 sport = pd->hdr.tcp.th_sport; 3880 dport = pd->hdr.tcp.th_dport; 3881 pi = &V_tcbinfo; 3882 break; 3883 case IPPROTO_UDP: 3884 sport = pd->hdr.udp.uh_sport; 3885 dport = pd->hdr.udp.uh_dport; 3886 pi = &V_udbinfo; 3887 break; 3888 default: 3889 return (-1); 3890 } 3891 if (pd->dir == PF_IN) { 3892 saddr = pd->src; 3893 daddr = pd->dst; 3894 } else { 3895 u_int16_t p; 3896 3897 p = sport; 3898 sport = dport; 3899 dport = p; 3900 saddr = pd->dst; 3901 daddr = pd->src; 3902 } 3903 switch (pd->af) { 3904 #ifdef INET 3905 case AF_INET: 3906 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3907 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3908 if (inp == NULL) { 3909 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3910 daddr->v4, dport, INPLOOKUP_WILDCARD | 3911 INPLOOKUP_RLOCKPCB, NULL, m); 3912 if (inp == NULL) 3913 return (-1); 3914 } 3915 break; 3916 #endif /* INET */ 3917 #ifdef INET6 3918 case AF_INET6: 3919 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3920 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3921 if (inp == NULL) { 3922 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3923 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3924 INPLOOKUP_RLOCKPCB, NULL, m); 3925 if (inp == NULL) 3926 return (-1); 3927 } 3928 break; 3929 #endif /* INET6 */ 3930 3931 default: 3932 return (-1); 3933 } 3934 INP_RLOCK_ASSERT(inp); 3935 pd->lookup.uid = inp->inp_cred->cr_uid; 3936 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3937 INP_RUNLOCK(inp); 3938 3939 return (1); 3940 } 3941 3942 u_int8_t 3943 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3944 { 3945 int hlen; 3946 u_int8_t hdr[60]; 3947 u_int8_t *opt, optlen; 3948 u_int8_t wscale = 0; 3949 3950 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3951 if (hlen <= sizeof(struct tcphdr)) 3952 return (0); 3953 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3954 return (0); 3955 opt = hdr + sizeof(struct tcphdr); 3956 hlen -= sizeof(struct tcphdr); 3957 while (hlen >= 3) { 3958 switch (*opt) { 3959 case TCPOPT_EOL: 3960 case TCPOPT_NOP: 3961 ++opt; 3962 --hlen; 3963 break; 3964 case TCPOPT_WINDOW: 3965 wscale = opt[2]; 3966 if (wscale > TCP_MAX_WINSHIFT) 3967 wscale = TCP_MAX_WINSHIFT; 3968 wscale |= PF_WSCALE_FLAG; 3969 /* FALLTHROUGH */ 3970 default: 3971 optlen = opt[1]; 3972 if (optlen < 2) 3973 optlen = 2; 3974 hlen -= optlen; 3975 opt += optlen; 3976 break; 3977 } 3978 } 3979 return (wscale); 3980 } 3981 3982 u_int16_t 3983 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3984 { 3985 int hlen; 3986 u_int8_t hdr[60]; 3987 u_int8_t *opt, optlen; 3988 u_int16_t mss = V_tcp_mssdflt; 3989 3990 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3991 if (hlen <= sizeof(struct tcphdr)) 3992 return (0); 3993 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3994 return (0); 3995 opt = hdr + sizeof(struct tcphdr); 3996 hlen -= sizeof(struct tcphdr); 3997 while (hlen >= TCPOLEN_MAXSEG) { 3998 switch (*opt) { 3999 case TCPOPT_EOL: 4000 case TCPOPT_NOP: 4001 ++opt; 4002 --hlen; 4003 break; 4004 case TCPOPT_MAXSEG: 4005 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 4006 NTOHS(mss); 4007 /* FALLTHROUGH */ 4008 default: 4009 optlen = opt[1]; 4010 if (optlen < 2) 4011 optlen = 2; 4012 hlen -= optlen; 4013 opt += optlen; 4014 break; 4015 } 4016 } 4017 return (mss); 4018 } 4019 4020 static u_int16_t 4021 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 4022 { 4023 struct nhop_object *nh; 4024 #ifdef INET6 4025 struct in6_addr dst6; 4026 uint32_t scopeid; 4027 #endif /* INET6 */ 4028 int hlen = 0; 4029 uint16_t mss = 0; 4030 4031 NET_EPOCH_ASSERT(); 4032 4033 switch (af) { 4034 #ifdef INET 4035 case AF_INET: 4036 hlen = sizeof(struct ip); 4037 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 4038 if (nh != NULL) 4039 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4040 break; 4041 #endif /* INET */ 4042 #ifdef INET6 4043 case AF_INET6: 4044 hlen = sizeof(struct ip6_hdr); 4045 in6_splitscope(&addr->v6, &dst6, &scopeid); 4046 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 4047 if (nh != NULL) 4048 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 4049 break; 4050 #endif /* INET6 */ 4051 } 4052 4053 mss = max(V_tcp_mssdflt, mss); 4054 mss = min(mss, offer); 4055 mss = max(mss, 64); /* sanity - at least max opt space */ 4056 return (mss); 4057 } 4058 4059 static u_int32_t 4060 pf_tcp_iss(struct pf_pdesc *pd) 4061 { 4062 MD5_CTX ctx; 4063 u_int32_t digest[4]; 4064 4065 if (V_pf_tcp_secret_init == 0) { 4066 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 4067 MD5Init(&V_pf_tcp_secret_ctx); 4068 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 4069 sizeof(V_pf_tcp_secret)); 4070 V_pf_tcp_secret_init = 1; 4071 } 4072 4073 ctx = V_pf_tcp_secret_ctx; 4074 4075 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 4076 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 4077 if (pd->af == AF_INET6) { 4078 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 4079 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 4080 } else { 4081 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 4082 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4083 } 4084 MD5Final((u_char *)digest, &ctx); 4085 V_pf_tcp_iss_off += 4096; 4086 #define ISN_RANDOM_INCREMENT (4096 - 1) 4087 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4088 V_pf_tcp_iss_off); 4089 #undef ISN_RANDOM_INCREMENT 4090 } 4091 4092 static bool 4093 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4094 { 4095 bool match = true; 4096 4097 /* Always matches if not set */ 4098 if (! r->isset) 4099 return (!r->neg); 4100 4101 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4102 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4103 match = false; 4104 break; 4105 } 4106 } 4107 4108 return (match ^ r->neg); 4109 } 4110 4111 static int 4112 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4113 { 4114 if (*tag == -1) 4115 *tag = mtag; 4116 4117 return ((!r->match_tag_not && r->match_tag == *tag) || 4118 (r->match_tag_not && r->match_tag != *tag)); 4119 } 4120 4121 static void 4122 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4123 { 4124 /* If we don't have the interface drop the packet. */ 4125 if (ifp == NULL) { 4126 m_freem(m); 4127 return; 4128 } 4129 4130 switch (ifp->if_type) { 4131 case IFT_ETHER: 4132 case IFT_XETHER: 4133 case IFT_L2VLAN: 4134 case IFT_BRIDGE: 4135 case IFT_IEEE8023ADLAG: 4136 break; 4137 default: 4138 m_freem(m); 4139 return; 4140 } 4141 4142 ifp->if_transmit(ifp, m); 4143 } 4144 4145 static int 4146 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4147 { 4148 #ifdef INET 4149 struct ip ip; 4150 #endif 4151 #ifdef INET6 4152 struct ip6_hdr ip6; 4153 #endif 4154 struct mbuf *m = *m0; 4155 struct ether_header *e; 4156 struct pf_keth_rule *r, *rm, *a = NULL; 4157 struct pf_keth_ruleset *ruleset = NULL; 4158 struct pf_mtag *mtag; 4159 struct pf_keth_ruleq *rules; 4160 struct pf_addr *src = NULL, *dst = NULL; 4161 struct pfi_kkif *bridge_to; 4162 sa_family_t af = 0; 4163 uint16_t proto; 4164 int asd = 0, match = 0; 4165 int tag = -1; 4166 uint8_t action; 4167 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4168 4169 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4170 NET_EPOCH_ASSERT(); 4171 4172 PF_RULES_RLOCK_TRACKER; 4173 4174 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4175 4176 mtag = pf_find_mtag(m); 4177 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4178 /* Dummynet re-injects packets after they've 4179 * completed their delay. We've already 4180 * processed them, so pass unconditionally. */ 4181 4182 /* But only once. We may see the packet multiple times (e.g. 4183 * PFIL_IN/PFIL_OUT). */ 4184 pf_dummynet_flag_remove(m, mtag); 4185 4186 return (PF_PASS); 4187 } 4188 4189 ruleset = V_pf_keth; 4190 rules = ck_pr_load_ptr(&ruleset->active.rules); 4191 r = TAILQ_FIRST(rules); 4192 rm = NULL; 4193 4194 e = mtod(m, struct ether_header *); 4195 proto = ntohs(e->ether_type); 4196 4197 switch (proto) { 4198 #ifdef INET 4199 case ETHERTYPE_IP: { 4200 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4201 sizeof(ip))) 4202 return (PF_DROP); 4203 4204 af = AF_INET; 4205 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4206 (caddr_t)&ip); 4207 src = (struct pf_addr *)&ip.ip_src; 4208 dst = (struct pf_addr *)&ip.ip_dst; 4209 break; 4210 } 4211 #endif /* INET */ 4212 #ifdef INET6 4213 case ETHERTYPE_IPV6: { 4214 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4215 sizeof(ip6))) 4216 return (PF_DROP); 4217 4218 af = AF_INET6; 4219 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4220 (caddr_t)&ip6); 4221 src = (struct pf_addr *)&ip6.ip6_src; 4222 dst = (struct pf_addr *)&ip6.ip6_dst; 4223 break; 4224 } 4225 #endif /* INET6 */ 4226 } 4227 4228 PF_RULES_RLOCK(); 4229 4230 while (r != NULL) { 4231 counter_u64_add(r->evaluations, 1); 4232 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4233 4234 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4235 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4236 "kif"); 4237 r = r->skip[PFE_SKIP_IFP].ptr; 4238 } 4239 else if (r->direction && r->direction != dir) { 4240 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4241 "dir"); 4242 r = r->skip[PFE_SKIP_DIR].ptr; 4243 } 4244 else if (r->proto && r->proto != proto) { 4245 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4246 "proto"); 4247 r = r->skip[PFE_SKIP_PROTO].ptr; 4248 } 4249 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4250 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4251 "src"); 4252 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4253 } 4254 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4255 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4256 "dst"); 4257 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4258 } 4259 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4260 r->ipsrc.neg, kif, M_GETFIB(m))) { 4261 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4262 "ip_src"); 4263 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4264 } 4265 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4266 r->ipdst.neg, kif, M_GETFIB(m))) { 4267 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4268 "ip_dst"); 4269 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4270 } 4271 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4272 mtag ? mtag->tag : 0)) { 4273 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4274 "match_tag"); 4275 r = TAILQ_NEXT(r, entries); 4276 } 4277 else { 4278 if (r->tag) 4279 tag = r->tag; 4280 if (r->anchor == NULL) { 4281 /* Rule matches */ 4282 rm = r; 4283 4284 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4285 4286 if (r->quick) 4287 break; 4288 4289 r = TAILQ_NEXT(r, entries); 4290 } else { 4291 pf_step_into_keth_anchor(anchor_stack, &asd, 4292 &ruleset, &r, &a, &match); 4293 } 4294 } 4295 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4296 &ruleset, &r, &a, &match)) 4297 break; 4298 } 4299 4300 r = rm; 4301 4302 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4303 4304 /* Default to pass. */ 4305 if (r == NULL) { 4306 PF_RULES_RUNLOCK(); 4307 return (PF_PASS); 4308 } 4309 4310 /* Execute action. */ 4311 counter_u64_add(r->packets[dir == PF_OUT], 1); 4312 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4313 pf_update_timestamp(r); 4314 4315 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4316 if (r->action == PF_DROP) { 4317 PF_RULES_RUNLOCK(); 4318 return (PF_DROP); 4319 } 4320 4321 if (tag > 0) { 4322 if (mtag == NULL) 4323 mtag = pf_get_mtag(m); 4324 if (mtag == NULL) { 4325 PF_RULES_RUNLOCK(); 4326 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4327 return (PF_DROP); 4328 } 4329 mtag->tag = tag; 4330 } 4331 4332 if (r->qid != 0) { 4333 if (mtag == NULL) 4334 mtag = pf_get_mtag(m); 4335 if (mtag == NULL) { 4336 PF_RULES_RUNLOCK(); 4337 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4338 return (PF_DROP); 4339 } 4340 mtag->qid = r->qid; 4341 } 4342 4343 action = r->action; 4344 bridge_to = r->bridge_to; 4345 4346 /* Dummynet */ 4347 if (r->dnpipe) { 4348 struct ip_fw_args dnflow; 4349 4350 /* Drop packet if dummynet is not loaded. */ 4351 if (ip_dn_io_ptr == NULL) { 4352 PF_RULES_RUNLOCK(); 4353 m_freem(m); 4354 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4355 return (PF_DROP); 4356 } 4357 if (mtag == NULL) 4358 mtag = pf_get_mtag(m); 4359 if (mtag == NULL) { 4360 PF_RULES_RUNLOCK(); 4361 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4362 return (PF_DROP); 4363 } 4364 4365 bzero(&dnflow, sizeof(dnflow)); 4366 4367 /* We don't have port numbers here, so we set 0. That means 4368 * that we'll be somewhat limited in distinguishing flows (i.e. 4369 * only based on IP addresses, not based on port numbers), but 4370 * it's better than nothing. */ 4371 dnflow.f_id.dst_port = 0; 4372 dnflow.f_id.src_port = 0; 4373 dnflow.f_id.proto = 0; 4374 4375 dnflow.rule.info = r->dnpipe; 4376 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4377 if (r->dnflags & PFRULE_DN_IS_PIPE) 4378 dnflow.rule.info |= IPFW_IS_PIPE; 4379 4380 dnflow.f_id.extra = dnflow.rule.info; 4381 4382 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4383 dnflow.flags |= IPFW_ARGS_ETHER; 4384 dnflow.ifp = kif->pfik_ifp; 4385 4386 switch (af) { 4387 case AF_INET: 4388 dnflow.f_id.addr_type = 4; 4389 dnflow.f_id.src_ip = src->v4.s_addr; 4390 dnflow.f_id.dst_ip = dst->v4.s_addr; 4391 break; 4392 case AF_INET6: 4393 dnflow.flags |= IPFW_ARGS_IP6; 4394 dnflow.f_id.addr_type = 6; 4395 dnflow.f_id.src_ip6 = src->v6; 4396 dnflow.f_id.dst_ip6 = dst->v6; 4397 break; 4398 } 4399 4400 PF_RULES_RUNLOCK(); 4401 4402 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4403 ip_dn_io_ptr(m0, &dnflow); 4404 if (*m0 != NULL) 4405 pf_dummynet_flag_remove(m, mtag); 4406 } else { 4407 PF_RULES_RUNLOCK(); 4408 } 4409 4410 if (action == PF_PASS && bridge_to) { 4411 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4412 *m0 = NULL; /* We've eaten the packet. */ 4413 } 4414 4415 return (action); 4416 } 4417 4418 static int 4419 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4420 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4421 struct pf_kruleset **rsm, struct inpcb *inp) 4422 { 4423 struct pf_krule *nr = NULL; 4424 struct pf_addr * const saddr = pd->src; 4425 struct pf_addr * const daddr = pd->dst; 4426 sa_family_t af = pd->af; 4427 struct pf_krule *r, *a = NULL; 4428 struct pf_kruleset *ruleset = NULL; 4429 struct pf_krule_slist match_rules; 4430 struct pf_krule_item *ri; 4431 struct pf_ksrc_node *nsn = NULL; 4432 struct tcphdr *th = &pd->hdr.tcp; 4433 struct pf_state_key *sk = NULL, *nk = NULL; 4434 u_short reason; 4435 int rewrite = 0, hdrlen = 0; 4436 int tag = -1; 4437 int asd = 0; 4438 int match = 0; 4439 int state_icmp = 0; 4440 u_int16_t sport = 0, dport = 0; 4441 u_int16_t bproto_sum = 0, bip_sum = 0; 4442 u_int8_t icmptype = 0, icmpcode = 0; 4443 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4444 4445 PF_RULES_RASSERT(); 4446 4447 if (inp != NULL) { 4448 INP_LOCK_ASSERT(inp); 4449 pd->lookup.uid = inp->inp_cred->cr_uid; 4450 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4451 pd->lookup.done = 1; 4452 } 4453 4454 switch (pd->proto) { 4455 case IPPROTO_TCP: 4456 sport = th->th_sport; 4457 dport = th->th_dport; 4458 hdrlen = sizeof(*th); 4459 break; 4460 case IPPROTO_UDP: 4461 sport = pd->hdr.udp.uh_sport; 4462 dport = pd->hdr.udp.uh_dport; 4463 hdrlen = sizeof(pd->hdr.udp); 4464 break; 4465 case IPPROTO_SCTP: 4466 sport = pd->hdr.sctp.src_port; 4467 dport = pd->hdr.sctp.dest_port; 4468 hdrlen = sizeof(pd->hdr.sctp); 4469 break; 4470 #ifdef INET 4471 case IPPROTO_ICMP: 4472 if (pd->af != AF_INET) 4473 break; 4474 sport = dport = pd->hdr.icmp.icmp_id; 4475 hdrlen = sizeof(pd->hdr.icmp); 4476 icmptype = pd->hdr.icmp.icmp_type; 4477 icmpcode = pd->hdr.icmp.icmp_code; 4478 4479 if (icmptype == ICMP_UNREACH || 4480 icmptype == ICMP_SOURCEQUENCH || 4481 icmptype == ICMP_REDIRECT || 4482 icmptype == ICMP_TIMXCEED || 4483 icmptype == ICMP_PARAMPROB) 4484 state_icmp++; 4485 break; 4486 #endif /* INET */ 4487 #ifdef INET6 4488 case IPPROTO_ICMPV6: 4489 if (af != AF_INET6) 4490 break; 4491 sport = dport = pd->hdr.icmp6.icmp6_id; 4492 hdrlen = sizeof(pd->hdr.icmp6); 4493 icmptype = pd->hdr.icmp6.icmp6_type; 4494 icmpcode = pd->hdr.icmp6.icmp6_code; 4495 4496 if (icmptype == ICMP6_DST_UNREACH || 4497 icmptype == ICMP6_PACKET_TOO_BIG || 4498 icmptype == ICMP6_TIME_EXCEEDED || 4499 icmptype == ICMP6_PARAM_PROB) 4500 state_icmp++; 4501 break; 4502 #endif /* INET6 */ 4503 default: 4504 sport = dport = hdrlen = 0; 4505 break; 4506 } 4507 4508 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4509 4510 /* check packet for BINAT/NAT/RDR */ 4511 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4512 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4513 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4514 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4515 4516 if (nr->log) { 4517 PFLOG_PACKET(kif, m, af, PF_PASS, PFRES_MATCH, nr, a, 4518 ruleset, pd, 1); 4519 } 4520 4521 if (pd->ip_sum) 4522 bip_sum = *pd->ip_sum; 4523 4524 switch (pd->proto) { 4525 case IPPROTO_TCP: 4526 bproto_sum = th->th_sum; 4527 pd->proto_sum = &th->th_sum; 4528 4529 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4530 nk->port[pd->sidx] != sport) { 4531 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4532 &th->th_sum, &nk->addr[pd->sidx], 4533 nk->port[pd->sidx], 0, af); 4534 pd->sport = &th->th_sport; 4535 sport = th->th_sport; 4536 } 4537 4538 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4539 nk->port[pd->didx] != dport) { 4540 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4541 &th->th_sum, &nk->addr[pd->didx], 4542 nk->port[pd->didx], 0, af); 4543 dport = th->th_dport; 4544 pd->dport = &th->th_dport; 4545 } 4546 rewrite++; 4547 break; 4548 case IPPROTO_UDP: 4549 bproto_sum = pd->hdr.udp.uh_sum; 4550 pd->proto_sum = &pd->hdr.udp.uh_sum; 4551 4552 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4553 nk->port[pd->sidx] != sport) { 4554 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4555 pd->ip_sum, &pd->hdr.udp.uh_sum, 4556 &nk->addr[pd->sidx], 4557 nk->port[pd->sidx], 1, af); 4558 sport = pd->hdr.udp.uh_sport; 4559 pd->sport = &pd->hdr.udp.uh_sport; 4560 } 4561 4562 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4563 nk->port[pd->didx] != dport) { 4564 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4565 pd->ip_sum, &pd->hdr.udp.uh_sum, 4566 &nk->addr[pd->didx], 4567 nk->port[pd->didx], 1, af); 4568 dport = pd->hdr.udp.uh_dport; 4569 pd->dport = &pd->hdr.udp.uh_dport; 4570 } 4571 rewrite++; 4572 break; 4573 case IPPROTO_SCTP: { 4574 uint16_t checksum = 0; 4575 4576 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4577 nk->port[pd->sidx] != sport) { 4578 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4579 pd->ip_sum, &checksum, 4580 &nk->addr[pd->sidx], 4581 nk->port[pd->sidx], 1, af); 4582 } 4583 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4584 nk->port[pd->didx] != dport) { 4585 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4586 pd->ip_sum, &checksum, 4587 &nk->addr[pd->didx], 4588 nk->port[pd->didx], 1, af); 4589 } 4590 break; 4591 } 4592 #ifdef INET 4593 case IPPROTO_ICMP: 4594 nk->port[0] = nk->port[1]; 4595 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4596 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4597 nk->addr[pd->sidx].v4.s_addr, 0); 4598 4599 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4600 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4601 nk->addr[pd->didx].v4.s_addr, 0); 4602 4603 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4604 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4605 pd->hdr.icmp.icmp_cksum, sport, 4606 nk->port[1], 0); 4607 pd->hdr.icmp.icmp_id = nk->port[1]; 4608 pd->sport = &pd->hdr.icmp.icmp_id; 4609 } 4610 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4611 break; 4612 #endif /* INET */ 4613 #ifdef INET6 4614 case IPPROTO_ICMPV6: 4615 nk->port[0] = nk->port[1]; 4616 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4617 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4618 &nk->addr[pd->sidx], 0); 4619 4620 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4621 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4622 &nk->addr[pd->didx], 0); 4623 rewrite++; 4624 break; 4625 #endif /* INET */ 4626 default: 4627 switch (af) { 4628 #ifdef INET 4629 case AF_INET: 4630 if (PF_ANEQ(saddr, 4631 &nk->addr[pd->sidx], AF_INET)) 4632 pf_change_a(&saddr->v4.s_addr, 4633 pd->ip_sum, 4634 nk->addr[pd->sidx].v4.s_addr, 0); 4635 4636 if (PF_ANEQ(daddr, 4637 &nk->addr[pd->didx], AF_INET)) 4638 pf_change_a(&daddr->v4.s_addr, 4639 pd->ip_sum, 4640 nk->addr[pd->didx].v4.s_addr, 0); 4641 break; 4642 #endif /* INET */ 4643 #ifdef INET6 4644 case AF_INET6: 4645 if (PF_ANEQ(saddr, 4646 &nk->addr[pd->sidx], AF_INET6)) 4647 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4648 4649 if (PF_ANEQ(daddr, 4650 &nk->addr[pd->didx], AF_INET6)) 4651 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4652 break; 4653 #endif /* INET */ 4654 } 4655 break; 4656 } 4657 if (nr->natpass) 4658 r = NULL; 4659 pd->nat_rule = nr; 4660 } 4661 4662 SLIST_INIT(&match_rules); 4663 while (r != NULL) { 4664 pf_counter_u64_add(&r->evaluations, 1); 4665 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4666 r = r->skip[PF_SKIP_IFP].ptr; 4667 else if (r->direction && r->direction != pd->dir) 4668 r = r->skip[PF_SKIP_DIR].ptr; 4669 else if (r->af && r->af != af) 4670 r = r->skip[PF_SKIP_AF].ptr; 4671 else if (r->proto && r->proto != pd->proto) 4672 r = r->skip[PF_SKIP_PROTO].ptr; 4673 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4674 r->src.neg, kif, M_GETFIB(m))) 4675 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4676 /* tcp/udp only. port_op always 0 in other cases */ 4677 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4678 r->src.port[0], r->src.port[1], sport)) 4679 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4680 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4681 r->dst.neg, NULL, M_GETFIB(m))) 4682 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4683 /* tcp/udp only. port_op always 0 in other cases */ 4684 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4685 r->dst.port[0], r->dst.port[1], dport)) 4686 r = r->skip[PF_SKIP_DST_PORT].ptr; 4687 /* icmp only. type always 0 in other cases */ 4688 else if (r->type && r->type != icmptype + 1) 4689 r = TAILQ_NEXT(r, entries); 4690 /* icmp only. type always 0 in other cases */ 4691 else if (r->code && r->code != icmpcode + 1) 4692 r = TAILQ_NEXT(r, entries); 4693 else if (r->tos && !(r->tos == pd->tos)) 4694 r = TAILQ_NEXT(r, entries); 4695 else if (r->rule_flag & PFRULE_FRAGMENT) 4696 r = TAILQ_NEXT(r, entries); 4697 else if (pd->proto == IPPROTO_TCP && 4698 (r->flagset & th->th_flags) != r->flags) 4699 r = TAILQ_NEXT(r, entries); 4700 /* tcp/udp only. uid.op always 0 in other cases */ 4701 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4702 pf_socket_lookup(pd, m), 1)) && 4703 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4704 pd->lookup.uid)) 4705 r = TAILQ_NEXT(r, entries); 4706 /* tcp/udp only. gid.op always 0 in other cases */ 4707 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4708 pf_socket_lookup(pd, m), 1)) && 4709 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4710 pd->lookup.gid)) 4711 r = TAILQ_NEXT(r, entries); 4712 else if (r->prio && 4713 !pf_match_ieee8021q_pcp(r->prio, m)) 4714 r = TAILQ_NEXT(r, entries); 4715 else if (r->prob && 4716 r->prob <= arc4random()) 4717 r = TAILQ_NEXT(r, entries); 4718 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4719 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4720 r = TAILQ_NEXT(r, entries); 4721 else if (r->os_fingerprint != PF_OSFP_ANY && 4722 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4723 pf_osfp_fingerprint(pd, m, off, th), 4724 r->os_fingerprint))) 4725 r = TAILQ_NEXT(r, entries); 4726 else { 4727 if (r->tag) 4728 tag = r->tag; 4729 if (r->anchor == NULL) { 4730 if (r->action == PF_MATCH) { 4731 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4732 if (ri == NULL) { 4733 REASON_SET(&reason, PFRES_MEMORY); 4734 goto cleanup; 4735 } 4736 ri->r = r; 4737 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4738 pf_counter_u64_critical_enter(); 4739 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4740 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4741 pf_counter_u64_critical_exit(); 4742 pf_rule_to_actions(r, &pd->act); 4743 if (r->log) 4744 PFLOG_PACKET(kif, m, af, 4745 r->action, PFRES_MATCH, r, 4746 a, ruleset, pd, 1); 4747 } else { 4748 match = 1; 4749 *rm = r; 4750 *am = a; 4751 *rsm = ruleset; 4752 } 4753 if ((*rm)->quick) 4754 break; 4755 r = TAILQ_NEXT(r, entries); 4756 } else 4757 pf_step_into_anchor(anchor_stack, &asd, 4758 &ruleset, PF_RULESET_FILTER, &r, &a, 4759 &match); 4760 } 4761 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4762 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4763 break; 4764 } 4765 r = *rm; 4766 a = *am; 4767 ruleset = *rsm; 4768 4769 REASON_SET(&reason, PFRES_MATCH); 4770 4771 /* apply actions for last matching pass/block rule */ 4772 pf_rule_to_actions(r, &pd->act); 4773 4774 if (r->log) { 4775 if (rewrite) 4776 m_copyback(m, off, hdrlen, pd->hdr.any); 4777 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 4778 } 4779 4780 if ((r->action == PF_DROP) && 4781 ((r->rule_flag & PFRULE_RETURNRST) || 4782 (r->rule_flag & PFRULE_RETURNICMP) || 4783 (r->rule_flag & PFRULE_RETURN))) { 4784 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4785 bip_sum, hdrlen, &reason, r->rtableid); 4786 } 4787 4788 if (r->action == PF_DROP) 4789 goto cleanup; 4790 4791 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4792 REASON_SET(&reason, PFRES_MEMORY); 4793 goto cleanup; 4794 } 4795 if (pd->act.rtableid >= 0) 4796 M_SETFIB(m, pd->act.rtableid); 4797 4798 if (!state_icmp && (r->keep_state || nr != NULL || 4799 (pd->flags & PFDESC_TCP_NORM))) { 4800 int action; 4801 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4802 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4803 hdrlen, &match_rules); 4804 if (action != PF_PASS) { 4805 if (action == PF_DROP && 4806 (r->rule_flag & PFRULE_RETURN)) 4807 pf_return(r, nr, pd, sk, off, m, th, kif, 4808 bproto_sum, bip_sum, hdrlen, &reason, 4809 pd->act.rtableid); 4810 return (action); 4811 } 4812 } else { 4813 while ((ri = SLIST_FIRST(&match_rules))) { 4814 SLIST_REMOVE_HEAD(&match_rules, entry); 4815 free(ri, M_PF_RULE_ITEM); 4816 } 4817 4818 uma_zfree(V_pf_state_key_z, sk); 4819 uma_zfree(V_pf_state_key_z, nk); 4820 } 4821 4822 /* copy back packet headers if we performed NAT operations */ 4823 if (rewrite) 4824 m_copyback(m, off, hdrlen, pd->hdr.any); 4825 4826 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4827 pd->dir == PF_OUT && 4828 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4829 /* 4830 * We want the state created, but we dont 4831 * want to send this in case a partner 4832 * firewall has to know about it to allow 4833 * replies through it. 4834 */ 4835 return (PF_DEFER); 4836 4837 return (PF_PASS); 4838 4839 cleanup: 4840 while ((ri = SLIST_FIRST(&match_rules))) { 4841 SLIST_REMOVE_HEAD(&match_rules, entry); 4842 free(ri, M_PF_RULE_ITEM); 4843 } 4844 4845 uma_zfree(V_pf_state_key_z, sk); 4846 uma_zfree(V_pf_state_key_z, nk); 4847 return (PF_DROP); 4848 } 4849 4850 static int 4851 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4852 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4853 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4854 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4855 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4856 struct pf_krule_slist *match_rules) 4857 { 4858 struct pf_kstate *s = NULL; 4859 struct pf_ksrc_node *sn = NULL; 4860 struct tcphdr *th = &pd->hdr.tcp; 4861 u_int16_t mss = V_tcp_mssdflt; 4862 u_short reason, sn_reason; 4863 struct pf_krule_item *ri; 4864 4865 /* check maximums */ 4866 if (r->max_states && 4867 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4868 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4869 REASON_SET(&reason, PFRES_MAXSTATES); 4870 goto csfailed; 4871 } 4872 /* src node for filter rule */ 4873 if ((r->rule_flag & PFRULE_SRCTRACK || 4874 r->rpool.opts & PF_POOL_STICKYADDR) && 4875 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4876 REASON_SET(&reason, sn_reason); 4877 goto csfailed; 4878 } 4879 /* src node for translation rule */ 4880 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4881 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4882 pd->af)) != 0 ) { 4883 REASON_SET(&reason, sn_reason); 4884 goto csfailed; 4885 } 4886 s = pf_alloc_state(M_NOWAIT); 4887 if (s == NULL) { 4888 REASON_SET(&reason, PFRES_MEMORY); 4889 goto csfailed; 4890 } 4891 s->rule.ptr = r; 4892 s->nat_rule.ptr = nr; 4893 s->anchor.ptr = a; 4894 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4895 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4896 4897 STATE_INC_COUNTERS(s); 4898 if (r->allow_opts) 4899 s->state_flags |= PFSTATE_ALLOWOPTS; 4900 if (r->rule_flag & PFRULE_STATESLOPPY) 4901 s->state_flags |= PFSTATE_SLOPPY; 4902 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4903 s->state_flags |= PFSTATE_SCRUB_TCP; 4904 if ((r->rule_flag & PFRULE_PFLOW) || 4905 (nr != NULL && nr->rule_flag & PFRULE_PFLOW)) 4906 s->state_flags |= PFSTATE_PFLOW; 4907 4908 s->act.log = pd->act.log & PF_LOG_ALL; 4909 s->sync_state = PFSYNC_S_NONE; 4910 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4911 4912 if (nr != NULL) 4913 s->act.log |= nr->log & PF_LOG_ALL; 4914 switch (pd->proto) { 4915 case IPPROTO_TCP: 4916 s->src.seqlo = ntohl(th->th_seq); 4917 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4918 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4919 r->keep_state == PF_STATE_MODULATE) { 4920 /* Generate sequence number modulator */ 4921 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4922 0) 4923 s->src.seqdiff = 1; 4924 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4925 htonl(s->src.seqlo + s->src.seqdiff), 0); 4926 *rewrite = 1; 4927 } else 4928 s->src.seqdiff = 0; 4929 if (th->th_flags & TH_SYN) { 4930 s->src.seqhi++; 4931 s->src.wscale = pf_get_wscale(m, off, 4932 th->th_off, pd->af); 4933 } 4934 s->src.max_win = MAX(ntohs(th->th_win), 1); 4935 if (s->src.wscale & PF_WSCALE_MASK) { 4936 /* Remove scale factor from initial window */ 4937 int win = s->src.max_win; 4938 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4939 s->src.max_win = (win - 1) >> 4940 (s->src.wscale & PF_WSCALE_MASK); 4941 } 4942 if (th->th_flags & TH_FIN) 4943 s->src.seqhi++; 4944 s->dst.seqhi = 1; 4945 s->dst.max_win = 1; 4946 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4947 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4948 s->timeout = PFTM_TCP_FIRST_PACKET; 4949 atomic_add_32(&V_pf_status.states_halfopen, 1); 4950 break; 4951 case IPPROTO_UDP: 4952 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4953 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4954 s->timeout = PFTM_UDP_FIRST_PACKET; 4955 break; 4956 case IPPROTO_SCTP: 4957 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 4958 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 4959 s->timeout = PFTM_SCTP_FIRST_PACKET; 4960 break; 4961 case IPPROTO_ICMP: 4962 #ifdef INET6 4963 case IPPROTO_ICMPV6: 4964 #endif 4965 s->timeout = PFTM_ICMP_FIRST_PACKET; 4966 break; 4967 default: 4968 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4969 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4970 s->timeout = PFTM_OTHER_FIRST_PACKET; 4971 } 4972 4973 if (r->rt) { 4974 /* pf_map_addr increases the reason counters */ 4975 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, 4976 &s->rt_kif, NULL, &sn)) != 0) 4977 goto csfailed; 4978 s->rt = r->rt; 4979 } 4980 4981 s->creation = s->expire = pf_get_uptime(); 4982 4983 if (sn != NULL) 4984 s->src_node = sn; 4985 if (nsn != NULL) { 4986 /* XXX We only modify one side for now. */ 4987 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4988 s->nat_src_node = nsn; 4989 } 4990 if (pd->proto == IPPROTO_TCP) { 4991 if (s->state_flags & PFSTATE_SCRUB_TCP && 4992 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4993 REASON_SET(&reason, PFRES_MEMORY); 4994 goto drop; 4995 } 4996 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4997 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4998 &s->src, &s->dst, rewrite)) { 4999 /* This really shouldn't happen!!! */ 5000 DPFPRINTF(PF_DEBUG_URGENT, 5001 ("pf_normalize_tcp_stateful failed on first " 5002 "pkt\n")); 5003 goto drop; 5004 } 5005 } else if (pd->proto == IPPROTO_SCTP) { 5006 if (pf_normalize_sctp_init(m, off, pd, &s->src, &s->dst)) 5007 goto drop; 5008 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 5009 goto drop; 5010 } 5011 s->direction = pd->dir; 5012 5013 /* 5014 * sk/nk could already been setup by pf_get_translation(). 5015 */ 5016 if (nr == NULL) { 5017 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 5018 __func__, nr, sk, nk)); 5019 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 5020 if (sk == NULL) 5021 goto csfailed; 5022 nk = sk; 5023 } else 5024 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 5025 __func__, nr, sk, nk)); 5026 5027 /* Swap sk/nk for PF_OUT. */ 5028 if (pf_state_insert(BOUND_IFACE(s, kif), kif, 5029 (pd->dir == PF_IN) ? sk : nk, 5030 (pd->dir == PF_IN) ? nk : sk, s)) { 5031 REASON_SET(&reason, PFRES_STATEINS); 5032 goto drop; 5033 } else 5034 *sm = s; 5035 5036 if (tag > 0) 5037 s->tag = tag; 5038 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 5039 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 5040 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 5041 /* undo NAT changes, if they have taken place */ 5042 if (nr != NULL) { 5043 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 5044 if (pd->dir == PF_OUT) 5045 skt = s->key[PF_SK_STACK]; 5046 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 5047 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 5048 if (pd->sport) 5049 *pd->sport = skt->port[pd->sidx]; 5050 if (pd->dport) 5051 *pd->dport = skt->port[pd->didx]; 5052 if (pd->proto_sum) 5053 *pd->proto_sum = bproto_sum; 5054 if (pd->ip_sum) 5055 *pd->ip_sum = bip_sum; 5056 m_copyback(m, off, hdrlen, pd->hdr.any); 5057 } 5058 s->src.seqhi = htonl(arc4random()); 5059 /* Find mss option */ 5060 int rtid = M_GETFIB(m); 5061 mss = pf_get_mss(m, off, th->th_off, pd->af); 5062 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 5063 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 5064 s->src.mss = mss; 5065 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 5066 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 5067 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 5068 pd->act.rtableid); 5069 REASON_SET(&reason, PFRES_SYNPROXY); 5070 return (PF_SYNPROXY_DROP); 5071 } 5072 5073 return (PF_PASS); 5074 5075 csfailed: 5076 while ((ri = SLIST_FIRST(match_rules))) { 5077 SLIST_REMOVE_HEAD(match_rules, entry); 5078 free(ri, M_PF_RULE_ITEM); 5079 } 5080 5081 uma_zfree(V_pf_state_key_z, sk); 5082 uma_zfree(V_pf_state_key_z, nk); 5083 5084 if (sn != NULL) { 5085 PF_SRC_NODE_LOCK(sn); 5086 if (--sn->states == 0 && sn->expire == 0) { 5087 pf_unlink_src_node(sn); 5088 uma_zfree(V_pf_sources_z, sn); 5089 counter_u64_add( 5090 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5091 } 5092 PF_SRC_NODE_UNLOCK(sn); 5093 } 5094 5095 if (nsn != sn && nsn != NULL) { 5096 PF_SRC_NODE_LOCK(nsn); 5097 if (--nsn->states == 0 && nsn->expire == 0) { 5098 pf_unlink_src_node(nsn); 5099 uma_zfree(V_pf_sources_z, nsn); 5100 counter_u64_add( 5101 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5102 } 5103 PF_SRC_NODE_UNLOCK(nsn); 5104 } 5105 5106 drop: 5107 if (s != NULL) { 5108 pf_src_tree_remove_state(s); 5109 s->timeout = PFTM_UNLINKED; 5110 STATE_DEC_COUNTERS(s); 5111 pf_free_state(s); 5112 } 5113 5114 return (PF_DROP); 5115 } 5116 5117 static int 5118 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5119 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5120 struct pf_kruleset **rsm) 5121 { 5122 struct pf_krule *r, *a = NULL; 5123 struct pf_kruleset *ruleset = NULL; 5124 struct pf_krule_slist match_rules; 5125 struct pf_krule_item *ri; 5126 sa_family_t af = pd->af; 5127 u_short reason; 5128 int tag = -1; 5129 int asd = 0; 5130 int match = 0; 5131 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5132 5133 PF_RULES_RASSERT(); 5134 5135 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5136 SLIST_INIT(&match_rules); 5137 while (r != NULL) { 5138 pf_counter_u64_add(&r->evaluations, 1); 5139 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5140 r = r->skip[PF_SKIP_IFP].ptr; 5141 else if (r->direction && r->direction != pd->dir) 5142 r = r->skip[PF_SKIP_DIR].ptr; 5143 else if (r->af && r->af != af) 5144 r = r->skip[PF_SKIP_AF].ptr; 5145 else if (r->proto && r->proto != pd->proto) 5146 r = r->skip[PF_SKIP_PROTO].ptr; 5147 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5148 r->src.neg, kif, M_GETFIB(m))) 5149 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5150 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5151 r->dst.neg, NULL, M_GETFIB(m))) 5152 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5153 else if (r->tos && !(r->tos == pd->tos)) 5154 r = TAILQ_NEXT(r, entries); 5155 else if (r->os_fingerprint != PF_OSFP_ANY) 5156 r = TAILQ_NEXT(r, entries); 5157 else if (pd->proto == IPPROTO_UDP && 5158 (r->src.port_op || r->dst.port_op)) 5159 r = TAILQ_NEXT(r, entries); 5160 else if (pd->proto == IPPROTO_TCP && 5161 (r->src.port_op || r->dst.port_op || r->flagset)) 5162 r = TAILQ_NEXT(r, entries); 5163 else if ((pd->proto == IPPROTO_ICMP || 5164 pd->proto == IPPROTO_ICMPV6) && 5165 (r->type || r->code)) 5166 r = TAILQ_NEXT(r, entries); 5167 else if (r->prio && 5168 !pf_match_ieee8021q_pcp(r->prio, m)) 5169 r = TAILQ_NEXT(r, entries); 5170 else if (r->prob && r->prob <= 5171 (arc4random() % (UINT_MAX - 1) + 1)) 5172 r = TAILQ_NEXT(r, entries); 5173 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5174 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5175 r = TAILQ_NEXT(r, entries); 5176 else { 5177 if (r->anchor == NULL) { 5178 if (r->action == PF_MATCH) { 5179 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5180 if (ri == NULL) { 5181 REASON_SET(&reason, PFRES_MEMORY); 5182 goto cleanup; 5183 } 5184 ri->r = r; 5185 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5186 pf_counter_u64_critical_enter(); 5187 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5188 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5189 pf_counter_u64_critical_exit(); 5190 pf_rule_to_actions(r, &pd->act); 5191 if (r->log) 5192 PFLOG_PACKET(kif, m, af, 5193 r->action, PFRES_MATCH, r, 5194 a, ruleset, pd, 1); 5195 } else { 5196 match = 1; 5197 *rm = r; 5198 *am = a; 5199 *rsm = ruleset; 5200 } 5201 if ((*rm)->quick) 5202 break; 5203 r = TAILQ_NEXT(r, entries); 5204 } else 5205 pf_step_into_anchor(anchor_stack, &asd, 5206 &ruleset, PF_RULESET_FILTER, &r, &a, 5207 &match); 5208 } 5209 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5210 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5211 break; 5212 } 5213 r = *rm; 5214 a = *am; 5215 ruleset = *rsm; 5216 5217 REASON_SET(&reason, PFRES_MATCH); 5218 5219 /* apply actions for last matching pass/block rule */ 5220 pf_rule_to_actions(r, &pd->act); 5221 5222 if (r->log) 5223 PFLOG_PACKET(kif, m, af, r->action, reason, r, a, ruleset, pd, 1); 5224 5225 if (r->action != PF_PASS) 5226 return (PF_DROP); 5227 5228 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5229 REASON_SET(&reason, PFRES_MEMORY); 5230 goto cleanup; 5231 } 5232 5233 return (PF_PASS); 5234 5235 cleanup: 5236 while ((ri = SLIST_FIRST(&match_rules))) { 5237 SLIST_REMOVE_HEAD(&match_rules, entry); 5238 free(ri, M_PF_RULE_ITEM); 5239 } 5240 5241 return (PF_DROP); 5242 } 5243 5244 static int 5245 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5246 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5247 int *copyback) 5248 { 5249 struct tcphdr *th = &pd->hdr.tcp; 5250 struct pf_state_peer *src, *dst; 5251 u_int16_t win = ntohs(th->th_win); 5252 u_int32_t ack, end, data_end, seq, orig_seq; 5253 u_int8_t sws, dws, psrc, pdst; 5254 int ackskew; 5255 5256 if (pd->dir == (*state)->direction) { 5257 src = &(*state)->src; 5258 dst = &(*state)->dst; 5259 psrc = PF_PEER_SRC; 5260 pdst = PF_PEER_DST; 5261 } else { 5262 src = &(*state)->dst; 5263 dst = &(*state)->src; 5264 psrc = PF_PEER_DST; 5265 pdst = PF_PEER_SRC; 5266 } 5267 5268 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5269 sws = src->wscale & PF_WSCALE_MASK; 5270 dws = dst->wscale & PF_WSCALE_MASK; 5271 } else 5272 sws = dws = 0; 5273 5274 /* 5275 * Sequence tracking algorithm from Guido van Rooij's paper: 5276 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5277 * tcp_filtering.ps 5278 */ 5279 5280 orig_seq = seq = ntohl(th->th_seq); 5281 if (src->seqlo == 0) { 5282 /* First packet from this end. Set its state */ 5283 5284 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5285 src->scrub == NULL) { 5286 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5287 REASON_SET(reason, PFRES_MEMORY); 5288 return (PF_DROP); 5289 } 5290 } 5291 5292 /* Deferred generation of sequence number modulator */ 5293 if (dst->seqdiff && !src->seqdiff) { 5294 /* use random iss for the TCP server */ 5295 while ((src->seqdiff = arc4random() - seq) == 0) 5296 ; 5297 ack = ntohl(th->th_ack) - dst->seqdiff; 5298 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5299 src->seqdiff), 0); 5300 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5301 *copyback = 1; 5302 } else { 5303 ack = ntohl(th->th_ack); 5304 } 5305 5306 end = seq + pd->p_len; 5307 if (th->th_flags & TH_SYN) { 5308 end++; 5309 if (dst->wscale & PF_WSCALE_FLAG) { 5310 src->wscale = pf_get_wscale(m, off, th->th_off, 5311 pd->af); 5312 if (src->wscale & PF_WSCALE_FLAG) { 5313 /* Remove scale factor from initial 5314 * window */ 5315 sws = src->wscale & PF_WSCALE_MASK; 5316 win = ((u_int32_t)win + (1 << sws) - 1) 5317 >> sws; 5318 dws = dst->wscale & PF_WSCALE_MASK; 5319 } else { 5320 /* fixup other window */ 5321 dst->max_win = MIN(TCP_MAXWIN, 5322 (u_int32_t)dst->max_win << 5323 (dst->wscale & PF_WSCALE_MASK)); 5324 /* in case of a retrans SYN|ACK */ 5325 dst->wscale = 0; 5326 } 5327 } 5328 } 5329 data_end = end; 5330 if (th->th_flags & TH_FIN) 5331 end++; 5332 5333 src->seqlo = seq; 5334 if (src->state < TCPS_SYN_SENT) 5335 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5336 5337 /* 5338 * May need to slide the window (seqhi may have been set by 5339 * the crappy stack check or if we picked up the connection 5340 * after establishment) 5341 */ 5342 if (src->seqhi == 1 || 5343 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5344 src->seqhi = end + MAX(1, dst->max_win << dws); 5345 if (win > src->max_win) 5346 src->max_win = win; 5347 5348 } else { 5349 ack = ntohl(th->th_ack) - dst->seqdiff; 5350 if (src->seqdiff) { 5351 /* Modulate sequence numbers */ 5352 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5353 src->seqdiff), 0); 5354 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5355 *copyback = 1; 5356 } 5357 end = seq + pd->p_len; 5358 if (th->th_flags & TH_SYN) 5359 end++; 5360 data_end = end; 5361 if (th->th_flags & TH_FIN) 5362 end++; 5363 } 5364 5365 if ((th->th_flags & TH_ACK) == 0) { 5366 /* Let it pass through the ack skew check */ 5367 ack = dst->seqlo; 5368 } else if ((ack == 0 && 5369 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5370 /* broken tcp stacks do not set ack */ 5371 (dst->state < TCPS_SYN_SENT)) { 5372 /* 5373 * Many stacks (ours included) will set the ACK number in an 5374 * FIN|ACK if the SYN times out -- no sequence to ACK. 5375 */ 5376 ack = dst->seqlo; 5377 } 5378 5379 if (seq == end) { 5380 /* Ease sequencing restrictions on no data packets */ 5381 seq = src->seqlo; 5382 data_end = end = seq; 5383 } 5384 5385 ackskew = dst->seqlo - ack; 5386 5387 /* 5388 * Need to demodulate the sequence numbers in any TCP SACK options 5389 * (Selective ACK). We could optionally validate the SACK values 5390 * against the current ACK window, either forwards or backwards, but 5391 * I'm not confident that SACK has been implemented properly 5392 * everywhere. It wouldn't surprise me if several stacks accidentally 5393 * SACK too far backwards of previously ACKed data. There really aren't 5394 * any security implications of bad SACKing unless the target stack 5395 * doesn't validate the option length correctly. Someone trying to 5396 * spoof into a TCP connection won't bother blindly sending SACK 5397 * options anyway. 5398 */ 5399 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5400 if (pf_modulate_sack(m, off, pd, th, dst)) 5401 *copyback = 1; 5402 } 5403 5404 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5405 if (SEQ_GEQ(src->seqhi, data_end) && 5406 /* Last octet inside other's window space */ 5407 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5408 /* Retrans: not more than one window back */ 5409 (ackskew >= -MAXACKWINDOW) && 5410 /* Acking not more than one reassembled fragment backwards */ 5411 (ackskew <= (MAXACKWINDOW << sws)) && 5412 /* Acking not more than one window forward */ 5413 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5414 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 5415 /* Require an exact/+1 sequence match on resets when possible */ 5416 5417 if (dst->scrub || src->scrub) { 5418 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5419 *state, src, dst, copyback)) 5420 return (PF_DROP); 5421 } 5422 5423 /* update max window */ 5424 if (src->max_win < win) 5425 src->max_win = win; 5426 /* synchronize sequencing */ 5427 if (SEQ_GT(end, src->seqlo)) 5428 src->seqlo = end; 5429 /* slide the window of what the other end can send */ 5430 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5431 dst->seqhi = ack + MAX((win << sws), 1); 5432 5433 /* update states */ 5434 if (th->th_flags & TH_SYN) 5435 if (src->state < TCPS_SYN_SENT) 5436 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5437 if (th->th_flags & TH_FIN) 5438 if (src->state < TCPS_CLOSING) 5439 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5440 if (th->th_flags & TH_ACK) { 5441 if (dst->state == TCPS_SYN_SENT) { 5442 pf_set_protostate(*state, pdst, 5443 TCPS_ESTABLISHED); 5444 if (src->state == TCPS_ESTABLISHED && 5445 (*state)->src_node != NULL && 5446 pf_src_connlimit(state)) { 5447 REASON_SET(reason, PFRES_SRCLIMIT); 5448 return (PF_DROP); 5449 } 5450 } else if (dst->state == TCPS_CLOSING) 5451 pf_set_protostate(*state, pdst, 5452 TCPS_FIN_WAIT_2); 5453 } 5454 if (th->th_flags & TH_RST) 5455 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5456 5457 /* update expire time */ 5458 (*state)->expire = pf_get_uptime(); 5459 if (src->state >= TCPS_FIN_WAIT_2 && 5460 dst->state >= TCPS_FIN_WAIT_2) 5461 (*state)->timeout = PFTM_TCP_CLOSED; 5462 else if (src->state >= TCPS_CLOSING && 5463 dst->state >= TCPS_CLOSING) 5464 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5465 else if (src->state < TCPS_ESTABLISHED || 5466 dst->state < TCPS_ESTABLISHED) 5467 (*state)->timeout = PFTM_TCP_OPENING; 5468 else if (src->state >= TCPS_CLOSING || 5469 dst->state >= TCPS_CLOSING) 5470 (*state)->timeout = PFTM_TCP_CLOSING; 5471 else 5472 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5473 5474 /* Fall through to PASS packet */ 5475 5476 } else if ((dst->state < TCPS_SYN_SENT || 5477 dst->state >= TCPS_FIN_WAIT_2 || 5478 src->state >= TCPS_FIN_WAIT_2) && 5479 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 5480 /* Within a window forward of the originating packet */ 5481 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5482 /* Within a window backward of the originating packet */ 5483 5484 /* 5485 * This currently handles three situations: 5486 * 1) Stupid stacks will shotgun SYNs before their peer 5487 * replies. 5488 * 2) When PF catches an already established stream (the 5489 * firewall rebooted, the state table was flushed, routes 5490 * changed...) 5491 * 3) Packets get funky immediately after the connection 5492 * closes (this should catch Solaris spurious ACK|FINs 5493 * that web servers like to spew after a close) 5494 * 5495 * This must be a little more careful than the above code 5496 * since packet floods will also be caught here. We don't 5497 * update the TTL here to mitigate the damage of a packet 5498 * flood and so the same code can handle awkward establishment 5499 * and a loosened connection close. 5500 * In the establishment case, a correct peer response will 5501 * validate the connection, go through the normal state code 5502 * and keep updating the state TTL. 5503 */ 5504 5505 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5506 printf("pf: loose state match: "); 5507 pf_print_state(*state); 5508 pf_print_flags(th->th_flags); 5509 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5510 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5511 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5512 (unsigned long long)(*state)->packets[1], 5513 pd->dir == PF_IN ? "in" : "out", 5514 pd->dir == (*state)->direction ? "fwd" : "rev"); 5515 } 5516 5517 if (dst->scrub || src->scrub) { 5518 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5519 *state, src, dst, copyback)) 5520 return (PF_DROP); 5521 } 5522 5523 /* update max window */ 5524 if (src->max_win < win) 5525 src->max_win = win; 5526 /* synchronize sequencing */ 5527 if (SEQ_GT(end, src->seqlo)) 5528 src->seqlo = end; 5529 /* slide the window of what the other end can send */ 5530 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5531 dst->seqhi = ack + MAX((win << sws), 1); 5532 5533 /* 5534 * Cannot set dst->seqhi here since this could be a shotgunned 5535 * SYN and not an already established connection. 5536 */ 5537 5538 if (th->th_flags & TH_FIN) 5539 if (src->state < TCPS_CLOSING) 5540 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5541 if (th->th_flags & TH_RST) 5542 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5543 5544 /* Fall through to PASS packet */ 5545 5546 } else { 5547 if ((*state)->dst.state == TCPS_SYN_SENT && 5548 (*state)->src.state == TCPS_SYN_SENT) { 5549 /* Send RST for state mismatches during handshake */ 5550 if (!(th->th_flags & TH_RST)) 5551 pf_send_tcp((*state)->rule.ptr, pd->af, 5552 pd->dst, pd->src, th->th_dport, 5553 th->th_sport, ntohl(th->th_ack), 0, 5554 TH_RST, 0, 0, 5555 (*state)->rule.ptr->return_ttl, true, 0, 0, 5556 (*state)->act.rtableid); 5557 src->seqlo = 0; 5558 src->seqhi = 1; 5559 src->max_win = 1; 5560 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5561 printf("pf: BAD state: "); 5562 pf_print_state(*state); 5563 pf_print_flags(th->th_flags); 5564 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5565 "pkts=%llu:%llu dir=%s,%s\n", 5566 seq, orig_seq, ack, pd->p_len, ackskew, 5567 (unsigned long long)(*state)->packets[0], 5568 (unsigned long long)(*state)->packets[1], 5569 pd->dir == PF_IN ? "in" : "out", 5570 pd->dir == (*state)->direction ? "fwd" : "rev"); 5571 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5572 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 5573 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5574 ' ': '2', 5575 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5576 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5577 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 5578 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5579 } 5580 REASON_SET(reason, PFRES_BADSTATE); 5581 return (PF_DROP); 5582 } 5583 5584 return (PF_PASS); 5585 } 5586 5587 static int 5588 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5589 { 5590 struct tcphdr *th = &pd->hdr.tcp; 5591 struct pf_state_peer *src, *dst; 5592 u_int8_t psrc, pdst; 5593 5594 if (pd->dir == (*state)->direction) { 5595 src = &(*state)->src; 5596 dst = &(*state)->dst; 5597 psrc = PF_PEER_SRC; 5598 pdst = PF_PEER_DST; 5599 } else { 5600 src = &(*state)->dst; 5601 dst = &(*state)->src; 5602 psrc = PF_PEER_DST; 5603 pdst = PF_PEER_SRC; 5604 } 5605 5606 if (th->th_flags & TH_SYN) 5607 if (src->state < TCPS_SYN_SENT) 5608 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5609 if (th->th_flags & TH_FIN) 5610 if (src->state < TCPS_CLOSING) 5611 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5612 if (th->th_flags & TH_ACK) { 5613 if (dst->state == TCPS_SYN_SENT) { 5614 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5615 if (src->state == TCPS_ESTABLISHED && 5616 (*state)->src_node != NULL && 5617 pf_src_connlimit(state)) { 5618 REASON_SET(reason, PFRES_SRCLIMIT); 5619 return (PF_DROP); 5620 } 5621 } else if (dst->state == TCPS_CLOSING) { 5622 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5623 } else if (src->state == TCPS_SYN_SENT && 5624 dst->state < TCPS_SYN_SENT) { 5625 /* 5626 * Handle a special sloppy case where we only see one 5627 * half of the connection. If there is a ACK after 5628 * the initial SYN without ever seeing a packet from 5629 * the destination, set the connection to established. 5630 */ 5631 pf_set_protostate(*state, PF_PEER_BOTH, 5632 TCPS_ESTABLISHED); 5633 dst->state = src->state = TCPS_ESTABLISHED; 5634 if ((*state)->src_node != NULL && 5635 pf_src_connlimit(state)) { 5636 REASON_SET(reason, PFRES_SRCLIMIT); 5637 return (PF_DROP); 5638 } 5639 } else if (src->state == TCPS_CLOSING && 5640 dst->state == TCPS_ESTABLISHED && 5641 dst->seqlo == 0) { 5642 /* 5643 * Handle the closing of half connections where we 5644 * don't see the full bidirectional FIN/ACK+ACK 5645 * handshake. 5646 */ 5647 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5648 } 5649 } 5650 if (th->th_flags & TH_RST) 5651 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5652 5653 /* update expire time */ 5654 (*state)->expire = pf_get_uptime(); 5655 if (src->state >= TCPS_FIN_WAIT_2 && 5656 dst->state >= TCPS_FIN_WAIT_2) 5657 (*state)->timeout = PFTM_TCP_CLOSED; 5658 else if (src->state >= TCPS_CLOSING && 5659 dst->state >= TCPS_CLOSING) 5660 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5661 else if (src->state < TCPS_ESTABLISHED || 5662 dst->state < TCPS_ESTABLISHED) 5663 (*state)->timeout = PFTM_TCP_OPENING; 5664 else if (src->state >= TCPS_CLOSING || 5665 dst->state >= TCPS_CLOSING) 5666 (*state)->timeout = PFTM_TCP_CLOSING; 5667 else 5668 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5669 5670 return (PF_PASS); 5671 } 5672 5673 static int 5674 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5675 { 5676 struct pf_state_key *sk = (*state)->key[pd->didx]; 5677 struct tcphdr *th = &pd->hdr.tcp; 5678 5679 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5680 if (pd->dir != (*state)->direction) { 5681 REASON_SET(reason, PFRES_SYNPROXY); 5682 return (PF_SYNPROXY_DROP); 5683 } 5684 if (th->th_flags & TH_SYN) { 5685 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5686 REASON_SET(reason, PFRES_SYNPROXY); 5687 return (PF_DROP); 5688 } 5689 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5690 pd->src, th->th_dport, th->th_sport, 5691 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5692 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5693 (*state)->act.rtableid); 5694 REASON_SET(reason, PFRES_SYNPROXY); 5695 return (PF_SYNPROXY_DROP); 5696 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5697 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5698 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5699 REASON_SET(reason, PFRES_SYNPROXY); 5700 return (PF_DROP); 5701 } else if ((*state)->src_node != NULL && 5702 pf_src_connlimit(state)) { 5703 REASON_SET(reason, PFRES_SRCLIMIT); 5704 return (PF_DROP); 5705 } else 5706 pf_set_protostate(*state, PF_PEER_SRC, 5707 PF_TCPS_PROXY_DST); 5708 } 5709 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5710 if (pd->dir == (*state)->direction) { 5711 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5712 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5713 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5714 REASON_SET(reason, PFRES_SYNPROXY); 5715 return (PF_DROP); 5716 } 5717 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5718 if ((*state)->dst.seqhi == 1) 5719 (*state)->dst.seqhi = htonl(arc4random()); 5720 pf_send_tcp((*state)->rule.ptr, pd->af, 5721 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5722 sk->port[pd->sidx], sk->port[pd->didx], 5723 (*state)->dst.seqhi, 0, TH_SYN, 0, 5724 (*state)->src.mss, 0, false, (*state)->tag, 0, 5725 (*state)->act.rtableid); 5726 REASON_SET(reason, PFRES_SYNPROXY); 5727 return (PF_SYNPROXY_DROP); 5728 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5729 (TH_SYN|TH_ACK)) || 5730 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5731 REASON_SET(reason, PFRES_SYNPROXY); 5732 return (PF_DROP); 5733 } else { 5734 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5735 (*state)->dst.seqlo = ntohl(th->th_seq); 5736 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5737 pd->src, th->th_dport, th->th_sport, 5738 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5739 TH_ACK, (*state)->src.max_win, 0, 0, false, 5740 (*state)->tag, 0, (*state)->act.rtableid); 5741 pf_send_tcp((*state)->rule.ptr, pd->af, 5742 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5743 sk->port[pd->sidx], sk->port[pd->didx], 5744 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5745 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5746 (*state)->act.rtableid); 5747 (*state)->src.seqdiff = (*state)->dst.seqhi - 5748 (*state)->src.seqlo; 5749 (*state)->dst.seqdiff = (*state)->src.seqhi - 5750 (*state)->dst.seqlo; 5751 (*state)->src.seqhi = (*state)->src.seqlo + 5752 (*state)->dst.max_win; 5753 (*state)->dst.seqhi = (*state)->dst.seqlo + 5754 (*state)->src.max_win; 5755 (*state)->src.wscale = (*state)->dst.wscale = 0; 5756 pf_set_protostate(*state, PF_PEER_BOTH, 5757 TCPS_ESTABLISHED); 5758 REASON_SET(reason, PFRES_SYNPROXY); 5759 return (PF_SYNPROXY_DROP); 5760 } 5761 } 5762 5763 return (PF_PASS); 5764 } 5765 5766 static int 5767 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5768 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5769 u_short *reason) 5770 { 5771 struct pf_state_key_cmp key; 5772 struct tcphdr *th = &pd->hdr.tcp; 5773 int copyback = 0; 5774 int action; 5775 struct pf_state_peer *src, *dst; 5776 5777 bzero(&key, sizeof(key)); 5778 key.af = pd->af; 5779 key.proto = IPPROTO_TCP; 5780 if (pd->dir == PF_IN) { /* wire side, straight */ 5781 PF_ACPY(&key.addr[0], pd->src, key.af); 5782 PF_ACPY(&key.addr[1], pd->dst, key.af); 5783 key.port[0] = th->th_sport; 5784 key.port[1] = th->th_dport; 5785 } else { /* stack side, reverse */ 5786 PF_ACPY(&key.addr[1], pd->src, key.af); 5787 PF_ACPY(&key.addr[0], pd->dst, key.af); 5788 key.port[1] = th->th_sport; 5789 key.port[0] = th->th_dport; 5790 } 5791 5792 STATE_LOOKUP(kif, &key, *state, pd); 5793 5794 if (pd->dir == (*state)->direction) { 5795 src = &(*state)->src; 5796 dst = &(*state)->dst; 5797 } else { 5798 src = &(*state)->dst; 5799 dst = &(*state)->src; 5800 } 5801 5802 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5803 return (action); 5804 5805 if (dst->state >= TCPS_FIN_WAIT_2 && 5806 src->state >= TCPS_FIN_WAIT_2 && 5807 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5808 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5809 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5810 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5811 printf("pf: state reuse "); 5812 pf_print_state(*state); 5813 pf_print_flags(th->th_flags); 5814 printf("\n"); 5815 } 5816 /* XXX make sure it's the same direction ?? */ 5817 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5818 pf_unlink_state(*state); 5819 *state = NULL; 5820 return (PF_DROP); 5821 } 5822 5823 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5824 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5825 return (PF_DROP); 5826 } else { 5827 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5828 ©back) == PF_DROP) 5829 return (PF_DROP); 5830 } 5831 5832 /* translate source/destination address, if necessary */ 5833 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5834 struct pf_state_key *nk = (*state)->key[pd->didx]; 5835 5836 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5837 nk->port[pd->sidx] != th->th_sport) 5838 pf_change_ap(m, pd->src, &th->th_sport, 5839 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5840 nk->port[pd->sidx], 0, pd->af); 5841 5842 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5843 nk->port[pd->didx] != th->th_dport) 5844 pf_change_ap(m, pd->dst, &th->th_dport, 5845 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5846 nk->port[pd->didx], 0, pd->af); 5847 copyback = 1; 5848 } 5849 5850 /* Copyback sequence modulation or stateful scrub changes if needed */ 5851 if (copyback) 5852 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5853 5854 return (PF_PASS); 5855 } 5856 5857 static int 5858 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5859 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5860 { 5861 struct pf_state_peer *src, *dst; 5862 struct pf_state_key_cmp key; 5863 struct udphdr *uh = &pd->hdr.udp; 5864 uint8_t psrc, pdst; 5865 5866 bzero(&key, sizeof(key)); 5867 key.af = pd->af; 5868 key.proto = IPPROTO_UDP; 5869 if (pd->dir == PF_IN) { /* wire side, straight */ 5870 PF_ACPY(&key.addr[0], pd->src, key.af); 5871 PF_ACPY(&key.addr[1], pd->dst, key.af); 5872 key.port[0] = uh->uh_sport; 5873 key.port[1] = uh->uh_dport; 5874 } else { /* stack side, reverse */ 5875 PF_ACPY(&key.addr[1], pd->src, key.af); 5876 PF_ACPY(&key.addr[0], pd->dst, key.af); 5877 key.port[1] = uh->uh_sport; 5878 key.port[0] = uh->uh_dport; 5879 } 5880 5881 STATE_LOOKUP(kif, &key, *state, pd); 5882 5883 if (pd->dir == (*state)->direction) { 5884 src = &(*state)->src; 5885 dst = &(*state)->dst; 5886 psrc = PF_PEER_SRC; 5887 pdst = PF_PEER_DST; 5888 } else { 5889 src = &(*state)->dst; 5890 dst = &(*state)->src; 5891 psrc = PF_PEER_DST; 5892 pdst = PF_PEER_SRC; 5893 } 5894 5895 /* update states */ 5896 if (src->state < PFUDPS_SINGLE) 5897 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5898 if (dst->state == PFUDPS_SINGLE) 5899 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5900 5901 /* update expire time */ 5902 (*state)->expire = pf_get_uptime(); 5903 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5904 (*state)->timeout = PFTM_UDP_MULTIPLE; 5905 else 5906 (*state)->timeout = PFTM_UDP_SINGLE; 5907 5908 /* translate source/destination address, if necessary */ 5909 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5910 struct pf_state_key *nk = (*state)->key[pd->didx]; 5911 5912 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5913 nk->port[pd->sidx] != uh->uh_sport) 5914 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5915 &uh->uh_sum, &nk->addr[pd->sidx], 5916 nk->port[pd->sidx], 1, pd->af); 5917 5918 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5919 nk->port[pd->didx] != uh->uh_dport) 5920 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5921 &uh->uh_sum, &nk->addr[pd->didx], 5922 nk->port[pd->didx], 1, pd->af); 5923 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5924 } 5925 5926 return (PF_PASS); 5927 } 5928 5929 static int 5930 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 5931 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5932 { 5933 struct pf_state_key_cmp key; 5934 struct pf_state_peer *src, *dst; 5935 struct sctphdr *sh = &pd->hdr.sctp; 5936 u_int8_t psrc; //, pdst; 5937 5938 bzero(&key, sizeof(key)); 5939 key.af = pd->af; 5940 key.proto = IPPROTO_SCTP; 5941 if (pd->dir == PF_IN) { /* wire side, straight */ 5942 PF_ACPY(&key.addr[0], pd->src, key.af); 5943 PF_ACPY(&key.addr[1], pd->dst, key.af); 5944 key.port[0] = sh->src_port; 5945 key.port[1] = sh->dest_port; 5946 } else { /* stack side, reverse */ 5947 PF_ACPY(&key.addr[1], pd->src, key.af); 5948 PF_ACPY(&key.addr[0], pd->dst, key.af); 5949 key.port[1] = sh->src_port; 5950 key.port[0] = sh->dest_port; 5951 } 5952 5953 STATE_LOOKUP(kif, &key, *state, pd); 5954 5955 if (pd->dir == (*state)->direction) { 5956 src = &(*state)->src; 5957 dst = &(*state)->dst; 5958 psrc = PF_PEER_SRC; 5959 } else { 5960 src = &(*state)->dst; 5961 dst = &(*state)->src; 5962 psrc = PF_PEER_DST; 5963 } 5964 5965 /* Track state. */ 5966 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 5967 if (src->state < SCTP_COOKIE_WAIT) { 5968 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 5969 (*state)->timeout = PFTM_SCTP_OPENING; 5970 } 5971 } 5972 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 5973 MPASS(dst->scrub != NULL); 5974 if (dst->scrub->pfss_v_tag == 0) 5975 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 5976 } 5977 5978 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 5979 if (src->state < SCTP_ESTABLISHED) { 5980 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 5981 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 5982 } 5983 } 5984 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 5985 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5986 if (src->state < SCTP_SHUTDOWN_PENDING) { 5987 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 5988 (*state)->timeout = PFTM_SCTP_CLOSING; 5989 } 5990 } 5991 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5992 pf_set_protostate(*state, psrc, SCTP_CLOSED); 5993 (*state)->timeout = PFTM_SCTP_CLOSED; 5994 } 5995 5996 if (src->scrub != NULL) { 5997 if (src->scrub->pfss_v_tag == 0) { 5998 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 5999 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 6000 return (PF_DROP); 6001 } 6002 6003 (*state)->expire = pf_get_uptime(); 6004 6005 /* translate source/destination address, if necessary */ 6006 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6007 uint16_t checksum = 0; 6008 struct pf_state_key *nk = (*state)->key[pd->didx]; 6009 6010 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 6011 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 6012 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 6013 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 6014 nk->port[pd->sidx], 1, pd->af); 6015 } 6016 6017 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 6018 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 6019 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 6020 pd->ip_sum, &checksum, &nk->addr[pd->didx], 6021 nk->port[pd->didx], 1, pd->af); 6022 } 6023 } 6024 6025 return (PF_PASS); 6026 } 6027 6028 static void 6029 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 6030 { 6031 struct pf_sctp_endpoint key; 6032 struct pf_sctp_endpoint *ep; 6033 struct pf_state_key *sks = s->key[PF_SK_STACK]; 6034 struct pf_sctp_source *i, *tmp; 6035 6036 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 6037 return; 6038 6039 PF_SCTP_ENDPOINTS_LOCK(); 6040 6041 key.v_tag = s->dst.scrub->pfss_v_tag; 6042 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6043 if (ep != NULL) { 6044 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6045 if (pf_addr_cmp(&i->addr, 6046 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 6047 s->key[PF_SK_WIRE]->af) == 0) { 6048 SDT_PROBE3(pf, sctp, multihome, remove, 6049 key.v_tag, s, i); 6050 TAILQ_REMOVE(&ep->sources, i, entry); 6051 free(i, M_PFTEMP); 6052 break; 6053 } 6054 } 6055 6056 if (TAILQ_EMPTY(&ep->sources)) { 6057 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6058 free(ep, M_PFTEMP); 6059 } 6060 } 6061 6062 /* Other direction. */ 6063 key.v_tag = s->src.scrub->pfss_v_tag; 6064 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6065 if (ep != NULL) { 6066 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 6067 if (pf_addr_cmp(&i->addr, 6068 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 6069 s->key[PF_SK_WIRE]->af) == 0) { 6070 SDT_PROBE3(pf, sctp, multihome, remove, 6071 key.v_tag, s, i); 6072 TAILQ_REMOVE(&ep->sources, i, entry); 6073 free(i, M_PFTEMP); 6074 break; 6075 } 6076 } 6077 6078 if (TAILQ_EMPTY(&ep->sources)) { 6079 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6080 free(ep, M_PFTEMP); 6081 } 6082 } 6083 6084 PF_SCTP_ENDPOINTS_UNLOCK(); 6085 } 6086 6087 static void 6088 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 6089 { 6090 struct pf_sctp_endpoint key = { 6091 .v_tag = v_tag, 6092 }; 6093 struct pf_sctp_source *i; 6094 struct pf_sctp_endpoint *ep; 6095 6096 PF_SCTP_ENDPOINTS_LOCK(); 6097 6098 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6099 if (ep == NULL) { 6100 ep = malloc(sizeof(struct pf_sctp_endpoint), 6101 M_PFTEMP, M_NOWAIT); 6102 if (ep == NULL) { 6103 PF_SCTP_ENDPOINTS_UNLOCK(); 6104 return; 6105 } 6106 6107 ep->v_tag = v_tag; 6108 TAILQ_INIT(&ep->sources); 6109 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 6110 } 6111 6112 /* Avoid inserting duplicates. */ 6113 TAILQ_FOREACH(i, &ep->sources, entry) { 6114 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 6115 PF_SCTP_ENDPOINTS_UNLOCK(); 6116 return; 6117 } 6118 } 6119 6120 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 6121 if (i == NULL) { 6122 PF_SCTP_ENDPOINTS_UNLOCK(); 6123 return; 6124 } 6125 6126 i->af = pd->af; 6127 memcpy(&i->addr, a, sizeof(*a)); 6128 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 6129 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 6130 6131 PF_SCTP_ENDPOINTS_UNLOCK(); 6132 } 6133 6134 static void 6135 pf_sctp_multihome_delayed(struct pf_pdesc *pd, int off, struct pfi_kkif *kif, 6136 struct pf_kstate *s, int action) 6137 { 6138 struct pf_sctp_multihome_job *j, *tmp; 6139 struct pf_sctp_source *i; 6140 int ret __unused; 6141 struct pf_kstate *sm = NULL; 6142 struct pf_krule *ra = NULL; 6143 struct pf_krule *r = &V_pf_default_rule; 6144 struct pf_kruleset *rs = NULL; 6145 bool do_extra = true; 6146 6147 PF_RULES_RLOCK_TRACKER; 6148 6149 again: 6150 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 6151 if (s == NULL || action != PF_PASS) 6152 goto free; 6153 6154 /* Confirm we don't recurse here. */ 6155 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 6156 6157 switch (j->op) { 6158 case SCTP_ADD_IP_ADDRESS: { 6159 uint32_t v_tag = pd->sctp_initiate_tag; 6160 6161 if (v_tag == 0) { 6162 if (s->direction == pd->dir) 6163 v_tag = s->src.scrub->pfss_v_tag; 6164 else 6165 v_tag = s->dst.scrub->pfss_v_tag; 6166 } 6167 6168 /* 6169 * Avoid duplicating states. We'll already have 6170 * created a state based on the source address of 6171 * the packet, but SCTP endpoints may also list this 6172 * address again in the INIT(_ACK) parameters. 6173 */ 6174 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 6175 break; 6176 } 6177 6178 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 6179 PF_RULES_RLOCK(); 6180 sm = NULL; 6181 /* 6182 * New connections need to be floating, because 6183 * we cannot know what interfaces it will use. 6184 * That's why we pass V_pfi_all rather than kif. 6185 */ 6186 ret = pf_test_rule(&r, &sm, V_pfi_all, 6187 j->m, off, &j->pd, &ra, &rs, NULL); 6188 PF_RULES_RUNLOCK(); 6189 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->m, ret); 6190 if (ret != PF_DROP && sm != NULL) { 6191 /* Inherit v_tag values. */ 6192 if (sm->direction == s->direction) { 6193 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6194 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6195 } else { 6196 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 6197 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 6198 } 6199 PF_STATE_UNLOCK(sm); 6200 } else { 6201 /* If we try duplicate inserts? */ 6202 break; 6203 } 6204 6205 /* Only add the address if we've actually allowed the state. */ 6206 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 6207 6208 if (! do_extra) { 6209 break; 6210 } 6211 /* 6212 * We need to do this for each of our source addresses. 6213 * Find those based on the verification tag. 6214 */ 6215 struct pf_sctp_endpoint key = { 6216 .v_tag = pd->hdr.sctp.v_tag, 6217 }; 6218 struct pf_sctp_endpoint *ep; 6219 6220 PF_SCTP_ENDPOINTS_LOCK(); 6221 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 6222 if (ep == NULL) { 6223 PF_SCTP_ENDPOINTS_UNLOCK(); 6224 break; 6225 } 6226 MPASS(ep != NULL); 6227 6228 TAILQ_FOREACH(i, &ep->sources, entry) { 6229 struct pf_sctp_multihome_job *nj; 6230 6231 /* SCTP can intermingle IPv4 and IPv6. */ 6232 if (i->af != pd->af) 6233 continue; 6234 6235 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 6236 if (! nj) { 6237 continue; 6238 } 6239 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 6240 memcpy(&nj->src, &j->src, sizeof(nj->src)); 6241 nj->pd.src = &nj->src; 6242 // New destination address! 6243 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 6244 nj->pd.dst = &nj->dst; 6245 nj->m = j->m; 6246 nj->op = j->op; 6247 6248 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 6249 } 6250 PF_SCTP_ENDPOINTS_UNLOCK(); 6251 6252 break; 6253 } 6254 case SCTP_DEL_IP_ADDRESS: { 6255 struct pf_state_key_cmp key; 6256 uint8_t psrc; 6257 6258 bzero(&key, sizeof(key)); 6259 key.af = j->pd.af; 6260 key.proto = IPPROTO_SCTP; 6261 if (j->pd.dir == PF_IN) { /* wire side, straight */ 6262 PF_ACPY(&key.addr[0], j->pd.src, key.af); 6263 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 6264 key.port[0] = j->pd.hdr.sctp.src_port; 6265 key.port[1] = j->pd.hdr.sctp.dest_port; 6266 } else { /* stack side, reverse */ 6267 PF_ACPY(&key.addr[1], j->pd.src, key.af); 6268 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 6269 key.port[1] = j->pd.hdr.sctp.src_port; 6270 key.port[0] = j->pd.hdr.sctp.dest_port; 6271 } 6272 6273 sm = pf_find_state(kif, &key, j->pd.dir); 6274 if (sm != NULL) { 6275 PF_STATE_LOCK_ASSERT(sm); 6276 if (j->pd.dir == sm->direction) { 6277 psrc = PF_PEER_SRC; 6278 } else { 6279 psrc = PF_PEER_DST; 6280 } 6281 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 6282 sm->timeout = PFTM_SCTP_CLOSING; 6283 PF_STATE_UNLOCK(sm); 6284 } 6285 break; 6286 default: 6287 panic("Unknown op %#x", j->op); 6288 } 6289 } 6290 6291 free: 6292 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 6293 free(j, M_PFTEMP); 6294 } 6295 6296 /* We may have inserted extra work while processing the list. */ 6297 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 6298 do_extra = false; 6299 goto again; 6300 } 6301 } 6302 6303 static int 6304 pf_multihome_scan(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6305 struct pfi_kkif *kif, int op) 6306 { 6307 int off = 0; 6308 struct pf_sctp_multihome_job *job; 6309 6310 while (off < len) { 6311 struct sctp_paramhdr h; 6312 6313 if (!pf_pull_hdr(m, start + off, &h, sizeof(h), NULL, NULL, 6314 pd->af)) 6315 return (PF_DROP); 6316 6317 /* Parameters are at least 4 bytes. */ 6318 if (ntohs(h.param_length) < 4) 6319 return (PF_DROP); 6320 6321 switch (ntohs(h.param_type)) { 6322 case SCTP_IPV4_ADDRESS: { 6323 struct in_addr t; 6324 6325 if (ntohs(h.param_length) != 6326 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6327 return (PF_DROP); 6328 6329 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6330 NULL, NULL, pd->af)) 6331 return (PF_DROP); 6332 6333 if (in_nullhost(t)) 6334 t.s_addr = pd->src->v4.s_addr; 6335 6336 /* 6337 * We hold the state lock (idhash) here, which means 6338 * that we can't acquire the keyhash, or we'll get a 6339 * LOR (and potentially double-lock things too). We also 6340 * can't release the state lock here, so instead we'll 6341 * enqueue this for async handling. 6342 * There's a relatively small race here, in that a 6343 * packet using the new addresses could arrive already, 6344 * but that's just though luck for it. 6345 */ 6346 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6347 if (! job) 6348 return (PF_DROP); 6349 6350 memcpy(&job->pd, pd, sizeof(*pd)); 6351 6352 // New source address! 6353 memcpy(&job->src, &t, sizeof(t)); 6354 job->pd.src = &job->src; 6355 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6356 job->pd.dst = &job->dst; 6357 job->m = m; 6358 job->op = op; 6359 6360 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6361 break; 6362 } 6363 #ifdef INET6 6364 case SCTP_IPV6_ADDRESS: { 6365 struct in6_addr t; 6366 6367 if (ntohs(h.param_length) != 6368 (sizeof(struct sctp_paramhdr) + sizeof(t))) 6369 return (PF_DROP); 6370 6371 if (!pf_pull_hdr(m, start + off + sizeof(h), &t, sizeof(t), 6372 NULL, NULL, pd->af)) 6373 return (PF_DROP); 6374 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 6375 break; 6376 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 6377 memcpy(&t, &pd->src->v6, sizeof(t)); 6378 6379 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 6380 if (! job) 6381 return (PF_DROP); 6382 6383 memcpy(&job->pd, pd, sizeof(*pd)); 6384 memcpy(&job->src, &t, sizeof(t)); 6385 job->pd.src = &job->src; 6386 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 6387 job->pd.dst = &job->dst; 6388 job->m = m; 6389 job->op = op; 6390 6391 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 6392 break; 6393 } 6394 #endif 6395 case SCTP_ADD_IP_ADDRESS: { 6396 int ret; 6397 struct sctp_asconf_paramhdr ah; 6398 6399 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6400 NULL, NULL, pd->af)) 6401 return (PF_DROP); 6402 6403 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6404 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6405 SCTP_ADD_IP_ADDRESS); 6406 if (ret != PF_PASS) 6407 return (ret); 6408 break; 6409 } 6410 case SCTP_DEL_IP_ADDRESS: { 6411 int ret; 6412 struct sctp_asconf_paramhdr ah; 6413 6414 if (!pf_pull_hdr(m, start + off, &ah, sizeof(ah), 6415 NULL, NULL, pd->af)) 6416 return (PF_DROP); 6417 ret = pf_multihome_scan(m, start + off + sizeof(ah), 6418 ntohs(ah.ph.param_length) - sizeof(ah), pd, kif, 6419 SCTP_DEL_IP_ADDRESS); 6420 if (ret != PF_PASS) 6421 return (ret); 6422 break; 6423 } 6424 default: 6425 break; 6426 } 6427 6428 off += roundup(ntohs(h.param_length), 4); 6429 } 6430 6431 return (PF_PASS); 6432 } 6433 int 6434 pf_multihome_scan_init(struct mbuf *m, int start, int len, struct pf_pdesc *pd, 6435 struct pfi_kkif *kif) 6436 { 6437 start += sizeof(struct sctp_init_chunk); 6438 len -= sizeof(struct sctp_init_chunk); 6439 6440 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6441 } 6442 6443 int 6444 pf_multihome_scan_asconf(struct mbuf *m, int start, int len, 6445 struct pf_pdesc *pd, struct pfi_kkif *kif) 6446 { 6447 start += sizeof(struct sctp_asconf_chunk); 6448 len -= sizeof(struct sctp_asconf_chunk); 6449 6450 return (pf_multihome_scan(m, start, len, pd, kif, SCTP_ADD_IP_ADDRESS)); 6451 } 6452 6453 static int 6454 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 6455 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 6456 { 6457 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 6458 u_int16_t icmpid = 0, *icmpsum; 6459 u_int8_t icmptype, icmpcode; 6460 int state_icmp = 0; 6461 struct pf_state_key_cmp key; 6462 6463 bzero(&key, sizeof(key)); 6464 switch (pd->proto) { 6465 #ifdef INET 6466 case IPPROTO_ICMP: 6467 icmptype = pd->hdr.icmp.icmp_type; 6468 icmpcode = pd->hdr.icmp.icmp_code; 6469 icmpid = pd->hdr.icmp.icmp_id; 6470 icmpsum = &pd->hdr.icmp.icmp_cksum; 6471 6472 if (icmptype == ICMP_UNREACH || 6473 icmptype == ICMP_SOURCEQUENCH || 6474 icmptype == ICMP_REDIRECT || 6475 icmptype == ICMP_TIMXCEED || 6476 icmptype == ICMP_PARAMPROB) 6477 state_icmp++; 6478 break; 6479 #endif /* INET */ 6480 #ifdef INET6 6481 case IPPROTO_ICMPV6: 6482 icmptype = pd->hdr.icmp6.icmp6_type; 6483 icmpcode = pd->hdr.icmp6.icmp6_code; 6484 icmpid = pd->hdr.icmp6.icmp6_id; 6485 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 6486 6487 if (icmptype == ICMP6_DST_UNREACH || 6488 icmptype == ICMP6_PACKET_TOO_BIG || 6489 icmptype == ICMP6_TIME_EXCEEDED || 6490 icmptype == ICMP6_PARAM_PROB) 6491 state_icmp++; 6492 break; 6493 #endif /* INET6 */ 6494 } 6495 6496 if (!state_icmp) { 6497 /* 6498 * ICMP query/reply message not related to a TCP/UDP packet. 6499 * Search for an ICMP state. 6500 */ 6501 key.af = pd->af; 6502 key.proto = pd->proto; 6503 key.port[0] = key.port[1] = icmpid; 6504 if (pd->dir == PF_IN) { /* wire side, straight */ 6505 PF_ACPY(&key.addr[0], pd->src, key.af); 6506 PF_ACPY(&key.addr[1], pd->dst, key.af); 6507 } else { /* stack side, reverse */ 6508 PF_ACPY(&key.addr[1], pd->src, key.af); 6509 PF_ACPY(&key.addr[0], pd->dst, key.af); 6510 } 6511 6512 STATE_LOOKUP(kif, &key, *state, pd); 6513 6514 (*state)->expire = pf_get_uptime(); 6515 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 6516 6517 /* translate source/destination address, if necessary */ 6518 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6519 struct pf_state_key *nk = (*state)->key[pd->didx]; 6520 6521 switch (pd->af) { 6522 #ifdef INET 6523 case AF_INET: 6524 if (PF_ANEQ(pd->src, 6525 &nk->addr[pd->sidx], AF_INET)) 6526 pf_change_a(&saddr->v4.s_addr, 6527 pd->ip_sum, 6528 nk->addr[pd->sidx].v4.s_addr, 0); 6529 6530 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 6531 AF_INET)) 6532 pf_change_a(&daddr->v4.s_addr, 6533 pd->ip_sum, 6534 nk->addr[pd->didx].v4.s_addr, 0); 6535 6536 if (nk->port[0] != 6537 pd->hdr.icmp.icmp_id) { 6538 pd->hdr.icmp.icmp_cksum = 6539 pf_cksum_fixup( 6540 pd->hdr.icmp.icmp_cksum, icmpid, 6541 nk->port[pd->sidx], 0); 6542 pd->hdr.icmp.icmp_id = 6543 nk->port[pd->sidx]; 6544 } 6545 6546 m_copyback(m, off, ICMP_MINLEN, 6547 (caddr_t )&pd->hdr.icmp); 6548 break; 6549 #endif /* INET */ 6550 #ifdef INET6 6551 case AF_INET6: 6552 if (PF_ANEQ(pd->src, 6553 &nk->addr[pd->sidx], AF_INET6)) 6554 pf_change_a6(saddr, 6555 &pd->hdr.icmp6.icmp6_cksum, 6556 &nk->addr[pd->sidx], 0); 6557 6558 if (PF_ANEQ(pd->dst, 6559 &nk->addr[pd->didx], AF_INET6)) 6560 pf_change_a6(daddr, 6561 &pd->hdr.icmp6.icmp6_cksum, 6562 &nk->addr[pd->didx], 0); 6563 6564 m_copyback(m, off, sizeof(struct icmp6_hdr), 6565 (caddr_t )&pd->hdr.icmp6); 6566 break; 6567 #endif /* INET6 */ 6568 } 6569 } 6570 return (PF_PASS); 6571 6572 } else { 6573 /* 6574 * ICMP error message in response to a TCP/UDP packet. 6575 * Extract the inner TCP/UDP header and search for that state. 6576 */ 6577 6578 struct pf_pdesc pd2; 6579 bzero(&pd2, sizeof pd2); 6580 #ifdef INET 6581 struct ip h2; 6582 #endif /* INET */ 6583 #ifdef INET6 6584 struct ip6_hdr h2_6; 6585 int terminal = 0; 6586 #endif /* INET6 */ 6587 int ipoff2 = 0; 6588 int off2 = 0; 6589 6590 pd2.af = pd->af; 6591 /* Payload packet is from the opposite direction. */ 6592 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6593 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6594 switch (pd->af) { 6595 #ifdef INET 6596 case AF_INET: 6597 /* offset of h2 in mbuf chain */ 6598 ipoff2 = off + ICMP_MINLEN; 6599 6600 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6601 NULL, reason, pd2.af)) { 6602 DPFPRINTF(PF_DEBUG_MISC, 6603 ("pf: ICMP error message too short " 6604 "(ip)\n")); 6605 return (PF_DROP); 6606 } 6607 /* 6608 * ICMP error messages don't refer to non-first 6609 * fragments 6610 */ 6611 if (h2.ip_off & htons(IP_OFFMASK)) { 6612 REASON_SET(reason, PFRES_FRAG); 6613 return (PF_DROP); 6614 } 6615 6616 /* offset of protocol header that follows h2 */ 6617 off2 = ipoff2 + (h2.ip_hl << 2); 6618 6619 pd2.proto = h2.ip_p; 6620 pd2.src = (struct pf_addr *)&h2.ip_src; 6621 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6622 pd2.ip_sum = &h2.ip_sum; 6623 break; 6624 #endif /* INET */ 6625 #ifdef INET6 6626 case AF_INET6: 6627 ipoff2 = off + sizeof(struct icmp6_hdr); 6628 6629 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6630 NULL, reason, pd2.af)) { 6631 DPFPRINTF(PF_DEBUG_MISC, 6632 ("pf: ICMP error message too short " 6633 "(ip6)\n")); 6634 return (PF_DROP); 6635 } 6636 pd2.proto = h2_6.ip6_nxt; 6637 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6638 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6639 pd2.ip_sum = NULL; 6640 off2 = ipoff2 + sizeof(h2_6); 6641 do { 6642 switch (pd2.proto) { 6643 case IPPROTO_FRAGMENT: 6644 /* 6645 * ICMPv6 error messages for 6646 * non-first fragments 6647 */ 6648 REASON_SET(reason, PFRES_FRAG); 6649 return (PF_DROP); 6650 case IPPROTO_AH: 6651 case IPPROTO_HOPOPTS: 6652 case IPPROTO_ROUTING: 6653 case IPPROTO_DSTOPTS: { 6654 /* get next header and header length */ 6655 struct ip6_ext opt6; 6656 6657 if (!pf_pull_hdr(m, off2, &opt6, 6658 sizeof(opt6), NULL, reason, 6659 pd2.af)) { 6660 DPFPRINTF(PF_DEBUG_MISC, 6661 ("pf: ICMPv6 short opt\n")); 6662 return (PF_DROP); 6663 } 6664 if (pd2.proto == IPPROTO_AH) 6665 off2 += (opt6.ip6e_len + 2) * 4; 6666 else 6667 off2 += (opt6.ip6e_len + 1) * 8; 6668 pd2.proto = opt6.ip6e_nxt; 6669 /* goto the next header */ 6670 break; 6671 } 6672 default: 6673 terminal++; 6674 break; 6675 } 6676 } while (!terminal); 6677 break; 6678 #endif /* INET6 */ 6679 } 6680 6681 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6682 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6683 printf("pf: BAD ICMP %d:%d outer dst: ", 6684 icmptype, icmpcode); 6685 pf_print_host(pd->src, 0, pd->af); 6686 printf(" -> "); 6687 pf_print_host(pd->dst, 0, pd->af); 6688 printf(" inner src: "); 6689 pf_print_host(pd2.src, 0, pd2.af); 6690 printf(" -> "); 6691 pf_print_host(pd2.dst, 0, pd2.af); 6692 printf("\n"); 6693 } 6694 REASON_SET(reason, PFRES_BADSTATE); 6695 return (PF_DROP); 6696 } 6697 6698 switch (pd2.proto) { 6699 case IPPROTO_TCP: { 6700 struct tcphdr th; 6701 u_int32_t seq; 6702 struct pf_state_peer *src, *dst; 6703 u_int8_t dws; 6704 int copyback = 0; 6705 6706 /* 6707 * Only the first 8 bytes of the TCP header can be 6708 * expected. Don't access any TCP header fields after 6709 * th_seq, an ackskew test is not possible. 6710 */ 6711 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6712 pd2.af)) { 6713 DPFPRINTF(PF_DEBUG_MISC, 6714 ("pf: ICMP error message too short " 6715 "(tcp)\n")); 6716 return (PF_DROP); 6717 } 6718 6719 key.af = pd2.af; 6720 key.proto = IPPROTO_TCP; 6721 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6722 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6723 key.port[pd2.sidx] = th.th_sport; 6724 key.port[pd2.didx] = th.th_dport; 6725 6726 STATE_LOOKUP(kif, &key, *state, pd); 6727 6728 if (pd->dir == (*state)->direction) { 6729 src = &(*state)->dst; 6730 dst = &(*state)->src; 6731 } else { 6732 src = &(*state)->src; 6733 dst = &(*state)->dst; 6734 } 6735 6736 if (src->wscale && dst->wscale) 6737 dws = dst->wscale & PF_WSCALE_MASK; 6738 else 6739 dws = 0; 6740 6741 /* Demodulate sequence number */ 6742 seq = ntohl(th.th_seq) - src->seqdiff; 6743 if (src->seqdiff) { 6744 pf_change_a(&th.th_seq, icmpsum, 6745 htonl(seq), 0); 6746 copyback = 1; 6747 } 6748 6749 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6750 (!SEQ_GEQ(src->seqhi, seq) || 6751 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6752 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6753 printf("pf: BAD ICMP %d:%d ", 6754 icmptype, icmpcode); 6755 pf_print_host(pd->src, 0, pd->af); 6756 printf(" -> "); 6757 pf_print_host(pd->dst, 0, pd->af); 6758 printf(" state: "); 6759 pf_print_state(*state); 6760 printf(" seq=%u\n", seq); 6761 } 6762 REASON_SET(reason, PFRES_BADSTATE); 6763 return (PF_DROP); 6764 } else { 6765 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6766 printf("pf: OK ICMP %d:%d ", 6767 icmptype, icmpcode); 6768 pf_print_host(pd->src, 0, pd->af); 6769 printf(" -> "); 6770 pf_print_host(pd->dst, 0, pd->af); 6771 printf(" state: "); 6772 pf_print_state(*state); 6773 printf(" seq=%u\n", seq); 6774 } 6775 } 6776 6777 /* translate source/destination address, if necessary */ 6778 if ((*state)->key[PF_SK_WIRE] != 6779 (*state)->key[PF_SK_STACK]) { 6780 struct pf_state_key *nk = 6781 (*state)->key[pd->didx]; 6782 6783 if (PF_ANEQ(pd2.src, 6784 &nk->addr[pd2.sidx], pd2.af) || 6785 nk->port[pd2.sidx] != th.th_sport) 6786 pf_change_icmp(pd2.src, &th.th_sport, 6787 daddr, &nk->addr[pd2.sidx], 6788 nk->port[pd2.sidx], NULL, 6789 pd2.ip_sum, icmpsum, 6790 pd->ip_sum, 0, pd2.af); 6791 6792 if (PF_ANEQ(pd2.dst, 6793 &nk->addr[pd2.didx], pd2.af) || 6794 nk->port[pd2.didx] != th.th_dport) 6795 pf_change_icmp(pd2.dst, &th.th_dport, 6796 saddr, &nk->addr[pd2.didx], 6797 nk->port[pd2.didx], NULL, 6798 pd2.ip_sum, icmpsum, 6799 pd->ip_sum, 0, pd2.af); 6800 copyback = 1; 6801 } 6802 6803 if (copyback) { 6804 switch (pd2.af) { 6805 #ifdef INET 6806 case AF_INET: 6807 m_copyback(m, off, ICMP_MINLEN, 6808 (caddr_t )&pd->hdr.icmp); 6809 m_copyback(m, ipoff2, sizeof(h2), 6810 (caddr_t )&h2); 6811 break; 6812 #endif /* INET */ 6813 #ifdef INET6 6814 case AF_INET6: 6815 m_copyback(m, off, 6816 sizeof(struct icmp6_hdr), 6817 (caddr_t )&pd->hdr.icmp6); 6818 m_copyback(m, ipoff2, sizeof(h2_6), 6819 (caddr_t )&h2_6); 6820 break; 6821 #endif /* INET6 */ 6822 } 6823 m_copyback(m, off2, 8, (caddr_t)&th); 6824 } 6825 6826 return (PF_PASS); 6827 break; 6828 } 6829 case IPPROTO_UDP: { 6830 struct udphdr uh; 6831 6832 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6833 NULL, reason, pd2.af)) { 6834 DPFPRINTF(PF_DEBUG_MISC, 6835 ("pf: ICMP error message too short " 6836 "(udp)\n")); 6837 return (PF_DROP); 6838 } 6839 6840 key.af = pd2.af; 6841 key.proto = IPPROTO_UDP; 6842 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6843 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6844 key.port[pd2.sidx] = uh.uh_sport; 6845 key.port[pd2.didx] = uh.uh_dport; 6846 6847 STATE_LOOKUP(kif, &key, *state, pd); 6848 6849 /* translate source/destination address, if necessary */ 6850 if ((*state)->key[PF_SK_WIRE] != 6851 (*state)->key[PF_SK_STACK]) { 6852 struct pf_state_key *nk = 6853 (*state)->key[pd->didx]; 6854 6855 if (PF_ANEQ(pd2.src, 6856 &nk->addr[pd2.sidx], pd2.af) || 6857 nk->port[pd2.sidx] != uh.uh_sport) 6858 pf_change_icmp(pd2.src, &uh.uh_sport, 6859 daddr, &nk->addr[pd2.sidx], 6860 nk->port[pd2.sidx], &uh.uh_sum, 6861 pd2.ip_sum, icmpsum, 6862 pd->ip_sum, 1, pd2.af); 6863 6864 if (PF_ANEQ(pd2.dst, 6865 &nk->addr[pd2.didx], pd2.af) || 6866 nk->port[pd2.didx] != uh.uh_dport) 6867 pf_change_icmp(pd2.dst, &uh.uh_dport, 6868 saddr, &nk->addr[pd2.didx], 6869 nk->port[pd2.didx], &uh.uh_sum, 6870 pd2.ip_sum, icmpsum, 6871 pd->ip_sum, 1, pd2.af); 6872 6873 switch (pd2.af) { 6874 #ifdef INET 6875 case AF_INET: 6876 m_copyback(m, off, ICMP_MINLEN, 6877 (caddr_t )&pd->hdr.icmp); 6878 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6879 break; 6880 #endif /* INET */ 6881 #ifdef INET6 6882 case AF_INET6: 6883 m_copyback(m, off, 6884 sizeof(struct icmp6_hdr), 6885 (caddr_t )&pd->hdr.icmp6); 6886 m_copyback(m, ipoff2, sizeof(h2_6), 6887 (caddr_t )&h2_6); 6888 break; 6889 #endif /* INET6 */ 6890 } 6891 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6892 } 6893 return (PF_PASS); 6894 break; 6895 } 6896 #ifdef INET 6897 case IPPROTO_ICMP: { 6898 struct icmp iih; 6899 6900 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6901 NULL, reason, pd2.af)) { 6902 DPFPRINTF(PF_DEBUG_MISC, 6903 ("pf: ICMP error message too short i" 6904 "(icmp)\n")); 6905 return (PF_DROP); 6906 } 6907 6908 key.af = pd2.af; 6909 key.proto = IPPROTO_ICMP; 6910 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6911 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6912 key.port[0] = key.port[1] = iih.icmp_id; 6913 6914 STATE_LOOKUP(kif, &key, *state, pd); 6915 6916 /* translate source/destination address, if necessary */ 6917 if ((*state)->key[PF_SK_WIRE] != 6918 (*state)->key[PF_SK_STACK]) { 6919 struct pf_state_key *nk = 6920 (*state)->key[pd->didx]; 6921 6922 if (PF_ANEQ(pd2.src, 6923 &nk->addr[pd2.sidx], pd2.af) || 6924 nk->port[pd2.sidx] != iih.icmp_id) 6925 pf_change_icmp(pd2.src, &iih.icmp_id, 6926 daddr, &nk->addr[pd2.sidx], 6927 nk->port[pd2.sidx], NULL, 6928 pd2.ip_sum, icmpsum, 6929 pd->ip_sum, 0, AF_INET); 6930 6931 if (PF_ANEQ(pd2.dst, 6932 &nk->addr[pd2.didx], pd2.af) || 6933 nk->port[pd2.didx] != iih.icmp_id) 6934 pf_change_icmp(pd2.dst, &iih.icmp_id, 6935 saddr, &nk->addr[pd2.didx], 6936 nk->port[pd2.didx], NULL, 6937 pd2.ip_sum, icmpsum, 6938 pd->ip_sum, 0, AF_INET); 6939 6940 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6941 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6942 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6943 } 6944 return (PF_PASS); 6945 break; 6946 } 6947 #endif /* INET */ 6948 #ifdef INET6 6949 case IPPROTO_ICMPV6: { 6950 struct icmp6_hdr iih; 6951 6952 if (!pf_pull_hdr(m, off2, &iih, 6953 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6954 DPFPRINTF(PF_DEBUG_MISC, 6955 ("pf: ICMP error message too short " 6956 "(icmp6)\n")); 6957 return (PF_DROP); 6958 } 6959 6960 key.af = pd2.af; 6961 key.proto = IPPROTO_ICMPV6; 6962 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6963 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6964 key.port[0] = key.port[1] = iih.icmp6_id; 6965 6966 STATE_LOOKUP(kif, &key, *state, pd); 6967 6968 /* translate source/destination address, if necessary */ 6969 if ((*state)->key[PF_SK_WIRE] != 6970 (*state)->key[PF_SK_STACK]) { 6971 struct pf_state_key *nk = 6972 (*state)->key[pd->didx]; 6973 6974 if (PF_ANEQ(pd2.src, 6975 &nk->addr[pd2.sidx], pd2.af) || 6976 nk->port[pd2.sidx] != iih.icmp6_id) 6977 pf_change_icmp(pd2.src, &iih.icmp6_id, 6978 daddr, &nk->addr[pd2.sidx], 6979 nk->port[pd2.sidx], NULL, 6980 pd2.ip_sum, icmpsum, 6981 pd->ip_sum, 0, AF_INET6); 6982 6983 if (PF_ANEQ(pd2.dst, 6984 &nk->addr[pd2.didx], pd2.af) || 6985 nk->port[pd2.didx] != iih.icmp6_id) 6986 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6987 saddr, &nk->addr[pd2.didx], 6988 nk->port[pd2.didx], NULL, 6989 pd2.ip_sum, icmpsum, 6990 pd->ip_sum, 0, AF_INET6); 6991 6992 m_copyback(m, off, sizeof(struct icmp6_hdr), 6993 (caddr_t)&pd->hdr.icmp6); 6994 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6995 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6996 (caddr_t)&iih); 6997 } 6998 return (PF_PASS); 6999 break; 7000 } 7001 #endif /* INET6 */ 7002 default: { 7003 key.af = pd2.af; 7004 key.proto = pd2.proto; 7005 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7006 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7007 key.port[0] = key.port[1] = 0; 7008 7009 STATE_LOOKUP(kif, &key, *state, pd); 7010 7011 /* translate source/destination address, if necessary */ 7012 if ((*state)->key[PF_SK_WIRE] != 7013 (*state)->key[PF_SK_STACK]) { 7014 struct pf_state_key *nk = 7015 (*state)->key[pd->didx]; 7016 7017 if (PF_ANEQ(pd2.src, 7018 &nk->addr[pd2.sidx], pd2.af)) 7019 pf_change_icmp(pd2.src, NULL, daddr, 7020 &nk->addr[pd2.sidx], 0, NULL, 7021 pd2.ip_sum, icmpsum, 7022 pd->ip_sum, 0, pd2.af); 7023 7024 if (PF_ANEQ(pd2.dst, 7025 &nk->addr[pd2.didx], pd2.af)) 7026 pf_change_icmp(pd2.dst, NULL, saddr, 7027 &nk->addr[pd2.didx], 0, NULL, 7028 pd2.ip_sum, icmpsum, 7029 pd->ip_sum, 0, pd2.af); 7030 7031 switch (pd2.af) { 7032 #ifdef INET 7033 case AF_INET: 7034 m_copyback(m, off, ICMP_MINLEN, 7035 (caddr_t)&pd->hdr.icmp); 7036 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 7037 break; 7038 #endif /* INET */ 7039 #ifdef INET6 7040 case AF_INET6: 7041 m_copyback(m, off, 7042 sizeof(struct icmp6_hdr), 7043 (caddr_t )&pd->hdr.icmp6); 7044 m_copyback(m, ipoff2, sizeof(h2_6), 7045 (caddr_t )&h2_6); 7046 break; 7047 #endif /* INET6 */ 7048 } 7049 } 7050 return (PF_PASS); 7051 break; 7052 } 7053 } 7054 } 7055 } 7056 7057 static int 7058 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 7059 struct mbuf *m, struct pf_pdesc *pd) 7060 { 7061 struct pf_state_peer *src, *dst; 7062 struct pf_state_key_cmp key; 7063 uint8_t psrc, pdst; 7064 7065 bzero(&key, sizeof(key)); 7066 key.af = pd->af; 7067 key.proto = pd->proto; 7068 if (pd->dir == PF_IN) { 7069 PF_ACPY(&key.addr[0], pd->src, key.af); 7070 PF_ACPY(&key.addr[1], pd->dst, key.af); 7071 key.port[0] = key.port[1] = 0; 7072 } else { 7073 PF_ACPY(&key.addr[1], pd->src, key.af); 7074 PF_ACPY(&key.addr[0], pd->dst, key.af); 7075 key.port[1] = key.port[0] = 0; 7076 } 7077 7078 STATE_LOOKUP(kif, &key, *state, pd); 7079 7080 if (pd->dir == (*state)->direction) { 7081 src = &(*state)->src; 7082 dst = &(*state)->dst; 7083 psrc = PF_PEER_SRC; 7084 pdst = PF_PEER_DST; 7085 } else { 7086 src = &(*state)->dst; 7087 dst = &(*state)->src; 7088 psrc = PF_PEER_DST; 7089 pdst = PF_PEER_SRC; 7090 } 7091 7092 /* update states */ 7093 if (src->state < PFOTHERS_SINGLE) 7094 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7095 if (dst->state == PFOTHERS_SINGLE) 7096 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7097 7098 /* update expire time */ 7099 (*state)->expire = pf_get_uptime(); 7100 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7101 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7102 else 7103 (*state)->timeout = PFTM_OTHER_SINGLE; 7104 7105 /* translate source/destination address, if necessary */ 7106 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7107 struct pf_state_key *nk = (*state)->key[pd->didx]; 7108 7109 KASSERT(nk, ("%s: nk is null", __func__)); 7110 KASSERT(pd, ("%s: pd is null", __func__)); 7111 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 7112 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 7113 switch (pd->af) { 7114 #ifdef INET 7115 case AF_INET: 7116 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7117 pf_change_a(&pd->src->v4.s_addr, 7118 pd->ip_sum, 7119 nk->addr[pd->sidx].v4.s_addr, 7120 0); 7121 7122 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7123 pf_change_a(&pd->dst->v4.s_addr, 7124 pd->ip_sum, 7125 nk->addr[pd->didx].v4.s_addr, 7126 0); 7127 7128 break; 7129 #endif /* INET */ 7130 #ifdef INET6 7131 case AF_INET6: 7132 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 7133 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 7134 7135 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 7136 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 7137 #endif /* INET6 */ 7138 } 7139 } 7140 return (PF_PASS); 7141 } 7142 7143 /* 7144 * ipoff and off are measured from the start of the mbuf chain. 7145 * h must be at "ipoff" on the mbuf chain. 7146 */ 7147 void * 7148 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 7149 u_short *actionp, u_short *reasonp, sa_family_t af) 7150 { 7151 switch (af) { 7152 #ifdef INET 7153 case AF_INET: { 7154 struct ip *h = mtod(m, struct ip *); 7155 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 7156 7157 if (fragoff) { 7158 if (fragoff >= len) 7159 ACTION_SET(actionp, PF_PASS); 7160 else { 7161 ACTION_SET(actionp, PF_DROP); 7162 REASON_SET(reasonp, PFRES_FRAG); 7163 } 7164 return (NULL); 7165 } 7166 if (m->m_pkthdr.len < off + len || 7167 ntohs(h->ip_len) < off + len) { 7168 ACTION_SET(actionp, PF_DROP); 7169 REASON_SET(reasonp, PFRES_SHORT); 7170 return (NULL); 7171 } 7172 break; 7173 } 7174 #endif /* INET */ 7175 #ifdef INET6 7176 case AF_INET6: { 7177 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 7178 7179 if (m->m_pkthdr.len < off + len || 7180 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 7181 (unsigned)(off + len)) { 7182 ACTION_SET(actionp, PF_DROP); 7183 REASON_SET(reasonp, PFRES_SHORT); 7184 return (NULL); 7185 } 7186 break; 7187 } 7188 #endif /* INET6 */ 7189 } 7190 m_copydata(m, off, len, p); 7191 return (p); 7192 } 7193 7194 int 7195 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 7196 int rtableid) 7197 { 7198 struct ifnet *ifp; 7199 7200 /* 7201 * Skip check for addresses with embedded interface scope, 7202 * as they would always match anyway. 7203 */ 7204 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 7205 return (1); 7206 7207 if (af != AF_INET && af != AF_INET6) 7208 return (0); 7209 7210 if (kif == V_pfi_all) 7211 return (1); 7212 7213 /* Skip checks for ipsec interfaces */ 7214 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 7215 return (1); 7216 7217 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 7218 7219 switch (af) { 7220 #ifdef INET6 7221 case AF_INET6: 7222 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 7223 ifp)); 7224 #endif 7225 #ifdef INET 7226 case AF_INET: 7227 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 7228 ifp)); 7229 #endif 7230 } 7231 7232 return (0); 7233 } 7234 7235 #ifdef INET 7236 static void 7237 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7238 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7239 { 7240 struct mbuf *m0, *m1, *md; 7241 struct sockaddr_in dst; 7242 struct ip *ip; 7243 struct pfi_kkif *nkif = NULL; 7244 struct ifnet *ifp = NULL; 7245 struct pf_addr naddr; 7246 struct pf_ksrc_node *sn = NULL; 7247 int error = 0; 7248 uint16_t ip_len, ip_off; 7249 uint16_t tmp; 7250 int r_rt, r_dir; 7251 7252 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7253 7254 if (s) { 7255 r_rt = s->rt; 7256 r_dir = s->direction; 7257 } else { 7258 r_rt = r->rt; 7259 r_dir = r->direction; 7260 } 7261 7262 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7263 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7264 __func__)); 7265 7266 if ((pd->pf_mtag == NULL && 7267 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7268 pd->pf_mtag->routed++ > 3) { 7269 m0 = *m; 7270 *m = NULL; 7271 goto bad_locked; 7272 } 7273 7274 if (r_rt == PF_DUPTO) { 7275 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7276 if (s == NULL) { 7277 ifp = r->rpool.cur->kif ? 7278 r->rpool.cur->kif->pfik_ifp : NULL; 7279 } else { 7280 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7281 /* If pfsync'd */ 7282 if (ifp == NULL && r->rpool.cur != NULL) 7283 ifp = r->rpool.cur->kif ? 7284 r->rpool.cur->kif->pfik_ifp : NULL; 7285 PF_STATE_UNLOCK(s); 7286 } 7287 if (ifp == oifp) { 7288 /* When the 2nd interface is not skipped */ 7289 return; 7290 } else { 7291 m0 = *m; 7292 *m = NULL; 7293 goto bad; 7294 } 7295 } else { 7296 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7297 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7298 if (s) 7299 PF_STATE_UNLOCK(s); 7300 return; 7301 } 7302 } 7303 } else { 7304 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7305 pf_dummynet(pd, s, r, m); 7306 if (s) 7307 PF_STATE_UNLOCK(s); 7308 return; 7309 } 7310 m0 = *m; 7311 } 7312 7313 ip = mtod(m0, struct ip *); 7314 7315 bzero(&dst, sizeof(dst)); 7316 dst.sin_family = AF_INET; 7317 dst.sin_len = sizeof(dst); 7318 dst.sin_addr = ip->ip_dst; 7319 7320 bzero(&naddr, sizeof(naddr)); 7321 7322 if (s == NULL) { 7323 if (TAILQ_EMPTY(&r->rpool.list)) { 7324 DPFPRINTF(PF_DEBUG_URGENT, 7325 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7326 goto bad_locked; 7327 } 7328 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 7329 &naddr, &nkif, NULL, &sn); 7330 if (!PF_AZERO(&naddr, AF_INET)) 7331 dst.sin_addr.s_addr = naddr.v4.s_addr; 7332 ifp = nkif ? nkif->pfik_ifp : NULL; 7333 } else { 7334 struct pfi_kkif *kif; 7335 7336 if (!PF_AZERO(&s->rt_addr, AF_INET)) 7337 dst.sin_addr.s_addr = 7338 s->rt_addr.v4.s_addr; 7339 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7340 kif = s->rt_kif; 7341 /* If pfsync'd */ 7342 if (ifp == NULL && r->rpool.cur != NULL) { 7343 ifp = r->rpool.cur->kif ? 7344 r->rpool.cur->kif->pfik_ifp : NULL; 7345 kif = r->rpool.cur->kif; 7346 } 7347 if (ifp != NULL && kif != NULL && 7348 r->rule_flag & PFRULE_IFBOUND && 7349 r->rt == PF_REPLYTO && 7350 s->kif == V_pfi_all) { 7351 s->kif = kif; 7352 s->orig_kif = oifp->if_pf_kif; 7353 } 7354 7355 PF_STATE_UNLOCK(s); 7356 } 7357 7358 if (ifp == NULL) 7359 goto bad; 7360 7361 if (pd->dir == PF_IN) { 7362 if (pf_test(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7363 goto bad; 7364 else if (m0 == NULL) 7365 goto done; 7366 if (m0->m_len < sizeof(struct ip)) { 7367 DPFPRINTF(PF_DEBUG_URGENT, 7368 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 7369 goto bad; 7370 } 7371 ip = mtod(m0, struct ip *); 7372 } 7373 7374 if (ifp->if_flags & IFF_LOOPBACK) 7375 m0->m_flags |= M_SKIP_FIREWALL; 7376 7377 ip_len = ntohs(ip->ip_len); 7378 ip_off = ntohs(ip->ip_off); 7379 7380 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 7381 m0->m_pkthdr.csum_flags |= CSUM_IP; 7382 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 7383 in_delayed_cksum(m0); 7384 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 7385 } 7386 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 7387 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 7388 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 7389 } 7390 7391 if (pd->dir == PF_IN) { 7392 /* 7393 * Make sure dummynet gets the correct direction, in case it needs to 7394 * re-inject later. 7395 */ 7396 pd->dir = PF_OUT; 7397 7398 /* 7399 * The following processing is actually the rest of the inbound processing, even 7400 * though we've marked it as outbound (so we don't look through dummynet) and it 7401 * happens after the outbound processing (pf_test(PF_OUT) above). 7402 * Swap the dummynet pipe numbers, because it's going to come to the wrong 7403 * conclusion about what direction it's processing, and we can't fix it or it 7404 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 7405 * decision will pick the right pipe, and everything will mostly work as expected. 7406 */ 7407 tmp = pd->act.dnrpipe; 7408 pd->act.dnrpipe = pd->act.dnpipe; 7409 pd->act.dnpipe = tmp; 7410 } 7411 7412 /* 7413 * If small enough for interface, or the interface will take 7414 * care of the fragmentation for us, we can just send directly. 7415 */ 7416 if (ip_len <= ifp->if_mtu || 7417 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 7418 ip->ip_sum = 0; 7419 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 7420 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 7421 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 7422 } 7423 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 7424 7425 md = m0; 7426 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7427 if (md != NULL) 7428 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 7429 goto done; 7430 } 7431 7432 /* Balk when DF bit is set or the interface didn't support TSO. */ 7433 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 7434 error = EMSGSIZE; 7435 KMOD_IPSTAT_INC(ips_cantfrag); 7436 if (r_rt != PF_DUPTO) { 7437 if (s && pd->nat_rule != NULL) 7438 PACKET_UNDO_NAT(m0, pd, 7439 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 7440 s); 7441 7442 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 7443 ifp->if_mtu); 7444 goto done; 7445 } else 7446 goto bad; 7447 } 7448 7449 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 7450 if (error) 7451 goto bad; 7452 7453 for (; m0; m0 = m1) { 7454 m1 = m0->m_nextpkt; 7455 m0->m_nextpkt = NULL; 7456 if (error == 0) { 7457 m_clrprotoflags(m0); 7458 md = m0; 7459 pd->pf_mtag = pf_find_mtag(md); 7460 error = pf_dummynet_route(pd, s, r, ifp, 7461 sintosa(&dst), &md); 7462 if (md != NULL) 7463 error = (*ifp->if_output)(ifp, md, 7464 sintosa(&dst), NULL); 7465 } else 7466 m_freem(m0); 7467 } 7468 7469 if (error == 0) 7470 KMOD_IPSTAT_INC(ips_fragmented); 7471 7472 done: 7473 if (r_rt != PF_DUPTO) 7474 *m = NULL; 7475 return; 7476 7477 bad_locked: 7478 if (s) 7479 PF_STATE_UNLOCK(s); 7480 bad: 7481 m_freem(m0); 7482 goto done; 7483 } 7484 #endif /* INET */ 7485 7486 #ifdef INET6 7487 static void 7488 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 7489 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 7490 { 7491 struct mbuf *m0, *md; 7492 struct sockaddr_in6 dst; 7493 struct ip6_hdr *ip6; 7494 struct pfi_kkif *nkif = NULL; 7495 struct ifnet *ifp = NULL; 7496 struct pf_addr naddr; 7497 struct pf_ksrc_node *sn = NULL; 7498 int r_rt, r_dir; 7499 7500 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 7501 7502 if (s) { 7503 r_rt = s->rt; 7504 r_dir = s->direction; 7505 } else { 7506 r_rt = r->rt; 7507 r_dir = r->direction; 7508 } 7509 7510 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 7511 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 7512 __func__)); 7513 7514 if ((pd->pf_mtag == NULL && 7515 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 7516 pd->pf_mtag->routed++ > 3) { 7517 m0 = *m; 7518 *m = NULL; 7519 goto bad_locked; 7520 } 7521 7522 if (r_rt == PF_DUPTO) { 7523 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 7524 if (s == NULL) { 7525 ifp = r->rpool.cur->kif ? 7526 r->rpool.cur->kif->pfik_ifp : NULL; 7527 } else { 7528 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7529 /* If pfsync'd */ 7530 if (ifp == NULL && r->rpool.cur != NULL) 7531 ifp = r->rpool.cur->kif ? 7532 r->rpool.cur->kif->pfik_ifp : NULL; 7533 PF_STATE_UNLOCK(s); 7534 } 7535 if (ifp == oifp) { 7536 /* When the 2nd interface is not skipped */ 7537 return; 7538 } else { 7539 m0 = *m; 7540 *m = NULL; 7541 goto bad; 7542 } 7543 } else { 7544 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 7545 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 7546 if (s) 7547 PF_STATE_UNLOCK(s); 7548 return; 7549 } 7550 } 7551 } else { 7552 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 7553 pf_dummynet(pd, s, r, m); 7554 if (s) 7555 PF_STATE_UNLOCK(s); 7556 return; 7557 } 7558 m0 = *m; 7559 } 7560 7561 ip6 = mtod(m0, struct ip6_hdr *); 7562 7563 bzero(&dst, sizeof(dst)); 7564 dst.sin6_family = AF_INET6; 7565 dst.sin6_len = sizeof(dst); 7566 dst.sin6_addr = ip6->ip6_dst; 7567 7568 bzero(&naddr, sizeof(naddr)); 7569 7570 if (s == NULL) { 7571 if (TAILQ_EMPTY(&r->rpool.list)) { 7572 DPFPRINTF(PF_DEBUG_URGENT, 7573 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 7574 goto bad_locked; 7575 } 7576 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 7577 &naddr, &nkif, NULL, &sn); 7578 if (!PF_AZERO(&naddr, AF_INET6)) 7579 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7580 &naddr, AF_INET6); 7581 ifp = nkif ? nkif->pfik_ifp : NULL; 7582 } else { 7583 struct pfi_kkif *kif; 7584 7585 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7586 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7587 &s->rt_addr, AF_INET6); 7588 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7589 kif = s->rt_kif; 7590 /* If pfsync'd */ 7591 if (ifp == NULL && r->rpool.cur != NULL) { 7592 ifp = r->rpool.cur->kif ? 7593 r->rpool.cur->kif->pfik_ifp : NULL; 7594 kif = r->rpool.cur->kif; 7595 } 7596 if (ifp != NULL && kif != NULL && 7597 r->rule_flag & PFRULE_IFBOUND && 7598 r->rt == PF_REPLYTO && 7599 s->kif == V_pfi_all) { 7600 s->kif = kif; 7601 s->orig_kif = oifp->if_pf_kif; 7602 } 7603 } 7604 7605 if (s) 7606 PF_STATE_UNLOCK(s); 7607 7608 if (ifp == NULL) 7609 goto bad; 7610 7611 if (pd->dir == PF_IN) { 7612 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp, &pd->act) != PF_PASS) 7613 goto bad; 7614 else if (m0 == NULL) 7615 goto done; 7616 if (m0->m_len < sizeof(struct ip6_hdr)) { 7617 DPFPRINTF(PF_DEBUG_URGENT, 7618 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7619 __func__)); 7620 goto bad; 7621 } 7622 ip6 = mtod(m0, struct ip6_hdr *); 7623 } 7624 7625 if (ifp->if_flags & IFF_LOOPBACK) 7626 m0->m_flags |= M_SKIP_FIREWALL; 7627 7628 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7629 ~ifp->if_hwassist) { 7630 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7631 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7632 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7633 } 7634 7635 /* 7636 * If the packet is too large for the outgoing interface, 7637 * send back an icmp6 error. 7638 */ 7639 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7640 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7641 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7642 md = m0; 7643 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7644 if (md != NULL) 7645 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7646 } 7647 else { 7648 in6_ifstat_inc(ifp, ifs6_in_toobig); 7649 if (r_rt != PF_DUPTO) { 7650 if (s && pd->nat_rule != NULL) 7651 PACKET_UNDO_NAT(m0, pd, 7652 ((caddr_t)ip6 - m0->m_data) + 7653 sizeof(struct ip6_hdr), s); 7654 7655 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7656 } else 7657 goto bad; 7658 } 7659 7660 done: 7661 if (r_rt != PF_DUPTO) 7662 *m = NULL; 7663 return; 7664 7665 bad_locked: 7666 if (s) 7667 PF_STATE_UNLOCK(s); 7668 bad: 7669 m_freem(m0); 7670 goto done; 7671 } 7672 #endif /* INET6 */ 7673 7674 /* 7675 * FreeBSD supports cksum offloads for the following drivers. 7676 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7677 * 7678 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7679 * network driver performed cksum including pseudo header, need to verify 7680 * csum_data 7681 * CSUM_DATA_VALID : 7682 * network driver performed cksum, needs to additional pseudo header 7683 * cksum computation with partial csum_data(i.e. lack of H/W support for 7684 * pseudo header, for instance sk(4) and possibly gem(4)) 7685 * 7686 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7687 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7688 * TCP/UDP layer. 7689 * Also, set csum_data to 0xffff to force cksum validation. 7690 */ 7691 static int 7692 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7693 { 7694 u_int16_t sum = 0; 7695 int hw_assist = 0; 7696 struct ip *ip; 7697 7698 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7699 return (1); 7700 if (m->m_pkthdr.len < off + len) 7701 return (1); 7702 7703 switch (p) { 7704 case IPPROTO_TCP: 7705 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7706 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7707 sum = m->m_pkthdr.csum_data; 7708 } else { 7709 ip = mtod(m, struct ip *); 7710 sum = in_pseudo(ip->ip_src.s_addr, 7711 ip->ip_dst.s_addr, htonl((u_short)len + 7712 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7713 } 7714 sum ^= 0xffff; 7715 ++hw_assist; 7716 } 7717 break; 7718 case IPPROTO_UDP: 7719 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7720 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7721 sum = m->m_pkthdr.csum_data; 7722 } else { 7723 ip = mtod(m, struct ip *); 7724 sum = in_pseudo(ip->ip_src.s_addr, 7725 ip->ip_dst.s_addr, htonl((u_short)len + 7726 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7727 } 7728 sum ^= 0xffff; 7729 ++hw_assist; 7730 } 7731 break; 7732 case IPPROTO_ICMP: 7733 #ifdef INET6 7734 case IPPROTO_ICMPV6: 7735 #endif /* INET6 */ 7736 break; 7737 default: 7738 return (1); 7739 } 7740 7741 if (!hw_assist) { 7742 switch (af) { 7743 case AF_INET: 7744 if (p == IPPROTO_ICMP) { 7745 if (m->m_len < off) 7746 return (1); 7747 m->m_data += off; 7748 m->m_len -= off; 7749 sum = in_cksum(m, len); 7750 m->m_data -= off; 7751 m->m_len += off; 7752 } else { 7753 if (m->m_len < sizeof(struct ip)) 7754 return (1); 7755 sum = in4_cksum(m, p, off, len); 7756 } 7757 break; 7758 #ifdef INET6 7759 case AF_INET6: 7760 if (m->m_len < sizeof(struct ip6_hdr)) 7761 return (1); 7762 sum = in6_cksum(m, p, off, len); 7763 break; 7764 #endif /* INET6 */ 7765 default: 7766 return (1); 7767 } 7768 } 7769 if (sum) { 7770 switch (p) { 7771 case IPPROTO_TCP: 7772 { 7773 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 7774 break; 7775 } 7776 case IPPROTO_UDP: 7777 { 7778 KMOD_UDPSTAT_INC(udps_badsum); 7779 break; 7780 } 7781 #ifdef INET 7782 case IPPROTO_ICMP: 7783 { 7784 KMOD_ICMPSTAT_INC(icps_checksum); 7785 break; 7786 } 7787 #endif 7788 #ifdef INET6 7789 case IPPROTO_ICMPV6: 7790 { 7791 KMOD_ICMP6STAT_INC(icp6s_checksum); 7792 break; 7793 } 7794 #endif /* INET6 */ 7795 } 7796 return (1); 7797 } else { 7798 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 7799 m->m_pkthdr.csum_flags |= 7800 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 7801 m->m_pkthdr.csum_data = 0xffff; 7802 } 7803 } 7804 return (0); 7805 } 7806 7807 static bool 7808 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 7809 const struct pf_kstate *s, struct ip_fw_args *dnflow) 7810 { 7811 int dndir = r->direction; 7812 7813 if (s && dndir == PF_INOUT) { 7814 dndir = s->direction; 7815 } else if (dndir == PF_INOUT) { 7816 /* Assume primary direction. Happens when we've set dnpipe in 7817 * the ethernet level code. */ 7818 dndir = pd->dir; 7819 } 7820 7821 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 7822 return (false); 7823 7824 memset(dnflow, 0, sizeof(*dnflow)); 7825 7826 if (pd->dport != NULL) 7827 dnflow->f_id.dst_port = ntohs(*pd->dport); 7828 if (pd->sport != NULL) 7829 dnflow->f_id.src_port = ntohs(*pd->sport); 7830 7831 if (pd->dir == PF_IN) 7832 dnflow->flags |= IPFW_ARGS_IN; 7833 else 7834 dnflow->flags |= IPFW_ARGS_OUT; 7835 7836 if (pd->dir != dndir && pd->act.dnrpipe) { 7837 dnflow->rule.info = pd->act.dnrpipe; 7838 } 7839 else if (pd->dir == dndir && pd->act.dnpipe) { 7840 dnflow->rule.info = pd->act.dnpipe; 7841 } 7842 else { 7843 return (false); 7844 } 7845 7846 dnflow->rule.info |= IPFW_IS_DUMMYNET; 7847 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 7848 dnflow->rule.info |= IPFW_IS_PIPE; 7849 7850 dnflow->f_id.proto = pd->proto; 7851 dnflow->f_id.extra = dnflow->rule.info; 7852 switch (pd->af) { 7853 case AF_INET: 7854 dnflow->f_id.addr_type = 4; 7855 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7856 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7857 break; 7858 case AF_INET6: 7859 dnflow->flags |= IPFW_ARGS_IP6; 7860 dnflow->f_id.addr_type = 6; 7861 dnflow->f_id.src_ip6 = pd->src->v6; 7862 dnflow->f_id.dst_ip6 = pd->dst->v6; 7863 break; 7864 default: 7865 panic("Invalid AF"); 7866 break; 7867 } 7868 7869 return (true); 7870 } 7871 7872 int 7873 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7874 struct inpcb *inp) 7875 { 7876 struct pfi_kkif *kif; 7877 struct mbuf *m = *m0; 7878 7879 M_ASSERTPKTHDR(m); 7880 MPASS(ifp->if_vnet == curvnet); 7881 NET_EPOCH_ASSERT(); 7882 7883 if (!V_pf_status.running) 7884 return (PF_PASS); 7885 7886 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7887 7888 if (kif == NULL) { 7889 DPFPRINTF(PF_DEBUG_URGENT, 7890 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7891 return (PF_DROP); 7892 } 7893 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7894 return (PF_PASS); 7895 7896 if (m->m_flags & M_SKIP_FIREWALL) 7897 return (PF_PASS); 7898 7899 /* Stateless! */ 7900 return (pf_test_eth_rule(dir, kif, m0)); 7901 } 7902 7903 static __inline void 7904 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 7905 { 7906 struct m_tag *mtag; 7907 7908 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7909 7910 /* dummynet adds this tag, but pf does not need it, 7911 * and keeping it creates unexpected behavior, 7912 * e.g. in case of divert(4) usage right after dummynet. */ 7913 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 7914 if (mtag != NULL) 7915 m_tag_delete(m, mtag); 7916 } 7917 7918 static int 7919 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7920 struct pf_krule *r, struct mbuf **m0) 7921 { 7922 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7923 } 7924 7925 static int 7926 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7927 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7928 struct mbuf **m0) 7929 { 7930 NET_EPOCH_ASSERT(); 7931 7932 if (pd->act.dnpipe || pd->act.dnrpipe) { 7933 struct ip_fw_args dnflow; 7934 if (ip_dn_io_ptr == NULL) { 7935 m_freem(*m0); 7936 *m0 = NULL; 7937 return (ENOMEM); 7938 } 7939 7940 if (pd->pf_mtag == NULL && 7941 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7942 m_freem(*m0); 7943 *m0 = NULL; 7944 return (ENOMEM); 7945 } 7946 7947 if (ifp != NULL) { 7948 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7949 7950 pd->pf_mtag->if_index = ifp->if_index; 7951 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7952 7953 MPASS(sa != NULL); 7954 7955 if (pd->af == AF_INET) 7956 memcpy(&pd->pf_mtag->dst, sa, 7957 sizeof(struct sockaddr_in)); 7958 else 7959 memcpy(&pd->pf_mtag->dst, sa, 7960 sizeof(struct sockaddr_in6)); 7961 } 7962 7963 if (s != NULL && s->nat_rule.ptr != NULL && 7964 s->nat_rule.ptr->action == PF_RDR && 7965 ( 7966 #ifdef INET 7967 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 7968 #endif 7969 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 7970 /* 7971 * If we're redirecting to loopback mark this packet 7972 * as being local. Otherwise it might get dropped 7973 * if dummynet re-injects. 7974 */ 7975 (*m0)->m_pkthdr.rcvif = V_loif; 7976 } 7977 7978 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7979 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7980 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 7981 ip_dn_io_ptr(m0, &dnflow); 7982 if (*m0 != NULL) { 7983 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7984 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 7985 } 7986 } 7987 } 7988 7989 return (0); 7990 } 7991 7992 #ifdef INET 7993 int 7994 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7995 struct inpcb *inp, struct pf_rule_actions *default_actions) 7996 { 7997 struct pfi_kkif *kif; 7998 u_short action, reason = 0; 7999 struct mbuf *m = *m0; 8000 struct ip *h = NULL; 8001 struct m_tag *mtag; 8002 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8003 struct pf_kstate *s = NULL; 8004 struct pf_kruleset *ruleset = NULL; 8005 struct pf_pdesc pd; 8006 int off, dirndx, use_2nd_queue = 0; 8007 uint16_t tag; 8008 uint8_t rt; 8009 8010 PF_RULES_RLOCK_TRACKER; 8011 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8012 M_ASSERTPKTHDR(m); 8013 8014 if (!V_pf_status.running) 8015 return (PF_PASS); 8016 8017 PF_RULES_RLOCK(); 8018 8019 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8020 8021 if (__predict_false(kif == NULL)) { 8022 DPFPRINTF(PF_DEBUG_URGENT, 8023 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 8024 PF_RULES_RUNLOCK(); 8025 return (PF_DROP); 8026 } 8027 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8028 PF_RULES_RUNLOCK(); 8029 return (PF_PASS); 8030 } 8031 8032 if (m->m_flags & M_SKIP_FIREWALL) { 8033 PF_RULES_RUNLOCK(); 8034 return (PF_PASS); 8035 } 8036 8037 memset(&pd, 0, sizeof(pd)); 8038 TAILQ_INIT(&pd.sctp_multihome_jobs); 8039 if (default_actions != NULL) 8040 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8041 pd.pf_mtag = pf_find_mtag(m); 8042 8043 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8044 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8045 8046 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8047 pd.pf_mtag->if_idxgen); 8048 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8049 PF_RULES_RUNLOCK(); 8050 m_freem(*m0); 8051 *m0 = NULL; 8052 return (PF_PASS); 8053 } 8054 PF_RULES_RUNLOCK(); 8055 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 8056 *m0 = NULL; 8057 return (PF_PASS); 8058 } 8059 8060 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8061 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8062 pd.act.flags = pd.pf_mtag->dnflags; 8063 } 8064 8065 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8066 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8067 /* Dummynet re-injects packets after they've 8068 * completed their delay. We've already 8069 * processed them, so pass unconditionally. */ 8070 8071 /* But only once. We may see the packet multiple times (e.g. 8072 * PFIL_IN/PFIL_OUT). */ 8073 pf_dummynet_flag_remove(m, pd.pf_mtag); 8074 PF_RULES_RUNLOCK(); 8075 8076 return (PF_PASS); 8077 } 8078 8079 pd.sport = pd.dport = NULL; 8080 pd.proto_sum = NULL; 8081 pd.dir = dir; 8082 pd.sidx = (dir == PF_IN) ? 0 : 1; 8083 pd.didx = (dir == PF_IN) ? 1 : 0; 8084 pd.af = AF_INET; 8085 pd.act.rtableid = -1; 8086 8087 if (m->m_len < sizeof(struct ip) && 8088 (m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 8089 DPFPRINTF(PF_DEBUG_URGENT, 8090 ("pf_test: m_len < sizeof(struct ip), pullup failed\n")); 8091 PF_RULES_RUNLOCK(); 8092 return (PF_DROP); 8093 } 8094 h = mtod(m, struct ip *); 8095 off = h->ip_hl << 2; 8096 8097 if (__predict_false(ip_divert_ptr != NULL) && 8098 ((mtag = m_tag_locate(m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 8099 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 8100 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 8101 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 8102 if (pd.pf_mtag == NULL && 8103 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8104 action = PF_DROP; 8105 goto done; 8106 } 8107 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 8108 } 8109 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 8110 m->m_flags |= M_FASTFWD_OURS; 8111 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8112 } 8113 m_tag_delete(m, mtag); 8114 8115 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 8116 if (mtag != NULL) 8117 m_tag_delete(m, mtag); 8118 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 8119 /* We do IP header normalization and packet reassembly here */ 8120 action = PF_DROP; 8121 goto done; 8122 } 8123 m = *m0; /* pf_normalize messes with m0 */ 8124 h = mtod(m, struct ip *); 8125 8126 off = h->ip_hl << 2; 8127 if (off < (int)sizeof(struct ip)) { 8128 action = PF_DROP; 8129 REASON_SET(&reason, PFRES_SHORT); 8130 pd.act.log = PF_LOG_FORCE; 8131 goto done; 8132 } 8133 8134 pd.src = (struct pf_addr *)&h->ip_src; 8135 pd.dst = (struct pf_addr *)&h->ip_dst; 8136 pd.ip_sum = &h->ip_sum; 8137 pd.proto = h->ip_p; 8138 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 8139 pd.tot_len = ntohs(h->ip_len); 8140 8141 /* handle fragments that didn't get reassembled by normalization */ 8142 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 8143 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 8144 goto done; 8145 } 8146 8147 switch (h->ip_p) { 8148 case IPPROTO_TCP: { 8149 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8150 &action, &reason, AF_INET)) { 8151 if (action != PF_PASS) 8152 pd.act.log = PF_LOG_FORCE; 8153 goto done; 8154 } 8155 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8156 8157 pd.sport = &pd.hdr.tcp.th_sport; 8158 pd.dport = &pd.hdr.tcp.th_dport; 8159 8160 /* Respond to SYN with a syncookie. */ 8161 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8162 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8163 pf_syncookie_send(m, off, &pd); 8164 action = PF_DROP; 8165 break; 8166 } 8167 8168 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 8169 use_2nd_queue = 1; 8170 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8171 if (action == PF_DROP) 8172 goto done; 8173 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8174 if (action == PF_PASS) { 8175 if (V_pfsync_update_state_ptr != NULL) 8176 V_pfsync_update_state_ptr(s); 8177 r = s->rule.ptr; 8178 a = s->anchor.ptr; 8179 } else if (s == NULL) { 8180 /* Validate remote SYN|ACK, re-create original SYN if 8181 * valid. */ 8182 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8183 TH_ACK && pf_syncookie_validate(&pd) && 8184 pd.dir == PF_IN) { 8185 struct mbuf *msyn; 8186 8187 msyn = pf_syncookie_recreate_syn(h->ip_ttl, off, 8188 &pd); 8189 if (msyn == NULL) { 8190 action = PF_DROP; 8191 break; 8192 } 8193 8194 action = pf_test(dir, pflags, ifp, &msyn, inp, 8195 &pd.act); 8196 m_freem(msyn); 8197 if (action != PF_PASS) 8198 break; 8199 8200 action = pf_test_state_tcp(&s, kif, m, off, h, 8201 &pd, &reason); 8202 if (action != PF_PASS || s == NULL) { 8203 action = PF_DROP; 8204 break; 8205 } 8206 8207 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8208 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8209 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8210 action = pf_synproxy(&pd, &s, &reason); 8211 break; 8212 } else { 8213 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8214 &a, &ruleset, inp); 8215 } 8216 } 8217 break; 8218 } 8219 8220 case IPPROTO_UDP: { 8221 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8222 &action, &reason, AF_INET)) { 8223 if (action != PF_PASS) 8224 pd.act.log = PF_LOG_FORCE; 8225 goto done; 8226 } 8227 pd.sport = &pd.hdr.udp.uh_sport; 8228 pd.dport = &pd.hdr.udp.uh_dport; 8229 if (pd.hdr.udp.uh_dport == 0 || 8230 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8231 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8232 action = PF_DROP; 8233 REASON_SET(&reason, PFRES_SHORT); 8234 goto done; 8235 } 8236 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8237 if (action == PF_PASS) { 8238 if (V_pfsync_update_state_ptr != NULL) 8239 V_pfsync_update_state_ptr(s); 8240 r = s->rule.ptr; 8241 a = s->anchor.ptr; 8242 } else if (s == NULL) 8243 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8244 &a, &ruleset, inp); 8245 break; 8246 } 8247 8248 case IPPROTO_SCTP: { 8249 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8250 &action, &reason, AF_INET)) { 8251 if (action != PF_PASS) 8252 pd.act.log |= PF_LOG_FORCE; 8253 goto done; 8254 } 8255 pd.p_len = pd.tot_len - off; 8256 8257 pd.sport = &pd.hdr.sctp.src_port; 8258 pd.dport = &pd.hdr.sctp.dest_port; 8259 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8260 action = PF_DROP; 8261 REASON_SET(&reason, PFRES_SHORT); 8262 goto done; 8263 } 8264 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8265 if (action == PF_DROP) 8266 goto done; 8267 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8268 &reason); 8269 if (action == PF_PASS) { 8270 if (V_pfsync_update_state_ptr != NULL) 8271 V_pfsync_update_state_ptr(s); 8272 r = s->rule.ptr; 8273 a = s->anchor.ptr; 8274 } else if (s == NULL) { 8275 action = pf_test_rule(&r, &s, kif, m, off, 8276 &pd, &a, &ruleset, inp); 8277 } 8278 break; 8279 } 8280 8281 case IPPROTO_ICMP: { 8282 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 8283 &action, &reason, AF_INET)) { 8284 if (action != PF_PASS) 8285 pd.act.log = PF_LOG_FORCE; 8286 goto done; 8287 } 8288 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8289 if (action == PF_PASS) { 8290 if (V_pfsync_update_state_ptr != NULL) 8291 V_pfsync_update_state_ptr(s); 8292 r = s->rule.ptr; 8293 a = s->anchor.ptr; 8294 } else if (s == NULL) 8295 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8296 &a, &ruleset, inp); 8297 break; 8298 } 8299 8300 #ifdef INET6 8301 case IPPROTO_ICMPV6: { 8302 action = PF_DROP; 8303 DPFPRINTF(PF_DEBUG_MISC, 8304 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 8305 goto done; 8306 } 8307 #endif 8308 8309 default: 8310 action = pf_test_state_other(&s, kif, m, &pd); 8311 if (action == PF_PASS) { 8312 if (V_pfsync_update_state_ptr != NULL) 8313 V_pfsync_update_state_ptr(s); 8314 r = s->rule.ptr; 8315 a = s->anchor.ptr; 8316 } else if (s == NULL) 8317 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8318 &a, &ruleset, inp); 8319 break; 8320 } 8321 8322 done: 8323 PF_RULES_RUNLOCK(); 8324 if (action == PF_PASS && h->ip_hl > 5 && 8325 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8326 action = PF_DROP; 8327 REASON_SET(&reason, PFRES_IPOPTIONS); 8328 pd.act.log = PF_LOG_FORCE; 8329 DPFPRINTF(PF_DEBUG_MISC, 8330 ("pf: dropping packet with ip options\n")); 8331 } 8332 8333 if (s) { 8334 uint8_t log = pd.act.log; 8335 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8336 pd.act.log |= log; 8337 tag = s->tag; 8338 rt = s->rt; 8339 } else { 8340 tag = r->tag; 8341 rt = r->rt; 8342 } 8343 8344 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8345 action = PF_DROP; 8346 REASON_SET(&reason, PFRES_MEMORY); 8347 } 8348 8349 pf_scrub_ip(&m, &pd); 8350 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8351 pf_normalize_mss(m, off, &pd); 8352 8353 if (pd.act.rtableid >= 0) 8354 M_SETFIB(m, pd.act.rtableid); 8355 8356 if (pd.act.flags & PFSTATE_SETPRIO) { 8357 if (pd.tos & IPTOS_LOWDELAY) 8358 use_2nd_queue = 1; 8359 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8360 action = PF_DROP; 8361 REASON_SET(&reason, PFRES_MEMORY); 8362 pd.act.log = PF_LOG_FORCE; 8363 DPFPRINTF(PF_DEBUG_MISC, 8364 ("pf: failed to allocate 802.1q mtag\n")); 8365 } 8366 } 8367 8368 #ifdef ALTQ 8369 if (action == PF_PASS && pd.act.qid) { 8370 if (pd.pf_mtag == NULL && 8371 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8372 action = PF_DROP; 8373 REASON_SET(&reason, PFRES_MEMORY); 8374 } else { 8375 if (s != NULL) 8376 pd.pf_mtag->qid_hash = pf_state_hash(s); 8377 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 8378 pd.pf_mtag->qid = pd.act.pqid; 8379 else 8380 pd.pf_mtag->qid = pd.act.qid; 8381 /* Add hints for ecn. */ 8382 pd.pf_mtag->hdr = h; 8383 } 8384 } 8385 #endif /* ALTQ */ 8386 8387 /* 8388 * connections redirected to loopback should not match sockets 8389 * bound specifically to loopback due to security implications, 8390 * see tcp_input() and in_pcblookup_listen(). 8391 */ 8392 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8393 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8394 (s->nat_rule.ptr->action == PF_RDR || 8395 s->nat_rule.ptr->action == PF_BINAT) && 8396 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 8397 m->m_flags |= M_SKIP_FIREWALL; 8398 8399 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 8400 r->divert.port && !PACKET_LOOPED(&pd)) { 8401 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 8402 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 8403 if (mtag != NULL) { 8404 ((struct pf_divert_mtag *)(mtag+1))->port = 8405 ntohs(r->divert.port); 8406 ((struct pf_divert_mtag *)(mtag+1))->idir = 8407 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 8408 PF_DIVERT_MTAG_DIR_OUT; 8409 8410 if (s) 8411 PF_STATE_UNLOCK(s); 8412 8413 m_tag_prepend(m, mtag); 8414 if (m->m_flags & M_FASTFWD_OURS) { 8415 if (pd.pf_mtag == NULL && 8416 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8417 action = PF_DROP; 8418 REASON_SET(&reason, PFRES_MEMORY); 8419 pd.act.log = PF_LOG_FORCE; 8420 DPFPRINTF(PF_DEBUG_MISC, 8421 ("pf: failed to allocate tag\n")); 8422 } else { 8423 pd.pf_mtag->flags |= 8424 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 8425 m->m_flags &= ~M_FASTFWD_OURS; 8426 } 8427 } 8428 ip_divert_ptr(*m0, dir == PF_IN); 8429 *m0 = NULL; 8430 8431 return (action); 8432 } else { 8433 /* XXX: ipfw has the same behaviour! */ 8434 action = PF_DROP; 8435 REASON_SET(&reason, PFRES_MEMORY); 8436 pd.act.log = PF_LOG_FORCE; 8437 DPFPRINTF(PF_DEBUG_MISC, 8438 ("pf: failed to allocate divert tag\n")); 8439 } 8440 } 8441 /* this flag will need revising if the pkt is forwarded */ 8442 if (pd.pf_mtag) 8443 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 8444 8445 if (pd.act.log) { 8446 struct pf_krule *lr; 8447 struct pf_krule_item *ri; 8448 8449 if (s != NULL && s->nat_rule.ptr != NULL && 8450 s->nat_rule.ptr->log & PF_LOG_ALL) 8451 lr = s->nat_rule.ptr; 8452 else 8453 lr = r; 8454 8455 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8456 PFLOG_PACKET(kif, m, AF_INET, action, reason, lr, a, 8457 ruleset, &pd, (s == NULL)); 8458 if (s) { 8459 SLIST_FOREACH(ri, &s->match_rules, entry) 8460 if (ri->r->log & PF_LOG_ALL) 8461 PFLOG_PACKET(kif, m, AF_INET, action, 8462 reason, ri->r, a, ruleset, &pd, 0); 8463 } 8464 } 8465 8466 pf_counter_u64_critical_enter(); 8467 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 8468 pd.tot_len); 8469 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 8470 1); 8471 8472 if (action == PF_PASS || r->action == PF_DROP) { 8473 dirndx = (dir == PF_OUT); 8474 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8475 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8476 pf_update_timestamp(r); 8477 8478 if (a != NULL) { 8479 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8480 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8481 } 8482 if (s != NULL) { 8483 struct pf_krule_item *ri; 8484 8485 if (s->nat_rule.ptr != NULL) { 8486 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8487 1); 8488 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8489 pd.tot_len); 8490 } 8491 if (s->src_node != NULL) { 8492 counter_u64_add(s->src_node->packets[dirndx], 8493 1); 8494 counter_u64_add(s->src_node->bytes[dirndx], 8495 pd.tot_len); 8496 } 8497 if (s->nat_src_node != NULL) { 8498 counter_u64_add(s->nat_src_node->packets[dirndx], 8499 1); 8500 counter_u64_add(s->nat_src_node->bytes[dirndx], 8501 pd.tot_len); 8502 } 8503 dirndx = (dir == s->direction) ? 0 : 1; 8504 s->packets[dirndx]++; 8505 s->bytes[dirndx] += pd.tot_len; 8506 SLIST_FOREACH(ri, &s->match_rules, entry) { 8507 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 8508 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 8509 } 8510 } 8511 tr = r; 8512 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8513 if (nr != NULL && r == &V_pf_default_rule) 8514 tr = nr; 8515 if (tr->src.addr.type == PF_ADDR_TABLE) 8516 pfr_update_stats(tr->src.addr.p.tbl, 8517 (s == NULL) ? pd.src : 8518 &s->key[(s->direction == PF_IN)]-> 8519 addr[(s->direction == PF_OUT)], 8520 pd.af, pd.tot_len, dir == PF_OUT, 8521 r->action == PF_PASS, tr->src.neg); 8522 if (tr->dst.addr.type == PF_ADDR_TABLE) 8523 pfr_update_stats(tr->dst.addr.p.tbl, 8524 (s == NULL) ? pd.dst : 8525 &s->key[(s->direction == PF_IN)]-> 8526 addr[(s->direction == PF_IN)], 8527 pd.af, pd.tot_len, dir == PF_OUT, 8528 r->action == PF_PASS, tr->dst.neg); 8529 } 8530 pf_counter_u64_critical_exit(); 8531 8532 switch (action) { 8533 case PF_SYNPROXY_DROP: 8534 m_freem(*m0); 8535 case PF_DEFER: 8536 *m0 = NULL; 8537 action = PF_PASS; 8538 break; 8539 case PF_DROP: 8540 m_freem(*m0); 8541 *m0 = NULL; 8542 break; 8543 default: 8544 /* pf_route() returns unlocked. */ 8545 if (rt) { 8546 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 8547 goto out; 8548 } 8549 if (pf_dummynet(&pd, s, r, m0) != 0) { 8550 action = PF_DROP; 8551 REASON_SET(&reason, PFRES_MEMORY); 8552 } 8553 break; 8554 } 8555 8556 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 8557 8558 if (s && action != PF_DROP) { 8559 if (!s->if_index_in && dir == PF_IN) 8560 s->if_index_in = ifp->if_index; 8561 else if (!s->if_index_out && dir == PF_OUT) 8562 s->if_index_out = ifp->if_index; 8563 } 8564 8565 if (s) 8566 PF_STATE_UNLOCK(s); 8567 8568 out: 8569 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 8570 8571 return (action); 8572 } 8573 #endif /* INET */ 8574 8575 #ifdef INET6 8576 int 8577 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 8578 struct pf_rule_actions *default_actions) 8579 { 8580 struct pfi_kkif *kif; 8581 u_short action, reason = 0; 8582 struct mbuf *m = *m0, *n = NULL; 8583 struct m_tag *mtag; 8584 struct ip6_hdr *h = NULL; 8585 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 8586 struct pf_kstate *s = NULL; 8587 struct pf_kruleset *ruleset = NULL; 8588 struct pf_pdesc pd; 8589 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 8590 uint16_t tag; 8591 uint8_t rt; 8592 8593 PF_RULES_RLOCK_TRACKER; 8594 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 8595 M_ASSERTPKTHDR(m); 8596 8597 if (!V_pf_status.running) 8598 return (PF_PASS); 8599 8600 PF_RULES_RLOCK(); 8601 8602 kif = (struct pfi_kkif *)ifp->if_pf_kif; 8603 if (__predict_false(kif == NULL)) { 8604 DPFPRINTF(PF_DEBUG_URGENT, 8605 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 8606 PF_RULES_RUNLOCK(); 8607 return (PF_DROP); 8608 } 8609 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 8610 PF_RULES_RUNLOCK(); 8611 return (PF_PASS); 8612 } 8613 8614 if (m->m_flags & M_SKIP_FIREWALL) { 8615 PF_RULES_RUNLOCK(); 8616 return (PF_PASS); 8617 } 8618 8619 /* 8620 * If we end up changing IP addresses (e.g. binat) the stack may get 8621 * confused and fail to send the icmp6 packet too big error. Just send 8622 * it here, before we do any NAT. 8623 */ 8624 if (dir == PF_OUT && pflags & PFIL_FWD && IN6_LINKMTU(ifp) < pf_max_frag_size(m)) { 8625 PF_RULES_RUNLOCK(); 8626 *m0 = NULL; 8627 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 8628 return (PF_DROP); 8629 } 8630 8631 memset(&pd, 0, sizeof(pd)); 8632 TAILQ_INIT(&pd.sctp_multihome_jobs); 8633 if (default_actions != NULL) 8634 memcpy(&pd.act, default_actions, sizeof(pd.act)); 8635 pd.pf_mtag = pf_find_mtag(m); 8636 8637 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 8638 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 8639 8640 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 8641 pd.pf_mtag->if_idxgen); 8642 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 8643 PF_RULES_RUNLOCK(); 8644 m_freem(*m0); 8645 *m0 = NULL; 8646 return (PF_PASS); 8647 } 8648 PF_RULES_RUNLOCK(); 8649 nd6_output_ifp(ifp, ifp, m, 8650 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 8651 *m0 = NULL; 8652 return (PF_PASS); 8653 } 8654 8655 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 8656 pd.act.dnpipe = pd.pf_mtag->dnpipe; 8657 pd.act.flags = pd.pf_mtag->dnflags; 8658 } 8659 8660 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 8661 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 8662 pf_dummynet_flag_remove(m, pd.pf_mtag); 8663 /* Dummynet re-injects packets after they've 8664 * completed their delay. We've already 8665 * processed them, so pass unconditionally. */ 8666 PF_RULES_RUNLOCK(); 8667 return (PF_PASS); 8668 } 8669 8670 pd.sport = pd.dport = NULL; 8671 pd.ip_sum = NULL; 8672 pd.proto_sum = NULL; 8673 pd.dir = dir; 8674 pd.sidx = (dir == PF_IN) ? 0 : 1; 8675 pd.didx = (dir == PF_IN) ? 1 : 0; 8676 pd.af = AF_INET6; 8677 pd.act.rtableid = -1; 8678 8679 h = mtod(m, struct ip6_hdr *); 8680 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8681 8682 /* We do IP header normalization and packet reassembly here */ 8683 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8684 action = PF_DROP; 8685 goto done; 8686 } 8687 m = *m0; /* pf_normalize messes with m0 */ 8688 h = mtod(m, struct ip6_hdr *); 8689 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8690 8691 /* 8692 * we do not support jumbogram. if we keep going, zero ip6_plen 8693 * will do something bad, so drop the packet for now. 8694 */ 8695 if (htons(h->ip6_plen) == 0) { 8696 action = PF_DROP; 8697 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8698 goto done; 8699 } 8700 8701 pd.src = (struct pf_addr *)&h->ip6_src; 8702 pd.dst = (struct pf_addr *)&h->ip6_dst; 8703 pd.tos = IPV6_DSCP(h); 8704 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8705 8706 pd.proto = h->ip6_nxt; 8707 do { 8708 switch (pd.proto) { 8709 case IPPROTO_FRAGMENT: 8710 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8711 &ruleset); 8712 if (action == PF_DROP) 8713 REASON_SET(&reason, PFRES_FRAG); 8714 goto done; 8715 case IPPROTO_ROUTING: { 8716 struct ip6_rthdr rthdr; 8717 8718 if (rh_cnt++) { 8719 DPFPRINTF(PF_DEBUG_MISC, 8720 ("pf: IPv6 more than one rthdr\n")); 8721 action = PF_DROP; 8722 REASON_SET(&reason, PFRES_IPOPTIONS); 8723 pd.act.log = PF_LOG_FORCE; 8724 goto done; 8725 } 8726 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8727 &reason, pd.af)) { 8728 DPFPRINTF(PF_DEBUG_MISC, 8729 ("pf: IPv6 short rthdr\n")); 8730 action = PF_DROP; 8731 REASON_SET(&reason, PFRES_SHORT); 8732 pd.act.log = PF_LOG_FORCE; 8733 goto done; 8734 } 8735 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8736 DPFPRINTF(PF_DEBUG_MISC, 8737 ("pf: IPv6 rthdr0\n")); 8738 action = PF_DROP; 8739 REASON_SET(&reason, PFRES_IPOPTIONS); 8740 pd.act.log = PF_LOG_FORCE; 8741 goto done; 8742 } 8743 /* FALLTHROUGH */ 8744 } 8745 case IPPROTO_AH: 8746 case IPPROTO_HOPOPTS: 8747 case IPPROTO_DSTOPTS: { 8748 /* get next header and header length */ 8749 struct ip6_ext opt6; 8750 8751 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8752 NULL, &reason, pd.af)) { 8753 DPFPRINTF(PF_DEBUG_MISC, 8754 ("pf: IPv6 short opt\n")); 8755 action = PF_DROP; 8756 pd.act.log = PF_LOG_FORCE; 8757 goto done; 8758 } 8759 if (pd.proto == IPPROTO_AH) 8760 off += (opt6.ip6e_len + 2) * 4; 8761 else 8762 off += (opt6.ip6e_len + 1) * 8; 8763 pd.proto = opt6.ip6e_nxt; 8764 /* goto the next header */ 8765 break; 8766 } 8767 default: 8768 terminal++; 8769 break; 8770 } 8771 } while (!terminal); 8772 8773 /* if there's no routing header, use unmodified mbuf for checksumming */ 8774 if (!n) 8775 n = m; 8776 8777 switch (pd.proto) { 8778 case IPPROTO_TCP: { 8779 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8780 &action, &reason, AF_INET6)) { 8781 if (action != PF_PASS) 8782 pd.act.log |= PF_LOG_FORCE; 8783 goto done; 8784 } 8785 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8786 pd.sport = &pd.hdr.tcp.th_sport; 8787 pd.dport = &pd.hdr.tcp.th_dport; 8788 8789 /* Respond to SYN with a syncookie. */ 8790 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 8791 pd.dir == PF_IN && pf_synflood_check(&pd)) { 8792 pf_syncookie_send(m, off, &pd); 8793 action = PF_DROP; 8794 break; 8795 } 8796 8797 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8798 if (action == PF_DROP) 8799 goto done; 8800 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8801 if (action == PF_PASS) { 8802 if (V_pfsync_update_state_ptr != NULL) 8803 V_pfsync_update_state_ptr(s); 8804 r = s->rule.ptr; 8805 a = s->anchor.ptr; 8806 } else if (s == NULL) { 8807 /* Validate remote SYN|ACK, re-create original SYN if 8808 * valid. */ 8809 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 8810 TH_ACK && pf_syncookie_validate(&pd) && 8811 pd.dir == PF_IN) { 8812 struct mbuf *msyn; 8813 8814 msyn = pf_syncookie_recreate_syn(h->ip6_hlim, 8815 off, &pd); 8816 if (msyn == NULL) { 8817 action = PF_DROP; 8818 break; 8819 } 8820 8821 action = pf_test6(dir, pflags, ifp, &msyn, inp, 8822 &pd.act); 8823 m_freem(msyn); 8824 if (action != PF_PASS) 8825 break; 8826 8827 action = pf_test_state_tcp(&s, kif, m, off, h, 8828 &pd, &reason); 8829 if (action != PF_PASS || s == NULL) { 8830 action = PF_DROP; 8831 break; 8832 } 8833 8834 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 8835 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 8836 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 8837 8838 action = pf_synproxy(&pd, &s, &reason); 8839 break; 8840 } else { 8841 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8842 &a, &ruleset, inp); 8843 } 8844 } 8845 break; 8846 } 8847 8848 case IPPROTO_UDP: { 8849 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8850 &action, &reason, AF_INET6)) { 8851 if (action != PF_PASS) 8852 pd.act.log |= PF_LOG_FORCE; 8853 goto done; 8854 } 8855 pd.sport = &pd.hdr.udp.uh_sport; 8856 pd.dport = &pd.hdr.udp.uh_dport; 8857 if (pd.hdr.udp.uh_dport == 0 || 8858 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8859 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8860 action = PF_DROP; 8861 REASON_SET(&reason, PFRES_SHORT); 8862 goto done; 8863 } 8864 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8865 if (action == PF_PASS) { 8866 if (V_pfsync_update_state_ptr != NULL) 8867 V_pfsync_update_state_ptr(s); 8868 r = s->rule.ptr; 8869 a = s->anchor.ptr; 8870 } else if (s == NULL) 8871 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8872 &a, &ruleset, inp); 8873 break; 8874 } 8875 8876 case IPPROTO_SCTP: { 8877 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8878 &action, &reason, AF_INET6)) { 8879 if (action != PF_PASS) 8880 pd.act.log |= PF_LOG_FORCE; 8881 goto done; 8882 } 8883 pd.sport = &pd.hdr.sctp.src_port; 8884 pd.dport = &pd.hdr.sctp.dest_port; 8885 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8886 action = PF_DROP; 8887 REASON_SET(&reason, PFRES_SHORT); 8888 goto done; 8889 } 8890 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8891 if (action == PF_DROP) 8892 goto done; 8893 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8894 &reason); 8895 if (action == PF_PASS) { 8896 if (V_pfsync_update_state_ptr != NULL) 8897 V_pfsync_update_state_ptr(s); 8898 r = s->rule.ptr; 8899 a = s->anchor.ptr; 8900 } else if (s == NULL) { 8901 action = pf_test_rule(&r, &s, kif, m, off, 8902 &pd, &a, &ruleset, inp); 8903 } 8904 break; 8905 } 8906 8907 case IPPROTO_ICMP: { 8908 action = PF_DROP; 8909 DPFPRINTF(PF_DEBUG_MISC, 8910 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 8911 goto done; 8912 } 8913 8914 case IPPROTO_ICMPV6: { 8915 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 8916 &action, &reason, AF_INET6)) { 8917 if (action != PF_PASS) 8918 pd.act.log |= PF_LOG_FORCE; 8919 goto done; 8920 } 8921 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8922 if (action == PF_PASS) { 8923 if (V_pfsync_update_state_ptr != NULL) 8924 V_pfsync_update_state_ptr(s); 8925 r = s->rule.ptr; 8926 a = s->anchor.ptr; 8927 } else if (s == NULL) 8928 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8929 &a, &ruleset, inp); 8930 break; 8931 } 8932 8933 default: 8934 action = pf_test_state_other(&s, kif, m, &pd); 8935 if (action == PF_PASS) { 8936 if (V_pfsync_update_state_ptr != NULL) 8937 V_pfsync_update_state_ptr(s); 8938 r = s->rule.ptr; 8939 a = s->anchor.ptr; 8940 } else if (s == NULL) 8941 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8942 &a, &ruleset, inp); 8943 break; 8944 } 8945 8946 done: 8947 PF_RULES_RUNLOCK(); 8948 if (n != m) { 8949 m_freem(n); 8950 n = NULL; 8951 } 8952 8953 /* handle dangerous IPv6 extension headers. */ 8954 if (action == PF_PASS && rh_cnt && 8955 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8956 action = PF_DROP; 8957 REASON_SET(&reason, PFRES_IPOPTIONS); 8958 pd.act.log = r->log; 8959 DPFPRINTF(PF_DEBUG_MISC, 8960 ("pf: dropping packet with dangerous v6 headers\n")); 8961 } 8962 8963 if (s) { 8964 uint8_t log = pd.act.log; 8965 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8966 pd.act.log |= log; 8967 tag = s->tag; 8968 rt = s->rt; 8969 } else { 8970 tag = r->tag; 8971 rt = r->rt; 8972 } 8973 8974 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8975 action = PF_DROP; 8976 REASON_SET(&reason, PFRES_MEMORY); 8977 } 8978 8979 pf_scrub_ip6(&m, &pd); 8980 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8981 pf_normalize_mss(m, off, &pd); 8982 8983 if (pd.act.rtableid >= 0) 8984 M_SETFIB(m, pd.act.rtableid); 8985 8986 if (pd.act.flags & PFSTATE_SETPRIO) { 8987 if (pd.tos & IPTOS_LOWDELAY) 8988 use_2nd_queue = 1; 8989 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8990 action = PF_DROP; 8991 REASON_SET(&reason, PFRES_MEMORY); 8992 pd.act.log = PF_LOG_FORCE; 8993 DPFPRINTF(PF_DEBUG_MISC, 8994 ("pf: failed to allocate 802.1q mtag\n")); 8995 } 8996 } 8997 8998 #ifdef ALTQ 8999 if (action == PF_PASS && pd.act.qid) { 9000 if (pd.pf_mtag == NULL && 9001 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 9002 action = PF_DROP; 9003 REASON_SET(&reason, PFRES_MEMORY); 9004 } else { 9005 if (s != NULL) 9006 pd.pf_mtag->qid_hash = pf_state_hash(s); 9007 if (pd.tos & IPTOS_LOWDELAY) 9008 pd.pf_mtag->qid = pd.act.pqid; 9009 else 9010 pd.pf_mtag->qid = pd.act.qid; 9011 /* Add hints for ecn. */ 9012 pd.pf_mtag->hdr = h; 9013 } 9014 } 9015 #endif /* ALTQ */ 9016 9017 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 9018 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 9019 (s->nat_rule.ptr->action == PF_RDR || 9020 s->nat_rule.ptr->action == PF_BINAT) && 9021 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 9022 m->m_flags |= M_SKIP_FIREWALL; 9023 9024 /* XXX: Anybody working on it?! */ 9025 if (r->divert.port) 9026 printf("pf: divert(9) is not supported for IPv6\n"); 9027 9028 if (pd.act.log) { 9029 struct pf_krule *lr; 9030 struct pf_krule_item *ri; 9031 9032 if (s != NULL && s->nat_rule.ptr != NULL && 9033 s->nat_rule.ptr->log & PF_LOG_ALL) 9034 lr = s->nat_rule.ptr; 9035 else 9036 lr = r; 9037 9038 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 9039 PFLOG_PACKET(kif, m, AF_INET6, action, reason, lr, a, ruleset, 9040 &pd, (s == NULL)); 9041 if (s) { 9042 SLIST_FOREACH(ri, &s->match_rules, entry) 9043 if (ri->r->log & PF_LOG_ALL) 9044 PFLOG_PACKET(kif, m, AF_INET6, action, reason, 9045 ri->r, a, ruleset, &pd, 0); 9046 } 9047 } 9048 9049 pf_counter_u64_critical_enter(); 9050 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 9051 pd.tot_len); 9052 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 9053 1); 9054 9055 if (action == PF_PASS || r->action == PF_DROP) { 9056 dirndx = (dir == PF_OUT); 9057 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 9058 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 9059 if (a != NULL) { 9060 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 9061 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 9062 } 9063 if (s != NULL) { 9064 if (s->nat_rule.ptr != NULL) { 9065 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 9066 1); 9067 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 9068 pd.tot_len); 9069 } 9070 if (s->src_node != NULL) { 9071 counter_u64_add(s->src_node->packets[dirndx], 9072 1); 9073 counter_u64_add(s->src_node->bytes[dirndx], 9074 pd.tot_len); 9075 } 9076 if (s->nat_src_node != NULL) { 9077 counter_u64_add(s->nat_src_node->packets[dirndx], 9078 1); 9079 counter_u64_add(s->nat_src_node->bytes[dirndx], 9080 pd.tot_len); 9081 } 9082 dirndx = (dir == s->direction) ? 0 : 1; 9083 s->packets[dirndx]++; 9084 s->bytes[dirndx] += pd.tot_len; 9085 } 9086 tr = r; 9087 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 9088 if (nr != NULL && r == &V_pf_default_rule) 9089 tr = nr; 9090 if (tr->src.addr.type == PF_ADDR_TABLE) 9091 pfr_update_stats(tr->src.addr.p.tbl, 9092 (s == NULL) ? pd.src : 9093 &s->key[(s->direction == PF_IN)]->addr[0], 9094 pd.af, pd.tot_len, dir == PF_OUT, 9095 r->action == PF_PASS, tr->src.neg); 9096 if (tr->dst.addr.type == PF_ADDR_TABLE) 9097 pfr_update_stats(tr->dst.addr.p.tbl, 9098 (s == NULL) ? pd.dst : 9099 &s->key[(s->direction == PF_IN)]->addr[1], 9100 pd.af, pd.tot_len, dir == PF_OUT, 9101 r->action == PF_PASS, tr->dst.neg); 9102 } 9103 pf_counter_u64_critical_exit(); 9104 9105 switch (action) { 9106 case PF_SYNPROXY_DROP: 9107 m_freem(*m0); 9108 case PF_DEFER: 9109 *m0 = NULL; 9110 action = PF_PASS; 9111 break; 9112 case PF_DROP: 9113 m_freem(*m0); 9114 *m0 = NULL; 9115 break; 9116 default: 9117 /* pf_route6() returns unlocked. */ 9118 if (rt) { 9119 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 9120 goto out; 9121 } 9122 if (pf_dummynet(&pd, s, r, m0) != 0) { 9123 action = PF_DROP; 9124 REASON_SET(&reason, PFRES_MEMORY); 9125 } 9126 break; 9127 } 9128 9129 if (s && action != PF_DROP) { 9130 if (!s->if_index_in && dir == PF_IN) 9131 s->if_index_in = ifp->if_index; 9132 else if (!s->if_index_out && dir == PF_OUT) 9133 s->if_index_out = ifp->if_index; 9134 } 9135 9136 if (s) 9137 PF_STATE_UNLOCK(s); 9138 9139 /* If reassembled packet passed, create new fragments. */ 9140 if (action == PF_PASS && *m0 && dir == PF_OUT && 9141 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 9142 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 9143 9144 out: 9145 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 9146 9147 pf_sctp_multihome_delayed(&pd, off, kif, s, action); 9148 9149 return (action); 9150 } 9151 #endif /* INET6 */ 9152