1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_kstate *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_kstate *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_kstate *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 #ifdef PF_WANT_32_TO_64_COUNTER 158 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 159 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 160 161 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 162 VNET_DEFINE(size_t, pf_allrulecount); 163 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 164 #endif 165 166 /* 167 * Queue for pf_intr() sends. 168 */ 169 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 170 struct pf_send_entry { 171 STAILQ_ENTRY(pf_send_entry) pfse_next; 172 struct mbuf *pfse_m; 173 enum { 174 PFSE_IP, 175 PFSE_IP6, 176 PFSE_ICMP, 177 PFSE_ICMP6, 178 } pfse_type; 179 struct { 180 int type; 181 int code; 182 int mtu; 183 } icmpopts; 184 }; 185 186 STAILQ_HEAD(pf_send_head, pf_send_entry); 187 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 188 #define V_pf_sendqueue VNET(pf_sendqueue) 189 190 static struct mtx_padalign pf_sendqueue_mtx; 191 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 192 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 193 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 194 195 /* 196 * Queue for pf_overload_task() tasks. 197 */ 198 struct pf_overload_entry { 199 SLIST_ENTRY(pf_overload_entry) next; 200 struct pf_addr addr; 201 sa_family_t af; 202 uint8_t dir; 203 struct pf_krule *rule; 204 }; 205 206 SLIST_HEAD(pf_overload_head, pf_overload_entry); 207 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 208 #define V_pf_overloadqueue VNET(pf_overloadqueue) 209 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 210 #define V_pf_overloadtask VNET(pf_overloadtask) 211 212 static struct mtx_padalign pf_overloadqueue_mtx; 213 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 214 "pf overload/flush queue", MTX_DEF); 215 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 216 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 217 218 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 219 struct mtx_padalign pf_unlnkdrules_mtx; 220 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 221 MTX_DEF); 222 223 struct mtx_padalign pf_table_stats_lock; 224 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 225 MTX_DEF); 226 227 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 228 #define V_pf_sources_z VNET(pf_sources_z) 229 uma_zone_t pf_mtag_z; 230 VNET_DEFINE(uma_zone_t, pf_state_z); 231 VNET_DEFINE(uma_zone_t, pf_state_key_z); 232 233 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 234 #define PFID_CPUBITS 8 235 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 236 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 237 #define PFID_MAXID (~PFID_CPUMASK) 238 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 239 240 static void pf_src_tree_remove_state(struct pf_kstate *); 241 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 242 u_int32_t); 243 static void pf_add_threshold(struct pf_threshold *); 244 static int pf_check_threshold(struct pf_threshold *); 245 246 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 247 u_int16_t *, u_int16_t *, struct pf_addr *, 248 u_int16_t, u_int8_t, sa_family_t); 249 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 250 struct tcphdr *, struct pf_state_peer *); 251 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 252 struct pf_addr *, struct pf_addr *, u_int16_t, 253 u_int16_t *, u_int16_t *, u_int16_t *, 254 u_int16_t *, u_int8_t, sa_family_t); 255 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 256 sa_family_t, struct pf_krule *); 257 static void pf_detach_state(struct pf_kstate *); 258 static int pf_state_key_attach(struct pf_state_key *, 259 struct pf_state_key *, struct pf_kstate *); 260 static void pf_state_key_detach(struct pf_kstate *, int); 261 static int pf_state_key_ctor(void *, int, void *, int); 262 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 263 void pf_rule_to_actions(struct pf_krule *, 264 struct pf_rule_actions *); 265 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 266 int, struct pfi_kkif *, struct mbuf *, int, 267 struct pf_pdesc *, struct pf_krule **, 268 struct pf_kruleset **, struct inpcb *); 269 static int pf_create_state(struct pf_krule *, struct pf_krule *, 270 struct pf_krule *, struct pf_pdesc *, 271 struct pf_ksrc_node *, struct pf_state_key *, 272 struct pf_state_key *, struct mbuf *, int, 273 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 274 struct pf_kstate **, int, u_int16_t, u_int16_t, 275 int); 276 static int pf_test_fragment(struct pf_krule **, int, 277 struct pfi_kkif *, struct mbuf *, void *, 278 struct pf_pdesc *, struct pf_krule **, 279 struct pf_kruleset **); 280 static int pf_tcp_track_full(struct pf_state_peer *, 281 struct pf_state_peer *, struct pf_kstate **, 282 struct pfi_kkif *, struct mbuf *, int, 283 struct pf_pdesc *, u_short *, int *); 284 static int pf_tcp_track_sloppy(struct pf_state_peer *, 285 struct pf_state_peer *, struct pf_kstate **, 286 struct pf_pdesc *, u_short *); 287 static int pf_test_state_tcp(struct pf_kstate **, int, 288 struct pfi_kkif *, struct mbuf *, int, 289 void *, struct pf_pdesc *, u_short *); 290 static int pf_test_state_udp(struct pf_kstate **, int, 291 struct pfi_kkif *, struct mbuf *, int, 292 void *, struct pf_pdesc *); 293 static int pf_test_state_icmp(struct pf_kstate **, int, 294 struct pfi_kkif *, struct mbuf *, int, 295 void *, struct pf_pdesc *, u_short *); 296 static int pf_test_state_other(struct pf_kstate **, int, 297 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 298 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 299 int, u_int16_t); 300 static int pf_check_proto_cksum(struct mbuf *, int, int, 301 u_int8_t, sa_family_t); 302 static void pf_print_state_parts(struct pf_kstate *, 303 struct pf_state_key *, struct pf_state_key *); 304 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 305 struct pf_addr_wrap *); 306 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 307 bool, u_int8_t); 308 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 309 struct pf_state_key_cmp *, u_int); 310 static int pf_src_connlimit(struct pf_kstate **); 311 static void pf_overload_task(void *v, int pending); 312 static int pf_insert_src_node(struct pf_ksrc_node **, 313 struct pf_krule *, struct pf_addr *, sa_family_t); 314 static u_int pf_purge_expired_states(u_int, int); 315 static void pf_purge_unlinked_rules(void); 316 static int pf_mtag_uminit(void *, int, int); 317 static void pf_mtag_free(struct m_tag *); 318 #ifdef INET 319 static void pf_route(struct mbuf **, struct pf_krule *, int, 320 struct ifnet *, struct pf_kstate *, 321 struct pf_pdesc *, struct inpcb *); 322 #endif /* INET */ 323 #ifdef INET6 324 static void pf_change_a6(struct pf_addr *, u_int16_t *, 325 struct pf_addr *, u_int8_t); 326 static void pf_route6(struct mbuf **, struct pf_krule *, int, 327 struct ifnet *, struct pf_kstate *, 328 struct pf_pdesc *, struct inpcb *); 329 #endif /* INET6 */ 330 331 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 332 333 extern int pf_end_threads; 334 extern struct proc *pf_purge_proc; 335 336 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 337 338 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 339 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 340 341 #define STATE_LOOKUP(i, k, d, s, pd) \ 342 do { \ 343 (s) = pf_find_state((i), (k), (d)); \ 344 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 345 if ((s) == NULL) \ 346 return (PF_DROP); \ 347 if (PACKET_LOOPED(pd)) \ 348 return (PF_PASS); \ 349 } while (0) 350 351 #define BOUND_IFACE(r, k) \ 352 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 353 354 #define STATE_INC_COUNTERS(s) \ 355 do { \ 356 counter_u64_add(s->rule.ptr->states_cur, 1); \ 357 counter_u64_add(s->rule.ptr->states_tot, 1); \ 358 if (s->anchor.ptr != NULL) { \ 359 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 360 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 361 } \ 362 if (s->nat_rule.ptr != NULL) { \ 363 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 364 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 365 } \ 366 } while (0) 367 368 #define STATE_DEC_COUNTERS(s) \ 369 do { \ 370 if (s->nat_rule.ptr != NULL) \ 371 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 372 if (s->anchor.ptr != NULL) \ 373 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 374 counter_u64_add(s->rule.ptr->states_cur, -1); \ 375 } while (0) 376 377 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 378 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 379 VNET_DEFINE(struct pf_idhash *, pf_idhash); 380 VNET_DEFINE(struct pf_srchash *, pf_srchash); 381 382 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 383 "pf(4)"); 384 385 u_long pf_hashmask; 386 u_long pf_srchashmask; 387 static u_long pf_hashsize; 388 static u_long pf_srchashsize; 389 u_long pf_ioctl_maxcount = 65535; 390 391 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 392 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 393 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 394 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 395 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 396 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 397 398 VNET_DEFINE(void *, pf_swi_cookie); 399 VNET_DEFINE(struct intr_event *, pf_swi_ie); 400 401 VNET_DEFINE(uint32_t, pf_hashseed); 402 #define V_pf_hashseed VNET(pf_hashseed) 403 404 int 405 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 406 { 407 408 switch (af) { 409 #ifdef INET 410 case AF_INET: 411 if (a->addr32[0] > b->addr32[0]) 412 return (1); 413 if (a->addr32[0] < b->addr32[0]) 414 return (-1); 415 break; 416 #endif /* INET */ 417 #ifdef INET6 418 case AF_INET6: 419 if (a->addr32[3] > b->addr32[3]) 420 return (1); 421 if (a->addr32[3] < b->addr32[3]) 422 return (-1); 423 if (a->addr32[2] > b->addr32[2]) 424 return (1); 425 if (a->addr32[2] < b->addr32[2]) 426 return (-1); 427 if (a->addr32[1] > b->addr32[1]) 428 return (1); 429 if (a->addr32[1] < b->addr32[1]) 430 return (-1); 431 if (a->addr32[0] > b->addr32[0]) 432 return (1); 433 if (a->addr32[0] < b->addr32[0]) 434 return (-1); 435 break; 436 #endif /* INET6 */ 437 default: 438 panic("%s: unknown address family %u", __func__, af); 439 } 440 return (0); 441 } 442 443 static __inline uint32_t 444 pf_hashkey(struct pf_state_key *sk) 445 { 446 uint32_t h; 447 448 h = murmur3_32_hash32((uint32_t *)sk, 449 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 450 V_pf_hashseed); 451 452 return (h & pf_hashmask); 453 } 454 455 static __inline uint32_t 456 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 457 { 458 uint32_t h; 459 460 switch (af) { 461 case AF_INET: 462 h = murmur3_32_hash32((uint32_t *)&addr->v4, 463 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 464 break; 465 case AF_INET6: 466 h = murmur3_32_hash32((uint32_t *)&addr->v6, 467 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 468 break; 469 default: 470 panic("%s: unknown address family %u", __func__, af); 471 } 472 473 return (h & pf_srchashmask); 474 } 475 476 #ifdef ALTQ 477 static int 478 pf_state_hash(struct pf_kstate *s) 479 { 480 u_int32_t hv = (intptr_t)s / sizeof(*s); 481 482 hv ^= crc32(&s->src, sizeof(s->src)); 483 hv ^= crc32(&s->dst, sizeof(s->dst)); 484 if (hv == 0) 485 hv = 1; 486 return (hv); 487 } 488 #endif 489 490 #ifdef INET6 491 void 492 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 493 { 494 switch (af) { 495 #ifdef INET 496 case AF_INET: 497 dst->addr32[0] = src->addr32[0]; 498 break; 499 #endif /* INET */ 500 case AF_INET6: 501 dst->addr32[0] = src->addr32[0]; 502 dst->addr32[1] = src->addr32[1]; 503 dst->addr32[2] = src->addr32[2]; 504 dst->addr32[3] = src->addr32[3]; 505 break; 506 } 507 } 508 #endif /* INET6 */ 509 510 static void 511 pf_init_threshold(struct pf_threshold *threshold, 512 u_int32_t limit, u_int32_t seconds) 513 { 514 threshold->limit = limit * PF_THRESHOLD_MULT; 515 threshold->seconds = seconds; 516 threshold->count = 0; 517 threshold->last = time_uptime; 518 } 519 520 static void 521 pf_add_threshold(struct pf_threshold *threshold) 522 { 523 u_int32_t t = time_uptime, diff = t - threshold->last; 524 525 if (diff >= threshold->seconds) 526 threshold->count = 0; 527 else 528 threshold->count -= threshold->count * diff / 529 threshold->seconds; 530 threshold->count += PF_THRESHOLD_MULT; 531 threshold->last = t; 532 } 533 534 static int 535 pf_check_threshold(struct pf_threshold *threshold) 536 { 537 return (threshold->count > threshold->limit); 538 } 539 540 static int 541 pf_src_connlimit(struct pf_kstate **state) 542 { 543 struct pf_overload_entry *pfoe; 544 int bad = 0; 545 546 PF_STATE_LOCK_ASSERT(*state); 547 548 (*state)->src_node->conn++; 549 (*state)->src.tcp_est = 1; 550 pf_add_threshold(&(*state)->src_node->conn_rate); 551 552 if ((*state)->rule.ptr->max_src_conn && 553 (*state)->rule.ptr->max_src_conn < 554 (*state)->src_node->conn) { 555 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 556 bad++; 557 } 558 559 if ((*state)->rule.ptr->max_src_conn_rate.limit && 560 pf_check_threshold(&(*state)->src_node->conn_rate)) { 561 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 562 bad++; 563 } 564 565 if (!bad) 566 return (0); 567 568 /* Kill this state. */ 569 (*state)->timeout = PFTM_PURGE; 570 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 571 572 if ((*state)->rule.ptr->overload_tbl == NULL) 573 return (1); 574 575 /* Schedule overloading and flushing task. */ 576 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 577 if (pfoe == NULL) 578 return (1); /* too bad :( */ 579 580 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 581 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 582 pfoe->rule = (*state)->rule.ptr; 583 pfoe->dir = (*state)->direction; 584 PF_OVERLOADQ_LOCK(); 585 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 586 PF_OVERLOADQ_UNLOCK(); 587 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 588 589 return (1); 590 } 591 592 static void 593 pf_overload_task(void *v, int pending) 594 { 595 struct pf_overload_head queue; 596 struct pfr_addr p; 597 struct pf_overload_entry *pfoe, *pfoe1; 598 uint32_t killed = 0; 599 600 CURVNET_SET((struct vnet *)v); 601 602 PF_OVERLOADQ_LOCK(); 603 queue = V_pf_overloadqueue; 604 SLIST_INIT(&V_pf_overloadqueue); 605 PF_OVERLOADQ_UNLOCK(); 606 607 bzero(&p, sizeof(p)); 608 SLIST_FOREACH(pfoe, &queue, next) { 609 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 610 if (V_pf_status.debug >= PF_DEBUG_MISC) { 611 printf("%s: blocking address ", __func__); 612 pf_print_host(&pfoe->addr, 0, pfoe->af); 613 printf("\n"); 614 } 615 616 p.pfra_af = pfoe->af; 617 switch (pfoe->af) { 618 #ifdef INET 619 case AF_INET: 620 p.pfra_net = 32; 621 p.pfra_ip4addr = pfoe->addr.v4; 622 break; 623 #endif 624 #ifdef INET6 625 case AF_INET6: 626 p.pfra_net = 128; 627 p.pfra_ip6addr = pfoe->addr.v6; 628 break; 629 #endif 630 } 631 632 PF_RULES_WLOCK(); 633 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 634 PF_RULES_WUNLOCK(); 635 } 636 637 /* 638 * Remove those entries, that don't need flushing. 639 */ 640 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 641 if (pfoe->rule->flush == 0) { 642 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 643 free(pfoe, M_PFTEMP); 644 } else 645 counter_u64_add( 646 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 647 648 /* If nothing to flush, return. */ 649 if (SLIST_EMPTY(&queue)) { 650 CURVNET_RESTORE(); 651 return; 652 } 653 654 for (int i = 0; i <= pf_hashmask; i++) { 655 struct pf_idhash *ih = &V_pf_idhash[i]; 656 struct pf_state_key *sk; 657 struct pf_kstate *s; 658 659 PF_HASHROW_LOCK(ih); 660 LIST_FOREACH(s, &ih->states, entry) { 661 sk = s->key[PF_SK_WIRE]; 662 SLIST_FOREACH(pfoe, &queue, next) 663 if (sk->af == pfoe->af && 664 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 665 pfoe->rule == s->rule.ptr) && 666 ((pfoe->dir == PF_OUT && 667 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 668 (pfoe->dir == PF_IN && 669 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 670 s->timeout = PFTM_PURGE; 671 s->src.state = s->dst.state = TCPS_CLOSED; 672 killed++; 673 } 674 } 675 PF_HASHROW_UNLOCK(ih); 676 } 677 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 678 free(pfoe, M_PFTEMP); 679 if (V_pf_status.debug >= PF_DEBUG_MISC) 680 printf("%s: %u states killed", __func__, killed); 681 682 CURVNET_RESTORE(); 683 } 684 685 /* 686 * Can return locked on failure, so that we can consistently 687 * allocate and insert a new one. 688 */ 689 struct pf_ksrc_node * 690 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 691 int returnlocked) 692 { 693 struct pf_srchash *sh; 694 struct pf_ksrc_node *n; 695 696 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 697 698 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 699 PF_HASHROW_LOCK(sh); 700 LIST_FOREACH(n, &sh->nodes, entry) 701 if (n->rule.ptr == rule && n->af == af && 702 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 703 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 704 break; 705 if (n != NULL) { 706 n->states++; 707 PF_HASHROW_UNLOCK(sh); 708 } else if (returnlocked == 0) 709 PF_HASHROW_UNLOCK(sh); 710 711 return (n); 712 } 713 714 static void 715 pf_free_src_node(struct pf_ksrc_node *sn) 716 { 717 718 for (int i = 0; i < 2; i++) { 719 counter_u64_free(sn->bytes[i]); 720 counter_u64_free(sn->packets[i]); 721 } 722 uma_zfree(V_pf_sources_z, sn); 723 } 724 725 static int 726 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 727 struct pf_addr *src, sa_family_t af) 728 { 729 730 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 731 rule->rpool.opts & PF_POOL_STICKYADDR), 732 ("%s for non-tracking rule %p", __func__, rule)); 733 734 if (*sn == NULL) 735 *sn = pf_find_src_node(src, rule, af, 1); 736 737 if (*sn == NULL) { 738 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 739 740 PF_HASHROW_ASSERT(sh); 741 742 if (!rule->max_src_nodes || 743 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 744 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 745 else 746 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 747 1); 748 if ((*sn) == NULL) { 749 PF_HASHROW_UNLOCK(sh); 750 return (-1); 751 } 752 753 for (int i = 0; i < 2; i++) { 754 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 755 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 756 757 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 758 pf_free_src_node(*sn); 759 PF_HASHROW_UNLOCK(sh); 760 return (-1); 761 } 762 } 763 764 pf_init_threshold(&(*sn)->conn_rate, 765 rule->max_src_conn_rate.limit, 766 rule->max_src_conn_rate.seconds); 767 768 (*sn)->af = af; 769 (*sn)->rule.ptr = rule; 770 PF_ACPY(&(*sn)->addr, src, af); 771 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 772 (*sn)->creation = time_uptime; 773 (*sn)->ruletype = rule->action; 774 (*sn)->states = 1; 775 if ((*sn)->rule.ptr != NULL) 776 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 777 PF_HASHROW_UNLOCK(sh); 778 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 779 } else { 780 if (rule->max_src_states && 781 (*sn)->states >= rule->max_src_states) { 782 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 783 1); 784 return (-1); 785 } 786 } 787 return (0); 788 } 789 790 void 791 pf_unlink_src_node(struct pf_ksrc_node *src) 792 { 793 794 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 795 LIST_REMOVE(src, entry); 796 if (src->rule.ptr) 797 counter_u64_add(src->rule.ptr->src_nodes, -1); 798 } 799 800 u_int 801 pf_free_src_nodes(struct pf_ksrc_node_list *head) 802 { 803 struct pf_ksrc_node *sn, *tmp; 804 u_int count = 0; 805 806 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 807 pf_free_src_node(sn); 808 count++; 809 } 810 811 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 812 813 return (count); 814 } 815 816 void 817 pf_mtag_initialize() 818 { 819 820 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 821 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 822 UMA_ALIGN_PTR, 0); 823 } 824 825 /* Per-vnet data storage structures initialization. */ 826 void 827 pf_initialize() 828 { 829 struct pf_keyhash *kh; 830 struct pf_idhash *ih; 831 struct pf_srchash *sh; 832 u_int i; 833 834 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 835 pf_hashsize = PF_HASHSIZ; 836 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 837 pf_srchashsize = PF_SRCHASHSIZ; 838 839 V_pf_hashseed = arc4random(); 840 841 /* States and state keys storage. */ 842 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 843 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 844 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 845 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 846 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 847 848 V_pf_state_key_z = uma_zcreate("pf state keys", 849 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 850 UMA_ALIGN_PTR, 0); 851 852 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 853 M_PFHASH, M_NOWAIT | M_ZERO); 854 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 855 M_PFHASH, M_NOWAIT | M_ZERO); 856 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 857 printf("pf: Unable to allocate memory for " 858 "state_hashsize %lu.\n", pf_hashsize); 859 860 free(V_pf_keyhash, M_PFHASH); 861 free(V_pf_idhash, M_PFHASH); 862 863 pf_hashsize = PF_HASHSIZ; 864 V_pf_keyhash = mallocarray(pf_hashsize, 865 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 866 V_pf_idhash = mallocarray(pf_hashsize, 867 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 868 } 869 870 pf_hashmask = pf_hashsize - 1; 871 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 872 i++, kh++, ih++) { 873 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 874 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 875 } 876 877 /* Source nodes. */ 878 V_pf_sources_z = uma_zcreate("pf source nodes", 879 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 880 0); 881 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 882 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 883 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 884 885 V_pf_srchash = mallocarray(pf_srchashsize, 886 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 887 if (V_pf_srchash == NULL) { 888 printf("pf: Unable to allocate memory for " 889 "source_hashsize %lu.\n", pf_srchashsize); 890 891 pf_srchashsize = PF_SRCHASHSIZ; 892 V_pf_srchash = mallocarray(pf_srchashsize, 893 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 894 } 895 896 pf_srchashmask = pf_srchashsize - 1; 897 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 898 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 899 900 /* ALTQ */ 901 TAILQ_INIT(&V_pf_altqs[0]); 902 TAILQ_INIT(&V_pf_altqs[1]); 903 TAILQ_INIT(&V_pf_altqs[2]); 904 TAILQ_INIT(&V_pf_altqs[3]); 905 TAILQ_INIT(&V_pf_pabuf); 906 V_pf_altqs_active = &V_pf_altqs[0]; 907 V_pf_altq_ifs_active = &V_pf_altqs[1]; 908 V_pf_altqs_inactive = &V_pf_altqs[2]; 909 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 910 911 /* Send & overload+flush queues. */ 912 STAILQ_INIT(&V_pf_sendqueue); 913 SLIST_INIT(&V_pf_overloadqueue); 914 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 915 916 /* Unlinked, but may be referenced rules. */ 917 TAILQ_INIT(&V_pf_unlinked_rules); 918 } 919 920 void 921 pf_mtag_cleanup() 922 { 923 924 uma_zdestroy(pf_mtag_z); 925 } 926 927 void 928 pf_cleanup() 929 { 930 struct pf_keyhash *kh; 931 struct pf_idhash *ih; 932 struct pf_srchash *sh; 933 struct pf_send_entry *pfse, *next; 934 u_int i; 935 936 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 937 i++, kh++, ih++) { 938 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 939 __func__)); 940 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 941 __func__)); 942 mtx_destroy(&kh->lock); 943 mtx_destroy(&ih->lock); 944 } 945 free(V_pf_keyhash, M_PFHASH); 946 free(V_pf_idhash, M_PFHASH); 947 948 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 949 KASSERT(LIST_EMPTY(&sh->nodes), 950 ("%s: source node hash not empty", __func__)); 951 mtx_destroy(&sh->lock); 952 } 953 free(V_pf_srchash, M_PFHASH); 954 955 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 956 m_freem(pfse->pfse_m); 957 free(pfse, M_PFTEMP); 958 } 959 960 uma_zdestroy(V_pf_sources_z); 961 uma_zdestroy(V_pf_state_z); 962 uma_zdestroy(V_pf_state_key_z); 963 } 964 965 static int 966 pf_mtag_uminit(void *mem, int size, int how) 967 { 968 struct m_tag *t; 969 970 t = (struct m_tag *)mem; 971 t->m_tag_cookie = MTAG_ABI_COMPAT; 972 t->m_tag_id = PACKET_TAG_PF; 973 t->m_tag_len = sizeof(struct pf_mtag); 974 t->m_tag_free = pf_mtag_free; 975 976 return (0); 977 } 978 979 static void 980 pf_mtag_free(struct m_tag *t) 981 { 982 983 uma_zfree(pf_mtag_z, t); 984 } 985 986 struct pf_mtag * 987 pf_get_mtag(struct mbuf *m) 988 { 989 struct m_tag *mtag; 990 991 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 992 return ((struct pf_mtag *)(mtag + 1)); 993 994 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 995 if (mtag == NULL) 996 return (NULL); 997 bzero(mtag + 1, sizeof(struct pf_mtag)); 998 m_tag_prepend(m, mtag); 999 1000 return ((struct pf_mtag *)(mtag + 1)); 1001 } 1002 1003 static int 1004 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1005 struct pf_kstate *s) 1006 { 1007 struct pf_keyhash *khs, *khw, *kh; 1008 struct pf_state_key *sk, *cur; 1009 struct pf_kstate *si, *olds = NULL; 1010 int idx; 1011 1012 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1013 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1014 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1015 1016 /* 1017 * We need to lock hash slots of both keys. To avoid deadlock 1018 * we always lock the slot with lower address first. Unlock order 1019 * isn't important. 1020 * 1021 * We also need to lock ID hash slot before dropping key 1022 * locks. On success we return with ID hash slot locked. 1023 */ 1024 1025 if (skw == sks) { 1026 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1027 PF_HASHROW_LOCK(khs); 1028 } else { 1029 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1030 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1031 if (khs == khw) { 1032 PF_HASHROW_LOCK(khs); 1033 } else if (khs < khw) { 1034 PF_HASHROW_LOCK(khs); 1035 PF_HASHROW_LOCK(khw); 1036 } else { 1037 PF_HASHROW_LOCK(khw); 1038 PF_HASHROW_LOCK(khs); 1039 } 1040 } 1041 1042 #define KEYS_UNLOCK() do { \ 1043 if (khs != khw) { \ 1044 PF_HASHROW_UNLOCK(khs); \ 1045 PF_HASHROW_UNLOCK(khw); \ 1046 } else \ 1047 PF_HASHROW_UNLOCK(khs); \ 1048 } while (0) 1049 1050 /* 1051 * First run: start with wire key. 1052 */ 1053 sk = skw; 1054 kh = khw; 1055 idx = PF_SK_WIRE; 1056 1057 MPASS(s->lock == NULL); 1058 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1059 1060 keyattach: 1061 LIST_FOREACH(cur, &kh->keys, entry) 1062 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1063 break; 1064 1065 if (cur != NULL) { 1066 /* Key exists. Check for same kif, if none, add to key. */ 1067 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1068 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1069 1070 PF_HASHROW_LOCK(ih); 1071 if (si->kif == s->kif && 1072 si->direction == s->direction) { 1073 if (sk->proto == IPPROTO_TCP && 1074 si->src.state >= TCPS_FIN_WAIT_2 && 1075 si->dst.state >= TCPS_FIN_WAIT_2) { 1076 /* 1077 * New state matches an old >FIN_WAIT_2 1078 * state. We can't drop key hash locks, 1079 * thus we can't unlink it properly. 1080 * 1081 * As a workaround we drop it into 1082 * TCPS_CLOSED state, schedule purge 1083 * ASAP and push it into the very end 1084 * of the slot TAILQ, so that it won't 1085 * conflict with our new state. 1086 */ 1087 si->src.state = si->dst.state = 1088 TCPS_CLOSED; 1089 si->timeout = PFTM_PURGE; 1090 olds = si; 1091 } else { 1092 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1093 printf("pf: %s key attach " 1094 "failed on %s: ", 1095 (idx == PF_SK_WIRE) ? 1096 "wire" : "stack", 1097 s->kif->pfik_name); 1098 pf_print_state_parts(s, 1099 (idx == PF_SK_WIRE) ? 1100 sk : NULL, 1101 (idx == PF_SK_STACK) ? 1102 sk : NULL); 1103 printf(", existing: "); 1104 pf_print_state_parts(si, 1105 (idx == PF_SK_WIRE) ? 1106 sk : NULL, 1107 (idx == PF_SK_STACK) ? 1108 sk : NULL); 1109 printf("\n"); 1110 } 1111 PF_HASHROW_UNLOCK(ih); 1112 KEYS_UNLOCK(); 1113 uma_zfree(V_pf_state_key_z, sk); 1114 if (idx == PF_SK_STACK) 1115 pf_detach_state(s); 1116 return (EEXIST); /* collision! */ 1117 } 1118 } 1119 PF_HASHROW_UNLOCK(ih); 1120 } 1121 uma_zfree(V_pf_state_key_z, sk); 1122 s->key[idx] = cur; 1123 } else { 1124 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1125 s->key[idx] = sk; 1126 } 1127 1128 stateattach: 1129 /* List is sorted, if-bound states before floating. */ 1130 if (s->kif == V_pfi_all) 1131 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1132 else 1133 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1134 1135 if (olds) { 1136 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1137 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1138 key_list[idx]); 1139 olds = NULL; 1140 } 1141 1142 /* 1143 * Attach done. See how should we (or should not?) 1144 * attach a second key. 1145 */ 1146 if (sks == skw) { 1147 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1148 idx = PF_SK_STACK; 1149 sks = NULL; 1150 goto stateattach; 1151 } else if (sks != NULL) { 1152 /* 1153 * Continue attaching with stack key. 1154 */ 1155 sk = sks; 1156 kh = khs; 1157 idx = PF_SK_STACK; 1158 sks = NULL; 1159 goto keyattach; 1160 } 1161 1162 PF_STATE_LOCK(s); 1163 KEYS_UNLOCK(); 1164 1165 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1166 ("%s failure", __func__)); 1167 1168 return (0); 1169 #undef KEYS_UNLOCK 1170 } 1171 1172 static void 1173 pf_detach_state(struct pf_kstate *s) 1174 { 1175 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1176 struct pf_keyhash *kh; 1177 1178 if (sks != NULL) { 1179 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1180 PF_HASHROW_LOCK(kh); 1181 if (s->key[PF_SK_STACK] != NULL) 1182 pf_state_key_detach(s, PF_SK_STACK); 1183 /* 1184 * If both point to same key, then we are done. 1185 */ 1186 if (sks == s->key[PF_SK_WIRE]) { 1187 pf_state_key_detach(s, PF_SK_WIRE); 1188 PF_HASHROW_UNLOCK(kh); 1189 return; 1190 } 1191 PF_HASHROW_UNLOCK(kh); 1192 } 1193 1194 if (s->key[PF_SK_WIRE] != NULL) { 1195 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1196 PF_HASHROW_LOCK(kh); 1197 if (s->key[PF_SK_WIRE] != NULL) 1198 pf_state_key_detach(s, PF_SK_WIRE); 1199 PF_HASHROW_UNLOCK(kh); 1200 } 1201 } 1202 1203 static void 1204 pf_state_key_detach(struct pf_kstate *s, int idx) 1205 { 1206 struct pf_state_key *sk = s->key[idx]; 1207 #ifdef INVARIANTS 1208 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1209 1210 PF_HASHROW_ASSERT(kh); 1211 #endif 1212 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1213 s->key[idx] = NULL; 1214 1215 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1216 LIST_REMOVE(sk, entry); 1217 uma_zfree(V_pf_state_key_z, sk); 1218 } 1219 } 1220 1221 static int 1222 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1223 { 1224 struct pf_state_key *sk = mem; 1225 1226 bzero(sk, sizeof(struct pf_state_key_cmp)); 1227 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1228 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1229 1230 return (0); 1231 } 1232 1233 struct pf_state_key * 1234 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1235 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1236 { 1237 struct pf_state_key *sk; 1238 1239 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1240 if (sk == NULL) 1241 return (NULL); 1242 1243 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1244 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1245 sk->port[pd->sidx] = sport; 1246 sk->port[pd->didx] = dport; 1247 sk->proto = pd->proto; 1248 sk->af = pd->af; 1249 1250 return (sk); 1251 } 1252 1253 struct pf_state_key * 1254 pf_state_key_clone(struct pf_state_key *orig) 1255 { 1256 struct pf_state_key *sk; 1257 1258 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1259 if (sk == NULL) 1260 return (NULL); 1261 1262 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1263 1264 return (sk); 1265 } 1266 1267 int 1268 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1269 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1270 { 1271 struct pf_idhash *ih; 1272 struct pf_kstate *cur; 1273 int error; 1274 1275 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1276 ("%s: sks not pristine", __func__)); 1277 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1278 ("%s: skw not pristine", __func__)); 1279 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1280 1281 s->kif = kif; 1282 s->orig_kif = orig_kif; 1283 1284 if (s->id == 0 && s->creatorid == 0) { 1285 /* XXX: should be atomic, but probability of collision low */ 1286 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1287 V_pf_stateid[curcpu] = 1; 1288 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1289 s->id = htobe64(s->id); 1290 s->creatorid = V_pf_status.hostid; 1291 } 1292 1293 /* Returns with ID locked on success. */ 1294 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1295 return (error); 1296 1297 ih = &V_pf_idhash[PF_IDHASH(s)]; 1298 PF_HASHROW_ASSERT(ih); 1299 LIST_FOREACH(cur, &ih->states, entry) 1300 if (cur->id == s->id && cur->creatorid == s->creatorid) 1301 break; 1302 1303 if (cur != NULL) { 1304 PF_HASHROW_UNLOCK(ih); 1305 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1306 printf("pf: state ID collision: " 1307 "id: %016llx creatorid: %08x\n", 1308 (unsigned long long)be64toh(s->id), 1309 ntohl(s->creatorid)); 1310 } 1311 pf_detach_state(s); 1312 return (EEXIST); 1313 } 1314 LIST_INSERT_HEAD(&ih->states, s, entry); 1315 /* One for keys, one for ID hash. */ 1316 refcount_init(&s->refs, 2); 1317 1318 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1319 if (V_pfsync_insert_state_ptr != NULL) 1320 V_pfsync_insert_state_ptr(s); 1321 1322 /* Returns locked. */ 1323 return (0); 1324 } 1325 1326 /* 1327 * Find state by ID: returns with locked row on success. 1328 */ 1329 struct pf_kstate * 1330 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1331 { 1332 struct pf_idhash *ih; 1333 struct pf_kstate *s; 1334 1335 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1336 1337 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1338 1339 PF_HASHROW_LOCK(ih); 1340 LIST_FOREACH(s, &ih->states, entry) 1341 if (s->id == id && s->creatorid == creatorid) 1342 break; 1343 1344 if (s == NULL) 1345 PF_HASHROW_UNLOCK(ih); 1346 1347 return (s); 1348 } 1349 1350 /* 1351 * Find state by key. 1352 * Returns with ID hash slot locked on success. 1353 */ 1354 static struct pf_kstate * 1355 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1356 { 1357 struct pf_keyhash *kh; 1358 struct pf_state_key *sk; 1359 struct pf_kstate *s; 1360 int idx; 1361 1362 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1363 1364 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1365 1366 PF_HASHROW_LOCK(kh); 1367 LIST_FOREACH(sk, &kh->keys, entry) 1368 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1369 break; 1370 if (sk == NULL) { 1371 PF_HASHROW_UNLOCK(kh); 1372 return (NULL); 1373 } 1374 1375 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1376 1377 /* List is sorted, if-bound states before floating ones. */ 1378 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1379 if (s->kif == V_pfi_all || s->kif == kif) { 1380 PF_STATE_LOCK(s); 1381 PF_HASHROW_UNLOCK(kh); 1382 if (__predict_false(s->timeout >= PFTM_MAX)) { 1383 /* 1384 * State is either being processed by 1385 * pf_unlink_state() in an other thread, or 1386 * is scheduled for immediate expiry. 1387 */ 1388 PF_STATE_UNLOCK(s); 1389 return (NULL); 1390 } 1391 return (s); 1392 } 1393 PF_HASHROW_UNLOCK(kh); 1394 1395 return (NULL); 1396 } 1397 1398 struct pf_kstate * 1399 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1400 { 1401 struct pf_keyhash *kh; 1402 struct pf_state_key *sk; 1403 struct pf_kstate *s, *ret = NULL; 1404 int idx, inout = 0; 1405 1406 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1407 1408 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1409 1410 PF_HASHROW_LOCK(kh); 1411 LIST_FOREACH(sk, &kh->keys, entry) 1412 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1413 break; 1414 if (sk == NULL) { 1415 PF_HASHROW_UNLOCK(kh); 1416 return (NULL); 1417 } 1418 switch (dir) { 1419 case PF_IN: 1420 idx = PF_SK_WIRE; 1421 break; 1422 case PF_OUT: 1423 idx = PF_SK_STACK; 1424 break; 1425 case PF_INOUT: 1426 idx = PF_SK_WIRE; 1427 inout = 1; 1428 break; 1429 default: 1430 panic("%s: dir %u", __func__, dir); 1431 } 1432 second_run: 1433 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1434 if (more == NULL) { 1435 PF_HASHROW_UNLOCK(kh); 1436 return (s); 1437 } 1438 1439 if (ret) 1440 (*more)++; 1441 else 1442 ret = s; 1443 } 1444 if (inout == 1) { 1445 inout = 0; 1446 idx = PF_SK_STACK; 1447 goto second_run; 1448 } 1449 PF_HASHROW_UNLOCK(kh); 1450 1451 return (ret); 1452 } 1453 1454 bool 1455 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1456 { 1457 struct pf_kstate *s; 1458 1459 s = pf_find_state_all(key, dir, NULL); 1460 return (s != NULL); 1461 } 1462 1463 /* END state table stuff */ 1464 1465 static void 1466 pf_send(struct pf_send_entry *pfse) 1467 { 1468 1469 PF_SENDQ_LOCK(); 1470 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1471 PF_SENDQ_UNLOCK(); 1472 swi_sched(V_pf_swi_cookie, 0); 1473 } 1474 1475 void 1476 pf_intr(void *v) 1477 { 1478 struct epoch_tracker et; 1479 struct pf_send_head queue; 1480 struct pf_send_entry *pfse, *next; 1481 1482 CURVNET_SET((struct vnet *)v); 1483 1484 PF_SENDQ_LOCK(); 1485 queue = V_pf_sendqueue; 1486 STAILQ_INIT(&V_pf_sendqueue); 1487 PF_SENDQ_UNLOCK(); 1488 1489 NET_EPOCH_ENTER(et); 1490 1491 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1492 switch (pfse->pfse_type) { 1493 #ifdef INET 1494 case PFSE_IP: 1495 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1496 break; 1497 case PFSE_ICMP: 1498 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1499 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1500 break; 1501 #endif /* INET */ 1502 #ifdef INET6 1503 case PFSE_IP6: 1504 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1505 NULL); 1506 break; 1507 case PFSE_ICMP6: 1508 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1509 pfse->icmpopts.code, pfse->icmpopts.mtu); 1510 break; 1511 #endif /* INET6 */ 1512 default: 1513 panic("%s: unknown type", __func__); 1514 } 1515 free(pfse, M_PFTEMP); 1516 } 1517 NET_EPOCH_EXIT(et); 1518 CURVNET_RESTORE(); 1519 } 1520 1521 #define pf_purge_thread_period (hz / 10) 1522 1523 #ifdef PF_WANT_32_TO_64_COUNTER 1524 static void 1525 pf_status_counter_u64_periodic(void) 1526 { 1527 1528 PF_RULES_RASSERT(); 1529 1530 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1531 return; 1532 } 1533 1534 for (int i = 0; i < FCNT_MAX; i++) { 1535 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1536 } 1537 } 1538 1539 static void 1540 pf_kif_counter_u64_periodic(void) 1541 { 1542 struct pfi_kkif *kif; 1543 size_t r, run; 1544 1545 PF_RULES_RASSERT(); 1546 1547 if (__predict_false(V_pf_allkifcount == 0)) { 1548 return; 1549 } 1550 1551 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1552 return; 1553 } 1554 1555 run = V_pf_allkifcount / 10; 1556 if (run < 5) 1557 run = 5; 1558 1559 for (r = 0; r < run; r++) { 1560 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1561 if (kif == NULL) { 1562 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1563 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1564 break; 1565 } 1566 1567 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1568 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1569 1570 for (int i = 0; i < 2; i++) { 1571 for (int j = 0; j < 2; j++) { 1572 for (int k = 0; k < 2; k++) { 1573 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1574 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1575 } 1576 } 1577 } 1578 } 1579 } 1580 1581 static void 1582 pf_rule_counter_u64_periodic(void) 1583 { 1584 struct pf_krule *rule; 1585 size_t r, run; 1586 1587 PF_RULES_RASSERT(); 1588 1589 if (__predict_false(V_pf_allrulecount == 0)) { 1590 return; 1591 } 1592 1593 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1594 return; 1595 } 1596 1597 run = V_pf_allrulecount / 10; 1598 if (run < 5) 1599 run = 5; 1600 1601 for (r = 0; r < run; r++) { 1602 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1603 if (rule == NULL) { 1604 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1605 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1606 break; 1607 } 1608 1609 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1610 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1611 1612 pf_counter_u64_periodic(&rule->evaluations); 1613 for (int i = 0; i < 2; i++) { 1614 pf_counter_u64_periodic(&rule->packets[i]); 1615 pf_counter_u64_periodic(&rule->bytes[i]); 1616 } 1617 } 1618 } 1619 1620 static void 1621 pf_counter_u64_periodic_main(void) 1622 { 1623 PF_RULES_RLOCK_TRACKER; 1624 1625 V_pf_counter_periodic_iter++; 1626 1627 PF_RULES_RLOCK(); 1628 pf_counter_u64_critical_enter(); 1629 pf_status_counter_u64_periodic(); 1630 pf_kif_counter_u64_periodic(); 1631 pf_rule_counter_u64_periodic(); 1632 pf_counter_u64_critical_exit(); 1633 PF_RULES_RUNLOCK(); 1634 } 1635 #else 1636 #define pf_counter_u64_periodic_main() do { } while (0) 1637 #endif 1638 1639 void 1640 pf_purge_thread(void *unused __unused) 1641 { 1642 VNET_ITERATOR_DECL(vnet_iter); 1643 1644 sx_xlock(&pf_end_lock); 1645 while (pf_end_threads == 0) { 1646 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1647 1648 VNET_LIST_RLOCK(); 1649 VNET_FOREACH(vnet_iter) { 1650 CURVNET_SET(vnet_iter); 1651 1652 /* Wait until V_pf_default_rule is initialized. */ 1653 if (V_pf_vnet_active == 0) { 1654 CURVNET_RESTORE(); 1655 continue; 1656 } 1657 1658 pf_counter_u64_periodic_main(); 1659 1660 /* 1661 * Process 1/interval fraction of the state 1662 * table every run. 1663 */ 1664 V_pf_purge_idx = 1665 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1666 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1667 1668 /* 1669 * Purge other expired types every 1670 * PFTM_INTERVAL seconds. 1671 */ 1672 if (V_pf_purge_idx == 0) { 1673 /* 1674 * Order is important: 1675 * - states and src nodes reference rules 1676 * - states and rules reference kifs 1677 */ 1678 pf_purge_expired_fragments(); 1679 pf_purge_expired_src_nodes(); 1680 pf_purge_unlinked_rules(); 1681 pfi_kkif_purge(); 1682 } 1683 CURVNET_RESTORE(); 1684 } 1685 VNET_LIST_RUNLOCK(); 1686 } 1687 1688 pf_end_threads++; 1689 sx_xunlock(&pf_end_lock); 1690 kproc_exit(0); 1691 } 1692 1693 void 1694 pf_unload_vnet_purge(void) 1695 { 1696 1697 /* 1698 * To cleanse up all kifs and rules we need 1699 * two runs: first one clears reference flags, 1700 * then pf_purge_expired_states() doesn't 1701 * raise them, and then second run frees. 1702 */ 1703 pf_purge_unlinked_rules(); 1704 pfi_kkif_purge(); 1705 1706 /* 1707 * Now purge everything. 1708 */ 1709 pf_purge_expired_states(0, pf_hashmask); 1710 pf_purge_fragments(UINT_MAX); 1711 pf_purge_expired_src_nodes(); 1712 1713 /* 1714 * Now all kifs & rules should be unreferenced, 1715 * thus should be successfully freed. 1716 */ 1717 pf_purge_unlinked_rules(); 1718 pfi_kkif_purge(); 1719 } 1720 1721 u_int32_t 1722 pf_state_expires(const struct pf_kstate *state) 1723 { 1724 u_int32_t timeout; 1725 u_int32_t start; 1726 u_int32_t end; 1727 u_int32_t states; 1728 1729 /* handle all PFTM_* > PFTM_MAX here */ 1730 if (state->timeout == PFTM_PURGE) 1731 return (time_uptime); 1732 KASSERT(state->timeout != PFTM_UNLINKED, 1733 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1734 KASSERT((state->timeout < PFTM_MAX), 1735 ("pf_state_expires: timeout > PFTM_MAX")); 1736 timeout = state->rule.ptr->timeout[state->timeout]; 1737 if (!timeout) 1738 timeout = V_pf_default_rule.timeout[state->timeout]; 1739 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1740 if (start && state->rule.ptr != &V_pf_default_rule) { 1741 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1742 states = counter_u64_fetch(state->rule.ptr->states_cur); 1743 } else { 1744 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1745 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1746 states = V_pf_status.states; 1747 } 1748 if (end && states > start && start < end) { 1749 if (states < end) { 1750 timeout = (u_int64_t)timeout * (end - states) / 1751 (end - start); 1752 return (state->expire + timeout); 1753 } 1754 else 1755 return (time_uptime); 1756 } 1757 return (state->expire + timeout); 1758 } 1759 1760 void 1761 pf_purge_expired_src_nodes() 1762 { 1763 struct pf_ksrc_node_list freelist; 1764 struct pf_srchash *sh; 1765 struct pf_ksrc_node *cur, *next; 1766 int i; 1767 1768 LIST_INIT(&freelist); 1769 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1770 PF_HASHROW_LOCK(sh); 1771 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1772 if (cur->states == 0 && cur->expire <= time_uptime) { 1773 pf_unlink_src_node(cur); 1774 LIST_INSERT_HEAD(&freelist, cur, entry); 1775 } else if (cur->rule.ptr != NULL) 1776 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1777 PF_HASHROW_UNLOCK(sh); 1778 } 1779 1780 pf_free_src_nodes(&freelist); 1781 1782 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1783 } 1784 1785 static void 1786 pf_src_tree_remove_state(struct pf_kstate *s) 1787 { 1788 struct pf_ksrc_node *sn; 1789 struct pf_srchash *sh; 1790 uint32_t timeout; 1791 1792 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1793 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1794 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1795 1796 if (s->src_node != NULL) { 1797 sn = s->src_node; 1798 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1799 PF_HASHROW_LOCK(sh); 1800 if (s->src.tcp_est) 1801 --sn->conn; 1802 if (--sn->states == 0) 1803 sn->expire = time_uptime + timeout; 1804 PF_HASHROW_UNLOCK(sh); 1805 } 1806 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1807 sn = s->nat_src_node; 1808 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1809 PF_HASHROW_LOCK(sh); 1810 if (--sn->states == 0) 1811 sn->expire = time_uptime + timeout; 1812 PF_HASHROW_UNLOCK(sh); 1813 } 1814 s->src_node = s->nat_src_node = NULL; 1815 } 1816 1817 /* 1818 * Unlink and potentilly free a state. Function may be 1819 * called with ID hash row locked, but always returns 1820 * unlocked, since it needs to go through key hash locking. 1821 */ 1822 int 1823 pf_unlink_state(struct pf_kstate *s, u_int flags) 1824 { 1825 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1826 1827 if ((flags & PF_ENTER_LOCKED) == 0) 1828 PF_HASHROW_LOCK(ih); 1829 else 1830 PF_HASHROW_ASSERT(ih); 1831 1832 if (s->timeout == PFTM_UNLINKED) { 1833 /* 1834 * State is being processed 1835 * by pf_unlink_state() in 1836 * an other thread. 1837 */ 1838 PF_HASHROW_UNLOCK(ih); 1839 return (0); /* XXXGL: undefined actually */ 1840 } 1841 1842 if (s->src.state == PF_TCPS_PROXY_DST) { 1843 /* XXX wire key the right one? */ 1844 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 1845 &s->key[PF_SK_WIRE]->addr[1], 1846 &s->key[PF_SK_WIRE]->addr[0], 1847 s->key[PF_SK_WIRE]->port[1], 1848 s->key[PF_SK_WIRE]->port[0], 1849 s->src.seqhi, s->src.seqlo + 1, 1850 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 1851 } 1852 1853 LIST_REMOVE(s, entry); 1854 pf_src_tree_remove_state(s); 1855 1856 if (V_pfsync_delete_state_ptr != NULL) 1857 V_pfsync_delete_state_ptr(s); 1858 1859 STATE_DEC_COUNTERS(s); 1860 1861 s->timeout = PFTM_UNLINKED; 1862 1863 PF_HASHROW_UNLOCK(ih); 1864 1865 pf_detach_state(s); 1866 /* pf_state_insert() initialises refs to 2 */ 1867 return (pf_release_staten(s, 2)); 1868 } 1869 1870 struct pf_kstate * 1871 pf_alloc_state(int flags) 1872 { 1873 1874 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1875 } 1876 1877 void 1878 pf_free_state(struct pf_kstate *cur) 1879 { 1880 1881 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1882 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1883 cur->timeout)); 1884 1885 pf_normalize_tcp_cleanup(cur); 1886 uma_zfree(V_pf_state_z, cur); 1887 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1888 } 1889 1890 /* 1891 * Called only from pf_purge_thread(), thus serialized. 1892 */ 1893 static u_int 1894 pf_purge_expired_states(u_int i, int maxcheck) 1895 { 1896 struct pf_idhash *ih; 1897 struct pf_kstate *s; 1898 1899 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1900 1901 /* 1902 * Go through hash and unlink states that expire now. 1903 */ 1904 while (maxcheck > 0) { 1905 ih = &V_pf_idhash[i]; 1906 1907 /* only take the lock if we expect to do work */ 1908 if (!LIST_EMPTY(&ih->states)) { 1909 relock: 1910 PF_HASHROW_LOCK(ih); 1911 LIST_FOREACH(s, &ih->states, entry) { 1912 if (pf_state_expires(s) <= time_uptime) { 1913 V_pf_status.states -= 1914 pf_unlink_state(s, PF_ENTER_LOCKED); 1915 goto relock; 1916 } 1917 s->rule.ptr->rule_ref |= PFRULE_REFS; 1918 if (s->nat_rule.ptr != NULL) 1919 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 1920 if (s->anchor.ptr != NULL) 1921 s->anchor.ptr->rule_ref |= PFRULE_REFS; 1922 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1923 if (s->rt_kif) 1924 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1925 } 1926 PF_HASHROW_UNLOCK(ih); 1927 } 1928 1929 /* Return when we hit end of hash. */ 1930 if (++i > pf_hashmask) { 1931 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1932 return (0); 1933 } 1934 1935 maxcheck--; 1936 } 1937 1938 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1939 1940 return (i); 1941 } 1942 1943 static void 1944 pf_purge_unlinked_rules() 1945 { 1946 struct pf_krulequeue tmpq; 1947 struct pf_krule *r, *r1; 1948 1949 /* 1950 * If we have overloading task pending, then we'd 1951 * better skip purging this time. There is a tiny 1952 * probability that overloading task references 1953 * an already unlinked rule. 1954 */ 1955 PF_OVERLOADQ_LOCK(); 1956 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1957 PF_OVERLOADQ_UNLOCK(); 1958 return; 1959 } 1960 PF_OVERLOADQ_UNLOCK(); 1961 1962 /* 1963 * Do naive mark-and-sweep garbage collecting of old rules. 1964 * Reference flag is raised by pf_purge_expired_states() 1965 * and pf_purge_expired_src_nodes(). 1966 * 1967 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1968 * use a temporary queue. 1969 */ 1970 TAILQ_INIT(&tmpq); 1971 PF_UNLNKDRULES_LOCK(); 1972 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1973 if (!(r->rule_ref & PFRULE_REFS)) { 1974 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1975 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1976 } else 1977 r->rule_ref &= ~PFRULE_REFS; 1978 } 1979 PF_UNLNKDRULES_UNLOCK(); 1980 1981 if (!TAILQ_EMPTY(&tmpq)) { 1982 PF_RULES_WLOCK(); 1983 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1984 TAILQ_REMOVE(&tmpq, r, entries); 1985 pf_free_rule(r); 1986 } 1987 PF_RULES_WUNLOCK(); 1988 } 1989 } 1990 1991 void 1992 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1993 { 1994 switch (af) { 1995 #ifdef INET 1996 case AF_INET: { 1997 u_int32_t a = ntohl(addr->addr32[0]); 1998 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1999 (a>>8)&255, a&255); 2000 if (p) { 2001 p = ntohs(p); 2002 printf(":%u", p); 2003 } 2004 break; 2005 } 2006 #endif /* INET */ 2007 #ifdef INET6 2008 case AF_INET6: { 2009 u_int16_t b; 2010 u_int8_t i, curstart, curend, maxstart, maxend; 2011 curstart = curend = maxstart = maxend = 255; 2012 for (i = 0; i < 8; i++) { 2013 if (!addr->addr16[i]) { 2014 if (curstart == 255) 2015 curstart = i; 2016 curend = i; 2017 } else { 2018 if ((curend - curstart) > 2019 (maxend - maxstart)) { 2020 maxstart = curstart; 2021 maxend = curend; 2022 } 2023 curstart = curend = 255; 2024 } 2025 } 2026 if ((curend - curstart) > 2027 (maxend - maxstart)) { 2028 maxstart = curstart; 2029 maxend = curend; 2030 } 2031 for (i = 0; i < 8; i++) { 2032 if (i >= maxstart && i <= maxend) { 2033 if (i == 0) 2034 printf(":"); 2035 if (i == maxend) 2036 printf(":"); 2037 } else { 2038 b = ntohs(addr->addr16[i]); 2039 printf("%x", b); 2040 if (i < 7) 2041 printf(":"); 2042 } 2043 } 2044 if (p) { 2045 p = ntohs(p); 2046 printf("[%u]", p); 2047 } 2048 break; 2049 } 2050 #endif /* INET6 */ 2051 } 2052 } 2053 2054 void 2055 pf_print_state(struct pf_kstate *s) 2056 { 2057 pf_print_state_parts(s, NULL, NULL); 2058 } 2059 2060 static void 2061 pf_print_state_parts(struct pf_kstate *s, 2062 struct pf_state_key *skwp, struct pf_state_key *sksp) 2063 { 2064 struct pf_state_key *skw, *sks; 2065 u_int8_t proto, dir; 2066 2067 /* Do our best to fill these, but they're skipped if NULL */ 2068 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2069 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2070 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2071 dir = s ? s->direction : 0; 2072 2073 switch (proto) { 2074 case IPPROTO_IPV4: 2075 printf("IPv4"); 2076 break; 2077 case IPPROTO_IPV6: 2078 printf("IPv6"); 2079 break; 2080 case IPPROTO_TCP: 2081 printf("TCP"); 2082 break; 2083 case IPPROTO_UDP: 2084 printf("UDP"); 2085 break; 2086 case IPPROTO_ICMP: 2087 printf("ICMP"); 2088 break; 2089 case IPPROTO_ICMPV6: 2090 printf("ICMPv6"); 2091 break; 2092 default: 2093 printf("%u", proto); 2094 break; 2095 } 2096 switch (dir) { 2097 case PF_IN: 2098 printf(" in"); 2099 break; 2100 case PF_OUT: 2101 printf(" out"); 2102 break; 2103 } 2104 if (skw) { 2105 printf(" wire: "); 2106 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2107 printf(" "); 2108 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2109 } 2110 if (sks) { 2111 printf(" stack: "); 2112 if (sks != skw) { 2113 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2114 printf(" "); 2115 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2116 } else 2117 printf("-"); 2118 } 2119 if (s) { 2120 if (proto == IPPROTO_TCP) { 2121 printf(" [lo=%u high=%u win=%u modulator=%u", 2122 s->src.seqlo, s->src.seqhi, 2123 s->src.max_win, s->src.seqdiff); 2124 if (s->src.wscale && s->dst.wscale) 2125 printf(" wscale=%u", 2126 s->src.wscale & PF_WSCALE_MASK); 2127 printf("]"); 2128 printf(" [lo=%u high=%u win=%u modulator=%u", 2129 s->dst.seqlo, s->dst.seqhi, 2130 s->dst.max_win, s->dst.seqdiff); 2131 if (s->src.wscale && s->dst.wscale) 2132 printf(" wscale=%u", 2133 s->dst.wscale & PF_WSCALE_MASK); 2134 printf("]"); 2135 } 2136 printf(" %u:%u", s->src.state, s->dst.state); 2137 } 2138 } 2139 2140 void 2141 pf_print_flags(u_int8_t f) 2142 { 2143 if (f) 2144 printf(" "); 2145 if (f & TH_FIN) 2146 printf("F"); 2147 if (f & TH_SYN) 2148 printf("S"); 2149 if (f & TH_RST) 2150 printf("R"); 2151 if (f & TH_PUSH) 2152 printf("P"); 2153 if (f & TH_ACK) 2154 printf("A"); 2155 if (f & TH_URG) 2156 printf("U"); 2157 if (f & TH_ECE) 2158 printf("E"); 2159 if (f & TH_CWR) 2160 printf("W"); 2161 } 2162 2163 #define PF_SET_SKIP_STEPS(i) \ 2164 do { \ 2165 while (head[i] != cur) { \ 2166 head[i]->skip[i].ptr = cur; \ 2167 head[i] = TAILQ_NEXT(head[i], entries); \ 2168 } \ 2169 } while (0) 2170 2171 void 2172 pf_calc_skip_steps(struct pf_krulequeue *rules) 2173 { 2174 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2175 int i; 2176 2177 cur = TAILQ_FIRST(rules); 2178 prev = cur; 2179 for (i = 0; i < PF_SKIP_COUNT; ++i) 2180 head[i] = cur; 2181 while (cur != NULL) { 2182 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2183 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2184 if (cur->direction != prev->direction) 2185 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2186 if (cur->af != prev->af) 2187 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2188 if (cur->proto != prev->proto) 2189 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2190 if (cur->src.neg != prev->src.neg || 2191 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2192 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2193 if (cur->src.port[0] != prev->src.port[0] || 2194 cur->src.port[1] != prev->src.port[1] || 2195 cur->src.port_op != prev->src.port_op) 2196 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2197 if (cur->dst.neg != prev->dst.neg || 2198 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2199 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2200 if (cur->dst.port[0] != prev->dst.port[0] || 2201 cur->dst.port[1] != prev->dst.port[1] || 2202 cur->dst.port_op != prev->dst.port_op) 2203 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2204 2205 prev = cur; 2206 cur = TAILQ_NEXT(cur, entries); 2207 } 2208 for (i = 0; i < PF_SKIP_COUNT; ++i) 2209 PF_SET_SKIP_STEPS(i); 2210 } 2211 2212 static int 2213 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2214 { 2215 if (aw1->type != aw2->type) 2216 return (1); 2217 switch (aw1->type) { 2218 case PF_ADDR_ADDRMASK: 2219 case PF_ADDR_RANGE: 2220 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2221 return (1); 2222 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2223 return (1); 2224 return (0); 2225 case PF_ADDR_DYNIFTL: 2226 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2227 case PF_ADDR_NOROUTE: 2228 case PF_ADDR_URPFFAILED: 2229 return (0); 2230 case PF_ADDR_TABLE: 2231 return (aw1->p.tbl != aw2->p.tbl); 2232 default: 2233 printf("invalid address type: %d\n", aw1->type); 2234 return (1); 2235 } 2236 } 2237 2238 /** 2239 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2240 * header isn't always a full checksum. In some cases (i.e. output) it's a 2241 * pseudo-header checksum, which is a partial checksum over src/dst IP 2242 * addresses, protocol number and length. 2243 * 2244 * That means we have the following cases: 2245 * * Input or forwarding: we don't have TSO, the checksum fields are full 2246 * checksums, we need to update the checksum whenever we change anything. 2247 * * Output (i.e. the checksum is a pseudo-header checksum): 2248 * x The field being updated is src/dst address or affects the length of 2249 * the packet. We need to update the pseudo-header checksum (note that this 2250 * checksum is not ones' complement). 2251 * x Some other field is being modified (e.g. src/dst port numbers): We 2252 * don't have to update anything. 2253 **/ 2254 u_int16_t 2255 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2256 { 2257 u_int32_t x; 2258 2259 x = cksum + old - new; 2260 x = (x + (x >> 16)) & 0xffff; 2261 2262 /* optimise: eliminate a branch when not udp */ 2263 if (udp && cksum == 0x0000) 2264 return cksum; 2265 if (udp && x == 0x0000) 2266 x = 0xffff; 2267 2268 return (u_int16_t)(x); 2269 } 2270 2271 static void 2272 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2273 u_int8_t udp) 2274 { 2275 u_int16_t old = htons(hi ? (*f << 8) : *f); 2276 u_int16_t new = htons(hi ? ( v << 8) : v); 2277 2278 if (*f == v) 2279 return; 2280 2281 *f = v; 2282 2283 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2284 return; 2285 2286 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2287 } 2288 2289 void 2290 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2291 bool hi, u_int8_t udp) 2292 { 2293 u_int8_t *fb = (u_int8_t *)f; 2294 u_int8_t *vb = (u_int8_t *)&v; 2295 2296 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2297 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2298 } 2299 2300 void 2301 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2302 bool hi, u_int8_t udp) 2303 { 2304 u_int8_t *fb = (u_int8_t *)f; 2305 u_int8_t *vb = (u_int8_t *)&v; 2306 2307 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2308 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2309 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2310 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2311 } 2312 2313 u_int16_t 2314 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2315 u_int16_t new, u_int8_t udp) 2316 { 2317 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2318 return (cksum); 2319 2320 return (pf_cksum_fixup(cksum, old, new, udp)); 2321 } 2322 2323 static void 2324 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2325 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2326 sa_family_t af) 2327 { 2328 struct pf_addr ao; 2329 u_int16_t po = *p; 2330 2331 PF_ACPY(&ao, a, af); 2332 PF_ACPY(a, an, af); 2333 2334 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2335 *pc = ~*pc; 2336 2337 *p = pn; 2338 2339 switch (af) { 2340 #ifdef INET 2341 case AF_INET: 2342 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2343 ao.addr16[0], an->addr16[0], 0), 2344 ao.addr16[1], an->addr16[1], 0); 2345 *p = pn; 2346 2347 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2348 ao.addr16[0], an->addr16[0], u), 2349 ao.addr16[1], an->addr16[1], u); 2350 2351 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2352 break; 2353 #endif /* INET */ 2354 #ifdef INET6 2355 case AF_INET6: 2356 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2357 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2358 pf_cksum_fixup(pf_cksum_fixup(*pc, 2359 ao.addr16[0], an->addr16[0], u), 2360 ao.addr16[1], an->addr16[1], u), 2361 ao.addr16[2], an->addr16[2], u), 2362 ao.addr16[3], an->addr16[3], u), 2363 ao.addr16[4], an->addr16[4], u), 2364 ao.addr16[5], an->addr16[5], u), 2365 ao.addr16[6], an->addr16[6], u), 2366 ao.addr16[7], an->addr16[7], u); 2367 2368 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2369 break; 2370 #endif /* INET6 */ 2371 } 2372 2373 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2374 CSUM_DELAY_DATA_IPV6)) { 2375 *pc = ~*pc; 2376 if (! *pc) 2377 *pc = 0xffff; 2378 } 2379 } 2380 2381 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2382 void 2383 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2384 { 2385 u_int32_t ao; 2386 2387 memcpy(&ao, a, sizeof(ao)); 2388 memcpy(a, &an, sizeof(u_int32_t)); 2389 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2390 ao % 65536, an % 65536, u); 2391 } 2392 2393 void 2394 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2395 { 2396 u_int32_t ao; 2397 2398 memcpy(&ao, a, sizeof(ao)); 2399 memcpy(a, &an, sizeof(u_int32_t)); 2400 2401 *c = pf_proto_cksum_fixup(m, 2402 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2403 ao % 65536, an % 65536, udp); 2404 } 2405 2406 #ifdef INET6 2407 static void 2408 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2409 { 2410 struct pf_addr ao; 2411 2412 PF_ACPY(&ao, a, AF_INET6); 2413 PF_ACPY(a, an, AF_INET6); 2414 2415 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2416 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2417 pf_cksum_fixup(pf_cksum_fixup(*c, 2418 ao.addr16[0], an->addr16[0], u), 2419 ao.addr16[1], an->addr16[1], u), 2420 ao.addr16[2], an->addr16[2], u), 2421 ao.addr16[3], an->addr16[3], u), 2422 ao.addr16[4], an->addr16[4], u), 2423 ao.addr16[5], an->addr16[5], u), 2424 ao.addr16[6], an->addr16[6], u), 2425 ao.addr16[7], an->addr16[7], u); 2426 } 2427 #endif /* INET6 */ 2428 2429 static void 2430 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2431 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2432 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2433 { 2434 struct pf_addr oia, ooa; 2435 2436 PF_ACPY(&oia, ia, af); 2437 if (oa) 2438 PF_ACPY(&ooa, oa, af); 2439 2440 /* Change inner protocol port, fix inner protocol checksum. */ 2441 if (ip != NULL) { 2442 u_int16_t oip = *ip; 2443 u_int32_t opc; 2444 2445 if (pc != NULL) 2446 opc = *pc; 2447 *ip = np; 2448 if (pc != NULL) 2449 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2450 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2451 if (pc != NULL) 2452 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2453 } 2454 /* Change inner ip address, fix inner ip and icmp checksums. */ 2455 PF_ACPY(ia, na, af); 2456 switch (af) { 2457 #ifdef INET 2458 case AF_INET: { 2459 u_int32_t oh2c = *h2c; 2460 2461 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2462 oia.addr16[0], ia->addr16[0], 0), 2463 oia.addr16[1], ia->addr16[1], 0); 2464 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2465 oia.addr16[0], ia->addr16[0], 0), 2466 oia.addr16[1], ia->addr16[1], 0); 2467 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2468 break; 2469 } 2470 #endif /* INET */ 2471 #ifdef INET6 2472 case AF_INET6: 2473 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2474 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2475 pf_cksum_fixup(pf_cksum_fixup(*ic, 2476 oia.addr16[0], ia->addr16[0], u), 2477 oia.addr16[1], ia->addr16[1], u), 2478 oia.addr16[2], ia->addr16[2], u), 2479 oia.addr16[3], ia->addr16[3], u), 2480 oia.addr16[4], ia->addr16[4], u), 2481 oia.addr16[5], ia->addr16[5], u), 2482 oia.addr16[6], ia->addr16[6], u), 2483 oia.addr16[7], ia->addr16[7], u); 2484 break; 2485 #endif /* INET6 */ 2486 } 2487 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2488 if (oa) { 2489 PF_ACPY(oa, na, af); 2490 switch (af) { 2491 #ifdef INET 2492 case AF_INET: 2493 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2494 ooa.addr16[0], oa->addr16[0], 0), 2495 ooa.addr16[1], oa->addr16[1], 0); 2496 break; 2497 #endif /* INET */ 2498 #ifdef INET6 2499 case AF_INET6: 2500 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2501 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2502 pf_cksum_fixup(pf_cksum_fixup(*ic, 2503 ooa.addr16[0], oa->addr16[0], u), 2504 ooa.addr16[1], oa->addr16[1], u), 2505 ooa.addr16[2], oa->addr16[2], u), 2506 ooa.addr16[3], oa->addr16[3], u), 2507 ooa.addr16[4], oa->addr16[4], u), 2508 ooa.addr16[5], oa->addr16[5], u), 2509 ooa.addr16[6], oa->addr16[6], u), 2510 ooa.addr16[7], oa->addr16[7], u); 2511 break; 2512 #endif /* INET6 */ 2513 } 2514 } 2515 } 2516 2517 /* 2518 * Need to modulate the sequence numbers in the TCP SACK option 2519 * (credits to Krzysztof Pfaff for report and patch) 2520 */ 2521 static int 2522 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2523 struct tcphdr *th, struct pf_state_peer *dst) 2524 { 2525 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2526 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2527 int copyback = 0, i, olen; 2528 struct sackblk sack; 2529 2530 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2531 if (hlen < TCPOLEN_SACKLEN || 2532 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2533 return 0; 2534 2535 while (hlen >= TCPOLEN_SACKLEN) { 2536 size_t startoff = opt - opts; 2537 olen = opt[1]; 2538 switch (*opt) { 2539 case TCPOPT_EOL: /* FALLTHROUGH */ 2540 case TCPOPT_NOP: 2541 opt++; 2542 hlen--; 2543 break; 2544 case TCPOPT_SACK: 2545 if (olen > hlen) 2546 olen = hlen; 2547 if (olen >= TCPOLEN_SACKLEN) { 2548 for (i = 2; i + TCPOLEN_SACK <= olen; 2549 i += TCPOLEN_SACK) { 2550 memcpy(&sack, &opt[i], sizeof(sack)); 2551 pf_patch_32_unaligned(m, 2552 &th->th_sum, &sack.start, 2553 htonl(ntohl(sack.start) - dst->seqdiff), 2554 PF_ALGNMNT(startoff), 2555 0); 2556 pf_patch_32_unaligned(m, &th->th_sum, 2557 &sack.end, 2558 htonl(ntohl(sack.end) - dst->seqdiff), 2559 PF_ALGNMNT(startoff), 2560 0); 2561 memcpy(&opt[i], &sack, sizeof(sack)); 2562 } 2563 copyback = 1; 2564 } 2565 /* FALLTHROUGH */ 2566 default: 2567 if (olen < 2) 2568 olen = 2; 2569 hlen -= olen; 2570 opt += olen; 2571 } 2572 } 2573 2574 if (copyback) 2575 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2576 return (copyback); 2577 } 2578 2579 struct mbuf * 2580 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2581 const struct pf_addr *saddr, const struct pf_addr *daddr, 2582 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2583 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2584 u_int16_t rtag) 2585 { 2586 struct mbuf *m; 2587 int len, tlen; 2588 #ifdef INET 2589 struct ip *h = NULL; 2590 #endif /* INET */ 2591 #ifdef INET6 2592 struct ip6_hdr *h6 = NULL; 2593 #endif /* INET6 */ 2594 struct tcphdr *th; 2595 char *opt; 2596 struct pf_mtag *pf_mtag; 2597 2598 len = 0; 2599 th = NULL; 2600 2601 /* maximum segment size tcp option */ 2602 tlen = sizeof(struct tcphdr); 2603 if (mss) 2604 tlen += 4; 2605 2606 switch (af) { 2607 #ifdef INET 2608 case AF_INET: 2609 len = sizeof(struct ip) + tlen; 2610 break; 2611 #endif /* INET */ 2612 #ifdef INET6 2613 case AF_INET6: 2614 len = sizeof(struct ip6_hdr) + tlen; 2615 break; 2616 #endif /* INET6 */ 2617 default: 2618 panic("%s: unsupported af %d", __func__, af); 2619 } 2620 2621 m = m_gethdr(M_NOWAIT, MT_DATA); 2622 if (m == NULL) 2623 return (NULL); 2624 2625 #ifdef MAC 2626 mac_netinet_firewall_send(m); 2627 #endif 2628 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2629 m_freem(m); 2630 return (NULL); 2631 } 2632 if (tag) 2633 m->m_flags |= M_SKIP_FIREWALL; 2634 pf_mtag->tag = rtag; 2635 2636 if (r != NULL && r->rtableid >= 0) 2637 M_SETFIB(m, r->rtableid); 2638 2639 #ifdef ALTQ 2640 if (r != NULL && r->qid) { 2641 pf_mtag->qid = r->qid; 2642 2643 /* add hints for ecn */ 2644 pf_mtag->hdr = mtod(m, struct ip *); 2645 } 2646 #endif /* ALTQ */ 2647 m->m_data += max_linkhdr; 2648 m->m_pkthdr.len = m->m_len = len; 2649 m->m_pkthdr.rcvif = NULL; 2650 bzero(m->m_data, len); 2651 switch (af) { 2652 #ifdef INET 2653 case AF_INET: 2654 h = mtod(m, struct ip *); 2655 2656 /* IP header fields included in the TCP checksum */ 2657 h->ip_p = IPPROTO_TCP; 2658 h->ip_len = htons(tlen); 2659 h->ip_src.s_addr = saddr->v4.s_addr; 2660 h->ip_dst.s_addr = daddr->v4.s_addr; 2661 2662 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2663 break; 2664 #endif /* INET */ 2665 #ifdef INET6 2666 case AF_INET6: 2667 h6 = mtod(m, struct ip6_hdr *); 2668 2669 /* IP header fields included in the TCP checksum */ 2670 h6->ip6_nxt = IPPROTO_TCP; 2671 h6->ip6_plen = htons(tlen); 2672 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2673 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2674 2675 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2676 break; 2677 #endif /* INET6 */ 2678 } 2679 2680 /* TCP header */ 2681 th->th_sport = sport; 2682 th->th_dport = dport; 2683 th->th_seq = htonl(seq); 2684 th->th_ack = htonl(ack); 2685 th->th_off = tlen >> 2; 2686 th->th_flags = flags; 2687 th->th_win = htons(win); 2688 2689 if (mss) { 2690 opt = (char *)(th + 1); 2691 opt[0] = TCPOPT_MAXSEG; 2692 opt[1] = 4; 2693 HTONS(mss); 2694 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2695 } 2696 2697 switch (af) { 2698 #ifdef INET 2699 case AF_INET: 2700 /* TCP checksum */ 2701 th->th_sum = in_cksum(m, len); 2702 2703 /* Finish the IP header */ 2704 h->ip_v = 4; 2705 h->ip_hl = sizeof(*h) >> 2; 2706 h->ip_tos = IPTOS_LOWDELAY; 2707 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2708 h->ip_len = htons(len); 2709 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2710 h->ip_sum = 0; 2711 break; 2712 #endif /* INET */ 2713 #ifdef INET6 2714 case AF_INET6: 2715 /* TCP checksum */ 2716 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2717 sizeof(struct ip6_hdr), tlen); 2718 2719 h6->ip6_vfc |= IPV6_VERSION; 2720 h6->ip6_hlim = IPV6_DEFHLIM; 2721 break; 2722 #endif /* INET6 */ 2723 } 2724 2725 return (m); 2726 } 2727 2728 void 2729 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2730 const struct pf_addr *saddr, const struct pf_addr *daddr, 2731 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2732 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2733 u_int16_t rtag) 2734 { 2735 struct pf_send_entry *pfse; 2736 struct mbuf *m; 2737 2738 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2739 win, mss, ttl, tag, rtag); 2740 if (m == NULL) 2741 return; 2742 2743 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2744 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2745 if (pfse == NULL) { 2746 m_freem(m); 2747 return; 2748 } 2749 2750 switch (af) { 2751 #ifdef INET 2752 case AF_INET: 2753 pfse->pfse_type = PFSE_IP; 2754 break; 2755 #endif /* INET */ 2756 #ifdef INET6 2757 case AF_INET6: 2758 pfse->pfse_type = PFSE_IP6; 2759 break; 2760 #endif /* INET6 */ 2761 } 2762 2763 pfse->pfse_m = m; 2764 pf_send(pfse); 2765 } 2766 2767 static void 2768 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2769 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2770 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2771 u_short *reason) 2772 { 2773 struct pf_addr * const saddr = pd->src; 2774 struct pf_addr * const daddr = pd->dst; 2775 sa_family_t af = pd->af; 2776 2777 /* undo NAT changes, if they have taken place */ 2778 if (nr != NULL) { 2779 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2780 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2781 if (pd->sport) 2782 *pd->sport = sk->port[pd->sidx]; 2783 if (pd->dport) 2784 *pd->dport = sk->port[pd->didx]; 2785 if (pd->proto_sum) 2786 *pd->proto_sum = bproto_sum; 2787 if (pd->ip_sum) 2788 *pd->ip_sum = bip_sum; 2789 m_copyback(m, off, hdrlen, pd->hdr.any); 2790 } 2791 if (pd->proto == IPPROTO_TCP && 2792 ((r->rule_flag & PFRULE_RETURNRST) || 2793 (r->rule_flag & PFRULE_RETURN)) && 2794 !(th->th_flags & TH_RST)) { 2795 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2796 int len = 0; 2797 #ifdef INET 2798 struct ip *h4; 2799 #endif 2800 #ifdef INET6 2801 struct ip6_hdr *h6; 2802 #endif 2803 2804 switch (af) { 2805 #ifdef INET 2806 case AF_INET: 2807 h4 = mtod(m, struct ip *); 2808 len = ntohs(h4->ip_len) - off; 2809 break; 2810 #endif 2811 #ifdef INET6 2812 case AF_INET6: 2813 h6 = mtod(m, struct ip6_hdr *); 2814 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2815 break; 2816 #endif 2817 } 2818 2819 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2820 REASON_SET(reason, PFRES_PROTCKSUM); 2821 else { 2822 if (th->th_flags & TH_SYN) 2823 ack++; 2824 if (th->th_flags & TH_FIN) 2825 ack++; 2826 pf_send_tcp(r, af, pd->dst, 2827 pd->src, th->th_dport, th->th_sport, 2828 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2829 r->return_ttl, 1, 0); 2830 } 2831 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2832 r->return_icmp) 2833 pf_send_icmp(m, r->return_icmp >> 8, 2834 r->return_icmp & 255, af, r); 2835 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2836 r->return_icmp6) 2837 pf_send_icmp(m, r->return_icmp6 >> 8, 2838 r->return_icmp6 & 255, af, r); 2839 } 2840 2841 static int 2842 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2843 { 2844 struct m_tag *mtag; 2845 u_int8_t mpcp; 2846 2847 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2848 if (mtag == NULL) 2849 return (0); 2850 2851 if (prio == PF_PRIO_ZERO) 2852 prio = 0; 2853 2854 mpcp = *(uint8_t *)(mtag + 1); 2855 2856 return (mpcp == prio); 2857 } 2858 2859 static void 2860 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2861 struct pf_krule *r) 2862 { 2863 struct pf_send_entry *pfse; 2864 struct mbuf *m0; 2865 struct pf_mtag *pf_mtag; 2866 2867 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2868 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2869 if (pfse == NULL) 2870 return; 2871 2872 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2873 free(pfse, M_PFTEMP); 2874 return; 2875 } 2876 2877 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2878 free(pfse, M_PFTEMP); 2879 return; 2880 } 2881 /* XXX: revisit */ 2882 m0->m_flags |= M_SKIP_FIREWALL; 2883 2884 if (r->rtableid >= 0) 2885 M_SETFIB(m0, r->rtableid); 2886 2887 #ifdef ALTQ 2888 if (r->qid) { 2889 pf_mtag->qid = r->qid; 2890 /* add hints for ecn */ 2891 pf_mtag->hdr = mtod(m0, struct ip *); 2892 } 2893 #endif /* ALTQ */ 2894 2895 switch (af) { 2896 #ifdef INET 2897 case AF_INET: 2898 pfse->pfse_type = PFSE_ICMP; 2899 break; 2900 #endif /* INET */ 2901 #ifdef INET6 2902 case AF_INET6: 2903 pfse->pfse_type = PFSE_ICMP6; 2904 break; 2905 #endif /* INET6 */ 2906 } 2907 pfse->pfse_m = m0; 2908 pfse->icmpopts.type = type; 2909 pfse->icmpopts.code = code; 2910 pf_send(pfse); 2911 } 2912 2913 /* 2914 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2915 * If n is 0, they match if they are equal. If n is != 0, they match if they 2916 * are different. 2917 */ 2918 int 2919 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2920 struct pf_addr *b, sa_family_t af) 2921 { 2922 int match = 0; 2923 2924 switch (af) { 2925 #ifdef INET 2926 case AF_INET: 2927 if ((a->addr32[0] & m->addr32[0]) == 2928 (b->addr32[0] & m->addr32[0])) 2929 match++; 2930 break; 2931 #endif /* INET */ 2932 #ifdef INET6 2933 case AF_INET6: 2934 if (((a->addr32[0] & m->addr32[0]) == 2935 (b->addr32[0] & m->addr32[0])) && 2936 ((a->addr32[1] & m->addr32[1]) == 2937 (b->addr32[1] & m->addr32[1])) && 2938 ((a->addr32[2] & m->addr32[2]) == 2939 (b->addr32[2] & m->addr32[2])) && 2940 ((a->addr32[3] & m->addr32[3]) == 2941 (b->addr32[3] & m->addr32[3]))) 2942 match++; 2943 break; 2944 #endif /* INET6 */ 2945 } 2946 if (match) { 2947 if (n) 2948 return (0); 2949 else 2950 return (1); 2951 } else { 2952 if (n) 2953 return (1); 2954 else 2955 return (0); 2956 } 2957 } 2958 2959 /* 2960 * Return 1 if b <= a <= e, otherwise return 0. 2961 */ 2962 int 2963 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2964 struct pf_addr *a, sa_family_t af) 2965 { 2966 switch (af) { 2967 #ifdef INET 2968 case AF_INET: 2969 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2970 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2971 return (0); 2972 break; 2973 #endif /* INET */ 2974 #ifdef INET6 2975 case AF_INET6: { 2976 int i; 2977 2978 /* check a >= b */ 2979 for (i = 0; i < 4; ++i) 2980 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2981 break; 2982 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2983 return (0); 2984 /* check a <= e */ 2985 for (i = 0; i < 4; ++i) 2986 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2987 break; 2988 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2989 return (0); 2990 break; 2991 } 2992 #endif /* INET6 */ 2993 } 2994 return (1); 2995 } 2996 2997 static int 2998 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2999 { 3000 switch (op) { 3001 case PF_OP_IRG: 3002 return ((p > a1) && (p < a2)); 3003 case PF_OP_XRG: 3004 return ((p < a1) || (p > a2)); 3005 case PF_OP_RRG: 3006 return ((p >= a1) && (p <= a2)); 3007 case PF_OP_EQ: 3008 return (p == a1); 3009 case PF_OP_NE: 3010 return (p != a1); 3011 case PF_OP_LT: 3012 return (p < a1); 3013 case PF_OP_LE: 3014 return (p <= a1); 3015 case PF_OP_GT: 3016 return (p > a1); 3017 case PF_OP_GE: 3018 return (p >= a1); 3019 } 3020 return (0); /* never reached */ 3021 } 3022 3023 int 3024 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3025 { 3026 NTOHS(a1); 3027 NTOHS(a2); 3028 NTOHS(p); 3029 return (pf_match(op, a1, a2, p)); 3030 } 3031 3032 static int 3033 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3034 { 3035 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3036 return (0); 3037 return (pf_match(op, a1, a2, u)); 3038 } 3039 3040 static int 3041 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3042 { 3043 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3044 return (0); 3045 return (pf_match(op, a1, a2, g)); 3046 } 3047 3048 int 3049 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3050 { 3051 if (*tag == -1) 3052 *tag = mtag; 3053 3054 return ((!r->match_tag_not && r->match_tag == *tag) || 3055 (r->match_tag_not && r->match_tag != *tag)); 3056 } 3057 3058 int 3059 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3060 { 3061 3062 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3063 3064 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3065 return (ENOMEM); 3066 3067 pd->pf_mtag->tag = tag; 3068 3069 return (0); 3070 } 3071 3072 #define PF_ANCHOR_STACKSIZE 32 3073 struct pf_kanchor_stackframe { 3074 struct pf_kruleset *rs; 3075 struct pf_krule *r; /* XXX: + match bit */ 3076 struct pf_kanchor *child; 3077 }; 3078 3079 /* 3080 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3081 */ 3082 #define PF_ANCHORSTACK_MATCH 0x00000001 3083 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3084 3085 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3086 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3087 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3088 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3089 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3090 } while (0) 3091 3092 void 3093 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3094 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3095 int *match) 3096 { 3097 struct pf_kanchor_stackframe *f; 3098 3099 PF_RULES_RASSERT(); 3100 3101 if (match) 3102 *match = 0; 3103 if (*depth >= PF_ANCHOR_STACKSIZE) { 3104 printf("%s: anchor stack overflow on %s\n", 3105 __func__, (*r)->anchor->name); 3106 *r = TAILQ_NEXT(*r, entries); 3107 return; 3108 } else if (*depth == 0 && a != NULL) 3109 *a = *r; 3110 f = stack + (*depth)++; 3111 f->rs = *rs; 3112 f->r = *r; 3113 if ((*r)->anchor_wildcard) { 3114 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3115 3116 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3117 *r = NULL; 3118 return; 3119 } 3120 *rs = &f->child->ruleset; 3121 } else { 3122 f->child = NULL; 3123 *rs = &(*r)->anchor->ruleset; 3124 } 3125 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3126 } 3127 3128 int 3129 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3130 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3131 int *match) 3132 { 3133 struct pf_kanchor_stackframe *f; 3134 struct pf_krule *fr; 3135 int quick = 0; 3136 3137 PF_RULES_RASSERT(); 3138 3139 do { 3140 if (*depth <= 0) 3141 break; 3142 f = stack + *depth - 1; 3143 fr = PF_ANCHOR_RULE(f); 3144 if (f->child != NULL) { 3145 struct pf_kanchor_node *parent; 3146 3147 /* 3148 * This block traverses through 3149 * a wildcard anchor. 3150 */ 3151 parent = &fr->anchor->children; 3152 if (match != NULL && *match) { 3153 /* 3154 * If any of "*" matched, then 3155 * "foo/ *" matched, mark frame 3156 * appropriately. 3157 */ 3158 PF_ANCHOR_SET_MATCH(f); 3159 *match = 0; 3160 } 3161 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3162 if (f->child != NULL) { 3163 *rs = &f->child->ruleset; 3164 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3165 if (*r == NULL) 3166 continue; 3167 else 3168 break; 3169 } 3170 } 3171 (*depth)--; 3172 if (*depth == 0 && a != NULL) 3173 *a = NULL; 3174 *rs = f->rs; 3175 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3176 quick = fr->quick; 3177 *r = TAILQ_NEXT(fr, entries); 3178 } while (*r == NULL); 3179 3180 return (quick); 3181 } 3182 3183 #ifdef INET6 3184 void 3185 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3186 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3187 { 3188 switch (af) { 3189 #ifdef INET 3190 case AF_INET: 3191 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3192 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3193 break; 3194 #endif /* INET */ 3195 case AF_INET6: 3196 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3197 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3198 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3199 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3200 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3201 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3202 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3203 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3204 break; 3205 } 3206 } 3207 3208 void 3209 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3210 { 3211 switch (af) { 3212 #ifdef INET 3213 case AF_INET: 3214 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3215 break; 3216 #endif /* INET */ 3217 case AF_INET6: 3218 if (addr->addr32[3] == 0xffffffff) { 3219 addr->addr32[3] = 0; 3220 if (addr->addr32[2] == 0xffffffff) { 3221 addr->addr32[2] = 0; 3222 if (addr->addr32[1] == 0xffffffff) { 3223 addr->addr32[1] = 0; 3224 addr->addr32[0] = 3225 htonl(ntohl(addr->addr32[0]) + 1); 3226 } else 3227 addr->addr32[1] = 3228 htonl(ntohl(addr->addr32[1]) + 1); 3229 } else 3230 addr->addr32[2] = 3231 htonl(ntohl(addr->addr32[2]) + 1); 3232 } else 3233 addr->addr32[3] = 3234 htonl(ntohl(addr->addr32[3]) + 1); 3235 break; 3236 } 3237 } 3238 #endif /* INET6 */ 3239 3240 void 3241 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3242 { 3243 if (r->qid) 3244 a->qid = r->qid; 3245 if (r->pqid) 3246 a->pqid = r->pqid; 3247 } 3248 3249 int 3250 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3251 { 3252 struct pf_addr *saddr, *daddr; 3253 u_int16_t sport, dport; 3254 struct inpcbinfo *pi; 3255 struct inpcb *inp; 3256 3257 pd->lookup.uid = UID_MAX; 3258 pd->lookup.gid = GID_MAX; 3259 3260 switch (pd->proto) { 3261 case IPPROTO_TCP: 3262 sport = pd->hdr.tcp.th_sport; 3263 dport = pd->hdr.tcp.th_dport; 3264 pi = &V_tcbinfo; 3265 break; 3266 case IPPROTO_UDP: 3267 sport = pd->hdr.udp.uh_sport; 3268 dport = pd->hdr.udp.uh_dport; 3269 pi = &V_udbinfo; 3270 break; 3271 default: 3272 return (-1); 3273 } 3274 if (direction == PF_IN) { 3275 saddr = pd->src; 3276 daddr = pd->dst; 3277 } else { 3278 u_int16_t p; 3279 3280 p = sport; 3281 sport = dport; 3282 dport = p; 3283 saddr = pd->dst; 3284 daddr = pd->src; 3285 } 3286 switch (pd->af) { 3287 #ifdef INET 3288 case AF_INET: 3289 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3290 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3291 if (inp == NULL) { 3292 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3293 daddr->v4, dport, INPLOOKUP_WILDCARD | 3294 INPLOOKUP_RLOCKPCB, NULL, m); 3295 if (inp == NULL) 3296 return (-1); 3297 } 3298 break; 3299 #endif /* INET */ 3300 #ifdef INET6 3301 case AF_INET6: 3302 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3303 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3304 if (inp == NULL) { 3305 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3306 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3307 INPLOOKUP_RLOCKPCB, NULL, m); 3308 if (inp == NULL) 3309 return (-1); 3310 } 3311 break; 3312 #endif /* INET6 */ 3313 3314 default: 3315 return (-1); 3316 } 3317 INP_RLOCK_ASSERT(inp); 3318 pd->lookup.uid = inp->inp_cred->cr_uid; 3319 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3320 INP_RUNLOCK(inp); 3321 3322 return (1); 3323 } 3324 3325 u_int8_t 3326 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3327 { 3328 int hlen; 3329 u_int8_t hdr[60]; 3330 u_int8_t *opt, optlen; 3331 u_int8_t wscale = 0; 3332 3333 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3334 if (hlen <= sizeof(struct tcphdr)) 3335 return (0); 3336 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3337 return (0); 3338 opt = hdr + sizeof(struct tcphdr); 3339 hlen -= sizeof(struct tcphdr); 3340 while (hlen >= 3) { 3341 switch (*opt) { 3342 case TCPOPT_EOL: 3343 case TCPOPT_NOP: 3344 ++opt; 3345 --hlen; 3346 break; 3347 case TCPOPT_WINDOW: 3348 wscale = opt[2]; 3349 if (wscale > TCP_MAX_WINSHIFT) 3350 wscale = TCP_MAX_WINSHIFT; 3351 wscale |= PF_WSCALE_FLAG; 3352 /* FALLTHROUGH */ 3353 default: 3354 optlen = opt[1]; 3355 if (optlen < 2) 3356 optlen = 2; 3357 hlen -= optlen; 3358 opt += optlen; 3359 break; 3360 } 3361 } 3362 return (wscale); 3363 } 3364 3365 u_int16_t 3366 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3367 { 3368 int hlen; 3369 u_int8_t hdr[60]; 3370 u_int8_t *opt, optlen; 3371 u_int16_t mss = V_tcp_mssdflt; 3372 3373 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3374 if (hlen <= sizeof(struct tcphdr)) 3375 return (0); 3376 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3377 return (0); 3378 opt = hdr + sizeof(struct tcphdr); 3379 hlen -= sizeof(struct tcphdr); 3380 while (hlen >= TCPOLEN_MAXSEG) { 3381 switch (*opt) { 3382 case TCPOPT_EOL: 3383 case TCPOPT_NOP: 3384 ++opt; 3385 --hlen; 3386 break; 3387 case TCPOPT_MAXSEG: 3388 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3389 NTOHS(mss); 3390 /* FALLTHROUGH */ 3391 default: 3392 optlen = opt[1]; 3393 if (optlen < 2) 3394 optlen = 2; 3395 hlen -= optlen; 3396 opt += optlen; 3397 break; 3398 } 3399 } 3400 return (mss); 3401 } 3402 3403 static u_int16_t 3404 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3405 { 3406 struct nhop_object *nh; 3407 #ifdef INET6 3408 struct in6_addr dst6; 3409 uint32_t scopeid; 3410 #endif /* INET6 */ 3411 int hlen = 0; 3412 uint16_t mss = 0; 3413 3414 NET_EPOCH_ASSERT(); 3415 3416 switch (af) { 3417 #ifdef INET 3418 case AF_INET: 3419 hlen = sizeof(struct ip); 3420 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3421 if (nh != NULL) 3422 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3423 break; 3424 #endif /* INET */ 3425 #ifdef INET6 3426 case AF_INET6: 3427 hlen = sizeof(struct ip6_hdr); 3428 in6_splitscope(&addr->v6, &dst6, &scopeid); 3429 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3430 if (nh != NULL) 3431 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3432 break; 3433 #endif /* INET6 */ 3434 } 3435 3436 mss = max(V_tcp_mssdflt, mss); 3437 mss = min(mss, offer); 3438 mss = max(mss, 64); /* sanity - at least max opt space */ 3439 return (mss); 3440 } 3441 3442 static u_int32_t 3443 pf_tcp_iss(struct pf_pdesc *pd) 3444 { 3445 MD5_CTX ctx; 3446 u_int32_t digest[4]; 3447 3448 if (V_pf_tcp_secret_init == 0) { 3449 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3450 MD5Init(&V_pf_tcp_secret_ctx); 3451 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3452 sizeof(V_pf_tcp_secret)); 3453 V_pf_tcp_secret_init = 1; 3454 } 3455 3456 ctx = V_pf_tcp_secret_ctx; 3457 3458 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3459 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3460 if (pd->af == AF_INET6) { 3461 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3462 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3463 } else { 3464 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3465 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3466 } 3467 MD5Final((u_char *)digest, &ctx); 3468 V_pf_tcp_iss_off += 4096; 3469 #define ISN_RANDOM_INCREMENT (4096 - 1) 3470 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3471 V_pf_tcp_iss_off); 3472 #undef ISN_RANDOM_INCREMENT 3473 } 3474 3475 static int 3476 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3477 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3478 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3479 { 3480 struct pf_krule *nr = NULL; 3481 struct pf_addr * const saddr = pd->src; 3482 struct pf_addr * const daddr = pd->dst; 3483 sa_family_t af = pd->af; 3484 struct pf_krule *r, *a = NULL; 3485 struct pf_kruleset *ruleset = NULL; 3486 struct pf_ksrc_node *nsn = NULL; 3487 struct tcphdr *th = &pd->hdr.tcp; 3488 struct pf_state_key *sk = NULL, *nk = NULL; 3489 u_short reason; 3490 int rewrite = 0, hdrlen = 0; 3491 int tag = -1, rtableid = -1; 3492 int asd = 0; 3493 int match = 0; 3494 int state_icmp = 0; 3495 u_int16_t sport = 0, dport = 0; 3496 u_int16_t bproto_sum = 0, bip_sum = 0; 3497 u_int8_t icmptype = 0, icmpcode = 0; 3498 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3499 3500 PF_RULES_RASSERT(); 3501 3502 if (inp != NULL) { 3503 INP_LOCK_ASSERT(inp); 3504 pd->lookup.uid = inp->inp_cred->cr_uid; 3505 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3506 pd->lookup.done = 1; 3507 } 3508 3509 switch (pd->proto) { 3510 case IPPROTO_TCP: 3511 sport = th->th_sport; 3512 dport = th->th_dport; 3513 hdrlen = sizeof(*th); 3514 break; 3515 case IPPROTO_UDP: 3516 sport = pd->hdr.udp.uh_sport; 3517 dport = pd->hdr.udp.uh_dport; 3518 hdrlen = sizeof(pd->hdr.udp); 3519 break; 3520 #ifdef INET 3521 case IPPROTO_ICMP: 3522 if (pd->af != AF_INET) 3523 break; 3524 sport = dport = pd->hdr.icmp.icmp_id; 3525 hdrlen = sizeof(pd->hdr.icmp); 3526 icmptype = pd->hdr.icmp.icmp_type; 3527 icmpcode = pd->hdr.icmp.icmp_code; 3528 3529 if (icmptype == ICMP_UNREACH || 3530 icmptype == ICMP_SOURCEQUENCH || 3531 icmptype == ICMP_REDIRECT || 3532 icmptype == ICMP_TIMXCEED || 3533 icmptype == ICMP_PARAMPROB) 3534 state_icmp++; 3535 break; 3536 #endif /* INET */ 3537 #ifdef INET6 3538 case IPPROTO_ICMPV6: 3539 if (af != AF_INET6) 3540 break; 3541 sport = dport = pd->hdr.icmp6.icmp6_id; 3542 hdrlen = sizeof(pd->hdr.icmp6); 3543 icmptype = pd->hdr.icmp6.icmp6_type; 3544 icmpcode = pd->hdr.icmp6.icmp6_code; 3545 3546 if (icmptype == ICMP6_DST_UNREACH || 3547 icmptype == ICMP6_PACKET_TOO_BIG || 3548 icmptype == ICMP6_TIME_EXCEEDED || 3549 icmptype == ICMP6_PARAM_PROB) 3550 state_icmp++; 3551 break; 3552 #endif /* INET6 */ 3553 default: 3554 sport = dport = hdrlen = 0; 3555 break; 3556 } 3557 3558 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3559 3560 /* check packet for BINAT/NAT/RDR */ 3561 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3562 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3563 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3564 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3565 3566 if (pd->ip_sum) 3567 bip_sum = *pd->ip_sum; 3568 3569 switch (pd->proto) { 3570 case IPPROTO_TCP: 3571 bproto_sum = th->th_sum; 3572 pd->proto_sum = &th->th_sum; 3573 3574 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3575 nk->port[pd->sidx] != sport) { 3576 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3577 &th->th_sum, &nk->addr[pd->sidx], 3578 nk->port[pd->sidx], 0, af); 3579 pd->sport = &th->th_sport; 3580 sport = th->th_sport; 3581 } 3582 3583 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3584 nk->port[pd->didx] != dport) { 3585 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3586 &th->th_sum, &nk->addr[pd->didx], 3587 nk->port[pd->didx], 0, af); 3588 dport = th->th_dport; 3589 pd->dport = &th->th_dport; 3590 } 3591 rewrite++; 3592 break; 3593 case IPPROTO_UDP: 3594 bproto_sum = pd->hdr.udp.uh_sum; 3595 pd->proto_sum = &pd->hdr.udp.uh_sum; 3596 3597 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3598 nk->port[pd->sidx] != sport) { 3599 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3600 pd->ip_sum, &pd->hdr.udp.uh_sum, 3601 &nk->addr[pd->sidx], 3602 nk->port[pd->sidx], 1, af); 3603 sport = pd->hdr.udp.uh_sport; 3604 pd->sport = &pd->hdr.udp.uh_sport; 3605 } 3606 3607 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3608 nk->port[pd->didx] != dport) { 3609 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3610 pd->ip_sum, &pd->hdr.udp.uh_sum, 3611 &nk->addr[pd->didx], 3612 nk->port[pd->didx], 1, af); 3613 dport = pd->hdr.udp.uh_dport; 3614 pd->dport = &pd->hdr.udp.uh_dport; 3615 } 3616 rewrite++; 3617 break; 3618 #ifdef INET 3619 case IPPROTO_ICMP: 3620 nk->port[0] = nk->port[1]; 3621 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3622 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3623 nk->addr[pd->sidx].v4.s_addr, 0); 3624 3625 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3626 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3627 nk->addr[pd->didx].v4.s_addr, 0); 3628 3629 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3630 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3631 pd->hdr.icmp.icmp_cksum, sport, 3632 nk->port[1], 0); 3633 pd->hdr.icmp.icmp_id = nk->port[1]; 3634 pd->sport = &pd->hdr.icmp.icmp_id; 3635 } 3636 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3637 break; 3638 #endif /* INET */ 3639 #ifdef INET6 3640 case IPPROTO_ICMPV6: 3641 nk->port[0] = nk->port[1]; 3642 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3643 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3644 &nk->addr[pd->sidx], 0); 3645 3646 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3647 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3648 &nk->addr[pd->didx], 0); 3649 rewrite++; 3650 break; 3651 #endif /* INET */ 3652 default: 3653 switch (af) { 3654 #ifdef INET 3655 case AF_INET: 3656 if (PF_ANEQ(saddr, 3657 &nk->addr[pd->sidx], AF_INET)) 3658 pf_change_a(&saddr->v4.s_addr, 3659 pd->ip_sum, 3660 nk->addr[pd->sidx].v4.s_addr, 0); 3661 3662 if (PF_ANEQ(daddr, 3663 &nk->addr[pd->didx], AF_INET)) 3664 pf_change_a(&daddr->v4.s_addr, 3665 pd->ip_sum, 3666 nk->addr[pd->didx].v4.s_addr, 0); 3667 break; 3668 #endif /* INET */ 3669 #ifdef INET6 3670 case AF_INET6: 3671 if (PF_ANEQ(saddr, 3672 &nk->addr[pd->sidx], AF_INET6)) 3673 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3674 3675 if (PF_ANEQ(daddr, 3676 &nk->addr[pd->didx], AF_INET6)) 3677 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3678 break; 3679 #endif /* INET */ 3680 } 3681 break; 3682 } 3683 if (nr->natpass) 3684 r = NULL; 3685 pd->nat_rule = nr; 3686 } 3687 3688 while (r != NULL) { 3689 pf_counter_u64_add(&r->evaluations, 1); 3690 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3691 r = r->skip[PF_SKIP_IFP].ptr; 3692 else if (r->direction && r->direction != direction) 3693 r = r->skip[PF_SKIP_DIR].ptr; 3694 else if (r->af && r->af != af) 3695 r = r->skip[PF_SKIP_AF].ptr; 3696 else if (r->proto && r->proto != pd->proto) 3697 r = r->skip[PF_SKIP_PROTO].ptr; 3698 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3699 r->src.neg, kif, M_GETFIB(m))) 3700 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3701 /* tcp/udp only. port_op always 0 in other cases */ 3702 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3703 r->src.port[0], r->src.port[1], sport)) 3704 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3705 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3706 r->dst.neg, NULL, M_GETFIB(m))) 3707 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3708 /* tcp/udp only. port_op always 0 in other cases */ 3709 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3710 r->dst.port[0], r->dst.port[1], dport)) 3711 r = r->skip[PF_SKIP_DST_PORT].ptr; 3712 /* icmp only. type always 0 in other cases */ 3713 else if (r->type && r->type != icmptype + 1) 3714 r = TAILQ_NEXT(r, entries); 3715 /* icmp only. type always 0 in other cases */ 3716 else if (r->code && r->code != icmpcode + 1) 3717 r = TAILQ_NEXT(r, entries); 3718 else if (r->tos && !(r->tos == pd->tos)) 3719 r = TAILQ_NEXT(r, entries); 3720 else if (r->rule_flag & PFRULE_FRAGMENT) 3721 r = TAILQ_NEXT(r, entries); 3722 else if (pd->proto == IPPROTO_TCP && 3723 (r->flagset & th->th_flags) != r->flags) 3724 r = TAILQ_NEXT(r, entries); 3725 /* tcp/udp only. uid.op always 0 in other cases */ 3726 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3727 pf_socket_lookup(direction, pd, m), 1)) && 3728 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3729 pd->lookup.uid)) 3730 r = TAILQ_NEXT(r, entries); 3731 /* tcp/udp only. gid.op always 0 in other cases */ 3732 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3733 pf_socket_lookup(direction, pd, m), 1)) && 3734 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3735 pd->lookup.gid)) 3736 r = TAILQ_NEXT(r, entries); 3737 else if (r->prio && 3738 !pf_match_ieee8021q_pcp(r->prio, m)) 3739 r = TAILQ_NEXT(r, entries); 3740 else if (r->prob && 3741 r->prob <= arc4random()) 3742 r = TAILQ_NEXT(r, entries); 3743 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3744 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3745 r = TAILQ_NEXT(r, entries); 3746 else if (r->os_fingerprint != PF_OSFP_ANY && 3747 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3748 pf_osfp_fingerprint(pd, m, off, th), 3749 r->os_fingerprint))) 3750 r = TAILQ_NEXT(r, entries); 3751 else { 3752 if (r->tag) 3753 tag = r->tag; 3754 if (r->rtableid >= 0) 3755 rtableid = r->rtableid; 3756 if (r->anchor == NULL) { 3757 if (r->action == PF_MATCH) { 3758 pf_counter_u64_critical_enter(); 3759 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 3760 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 3761 pf_counter_u64_critical_exit(); 3762 pf_rule_to_actions(r, &pd->act); 3763 if (r->log) 3764 PFLOG_PACKET(kif, m, af, 3765 direction, PFRES_MATCH, r, 3766 a, ruleset, pd, 1); 3767 } else { 3768 match = 1; 3769 *rm = r; 3770 *am = a; 3771 *rsm = ruleset; 3772 } 3773 if ((*rm)->quick) 3774 break; 3775 r = TAILQ_NEXT(r, entries); 3776 } else 3777 pf_step_into_anchor(anchor_stack, &asd, 3778 &ruleset, PF_RULESET_FILTER, &r, &a, 3779 &match); 3780 } 3781 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3782 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3783 break; 3784 } 3785 r = *rm; 3786 a = *am; 3787 ruleset = *rsm; 3788 3789 REASON_SET(&reason, PFRES_MATCH); 3790 3791 /* apply actions for last matching pass/block rule */ 3792 pf_rule_to_actions(r, &pd->act); 3793 3794 if (r->log || (nr != NULL && nr->log)) { 3795 if (rewrite) 3796 m_copyback(m, off, hdrlen, pd->hdr.any); 3797 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3798 ruleset, pd, 1); 3799 } 3800 3801 if ((r->action == PF_DROP) && 3802 ((r->rule_flag & PFRULE_RETURNRST) || 3803 (r->rule_flag & PFRULE_RETURNICMP) || 3804 (r->rule_flag & PFRULE_RETURN))) { 3805 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3806 bip_sum, hdrlen, &reason); 3807 } 3808 3809 if (r->action == PF_DROP) 3810 goto cleanup; 3811 3812 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3813 REASON_SET(&reason, PFRES_MEMORY); 3814 goto cleanup; 3815 } 3816 if (rtableid >= 0) 3817 M_SETFIB(m, rtableid); 3818 3819 if (!state_icmp && (r->keep_state || nr != NULL || 3820 (pd->flags & PFDESC_TCP_NORM))) { 3821 int action; 3822 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3823 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3824 hdrlen); 3825 if (action != PF_PASS) { 3826 if (action == PF_DROP && 3827 (r->rule_flag & PFRULE_RETURN)) 3828 pf_return(r, nr, pd, sk, off, m, th, kif, 3829 bproto_sum, bip_sum, hdrlen, &reason); 3830 return (action); 3831 } 3832 } else { 3833 if (sk != NULL) 3834 uma_zfree(V_pf_state_key_z, sk); 3835 if (nk != NULL) 3836 uma_zfree(V_pf_state_key_z, nk); 3837 } 3838 3839 /* copy back packet headers if we performed NAT operations */ 3840 if (rewrite) 3841 m_copyback(m, off, hdrlen, pd->hdr.any); 3842 3843 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3844 direction == PF_OUT && 3845 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3846 /* 3847 * We want the state created, but we dont 3848 * want to send this in case a partner 3849 * firewall has to know about it to allow 3850 * replies through it. 3851 */ 3852 return (PF_DEFER); 3853 3854 return (PF_PASS); 3855 3856 cleanup: 3857 if (sk != NULL) 3858 uma_zfree(V_pf_state_key_z, sk); 3859 if (nk != NULL) 3860 uma_zfree(V_pf_state_key_z, nk); 3861 return (PF_DROP); 3862 } 3863 3864 static int 3865 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3866 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3867 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3868 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3869 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3870 { 3871 struct pf_kstate *s = NULL; 3872 struct pf_ksrc_node *sn = NULL; 3873 struct tcphdr *th = &pd->hdr.tcp; 3874 u_int16_t mss = V_tcp_mssdflt; 3875 u_short reason; 3876 3877 /* check maximums */ 3878 if (r->max_states && 3879 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3880 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3881 REASON_SET(&reason, PFRES_MAXSTATES); 3882 goto csfailed; 3883 } 3884 /* src node for filter rule */ 3885 if ((r->rule_flag & PFRULE_SRCTRACK || 3886 r->rpool.opts & PF_POOL_STICKYADDR) && 3887 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3888 REASON_SET(&reason, PFRES_SRCLIMIT); 3889 goto csfailed; 3890 } 3891 /* src node for translation rule */ 3892 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3893 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3894 REASON_SET(&reason, PFRES_SRCLIMIT); 3895 goto csfailed; 3896 } 3897 s = pf_alloc_state(M_NOWAIT); 3898 if (s == NULL) { 3899 REASON_SET(&reason, PFRES_MEMORY); 3900 goto csfailed; 3901 } 3902 s->rule.ptr = r; 3903 s->nat_rule.ptr = nr; 3904 s->anchor.ptr = a; 3905 STATE_INC_COUNTERS(s); 3906 if (r->allow_opts) 3907 s->state_flags |= PFSTATE_ALLOWOPTS; 3908 if (r->rule_flag & PFRULE_STATESLOPPY) 3909 s->state_flags |= PFSTATE_SLOPPY; 3910 s->log = r->log & PF_LOG_ALL; 3911 s->sync_state = PFSYNC_S_NONE; 3912 s->qid = pd->act.qid; 3913 s->pqid = pd->act.pqid; 3914 if (nr != NULL) 3915 s->log |= nr->log & PF_LOG_ALL; 3916 switch (pd->proto) { 3917 case IPPROTO_TCP: 3918 s->src.seqlo = ntohl(th->th_seq); 3919 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3920 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3921 r->keep_state == PF_STATE_MODULATE) { 3922 /* Generate sequence number modulator */ 3923 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3924 0) 3925 s->src.seqdiff = 1; 3926 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3927 htonl(s->src.seqlo + s->src.seqdiff), 0); 3928 *rewrite = 1; 3929 } else 3930 s->src.seqdiff = 0; 3931 if (th->th_flags & TH_SYN) { 3932 s->src.seqhi++; 3933 s->src.wscale = pf_get_wscale(m, off, 3934 th->th_off, pd->af); 3935 } 3936 s->src.max_win = MAX(ntohs(th->th_win), 1); 3937 if (s->src.wscale & PF_WSCALE_MASK) { 3938 /* Remove scale factor from initial window */ 3939 int win = s->src.max_win; 3940 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3941 s->src.max_win = (win - 1) >> 3942 (s->src.wscale & PF_WSCALE_MASK); 3943 } 3944 if (th->th_flags & TH_FIN) 3945 s->src.seqhi++; 3946 s->dst.seqhi = 1; 3947 s->dst.max_win = 1; 3948 s->src.state = TCPS_SYN_SENT; 3949 s->dst.state = TCPS_CLOSED; 3950 s->timeout = PFTM_TCP_FIRST_PACKET; 3951 break; 3952 case IPPROTO_UDP: 3953 s->src.state = PFUDPS_SINGLE; 3954 s->dst.state = PFUDPS_NO_TRAFFIC; 3955 s->timeout = PFTM_UDP_FIRST_PACKET; 3956 break; 3957 case IPPROTO_ICMP: 3958 #ifdef INET6 3959 case IPPROTO_ICMPV6: 3960 #endif 3961 s->timeout = PFTM_ICMP_FIRST_PACKET; 3962 break; 3963 default: 3964 s->src.state = PFOTHERS_SINGLE; 3965 s->dst.state = PFOTHERS_NO_TRAFFIC; 3966 s->timeout = PFTM_OTHER_FIRST_PACKET; 3967 } 3968 3969 if (r->rt) { 3970 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3971 REASON_SET(&reason, PFRES_MAPFAILED); 3972 pf_src_tree_remove_state(s); 3973 STATE_DEC_COUNTERS(s); 3974 pf_free_state(s); 3975 goto csfailed; 3976 } 3977 s->rt_kif = r->rpool.cur->kif; 3978 } 3979 3980 s->creation = time_uptime; 3981 s->expire = time_uptime; 3982 3983 if (sn != NULL) 3984 s->src_node = sn; 3985 if (nsn != NULL) { 3986 /* XXX We only modify one side for now. */ 3987 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3988 s->nat_src_node = nsn; 3989 } 3990 if (pd->proto == IPPROTO_TCP) { 3991 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3992 off, pd, th, &s->src, &s->dst)) { 3993 REASON_SET(&reason, PFRES_MEMORY); 3994 pf_src_tree_remove_state(s); 3995 STATE_DEC_COUNTERS(s); 3996 pf_free_state(s); 3997 return (PF_DROP); 3998 } 3999 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4000 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4001 &s->src, &s->dst, rewrite)) { 4002 /* This really shouldn't happen!!! */ 4003 DPFPRINTF(PF_DEBUG_URGENT, 4004 ("pf_normalize_tcp_stateful failed on first " 4005 "pkt\n")); 4006 pf_src_tree_remove_state(s); 4007 STATE_DEC_COUNTERS(s); 4008 pf_free_state(s); 4009 return (PF_DROP); 4010 } 4011 } 4012 s->direction = pd->dir; 4013 4014 /* 4015 * sk/nk could already been setup by pf_get_translation(). 4016 */ 4017 if (nr == NULL) { 4018 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4019 __func__, nr, sk, nk)); 4020 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4021 if (sk == NULL) 4022 goto csfailed; 4023 nk = sk; 4024 } else 4025 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4026 __func__, nr, sk, nk)); 4027 4028 /* Swap sk/nk for PF_OUT. */ 4029 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4030 (pd->dir == PF_IN) ? sk : nk, 4031 (pd->dir == PF_IN) ? nk : sk, s)) { 4032 REASON_SET(&reason, PFRES_STATEINS); 4033 pf_src_tree_remove_state(s); 4034 STATE_DEC_COUNTERS(s); 4035 pf_free_state(s); 4036 return (PF_DROP); 4037 } else 4038 *sm = s; 4039 4040 if (tag > 0) 4041 s->tag = tag; 4042 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4043 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4044 s->src.state = PF_TCPS_PROXY_SRC; 4045 /* undo NAT changes, if they have taken place */ 4046 if (nr != NULL) { 4047 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4048 if (pd->dir == PF_OUT) 4049 skt = s->key[PF_SK_STACK]; 4050 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4051 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4052 if (pd->sport) 4053 *pd->sport = skt->port[pd->sidx]; 4054 if (pd->dport) 4055 *pd->dport = skt->port[pd->didx]; 4056 if (pd->proto_sum) 4057 *pd->proto_sum = bproto_sum; 4058 if (pd->ip_sum) 4059 *pd->ip_sum = bip_sum; 4060 m_copyback(m, off, hdrlen, pd->hdr.any); 4061 } 4062 s->src.seqhi = htonl(arc4random()); 4063 /* Find mss option */ 4064 int rtid = M_GETFIB(m); 4065 mss = pf_get_mss(m, off, th->th_off, pd->af); 4066 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4067 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4068 s->src.mss = mss; 4069 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4070 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4071 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4072 REASON_SET(&reason, PFRES_SYNPROXY); 4073 return (PF_SYNPROXY_DROP); 4074 } 4075 4076 return (PF_PASS); 4077 4078 csfailed: 4079 if (sk != NULL) 4080 uma_zfree(V_pf_state_key_z, sk); 4081 if (nk != NULL) 4082 uma_zfree(V_pf_state_key_z, nk); 4083 4084 if (sn != NULL) { 4085 struct pf_srchash *sh; 4086 4087 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4088 PF_HASHROW_LOCK(sh); 4089 if (--sn->states == 0 && sn->expire == 0) { 4090 pf_unlink_src_node(sn); 4091 uma_zfree(V_pf_sources_z, sn); 4092 counter_u64_add( 4093 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4094 } 4095 PF_HASHROW_UNLOCK(sh); 4096 } 4097 4098 if (nsn != sn && nsn != NULL) { 4099 struct pf_srchash *sh; 4100 4101 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4102 PF_HASHROW_LOCK(sh); 4103 if (--nsn->states == 0 && nsn->expire == 0) { 4104 pf_unlink_src_node(nsn); 4105 uma_zfree(V_pf_sources_z, nsn); 4106 counter_u64_add( 4107 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4108 } 4109 PF_HASHROW_UNLOCK(sh); 4110 } 4111 4112 return (PF_DROP); 4113 } 4114 4115 static int 4116 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4117 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4118 struct pf_kruleset **rsm) 4119 { 4120 struct pf_krule *r, *a = NULL; 4121 struct pf_kruleset *ruleset = NULL; 4122 sa_family_t af = pd->af; 4123 u_short reason; 4124 int tag = -1; 4125 int asd = 0; 4126 int match = 0; 4127 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4128 4129 PF_RULES_RASSERT(); 4130 4131 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4132 while (r != NULL) { 4133 pf_counter_u64_add(&r->evaluations, 1); 4134 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4135 r = r->skip[PF_SKIP_IFP].ptr; 4136 else if (r->direction && r->direction != direction) 4137 r = r->skip[PF_SKIP_DIR].ptr; 4138 else if (r->af && r->af != af) 4139 r = r->skip[PF_SKIP_AF].ptr; 4140 else if (r->proto && r->proto != pd->proto) 4141 r = r->skip[PF_SKIP_PROTO].ptr; 4142 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4143 r->src.neg, kif, M_GETFIB(m))) 4144 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4145 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4146 r->dst.neg, NULL, M_GETFIB(m))) 4147 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4148 else if (r->tos && !(r->tos == pd->tos)) 4149 r = TAILQ_NEXT(r, entries); 4150 else if (r->os_fingerprint != PF_OSFP_ANY) 4151 r = TAILQ_NEXT(r, entries); 4152 else if (pd->proto == IPPROTO_UDP && 4153 (r->src.port_op || r->dst.port_op)) 4154 r = TAILQ_NEXT(r, entries); 4155 else if (pd->proto == IPPROTO_TCP && 4156 (r->src.port_op || r->dst.port_op || r->flagset)) 4157 r = TAILQ_NEXT(r, entries); 4158 else if ((pd->proto == IPPROTO_ICMP || 4159 pd->proto == IPPROTO_ICMPV6) && 4160 (r->type || r->code)) 4161 r = TAILQ_NEXT(r, entries); 4162 else if (r->prio && 4163 !pf_match_ieee8021q_pcp(r->prio, m)) 4164 r = TAILQ_NEXT(r, entries); 4165 else if (r->prob && r->prob <= 4166 (arc4random() % (UINT_MAX - 1) + 1)) 4167 r = TAILQ_NEXT(r, entries); 4168 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4169 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4170 r = TAILQ_NEXT(r, entries); 4171 else { 4172 if (r->anchor == NULL) { 4173 if (r->action == PF_MATCH) { 4174 pf_counter_u64_critical_enter(); 4175 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4176 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4177 pf_counter_u64_critical_exit(); 4178 pf_rule_to_actions(r, &pd->act); 4179 if (r->log) 4180 PFLOG_PACKET(kif, m, af, 4181 direction, PFRES_MATCH, r, 4182 a, ruleset, pd, 1); 4183 } else { 4184 match = 1; 4185 *rm = r; 4186 *am = a; 4187 *rsm = ruleset; 4188 } 4189 if ((*rm)->quick) 4190 break; 4191 r = TAILQ_NEXT(r, entries); 4192 } else 4193 pf_step_into_anchor(anchor_stack, &asd, 4194 &ruleset, PF_RULESET_FILTER, &r, &a, 4195 &match); 4196 } 4197 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4198 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4199 break; 4200 } 4201 r = *rm; 4202 a = *am; 4203 ruleset = *rsm; 4204 4205 REASON_SET(&reason, PFRES_MATCH); 4206 4207 /* apply actions for last matching pass/block rule */ 4208 pf_rule_to_actions(r, &pd->act); 4209 4210 if (r->log) 4211 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4212 1); 4213 4214 if (r->action != PF_PASS) 4215 return (PF_DROP); 4216 4217 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4218 REASON_SET(&reason, PFRES_MEMORY); 4219 return (PF_DROP); 4220 } 4221 4222 return (PF_PASS); 4223 } 4224 4225 static int 4226 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4227 struct pf_kstate **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4228 struct pf_pdesc *pd, u_short *reason, int *copyback) 4229 { 4230 struct tcphdr *th = &pd->hdr.tcp; 4231 u_int16_t win = ntohs(th->th_win); 4232 u_int32_t ack, end, seq, orig_seq; 4233 u_int8_t sws, dws; 4234 int ackskew; 4235 4236 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4237 sws = src->wscale & PF_WSCALE_MASK; 4238 dws = dst->wscale & PF_WSCALE_MASK; 4239 } else 4240 sws = dws = 0; 4241 4242 /* 4243 * Sequence tracking algorithm from Guido van Rooij's paper: 4244 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4245 * tcp_filtering.ps 4246 */ 4247 4248 orig_seq = seq = ntohl(th->th_seq); 4249 if (src->seqlo == 0) { 4250 /* First packet from this end. Set its state */ 4251 4252 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4253 src->scrub == NULL) { 4254 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4255 REASON_SET(reason, PFRES_MEMORY); 4256 return (PF_DROP); 4257 } 4258 } 4259 4260 /* Deferred generation of sequence number modulator */ 4261 if (dst->seqdiff && !src->seqdiff) { 4262 /* use random iss for the TCP server */ 4263 while ((src->seqdiff = arc4random() - seq) == 0) 4264 ; 4265 ack = ntohl(th->th_ack) - dst->seqdiff; 4266 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4267 src->seqdiff), 0); 4268 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4269 *copyback = 1; 4270 } else { 4271 ack = ntohl(th->th_ack); 4272 } 4273 4274 end = seq + pd->p_len; 4275 if (th->th_flags & TH_SYN) { 4276 end++; 4277 if (dst->wscale & PF_WSCALE_FLAG) { 4278 src->wscale = pf_get_wscale(m, off, th->th_off, 4279 pd->af); 4280 if (src->wscale & PF_WSCALE_FLAG) { 4281 /* Remove scale factor from initial 4282 * window */ 4283 sws = src->wscale & PF_WSCALE_MASK; 4284 win = ((u_int32_t)win + (1 << sws) - 1) 4285 >> sws; 4286 dws = dst->wscale & PF_WSCALE_MASK; 4287 } else { 4288 /* fixup other window */ 4289 dst->max_win <<= dst->wscale & 4290 PF_WSCALE_MASK; 4291 /* in case of a retrans SYN|ACK */ 4292 dst->wscale = 0; 4293 } 4294 } 4295 } 4296 if (th->th_flags & TH_FIN) 4297 end++; 4298 4299 src->seqlo = seq; 4300 if (src->state < TCPS_SYN_SENT) 4301 src->state = TCPS_SYN_SENT; 4302 4303 /* 4304 * May need to slide the window (seqhi may have been set by 4305 * the crappy stack check or if we picked up the connection 4306 * after establishment) 4307 */ 4308 if (src->seqhi == 1 || 4309 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4310 src->seqhi = end + MAX(1, dst->max_win << dws); 4311 if (win > src->max_win) 4312 src->max_win = win; 4313 4314 } else { 4315 ack = ntohl(th->th_ack) - dst->seqdiff; 4316 if (src->seqdiff) { 4317 /* Modulate sequence numbers */ 4318 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4319 src->seqdiff), 0); 4320 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4321 *copyback = 1; 4322 } 4323 end = seq + pd->p_len; 4324 if (th->th_flags & TH_SYN) 4325 end++; 4326 if (th->th_flags & TH_FIN) 4327 end++; 4328 } 4329 4330 if ((th->th_flags & TH_ACK) == 0) { 4331 /* Let it pass through the ack skew check */ 4332 ack = dst->seqlo; 4333 } else if ((ack == 0 && 4334 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4335 /* broken tcp stacks do not set ack */ 4336 (dst->state < TCPS_SYN_SENT)) { 4337 /* 4338 * Many stacks (ours included) will set the ACK number in an 4339 * FIN|ACK if the SYN times out -- no sequence to ACK. 4340 */ 4341 ack = dst->seqlo; 4342 } 4343 4344 if (seq == end) { 4345 /* Ease sequencing restrictions on no data packets */ 4346 seq = src->seqlo; 4347 end = seq; 4348 } 4349 4350 ackskew = dst->seqlo - ack; 4351 4352 /* 4353 * Need to demodulate the sequence numbers in any TCP SACK options 4354 * (Selective ACK). We could optionally validate the SACK values 4355 * against the current ACK window, either forwards or backwards, but 4356 * I'm not confident that SACK has been implemented properly 4357 * everywhere. It wouldn't surprise me if several stacks accidentally 4358 * SACK too far backwards of previously ACKed data. There really aren't 4359 * any security implications of bad SACKing unless the target stack 4360 * doesn't validate the option length correctly. Someone trying to 4361 * spoof into a TCP connection won't bother blindly sending SACK 4362 * options anyway. 4363 */ 4364 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4365 if (pf_modulate_sack(m, off, pd, th, dst)) 4366 *copyback = 1; 4367 } 4368 4369 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4370 if (SEQ_GEQ(src->seqhi, end) && 4371 /* Last octet inside other's window space */ 4372 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4373 /* Retrans: not more than one window back */ 4374 (ackskew >= -MAXACKWINDOW) && 4375 /* Acking not more than one reassembled fragment backwards */ 4376 (ackskew <= (MAXACKWINDOW << sws)) && 4377 /* Acking not more than one window forward */ 4378 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4379 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4380 (pd->flags & PFDESC_IP_REAS) == 0)) { 4381 /* Require an exact/+1 sequence match on resets when possible */ 4382 4383 if (dst->scrub || src->scrub) { 4384 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4385 *state, src, dst, copyback)) 4386 return (PF_DROP); 4387 } 4388 4389 /* update max window */ 4390 if (src->max_win < win) 4391 src->max_win = win; 4392 /* synchronize sequencing */ 4393 if (SEQ_GT(end, src->seqlo)) 4394 src->seqlo = end; 4395 /* slide the window of what the other end can send */ 4396 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4397 dst->seqhi = ack + MAX((win << sws), 1); 4398 4399 /* update states */ 4400 if (th->th_flags & TH_SYN) 4401 if (src->state < TCPS_SYN_SENT) 4402 src->state = TCPS_SYN_SENT; 4403 if (th->th_flags & TH_FIN) 4404 if (src->state < TCPS_CLOSING) 4405 src->state = TCPS_CLOSING; 4406 if (th->th_flags & TH_ACK) { 4407 if (dst->state == TCPS_SYN_SENT) { 4408 dst->state = TCPS_ESTABLISHED; 4409 if (src->state == TCPS_ESTABLISHED && 4410 (*state)->src_node != NULL && 4411 pf_src_connlimit(state)) { 4412 REASON_SET(reason, PFRES_SRCLIMIT); 4413 return (PF_DROP); 4414 } 4415 } else if (dst->state == TCPS_CLOSING) 4416 dst->state = TCPS_FIN_WAIT_2; 4417 } 4418 if (th->th_flags & TH_RST) 4419 src->state = dst->state = TCPS_TIME_WAIT; 4420 4421 /* update expire time */ 4422 (*state)->expire = time_uptime; 4423 if (src->state >= TCPS_FIN_WAIT_2 && 4424 dst->state >= TCPS_FIN_WAIT_2) 4425 (*state)->timeout = PFTM_TCP_CLOSED; 4426 else if (src->state >= TCPS_CLOSING && 4427 dst->state >= TCPS_CLOSING) 4428 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4429 else if (src->state < TCPS_ESTABLISHED || 4430 dst->state < TCPS_ESTABLISHED) 4431 (*state)->timeout = PFTM_TCP_OPENING; 4432 else if (src->state >= TCPS_CLOSING || 4433 dst->state >= TCPS_CLOSING) 4434 (*state)->timeout = PFTM_TCP_CLOSING; 4435 else 4436 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4437 4438 /* Fall through to PASS packet */ 4439 4440 } else if ((dst->state < TCPS_SYN_SENT || 4441 dst->state >= TCPS_FIN_WAIT_2 || 4442 src->state >= TCPS_FIN_WAIT_2) && 4443 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4444 /* Within a window forward of the originating packet */ 4445 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4446 /* Within a window backward of the originating packet */ 4447 4448 /* 4449 * This currently handles three situations: 4450 * 1) Stupid stacks will shotgun SYNs before their peer 4451 * replies. 4452 * 2) When PF catches an already established stream (the 4453 * firewall rebooted, the state table was flushed, routes 4454 * changed...) 4455 * 3) Packets get funky immediately after the connection 4456 * closes (this should catch Solaris spurious ACK|FINs 4457 * that web servers like to spew after a close) 4458 * 4459 * This must be a little more careful than the above code 4460 * since packet floods will also be caught here. We don't 4461 * update the TTL here to mitigate the damage of a packet 4462 * flood and so the same code can handle awkward establishment 4463 * and a loosened connection close. 4464 * In the establishment case, a correct peer response will 4465 * validate the connection, go through the normal state code 4466 * and keep updating the state TTL. 4467 */ 4468 4469 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4470 printf("pf: loose state match: "); 4471 pf_print_state(*state); 4472 pf_print_flags(th->th_flags); 4473 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4474 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4475 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4476 (unsigned long long)(*state)->packets[1], 4477 pd->dir == PF_IN ? "in" : "out", 4478 pd->dir == (*state)->direction ? "fwd" : "rev"); 4479 } 4480 4481 if (dst->scrub || src->scrub) { 4482 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4483 *state, src, dst, copyback)) 4484 return (PF_DROP); 4485 } 4486 4487 /* update max window */ 4488 if (src->max_win < win) 4489 src->max_win = win; 4490 /* synchronize sequencing */ 4491 if (SEQ_GT(end, src->seqlo)) 4492 src->seqlo = end; 4493 /* slide the window of what the other end can send */ 4494 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4495 dst->seqhi = ack + MAX((win << sws), 1); 4496 4497 /* 4498 * Cannot set dst->seqhi here since this could be a shotgunned 4499 * SYN and not an already established connection. 4500 */ 4501 4502 if (th->th_flags & TH_FIN) 4503 if (src->state < TCPS_CLOSING) 4504 src->state = TCPS_CLOSING; 4505 if (th->th_flags & TH_RST) 4506 src->state = dst->state = TCPS_TIME_WAIT; 4507 4508 /* Fall through to PASS packet */ 4509 4510 } else { 4511 if ((*state)->dst.state == TCPS_SYN_SENT && 4512 (*state)->src.state == TCPS_SYN_SENT) { 4513 /* Send RST for state mismatches during handshake */ 4514 if (!(th->th_flags & TH_RST)) 4515 pf_send_tcp((*state)->rule.ptr, pd->af, 4516 pd->dst, pd->src, th->th_dport, 4517 th->th_sport, ntohl(th->th_ack), 0, 4518 TH_RST, 0, 0, 4519 (*state)->rule.ptr->return_ttl, 1, 0); 4520 src->seqlo = 0; 4521 src->seqhi = 1; 4522 src->max_win = 1; 4523 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4524 printf("pf: BAD state: "); 4525 pf_print_state(*state); 4526 pf_print_flags(th->th_flags); 4527 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4528 "pkts=%llu:%llu dir=%s,%s\n", 4529 seq, orig_seq, ack, pd->p_len, ackskew, 4530 (unsigned long long)(*state)->packets[0], 4531 (unsigned long long)(*state)->packets[1], 4532 pd->dir == PF_IN ? "in" : "out", 4533 pd->dir == (*state)->direction ? "fwd" : "rev"); 4534 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4535 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4536 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4537 ' ': '2', 4538 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4539 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4540 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4541 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4542 } 4543 REASON_SET(reason, PFRES_BADSTATE); 4544 return (PF_DROP); 4545 } 4546 4547 return (PF_PASS); 4548 } 4549 4550 static int 4551 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4552 struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4553 { 4554 struct tcphdr *th = &pd->hdr.tcp; 4555 4556 if (th->th_flags & TH_SYN) 4557 if (src->state < TCPS_SYN_SENT) 4558 src->state = TCPS_SYN_SENT; 4559 if (th->th_flags & TH_FIN) 4560 if (src->state < TCPS_CLOSING) 4561 src->state = TCPS_CLOSING; 4562 if (th->th_flags & TH_ACK) { 4563 if (dst->state == TCPS_SYN_SENT) { 4564 dst->state = TCPS_ESTABLISHED; 4565 if (src->state == TCPS_ESTABLISHED && 4566 (*state)->src_node != NULL && 4567 pf_src_connlimit(state)) { 4568 REASON_SET(reason, PFRES_SRCLIMIT); 4569 return (PF_DROP); 4570 } 4571 } else if (dst->state == TCPS_CLOSING) { 4572 dst->state = TCPS_FIN_WAIT_2; 4573 } else if (src->state == TCPS_SYN_SENT && 4574 dst->state < TCPS_SYN_SENT) { 4575 /* 4576 * Handle a special sloppy case where we only see one 4577 * half of the connection. If there is a ACK after 4578 * the initial SYN without ever seeing a packet from 4579 * the destination, set the connection to established. 4580 */ 4581 dst->state = src->state = TCPS_ESTABLISHED; 4582 if ((*state)->src_node != NULL && 4583 pf_src_connlimit(state)) { 4584 REASON_SET(reason, PFRES_SRCLIMIT); 4585 return (PF_DROP); 4586 } 4587 } else if (src->state == TCPS_CLOSING && 4588 dst->state == TCPS_ESTABLISHED && 4589 dst->seqlo == 0) { 4590 /* 4591 * Handle the closing of half connections where we 4592 * don't see the full bidirectional FIN/ACK+ACK 4593 * handshake. 4594 */ 4595 dst->state = TCPS_CLOSING; 4596 } 4597 } 4598 if (th->th_flags & TH_RST) 4599 src->state = dst->state = TCPS_TIME_WAIT; 4600 4601 /* update expire time */ 4602 (*state)->expire = time_uptime; 4603 if (src->state >= TCPS_FIN_WAIT_2 && 4604 dst->state >= TCPS_FIN_WAIT_2) 4605 (*state)->timeout = PFTM_TCP_CLOSED; 4606 else if (src->state >= TCPS_CLOSING && 4607 dst->state >= TCPS_CLOSING) 4608 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4609 else if (src->state < TCPS_ESTABLISHED || 4610 dst->state < TCPS_ESTABLISHED) 4611 (*state)->timeout = PFTM_TCP_OPENING; 4612 else if (src->state >= TCPS_CLOSING || 4613 dst->state >= TCPS_CLOSING) 4614 (*state)->timeout = PFTM_TCP_CLOSING; 4615 else 4616 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4617 4618 return (PF_PASS); 4619 } 4620 4621 static int 4622 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 4623 { 4624 struct pf_state_key *sk = (*state)->key[pd->didx]; 4625 struct tcphdr *th = &pd->hdr.tcp; 4626 4627 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4628 if (pd->dir != (*state)->direction) { 4629 REASON_SET(reason, PFRES_SYNPROXY); 4630 return (PF_SYNPROXY_DROP); 4631 } 4632 if (th->th_flags & TH_SYN) { 4633 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4634 REASON_SET(reason, PFRES_SYNPROXY); 4635 return (PF_DROP); 4636 } 4637 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4638 pd->src, th->th_dport, th->th_sport, 4639 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4640 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4641 REASON_SET(reason, PFRES_SYNPROXY); 4642 return (PF_SYNPROXY_DROP); 4643 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4644 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4645 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4646 REASON_SET(reason, PFRES_SYNPROXY); 4647 return (PF_DROP); 4648 } else if ((*state)->src_node != NULL && 4649 pf_src_connlimit(state)) { 4650 REASON_SET(reason, PFRES_SRCLIMIT); 4651 return (PF_DROP); 4652 } else 4653 (*state)->src.state = PF_TCPS_PROXY_DST; 4654 } 4655 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4656 if (pd->dir == (*state)->direction) { 4657 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4658 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4659 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4660 REASON_SET(reason, PFRES_SYNPROXY); 4661 return (PF_DROP); 4662 } 4663 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4664 if ((*state)->dst.seqhi == 1) 4665 (*state)->dst.seqhi = htonl(arc4random()); 4666 pf_send_tcp((*state)->rule.ptr, pd->af, 4667 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4668 sk->port[pd->sidx], sk->port[pd->didx], 4669 (*state)->dst.seqhi, 0, TH_SYN, 0, 4670 (*state)->src.mss, 0, 0, (*state)->tag); 4671 REASON_SET(reason, PFRES_SYNPROXY); 4672 return (PF_SYNPROXY_DROP); 4673 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4674 (TH_SYN|TH_ACK)) || 4675 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4676 REASON_SET(reason, PFRES_SYNPROXY); 4677 return (PF_DROP); 4678 } else { 4679 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4680 (*state)->dst.seqlo = ntohl(th->th_seq); 4681 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4682 pd->src, th->th_dport, th->th_sport, 4683 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4684 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4685 (*state)->tag); 4686 pf_send_tcp((*state)->rule.ptr, pd->af, 4687 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4688 sk->port[pd->sidx], sk->port[pd->didx], 4689 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4690 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4691 (*state)->src.seqdiff = (*state)->dst.seqhi - 4692 (*state)->src.seqlo; 4693 (*state)->dst.seqdiff = (*state)->src.seqhi - 4694 (*state)->dst.seqlo; 4695 (*state)->src.seqhi = (*state)->src.seqlo + 4696 (*state)->dst.max_win; 4697 (*state)->dst.seqhi = (*state)->dst.seqlo + 4698 (*state)->src.max_win; 4699 (*state)->src.wscale = (*state)->dst.wscale = 0; 4700 (*state)->src.state = (*state)->dst.state = 4701 TCPS_ESTABLISHED; 4702 REASON_SET(reason, PFRES_SYNPROXY); 4703 return (PF_SYNPROXY_DROP); 4704 } 4705 } 4706 4707 return (PF_PASS); 4708 } 4709 4710 static int 4711 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4712 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4713 u_short *reason) 4714 { 4715 struct pf_state_key_cmp key; 4716 struct tcphdr *th = &pd->hdr.tcp; 4717 int copyback = 0; 4718 int action; 4719 struct pf_state_peer *src, *dst; 4720 struct pf_state_key *sk; 4721 4722 bzero(&key, sizeof(key)); 4723 key.af = pd->af; 4724 key.proto = IPPROTO_TCP; 4725 if (direction == PF_IN) { /* wire side, straight */ 4726 PF_ACPY(&key.addr[0], pd->src, key.af); 4727 PF_ACPY(&key.addr[1], pd->dst, key.af); 4728 key.port[0] = th->th_sport; 4729 key.port[1] = th->th_dport; 4730 } else { /* stack side, reverse */ 4731 PF_ACPY(&key.addr[1], pd->src, key.af); 4732 PF_ACPY(&key.addr[0], pd->dst, key.af); 4733 key.port[1] = th->th_sport; 4734 key.port[0] = th->th_dport; 4735 } 4736 4737 STATE_LOOKUP(kif, &key, direction, *state, pd); 4738 4739 if (direction == (*state)->direction) { 4740 src = &(*state)->src; 4741 dst = &(*state)->dst; 4742 } else { 4743 src = &(*state)->dst; 4744 dst = &(*state)->src; 4745 } 4746 4747 sk = (*state)->key[pd->didx]; 4748 4749 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 4750 return (action); 4751 4752 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4753 dst->state >= TCPS_FIN_WAIT_2 && 4754 src->state >= TCPS_FIN_WAIT_2) { 4755 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4756 printf("pf: state reuse "); 4757 pf_print_state(*state); 4758 pf_print_flags(th->th_flags); 4759 printf("\n"); 4760 } 4761 /* XXX make sure it's the same direction ?? */ 4762 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4763 pf_unlink_state(*state, PF_ENTER_LOCKED); 4764 *state = NULL; 4765 return (PF_DROP); 4766 } 4767 4768 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4769 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4770 return (PF_DROP); 4771 } else { 4772 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4773 ©back) == PF_DROP) 4774 return (PF_DROP); 4775 } 4776 4777 /* translate source/destination address, if necessary */ 4778 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4779 struct pf_state_key *nk = (*state)->key[pd->didx]; 4780 4781 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4782 nk->port[pd->sidx] != th->th_sport) 4783 pf_change_ap(m, pd->src, &th->th_sport, 4784 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4785 nk->port[pd->sidx], 0, pd->af); 4786 4787 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4788 nk->port[pd->didx] != th->th_dport) 4789 pf_change_ap(m, pd->dst, &th->th_dport, 4790 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4791 nk->port[pd->didx], 0, pd->af); 4792 copyback = 1; 4793 } 4794 4795 /* Copyback sequence modulation or stateful scrub changes if needed */ 4796 if (copyback) 4797 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4798 4799 return (PF_PASS); 4800 } 4801 4802 static int 4803 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4804 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4805 { 4806 struct pf_state_peer *src, *dst; 4807 struct pf_state_key_cmp key; 4808 struct udphdr *uh = &pd->hdr.udp; 4809 4810 bzero(&key, sizeof(key)); 4811 key.af = pd->af; 4812 key.proto = IPPROTO_UDP; 4813 if (direction == PF_IN) { /* wire side, straight */ 4814 PF_ACPY(&key.addr[0], pd->src, key.af); 4815 PF_ACPY(&key.addr[1], pd->dst, key.af); 4816 key.port[0] = uh->uh_sport; 4817 key.port[1] = uh->uh_dport; 4818 } else { /* stack side, reverse */ 4819 PF_ACPY(&key.addr[1], pd->src, key.af); 4820 PF_ACPY(&key.addr[0], pd->dst, key.af); 4821 key.port[1] = uh->uh_sport; 4822 key.port[0] = uh->uh_dport; 4823 } 4824 4825 STATE_LOOKUP(kif, &key, direction, *state, pd); 4826 4827 if (direction == (*state)->direction) { 4828 src = &(*state)->src; 4829 dst = &(*state)->dst; 4830 } else { 4831 src = &(*state)->dst; 4832 dst = &(*state)->src; 4833 } 4834 4835 /* update states */ 4836 if (src->state < PFUDPS_SINGLE) 4837 src->state = PFUDPS_SINGLE; 4838 if (dst->state == PFUDPS_SINGLE) 4839 dst->state = PFUDPS_MULTIPLE; 4840 4841 /* update expire time */ 4842 (*state)->expire = time_uptime; 4843 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4844 (*state)->timeout = PFTM_UDP_MULTIPLE; 4845 else 4846 (*state)->timeout = PFTM_UDP_SINGLE; 4847 4848 /* translate source/destination address, if necessary */ 4849 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4850 struct pf_state_key *nk = (*state)->key[pd->didx]; 4851 4852 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4853 nk->port[pd->sidx] != uh->uh_sport) 4854 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4855 &uh->uh_sum, &nk->addr[pd->sidx], 4856 nk->port[pd->sidx], 1, pd->af); 4857 4858 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4859 nk->port[pd->didx] != uh->uh_dport) 4860 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4861 &uh->uh_sum, &nk->addr[pd->didx], 4862 nk->port[pd->didx], 1, pd->af); 4863 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4864 } 4865 4866 return (PF_PASS); 4867 } 4868 4869 static int 4870 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4871 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4872 { 4873 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4874 u_int16_t icmpid = 0, *icmpsum; 4875 u_int8_t icmptype, icmpcode; 4876 int state_icmp = 0; 4877 struct pf_state_key_cmp key; 4878 4879 bzero(&key, sizeof(key)); 4880 switch (pd->proto) { 4881 #ifdef INET 4882 case IPPROTO_ICMP: 4883 icmptype = pd->hdr.icmp.icmp_type; 4884 icmpcode = pd->hdr.icmp.icmp_code; 4885 icmpid = pd->hdr.icmp.icmp_id; 4886 icmpsum = &pd->hdr.icmp.icmp_cksum; 4887 4888 if (icmptype == ICMP_UNREACH || 4889 icmptype == ICMP_SOURCEQUENCH || 4890 icmptype == ICMP_REDIRECT || 4891 icmptype == ICMP_TIMXCEED || 4892 icmptype == ICMP_PARAMPROB) 4893 state_icmp++; 4894 break; 4895 #endif /* INET */ 4896 #ifdef INET6 4897 case IPPROTO_ICMPV6: 4898 icmptype = pd->hdr.icmp6.icmp6_type; 4899 icmpcode = pd->hdr.icmp6.icmp6_code; 4900 icmpid = pd->hdr.icmp6.icmp6_id; 4901 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 4902 4903 if (icmptype == ICMP6_DST_UNREACH || 4904 icmptype == ICMP6_PACKET_TOO_BIG || 4905 icmptype == ICMP6_TIME_EXCEEDED || 4906 icmptype == ICMP6_PARAM_PROB) 4907 state_icmp++; 4908 break; 4909 #endif /* INET6 */ 4910 } 4911 4912 if (!state_icmp) { 4913 /* 4914 * ICMP query/reply message not related to a TCP/UDP packet. 4915 * Search for an ICMP state. 4916 */ 4917 key.af = pd->af; 4918 key.proto = pd->proto; 4919 key.port[0] = key.port[1] = icmpid; 4920 if (direction == PF_IN) { /* wire side, straight */ 4921 PF_ACPY(&key.addr[0], pd->src, key.af); 4922 PF_ACPY(&key.addr[1], pd->dst, key.af); 4923 } else { /* stack side, reverse */ 4924 PF_ACPY(&key.addr[1], pd->src, key.af); 4925 PF_ACPY(&key.addr[0], pd->dst, key.af); 4926 } 4927 4928 STATE_LOOKUP(kif, &key, direction, *state, pd); 4929 4930 (*state)->expire = time_uptime; 4931 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4932 4933 /* translate source/destination address, if necessary */ 4934 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4935 struct pf_state_key *nk = (*state)->key[pd->didx]; 4936 4937 switch (pd->af) { 4938 #ifdef INET 4939 case AF_INET: 4940 if (PF_ANEQ(pd->src, 4941 &nk->addr[pd->sidx], AF_INET)) 4942 pf_change_a(&saddr->v4.s_addr, 4943 pd->ip_sum, 4944 nk->addr[pd->sidx].v4.s_addr, 0); 4945 4946 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4947 AF_INET)) 4948 pf_change_a(&daddr->v4.s_addr, 4949 pd->ip_sum, 4950 nk->addr[pd->didx].v4.s_addr, 0); 4951 4952 if (nk->port[0] != 4953 pd->hdr.icmp.icmp_id) { 4954 pd->hdr.icmp.icmp_cksum = 4955 pf_cksum_fixup( 4956 pd->hdr.icmp.icmp_cksum, icmpid, 4957 nk->port[pd->sidx], 0); 4958 pd->hdr.icmp.icmp_id = 4959 nk->port[pd->sidx]; 4960 } 4961 4962 m_copyback(m, off, ICMP_MINLEN, 4963 (caddr_t )&pd->hdr.icmp); 4964 break; 4965 #endif /* INET */ 4966 #ifdef INET6 4967 case AF_INET6: 4968 if (PF_ANEQ(pd->src, 4969 &nk->addr[pd->sidx], AF_INET6)) 4970 pf_change_a6(saddr, 4971 &pd->hdr.icmp6.icmp6_cksum, 4972 &nk->addr[pd->sidx], 0); 4973 4974 if (PF_ANEQ(pd->dst, 4975 &nk->addr[pd->didx], AF_INET6)) 4976 pf_change_a6(daddr, 4977 &pd->hdr.icmp6.icmp6_cksum, 4978 &nk->addr[pd->didx], 0); 4979 4980 m_copyback(m, off, sizeof(struct icmp6_hdr), 4981 (caddr_t )&pd->hdr.icmp6); 4982 break; 4983 #endif /* INET6 */ 4984 } 4985 } 4986 return (PF_PASS); 4987 4988 } else { 4989 /* 4990 * ICMP error message in response to a TCP/UDP packet. 4991 * Extract the inner TCP/UDP header and search for that state. 4992 */ 4993 4994 struct pf_pdesc pd2; 4995 bzero(&pd2, sizeof pd2); 4996 #ifdef INET 4997 struct ip h2; 4998 #endif /* INET */ 4999 #ifdef INET6 5000 struct ip6_hdr h2_6; 5001 int terminal = 0; 5002 #endif /* INET6 */ 5003 int ipoff2 = 0; 5004 int off2 = 0; 5005 5006 pd2.af = pd->af; 5007 /* Payload packet is from the opposite direction. */ 5008 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5009 pd2.didx = (direction == PF_IN) ? 0 : 1; 5010 switch (pd->af) { 5011 #ifdef INET 5012 case AF_INET: 5013 /* offset of h2 in mbuf chain */ 5014 ipoff2 = off + ICMP_MINLEN; 5015 5016 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5017 NULL, reason, pd2.af)) { 5018 DPFPRINTF(PF_DEBUG_MISC, 5019 ("pf: ICMP error message too short " 5020 "(ip)\n")); 5021 return (PF_DROP); 5022 } 5023 /* 5024 * ICMP error messages don't refer to non-first 5025 * fragments 5026 */ 5027 if (h2.ip_off & htons(IP_OFFMASK)) { 5028 REASON_SET(reason, PFRES_FRAG); 5029 return (PF_DROP); 5030 } 5031 5032 /* offset of protocol header that follows h2 */ 5033 off2 = ipoff2 + (h2.ip_hl << 2); 5034 5035 pd2.proto = h2.ip_p; 5036 pd2.src = (struct pf_addr *)&h2.ip_src; 5037 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5038 pd2.ip_sum = &h2.ip_sum; 5039 break; 5040 #endif /* INET */ 5041 #ifdef INET6 5042 case AF_INET6: 5043 ipoff2 = off + sizeof(struct icmp6_hdr); 5044 5045 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5046 NULL, reason, pd2.af)) { 5047 DPFPRINTF(PF_DEBUG_MISC, 5048 ("pf: ICMP error message too short " 5049 "(ip6)\n")); 5050 return (PF_DROP); 5051 } 5052 pd2.proto = h2_6.ip6_nxt; 5053 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5054 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5055 pd2.ip_sum = NULL; 5056 off2 = ipoff2 + sizeof(h2_6); 5057 do { 5058 switch (pd2.proto) { 5059 case IPPROTO_FRAGMENT: 5060 /* 5061 * ICMPv6 error messages for 5062 * non-first fragments 5063 */ 5064 REASON_SET(reason, PFRES_FRAG); 5065 return (PF_DROP); 5066 case IPPROTO_AH: 5067 case IPPROTO_HOPOPTS: 5068 case IPPROTO_ROUTING: 5069 case IPPROTO_DSTOPTS: { 5070 /* get next header and header length */ 5071 struct ip6_ext opt6; 5072 5073 if (!pf_pull_hdr(m, off2, &opt6, 5074 sizeof(opt6), NULL, reason, 5075 pd2.af)) { 5076 DPFPRINTF(PF_DEBUG_MISC, 5077 ("pf: ICMPv6 short opt\n")); 5078 return (PF_DROP); 5079 } 5080 if (pd2.proto == IPPROTO_AH) 5081 off2 += (opt6.ip6e_len + 2) * 4; 5082 else 5083 off2 += (opt6.ip6e_len + 1) * 8; 5084 pd2.proto = opt6.ip6e_nxt; 5085 /* goto the next header */ 5086 break; 5087 } 5088 default: 5089 terminal++; 5090 break; 5091 } 5092 } while (!terminal); 5093 break; 5094 #endif /* INET6 */ 5095 } 5096 5097 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5098 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5099 printf("pf: BAD ICMP %d:%d outer dst: ", 5100 icmptype, icmpcode); 5101 pf_print_host(pd->src, 0, pd->af); 5102 printf(" -> "); 5103 pf_print_host(pd->dst, 0, pd->af); 5104 printf(" inner src: "); 5105 pf_print_host(pd2.src, 0, pd2.af); 5106 printf(" -> "); 5107 pf_print_host(pd2.dst, 0, pd2.af); 5108 printf("\n"); 5109 } 5110 REASON_SET(reason, PFRES_BADSTATE); 5111 return (PF_DROP); 5112 } 5113 5114 switch (pd2.proto) { 5115 case IPPROTO_TCP: { 5116 struct tcphdr th; 5117 u_int32_t seq; 5118 struct pf_state_peer *src, *dst; 5119 u_int8_t dws; 5120 int copyback = 0; 5121 5122 /* 5123 * Only the first 8 bytes of the TCP header can be 5124 * expected. Don't access any TCP header fields after 5125 * th_seq, an ackskew test is not possible. 5126 */ 5127 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5128 pd2.af)) { 5129 DPFPRINTF(PF_DEBUG_MISC, 5130 ("pf: ICMP error message too short " 5131 "(tcp)\n")); 5132 return (PF_DROP); 5133 } 5134 5135 key.af = pd2.af; 5136 key.proto = IPPROTO_TCP; 5137 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5138 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5139 key.port[pd2.sidx] = th.th_sport; 5140 key.port[pd2.didx] = th.th_dport; 5141 5142 STATE_LOOKUP(kif, &key, direction, *state, pd); 5143 5144 if (direction == (*state)->direction) { 5145 src = &(*state)->dst; 5146 dst = &(*state)->src; 5147 } else { 5148 src = &(*state)->src; 5149 dst = &(*state)->dst; 5150 } 5151 5152 if (src->wscale && dst->wscale) 5153 dws = dst->wscale & PF_WSCALE_MASK; 5154 else 5155 dws = 0; 5156 5157 /* Demodulate sequence number */ 5158 seq = ntohl(th.th_seq) - src->seqdiff; 5159 if (src->seqdiff) { 5160 pf_change_a(&th.th_seq, icmpsum, 5161 htonl(seq), 0); 5162 copyback = 1; 5163 } 5164 5165 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5166 (!SEQ_GEQ(src->seqhi, seq) || 5167 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5168 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5169 printf("pf: BAD ICMP %d:%d ", 5170 icmptype, icmpcode); 5171 pf_print_host(pd->src, 0, pd->af); 5172 printf(" -> "); 5173 pf_print_host(pd->dst, 0, pd->af); 5174 printf(" state: "); 5175 pf_print_state(*state); 5176 printf(" seq=%u\n", seq); 5177 } 5178 REASON_SET(reason, PFRES_BADSTATE); 5179 return (PF_DROP); 5180 } else { 5181 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5182 printf("pf: OK ICMP %d:%d ", 5183 icmptype, icmpcode); 5184 pf_print_host(pd->src, 0, pd->af); 5185 printf(" -> "); 5186 pf_print_host(pd->dst, 0, pd->af); 5187 printf(" state: "); 5188 pf_print_state(*state); 5189 printf(" seq=%u\n", seq); 5190 } 5191 } 5192 5193 /* translate source/destination address, if necessary */ 5194 if ((*state)->key[PF_SK_WIRE] != 5195 (*state)->key[PF_SK_STACK]) { 5196 struct pf_state_key *nk = 5197 (*state)->key[pd->didx]; 5198 5199 if (PF_ANEQ(pd2.src, 5200 &nk->addr[pd2.sidx], pd2.af) || 5201 nk->port[pd2.sidx] != th.th_sport) 5202 pf_change_icmp(pd2.src, &th.th_sport, 5203 daddr, &nk->addr[pd2.sidx], 5204 nk->port[pd2.sidx], NULL, 5205 pd2.ip_sum, icmpsum, 5206 pd->ip_sum, 0, pd2.af); 5207 5208 if (PF_ANEQ(pd2.dst, 5209 &nk->addr[pd2.didx], pd2.af) || 5210 nk->port[pd2.didx] != th.th_dport) 5211 pf_change_icmp(pd2.dst, &th.th_dport, 5212 saddr, &nk->addr[pd2.didx], 5213 nk->port[pd2.didx], NULL, 5214 pd2.ip_sum, icmpsum, 5215 pd->ip_sum, 0, pd2.af); 5216 copyback = 1; 5217 } 5218 5219 if (copyback) { 5220 switch (pd2.af) { 5221 #ifdef INET 5222 case AF_INET: 5223 m_copyback(m, off, ICMP_MINLEN, 5224 (caddr_t )&pd->hdr.icmp); 5225 m_copyback(m, ipoff2, sizeof(h2), 5226 (caddr_t )&h2); 5227 break; 5228 #endif /* INET */ 5229 #ifdef INET6 5230 case AF_INET6: 5231 m_copyback(m, off, 5232 sizeof(struct icmp6_hdr), 5233 (caddr_t )&pd->hdr.icmp6); 5234 m_copyback(m, ipoff2, sizeof(h2_6), 5235 (caddr_t )&h2_6); 5236 break; 5237 #endif /* INET6 */ 5238 } 5239 m_copyback(m, off2, 8, (caddr_t)&th); 5240 } 5241 5242 return (PF_PASS); 5243 break; 5244 } 5245 case IPPROTO_UDP: { 5246 struct udphdr uh; 5247 5248 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5249 NULL, reason, pd2.af)) { 5250 DPFPRINTF(PF_DEBUG_MISC, 5251 ("pf: ICMP error message too short " 5252 "(udp)\n")); 5253 return (PF_DROP); 5254 } 5255 5256 key.af = pd2.af; 5257 key.proto = IPPROTO_UDP; 5258 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5259 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5260 key.port[pd2.sidx] = uh.uh_sport; 5261 key.port[pd2.didx] = uh.uh_dport; 5262 5263 STATE_LOOKUP(kif, &key, direction, *state, pd); 5264 5265 /* translate source/destination address, if necessary */ 5266 if ((*state)->key[PF_SK_WIRE] != 5267 (*state)->key[PF_SK_STACK]) { 5268 struct pf_state_key *nk = 5269 (*state)->key[pd->didx]; 5270 5271 if (PF_ANEQ(pd2.src, 5272 &nk->addr[pd2.sidx], pd2.af) || 5273 nk->port[pd2.sidx] != uh.uh_sport) 5274 pf_change_icmp(pd2.src, &uh.uh_sport, 5275 daddr, &nk->addr[pd2.sidx], 5276 nk->port[pd2.sidx], &uh.uh_sum, 5277 pd2.ip_sum, icmpsum, 5278 pd->ip_sum, 1, pd2.af); 5279 5280 if (PF_ANEQ(pd2.dst, 5281 &nk->addr[pd2.didx], pd2.af) || 5282 nk->port[pd2.didx] != uh.uh_dport) 5283 pf_change_icmp(pd2.dst, &uh.uh_dport, 5284 saddr, &nk->addr[pd2.didx], 5285 nk->port[pd2.didx], &uh.uh_sum, 5286 pd2.ip_sum, icmpsum, 5287 pd->ip_sum, 1, pd2.af); 5288 5289 switch (pd2.af) { 5290 #ifdef INET 5291 case AF_INET: 5292 m_copyback(m, off, ICMP_MINLEN, 5293 (caddr_t )&pd->hdr.icmp); 5294 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5295 break; 5296 #endif /* INET */ 5297 #ifdef INET6 5298 case AF_INET6: 5299 m_copyback(m, off, 5300 sizeof(struct icmp6_hdr), 5301 (caddr_t )&pd->hdr.icmp6); 5302 m_copyback(m, ipoff2, sizeof(h2_6), 5303 (caddr_t )&h2_6); 5304 break; 5305 #endif /* INET6 */ 5306 } 5307 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5308 } 5309 return (PF_PASS); 5310 break; 5311 } 5312 #ifdef INET 5313 case IPPROTO_ICMP: { 5314 struct icmp iih; 5315 5316 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5317 NULL, reason, pd2.af)) { 5318 DPFPRINTF(PF_DEBUG_MISC, 5319 ("pf: ICMP error message too short i" 5320 "(icmp)\n")); 5321 return (PF_DROP); 5322 } 5323 5324 key.af = pd2.af; 5325 key.proto = IPPROTO_ICMP; 5326 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5327 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5328 key.port[0] = key.port[1] = iih.icmp_id; 5329 5330 STATE_LOOKUP(kif, &key, direction, *state, pd); 5331 5332 /* translate source/destination address, if necessary */ 5333 if ((*state)->key[PF_SK_WIRE] != 5334 (*state)->key[PF_SK_STACK]) { 5335 struct pf_state_key *nk = 5336 (*state)->key[pd->didx]; 5337 5338 if (PF_ANEQ(pd2.src, 5339 &nk->addr[pd2.sidx], pd2.af) || 5340 nk->port[pd2.sidx] != iih.icmp_id) 5341 pf_change_icmp(pd2.src, &iih.icmp_id, 5342 daddr, &nk->addr[pd2.sidx], 5343 nk->port[pd2.sidx], NULL, 5344 pd2.ip_sum, icmpsum, 5345 pd->ip_sum, 0, AF_INET); 5346 5347 if (PF_ANEQ(pd2.dst, 5348 &nk->addr[pd2.didx], pd2.af) || 5349 nk->port[pd2.didx] != iih.icmp_id) 5350 pf_change_icmp(pd2.dst, &iih.icmp_id, 5351 saddr, &nk->addr[pd2.didx], 5352 nk->port[pd2.didx], NULL, 5353 pd2.ip_sum, icmpsum, 5354 pd->ip_sum, 0, AF_INET); 5355 5356 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5357 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5358 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5359 } 5360 return (PF_PASS); 5361 break; 5362 } 5363 #endif /* INET */ 5364 #ifdef INET6 5365 case IPPROTO_ICMPV6: { 5366 struct icmp6_hdr iih; 5367 5368 if (!pf_pull_hdr(m, off2, &iih, 5369 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5370 DPFPRINTF(PF_DEBUG_MISC, 5371 ("pf: ICMP error message too short " 5372 "(icmp6)\n")); 5373 return (PF_DROP); 5374 } 5375 5376 key.af = pd2.af; 5377 key.proto = IPPROTO_ICMPV6; 5378 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5379 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5380 key.port[0] = key.port[1] = iih.icmp6_id; 5381 5382 STATE_LOOKUP(kif, &key, direction, *state, pd); 5383 5384 /* translate source/destination address, if necessary */ 5385 if ((*state)->key[PF_SK_WIRE] != 5386 (*state)->key[PF_SK_STACK]) { 5387 struct pf_state_key *nk = 5388 (*state)->key[pd->didx]; 5389 5390 if (PF_ANEQ(pd2.src, 5391 &nk->addr[pd2.sidx], pd2.af) || 5392 nk->port[pd2.sidx] != iih.icmp6_id) 5393 pf_change_icmp(pd2.src, &iih.icmp6_id, 5394 daddr, &nk->addr[pd2.sidx], 5395 nk->port[pd2.sidx], NULL, 5396 pd2.ip_sum, icmpsum, 5397 pd->ip_sum, 0, AF_INET6); 5398 5399 if (PF_ANEQ(pd2.dst, 5400 &nk->addr[pd2.didx], pd2.af) || 5401 nk->port[pd2.didx] != iih.icmp6_id) 5402 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5403 saddr, &nk->addr[pd2.didx], 5404 nk->port[pd2.didx], NULL, 5405 pd2.ip_sum, icmpsum, 5406 pd->ip_sum, 0, AF_INET6); 5407 5408 m_copyback(m, off, sizeof(struct icmp6_hdr), 5409 (caddr_t)&pd->hdr.icmp6); 5410 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5411 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5412 (caddr_t)&iih); 5413 } 5414 return (PF_PASS); 5415 break; 5416 } 5417 #endif /* INET6 */ 5418 default: { 5419 key.af = pd2.af; 5420 key.proto = pd2.proto; 5421 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5422 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5423 key.port[0] = key.port[1] = 0; 5424 5425 STATE_LOOKUP(kif, &key, direction, *state, pd); 5426 5427 /* translate source/destination address, if necessary */ 5428 if ((*state)->key[PF_SK_WIRE] != 5429 (*state)->key[PF_SK_STACK]) { 5430 struct pf_state_key *nk = 5431 (*state)->key[pd->didx]; 5432 5433 if (PF_ANEQ(pd2.src, 5434 &nk->addr[pd2.sidx], pd2.af)) 5435 pf_change_icmp(pd2.src, NULL, daddr, 5436 &nk->addr[pd2.sidx], 0, NULL, 5437 pd2.ip_sum, icmpsum, 5438 pd->ip_sum, 0, pd2.af); 5439 5440 if (PF_ANEQ(pd2.dst, 5441 &nk->addr[pd2.didx], pd2.af)) 5442 pf_change_icmp(pd2.dst, NULL, saddr, 5443 &nk->addr[pd2.didx], 0, NULL, 5444 pd2.ip_sum, icmpsum, 5445 pd->ip_sum, 0, pd2.af); 5446 5447 switch (pd2.af) { 5448 #ifdef INET 5449 case AF_INET: 5450 m_copyback(m, off, ICMP_MINLEN, 5451 (caddr_t)&pd->hdr.icmp); 5452 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5453 break; 5454 #endif /* INET */ 5455 #ifdef INET6 5456 case AF_INET6: 5457 m_copyback(m, off, 5458 sizeof(struct icmp6_hdr), 5459 (caddr_t )&pd->hdr.icmp6); 5460 m_copyback(m, ipoff2, sizeof(h2_6), 5461 (caddr_t )&h2_6); 5462 break; 5463 #endif /* INET6 */ 5464 } 5465 } 5466 return (PF_PASS); 5467 break; 5468 } 5469 } 5470 } 5471 } 5472 5473 static int 5474 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5475 struct mbuf *m, struct pf_pdesc *pd) 5476 { 5477 struct pf_state_peer *src, *dst; 5478 struct pf_state_key_cmp key; 5479 5480 bzero(&key, sizeof(key)); 5481 key.af = pd->af; 5482 key.proto = pd->proto; 5483 if (direction == PF_IN) { 5484 PF_ACPY(&key.addr[0], pd->src, key.af); 5485 PF_ACPY(&key.addr[1], pd->dst, key.af); 5486 key.port[0] = key.port[1] = 0; 5487 } else { 5488 PF_ACPY(&key.addr[1], pd->src, key.af); 5489 PF_ACPY(&key.addr[0], pd->dst, key.af); 5490 key.port[1] = key.port[0] = 0; 5491 } 5492 5493 STATE_LOOKUP(kif, &key, direction, *state, pd); 5494 5495 if (direction == (*state)->direction) { 5496 src = &(*state)->src; 5497 dst = &(*state)->dst; 5498 } else { 5499 src = &(*state)->dst; 5500 dst = &(*state)->src; 5501 } 5502 5503 /* update states */ 5504 if (src->state < PFOTHERS_SINGLE) 5505 src->state = PFOTHERS_SINGLE; 5506 if (dst->state == PFOTHERS_SINGLE) 5507 dst->state = PFOTHERS_MULTIPLE; 5508 5509 /* update expire time */ 5510 (*state)->expire = time_uptime; 5511 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5512 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5513 else 5514 (*state)->timeout = PFTM_OTHER_SINGLE; 5515 5516 /* translate source/destination address, if necessary */ 5517 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5518 struct pf_state_key *nk = (*state)->key[pd->didx]; 5519 5520 KASSERT(nk, ("%s: nk is null", __func__)); 5521 KASSERT(pd, ("%s: pd is null", __func__)); 5522 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5523 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5524 switch (pd->af) { 5525 #ifdef INET 5526 case AF_INET: 5527 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5528 pf_change_a(&pd->src->v4.s_addr, 5529 pd->ip_sum, 5530 nk->addr[pd->sidx].v4.s_addr, 5531 0); 5532 5533 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5534 pf_change_a(&pd->dst->v4.s_addr, 5535 pd->ip_sum, 5536 nk->addr[pd->didx].v4.s_addr, 5537 0); 5538 5539 break; 5540 #endif /* INET */ 5541 #ifdef INET6 5542 case AF_INET6: 5543 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5544 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5545 5546 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5547 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5548 #endif /* INET6 */ 5549 } 5550 } 5551 return (PF_PASS); 5552 } 5553 5554 /* 5555 * ipoff and off are measured from the start of the mbuf chain. 5556 * h must be at "ipoff" on the mbuf chain. 5557 */ 5558 void * 5559 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5560 u_short *actionp, u_short *reasonp, sa_family_t af) 5561 { 5562 switch (af) { 5563 #ifdef INET 5564 case AF_INET: { 5565 struct ip *h = mtod(m, struct ip *); 5566 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5567 5568 if (fragoff) { 5569 if (fragoff >= len) 5570 ACTION_SET(actionp, PF_PASS); 5571 else { 5572 ACTION_SET(actionp, PF_DROP); 5573 REASON_SET(reasonp, PFRES_FRAG); 5574 } 5575 return (NULL); 5576 } 5577 if (m->m_pkthdr.len < off + len || 5578 ntohs(h->ip_len) < off + len) { 5579 ACTION_SET(actionp, PF_DROP); 5580 REASON_SET(reasonp, PFRES_SHORT); 5581 return (NULL); 5582 } 5583 break; 5584 } 5585 #endif /* INET */ 5586 #ifdef INET6 5587 case AF_INET6: { 5588 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5589 5590 if (m->m_pkthdr.len < off + len || 5591 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5592 (unsigned)(off + len)) { 5593 ACTION_SET(actionp, PF_DROP); 5594 REASON_SET(reasonp, PFRES_SHORT); 5595 return (NULL); 5596 } 5597 break; 5598 } 5599 #endif /* INET6 */ 5600 } 5601 m_copydata(m, off, len, p); 5602 return (p); 5603 } 5604 5605 int 5606 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5607 int rtableid) 5608 { 5609 struct ifnet *ifp; 5610 5611 /* 5612 * Skip check for addresses with embedded interface scope, 5613 * as they would always match anyway. 5614 */ 5615 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5616 return (1); 5617 5618 if (af != AF_INET && af != AF_INET6) 5619 return (0); 5620 5621 /* Skip checks for ipsec interfaces */ 5622 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5623 return (1); 5624 5625 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5626 5627 switch (af) { 5628 #ifdef INET6 5629 case AF_INET6: 5630 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5631 ifp)); 5632 #endif 5633 #ifdef INET 5634 case AF_INET: 5635 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5636 ifp)); 5637 #endif 5638 } 5639 5640 return (0); 5641 } 5642 5643 #ifdef INET 5644 static void 5645 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5646 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5647 { 5648 struct mbuf *m0, *m1; 5649 struct sockaddr_in dst; 5650 struct ip *ip; 5651 struct ifnet *ifp = NULL; 5652 struct pf_addr naddr; 5653 struct pf_ksrc_node *sn = NULL; 5654 int error = 0; 5655 uint16_t ip_len, ip_off; 5656 5657 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5658 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5659 __func__)); 5660 5661 if ((pd->pf_mtag == NULL && 5662 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5663 pd->pf_mtag->routed++ > 3) { 5664 m0 = *m; 5665 *m = NULL; 5666 goto bad_locked; 5667 } 5668 5669 if (r->rt == PF_DUPTO) { 5670 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5671 if (s == NULL) { 5672 ifp = r->rpool.cur->kif ? 5673 r->rpool.cur->kif->pfik_ifp : NULL; 5674 } else { 5675 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5676 PF_STATE_UNLOCK(s); 5677 } 5678 if (ifp == oifp) { 5679 /* When the 2nd interface is not skipped */ 5680 return; 5681 } else { 5682 m0 = *m; 5683 *m = NULL; 5684 goto bad; 5685 } 5686 } else { 5687 pd->pf_mtag->flags |= PF_DUPLICATED; 5688 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5689 if (s) 5690 PF_STATE_UNLOCK(s); 5691 return; 5692 } 5693 } 5694 } else { 5695 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5696 if (s) 5697 PF_STATE_UNLOCK(s); 5698 return; 5699 } 5700 m0 = *m; 5701 } 5702 5703 ip = mtod(m0, struct ip *); 5704 5705 bzero(&dst, sizeof(dst)); 5706 dst.sin_family = AF_INET; 5707 dst.sin_len = sizeof(dst); 5708 dst.sin_addr = ip->ip_dst; 5709 5710 bzero(&naddr, sizeof(naddr)); 5711 5712 if (TAILQ_EMPTY(&r->rpool.list)) { 5713 DPFPRINTF(PF_DEBUG_URGENT, 5714 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5715 goto bad_locked; 5716 } 5717 if (s == NULL) { 5718 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5719 &naddr, NULL, &sn); 5720 if (!PF_AZERO(&naddr, AF_INET)) 5721 dst.sin_addr.s_addr = naddr.v4.s_addr; 5722 ifp = r->rpool.cur->kif ? 5723 r->rpool.cur->kif->pfik_ifp : NULL; 5724 } else { 5725 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5726 dst.sin_addr.s_addr = 5727 s->rt_addr.v4.s_addr; 5728 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5729 PF_STATE_UNLOCK(s); 5730 } 5731 if (ifp == NULL) 5732 goto bad; 5733 5734 if (dir == PF_IN) { 5735 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5736 goto bad; 5737 else if (m0 == NULL) 5738 goto done; 5739 if (m0->m_len < sizeof(struct ip)) { 5740 DPFPRINTF(PF_DEBUG_URGENT, 5741 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5742 goto bad; 5743 } 5744 ip = mtod(m0, struct ip *); 5745 } 5746 5747 if (ifp->if_flags & IFF_LOOPBACK) 5748 m0->m_flags |= M_SKIP_FIREWALL; 5749 5750 ip_len = ntohs(ip->ip_len); 5751 ip_off = ntohs(ip->ip_off); 5752 5753 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5754 m0->m_pkthdr.csum_flags |= CSUM_IP; 5755 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5756 m0 = mb_unmapped_to_ext(m0); 5757 if (m0 == NULL) 5758 goto done; 5759 in_delayed_cksum(m0); 5760 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5761 } 5762 #if defined(SCTP) || defined(SCTP_SUPPORT) 5763 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5764 m0 = mb_unmapped_to_ext(m0); 5765 if (m0 == NULL) 5766 goto done; 5767 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5768 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5769 } 5770 #endif 5771 5772 /* 5773 * If small enough for interface, or the interface will take 5774 * care of the fragmentation for us, we can just send directly. 5775 */ 5776 if (ip_len <= ifp->if_mtu || 5777 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5778 ip->ip_sum = 0; 5779 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5780 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5781 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5782 } 5783 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5784 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5785 goto done; 5786 } 5787 5788 /* Balk when DF bit is set or the interface didn't support TSO. */ 5789 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5790 error = EMSGSIZE; 5791 KMOD_IPSTAT_INC(ips_cantfrag); 5792 if (r->rt != PF_DUPTO) { 5793 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5794 ifp->if_mtu); 5795 goto done; 5796 } else 5797 goto bad; 5798 } 5799 5800 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5801 if (error) 5802 goto bad; 5803 5804 for (; m0; m0 = m1) { 5805 m1 = m0->m_nextpkt; 5806 m0->m_nextpkt = NULL; 5807 if (error == 0) { 5808 m_clrprotoflags(m0); 5809 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5810 } else 5811 m_freem(m0); 5812 } 5813 5814 if (error == 0) 5815 KMOD_IPSTAT_INC(ips_fragmented); 5816 5817 done: 5818 if (r->rt != PF_DUPTO) 5819 *m = NULL; 5820 return; 5821 5822 bad_locked: 5823 if (s) 5824 PF_STATE_UNLOCK(s); 5825 bad: 5826 m_freem(m0); 5827 goto done; 5828 } 5829 #endif /* INET */ 5830 5831 #ifdef INET6 5832 static void 5833 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5834 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5835 { 5836 struct mbuf *m0; 5837 struct sockaddr_in6 dst; 5838 struct ip6_hdr *ip6; 5839 struct ifnet *ifp = NULL; 5840 struct pf_addr naddr; 5841 struct pf_ksrc_node *sn = NULL; 5842 5843 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5844 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5845 __func__)); 5846 5847 if ((pd->pf_mtag == NULL && 5848 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5849 pd->pf_mtag->routed++ > 3) { 5850 m0 = *m; 5851 *m = NULL; 5852 goto bad_locked; 5853 } 5854 5855 if (r->rt == PF_DUPTO) { 5856 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5857 if (s == NULL) { 5858 ifp = r->rpool.cur->kif ? 5859 r->rpool.cur->kif->pfik_ifp : NULL; 5860 } else { 5861 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5862 PF_STATE_UNLOCK(s); 5863 } 5864 if (ifp == oifp) { 5865 /* When the 2nd interface is not skipped */ 5866 return; 5867 } else { 5868 m0 = *m; 5869 *m = NULL; 5870 goto bad; 5871 } 5872 } else { 5873 pd->pf_mtag->flags |= PF_DUPLICATED; 5874 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5875 if (s) 5876 PF_STATE_UNLOCK(s); 5877 return; 5878 } 5879 } 5880 } else { 5881 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5882 if (s) 5883 PF_STATE_UNLOCK(s); 5884 return; 5885 } 5886 m0 = *m; 5887 } 5888 5889 ip6 = mtod(m0, struct ip6_hdr *); 5890 5891 bzero(&dst, sizeof(dst)); 5892 dst.sin6_family = AF_INET6; 5893 dst.sin6_len = sizeof(dst); 5894 dst.sin6_addr = ip6->ip6_dst; 5895 5896 bzero(&naddr, sizeof(naddr)); 5897 5898 if (TAILQ_EMPTY(&r->rpool.list)) { 5899 DPFPRINTF(PF_DEBUG_URGENT, 5900 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5901 goto bad_locked; 5902 } 5903 if (s == NULL) { 5904 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5905 &naddr, NULL, &sn); 5906 if (!PF_AZERO(&naddr, AF_INET6)) 5907 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5908 &naddr, AF_INET6); 5909 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5910 } else { 5911 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5912 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5913 &s->rt_addr, AF_INET6); 5914 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5915 } 5916 5917 if (s) 5918 PF_STATE_UNLOCK(s); 5919 5920 if (ifp == NULL) 5921 goto bad; 5922 5923 if (dir == PF_IN) { 5924 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5925 goto bad; 5926 else if (m0 == NULL) 5927 goto done; 5928 if (m0->m_len < sizeof(struct ip6_hdr)) { 5929 DPFPRINTF(PF_DEBUG_URGENT, 5930 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5931 __func__)); 5932 goto bad; 5933 } 5934 ip6 = mtod(m0, struct ip6_hdr *); 5935 } 5936 5937 if (ifp->if_flags & IFF_LOOPBACK) 5938 m0->m_flags |= M_SKIP_FIREWALL; 5939 5940 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5941 ~ifp->if_hwassist) { 5942 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5943 m0 = mb_unmapped_to_ext(m0); 5944 if (m0 == NULL) 5945 goto done; 5946 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5947 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5948 } 5949 5950 /* 5951 * If the packet is too large for the outgoing interface, 5952 * send back an icmp6 error. 5953 */ 5954 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5955 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5956 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5957 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5958 else { 5959 in6_ifstat_inc(ifp, ifs6_in_toobig); 5960 if (r->rt != PF_DUPTO) 5961 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5962 else 5963 goto bad; 5964 } 5965 5966 done: 5967 if (r->rt != PF_DUPTO) 5968 *m = NULL; 5969 return; 5970 5971 bad_locked: 5972 if (s) 5973 PF_STATE_UNLOCK(s); 5974 bad: 5975 m_freem(m0); 5976 goto done; 5977 } 5978 #endif /* INET6 */ 5979 5980 /* 5981 * FreeBSD supports cksum offloads for the following drivers. 5982 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 5983 * 5984 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5985 * network driver performed cksum including pseudo header, need to verify 5986 * csum_data 5987 * CSUM_DATA_VALID : 5988 * network driver performed cksum, needs to additional pseudo header 5989 * cksum computation with partial csum_data(i.e. lack of H/W support for 5990 * pseudo header, for instance sk(4) and possibly gem(4)) 5991 * 5992 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5993 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5994 * TCP/UDP layer. 5995 * Also, set csum_data to 0xffff to force cksum validation. 5996 */ 5997 static int 5998 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5999 { 6000 u_int16_t sum = 0; 6001 int hw_assist = 0; 6002 struct ip *ip; 6003 6004 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6005 return (1); 6006 if (m->m_pkthdr.len < off + len) 6007 return (1); 6008 6009 switch (p) { 6010 case IPPROTO_TCP: 6011 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6012 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6013 sum = m->m_pkthdr.csum_data; 6014 } else { 6015 ip = mtod(m, struct ip *); 6016 sum = in_pseudo(ip->ip_src.s_addr, 6017 ip->ip_dst.s_addr, htonl((u_short)len + 6018 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6019 } 6020 sum ^= 0xffff; 6021 ++hw_assist; 6022 } 6023 break; 6024 case IPPROTO_UDP: 6025 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6026 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6027 sum = m->m_pkthdr.csum_data; 6028 } else { 6029 ip = mtod(m, struct ip *); 6030 sum = in_pseudo(ip->ip_src.s_addr, 6031 ip->ip_dst.s_addr, htonl((u_short)len + 6032 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6033 } 6034 sum ^= 0xffff; 6035 ++hw_assist; 6036 } 6037 break; 6038 case IPPROTO_ICMP: 6039 #ifdef INET6 6040 case IPPROTO_ICMPV6: 6041 #endif /* INET6 */ 6042 break; 6043 default: 6044 return (1); 6045 } 6046 6047 if (!hw_assist) { 6048 switch (af) { 6049 case AF_INET: 6050 if (p == IPPROTO_ICMP) { 6051 if (m->m_len < off) 6052 return (1); 6053 m->m_data += off; 6054 m->m_len -= off; 6055 sum = in_cksum(m, len); 6056 m->m_data -= off; 6057 m->m_len += off; 6058 } else { 6059 if (m->m_len < sizeof(struct ip)) 6060 return (1); 6061 sum = in4_cksum(m, p, off, len); 6062 } 6063 break; 6064 #ifdef INET6 6065 case AF_INET6: 6066 if (m->m_len < sizeof(struct ip6_hdr)) 6067 return (1); 6068 sum = in6_cksum(m, p, off, len); 6069 break; 6070 #endif /* INET6 */ 6071 default: 6072 return (1); 6073 } 6074 } 6075 if (sum) { 6076 switch (p) { 6077 case IPPROTO_TCP: 6078 { 6079 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6080 break; 6081 } 6082 case IPPROTO_UDP: 6083 { 6084 KMOD_UDPSTAT_INC(udps_badsum); 6085 break; 6086 } 6087 #ifdef INET 6088 case IPPROTO_ICMP: 6089 { 6090 KMOD_ICMPSTAT_INC(icps_checksum); 6091 break; 6092 } 6093 #endif 6094 #ifdef INET6 6095 case IPPROTO_ICMPV6: 6096 { 6097 KMOD_ICMP6STAT_INC(icp6s_checksum); 6098 break; 6099 } 6100 #endif /* INET6 */ 6101 } 6102 return (1); 6103 } else { 6104 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6105 m->m_pkthdr.csum_flags |= 6106 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6107 m->m_pkthdr.csum_data = 0xffff; 6108 } 6109 } 6110 return (0); 6111 } 6112 6113 #ifdef INET 6114 int 6115 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6116 { 6117 struct pfi_kkif *kif; 6118 u_short action, reason = 0, log = 0; 6119 struct mbuf *m = *m0; 6120 struct ip *h = NULL; 6121 struct m_tag *ipfwtag; 6122 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6123 struct pf_kstate *s = NULL; 6124 struct pf_kruleset *ruleset = NULL; 6125 struct pf_pdesc pd; 6126 int off, dirndx, pqid = 0; 6127 6128 PF_RULES_RLOCK_TRACKER; 6129 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6130 M_ASSERTPKTHDR(m); 6131 6132 if (!V_pf_status.running) 6133 return (PF_PASS); 6134 6135 memset(&pd, 0, sizeof(pd)); 6136 6137 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6138 6139 if (kif == NULL) { 6140 DPFPRINTF(PF_DEBUG_URGENT, 6141 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6142 return (PF_DROP); 6143 } 6144 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6145 return (PF_PASS); 6146 6147 if (m->m_flags & M_SKIP_FIREWALL) 6148 return (PF_PASS); 6149 6150 pd.pf_mtag = pf_find_mtag(m); 6151 6152 PF_RULES_RLOCK(); 6153 6154 if (__predict_false(ip_divert_ptr != NULL) && 6155 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6156 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6157 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6158 if (pd.pf_mtag == NULL && 6159 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6160 action = PF_DROP; 6161 goto done; 6162 } 6163 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6164 m_tag_delete(m, ipfwtag); 6165 } 6166 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6167 m->m_flags |= M_FASTFWD_OURS; 6168 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6169 } 6170 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6171 /* We do IP header normalization and packet reassembly here */ 6172 action = PF_DROP; 6173 goto done; 6174 } 6175 m = *m0; /* pf_normalize messes with m0 */ 6176 h = mtod(m, struct ip *); 6177 6178 off = h->ip_hl << 2; 6179 if (off < (int)sizeof(struct ip)) { 6180 action = PF_DROP; 6181 REASON_SET(&reason, PFRES_SHORT); 6182 log = 1; 6183 goto done; 6184 } 6185 6186 pd.src = (struct pf_addr *)&h->ip_src; 6187 pd.dst = (struct pf_addr *)&h->ip_dst; 6188 pd.sport = pd.dport = NULL; 6189 pd.ip_sum = &h->ip_sum; 6190 pd.proto_sum = NULL; 6191 pd.proto = h->ip_p; 6192 pd.dir = dir; 6193 pd.sidx = (dir == PF_IN) ? 0 : 1; 6194 pd.didx = (dir == PF_IN) ? 1 : 0; 6195 pd.af = AF_INET; 6196 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6197 pd.tot_len = ntohs(h->ip_len); 6198 6199 /* handle fragments that didn't get reassembled by normalization */ 6200 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6201 action = pf_test_fragment(&r, dir, kif, m, h, 6202 &pd, &a, &ruleset); 6203 goto done; 6204 } 6205 6206 switch (h->ip_p) { 6207 case IPPROTO_TCP: { 6208 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6209 &action, &reason, AF_INET)) { 6210 log = action != PF_PASS; 6211 goto done; 6212 } 6213 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6214 6215 pd.sport = &pd.hdr.tcp.th_sport; 6216 pd.dport = &pd.hdr.tcp.th_dport; 6217 6218 /* Respond to SYN with a syncookie. */ 6219 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6220 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6221 pf_syncookie_send(m, off, &pd); 6222 action = PF_DROP; 6223 break; 6224 } 6225 6226 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6227 pqid = 1; 6228 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6229 if (action == PF_DROP) 6230 goto done; 6231 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6232 &reason); 6233 if (action == PF_PASS) { 6234 if (V_pfsync_update_state_ptr != NULL) 6235 V_pfsync_update_state_ptr(s); 6236 r = s->rule.ptr; 6237 a = s->anchor.ptr; 6238 log = s->log; 6239 } else if (s == NULL) { 6240 /* Validate remote SYN|ACK, re-create original SYN if 6241 * valid. */ 6242 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6243 TH_ACK && pf_syncookie_validate(&pd) && 6244 pd.dir == PF_IN) { 6245 struct mbuf *msyn; 6246 6247 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6248 off,&pd); 6249 if (msyn == NULL) { 6250 action = PF_DROP; 6251 break; 6252 } 6253 6254 action = pf_test(dir, pflags, ifp, &msyn, inp); 6255 m_freem(msyn); 6256 6257 if (action == PF_PASS) { 6258 action = pf_test_state_tcp(&s, dir, 6259 kif, m, off, h, &pd, &reason); 6260 if (action != PF_PASS || s == NULL) { 6261 action = PF_DROP; 6262 break; 6263 } 6264 6265 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6266 - 1; 6267 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6268 - 1; 6269 s->src.state = PF_TCPS_PROXY_DST; 6270 6271 action = pf_synproxy(&pd, &s, &reason); 6272 if (action != PF_PASS) 6273 break; 6274 } 6275 break; 6276 } 6277 else { 6278 action = pf_test_rule(&r, &s, dir, kif, m, off, 6279 &pd, &a, &ruleset, inp); 6280 } 6281 } 6282 break; 6283 } 6284 6285 case IPPROTO_UDP: { 6286 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6287 &action, &reason, AF_INET)) { 6288 log = action != PF_PASS; 6289 goto done; 6290 } 6291 if (pd.hdr.udp.uh_dport == 0 || 6292 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6293 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6294 action = PF_DROP; 6295 REASON_SET(&reason, PFRES_SHORT); 6296 goto done; 6297 } 6298 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6299 if (action == PF_PASS) { 6300 if (V_pfsync_update_state_ptr != NULL) 6301 V_pfsync_update_state_ptr(s); 6302 r = s->rule.ptr; 6303 a = s->anchor.ptr; 6304 log = s->log; 6305 } else if (s == NULL) 6306 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6307 &a, &ruleset, inp); 6308 break; 6309 } 6310 6311 case IPPROTO_ICMP: { 6312 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6313 &action, &reason, AF_INET)) { 6314 log = action != PF_PASS; 6315 goto done; 6316 } 6317 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6318 &reason); 6319 if (action == PF_PASS) { 6320 if (V_pfsync_update_state_ptr != NULL) 6321 V_pfsync_update_state_ptr(s); 6322 r = s->rule.ptr; 6323 a = s->anchor.ptr; 6324 log = s->log; 6325 } else if (s == NULL) 6326 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6327 &a, &ruleset, inp); 6328 break; 6329 } 6330 6331 #ifdef INET6 6332 case IPPROTO_ICMPV6: { 6333 action = PF_DROP; 6334 DPFPRINTF(PF_DEBUG_MISC, 6335 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6336 goto done; 6337 } 6338 #endif 6339 6340 default: 6341 action = pf_test_state_other(&s, dir, kif, m, &pd); 6342 if (action == PF_PASS) { 6343 if (V_pfsync_update_state_ptr != NULL) 6344 V_pfsync_update_state_ptr(s); 6345 r = s->rule.ptr; 6346 a = s->anchor.ptr; 6347 log = s->log; 6348 } else if (s == NULL) 6349 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6350 &a, &ruleset, inp); 6351 break; 6352 } 6353 6354 done: 6355 PF_RULES_RUNLOCK(); 6356 if (action == PF_PASS && h->ip_hl > 5 && 6357 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6358 action = PF_DROP; 6359 REASON_SET(&reason, PFRES_IPOPTIONS); 6360 log = r->log; 6361 DPFPRINTF(PF_DEBUG_MISC, 6362 ("pf: dropping packet with ip options\n")); 6363 } 6364 6365 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6366 action = PF_DROP; 6367 REASON_SET(&reason, PFRES_MEMORY); 6368 } 6369 if (r->rtableid >= 0) 6370 M_SETFIB(m, r->rtableid); 6371 6372 if (r->scrub_flags & PFSTATE_SETPRIO) { 6373 if (pd.tos & IPTOS_LOWDELAY) 6374 pqid = 1; 6375 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6376 action = PF_DROP; 6377 REASON_SET(&reason, PFRES_MEMORY); 6378 log = 1; 6379 DPFPRINTF(PF_DEBUG_MISC, 6380 ("pf: failed to allocate 802.1q mtag\n")); 6381 } 6382 } 6383 6384 #ifdef ALTQ 6385 if (s && s->qid) { 6386 pd.act.pqid = s->pqid; 6387 pd.act.qid = s->qid; 6388 } else if (r->qid) { 6389 pd.act.pqid = r->pqid; 6390 pd.act.qid = r->qid; 6391 } 6392 if (action == PF_PASS && pd.act.qid) { 6393 if (pd.pf_mtag == NULL && 6394 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6395 action = PF_DROP; 6396 REASON_SET(&reason, PFRES_MEMORY); 6397 } else { 6398 if (s != NULL) 6399 pd.pf_mtag->qid_hash = pf_state_hash(s); 6400 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6401 pd.pf_mtag->qid = pd.act.pqid; 6402 else 6403 pd.pf_mtag->qid = pd.act.qid; 6404 /* Add hints for ecn. */ 6405 pd.pf_mtag->hdr = h; 6406 } 6407 } 6408 #endif /* ALTQ */ 6409 6410 /* 6411 * connections redirected to loopback should not match sockets 6412 * bound specifically to loopback due to security implications, 6413 * see tcp_input() and in_pcblookup_listen(). 6414 */ 6415 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6416 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6417 (s->nat_rule.ptr->action == PF_RDR || 6418 s->nat_rule.ptr->action == PF_BINAT) && 6419 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6420 m->m_flags |= M_SKIP_FIREWALL; 6421 6422 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 6423 r->divert.port && !PACKET_LOOPED(&pd)) { 6424 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6425 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6426 if (ipfwtag != NULL) { 6427 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6428 ntohs(r->divert.port); 6429 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6430 6431 if (s) 6432 PF_STATE_UNLOCK(s); 6433 6434 m_tag_prepend(m, ipfwtag); 6435 if (m->m_flags & M_FASTFWD_OURS) { 6436 if (pd.pf_mtag == NULL && 6437 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6438 action = PF_DROP; 6439 REASON_SET(&reason, PFRES_MEMORY); 6440 log = 1; 6441 DPFPRINTF(PF_DEBUG_MISC, 6442 ("pf: failed to allocate tag\n")); 6443 } else { 6444 pd.pf_mtag->flags |= 6445 PF_FASTFWD_OURS_PRESENT; 6446 m->m_flags &= ~M_FASTFWD_OURS; 6447 } 6448 } 6449 ip_divert_ptr(*m0, dir == PF_IN); 6450 *m0 = NULL; 6451 6452 return (action); 6453 } else { 6454 /* XXX: ipfw has the same behaviour! */ 6455 action = PF_DROP; 6456 REASON_SET(&reason, PFRES_MEMORY); 6457 log = 1; 6458 DPFPRINTF(PF_DEBUG_MISC, 6459 ("pf: failed to allocate divert tag\n")); 6460 } 6461 } 6462 6463 if (log) { 6464 struct pf_krule *lr; 6465 6466 if (s != NULL && s->nat_rule.ptr != NULL && 6467 s->nat_rule.ptr->log & PF_LOG_ALL) 6468 lr = s->nat_rule.ptr; 6469 else 6470 lr = r; 6471 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6472 (s == NULL)); 6473 } 6474 6475 pf_counter_u64_critical_enter(); 6476 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6477 pd.tot_len); 6478 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6479 1); 6480 6481 if (action == PF_PASS || r->action == PF_DROP) { 6482 dirndx = (dir == PF_OUT); 6483 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6484 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6485 if (a != NULL) { 6486 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6487 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6488 } 6489 if (s != NULL) { 6490 if (s->nat_rule.ptr != NULL) { 6491 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6492 1); 6493 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6494 pd.tot_len); 6495 } 6496 if (s->src_node != NULL) { 6497 counter_u64_add(s->src_node->packets[dirndx], 6498 1); 6499 counter_u64_add(s->src_node->bytes[dirndx], 6500 pd.tot_len); 6501 } 6502 if (s->nat_src_node != NULL) { 6503 counter_u64_add(s->nat_src_node->packets[dirndx], 6504 1); 6505 counter_u64_add(s->nat_src_node->bytes[dirndx], 6506 pd.tot_len); 6507 } 6508 dirndx = (dir == s->direction) ? 0 : 1; 6509 s->packets[dirndx]++; 6510 s->bytes[dirndx] += pd.tot_len; 6511 } 6512 tr = r; 6513 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6514 if (nr != NULL && r == &V_pf_default_rule) 6515 tr = nr; 6516 if (tr->src.addr.type == PF_ADDR_TABLE) 6517 pfr_update_stats(tr->src.addr.p.tbl, 6518 (s == NULL) ? pd.src : 6519 &s->key[(s->direction == PF_IN)]-> 6520 addr[(s->direction == PF_OUT)], 6521 pd.af, pd.tot_len, dir == PF_OUT, 6522 r->action == PF_PASS, tr->src.neg); 6523 if (tr->dst.addr.type == PF_ADDR_TABLE) 6524 pfr_update_stats(tr->dst.addr.p.tbl, 6525 (s == NULL) ? pd.dst : 6526 &s->key[(s->direction == PF_IN)]-> 6527 addr[(s->direction == PF_IN)], 6528 pd.af, pd.tot_len, dir == PF_OUT, 6529 r->action == PF_PASS, tr->dst.neg); 6530 } 6531 pf_counter_u64_critical_exit(); 6532 6533 switch (action) { 6534 case PF_SYNPROXY_DROP: 6535 m_freem(*m0); 6536 case PF_DEFER: 6537 *m0 = NULL; 6538 action = PF_PASS; 6539 break; 6540 case PF_DROP: 6541 m_freem(*m0); 6542 *m0 = NULL; 6543 break; 6544 default: 6545 /* pf_route() returns unlocked. */ 6546 if (r->rt) { 6547 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6548 return (action); 6549 } 6550 break; 6551 } 6552 6553 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6554 6555 if (s) 6556 PF_STATE_UNLOCK(s); 6557 6558 return (action); 6559 } 6560 #endif /* INET */ 6561 6562 #ifdef INET6 6563 int 6564 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6565 { 6566 struct pfi_kkif *kif; 6567 u_short action, reason = 0, log = 0; 6568 struct mbuf *m = *m0, *n = NULL; 6569 struct m_tag *mtag; 6570 struct ip6_hdr *h = NULL; 6571 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6572 struct pf_kstate *s = NULL; 6573 struct pf_kruleset *ruleset = NULL; 6574 struct pf_pdesc pd; 6575 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6576 6577 PF_RULES_RLOCK_TRACKER; 6578 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6579 M_ASSERTPKTHDR(m); 6580 6581 if (!V_pf_status.running) 6582 return (PF_PASS); 6583 6584 memset(&pd, 0, sizeof(pd)); 6585 pd.pf_mtag = pf_find_mtag(m); 6586 6587 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6588 return (PF_PASS); 6589 6590 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6591 if (kif == NULL) { 6592 DPFPRINTF(PF_DEBUG_URGENT, 6593 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6594 return (PF_DROP); 6595 } 6596 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6597 return (PF_PASS); 6598 6599 if (m->m_flags & M_SKIP_FIREWALL) 6600 return (PF_PASS); 6601 6602 PF_RULES_RLOCK(); 6603 6604 /* We do IP header normalization and packet reassembly here */ 6605 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6606 action = PF_DROP; 6607 goto done; 6608 } 6609 m = *m0; /* pf_normalize messes with m0 */ 6610 h = mtod(m, struct ip6_hdr *); 6611 6612 /* 6613 * we do not support jumbogram. if we keep going, zero ip6_plen 6614 * will do something bad, so drop the packet for now. 6615 */ 6616 if (htons(h->ip6_plen) == 0) { 6617 action = PF_DROP; 6618 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6619 goto done; 6620 } 6621 6622 pd.src = (struct pf_addr *)&h->ip6_src; 6623 pd.dst = (struct pf_addr *)&h->ip6_dst; 6624 pd.sport = pd.dport = NULL; 6625 pd.ip_sum = NULL; 6626 pd.proto_sum = NULL; 6627 pd.dir = dir; 6628 pd.sidx = (dir == PF_IN) ? 0 : 1; 6629 pd.didx = (dir == PF_IN) ? 1 : 0; 6630 pd.af = AF_INET6; 6631 pd.tos = IPV6_DSCP(h); 6632 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6633 6634 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6635 pd.proto = h->ip6_nxt; 6636 do { 6637 switch (pd.proto) { 6638 case IPPROTO_FRAGMENT: 6639 action = pf_test_fragment(&r, dir, kif, m, h, 6640 &pd, &a, &ruleset); 6641 if (action == PF_DROP) 6642 REASON_SET(&reason, PFRES_FRAG); 6643 goto done; 6644 case IPPROTO_ROUTING: { 6645 struct ip6_rthdr rthdr; 6646 6647 if (rh_cnt++) { 6648 DPFPRINTF(PF_DEBUG_MISC, 6649 ("pf: IPv6 more than one rthdr\n")); 6650 action = PF_DROP; 6651 REASON_SET(&reason, PFRES_IPOPTIONS); 6652 log = 1; 6653 goto done; 6654 } 6655 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6656 &reason, pd.af)) { 6657 DPFPRINTF(PF_DEBUG_MISC, 6658 ("pf: IPv6 short rthdr\n")); 6659 action = PF_DROP; 6660 REASON_SET(&reason, PFRES_SHORT); 6661 log = 1; 6662 goto done; 6663 } 6664 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6665 DPFPRINTF(PF_DEBUG_MISC, 6666 ("pf: IPv6 rthdr0\n")); 6667 action = PF_DROP; 6668 REASON_SET(&reason, PFRES_IPOPTIONS); 6669 log = 1; 6670 goto done; 6671 } 6672 /* FALLTHROUGH */ 6673 } 6674 case IPPROTO_AH: 6675 case IPPROTO_HOPOPTS: 6676 case IPPROTO_DSTOPTS: { 6677 /* get next header and header length */ 6678 struct ip6_ext opt6; 6679 6680 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6681 NULL, &reason, pd.af)) { 6682 DPFPRINTF(PF_DEBUG_MISC, 6683 ("pf: IPv6 short opt\n")); 6684 action = PF_DROP; 6685 log = 1; 6686 goto done; 6687 } 6688 if (pd.proto == IPPROTO_AH) 6689 off += (opt6.ip6e_len + 2) * 4; 6690 else 6691 off += (opt6.ip6e_len + 1) * 8; 6692 pd.proto = opt6.ip6e_nxt; 6693 /* goto the next header */ 6694 break; 6695 } 6696 default: 6697 terminal++; 6698 break; 6699 } 6700 } while (!terminal); 6701 6702 /* if there's no routing header, use unmodified mbuf for checksumming */ 6703 if (!n) 6704 n = m; 6705 6706 switch (pd.proto) { 6707 case IPPROTO_TCP: { 6708 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6709 &action, &reason, AF_INET6)) { 6710 log = action != PF_PASS; 6711 goto done; 6712 } 6713 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6714 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6715 if (action == PF_DROP) 6716 goto done; 6717 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6718 &reason); 6719 if (action == PF_PASS) { 6720 if (V_pfsync_update_state_ptr != NULL) 6721 V_pfsync_update_state_ptr(s); 6722 r = s->rule.ptr; 6723 a = s->anchor.ptr; 6724 log = s->log; 6725 } else if (s == NULL) 6726 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6727 &a, &ruleset, inp); 6728 break; 6729 } 6730 6731 case IPPROTO_UDP: { 6732 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6733 &action, &reason, AF_INET6)) { 6734 log = action != PF_PASS; 6735 goto done; 6736 } 6737 if (pd.hdr.udp.uh_dport == 0 || 6738 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6739 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6740 action = PF_DROP; 6741 REASON_SET(&reason, PFRES_SHORT); 6742 goto done; 6743 } 6744 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6745 if (action == PF_PASS) { 6746 if (V_pfsync_update_state_ptr != NULL) 6747 V_pfsync_update_state_ptr(s); 6748 r = s->rule.ptr; 6749 a = s->anchor.ptr; 6750 log = s->log; 6751 } else if (s == NULL) 6752 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6753 &a, &ruleset, inp); 6754 break; 6755 } 6756 6757 case IPPROTO_ICMP: { 6758 action = PF_DROP; 6759 DPFPRINTF(PF_DEBUG_MISC, 6760 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6761 goto done; 6762 } 6763 6764 case IPPROTO_ICMPV6: { 6765 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 6766 &action, &reason, AF_INET6)) { 6767 log = action != PF_PASS; 6768 goto done; 6769 } 6770 action = pf_test_state_icmp(&s, dir, kif, 6771 m, off, h, &pd, &reason); 6772 if (action == PF_PASS) { 6773 if (V_pfsync_update_state_ptr != NULL) 6774 V_pfsync_update_state_ptr(s); 6775 r = s->rule.ptr; 6776 a = s->anchor.ptr; 6777 log = s->log; 6778 } else if (s == NULL) 6779 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6780 &a, &ruleset, inp); 6781 break; 6782 } 6783 6784 default: 6785 action = pf_test_state_other(&s, dir, kif, m, &pd); 6786 if (action == PF_PASS) { 6787 if (V_pfsync_update_state_ptr != NULL) 6788 V_pfsync_update_state_ptr(s); 6789 r = s->rule.ptr; 6790 a = s->anchor.ptr; 6791 log = s->log; 6792 } else if (s == NULL) 6793 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6794 &a, &ruleset, inp); 6795 break; 6796 } 6797 6798 done: 6799 PF_RULES_RUNLOCK(); 6800 if (n != m) { 6801 m_freem(n); 6802 n = NULL; 6803 } 6804 6805 /* handle dangerous IPv6 extension headers. */ 6806 if (action == PF_PASS && rh_cnt && 6807 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6808 action = PF_DROP; 6809 REASON_SET(&reason, PFRES_IPOPTIONS); 6810 log = r->log; 6811 DPFPRINTF(PF_DEBUG_MISC, 6812 ("pf: dropping packet with dangerous v6 headers\n")); 6813 } 6814 6815 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6816 action = PF_DROP; 6817 REASON_SET(&reason, PFRES_MEMORY); 6818 } 6819 if (r->rtableid >= 0) 6820 M_SETFIB(m, r->rtableid); 6821 6822 if (r->scrub_flags & PFSTATE_SETPRIO) { 6823 if (pd.tos & IPTOS_LOWDELAY) 6824 pqid = 1; 6825 if (vlan_set_pcp(m, r->set_prio[pqid])) { 6826 action = PF_DROP; 6827 REASON_SET(&reason, PFRES_MEMORY); 6828 log = 1; 6829 DPFPRINTF(PF_DEBUG_MISC, 6830 ("pf: failed to allocate 802.1q mtag\n")); 6831 } 6832 } 6833 6834 #ifdef ALTQ 6835 if (s && s->qid) { 6836 pd.act.pqid = s->pqid; 6837 pd.act.qid = s->qid; 6838 } else if (r->qid) { 6839 pd.act.pqid = r->pqid; 6840 pd.act.qid = r->qid; 6841 } 6842 if (action == PF_PASS && pd.act.qid) { 6843 if (pd.pf_mtag == NULL && 6844 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6845 action = PF_DROP; 6846 REASON_SET(&reason, PFRES_MEMORY); 6847 } else { 6848 if (s != NULL) 6849 pd.pf_mtag->qid_hash = pf_state_hash(s); 6850 if (pd.tos & IPTOS_LOWDELAY) 6851 pd.pf_mtag->qid = pd.act.pqid; 6852 else 6853 pd.pf_mtag->qid = pd.act.qid; 6854 /* Add hints for ecn. */ 6855 pd.pf_mtag->hdr = h; 6856 } 6857 } 6858 #endif /* ALTQ */ 6859 6860 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6861 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6862 (s->nat_rule.ptr->action == PF_RDR || 6863 s->nat_rule.ptr->action == PF_BINAT) && 6864 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6865 m->m_flags |= M_SKIP_FIREWALL; 6866 6867 /* XXX: Anybody working on it?! */ 6868 if (r->divert.port) 6869 printf("pf: divert(9) is not supported for IPv6\n"); 6870 6871 if (log) { 6872 struct pf_krule *lr; 6873 6874 if (s != NULL && s->nat_rule.ptr != NULL && 6875 s->nat_rule.ptr->log & PF_LOG_ALL) 6876 lr = s->nat_rule.ptr; 6877 else 6878 lr = r; 6879 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6880 &pd, (s == NULL)); 6881 } 6882 6883 pf_counter_u64_critical_enter(); 6884 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6885 pd.tot_len); 6886 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6887 1); 6888 6889 if (action == PF_PASS || r->action == PF_DROP) { 6890 dirndx = (dir == PF_OUT); 6891 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 6892 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 6893 if (a != NULL) { 6894 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 6895 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 6896 } 6897 if (s != NULL) { 6898 if (s->nat_rule.ptr != NULL) { 6899 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 6900 1); 6901 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 6902 pd.tot_len); 6903 } 6904 if (s->src_node != NULL) { 6905 counter_u64_add(s->src_node->packets[dirndx], 6906 1); 6907 counter_u64_add(s->src_node->bytes[dirndx], 6908 pd.tot_len); 6909 } 6910 if (s->nat_src_node != NULL) { 6911 counter_u64_add(s->nat_src_node->packets[dirndx], 6912 1); 6913 counter_u64_add(s->nat_src_node->bytes[dirndx], 6914 pd.tot_len); 6915 } 6916 dirndx = (dir == s->direction) ? 0 : 1; 6917 s->packets[dirndx]++; 6918 s->bytes[dirndx] += pd.tot_len; 6919 } 6920 tr = r; 6921 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6922 if (nr != NULL && r == &V_pf_default_rule) 6923 tr = nr; 6924 if (tr->src.addr.type == PF_ADDR_TABLE) 6925 pfr_update_stats(tr->src.addr.p.tbl, 6926 (s == NULL) ? pd.src : 6927 &s->key[(s->direction == PF_IN)]->addr[0], 6928 pd.af, pd.tot_len, dir == PF_OUT, 6929 r->action == PF_PASS, tr->src.neg); 6930 if (tr->dst.addr.type == PF_ADDR_TABLE) 6931 pfr_update_stats(tr->dst.addr.p.tbl, 6932 (s == NULL) ? pd.dst : 6933 &s->key[(s->direction == PF_IN)]->addr[1], 6934 pd.af, pd.tot_len, dir == PF_OUT, 6935 r->action == PF_PASS, tr->dst.neg); 6936 } 6937 pf_counter_u64_critical_exit(); 6938 6939 switch (action) { 6940 case PF_SYNPROXY_DROP: 6941 m_freem(*m0); 6942 case PF_DEFER: 6943 *m0 = NULL; 6944 action = PF_PASS; 6945 break; 6946 case PF_DROP: 6947 m_freem(*m0); 6948 *m0 = NULL; 6949 break; 6950 default: 6951 /* pf_route6() returns unlocked. */ 6952 if (r->rt) { 6953 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6954 return (action); 6955 } 6956 break; 6957 } 6958 6959 if (s) 6960 PF_STATE_UNLOCK(s); 6961 6962 /* If reassembled packet passed, create new fragments. */ 6963 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6964 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6965 action = pf_refragment6(ifp, m0, mtag); 6966 6967 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 6968 6969 return (action); 6970 } 6971 #endif /* INET6 */ 6972