1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet/icmp6.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6_var.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_fib.h> 104 #include <netinet6/scope6_var.h> 105 #endif /* INET6 */ 106 107 #if defined(SCTP) || defined(SCTP_SUPPORT) 108 #include <netinet/sctp_crc32.h> 109 #endif 110 111 #include <machine/in_cksum.h> 112 #include <security/mac/mac_framework.h> 113 114 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 115 116 SDT_PROVIDER_DEFINE(pf); 117 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 118 "struct pf_kstate *"); 119 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 120 "struct pf_kstate *"); 121 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 122 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 123 "struct pf_kstate *"); 124 125 /* 126 * Global variables 127 */ 128 129 /* state tables */ 130 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 131 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 132 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 133 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 134 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 135 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 136 VNET_DEFINE(struct pf_kstatus, pf_status); 137 138 VNET_DEFINE(u_int32_t, ticket_altqs_active); 139 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 140 VNET_DEFINE(int, altqs_inactive_open); 141 VNET_DEFINE(u_int32_t, ticket_pabuf); 142 143 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 144 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 145 VNET_DEFINE(u_char, pf_tcp_secret[16]); 146 #define V_pf_tcp_secret VNET(pf_tcp_secret) 147 VNET_DEFINE(int, pf_tcp_secret_init); 148 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 149 VNET_DEFINE(int, pf_tcp_iss_off); 150 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 151 VNET_DECLARE(int, pf_vnet_active); 152 #define V_pf_vnet_active VNET(pf_vnet_active) 153 154 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 155 #define V_pf_purge_idx VNET(pf_purge_idx) 156 157 /* 158 * Queue for pf_intr() sends. 159 */ 160 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 161 struct pf_send_entry { 162 STAILQ_ENTRY(pf_send_entry) pfse_next; 163 struct mbuf *pfse_m; 164 enum { 165 PFSE_IP, 166 PFSE_IP6, 167 PFSE_ICMP, 168 PFSE_ICMP6, 169 } pfse_type; 170 struct { 171 int type; 172 int code; 173 int mtu; 174 } icmpopts; 175 }; 176 177 STAILQ_HEAD(pf_send_head, pf_send_entry); 178 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 179 #define V_pf_sendqueue VNET(pf_sendqueue) 180 181 static struct mtx_padalign pf_sendqueue_mtx; 182 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 183 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 184 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 185 186 /* 187 * Queue for pf_overload_task() tasks. 188 */ 189 struct pf_overload_entry { 190 SLIST_ENTRY(pf_overload_entry) next; 191 struct pf_addr addr; 192 sa_family_t af; 193 uint8_t dir; 194 struct pf_krule *rule; 195 }; 196 197 SLIST_HEAD(pf_overload_head, pf_overload_entry); 198 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 199 #define V_pf_overloadqueue VNET(pf_overloadqueue) 200 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 201 #define V_pf_overloadtask VNET(pf_overloadtask) 202 203 static struct mtx_padalign pf_overloadqueue_mtx; 204 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 205 "pf overload/flush queue", MTX_DEF); 206 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 207 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 208 209 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 210 struct mtx_padalign pf_unlnkdrules_mtx; 211 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 212 MTX_DEF); 213 214 struct mtx_padalign pf_table_stats_lock; 215 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 216 MTX_DEF); 217 218 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 219 #define V_pf_sources_z VNET(pf_sources_z) 220 uma_zone_t pf_mtag_z; 221 VNET_DEFINE(uma_zone_t, pf_state_z); 222 VNET_DEFINE(uma_zone_t, pf_state_key_z); 223 224 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 225 #define PFID_CPUBITS 8 226 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 227 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 228 #define PFID_MAXID (~PFID_CPUMASK) 229 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 230 231 static void pf_src_tree_remove_state(struct pf_kstate *); 232 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 233 u_int32_t); 234 static void pf_add_threshold(struct pf_threshold *); 235 static int pf_check_threshold(struct pf_threshold *); 236 237 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 238 u_int16_t *, u_int16_t *, struct pf_addr *, 239 u_int16_t, u_int8_t, sa_family_t); 240 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 241 struct tcphdr *, struct pf_state_peer *); 242 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 243 struct pf_addr *, struct pf_addr *, u_int16_t, 244 u_int16_t *, u_int16_t *, u_int16_t *, 245 u_int16_t *, u_int8_t, sa_family_t); 246 static void pf_send_tcp(const struct pf_krule *, sa_family_t, 247 const struct pf_addr *, const struct pf_addr *, 248 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 249 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 250 u_int16_t); 251 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 252 sa_family_t, struct pf_krule *); 253 static void pf_detach_state(struct pf_kstate *); 254 static int pf_state_key_attach(struct pf_state_key *, 255 struct pf_state_key *, struct pf_kstate *); 256 static void pf_state_key_detach(struct pf_kstate *, int); 257 static int pf_state_key_ctor(void *, int, void *, int); 258 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 259 void pf_rule_to_actions(struct pf_krule *, 260 struct pf_rule_actions *); 261 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 262 int, struct pfi_kkif *, struct mbuf *, int, 263 struct pf_pdesc *, struct pf_krule **, 264 struct pf_kruleset **, struct inpcb *); 265 static int pf_create_state(struct pf_krule *, struct pf_krule *, 266 struct pf_krule *, struct pf_pdesc *, 267 struct pf_ksrc_node *, struct pf_state_key *, 268 struct pf_state_key *, struct mbuf *, int, 269 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 270 struct pf_kstate **, int, u_int16_t, u_int16_t, 271 int); 272 static int pf_test_fragment(struct pf_krule **, int, 273 struct pfi_kkif *, struct mbuf *, void *, 274 struct pf_pdesc *, struct pf_krule **, 275 struct pf_kruleset **); 276 static int pf_tcp_track_full(struct pf_state_peer *, 277 struct pf_state_peer *, struct pf_kstate **, 278 struct pfi_kkif *, struct mbuf *, int, 279 struct pf_pdesc *, u_short *, int *); 280 static int pf_tcp_track_sloppy(struct pf_state_peer *, 281 struct pf_state_peer *, struct pf_kstate **, 282 struct pf_pdesc *, u_short *); 283 static int pf_test_state_tcp(struct pf_kstate **, int, 284 struct pfi_kkif *, struct mbuf *, int, 285 void *, struct pf_pdesc *, u_short *); 286 static int pf_test_state_udp(struct pf_kstate **, int, 287 struct pfi_kkif *, struct mbuf *, int, 288 void *, struct pf_pdesc *); 289 static int pf_test_state_icmp(struct pf_kstate **, int, 290 struct pfi_kkif *, struct mbuf *, int, 291 void *, struct pf_pdesc *, u_short *); 292 static int pf_test_state_other(struct pf_kstate **, int, 293 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 294 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 295 sa_family_t); 296 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 297 sa_family_t); 298 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 299 int, u_int16_t); 300 static int pf_check_proto_cksum(struct mbuf *, int, int, 301 u_int8_t, sa_family_t); 302 static void pf_print_state_parts(struct pf_kstate *, 303 struct pf_state_key *, struct pf_state_key *); 304 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 305 struct pf_addr_wrap *); 306 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 307 bool, u_int8_t); 308 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 309 struct pf_state_key_cmp *, u_int); 310 static int pf_src_connlimit(struct pf_kstate **); 311 static void pf_overload_task(void *v, int pending); 312 static int pf_insert_src_node(struct pf_ksrc_node **, 313 struct pf_krule *, struct pf_addr *, sa_family_t); 314 static u_int pf_purge_expired_states(u_int, int); 315 static void pf_purge_unlinked_rules(void); 316 static int pf_mtag_uminit(void *, int, int); 317 static void pf_mtag_free(struct m_tag *); 318 #ifdef INET 319 static void pf_route(struct mbuf **, struct pf_krule *, int, 320 struct ifnet *, struct pf_kstate *, 321 struct pf_pdesc *, struct inpcb *); 322 #endif /* INET */ 323 #ifdef INET6 324 static void pf_change_a6(struct pf_addr *, u_int16_t *, 325 struct pf_addr *, u_int8_t); 326 static void pf_route6(struct mbuf **, struct pf_krule *, int, 327 struct ifnet *, struct pf_kstate *, 328 struct pf_pdesc *, struct inpcb *); 329 #endif /* INET6 */ 330 331 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 332 333 extern int pf_end_threads; 334 extern struct proc *pf_purge_proc; 335 336 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 337 338 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 339 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 340 341 #define STATE_LOOKUP(i, k, d, s, pd) \ 342 do { \ 343 (s) = pf_find_state((i), (k), (d)); \ 344 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 345 if ((s) == NULL) \ 346 return (PF_DROP); \ 347 if (PACKET_LOOPED(pd)) \ 348 return (PF_PASS); \ 349 } while (0) 350 351 #define BOUND_IFACE(r, k) \ 352 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 353 354 #define STATE_INC_COUNTERS(s) \ 355 do { \ 356 counter_u64_add(s->rule.ptr->states_cur, 1); \ 357 counter_u64_add(s->rule.ptr->states_tot, 1); \ 358 if (s->anchor.ptr != NULL) { \ 359 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 360 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 361 } \ 362 if (s->nat_rule.ptr != NULL) { \ 363 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 364 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 365 } \ 366 } while (0) 367 368 #define STATE_DEC_COUNTERS(s) \ 369 do { \ 370 if (s->nat_rule.ptr != NULL) \ 371 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 372 if (s->anchor.ptr != NULL) \ 373 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 374 counter_u64_add(s->rule.ptr->states_cur, -1); \ 375 } while (0) 376 377 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 378 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 379 VNET_DEFINE(struct pf_idhash *, pf_idhash); 380 VNET_DEFINE(struct pf_srchash *, pf_srchash); 381 382 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 383 "pf(4)"); 384 385 u_long pf_hashmask; 386 u_long pf_srchashmask; 387 static u_long pf_hashsize; 388 static u_long pf_srchashsize; 389 u_long pf_ioctl_maxcount = 65535; 390 391 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 392 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 393 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 394 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 395 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 396 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 397 398 VNET_DEFINE(void *, pf_swi_cookie); 399 VNET_DEFINE(struct intr_event *, pf_swi_ie); 400 401 VNET_DEFINE(uint32_t, pf_hashseed); 402 #define V_pf_hashseed VNET(pf_hashseed) 403 404 int 405 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 406 { 407 408 switch (af) { 409 #ifdef INET 410 case AF_INET: 411 if (a->addr32[0] > b->addr32[0]) 412 return (1); 413 if (a->addr32[0] < b->addr32[0]) 414 return (-1); 415 break; 416 #endif /* INET */ 417 #ifdef INET6 418 case AF_INET6: 419 if (a->addr32[3] > b->addr32[3]) 420 return (1); 421 if (a->addr32[3] < b->addr32[3]) 422 return (-1); 423 if (a->addr32[2] > b->addr32[2]) 424 return (1); 425 if (a->addr32[2] < b->addr32[2]) 426 return (-1); 427 if (a->addr32[1] > b->addr32[1]) 428 return (1); 429 if (a->addr32[1] < b->addr32[1]) 430 return (-1); 431 if (a->addr32[0] > b->addr32[0]) 432 return (1); 433 if (a->addr32[0] < b->addr32[0]) 434 return (-1); 435 break; 436 #endif /* INET6 */ 437 default: 438 panic("%s: unknown address family %u", __func__, af); 439 } 440 return (0); 441 } 442 443 static __inline uint32_t 444 pf_hashkey(struct pf_state_key *sk) 445 { 446 uint32_t h; 447 448 h = murmur3_32_hash32((uint32_t *)sk, 449 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 450 V_pf_hashseed); 451 452 return (h & pf_hashmask); 453 } 454 455 static __inline uint32_t 456 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 457 { 458 uint32_t h; 459 460 switch (af) { 461 case AF_INET: 462 h = murmur3_32_hash32((uint32_t *)&addr->v4, 463 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 464 break; 465 case AF_INET6: 466 h = murmur3_32_hash32((uint32_t *)&addr->v6, 467 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 468 break; 469 default: 470 panic("%s: unknown address family %u", __func__, af); 471 } 472 473 return (h & pf_srchashmask); 474 } 475 476 #ifdef ALTQ 477 static int 478 pf_state_hash(struct pf_kstate *s) 479 { 480 u_int32_t hv = (intptr_t)s / sizeof(*s); 481 482 hv ^= crc32(&s->src, sizeof(s->src)); 483 hv ^= crc32(&s->dst, sizeof(s->dst)); 484 if (hv == 0) 485 hv = 1; 486 return (hv); 487 } 488 #endif 489 490 #ifdef INET6 491 void 492 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 493 { 494 switch (af) { 495 #ifdef INET 496 case AF_INET: 497 dst->addr32[0] = src->addr32[0]; 498 break; 499 #endif /* INET */ 500 case AF_INET6: 501 dst->addr32[0] = src->addr32[0]; 502 dst->addr32[1] = src->addr32[1]; 503 dst->addr32[2] = src->addr32[2]; 504 dst->addr32[3] = src->addr32[3]; 505 break; 506 } 507 } 508 #endif /* INET6 */ 509 510 static void 511 pf_init_threshold(struct pf_threshold *threshold, 512 u_int32_t limit, u_int32_t seconds) 513 { 514 threshold->limit = limit * PF_THRESHOLD_MULT; 515 threshold->seconds = seconds; 516 threshold->count = 0; 517 threshold->last = time_uptime; 518 } 519 520 static void 521 pf_add_threshold(struct pf_threshold *threshold) 522 { 523 u_int32_t t = time_uptime, diff = t - threshold->last; 524 525 if (diff >= threshold->seconds) 526 threshold->count = 0; 527 else 528 threshold->count -= threshold->count * diff / 529 threshold->seconds; 530 threshold->count += PF_THRESHOLD_MULT; 531 threshold->last = t; 532 } 533 534 static int 535 pf_check_threshold(struct pf_threshold *threshold) 536 { 537 return (threshold->count > threshold->limit); 538 } 539 540 static int 541 pf_src_connlimit(struct pf_kstate **state) 542 { 543 struct pf_overload_entry *pfoe; 544 int bad = 0; 545 546 PF_STATE_LOCK_ASSERT(*state); 547 548 (*state)->src_node->conn++; 549 (*state)->src.tcp_est = 1; 550 pf_add_threshold(&(*state)->src_node->conn_rate); 551 552 if ((*state)->rule.ptr->max_src_conn && 553 (*state)->rule.ptr->max_src_conn < 554 (*state)->src_node->conn) { 555 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 556 bad++; 557 } 558 559 if ((*state)->rule.ptr->max_src_conn_rate.limit && 560 pf_check_threshold(&(*state)->src_node->conn_rate)) { 561 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 562 bad++; 563 } 564 565 if (!bad) 566 return (0); 567 568 /* Kill this state. */ 569 (*state)->timeout = PFTM_PURGE; 570 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 571 572 if ((*state)->rule.ptr->overload_tbl == NULL) 573 return (1); 574 575 /* Schedule overloading and flushing task. */ 576 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 577 if (pfoe == NULL) 578 return (1); /* too bad :( */ 579 580 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 581 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 582 pfoe->rule = (*state)->rule.ptr; 583 pfoe->dir = (*state)->direction; 584 PF_OVERLOADQ_LOCK(); 585 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 586 PF_OVERLOADQ_UNLOCK(); 587 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 588 589 return (1); 590 } 591 592 static void 593 pf_overload_task(void *v, int pending) 594 { 595 struct pf_overload_head queue; 596 struct pfr_addr p; 597 struct pf_overload_entry *pfoe, *pfoe1; 598 uint32_t killed = 0; 599 600 CURVNET_SET((struct vnet *)v); 601 602 PF_OVERLOADQ_LOCK(); 603 queue = V_pf_overloadqueue; 604 SLIST_INIT(&V_pf_overloadqueue); 605 PF_OVERLOADQ_UNLOCK(); 606 607 bzero(&p, sizeof(p)); 608 SLIST_FOREACH(pfoe, &queue, next) { 609 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 610 if (V_pf_status.debug >= PF_DEBUG_MISC) { 611 printf("%s: blocking address ", __func__); 612 pf_print_host(&pfoe->addr, 0, pfoe->af); 613 printf("\n"); 614 } 615 616 p.pfra_af = pfoe->af; 617 switch (pfoe->af) { 618 #ifdef INET 619 case AF_INET: 620 p.pfra_net = 32; 621 p.pfra_ip4addr = pfoe->addr.v4; 622 break; 623 #endif 624 #ifdef INET6 625 case AF_INET6: 626 p.pfra_net = 128; 627 p.pfra_ip6addr = pfoe->addr.v6; 628 break; 629 #endif 630 } 631 632 PF_RULES_WLOCK(); 633 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 634 PF_RULES_WUNLOCK(); 635 } 636 637 /* 638 * Remove those entries, that don't need flushing. 639 */ 640 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 641 if (pfoe->rule->flush == 0) { 642 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 643 free(pfoe, M_PFTEMP); 644 } else 645 counter_u64_add( 646 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 647 648 /* If nothing to flush, return. */ 649 if (SLIST_EMPTY(&queue)) { 650 CURVNET_RESTORE(); 651 return; 652 } 653 654 for (int i = 0; i <= pf_hashmask; i++) { 655 struct pf_idhash *ih = &V_pf_idhash[i]; 656 struct pf_state_key *sk; 657 struct pf_kstate *s; 658 659 PF_HASHROW_LOCK(ih); 660 LIST_FOREACH(s, &ih->states, entry) { 661 sk = s->key[PF_SK_WIRE]; 662 SLIST_FOREACH(pfoe, &queue, next) 663 if (sk->af == pfoe->af && 664 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 665 pfoe->rule == s->rule.ptr) && 666 ((pfoe->dir == PF_OUT && 667 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 668 (pfoe->dir == PF_IN && 669 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 670 s->timeout = PFTM_PURGE; 671 s->src.state = s->dst.state = TCPS_CLOSED; 672 killed++; 673 } 674 } 675 PF_HASHROW_UNLOCK(ih); 676 } 677 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 678 free(pfoe, M_PFTEMP); 679 if (V_pf_status.debug >= PF_DEBUG_MISC) 680 printf("%s: %u states killed", __func__, killed); 681 682 CURVNET_RESTORE(); 683 } 684 685 /* 686 * Can return locked on failure, so that we can consistently 687 * allocate and insert a new one. 688 */ 689 struct pf_ksrc_node * 690 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 691 int returnlocked) 692 { 693 struct pf_srchash *sh; 694 struct pf_ksrc_node *n; 695 696 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 697 698 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 699 PF_HASHROW_LOCK(sh); 700 LIST_FOREACH(n, &sh->nodes, entry) 701 if (n->rule.ptr == rule && n->af == af && 702 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 703 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 704 break; 705 if (n != NULL) { 706 n->states++; 707 PF_HASHROW_UNLOCK(sh); 708 } else if (returnlocked == 0) 709 PF_HASHROW_UNLOCK(sh); 710 711 return (n); 712 } 713 714 static void 715 pf_free_src_node(struct pf_ksrc_node *sn) 716 { 717 718 for (int i = 0; i < 2; i++) { 719 counter_u64_free(sn->bytes[i]); 720 counter_u64_free(sn->packets[i]); 721 } 722 uma_zfree(V_pf_sources_z, sn); 723 } 724 725 static int 726 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 727 struct pf_addr *src, sa_family_t af) 728 { 729 730 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 731 rule->rpool.opts & PF_POOL_STICKYADDR), 732 ("%s for non-tracking rule %p", __func__, rule)); 733 734 if (*sn == NULL) 735 *sn = pf_find_src_node(src, rule, af, 1); 736 737 if (*sn == NULL) { 738 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 739 740 PF_HASHROW_ASSERT(sh); 741 742 if (!rule->max_src_nodes || 743 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 744 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 745 else 746 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 747 1); 748 if ((*sn) == NULL) { 749 PF_HASHROW_UNLOCK(sh); 750 return (-1); 751 } 752 753 for (int i = 0; i < 2; i++) { 754 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 755 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 756 757 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 758 pf_free_src_node(*sn); 759 PF_HASHROW_UNLOCK(sh); 760 return (-1); 761 } 762 } 763 764 pf_init_threshold(&(*sn)->conn_rate, 765 rule->max_src_conn_rate.limit, 766 rule->max_src_conn_rate.seconds); 767 768 (*sn)->af = af; 769 (*sn)->rule.ptr = rule; 770 PF_ACPY(&(*sn)->addr, src, af); 771 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 772 (*sn)->creation = time_uptime; 773 (*sn)->ruletype = rule->action; 774 (*sn)->states = 1; 775 if ((*sn)->rule.ptr != NULL) 776 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 777 PF_HASHROW_UNLOCK(sh); 778 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 779 } else { 780 if (rule->max_src_states && 781 (*sn)->states >= rule->max_src_states) { 782 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 783 1); 784 return (-1); 785 } 786 } 787 return (0); 788 } 789 790 void 791 pf_unlink_src_node(struct pf_ksrc_node *src) 792 { 793 794 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 795 LIST_REMOVE(src, entry); 796 if (src->rule.ptr) 797 counter_u64_add(src->rule.ptr->src_nodes, -1); 798 } 799 800 u_int 801 pf_free_src_nodes(struct pf_ksrc_node_list *head) 802 { 803 struct pf_ksrc_node *sn, *tmp; 804 u_int count = 0; 805 806 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 807 pf_free_src_node(sn); 808 count++; 809 } 810 811 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 812 813 return (count); 814 } 815 816 void 817 pf_mtag_initialize() 818 { 819 820 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 821 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 822 UMA_ALIGN_PTR, 0); 823 } 824 825 /* Per-vnet data storage structures initialization. */ 826 void 827 pf_initialize() 828 { 829 struct pf_keyhash *kh; 830 struct pf_idhash *ih; 831 struct pf_srchash *sh; 832 u_int i; 833 834 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 835 pf_hashsize = PF_HASHSIZ; 836 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 837 pf_srchashsize = PF_SRCHASHSIZ; 838 839 V_pf_hashseed = arc4random(); 840 841 /* States and state keys storage. */ 842 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 843 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 844 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 845 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 846 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 847 848 V_pf_state_key_z = uma_zcreate("pf state keys", 849 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 850 UMA_ALIGN_PTR, 0); 851 852 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 853 M_PFHASH, M_NOWAIT | M_ZERO); 854 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 855 M_PFHASH, M_NOWAIT | M_ZERO); 856 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 857 printf("pf: Unable to allocate memory for " 858 "state_hashsize %lu.\n", pf_hashsize); 859 860 free(V_pf_keyhash, M_PFHASH); 861 free(V_pf_idhash, M_PFHASH); 862 863 pf_hashsize = PF_HASHSIZ; 864 V_pf_keyhash = mallocarray(pf_hashsize, 865 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 866 V_pf_idhash = mallocarray(pf_hashsize, 867 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 868 } 869 870 pf_hashmask = pf_hashsize - 1; 871 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 872 i++, kh++, ih++) { 873 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 874 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 875 } 876 877 /* Source nodes. */ 878 V_pf_sources_z = uma_zcreate("pf source nodes", 879 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 880 0); 881 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 882 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 883 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 884 885 V_pf_srchash = mallocarray(pf_srchashsize, 886 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 887 if (V_pf_srchash == NULL) { 888 printf("pf: Unable to allocate memory for " 889 "source_hashsize %lu.\n", pf_srchashsize); 890 891 pf_srchashsize = PF_SRCHASHSIZ; 892 V_pf_srchash = mallocarray(pf_srchashsize, 893 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 894 } 895 896 pf_srchashmask = pf_srchashsize - 1; 897 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 898 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 899 900 /* ALTQ */ 901 TAILQ_INIT(&V_pf_altqs[0]); 902 TAILQ_INIT(&V_pf_altqs[1]); 903 TAILQ_INIT(&V_pf_altqs[2]); 904 TAILQ_INIT(&V_pf_altqs[3]); 905 TAILQ_INIT(&V_pf_pabuf); 906 V_pf_altqs_active = &V_pf_altqs[0]; 907 V_pf_altq_ifs_active = &V_pf_altqs[1]; 908 V_pf_altqs_inactive = &V_pf_altqs[2]; 909 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 910 911 /* Send & overload+flush queues. */ 912 STAILQ_INIT(&V_pf_sendqueue); 913 SLIST_INIT(&V_pf_overloadqueue); 914 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 915 916 /* Unlinked, but may be referenced rules. */ 917 TAILQ_INIT(&V_pf_unlinked_rules); 918 } 919 920 void 921 pf_mtag_cleanup() 922 { 923 924 uma_zdestroy(pf_mtag_z); 925 } 926 927 void 928 pf_cleanup() 929 { 930 struct pf_keyhash *kh; 931 struct pf_idhash *ih; 932 struct pf_srchash *sh; 933 struct pf_send_entry *pfse, *next; 934 u_int i; 935 936 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 937 i++, kh++, ih++) { 938 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 939 __func__)); 940 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 941 __func__)); 942 mtx_destroy(&kh->lock); 943 mtx_destroy(&ih->lock); 944 } 945 free(V_pf_keyhash, M_PFHASH); 946 free(V_pf_idhash, M_PFHASH); 947 948 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 949 KASSERT(LIST_EMPTY(&sh->nodes), 950 ("%s: source node hash not empty", __func__)); 951 mtx_destroy(&sh->lock); 952 } 953 free(V_pf_srchash, M_PFHASH); 954 955 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 956 m_freem(pfse->pfse_m); 957 free(pfse, M_PFTEMP); 958 } 959 960 uma_zdestroy(V_pf_sources_z); 961 uma_zdestroy(V_pf_state_z); 962 uma_zdestroy(V_pf_state_key_z); 963 } 964 965 static int 966 pf_mtag_uminit(void *mem, int size, int how) 967 { 968 struct m_tag *t; 969 970 t = (struct m_tag *)mem; 971 t->m_tag_cookie = MTAG_ABI_COMPAT; 972 t->m_tag_id = PACKET_TAG_PF; 973 t->m_tag_len = sizeof(struct pf_mtag); 974 t->m_tag_free = pf_mtag_free; 975 976 return (0); 977 } 978 979 static void 980 pf_mtag_free(struct m_tag *t) 981 { 982 983 uma_zfree(pf_mtag_z, t); 984 } 985 986 struct pf_mtag * 987 pf_get_mtag(struct mbuf *m) 988 { 989 struct m_tag *mtag; 990 991 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 992 return ((struct pf_mtag *)(mtag + 1)); 993 994 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 995 if (mtag == NULL) 996 return (NULL); 997 bzero(mtag + 1, sizeof(struct pf_mtag)); 998 m_tag_prepend(m, mtag); 999 1000 return ((struct pf_mtag *)(mtag + 1)); 1001 } 1002 1003 static int 1004 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1005 struct pf_kstate *s) 1006 { 1007 struct pf_keyhash *khs, *khw, *kh; 1008 struct pf_state_key *sk, *cur; 1009 struct pf_kstate *si, *olds = NULL; 1010 int idx; 1011 1012 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1013 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1014 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1015 1016 /* 1017 * We need to lock hash slots of both keys. To avoid deadlock 1018 * we always lock the slot with lower address first. Unlock order 1019 * isn't important. 1020 * 1021 * We also need to lock ID hash slot before dropping key 1022 * locks. On success we return with ID hash slot locked. 1023 */ 1024 1025 if (skw == sks) { 1026 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1027 PF_HASHROW_LOCK(khs); 1028 } else { 1029 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1030 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1031 if (khs == khw) { 1032 PF_HASHROW_LOCK(khs); 1033 } else if (khs < khw) { 1034 PF_HASHROW_LOCK(khs); 1035 PF_HASHROW_LOCK(khw); 1036 } else { 1037 PF_HASHROW_LOCK(khw); 1038 PF_HASHROW_LOCK(khs); 1039 } 1040 } 1041 1042 #define KEYS_UNLOCK() do { \ 1043 if (khs != khw) { \ 1044 PF_HASHROW_UNLOCK(khs); \ 1045 PF_HASHROW_UNLOCK(khw); \ 1046 } else \ 1047 PF_HASHROW_UNLOCK(khs); \ 1048 } while (0) 1049 1050 /* 1051 * First run: start with wire key. 1052 */ 1053 sk = skw; 1054 kh = khw; 1055 idx = PF_SK_WIRE; 1056 1057 keyattach: 1058 LIST_FOREACH(cur, &kh->keys, entry) 1059 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1060 break; 1061 1062 if (cur != NULL) { 1063 /* Key exists. Check for same kif, if none, add to key. */ 1064 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1065 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1066 1067 PF_HASHROW_LOCK(ih); 1068 if (si->kif == s->kif && 1069 si->direction == s->direction) { 1070 if (sk->proto == IPPROTO_TCP && 1071 si->src.state >= TCPS_FIN_WAIT_2 && 1072 si->dst.state >= TCPS_FIN_WAIT_2) { 1073 /* 1074 * New state matches an old >FIN_WAIT_2 1075 * state. We can't drop key hash locks, 1076 * thus we can't unlink it properly. 1077 * 1078 * As a workaround we drop it into 1079 * TCPS_CLOSED state, schedule purge 1080 * ASAP and push it into the very end 1081 * of the slot TAILQ, so that it won't 1082 * conflict with our new state. 1083 */ 1084 si->src.state = si->dst.state = 1085 TCPS_CLOSED; 1086 si->timeout = PFTM_PURGE; 1087 olds = si; 1088 } else { 1089 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1090 printf("pf: %s key attach " 1091 "failed on %s: ", 1092 (idx == PF_SK_WIRE) ? 1093 "wire" : "stack", 1094 s->kif->pfik_name); 1095 pf_print_state_parts(s, 1096 (idx == PF_SK_WIRE) ? 1097 sk : NULL, 1098 (idx == PF_SK_STACK) ? 1099 sk : NULL); 1100 printf(", existing: "); 1101 pf_print_state_parts(si, 1102 (idx == PF_SK_WIRE) ? 1103 sk : NULL, 1104 (idx == PF_SK_STACK) ? 1105 sk : NULL); 1106 printf("\n"); 1107 } 1108 PF_HASHROW_UNLOCK(ih); 1109 KEYS_UNLOCK(); 1110 uma_zfree(V_pf_state_key_z, sk); 1111 if (idx == PF_SK_STACK) 1112 pf_detach_state(s); 1113 return (EEXIST); /* collision! */ 1114 } 1115 } 1116 PF_HASHROW_UNLOCK(ih); 1117 } 1118 uma_zfree(V_pf_state_key_z, sk); 1119 s->key[idx] = cur; 1120 } else { 1121 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1122 s->key[idx] = sk; 1123 } 1124 1125 stateattach: 1126 /* List is sorted, if-bound states before floating. */ 1127 if (s->kif == V_pfi_all) 1128 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1129 else 1130 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1131 1132 if (olds) { 1133 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1134 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1135 key_list[idx]); 1136 olds = NULL; 1137 } 1138 1139 /* 1140 * Attach done. See how should we (or should not?) 1141 * attach a second key. 1142 */ 1143 if (sks == skw) { 1144 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1145 idx = PF_SK_STACK; 1146 sks = NULL; 1147 goto stateattach; 1148 } else if (sks != NULL) { 1149 /* 1150 * Continue attaching with stack key. 1151 */ 1152 sk = sks; 1153 kh = khs; 1154 idx = PF_SK_STACK; 1155 sks = NULL; 1156 goto keyattach; 1157 } 1158 1159 PF_STATE_LOCK(s); 1160 KEYS_UNLOCK(); 1161 1162 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1163 ("%s failure", __func__)); 1164 1165 return (0); 1166 #undef KEYS_UNLOCK 1167 } 1168 1169 static void 1170 pf_detach_state(struct pf_kstate *s) 1171 { 1172 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1173 struct pf_keyhash *kh; 1174 1175 if (sks != NULL) { 1176 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1177 PF_HASHROW_LOCK(kh); 1178 if (s->key[PF_SK_STACK] != NULL) 1179 pf_state_key_detach(s, PF_SK_STACK); 1180 /* 1181 * If both point to same key, then we are done. 1182 */ 1183 if (sks == s->key[PF_SK_WIRE]) { 1184 pf_state_key_detach(s, PF_SK_WIRE); 1185 PF_HASHROW_UNLOCK(kh); 1186 return; 1187 } 1188 PF_HASHROW_UNLOCK(kh); 1189 } 1190 1191 if (s->key[PF_SK_WIRE] != NULL) { 1192 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1193 PF_HASHROW_LOCK(kh); 1194 if (s->key[PF_SK_WIRE] != NULL) 1195 pf_state_key_detach(s, PF_SK_WIRE); 1196 PF_HASHROW_UNLOCK(kh); 1197 } 1198 } 1199 1200 static void 1201 pf_state_key_detach(struct pf_kstate *s, int idx) 1202 { 1203 struct pf_state_key *sk = s->key[idx]; 1204 #ifdef INVARIANTS 1205 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1206 1207 PF_HASHROW_ASSERT(kh); 1208 #endif 1209 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1210 s->key[idx] = NULL; 1211 1212 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1213 LIST_REMOVE(sk, entry); 1214 uma_zfree(V_pf_state_key_z, sk); 1215 } 1216 } 1217 1218 static int 1219 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1220 { 1221 struct pf_state_key *sk = mem; 1222 1223 bzero(sk, sizeof(struct pf_state_key_cmp)); 1224 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1225 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1226 1227 return (0); 1228 } 1229 1230 struct pf_state_key * 1231 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1232 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1233 { 1234 struct pf_state_key *sk; 1235 1236 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1237 if (sk == NULL) 1238 return (NULL); 1239 1240 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1241 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1242 sk->port[pd->sidx] = sport; 1243 sk->port[pd->didx] = dport; 1244 sk->proto = pd->proto; 1245 sk->af = pd->af; 1246 1247 return (sk); 1248 } 1249 1250 struct pf_state_key * 1251 pf_state_key_clone(struct pf_state_key *orig) 1252 { 1253 struct pf_state_key *sk; 1254 1255 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1256 if (sk == NULL) 1257 return (NULL); 1258 1259 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1260 1261 return (sk); 1262 } 1263 1264 int 1265 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1266 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1267 { 1268 struct pf_idhash *ih; 1269 struct pf_kstate *cur; 1270 int error; 1271 1272 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1273 ("%s: sks not pristine", __func__)); 1274 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1275 ("%s: skw not pristine", __func__)); 1276 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1277 1278 s->kif = kif; 1279 s->orig_kif = orig_kif; 1280 1281 if (s->id == 0 && s->creatorid == 0) { 1282 /* XXX: should be atomic, but probability of collision low */ 1283 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1284 V_pf_stateid[curcpu] = 1; 1285 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1286 s->id = htobe64(s->id); 1287 s->creatorid = V_pf_status.hostid; 1288 } 1289 1290 /* Returns with ID locked on success. */ 1291 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1292 return (error); 1293 1294 ih = &V_pf_idhash[PF_IDHASH(s)]; 1295 PF_HASHROW_ASSERT(ih); 1296 LIST_FOREACH(cur, &ih->states, entry) 1297 if (cur->id == s->id && cur->creatorid == s->creatorid) 1298 break; 1299 1300 if (cur != NULL) { 1301 PF_HASHROW_UNLOCK(ih); 1302 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1303 printf("pf: state ID collision: " 1304 "id: %016llx creatorid: %08x\n", 1305 (unsigned long long)be64toh(s->id), 1306 ntohl(s->creatorid)); 1307 } 1308 pf_detach_state(s); 1309 return (EEXIST); 1310 } 1311 LIST_INSERT_HEAD(&ih->states, s, entry); 1312 /* One for keys, one for ID hash. */ 1313 refcount_init(&s->refs, 2); 1314 1315 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1316 if (V_pfsync_insert_state_ptr != NULL) 1317 V_pfsync_insert_state_ptr(s); 1318 1319 /* Returns locked. */ 1320 return (0); 1321 } 1322 1323 /* 1324 * Find state by ID: returns with locked row on success. 1325 */ 1326 struct pf_kstate * 1327 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1328 { 1329 struct pf_idhash *ih; 1330 struct pf_kstate *s; 1331 1332 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1333 1334 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1335 1336 PF_HASHROW_LOCK(ih); 1337 LIST_FOREACH(s, &ih->states, entry) 1338 if (s->id == id && s->creatorid == creatorid) 1339 break; 1340 1341 if (s == NULL) 1342 PF_HASHROW_UNLOCK(ih); 1343 1344 return (s); 1345 } 1346 1347 /* 1348 * Find state by key. 1349 * Returns with ID hash slot locked on success. 1350 */ 1351 static struct pf_kstate * 1352 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1353 { 1354 struct pf_keyhash *kh; 1355 struct pf_state_key *sk; 1356 struct pf_kstate *s; 1357 int idx; 1358 1359 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1360 1361 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1362 1363 PF_HASHROW_LOCK(kh); 1364 LIST_FOREACH(sk, &kh->keys, entry) 1365 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1366 break; 1367 if (sk == NULL) { 1368 PF_HASHROW_UNLOCK(kh); 1369 return (NULL); 1370 } 1371 1372 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1373 1374 /* List is sorted, if-bound states before floating ones. */ 1375 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1376 if (s->kif == V_pfi_all || s->kif == kif) { 1377 PF_STATE_LOCK(s); 1378 PF_HASHROW_UNLOCK(kh); 1379 if (s->timeout >= PFTM_MAX) { 1380 /* 1381 * State is either being processed by 1382 * pf_unlink_state() in an other thread, or 1383 * is scheduled for immediate expiry. 1384 */ 1385 PF_STATE_UNLOCK(s); 1386 return (NULL); 1387 } 1388 return (s); 1389 } 1390 PF_HASHROW_UNLOCK(kh); 1391 1392 return (NULL); 1393 } 1394 1395 struct pf_kstate * 1396 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1397 { 1398 struct pf_keyhash *kh; 1399 struct pf_state_key *sk; 1400 struct pf_kstate *s, *ret = NULL; 1401 int idx, inout = 0; 1402 1403 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1404 1405 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1406 1407 PF_HASHROW_LOCK(kh); 1408 LIST_FOREACH(sk, &kh->keys, entry) 1409 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1410 break; 1411 if (sk == NULL) { 1412 PF_HASHROW_UNLOCK(kh); 1413 return (NULL); 1414 } 1415 switch (dir) { 1416 case PF_IN: 1417 idx = PF_SK_WIRE; 1418 break; 1419 case PF_OUT: 1420 idx = PF_SK_STACK; 1421 break; 1422 case PF_INOUT: 1423 idx = PF_SK_WIRE; 1424 inout = 1; 1425 break; 1426 default: 1427 panic("%s: dir %u", __func__, dir); 1428 } 1429 second_run: 1430 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1431 if (more == NULL) { 1432 PF_HASHROW_UNLOCK(kh); 1433 return (s); 1434 } 1435 1436 if (ret) 1437 (*more)++; 1438 else 1439 ret = s; 1440 } 1441 if (inout == 1) { 1442 inout = 0; 1443 idx = PF_SK_STACK; 1444 goto second_run; 1445 } 1446 PF_HASHROW_UNLOCK(kh); 1447 1448 return (ret); 1449 } 1450 1451 bool 1452 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1453 { 1454 struct pf_kstate *s; 1455 1456 s = pf_find_state_all(key, dir, NULL); 1457 return (s != NULL); 1458 } 1459 1460 /* END state table stuff */ 1461 1462 static void 1463 pf_send(struct pf_send_entry *pfse) 1464 { 1465 1466 PF_SENDQ_LOCK(); 1467 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1468 PF_SENDQ_UNLOCK(); 1469 swi_sched(V_pf_swi_cookie, 0); 1470 } 1471 1472 void 1473 pf_intr(void *v) 1474 { 1475 struct epoch_tracker et; 1476 struct pf_send_head queue; 1477 struct pf_send_entry *pfse, *next; 1478 1479 CURVNET_SET((struct vnet *)v); 1480 1481 PF_SENDQ_LOCK(); 1482 queue = V_pf_sendqueue; 1483 STAILQ_INIT(&V_pf_sendqueue); 1484 PF_SENDQ_UNLOCK(); 1485 1486 NET_EPOCH_ENTER(et); 1487 1488 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1489 switch (pfse->pfse_type) { 1490 #ifdef INET 1491 case PFSE_IP: 1492 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1493 break; 1494 case PFSE_ICMP: 1495 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1496 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1497 break; 1498 #endif /* INET */ 1499 #ifdef INET6 1500 case PFSE_IP6: 1501 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1502 NULL); 1503 break; 1504 case PFSE_ICMP6: 1505 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1506 pfse->icmpopts.code, pfse->icmpopts.mtu); 1507 break; 1508 #endif /* INET6 */ 1509 default: 1510 panic("%s: unknown type", __func__); 1511 } 1512 free(pfse, M_PFTEMP); 1513 } 1514 NET_EPOCH_EXIT(et); 1515 CURVNET_RESTORE(); 1516 } 1517 1518 void 1519 pf_purge_thread(void *unused __unused) 1520 { 1521 VNET_ITERATOR_DECL(vnet_iter); 1522 1523 sx_xlock(&pf_end_lock); 1524 while (pf_end_threads == 0) { 1525 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1526 1527 VNET_LIST_RLOCK(); 1528 VNET_FOREACH(vnet_iter) { 1529 CURVNET_SET(vnet_iter); 1530 1531 /* Wait until V_pf_default_rule is initialized. */ 1532 if (V_pf_vnet_active == 0) { 1533 CURVNET_RESTORE(); 1534 continue; 1535 } 1536 1537 /* 1538 * Process 1/interval fraction of the state 1539 * table every run. 1540 */ 1541 V_pf_purge_idx = 1542 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1543 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1544 1545 /* 1546 * Purge other expired types every 1547 * PFTM_INTERVAL seconds. 1548 */ 1549 if (V_pf_purge_idx == 0) { 1550 /* 1551 * Order is important: 1552 * - states and src nodes reference rules 1553 * - states and rules reference kifs 1554 */ 1555 pf_purge_expired_fragments(); 1556 pf_purge_expired_src_nodes(); 1557 pf_purge_unlinked_rules(); 1558 pfi_kkif_purge(); 1559 } 1560 CURVNET_RESTORE(); 1561 } 1562 VNET_LIST_RUNLOCK(); 1563 } 1564 1565 pf_end_threads++; 1566 sx_xunlock(&pf_end_lock); 1567 kproc_exit(0); 1568 } 1569 1570 void 1571 pf_unload_vnet_purge(void) 1572 { 1573 1574 /* 1575 * To cleanse up all kifs and rules we need 1576 * two runs: first one clears reference flags, 1577 * then pf_purge_expired_states() doesn't 1578 * raise them, and then second run frees. 1579 */ 1580 pf_purge_unlinked_rules(); 1581 pfi_kkif_purge(); 1582 1583 /* 1584 * Now purge everything. 1585 */ 1586 pf_purge_expired_states(0, pf_hashmask); 1587 pf_purge_fragments(UINT_MAX); 1588 pf_purge_expired_src_nodes(); 1589 1590 /* 1591 * Now all kifs & rules should be unreferenced, 1592 * thus should be successfully freed. 1593 */ 1594 pf_purge_unlinked_rules(); 1595 pfi_kkif_purge(); 1596 } 1597 1598 u_int32_t 1599 pf_state_expires(const struct pf_kstate *state) 1600 { 1601 u_int32_t timeout; 1602 u_int32_t start; 1603 u_int32_t end; 1604 u_int32_t states; 1605 1606 /* handle all PFTM_* > PFTM_MAX here */ 1607 if (state->timeout == PFTM_PURGE) 1608 return (time_uptime); 1609 KASSERT(state->timeout != PFTM_UNLINKED, 1610 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1611 KASSERT((state->timeout < PFTM_MAX), 1612 ("pf_state_expires: timeout > PFTM_MAX")); 1613 timeout = state->rule.ptr->timeout[state->timeout]; 1614 if (!timeout) 1615 timeout = V_pf_default_rule.timeout[state->timeout]; 1616 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1617 if (start && state->rule.ptr != &V_pf_default_rule) { 1618 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1619 states = counter_u64_fetch(state->rule.ptr->states_cur); 1620 } else { 1621 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1622 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1623 states = V_pf_status.states; 1624 } 1625 if (end && states > start && start < end) { 1626 if (states < end) { 1627 timeout = (u_int64_t)timeout * (end - states) / 1628 (end - start); 1629 return (state->expire + timeout); 1630 } 1631 else 1632 return (time_uptime); 1633 } 1634 return (state->expire + timeout); 1635 } 1636 1637 void 1638 pf_purge_expired_src_nodes() 1639 { 1640 struct pf_ksrc_node_list freelist; 1641 struct pf_srchash *sh; 1642 struct pf_ksrc_node *cur, *next; 1643 int i; 1644 1645 LIST_INIT(&freelist); 1646 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1647 PF_HASHROW_LOCK(sh); 1648 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1649 if (cur->states == 0 && cur->expire <= time_uptime) { 1650 pf_unlink_src_node(cur); 1651 LIST_INSERT_HEAD(&freelist, cur, entry); 1652 } else if (cur->rule.ptr != NULL) 1653 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1654 PF_HASHROW_UNLOCK(sh); 1655 } 1656 1657 pf_free_src_nodes(&freelist); 1658 1659 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1660 } 1661 1662 static void 1663 pf_src_tree_remove_state(struct pf_kstate *s) 1664 { 1665 struct pf_ksrc_node *sn; 1666 struct pf_srchash *sh; 1667 uint32_t timeout; 1668 1669 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1670 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1671 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1672 1673 if (s->src_node != NULL) { 1674 sn = s->src_node; 1675 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1676 PF_HASHROW_LOCK(sh); 1677 if (s->src.tcp_est) 1678 --sn->conn; 1679 if (--sn->states == 0) 1680 sn->expire = time_uptime + timeout; 1681 PF_HASHROW_UNLOCK(sh); 1682 } 1683 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1684 sn = s->nat_src_node; 1685 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1686 PF_HASHROW_LOCK(sh); 1687 if (--sn->states == 0) 1688 sn->expire = time_uptime + timeout; 1689 PF_HASHROW_UNLOCK(sh); 1690 } 1691 s->src_node = s->nat_src_node = NULL; 1692 } 1693 1694 /* 1695 * Unlink and potentilly free a state. Function may be 1696 * called with ID hash row locked, but always returns 1697 * unlocked, since it needs to go through key hash locking. 1698 */ 1699 int 1700 pf_unlink_state(struct pf_kstate *s, u_int flags) 1701 { 1702 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1703 1704 if ((flags & PF_ENTER_LOCKED) == 0) 1705 PF_HASHROW_LOCK(ih); 1706 else 1707 PF_HASHROW_ASSERT(ih); 1708 1709 if (s->timeout == PFTM_UNLINKED) { 1710 /* 1711 * State is being processed 1712 * by pf_unlink_state() in 1713 * an other thread. 1714 */ 1715 PF_HASHROW_UNLOCK(ih); 1716 return (0); /* XXXGL: undefined actually */ 1717 } 1718 1719 if (s->src.state == PF_TCPS_PROXY_DST) { 1720 /* XXX wire key the right one? */ 1721 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 1722 &s->key[PF_SK_WIRE]->addr[1], 1723 &s->key[PF_SK_WIRE]->addr[0], 1724 s->key[PF_SK_WIRE]->port[1], 1725 s->key[PF_SK_WIRE]->port[0], 1726 s->src.seqhi, s->src.seqlo + 1, 1727 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 1728 } 1729 1730 LIST_REMOVE(s, entry); 1731 pf_src_tree_remove_state(s); 1732 1733 if (V_pfsync_delete_state_ptr != NULL) 1734 V_pfsync_delete_state_ptr(s); 1735 1736 STATE_DEC_COUNTERS(s); 1737 1738 s->timeout = PFTM_UNLINKED; 1739 1740 PF_HASHROW_UNLOCK(ih); 1741 1742 pf_detach_state(s); 1743 /* pf_state_insert() initialises refs to 2 */ 1744 return (pf_release_staten(s, 2)); 1745 } 1746 1747 struct pf_kstate * 1748 pf_alloc_state(int flags) 1749 { 1750 1751 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 1752 } 1753 1754 void 1755 pf_free_state(struct pf_kstate *cur) 1756 { 1757 1758 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1759 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1760 cur->timeout)); 1761 1762 pf_normalize_tcp_cleanup(cur); 1763 uma_zfree(V_pf_state_z, cur); 1764 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1765 } 1766 1767 /* 1768 * Called only from pf_purge_thread(), thus serialized. 1769 */ 1770 static u_int 1771 pf_purge_expired_states(u_int i, int maxcheck) 1772 { 1773 struct pf_idhash *ih; 1774 struct pf_kstate *s; 1775 1776 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1777 1778 /* 1779 * Go through hash and unlink states that expire now. 1780 */ 1781 while (maxcheck > 0) { 1782 ih = &V_pf_idhash[i]; 1783 1784 /* only take the lock if we expect to do work */ 1785 if (!LIST_EMPTY(&ih->states)) { 1786 relock: 1787 PF_HASHROW_LOCK(ih); 1788 LIST_FOREACH(s, &ih->states, entry) { 1789 if (pf_state_expires(s) <= time_uptime) { 1790 V_pf_status.states -= 1791 pf_unlink_state(s, PF_ENTER_LOCKED); 1792 goto relock; 1793 } 1794 s->rule.ptr->rule_ref |= PFRULE_REFS; 1795 if (s->nat_rule.ptr != NULL) 1796 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 1797 if (s->anchor.ptr != NULL) 1798 s->anchor.ptr->rule_ref |= PFRULE_REFS; 1799 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1800 if (s->rt_kif) 1801 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1802 } 1803 PF_HASHROW_UNLOCK(ih); 1804 } 1805 1806 /* Return when we hit end of hash. */ 1807 if (++i > pf_hashmask) { 1808 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1809 return (0); 1810 } 1811 1812 maxcheck--; 1813 } 1814 1815 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1816 1817 return (i); 1818 } 1819 1820 static void 1821 pf_purge_unlinked_rules() 1822 { 1823 struct pf_krulequeue tmpq; 1824 struct pf_krule *r, *r1; 1825 1826 /* 1827 * If we have overloading task pending, then we'd 1828 * better skip purging this time. There is a tiny 1829 * probability that overloading task references 1830 * an already unlinked rule. 1831 */ 1832 PF_OVERLOADQ_LOCK(); 1833 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1834 PF_OVERLOADQ_UNLOCK(); 1835 return; 1836 } 1837 PF_OVERLOADQ_UNLOCK(); 1838 1839 /* 1840 * Do naive mark-and-sweep garbage collecting of old rules. 1841 * Reference flag is raised by pf_purge_expired_states() 1842 * and pf_purge_expired_src_nodes(). 1843 * 1844 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1845 * use a temporary queue. 1846 */ 1847 TAILQ_INIT(&tmpq); 1848 PF_UNLNKDRULES_LOCK(); 1849 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1850 if (!(r->rule_ref & PFRULE_REFS)) { 1851 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1852 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1853 } else 1854 r->rule_ref &= ~PFRULE_REFS; 1855 } 1856 PF_UNLNKDRULES_UNLOCK(); 1857 1858 if (!TAILQ_EMPTY(&tmpq)) { 1859 PF_RULES_WLOCK(); 1860 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1861 TAILQ_REMOVE(&tmpq, r, entries); 1862 pf_free_rule(r); 1863 } 1864 PF_RULES_WUNLOCK(); 1865 } 1866 } 1867 1868 void 1869 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1870 { 1871 switch (af) { 1872 #ifdef INET 1873 case AF_INET: { 1874 u_int32_t a = ntohl(addr->addr32[0]); 1875 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1876 (a>>8)&255, a&255); 1877 if (p) { 1878 p = ntohs(p); 1879 printf(":%u", p); 1880 } 1881 break; 1882 } 1883 #endif /* INET */ 1884 #ifdef INET6 1885 case AF_INET6: { 1886 u_int16_t b; 1887 u_int8_t i, curstart, curend, maxstart, maxend; 1888 curstart = curend = maxstart = maxend = 255; 1889 for (i = 0; i < 8; i++) { 1890 if (!addr->addr16[i]) { 1891 if (curstart == 255) 1892 curstart = i; 1893 curend = i; 1894 } else { 1895 if ((curend - curstart) > 1896 (maxend - maxstart)) { 1897 maxstart = curstart; 1898 maxend = curend; 1899 } 1900 curstart = curend = 255; 1901 } 1902 } 1903 if ((curend - curstart) > 1904 (maxend - maxstart)) { 1905 maxstart = curstart; 1906 maxend = curend; 1907 } 1908 for (i = 0; i < 8; i++) { 1909 if (i >= maxstart && i <= maxend) { 1910 if (i == 0) 1911 printf(":"); 1912 if (i == maxend) 1913 printf(":"); 1914 } else { 1915 b = ntohs(addr->addr16[i]); 1916 printf("%x", b); 1917 if (i < 7) 1918 printf(":"); 1919 } 1920 } 1921 if (p) { 1922 p = ntohs(p); 1923 printf("[%u]", p); 1924 } 1925 break; 1926 } 1927 #endif /* INET6 */ 1928 } 1929 } 1930 1931 void 1932 pf_print_state(struct pf_kstate *s) 1933 { 1934 pf_print_state_parts(s, NULL, NULL); 1935 } 1936 1937 static void 1938 pf_print_state_parts(struct pf_kstate *s, 1939 struct pf_state_key *skwp, struct pf_state_key *sksp) 1940 { 1941 struct pf_state_key *skw, *sks; 1942 u_int8_t proto, dir; 1943 1944 /* Do our best to fill these, but they're skipped if NULL */ 1945 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1946 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1947 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1948 dir = s ? s->direction : 0; 1949 1950 switch (proto) { 1951 case IPPROTO_IPV4: 1952 printf("IPv4"); 1953 break; 1954 case IPPROTO_IPV6: 1955 printf("IPv6"); 1956 break; 1957 case IPPROTO_TCP: 1958 printf("TCP"); 1959 break; 1960 case IPPROTO_UDP: 1961 printf("UDP"); 1962 break; 1963 case IPPROTO_ICMP: 1964 printf("ICMP"); 1965 break; 1966 case IPPROTO_ICMPV6: 1967 printf("ICMPv6"); 1968 break; 1969 default: 1970 printf("%u", proto); 1971 break; 1972 } 1973 switch (dir) { 1974 case PF_IN: 1975 printf(" in"); 1976 break; 1977 case PF_OUT: 1978 printf(" out"); 1979 break; 1980 } 1981 if (skw) { 1982 printf(" wire: "); 1983 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1984 printf(" "); 1985 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1986 } 1987 if (sks) { 1988 printf(" stack: "); 1989 if (sks != skw) { 1990 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1991 printf(" "); 1992 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1993 } else 1994 printf("-"); 1995 } 1996 if (s) { 1997 if (proto == IPPROTO_TCP) { 1998 printf(" [lo=%u high=%u win=%u modulator=%u", 1999 s->src.seqlo, s->src.seqhi, 2000 s->src.max_win, s->src.seqdiff); 2001 if (s->src.wscale && s->dst.wscale) 2002 printf(" wscale=%u", 2003 s->src.wscale & PF_WSCALE_MASK); 2004 printf("]"); 2005 printf(" [lo=%u high=%u win=%u modulator=%u", 2006 s->dst.seqlo, s->dst.seqhi, 2007 s->dst.max_win, s->dst.seqdiff); 2008 if (s->src.wscale && s->dst.wscale) 2009 printf(" wscale=%u", 2010 s->dst.wscale & PF_WSCALE_MASK); 2011 printf("]"); 2012 } 2013 printf(" %u:%u", s->src.state, s->dst.state); 2014 } 2015 } 2016 2017 void 2018 pf_print_flags(u_int8_t f) 2019 { 2020 if (f) 2021 printf(" "); 2022 if (f & TH_FIN) 2023 printf("F"); 2024 if (f & TH_SYN) 2025 printf("S"); 2026 if (f & TH_RST) 2027 printf("R"); 2028 if (f & TH_PUSH) 2029 printf("P"); 2030 if (f & TH_ACK) 2031 printf("A"); 2032 if (f & TH_URG) 2033 printf("U"); 2034 if (f & TH_ECE) 2035 printf("E"); 2036 if (f & TH_CWR) 2037 printf("W"); 2038 } 2039 2040 #define PF_SET_SKIP_STEPS(i) \ 2041 do { \ 2042 while (head[i] != cur) { \ 2043 head[i]->skip[i].ptr = cur; \ 2044 head[i] = TAILQ_NEXT(head[i], entries); \ 2045 } \ 2046 } while (0) 2047 2048 void 2049 pf_calc_skip_steps(struct pf_krulequeue *rules) 2050 { 2051 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2052 int i; 2053 2054 cur = TAILQ_FIRST(rules); 2055 prev = cur; 2056 for (i = 0; i < PF_SKIP_COUNT; ++i) 2057 head[i] = cur; 2058 while (cur != NULL) { 2059 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2060 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2061 if (cur->direction != prev->direction) 2062 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2063 if (cur->af != prev->af) 2064 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2065 if (cur->proto != prev->proto) 2066 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2067 if (cur->src.neg != prev->src.neg || 2068 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2069 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2070 if (cur->src.port[0] != prev->src.port[0] || 2071 cur->src.port[1] != prev->src.port[1] || 2072 cur->src.port_op != prev->src.port_op) 2073 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2074 if (cur->dst.neg != prev->dst.neg || 2075 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2076 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2077 if (cur->dst.port[0] != prev->dst.port[0] || 2078 cur->dst.port[1] != prev->dst.port[1] || 2079 cur->dst.port_op != prev->dst.port_op) 2080 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2081 2082 prev = cur; 2083 cur = TAILQ_NEXT(cur, entries); 2084 } 2085 for (i = 0; i < PF_SKIP_COUNT; ++i) 2086 PF_SET_SKIP_STEPS(i); 2087 } 2088 2089 static int 2090 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2091 { 2092 if (aw1->type != aw2->type) 2093 return (1); 2094 switch (aw1->type) { 2095 case PF_ADDR_ADDRMASK: 2096 case PF_ADDR_RANGE: 2097 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2098 return (1); 2099 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2100 return (1); 2101 return (0); 2102 case PF_ADDR_DYNIFTL: 2103 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2104 case PF_ADDR_NOROUTE: 2105 case PF_ADDR_URPFFAILED: 2106 return (0); 2107 case PF_ADDR_TABLE: 2108 return (aw1->p.tbl != aw2->p.tbl); 2109 default: 2110 printf("invalid address type: %d\n", aw1->type); 2111 return (1); 2112 } 2113 } 2114 2115 /** 2116 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2117 * header isn't always a full checksum. In some cases (i.e. output) it's a 2118 * pseudo-header checksum, which is a partial checksum over src/dst IP 2119 * addresses, protocol number and length. 2120 * 2121 * That means we have the following cases: 2122 * * Input or forwarding: we don't have TSO, the checksum fields are full 2123 * checksums, we need to update the checksum whenever we change anything. 2124 * * Output (i.e. the checksum is a pseudo-header checksum): 2125 * x The field being updated is src/dst address or affects the length of 2126 * the packet. We need to update the pseudo-header checksum (note that this 2127 * checksum is not ones' complement). 2128 * x Some other field is being modified (e.g. src/dst port numbers): We 2129 * don't have to update anything. 2130 **/ 2131 u_int16_t 2132 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2133 { 2134 u_int32_t x; 2135 2136 x = cksum + old - new; 2137 x = (x + (x >> 16)) & 0xffff; 2138 2139 /* optimise: eliminate a branch when not udp */ 2140 if (udp && cksum == 0x0000) 2141 return cksum; 2142 if (udp && x == 0x0000) 2143 x = 0xffff; 2144 2145 return (u_int16_t)(x); 2146 } 2147 2148 static void 2149 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2150 u_int8_t udp) 2151 { 2152 u_int16_t old = htons(hi ? (*f << 8) : *f); 2153 u_int16_t new = htons(hi ? ( v << 8) : v); 2154 2155 if (*f == v) 2156 return; 2157 2158 *f = v; 2159 2160 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2161 return; 2162 2163 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2164 } 2165 2166 void 2167 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2168 bool hi, u_int8_t udp) 2169 { 2170 u_int8_t *fb = (u_int8_t *)f; 2171 u_int8_t *vb = (u_int8_t *)&v; 2172 2173 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2174 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2175 } 2176 2177 void 2178 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2179 bool hi, u_int8_t udp) 2180 { 2181 u_int8_t *fb = (u_int8_t *)f; 2182 u_int8_t *vb = (u_int8_t *)&v; 2183 2184 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2185 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2186 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2187 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2188 } 2189 2190 u_int16_t 2191 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2192 u_int16_t new, u_int8_t udp) 2193 { 2194 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2195 return (cksum); 2196 2197 return (pf_cksum_fixup(cksum, old, new, udp)); 2198 } 2199 2200 static void 2201 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2202 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2203 sa_family_t af) 2204 { 2205 struct pf_addr ao; 2206 u_int16_t po = *p; 2207 2208 PF_ACPY(&ao, a, af); 2209 PF_ACPY(a, an, af); 2210 2211 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2212 *pc = ~*pc; 2213 2214 *p = pn; 2215 2216 switch (af) { 2217 #ifdef INET 2218 case AF_INET: 2219 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2220 ao.addr16[0], an->addr16[0], 0), 2221 ao.addr16[1], an->addr16[1], 0); 2222 *p = pn; 2223 2224 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2225 ao.addr16[0], an->addr16[0], u), 2226 ao.addr16[1], an->addr16[1], u); 2227 2228 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2229 break; 2230 #endif /* INET */ 2231 #ifdef INET6 2232 case AF_INET6: 2233 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2234 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2235 pf_cksum_fixup(pf_cksum_fixup(*pc, 2236 ao.addr16[0], an->addr16[0], u), 2237 ao.addr16[1], an->addr16[1], u), 2238 ao.addr16[2], an->addr16[2], u), 2239 ao.addr16[3], an->addr16[3], u), 2240 ao.addr16[4], an->addr16[4], u), 2241 ao.addr16[5], an->addr16[5], u), 2242 ao.addr16[6], an->addr16[6], u), 2243 ao.addr16[7], an->addr16[7], u); 2244 2245 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2246 break; 2247 #endif /* INET6 */ 2248 } 2249 2250 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2251 CSUM_DELAY_DATA_IPV6)) { 2252 *pc = ~*pc; 2253 if (! *pc) 2254 *pc = 0xffff; 2255 } 2256 } 2257 2258 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2259 void 2260 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2261 { 2262 u_int32_t ao; 2263 2264 memcpy(&ao, a, sizeof(ao)); 2265 memcpy(a, &an, sizeof(u_int32_t)); 2266 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2267 ao % 65536, an % 65536, u); 2268 } 2269 2270 void 2271 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2272 { 2273 u_int32_t ao; 2274 2275 memcpy(&ao, a, sizeof(ao)); 2276 memcpy(a, &an, sizeof(u_int32_t)); 2277 2278 *c = pf_proto_cksum_fixup(m, 2279 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2280 ao % 65536, an % 65536, udp); 2281 } 2282 2283 #ifdef INET6 2284 static void 2285 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2286 { 2287 struct pf_addr ao; 2288 2289 PF_ACPY(&ao, a, AF_INET6); 2290 PF_ACPY(a, an, AF_INET6); 2291 2292 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2293 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2294 pf_cksum_fixup(pf_cksum_fixup(*c, 2295 ao.addr16[0], an->addr16[0], u), 2296 ao.addr16[1], an->addr16[1], u), 2297 ao.addr16[2], an->addr16[2], u), 2298 ao.addr16[3], an->addr16[3], u), 2299 ao.addr16[4], an->addr16[4], u), 2300 ao.addr16[5], an->addr16[5], u), 2301 ao.addr16[6], an->addr16[6], u), 2302 ao.addr16[7], an->addr16[7], u); 2303 } 2304 #endif /* INET6 */ 2305 2306 static void 2307 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2308 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2309 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2310 { 2311 struct pf_addr oia, ooa; 2312 2313 PF_ACPY(&oia, ia, af); 2314 if (oa) 2315 PF_ACPY(&ooa, oa, af); 2316 2317 /* Change inner protocol port, fix inner protocol checksum. */ 2318 if (ip != NULL) { 2319 u_int16_t oip = *ip; 2320 u_int32_t opc; 2321 2322 if (pc != NULL) 2323 opc = *pc; 2324 *ip = np; 2325 if (pc != NULL) 2326 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2327 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2328 if (pc != NULL) 2329 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2330 } 2331 /* Change inner ip address, fix inner ip and icmp checksums. */ 2332 PF_ACPY(ia, na, af); 2333 switch (af) { 2334 #ifdef INET 2335 case AF_INET: { 2336 u_int32_t oh2c = *h2c; 2337 2338 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2339 oia.addr16[0], ia->addr16[0], 0), 2340 oia.addr16[1], ia->addr16[1], 0); 2341 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2342 oia.addr16[0], ia->addr16[0], 0), 2343 oia.addr16[1], ia->addr16[1], 0); 2344 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2345 break; 2346 } 2347 #endif /* INET */ 2348 #ifdef INET6 2349 case AF_INET6: 2350 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2351 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2352 pf_cksum_fixup(pf_cksum_fixup(*ic, 2353 oia.addr16[0], ia->addr16[0], u), 2354 oia.addr16[1], ia->addr16[1], u), 2355 oia.addr16[2], ia->addr16[2], u), 2356 oia.addr16[3], ia->addr16[3], u), 2357 oia.addr16[4], ia->addr16[4], u), 2358 oia.addr16[5], ia->addr16[5], u), 2359 oia.addr16[6], ia->addr16[6], u), 2360 oia.addr16[7], ia->addr16[7], u); 2361 break; 2362 #endif /* INET6 */ 2363 } 2364 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2365 if (oa) { 2366 PF_ACPY(oa, na, af); 2367 switch (af) { 2368 #ifdef INET 2369 case AF_INET: 2370 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2371 ooa.addr16[0], oa->addr16[0], 0), 2372 ooa.addr16[1], oa->addr16[1], 0); 2373 break; 2374 #endif /* INET */ 2375 #ifdef INET6 2376 case AF_INET6: 2377 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2378 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2379 pf_cksum_fixup(pf_cksum_fixup(*ic, 2380 ooa.addr16[0], oa->addr16[0], u), 2381 ooa.addr16[1], oa->addr16[1], u), 2382 ooa.addr16[2], oa->addr16[2], u), 2383 ooa.addr16[3], oa->addr16[3], u), 2384 ooa.addr16[4], oa->addr16[4], u), 2385 ooa.addr16[5], oa->addr16[5], u), 2386 ooa.addr16[6], oa->addr16[6], u), 2387 ooa.addr16[7], oa->addr16[7], u); 2388 break; 2389 #endif /* INET6 */ 2390 } 2391 } 2392 } 2393 2394 /* 2395 * Need to modulate the sequence numbers in the TCP SACK option 2396 * (credits to Krzysztof Pfaff for report and patch) 2397 */ 2398 static int 2399 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2400 struct tcphdr *th, struct pf_state_peer *dst) 2401 { 2402 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2403 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2404 int copyback = 0, i, olen; 2405 struct sackblk sack; 2406 2407 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2408 if (hlen < TCPOLEN_SACKLEN || 2409 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2410 return 0; 2411 2412 while (hlen >= TCPOLEN_SACKLEN) { 2413 size_t startoff = opt - opts; 2414 olen = opt[1]; 2415 switch (*opt) { 2416 case TCPOPT_EOL: /* FALLTHROUGH */ 2417 case TCPOPT_NOP: 2418 opt++; 2419 hlen--; 2420 break; 2421 case TCPOPT_SACK: 2422 if (olen > hlen) 2423 olen = hlen; 2424 if (olen >= TCPOLEN_SACKLEN) { 2425 for (i = 2; i + TCPOLEN_SACK <= olen; 2426 i += TCPOLEN_SACK) { 2427 memcpy(&sack, &opt[i], sizeof(sack)); 2428 pf_patch_32_unaligned(m, 2429 &th->th_sum, &sack.start, 2430 htonl(ntohl(sack.start) - dst->seqdiff), 2431 PF_ALGNMNT(startoff), 2432 0); 2433 pf_patch_32_unaligned(m, &th->th_sum, 2434 &sack.end, 2435 htonl(ntohl(sack.end) - dst->seqdiff), 2436 PF_ALGNMNT(startoff), 2437 0); 2438 memcpy(&opt[i], &sack, sizeof(sack)); 2439 } 2440 copyback = 1; 2441 } 2442 /* FALLTHROUGH */ 2443 default: 2444 if (olen < 2) 2445 olen = 2; 2446 hlen -= olen; 2447 opt += olen; 2448 } 2449 } 2450 2451 if (copyback) 2452 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2453 return (copyback); 2454 } 2455 2456 static void 2457 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2458 const struct pf_addr *saddr, const struct pf_addr *daddr, 2459 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2460 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2461 u_int16_t rtag) 2462 { 2463 struct pf_send_entry *pfse; 2464 struct mbuf *m; 2465 int len, tlen; 2466 #ifdef INET 2467 struct ip *h = NULL; 2468 #endif /* INET */ 2469 #ifdef INET6 2470 struct ip6_hdr *h6 = NULL; 2471 #endif /* INET6 */ 2472 struct tcphdr *th; 2473 char *opt; 2474 struct pf_mtag *pf_mtag; 2475 2476 len = 0; 2477 th = NULL; 2478 2479 /* maximum segment size tcp option */ 2480 tlen = sizeof(struct tcphdr); 2481 if (mss) 2482 tlen += 4; 2483 2484 switch (af) { 2485 #ifdef INET 2486 case AF_INET: 2487 len = sizeof(struct ip) + tlen; 2488 break; 2489 #endif /* INET */ 2490 #ifdef INET6 2491 case AF_INET6: 2492 len = sizeof(struct ip6_hdr) + tlen; 2493 break; 2494 #endif /* INET6 */ 2495 default: 2496 panic("%s: unsupported af %d", __func__, af); 2497 } 2498 2499 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2500 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2501 if (pfse == NULL) 2502 return; 2503 m = m_gethdr(M_NOWAIT, MT_DATA); 2504 if (m == NULL) { 2505 free(pfse, M_PFTEMP); 2506 return; 2507 } 2508 #ifdef MAC 2509 mac_netinet_firewall_send(m); 2510 #endif 2511 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2512 free(pfse, M_PFTEMP); 2513 m_freem(m); 2514 return; 2515 } 2516 if (tag) 2517 m->m_flags |= M_SKIP_FIREWALL; 2518 pf_mtag->tag = rtag; 2519 2520 if (r != NULL && r->rtableid >= 0) 2521 M_SETFIB(m, r->rtableid); 2522 2523 #ifdef ALTQ 2524 if (r != NULL && r->qid) { 2525 pf_mtag->qid = r->qid; 2526 2527 /* add hints for ecn */ 2528 pf_mtag->hdr = mtod(m, struct ip *); 2529 } 2530 #endif /* ALTQ */ 2531 m->m_data += max_linkhdr; 2532 m->m_pkthdr.len = m->m_len = len; 2533 m->m_pkthdr.rcvif = NULL; 2534 bzero(m->m_data, len); 2535 switch (af) { 2536 #ifdef INET 2537 case AF_INET: 2538 h = mtod(m, struct ip *); 2539 2540 /* IP header fields included in the TCP checksum */ 2541 h->ip_p = IPPROTO_TCP; 2542 h->ip_len = htons(tlen); 2543 h->ip_src.s_addr = saddr->v4.s_addr; 2544 h->ip_dst.s_addr = daddr->v4.s_addr; 2545 2546 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2547 break; 2548 #endif /* INET */ 2549 #ifdef INET6 2550 case AF_INET6: 2551 h6 = mtod(m, struct ip6_hdr *); 2552 2553 /* IP header fields included in the TCP checksum */ 2554 h6->ip6_nxt = IPPROTO_TCP; 2555 h6->ip6_plen = htons(tlen); 2556 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2557 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2558 2559 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2560 break; 2561 #endif /* INET6 */ 2562 } 2563 2564 /* TCP header */ 2565 th->th_sport = sport; 2566 th->th_dport = dport; 2567 th->th_seq = htonl(seq); 2568 th->th_ack = htonl(ack); 2569 th->th_off = tlen >> 2; 2570 th->th_flags = flags; 2571 th->th_win = htons(win); 2572 2573 if (mss) { 2574 opt = (char *)(th + 1); 2575 opt[0] = TCPOPT_MAXSEG; 2576 opt[1] = 4; 2577 HTONS(mss); 2578 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2579 } 2580 2581 switch (af) { 2582 #ifdef INET 2583 case AF_INET: 2584 /* TCP checksum */ 2585 th->th_sum = in_cksum(m, len); 2586 2587 /* Finish the IP header */ 2588 h->ip_v = 4; 2589 h->ip_hl = sizeof(*h) >> 2; 2590 h->ip_tos = IPTOS_LOWDELAY; 2591 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2592 h->ip_len = htons(len); 2593 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2594 h->ip_sum = 0; 2595 2596 pfse->pfse_type = PFSE_IP; 2597 break; 2598 #endif /* INET */ 2599 #ifdef INET6 2600 case AF_INET6: 2601 /* TCP checksum */ 2602 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2603 sizeof(struct ip6_hdr), tlen); 2604 2605 h6->ip6_vfc |= IPV6_VERSION; 2606 h6->ip6_hlim = IPV6_DEFHLIM; 2607 2608 pfse->pfse_type = PFSE_IP6; 2609 break; 2610 #endif /* INET6 */ 2611 } 2612 pfse->pfse_m = m; 2613 pf_send(pfse); 2614 } 2615 2616 static void 2617 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2618 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2619 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2620 u_short *reason) 2621 { 2622 struct pf_addr * const saddr = pd->src; 2623 struct pf_addr * const daddr = pd->dst; 2624 sa_family_t af = pd->af; 2625 2626 /* undo NAT changes, if they have taken place */ 2627 if (nr != NULL) { 2628 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2629 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2630 if (pd->sport) 2631 *pd->sport = sk->port[pd->sidx]; 2632 if (pd->dport) 2633 *pd->dport = sk->port[pd->didx]; 2634 if (pd->proto_sum) 2635 *pd->proto_sum = bproto_sum; 2636 if (pd->ip_sum) 2637 *pd->ip_sum = bip_sum; 2638 m_copyback(m, off, hdrlen, pd->hdr.any); 2639 } 2640 if (pd->proto == IPPROTO_TCP && 2641 ((r->rule_flag & PFRULE_RETURNRST) || 2642 (r->rule_flag & PFRULE_RETURN)) && 2643 !(th->th_flags & TH_RST)) { 2644 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2645 int len = 0; 2646 #ifdef INET 2647 struct ip *h4; 2648 #endif 2649 #ifdef INET6 2650 struct ip6_hdr *h6; 2651 #endif 2652 2653 switch (af) { 2654 #ifdef INET 2655 case AF_INET: 2656 h4 = mtod(m, struct ip *); 2657 len = ntohs(h4->ip_len) - off; 2658 break; 2659 #endif 2660 #ifdef INET6 2661 case AF_INET6: 2662 h6 = mtod(m, struct ip6_hdr *); 2663 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2664 break; 2665 #endif 2666 } 2667 2668 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2669 REASON_SET(reason, PFRES_PROTCKSUM); 2670 else { 2671 if (th->th_flags & TH_SYN) 2672 ack++; 2673 if (th->th_flags & TH_FIN) 2674 ack++; 2675 pf_send_tcp(r, af, pd->dst, 2676 pd->src, th->th_dport, th->th_sport, 2677 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2678 r->return_ttl, 1, 0); 2679 } 2680 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2681 r->return_icmp) 2682 pf_send_icmp(m, r->return_icmp >> 8, 2683 r->return_icmp & 255, af, r); 2684 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2685 r->return_icmp6) 2686 pf_send_icmp(m, r->return_icmp6 >> 8, 2687 r->return_icmp6 & 255, af, r); 2688 } 2689 2690 static int 2691 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2692 { 2693 struct m_tag *mtag; 2694 2695 KASSERT(prio <= PF_PRIO_MAX, 2696 ("%s with invalid pcp", __func__)); 2697 2698 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2699 if (mtag == NULL) { 2700 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2701 sizeof(uint8_t), M_NOWAIT); 2702 if (mtag == NULL) 2703 return (ENOMEM); 2704 m_tag_prepend(m, mtag); 2705 } 2706 2707 *(uint8_t *)(mtag + 1) = prio; 2708 return (0); 2709 } 2710 2711 static int 2712 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2713 { 2714 struct m_tag *mtag; 2715 u_int8_t mpcp; 2716 2717 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2718 if (mtag == NULL) 2719 return (0); 2720 2721 if (prio == PF_PRIO_ZERO) 2722 prio = 0; 2723 2724 mpcp = *(uint8_t *)(mtag + 1); 2725 2726 return (mpcp == prio); 2727 } 2728 2729 static void 2730 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2731 struct pf_krule *r) 2732 { 2733 struct pf_send_entry *pfse; 2734 struct mbuf *m0; 2735 struct pf_mtag *pf_mtag; 2736 2737 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2738 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2739 if (pfse == NULL) 2740 return; 2741 2742 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2743 free(pfse, M_PFTEMP); 2744 return; 2745 } 2746 2747 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2748 free(pfse, M_PFTEMP); 2749 return; 2750 } 2751 /* XXX: revisit */ 2752 m0->m_flags |= M_SKIP_FIREWALL; 2753 2754 if (r->rtableid >= 0) 2755 M_SETFIB(m0, r->rtableid); 2756 2757 #ifdef ALTQ 2758 if (r->qid) { 2759 pf_mtag->qid = r->qid; 2760 /* add hints for ecn */ 2761 pf_mtag->hdr = mtod(m0, struct ip *); 2762 } 2763 #endif /* ALTQ */ 2764 2765 switch (af) { 2766 #ifdef INET 2767 case AF_INET: 2768 pfse->pfse_type = PFSE_ICMP; 2769 break; 2770 #endif /* INET */ 2771 #ifdef INET6 2772 case AF_INET6: 2773 pfse->pfse_type = PFSE_ICMP6; 2774 break; 2775 #endif /* INET6 */ 2776 } 2777 pfse->pfse_m = m0; 2778 pfse->icmpopts.type = type; 2779 pfse->icmpopts.code = code; 2780 pf_send(pfse); 2781 } 2782 2783 /* 2784 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2785 * If n is 0, they match if they are equal. If n is != 0, they match if they 2786 * are different. 2787 */ 2788 int 2789 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2790 struct pf_addr *b, sa_family_t af) 2791 { 2792 int match = 0; 2793 2794 switch (af) { 2795 #ifdef INET 2796 case AF_INET: 2797 if ((a->addr32[0] & m->addr32[0]) == 2798 (b->addr32[0] & m->addr32[0])) 2799 match++; 2800 break; 2801 #endif /* INET */ 2802 #ifdef INET6 2803 case AF_INET6: 2804 if (((a->addr32[0] & m->addr32[0]) == 2805 (b->addr32[0] & m->addr32[0])) && 2806 ((a->addr32[1] & m->addr32[1]) == 2807 (b->addr32[1] & m->addr32[1])) && 2808 ((a->addr32[2] & m->addr32[2]) == 2809 (b->addr32[2] & m->addr32[2])) && 2810 ((a->addr32[3] & m->addr32[3]) == 2811 (b->addr32[3] & m->addr32[3]))) 2812 match++; 2813 break; 2814 #endif /* INET6 */ 2815 } 2816 if (match) { 2817 if (n) 2818 return (0); 2819 else 2820 return (1); 2821 } else { 2822 if (n) 2823 return (1); 2824 else 2825 return (0); 2826 } 2827 } 2828 2829 /* 2830 * Return 1 if b <= a <= e, otherwise return 0. 2831 */ 2832 int 2833 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2834 struct pf_addr *a, sa_family_t af) 2835 { 2836 switch (af) { 2837 #ifdef INET 2838 case AF_INET: 2839 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2840 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2841 return (0); 2842 break; 2843 #endif /* INET */ 2844 #ifdef INET6 2845 case AF_INET6: { 2846 int i; 2847 2848 /* check a >= b */ 2849 for (i = 0; i < 4; ++i) 2850 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2851 break; 2852 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2853 return (0); 2854 /* check a <= e */ 2855 for (i = 0; i < 4; ++i) 2856 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2857 break; 2858 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2859 return (0); 2860 break; 2861 } 2862 #endif /* INET6 */ 2863 } 2864 return (1); 2865 } 2866 2867 static int 2868 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2869 { 2870 switch (op) { 2871 case PF_OP_IRG: 2872 return ((p > a1) && (p < a2)); 2873 case PF_OP_XRG: 2874 return ((p < a1) || (p > a2)); 2875 case PF_OP_RRG: 2876 return ((p >= a1) && (p <= a2)); 2877 case PF_OP_EQ: 2878 return (p == a1); 2879 case PF_OP_NE: 2880 return (p != a1); 2881 case PF_OP_LT: 2882 return (p < a1); 2883 case PF_OP_LE: 2884 return (p <= a1); 2885 case PF_OP_GT: 2886 return (p > a1); 2887 case PF_OP_GE: 2888 return (p >= a1); 2889 } 2890 return (0); /* never reached */ 2891 } 2892 2893 int 2894 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2895 { 2896 NTOHS(a1); 2897 NTOHS(a2); 2898 NTOHS(p); 2899 return (pf_match(op, a1, a2, p)); 2900 } 2901 2902 static int 2903 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2904 { 2905 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2906 return (0); 2907 return (pf_match(op, a1, a2, u)); 2908 } 2909 2910 static int 2911 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2912 { 2913 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2914 return (0); 2915 return (pf_match(op, a1, a2, g)); 2916 } 2917 2918 int 2919 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 2920 { 2921 if (*tag == -1) 2922 *tag = mtag; 2923 2924 return ((!r->match_tag_not && r->match_tag == *tag) || 2925 (r->match_tag_not && r->match_tag != *tag)); 2926 } 2927 2928 int 2929 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2930 { 2931 2932 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2933 2934 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2935 return (ENOMEM); 2936 2937 pd->pf_mtag->tag = tag; 2938 2939 return (0); 2940 } 2941 2942 #define PF_ANCHOR_STACKSIZE 32 2943 struct pf_kanchor_stackframe { 2944 struct pf_kruleset *rs; 2945 struct pf_krule *r; /* XXX: + match bit */ 2946 struct pf_kanchor *child; 2947 }; 2948 2949 /* 2950 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2951 */ 2952 #define PF_ANCHORSTACK_MATCH 0x00000001 2953 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2954 2955 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2956 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 2957 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2958 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2959 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2960 } while (0) 2961 2962 void 2963 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 2964 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 2965 int *match) 2966 { 2967 struct pf_kanchor_stackframe *f; 2968 2969 PF_RULES_RASSERT(); 2970 2971 if (match) 2972 *match = 0; 2973 if (*depth >= PF_ANCHOR_STACKSIZE) { 2974 printf("%s: anchor stack overflow on %s\n", 2975 __func__, (*r)->anchor->name); 2976 *r = TAILQ_NEXT(*r, entries); 2977 return; 2978 } else if (*depth == 0 && a != NULL) 2979 *a = *r; 2980 f = stack + (*depth)++; 2981 f->rs = *rs; 2982 f->r = *r; 2983 if ((*r)->anchor_wildcard) { 2984 struct pf_kanchor_node *parent = &(*r)->anchor->children; 2985 2986 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 2987 *r = NULL; 2988 return; 2989 } 2990 *rs = &f->child->ruleset; 2991 } else { 2992 f->child = NULL; 2993 *rs = &(*r)->anchor->ruleset; 2994 } 2995 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2996 } 2997 2998 int 2999 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3000 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3001 int *match) 3002 { 3003 struct pf_kanchor_stackframe *f; 3004 struct pf_krule *fr; 3005 int quick = 0; 3006 3007 PF_RULES_RASSERT(); 3008 3009 do { 3010 if (*depth <= 0) 3011 break; 3012 f = stack + *depth - 1; 3013 fr = PF_ANCHOR_RULE(f); 3014 if (f->child != NULL) { 3015 struct pf_kanchor_node *parent; 3016 3017 /* 3018 * This block traverses through 3019 * a wildcard anchor. 3020 */ 3021 parent = &fr->anchor->children; 3022 if (match != NULL && *match) { 3023 /* 3024 * If any of "*" matched, then 3025 * "foo/ *" matched, mark frame 3026 * appropriately. 3027 */ 3028 PF_ANCHOR_SET_MATCH(f); 3029 *match = 0; 3030 } 3031 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3032 if (f->child != NULL) { 3033 *rs = &f->child->ruleset; 3034 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3035 if (*r == NULL) 3036 continue; 3037 else 3038 break; 3039 } 3040 } 3041 (*depth)--; 3042 if (*depth == 0 && a != NULL) 3043 *a = NULL; 3044 *rs = f->rs; 3045 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3046 quick = fr->quick; 3047 *r = TAILQ_NEXT(fr, entries); 3048 } while (*r == NULL); 3049 3050 return (quick); 3051 } 3052 3053 #ifdef INET6 3054 void 3055 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3056 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3057 { 3058 switch (af) { 3059 #ifdef INET 3060 case AF_INET: 3061 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3062 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3063 break; 3064 #endif /* INET */ 3065 case AF_INET6: 3066 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3067 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3068 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3069 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3070 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3071 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3072 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3073 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3074 break; 3075 } 3076 } 3077 3078 void 3079 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3080 { 3081 switch (af) { 3082 #ifdef INET 3083 case AF_INET: 3084 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3085 break; 3086 #endif /* INET */ 3087 case AF_INET6: 3088 if (addr->addr32[3] == 0xffffffff) { 3089 addr->addr32[3] = 0; 3090 if (addr->addr32[2] == 0xffffffff) { 3091 addr->addr32[2] = 0; 3092 if (addr->addr32[1] == 0xffffffff) { 3093 addr->addr32[1] = 0; 3094 addr->addr32[0] = 3095 htonl(ntohl(addr->addr32[0]) + 1); 3096 } else 3097 addr->addr32[1] = 3098 htonl(ntohl(addr->addr32[1]) + 1); 3099 } else 3100 addr->addr32[2] = 3101 htonl(ntohl(addr->addr32[2]) + 1); 3102 } else 3103 addr->addr32[3] = 3104 htonl(ntohl(addr->addr32[3]) + 1); 3105 break; 3106 } 3107 } 3108 #endif /* INET6 */ 3109 3110 void 3111 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3112 { 3113 if (r->qid) 3114 a->qid = r->qid; 3115 if (r->pqid) 3116 a->pqid = r->pqid; 3117 } 3118 3119 int 3120 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3121 { 3122 struct pf_addr *saddr, *daddr; 3123 u_int16_t sport, dport; 3124 struct inpcbinfo *pi; 3125 struct inpcb *inp; 3126 3127 pd->lookup.uid = UID_MAX; 3128 pd->lookup.gid = GID_MAX; 3129 3130 switch (pd->proto) { 3131 case IPPROTO_TCP: 3132 sport = pd->hdr.tcp.th_sport; 3133 dport = pd->hdr.tcp.th_dport; 3134 pi = &V_tcbinfo; 3135 break; 3136 case IPPROTO_UDP: 3137 sport = pd->hdr.udp.uh_sport; 3138 dport = pd->hdr.udp.uh_dport; 3139 pi = &V_udbinfo; 3140 break; 3141 default: 3142 return (-1); 3143 } 3144 if (direction == PF_IN) { 3145 saddr = pd->src; 3146 daddr = pd->dst; 3147 } else { 3148 u_int16_t p; 3149 3150 p = sport; 3151 sport = dport; 3152 dport = p; 3153 saddr = pd->dst; 3154 daddr = pd->src; 3155 } 3156 switch (pd->af) { 3157 #ifdef INET 3158 case AF_INET: 3159 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3160 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3161 if (inp == NULL) { 3162 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3163 daddr->v4, dport, INPLOOKUP_WILDCARD | 3164 INPLOOKUP_RLOCKPCB, NULL, m); 3165 if (inp == NULL) 3166 return (-1); 3167 } 3168 break; 3169 #endif /* INET */ 3170 #ifdef INET6 3171 case AF_INET6: 3172 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3173 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3174 if (inp == NULL) { 3175 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3176 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3177 INPLOOKUP_RLOCKPCB, NULL, m); 3178 if (inp == NULL) 3179 return (-1); 3180 } 3181 break; 3182 #endif /* INET6 */ 3183 3184 default: 3185 return (-1); 3186 } 3187 INP_RLOCK_ASSERT(inp); 3188 pd->lookup.uid = inp->inp_cred->cr_uid; 3189 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3190 INP_RUNLOCK(inp); 3191 3192 return (1); 3193 } 3194 3195 static u_int8_t 3196 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3197 { 3198 int hlen; 3199 u_int8_t hdr[60]; 3200 u_int8_t *opt, optlen; 3201 u_int8_t wscale = 0; 3202 3203 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3204 if (hlen <= sizeof(struct tcphdr)) 3205 return (0); 3206 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3207 return (0); 3208 opt = hdr + sizeof(struct tcphdr); 3209 hlen -= sizeof(struct tcphdr); 3210 while (hlen >= 3) { 3211 switch (*opt) { 3212 case TCPOPT_EOL: 3213 case TCPOPT_NOP: 3214 ++opt; 3215 --hlen; 3216 break; 3217 case TCPOPT_WINDOW: 3218 wscale = opt[2]; 3219 if (wscale > TCP_MAX_WINSHIFT) 3220 wscale = TCP_MAX_WINSHIFT; 3221 wscale |= PF_WSCALE_FLAG; 3222 /* FALLTHROUGH */ 3223 default: 3224 optlen = opt[1]; 3225 if (optlen < 2) 3226 optlen = 2; 3227 hlen -= optlen; 3228 opt += optlen; 3229 break; 3230 } 3231 } 3232 return (wscale); 3233 } 3234 3235 static u_int16_t 3236 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3237 { 3238 int hlen; 3239 u_int8_t hdr[60]; 3240 u_int8_t *opt, optlen; 3241 u_int16_t mss = V_tcp_mssdflt; 3242 3243 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3244 if (hlen <= sizeof(struct tcphdr)) 3245 return (0); 3246 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3247 return (0); 3248 opt = hdr + sizeof(struct tcphdr); 3249 hlen -= sizeof(struct tcphdr); 3250 while (hlen >= TCPOLEN_MAXSEG) { 3251 switch (*opt) { 3252 case TCPOPT_EOL: 3253 case TCPOPT_NOP: 3254 ++opt; 3255 --hlen; 3256 break; 3257 case TCPOPT_MAXSEG: 3258 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3259 NTOHS(mss); 3260 /* FALLTHROUGH */ 3261 default: 3262 optlen = opt[1]; 3263 if (optlen < 2) 3264 optlen = 2; 3265 hlen -= optlen; 3266 opt += optlen; 3267 break; 3268 } 3269 } 3270 return (mss); 3271 } 3272 3273 static u_int16_t 3274 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3275 { 3276 struct nhop_object *nh; 3277 #ifdef INET6 3278 struct in6_addr dst6; 3279 uint32_t scopeid; 3280 #endif /* INET6 */ 3281 int hlen = 0; 3282 uint16_t mss = 0; 3283 3284 NET_EPOCH_ASSERT(); 3285 3286 switch (af) { 3287 #ifdef INET 3288 case AF_INET: 3289 hlen = sizeof(struct ip); 3290 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3291 if (nh != NULL) 3292 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3293 break; 3294 #endif /* INET */ 3295 #ifdef INET6 3296 case AF_INET6: 3297 hlen = sizeof(struct ip6_hdr); 3298 in6_splitscope(&addr->v6, &dst6, &scopeid); 3299 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3300 if (nh != NULL) 3301 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3302 break; 3303 #endif /* INET6 */ 3304 } 3305 3306 mss = max(V_tcp_mssdflt, mss); 3307 mss = min(mss, offer); 3308 mss = max(mss, 64); /* sanity - at least max opt space */ 3309 return (mss); 3310 } 3311 3312 static u_int32_t 3313 pf_tcp_iss(struct pf_pdesc *pd) 3314 { 3315 MD5_CTX ctx; 3316 u_int32_t digest[4]; 3317 3318 if (V_pf_tcp_secret_init == 0) { 3319 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3320 MD5Init(&V_pf_tcp_secret_ctx); 3321 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3322 sizeof(V_pf_tcp_secret)); 3323 V_pf_tcp_secret_init = 1; 3324 } 3325 3326 ctx = V_pf_tcp_secret_ctx; 3327 3328 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3329 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3330 if (pd->af == AF_INET6) { 3331 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3332 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3333 } else { 3334 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3335 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3336 } 3337 MD5Final((u_char *)digest, &ctx); 3338 V_pf_tcp_iss_off += 4096; 3339 #define ISN_RANDOM_INCREMENT (4096 - 1) 3340 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3341 V_pf_tcp_iss_off); 3342 #undef ISN_RANDOM_INCREMENT 3343 } 3344 3345 static int 3346 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 3347 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3348 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 3349 { 3350 struct pf_krule *nr = NULL; 3351 struct pf_addr * const saddr = pd->src; 3352 struct pf_addr * const daddr = pd->dst; 3353 sa_family_t af = pd->af; 3354 struct pf_krule *r, *a = NULL; 3355 struct pf_kruleset *ruleset = NULL; 3356 struct pf_ksrc_node *nsn = NULL; 3357 struct tcphdr *th = &pd->hdr.tcp; 3358 struct pf_state_key *sk = NULL, *nk = NULL; 3359 u_short reason; 3360 int rewrite = 0, hdrlen = 0; 3361 int tag = -1, rtableid = -1; 3362 int asd = 0; 3363 int match = 0; 3364 int state_icmp = 0; 3365 u_int16_t sport = 0, dport = 0; 3366 u_int16_t bproto_sum = 0, bip_sum = 0; 3367 u_int8_t icmptype = 0, icmpcode = 0; 3368 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3369 3370 PF_RULES_RASSERT(); 3371 3372 if (inp != NULL) { 3373 INP_LOCK_ASSERT(inp); 3374 pd->lookup.uid = inp->inp_cred->cr_uid; 3375 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3376 pd->lookup.done = 1; 3377 } 3378 3379 switch (pd->proto) { 3380 case IPPROTO_TCP: 3381 sport = th->th_sport; 3382 dport = th->th_dport; 3383 hdrlen = sizeof(*th); 3384 break; 3385 case IPPROTO_UDP: 3386 sport = pd->hdr.udp.uh_sport; 3387 dport = pd->hdr.udp.uh_dport; 3388 hdrlen = sizeof(pd->hdr.udp); 3389 break; 3390 #ifdef INET 3391 case IPPROTO_ICMP: 3392 if (pd->af != AF_INET) 3393 break; 3394 sport = dport = pd->hdr.icmp.icmp_id; 3395 hdrlen = sizeof(pd->hdr.icmp); 3396 icmptype = pd->hdr.icmp.icmp_type; 3397 icmpcode = pd->hdr.icmp.icmp_code; 3398 3399 if (icmptype == ICMP_UNREACH || 3400 icmptype == ICMP_SOURCEQUENCH || 3401 icmptype == ICMP_REDIRECT || 3402 icmptype == ICMP_TIMXCEED || 3403 icmptype == ICMP_PARAMPROB) 3404 state_icmp++; 3405 break; 3406 #endif /* INET */ 3407 #ifdef INET6 3408 case IPPROTO_ICMPV6: 3409 if (af != AF_INET6) 3410 break; 3411 sport = dport = pd->hdr.icmp6.icmp6_id; 3412 hdrlen = sizeof(pd->hdr.icmp6); 3413 icmptype = pd->hdr.icmp6.icmp6_type; 3414 icmpcode = pd->hdr.icmp6.icmp6_code; 3415 3416 if (icmptype == ICMP6_DST_UNREACH || 3417 icmptype == ICMP6_PACKET_TOO_BIG || 3418 icmptype == ICMP6_TIME_EXCEEDED || 3419 icmptype == ICMP6_PARAM_PROB) 3420 state_icmp++; 3421 break; 3422 #endif /* INET6 */ 3423 default: 3424 sport = dport = hdrlen = 0; 3425 break; 3426 } 3427 3428 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3429 3430 /* check packet for BINAT/NAT/RDR */ 3431 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3432 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3433 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3434 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3435 3436 if (pd->ip_sum) 3437 bip_sum = *pd->ip_sum; 3438 3439 switch (pd->proto) { 3440 case IPPROTO_TCP: 3441 bproto_sum = th->th_sum; 3442 pd->proto_sum = &th->th_sum; 3443 3444 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3445 nk->port[pd->sidx] != sport) { 3446 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3447 &th->th_sum, &nk->addr[pd->sidx], 3448 nk->port[pd->sidx], 0, af); 3449 pd->sport = &th->th_sport; 3450 sport = th->th_sport; 3451 } 3452 3453 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3454 nk->port[pd->didx] != dport) { 3455 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3456 &th->th_sum, &nk->addr[pd->didx], 3457 nk->port[pd->didx], 0, af); 3458 dport = th->th_dport; 3459 pd->dport = &th->th_dport; 3460 } 3461 rewrite++; 3462 break; 3463 case IPPROTO_UDP: 3464 bproto_sum = pd->hdr.udp.uh_sum; 3465 pd->proto_sum = &pd->hdr.udp.uh_sum; 3466 3467 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3468 nk->port[pd->sidx] != sport) { 3469 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 3470 pd->ip_sum, &pd->hdr.udp.uh_sum, 3471 &nk->addr[pd->sidx], 3472 nk->port[pd->sidx], 1, af); 3473 sport = pd->hdr.udp.uh_sport; 3474 pd->sport = &pd->hdr.udp.uh_sport; 3475 } 3476 3477 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3478 nk->port[pd->didx] != dport) { 3479 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 3480 pd->ip_sum, &pd->hdr.udp.uh_sum, 3481 &nk->addr[pd->didx], 3482 nk->port[pd->didx], 1, af); 3483 dport = pd->hdr.udp.uh_dport; 3484 pd->dport = &pd->hdr.udp.uh_dport; 3485 } 3486 rewrite++; 3487 break; 3488 #ifdef INET 3489 case IPPROTO_ICMP: 3490 nk->port[0] = nk->port[1]; 3491 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3492 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3493 nk->addr[pd->sidx].v4.s_addr, 0); 3494 3495 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3496 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3497 nk->addr[pd->didx].v4.s_addr, 0); 3498 3499 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 3500 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 3501 pd->hdr.icmp.icmp_cksum, sport, 3502 nk->port[1], 0); 3503 pd->hdr.icmp.icmp_id = nk->port[1]; 3504 pd->sport = &pd->hdr.icmp.icmp_id; 3505 } 3506 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 3507 break; 3508 #endif /* INET */ 3509 #ifdef INET6 3510 case IPPROTO_ICMPV6: 3511 nk->port[0] = nk->port[1]; 3512 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3513 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 3514 &nk->addr[pd->sidx], 0); 3515 3516 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3517 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 3518 &nk->addr[pd->didx], 0); 3519 rewrite++; 3520 break; 3521 #endif /* INET */ 3522 default: 3523 switch (af) { 3524 #ifdef INET 3525 case AF_INET: 3526 if (PF_ANEQ(saddr, 3527 &nk->addr[pd->sidx], AF_INET)) 3528 pf_change_a(&saddr->v4.s_addr, 3529 pd->ip_sum, 3530 nk->addr[pd->sidx].v4.s_addr, 0); 3531 3532 if (PF_ANEQ(daddr, 3533 &nk->addr[pd->didx], AF_INET)) 3534 pf_change_a(&daddr->v4.s_addr, 3535 pd->ip_sum, 3536 nk->addr[pd->didx].v4.s_addr, 0); 3537 break; 3538 #endif /* INET */ 3539 #ifdef INET6 3540 case AF_INET6: 3541 if (PF_ANEQ(saddr, 3542 &nk->addr[pd->sidx], AF_INET6)) 3543 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3544 3545 if (PF_ANEQ(daddr, 3546 &nk->addr[pd->didx], AF_INET6)) 3547 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3548 break; 3549 #endif /* INET */ 3550 } 3551 break; 3552 } 3553 if (nr->natpass) 3554 r = NULL; 3555 pd->nat_rule = nr; 3556 } 3557 3558 while (r != NULL) { 3559 counter_u64_add(r->evaluations, 1); 3560 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 3561 r = r->skip[PF_SKIP_IFP].ptr; 3562 else if (r->direction && r->direction != direction) 3563 r = r->skip[PF_SKIP_DIR].ptr; 3564 else if (r->af && r->af != af) 3565 r = r->skip[PF_SKIP_AF].ptr; 3566 else if (r->proto && r->proto != pd->proto) 3567 r = r->skip[PF_SKIP_PROTO].ptr; 3568 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3569 r->src.neg, kif, M_GETFIB(m))) 3570 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3571 /* tcp/udp only. port_op always 0 in other cases */ 3572 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3573 r->src.port[0], r->src.port[1], sport)) 3574 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3575 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3576 r->dst.neg, NULL, M_GETFIB(m))) 3577 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3578 /* tcp/udp only. port_op always 0 in other cases */ 3579 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3580 r->dst.port[0], r->dst.port[1], dport)) 3581 r = r->skip[PF_SKIP_DST_PORT].ptr; 3582 /* icmp only. type always 0 in other cases */ 3583 else if (r->type && r->type != icmptype + 1) 3584 r = TAILQ_NEXT(r, entries); 3585 /* icmp only. type always 0 in other cases */ 3586 else if (r->code && r->code != icmpcode + 1) 3587 r = TAILQ_NEXT(r, entries); 3588 else if (r->tos && !(r->tos == pd->tos)) 3589 r = TAILQ_NEXT(r, entries); 3590 else if (r->rule_flag & PFRULE_FRAGMENT) 3591 r = TAILQ_NEXT(r, entries); 3592 else if (pd->proto == IPPROTO_TCP && 3593 (r->flagset & th->th_flags) != r->flags) 3594 r = TAILQ_NEXT(r, entries); 3595 /* tcp/udp only. uid.op always 0 in other cases */ 3596 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3597 pf_socket_lookup(direction, pd, m), 1)) && 3598 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3599 pd->lookup.uid)) 3600 r = TAILQ_NEXT(r, entries); 3601 /* tcp/udp only. gid.op always 0 in other cases */ 3602 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3603 pf_socket_lookup(direction, pd, m), 1)) && 3604 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3605 pd->lookup.gid)) 3606 r = TAILQ_NEXT(r, entries); 3607 else if (r->prio && 3608 !pf_match_ieee8021q_pcp(r->prio, m)) 3609 r = TAILQ_NEXT(r, entries); 3610 else if (r->prob && 3611 r->prob <= arc4random()) 3612 r = TAILQ_NEXT(r, entries); 3613 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3614 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3615 r = TAILQ_NEXT(r, entries); 3616 else if (r->os_fingerprint != PF_OSFP_ANY && 3617 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3618 pf_osfp_fingerprint(pd, m, off, th), 3619 r->os_fingerprint))) 3620 r = TAILQ_NEXT(r, entries); 3621 else { 3622 if (r->tag) 3623 tag = r->tag; 3624 if (r->rtableid >= 0) 3625 rtableid = r->rtableid; 3626 if (r->anchor == NULL) { 3627 if (r->action == PF_MATCH) { 3628 counter_u64_add(r->packets[direction == PF_OUT], 1); 3629 counter_u64_add(r->bytes[direction == PF_OUT], pd->tot_len); 3630 pf_rule_to_actions(r, &pd->act); 3631 if (r->log) 3632 PFLOG_PACKET(kif, m, af, 3633 direction, PFRES_MATCH, r, 3634 a, ruleset, pd, 1); 3635 } else { 3636 match = 1; 3637 *rm = r; 3638 *am = a; 3639 *rsm = ruleset; 3640 } 3641 if ((*rm)->quick) 3642 break; 3643 r = TAILQ_NEXT(r, entries); 3644 } else 3645 pf_step_into_anchor(anchor_stack, &asd, 3646 &ruleset, PF_RULESET_FILTER, &r, &a, 3647 &match); 3648 } 3649 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3650 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3651 break; 3652 } 3653 r = *rm; 3654 a = *am; 3655 ruleset = *rsm; 3656 3657 REASON_SET(&reason, PFRES_MATCH); 3658 3659 /* apply actions for last matching pass/block rule */ 3660 pf_rule_to_actions(r, &pd->act); 3661 3662 if (r->log || (nr != NULL && nr->log)) { 3663 if (rewrite) 3664 m_copyback(m, off, hdrlen, pd->hdr.any); 3665 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3666 ruleset, pd, 1); 3667 } 3668 3669 if ((r->action == PF_DROP) && 3670 ((r->rule_flag & PFRULE_RETURNRST) || 3671 (r->rule_flag & PFRULE_RETURNICMP) || 3672 (r->rule_flag & PFRULE_RETURN))) { 3673 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3674 bip_sum, hdrlen, &reason); 3675 } 3676 3677 if (r->action == PF_DROP) 3678 goto cleanup; 3679 3680 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3681 REASON_SET(&reason, PFRES_MEMORY); 3682 goto cleanup; 3683 } 3684 if (rtableid >= 0) 3685 M_SETFIB(m, rtableid); 3686 3687 if (!state_icmp && (r->keep_state || nr != NULL || 3688 (pd->flags & PFDESC_TCP_NORM))) { 3689 int action; 3690 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3691 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3692 hdrlen); 3693 if (action != PF_PASS) { 3694 if (action == PF_DROP && 3695 (r->rule_flag & PFRULE_RETURN)) 3696 pf_return(r, nr, pd, sk, off, m, th, kif, 3697 bproto_sum, bip_sum, hdrlen, &reason); 3698 return (action); 3699 } 3700 } else { 3701 if (sk != NULL) 3702 uma_zfree(V_pf_state_key_z, sk); 3703 if (nk != NULL) 3704 uma_zfree(V_pf_state_key_z, nk); 3705 } 3706 3707 /* copy back packet headers if we performed NAT operations */ 3708 if (rewrite) 3709 m_copyback(m, off, hdrlen, pd->hdr.any); 3710 3711 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3712 direction == PF_OUT && 3713 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3714 /* 3715 * We want the state created, but we dont 3716 * want to send this in case a partner 3717 * firewall has to know about it to allow 3718 * replies through it. 3719 */ 3720 return (PF_DEFER); 3721 3722 return (PF_PASS); 3723 3724 cleanup: 3725 if (sk != NULL) 3726 uma_zfree(V_pf_state_key_z, sk); 3727 if (nk != NULL) 3728 uma_zfree(V_pf_state_key_z, nk); 3729 return (PF_DROP); 3730 } 3731 3732 static int 3733 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 3734 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 3735 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3736 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 3737 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3738 { 3739 struct pf_kstate *s = NULL; 3740 struct pf_ksrc_node *sn = NULL; 3741 struct tcphdr *th = &pd->hdr.tcp; 3742 u_int16_t mss = V_tcp_mssdflt; 3743 u_short reason; 3744 3745 /* check maximums */ 3746 if (r->max_states && 3747 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3748 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3749 REASON_SET(&reason, PFRES_MAXSTATES); 3750 goto csfailed; 3751 } 3752 /* src node for filter rule */ 3753 if ((r->rule_flag & PFRULE_SRCTRACK || 3754 r->rpool.opts & PF_POOL_STICKYADDR) && 3755 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3756 REASON_SET(&reason, PFRES_SRCLIMIT); 3757 goto csfailed; 3758 } 3759 /* src node for translation rule */ 3760 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3761 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3762 REASON_SET(&reason, PFRES_SRCLIMIT); 3763 goto csfailed; 3764 } 3765 s = pf_alloc_state(M_NOWAIT); 3766 if (s == NULL) { 3767 REASON_SET(&reason, PFRES_MEMORY); 3768 goto csfailed; 3769 } 3770 s->rule.ptr = r; 3771 s->nat_rule.ptr = nr; 3772 s->anchor.ptr = a; 3773 STATE_INC_COUNTERS(s); 3774 if (r->allow_opts) 3775 s->state_flags |= PFSTATE_ALLOWOPTS; 3776 if (r->rule_flag & PFRULE_STATESLOPPY) 3777 s->state_flags |= PFSTATE_SLOPPY; 3778 s->log = r->log & PF_LOG_ALL; 3779 s->sync_state = PFSYNC_S_NONE; 3780 s->qid = pd->act.qid; 3781 s->pqid = pd->act.pqid; 3782 if (nr != NULL) 3783 s->log |= nr->log & PF_LOG_ALL; 3784 switch (pd->proto) { 3785 case IPPROTO_TCP: 3786 s->src.seqlo = ntohl(th->th_seq); 3787 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3788 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3789 r->keep_state == PF_STATE_MODULATE) { 3790 /* Generate sequence number modulator */ 3791 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3792 0) 3793 s->src.seqdiff = 1; 3794 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3795 htonl(s->src.seqlo + s->src.seqdiff), 0); 3796 *rewrite = 1; 3797 } else 3798 s->src.seqdiff = 0; 3799 if (th->th_flags & TH_SYN) { 3800 s->src.seqhi++; 3801 s->src.wscale = pf_get_wscale(m, off, 3802 th->th_off, pd->af); 3803 } 3804 s->src.max_win = MAX(ntohs(th->th_win), 1); 3805 if (s->src.wscale & PF_WSCALE_MASK) { 3806 /* Remove scale factor from initial window */ 3807 int win = s->src.max_win; 3808 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3809 s->src.max_win = (win - 1) >> 3810 (s->src.wscale & PF_WSCALE_MASK); 3811 } 3812 if (th->th_flags & TH_FIN) 3813 s->src.seqhi++; 3814 s->dst.seqhi = 1; 3815 s->dst.max_win = 1; 3816 s->src.state = TCPS_SYN_SENT; 3817 s->dst.state = TCPS_CLOSED; 3818 s->timeout = PFTM_TCP_FIRST_PACKET; 3819 break; 3820 case IPPROTO_UDP: 3821 s->src.state = PFUDPS_SINGLE; 3822 s->dst.state = PFUDPS_NO_TRAFFIC; 3823 s->timeout = PFTM_UDP_FIRST_PACKET; 3824 break; 3825 case IPPROTO_ICMP: 3826 #ifdef INET6 3827 case IPPROTO_ICMPV6: 3828 #endif 3829 s->timeout = PFTM_ICMP_FIRST_PACKET; 3830 break; 3831 default: 3832 s->src.state = PFOTHERS_SINGLE; 3833 s->dst.state = PFOTHERS_NO_TRAFFIC; 3834 s->timeout = PFTM_OTHER_FIRST_PACKET; 3835 } 3836 3837 if (r->rt) { 3838 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3839 REASON_SET(&reason, PFRES_MAPFAILED); 3840 pf_src_tree_remove_state(s); 3841 STATE_DEC_COUNTERS(s); 3842 pf_free_state(s); 3843 goto csfailed; 3844 } 3845 s->rt_kif = r->rpool.cur->kif; 3846 } 3847 3848 s->creation = time_uptime; 3849 s->expire = time_uptime; 3850 3851 if (sn != NULL) 3852 s->src_node = sn; 3853 if (nsn != NULL) { 3854 /* XXX We only modify one side for now. */ 3855 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3856 s->nat_src_node = nsn; 3857 } 3858 if (pd->proto == IPPROTO_TCP) { 3859 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3860 off, pd, th, &s->src, &s->dst)) { 3861 REASON_SET(&reason, PFRES_MEMORY); 3862 pf_src_tree_remove_state(s); 3863 STATE_DEC_COUNTERS(s); 3864 pf_free_state(s); 3865 return (PF_DROP); 3866 } 3867 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3868 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3869 &s->src, &s->dst, rewrite)) { 3870 /* This really shouldn't happen!!! */ 3871 DPFPRINTF(PF_DEBUG_URGENT, 3872 ("pf_normalize_tcp_stateful failed on first " 3873 "pkt\n")); 3874 pf_src_tree_remove_state(s); 3875 STATE_DEC_COUNTERS(s); 3876 pf_free_state(s); 3877 return (PF_DROP); 3878 } 3879 } 3880 s->direction = pd->dir; 3881 3882 /* 3883 * sk/nk could already been setup by pf_get_translation(). 3884 */ 3885 if (nr == NULL) { 3886 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3887 __func__, nr, sk, nk)); 3888 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3889 if (sk == NULL) 3890 goto csfailed; 3891 nk = sk; 3892 } else 3893 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3894 __func__, nr, sk, nk)); 3895 3896 /* Swap sk/nk for PF_OUT. */ 3897 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 3898 (pd->dir == PF_IN) ? sk : nk, 3899 (pd->dir == PF_IN) ? nk : sk, s)) { 3900 REASON_SET(&reason, PFRES_STATEINS); 3901 pf_src_tree_remove_state(s); 3902 STATE_DEC_COUNTERS(s); 3903 pf_free_state(s); 3904 return (PF_DROP); 3905 } else 3906 *sm = s; 3907 3908 if (tag > 0) 3909 s->tag = tag; 3910 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3911 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3912 s->src.state = PF_TCPS_PROXY_SRC; 3913 /* undo NAT changes, if they have taken place */ 3914 if (nr != NULL) { 3915 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3916 if (pd->dir == PF_OUT) 3917 skt = s->key[PF_SK_STACK]; 3918 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3919 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3920 if (pd->sport) 3921 *pd->sport = skt->port[pd->sidx]; 3922 if (pd->dport) 3923 *pd->dport = skt->port[pd->didx]; 3924 if (pd->proto_sum) 3925 *pd->proto_sum = bproto_sum; 3926 if (pd->ip_sum) 3927 *pd->ip_sum = bip_sum; 3928 m_copyback(m, off, hdrlen, pd->hdr.any); 3929 } 3930 s->src.seqhi = htonl(arc4random()); 3931 /* Find mss option */ 3932 int rtid = M_GETFIB(m); 3933 mss = pf_get_mss(m, off, th->th_off, pd->af); 3934 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3935 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3936 s->src.mss = mss; 3937 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 3938 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3939 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 3940 REASON_SET(&reason, PFRES_SYNPROXY); 3941 return (PF_SYNPROXY_DROP); 3942 } 3943 3944 return (PF_PASS); 3945 3946 csfailed: 3947 if (sk != NULL) 3948 uma_zfree(V_pf_state_key_z, sk); 3949 if (nk != NULL) 3950 uma_zfree(V_pf_state_key_z, nk); 3951 3952 if (sn != NULL) { 3953 struct pf_srchash *sh; 3954 3955 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3956 PF_HASHROW_LOCK(sh); 3957 if (--sn->states == 0 && sn->expire == 0) { 3958 pf_unlink_src_node(sn); 3959 uma_zfree(V_pf_sources_z, sn); 3960 counter_u64_add( 3961 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3962 } 3963 PF_HASHROW_UNLOCK(sh); 3964 } 3965 3966 if (nsn != sn && nsn != NULL) { 3967 struct pf_srchash *sh; 3968 3969 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3970 PF_HASHROW_LOCK(sh); 3971 if (--nsn->states == 0 && nsn->expire == 0) { 3972 pf_unlink_src_node(nsn); 3973 uma_zfree(V_pf_sources_z, nsn); 3974 counter_u64_add( 3975 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3976 } 3977 PF_HASHROW_UNLOCK(sh); 3978 } 3979 3980 return (PF_DROP); 3981 } 3982 3983 static int 3984 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 3985 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 3986 struct pf_kruleset **rsm) 3987 { 3988 struct pf_krule *r, *a = NULL; 3989 struct pf_kruleset *ruleset = NULL; 3990 sa_family_t af = pd->af; 3991 u_short reason; 3992 int tag = -1; 3993 int asd = 0; 3994 int match = 0; 3995 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3996 3997 PF_RULES_RASSERT(); 3998 3999 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4000 while (r != NULL) { 4001 counter_u64_add(r->evaluations, 1); 4002 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4003 r = r->skip[PF_SKIP_IFP].ptr; 4004 else if (r->direction && r->direction != direction) 4005 r = r->skip[PF_SKIP_DIR].ptr; 4006 else if (r->af && r->af != af) 4007 r = r->skip[PF_SKIP_AF].ptr; 4008 else if (r->proto && r->proto != pd->proto) 4009 r = r->skip[PF_SKIP_PROTO].ptr; 4010 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4011 r->src.neg, kif, M_GETFIB(m))) 4012 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4013 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4014 r->dst.neg, NULL, M_GETFIB(m))) 4015 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4016 else if (r->tos && !(r->tos == pd->tos)) 4017 r = TAILQ_NEXT(r, entries); 4018 else if (r->os_fingerprint != PF_OSFP_ANY) 4019 r = TAILQ_NEXT(r, entries); 4020 else if (pd->proto == IPPROTO_UDP && 4021 (r->src.port_op || r->dst.port_op)) 4022 r = TAILQ_NEXT(r, entries); 4023 else if (pd->proto == IPPROTO_TCP && 4024 (r->src.port_op || r->dst.port_op || r->flagset)) 4025 r = TAILQ_NEXT(r, entries); 4026 else if ((pd->proto == IPPROTO_ICMP || 4027 pd->proto == IPPROTO_ICMPV6) && 4028 (r->type || r->code)) 4029 r = TAILQ_NEXT(r, entries); 4030 else if (r->prio && 4031 !pf_match_ieee8021q_pcp(r->prio, m)) 4032 r = TAILQ_NEXT(r, entries); 4033 else if (r->prob && r->prob <= 4034 (arc4random() % (UINT_MAX - 1) + 1)) 4035 r = TAILQ_NEXT(r, entries); 4036 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4037 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4038 r = TAILQ_NEXT(r, entries); 4039 else { 4040 if (r->anchor == NULL) { 4041 if (r->action == PF_MATCH) { 4042 counter_u64_add(r->packets[direction == PF_OUT], 1); 4043 counter_u64_add(r->bytes[direction == PF_OUT], pd->tot_len); 4044 pf_rule_to_actions(r, &pd->act); 4045 if (r->log) 4046 PFLOG_PACKET(kif, m, af, 4047 direction, PFRES_MATCH, r, 4048 a, ruleset, pd, 1); 4049 } else { 4050 match = 1; 4051 *rm = r; 4052 *am = a; 4053 *rsm = ruleset; 4054 } 4055 if ((*rm)->quick) 4056 break; 4057 r = TAILQ_NEXT(r, entries); 4058 } else 4059 pf_step_into_anchor(anchor_stack, &asd, 4060 &ruleset, PF_RULESET_FILTER, &r, &a, 4061 &match); 4062 } 4063 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4064 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4065 break; 4066 } 4067 r = *rm; 4068 a = *am; 4069 ruleset = *rsm; 4070 4071 REASON_SET(&reason, PFRES_MATCH); 4072 4073 /* apply actions for last matching pass/block rule */ 4074 pf_rule_to_actions(r, &pd->act); 4075 4076 if (r->log) 4077 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4078 1); 4079 4080 if (r->action != PF_PASS) 4081 return (PF_DROP); 4082 4083 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4084 REASON_SET(&reason, PFRES_MEMORY); 4085 return (PF_DROP); 4086 } 4087 4088 return (PF_PASS); 4089 } 4090 4091 static int 4092 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 4093 struct pf_kstate **state, struct pfi_kkif *kif, struct mbuf *m, int off, 4094 struct pf_pdesc *pd, u_short *reason, int *copyback) 4095 { 4096 struct tcphdr *th = &pd->hdr.tcp; 4097 u_int16_t win = ntohs(th->th_win); 4098 u_int32_t ack, end, seq, orig_seq; 4099 u_int8_t sws, dws; 4100 int ackskew; 4101 4102 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4103 sws = src->wscale & PF_WSCALE_MASK; 4104 dws = dst->wscale & PF_WSCALE_MASK; 4105 } else 4106 sws = dws = 0; 4107 4108 /* 4109 * Sequence tracking algorithm from Guido van Rooij's paper: 4110 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4111 * tcp_filtering.ps 4112 */ 4113 4114 orig_seq = seq = ntohl(th->th_seq); 4115 if (src->seqlo == 0) { 4116 /* First packet from this end. Set its state */ 4117 4118 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4119 src->scrub == NULL) { 4120 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4121 REASON_SET(reason, PFRES_MEMORY); 4122 return (PF_DROP); 4123 } 4124 } 4125 4126 /* Deferred generation of sequence number modulator */ 4127 if (dst->seqdiff && !src->seqdiff) { 4128 /* use random iss for the TCP server */ 4129 while ((src->seqdiff = arc4random() - seq) == 0) 4130 ; 4131 ack = ntohl(th->th_ack) - dst->seqdiff; 4132 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4133 src->seqdiff), 0); 4134 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4135 *copyback = 1; 4136 } else { 4137 ack = ntohl(th->th_ack); 4138 } 4139 4140 end = seq + pd->p_len; 4141 if (th->th_flags & TH_SYN) { 4142 end++; 4143 if (dst->wscale & PF_WSCALE_FLAG) { 4144 src->wscale = pf_get_wscale(m, off, th->th_off, 4145 pd->af); 4146 if (src->wscale & PF_WSCALE_FLAG) { 4147 /* Remove scale factor from initial 4148 * window */ 4149 sws = src->wscale & PF_WSCALE_MASK; 4150 win = ((u_int32_t)win + (1 << sws) - 1) 4151 >> sws; 4152 dws = dst->wscale & PF_WSCALE_MASK; 4153 } else { 4154 /* fixup other window */ 4155 dst->max_win <<= dst->wscale & 4156 PF_WSCALE_MASK; 4157 /* in case of a retrans SYN|ACK */ 4158 dst->wscale = 0; 4159 } 4160 } 4161 } 4162 if (th->th_flags & TH_FIN) 4163 end++; 4164 4165 src->seqlo = seq; 4166 if (src->state < TCPS_SYN_SENT) 4167 src->state = TCPS_SYN_SENT; 4168 4169 /* 4170 * May need to slide the window (seqhi may have been set by 4171 * the crappy stack check or if we picked up the connection 4172 * after establishment) 4173 */ 4174 if (src->seqhi == 1 || 4175 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4176 src->seqhi = end + MAX(1, dst->max_win << dws); 4177 if (win > src->max_win) 4178 src->max_win = win; 4179 4180 } else { 4181 ack = ntohl(th->th_ack) - dst->seqdiff; 4182 if (src->seqdiff) { 4183 /* Modulate sequence numbers */ 4184 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4185 src->seqdiff), 0); 4186 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4187 *copyback = 1; 4188 } 4189 end = seq + pd->p_len; 4190 if (th->th_flags & TH_SYN) 4191 end++; 4192 if (th->th_flags & TH_FIN) 4193 end++; 4194 } 4195 4196 if ((th->th_flags & TH_ACK) == 0) { 4197 /* Let it pass through the ack skew check */ 4198 ack = dst->seqlo; 4199 } else if ((ack == 0 && 4200 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4201 /* broken tcp stacks do not set ack */ 4202 (dst->state < TCPS_SYN_SENT)) { 4203 /* 4204 * Many stacks (ours included) will set the ACK number in an 4205 * FIN|ACK if the SYN times out -- no sequence to ACK. 4206 */ 4207 ack = dst->seqlo; 4208 } 4209 4210 if (seq == end) { 4211 /* Ease sequencing restrictions on no data packets */ 4212 seq = src->seqlo; 4213 end = seq; 4214 } 4215 4216 ackskew = dst->seqlo - ack; 4217 4218 /* 4219 * Need to demodulate the sequence numbers in any TCP SACK options 4220 * (Selective ACK). We could optionally validate the SACK values 4221 * against the current ACK window, either forwards or backwards, but 4222 * I'm not confident that SACK has been implemented properly 4223 * everywhere. It wouldn't surprise me if several stacks accidentally 4224 * SACK too far backwards of previously ACKed data. There really aren't 4225 * any security implications of bad SACKing unless the target stack 4226 * doesn't validate the option length correctly. Someone trying to 4227 * spoof into a TCP connection won't bother blindly sending SACK 4228 * options anyway. 4229 */ 4230 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4231 if (pf_modulate_sack(m, off, pd, th, dst)) 4232 *copyback = 1; 4233 } 4234 4235 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4236 if (SEQ_GEQ(src->seqhi, end) && 4237 /* Last octet inside other's window space */ 4238 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4239 /* Retrans: not more than one window back */ 4240 (ackskew >= -MAXACKWINDOW) && 4241 /* Acking not more than one reassembled fragment backwards */ 4242 (ackskew <= (MAXACKWINDOW << sws)) && 4243 /* Acking not more than one window forward */ 4244 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4245 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4246 (pd->flags & PFDESC_IP_REAS) == 0)) { 4247 /* Require an exact/+1 sequence match on resets when possible */ 4248 4249 if (dst->scrub || src->scrub) { 4250 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4251 *state, src, dst, copyback)) 4252 return (PF_DROP); 4253 } 4254 4255 /* update max window */ 4256 if (src->max_win < win) 4257 src->max_win = win; 4258 /* synchronize sequencing */ 4259 if (SEQ_GT(end, src->seqlo)) 4260 src->seqlo = end; 4261 /* slide the window of what the other end can send */ 4262 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4263 dst->seqhi = ack + MAX((win << sws), 1); 4264 4265 /* update states */ 4266 if (th->th_flags & TH_SYN) 4267 if (src->state < TCPS_SYN_SENT) 4268 src->state = TCPS_SYN_SENT; 4269 if (th->th_flags & TH_FIN) 4270 if (src->state < TCPS_CLOSING) 4271 src->state = TCPS_CLOSING; 4272 if (th->th_flags & TH_ACK) { 4273 if (dst->state == TCPS_SYN_SENT) { 4274 dst->state = TCPS_ESTABLISHED; 4275 if (src->state == TCPS_ESTABLISHED && 4276 (*state)->src_node != NULL && 4277 pf_src_connlimit(state)) { 4278 REASON_SET(reason, PFRES_SRCLIMIT); 4279 return (PF_DROP); 4280 } 4281 } else if (dst->state == TCPS_CLOSING) 4282 dst->state = TCPS_FIN_WAIT_2; 4283 } 4284 if (th->th_flags & TH_RST) 4285 src->state = dst->state = TCPS_TIME_WAIT; 4286 4287 /* update expire time */ 4288 (*state)->expire = time_uptime; 4289 if (src->state >= TCPS_FIN_WAIT_2 && 4290 dst->state >= TCPS_FIN_WAIT_2) 4291 (*state)->timeout = PFTM_TCP_CLOSED; 4292 else if (src->state >= TCPS_CLOSING && 4293 dst->state >= TCPS_CLOSING) 4294 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4295 else if (src->state < TCPS_ESTABLISHED || 4296 dst->state < TCPS_ESTABLISHED) 4297 (*state)->timeout = PFTM_TCP_OPENING; 4298 else if (src->state >= TCPS_CLOSING || 4299 dst->state >= TCPS_CLOSING) 4300 (*state)->timeout = PFTM_TCP_CLOSING; 4301 else 4302 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4303 4304 /* Fall through to PASS packet */ 4305 4306 } else if ((dst->state < TCPS_SYN_SENT || 4307 dst->state >= TCPS_FIN_WAIT_2 || 4308 src->state >= TCPS_FIN_WAIT_2) && 4309 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4310 /* Within a window forward of the originating packet */ 4311 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4312 /* Within a window backward of the originating packet */ 4313 4314 /* 4315 * This currently handles three situations: 4316 * 1) Stupid stacks will shotgun SYNs before their peer 4317 * replies. 4318 * 2) When PF catches an already established stream (the 4319 * firewall rebooted, the state table was flushed, routes 4320 * changed...) 4321 * 3) Packets get funky immediately after the connection 4322 * closes (this should catch Solaris spurious ACK|FINs 4323 * that web servers like to spew after a close) 4324 * 4325 * This must be a little more careful than the above code 4326 * since packet floods will also be caught here. We don't 4327 * update the TTL here to mitigate the damage of a packet 4328 * flood and so the same code can handle awkward establishment 4329 * and a loosened connection close. 4330 * In the establishment case, a correct peer response will 4331 * validate the connection, go through the normal state code 4332 * and keep updating the state TTL. 4333 */ 4334 4335 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4336 printf("pf: loose state match: "); 4337 pf_print_state(*state); 4338 pf_print_flags(th->th_flags); 4339 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4340 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4341 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4342 (unsigned long long)(*state)->packets[1], 4343 pd->dir == PF_IN ? "in" : "out", 4344 pd->dir == (*state)->direction ? "fwd" : "rev"); 4345 } 4346 4347 if (dst->scrub || src->scrub) { 4348 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4349 *state, src, dst, copyback)) 4350 return (PF_DROP); 4351 } 4352 4353 /* update max window */ 4354 if (src->max_win < win) 4355 src->max_win = win; 4356 /* synchronize sequencing */ 4357 if (SEQ_GT(end, src->seqlo)) 4358 src->seqlo = end; 4359 /* slide the window of what the other end can send */ 4360 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4361 dst->seqhi = ack + MAX((win << sws), 1); 4362 4363 /* 4364 * Cannot set dst->seqhi here since this could be a shotgunned 4365 * SYN and not an already established connection. 4366 */ 4367 4368 if (th->th_flags & TH_FIN) 4369 if (src->state < TCPS_CLOSING) 4370 src->state = TCPS_CLOSING; 4371 if (th->th_flags & TH_RST) 4372 src->state = dst->state = TCPS_TIME_WAIT; 4373 4374 /* Fall through to PASS packet */ 4375 4376 } else { 4377 if ((*state)->dst.state == TCPS_SYN_SENT && 4378 (*state)->src.state == TCPS_SYN_SENT) { 4379 /* Send RST for state mismatches during handshake */ 4380 if (!(th->th_flags & TH_RST)) 4381 pf_send_tcp((*state)->rule.ptr, pd->af, 4382 pd->dst, pd->src, th->th_dport, 4383 th->th_sport, ntohl(th->th_ack), 0, 4384 TH_RST, 0, 0, 4385 (*state)->rule.ptr->return_ttl, 1, 0); 4386 src->seqlo = 0; 4387 src->seqhi = 1; 4388 src->max_win = 1; 4389 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4390 printf("pf: BAD state: "); 4391 pf_print_state(*state); 4392 pf_print_flags(th->th_flags); 4393 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4394 "pkts=%llu:%llu dir=%s,%s\n", 4395 seq, orig_seq, ack, pd->p_len, ackskew, 4396 (unsigned long long)(*state)->packets[0], 4397 (unsigned long long)(*state)->packets[1], 4398 pd->dir == PF_IN ? "in" : "out", 4399 pd->dir == (*state)->direction ? "fwd" : "rev"); 4400 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4401 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4402 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4403 ' ': '2', 4404 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4405 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4406 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4407 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4408 } 4409 REASON_SET(reason, PFRES_BADSTATE); 4410 return (PF_DROP); 4411 } 4412 4413 return (PF_PASS); 4414 } 4415 4416 static int 4417 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4418 struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 4419 { 4420 struct tcphdr *th = &pd->hdr.tcp; 4421 4422 if (th->th_flags & TH_SYN) 4423 if (src->state < TCPS_SYN_SENT) 4424 src->state = TCPS_SYN_SENT; 4425 if (th->th_flags & TH_FIN) 4426 if (src->state < TCPS_CLOSING) 4427 src->state = TCPS_CLOSING; 4428 if (th->th_flags & TH_ACK) { 4429 if (dst->state == TCPS_SYN_SENT) { 4430 dst->state = TCPS_ESTABLISHED; 4431 if (src->state == TCPS_ESTABLISHED && 4432 (*state)->src_node != NULL && 4433 pf_src_connlimit(state)) { 4434 REASON_SET(reason, PFRES_SRCLIMIT); 4435 return (PF_DROP); 4436 } 4437 } else if (dst->state == TCPS_CLOSING) { 4438 dst->state = TCPS_FIN_WAIT_2; 4439 } else if (src->state == TCPS_SYN_SENT && 4440 dst->state < TCPS_SYN_SENT) { 4441 /* 4442 * Handle a special sloppy case where we only see one 4443 * half of the connection. If there is a ACK after 4444 * the initial SYN without ever seeing a packet from 4445 * the destination, set the connection to established. 4446 */ 4447 dst->state = src->state = TCPS_ESTABLISHED; 4448 if ((*state)->src_node != NULL && 4449 pf_src_connlimit(state)) { 4450 REASON_SET(reason, PFRES_SRCLIMIT); 4451 return (PF_DROP); 4452 } 4453 } else if (src->state == TCPS_CLOSING && 4454 dst->state == TCPS_ESTABLISHED && 4455 dst->seqlo == 0) { 4456 /* 4457 * Handle the closing of half connections where we 4458 * don't see the full bidirectional FIN/ACK+ACK 4459 * handshake. 4460 */ 4461 dst->state = TCPS_CLOSING; 4462 } 4463 } 4464 if (th->th_flags & TH_RST) 4465 src->state = dst->state = TCPS_TIME_WAIT; 4466 4467 /* update expire time */ 4468 (*state)->expire = time_uptime; 4469 if (src->state >= TCPS_FIN_WAIT_2 && 4470 dst->state >= TCPS_FIN_WAIT_2) 4471 (*state)->timeout = PFTM_TCP_CLOSED; 4472 else if (src->state >= TCPS_CLOSING && 4473 dst->state >= TCPS_CLOSING) 4474 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4475 else if (src->state < TCPS_ESTABLISHED || 4476 dst->state < TCPS_ESTABLISHED) 4477 (*state)->timeout = PFTM_TCP_OPENING; 4478 else if (src->state >= TCPS_CLOSING || 4479 dst->state >= TCPS_CLOSING) 4480 (*state)->timeout = PFTM_TCP_CLOSING; 4481 else 4482 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4483 4484 return (PF_PASS); 4485 } 4486 4487 static int 4488 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4489 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4490 u_short *reason) 4491 { 4492 struct pf_state_key_cmp key; 4493 struct tcphdr *th = &pd->hdr.tcp; 4494 int copyback = 0; 4495 struct pf_state_peer *src, *dst; 4496 struct pf_state_key *sk; 4497 4498 bzero(&key, sizeof(key)); 4499 key.af = pd->af; 4500 key.proto = IPPROTO_TCP; 4501 if (direction == PF_IN) { /* wire side, straight */ 4502 PF_ACPY(&key.addr[0], pd->src, key.af); 4503 PF_ACPY(&key.addr[1], pd->dst, key.af); 4504 key.port[0] = th->th_sport; 4505 key.port[1] = th->th_dport; 4506 } else { /* stack side, reverse */ 4507 PF_ACPY(&key.addr[1], pd->src, key.af); 4508 PF_ACPY(&key.addr[0], pd->dst, key.af); 4509 key.port[1] = th->th_sport; 4510 key.port[0] = th->th_dport; 4511 } 4512 4513 STATE_LOOKUP(kif, &key, direction, *state, pd); 4514 4515 if (direction == (*state)->direction) { 4516 src = &(*state)->src; 4517 dst = &(*state)->dst; 4518 } else { 4519 src = &(*state)->dst; 4520 dst = &(*state)->src; 4521 } 4522 4523 sk = (*state)->key[pd->didx]; 4524 4525 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4526 if (direction != (*state)->direction) { 4527 REASON_SET(reason, PFRES_SYNPROXY); 4528 return (PF_SYNPROXY_DROP); 4529 } 4530 if (th->th_flags & TH_SYN) { 4531 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4532 REASON_SET(reason, PFRES_SYNPROXY); 4533 return (PF_DROP); 4534 } 4535 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4536 pd->src, th->th_dport, th->th_sport, 4537 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4538 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 4539 REASON_SET(reason, PFRES_SYNPROXY); 4540 return (PF_SYNPROXY_DROP); 4541 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4542 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4543 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4544 REASON_SET(reason, PFRES_SYNPROXY); 4545 return (PF_DROP); 4546 } else if ((*state)->src_node != NULL && 4547 pf_src_connlimit(state)) { 4548 REASON_SET(reason, PFRES_SRCLIMIT); 4549 return (PF_DROP); 4550 } else 4551 (*state)->src.state = PF_TCPS_PROXY_DST; 4552 } 4553 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4554 if (direction == (*state)->direction) { 4555 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4556 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4557 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4558 REASON_SET(reason, PFRES_SYNPROXY); 4559 return (PF_DROP); 4560 } 4561 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4562 if ((*state)->dst.seqhi == 1) 4563 (*state)->dst.seqhi = htonl(arc4random()); 4564 pf_send_tcp((*state)->rule.ptr, pd->af, 4565 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4566 sk->port[pd->sidx], sk->port[pd->didx], 4567 (*state)->dst.seqhi, 0, TH_SYN, 0, 4568 (*state)->src.mss, 0, 0, (*state)->tag); 4569 REASON_SET(reason, PFRES_SYNPROXY); 4570 return (PF_SYNPROXY_DROP); 4571 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4572 (TH_SYN|TH_ACK)) || 4573 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4574 REASON_SET(reason, PFRES_SYNPROXY); 4575 return (PF_DROP); 4576 } else { 4577 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4578 (*state)->dst.seqlo = ntohl(th->th_seq); 4579 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 4580 pd->src, th->th_dport, th->th_sport, 4581 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4582 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4583 (*state)->tag); 4584 pf_send_tcp((*state)->rule.ptr, pd->af, 4585 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4586 sk->port[pd->sidx], sk->port[pd->didx], 4587 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4588 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 4589 (*state)->src.seqdiff = (*state)->dst.seqhi - 4590 (*state)->src.seqlo; 4591 (*state)->dst.seqdiff = (*state)->src.seqhi - 4592 (*state)->dst.seqlo; 4593 (*state)->src.seqhi = (*state)->src.seqlo + 4594 (*state)->dst.max_win; 4595 (*state)->dst.seqhi = (*state)->dst.seqlo + 4596 (*state)->src.max_win; 4597 (*state)->src.wscale = (*state)->dst.wscale = 0; 4598 (*state)->src.state = (*state)->dst.state = 4599 TCPS_ESTABLISHED; 4600 REASON_SET(reason, PFRES_SYNPROXY); 4601 return (PF_SYNPROXY_DROP); 4602 } 4603 } 4604 4605 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4606 dst->state >= TCPS_FIN_WAIT_2 && 4607 src->state >= TCPS_FIN_WAIT_2) { 4608 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4609 printf("pf: state reuse "); 4610 pf_print_state(*state); 4611 pf_print_flags(th->th_flags); 4612 printf("\n"); 4613 } 4614 /* XXX make sure it's the same direction ?? */ 4615 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4616 pf_unlink_state(*state, PF_ENTER_LOCKED); 4617 *state = NULL; 4618 return (PF_DROP); 4619 } 4620 4621 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4622 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4623 return (PF_DROP); 4624 } else { 4625 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4626 ©back) == PF_DROP) 4627 return (PF_DROP); 4628 } 4629 4630 /* translate source/destination address, if necessary */ 4631 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4632 struct pf_state_key *nk = (*state)->key[pd->didx]; 4633 4634 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4635 nk->port[pd->sidx] != th->th_sport) 4636 pf_change_ap(m, pd->src, &th->th_sport, 4637 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4638 nk->port[pd->sidx], 0, pd->af); 4639 4640 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4641 nk->port[pd->didx] != th->th_dport) 4642 pf_change_ap(m, pd->dst, &th->th_dport, 4643 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4644 nk->port[pd->didx], 0, pd->af); 4645 copyback = 1; 4646 } 4647 4648 /* Copyback sequence modulation or stateful scrub changes if needed */ 4649 if (copyback) 4650 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4651 4652 return (PF_PASS); 4653 } 4654 4655 static int 4656 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4657 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4658 { 4659 struct pf_state_peer *src, *dst; 4660 struct pf_state_key_cmp key; 4661 struct udphdr *uh = &pd->hdr.udp; 4662 4663 bzero(&key, sizeof(key)); 4664 key.af = pd->af; 4665 key.proto = IPPROTO_UDP; 4666 if (direction == PF_IN) { /* wire side, straight */ 4667 PF_ACPY(&key.addr[0], pd->src, key.af); 4668 PF_ACPY(&key.addr[1], pd->dst, key.af); 4669 key.port[0] = uh->uh_sport; 4670 key.port[1] = uh->uh_dport; 4671 } else { /* stack side, reverse */ 4672 PF_ACPY(&key.addr[1], pd->src, key.af); 4673 PF_ACPY(&key.addr[0], pd->dst, key.af); 4674 key.port[1] = uh->uh_sport; 4675 key.port[0] = uh->uh_dport; 4676 } 4677 4678 STATE_LOOKUP(kif, &key, direction, *state, pd); 4679 4680 if (direction == (*state)->direction) { 4681 src = &(*state)->src; 4682 dst = &(*state)->dst; 4683 } else { 4684 src = &(*state)->dst; 4685 dst = &(*state)->src; 4686 } 4687 4688 /* update states */ 4689 if (src->state < PFUDPS_SINGLE) 4690 src->state = PFUDPS_SINGLE; 4691 if (dst->state == PFUDPS_SINGLE) 4692 dst->state = PFUDPS_MULTIPLE; 4693 4694 /* update expire time */ 4695 (*state)->expire = time_uptime; 4696 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4697 (*state)->timeout = PFTM_UDP_MULTIPLE; 4698 else 4699 (*state)->timeout = PFTM_UDP_SINGLE; 4700 4701 /* translate source/destination address, if necessary */ 4702 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4703 struct pf_state_key *nk = (*state)->key[pd->didx]; 4704 4705 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4706 nk->port[pd->sidx] != uh->uh_sport) 4707 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4708 &uh->uh_sum, &nk->addr[pd->sidx], 4709 nk->port[pd->sidx], 1, pd->af); 4710 4711 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4712 nk->port[pd->didx] != uh->uh_dport) 4713 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4714 &uh->uh_sum, &nk->addr[pd->didx], 4715 nk->port[pd->didx], 1, pd->af); 4716 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4717 } 4718 4719 return (PF_PASS); 4720 } 4721 4722 static int 4723 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 4724 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4725 { 4726 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4727 u_int16_t icmpid = 0, *icmpsum; 4728 u_int8_t icmptype, icmpcode; 4729 int state_icmp = 0; 4730 struct pf_state_key_cmp key; 4731 4732 bzero(&key, sizeof(key)); 4733 switch (pd->proto) { 4734 #ifdef INET 4735 case IPPROTO_ICMP: 4736 icmptype = pd->hdr.icmp.icmp_type; 4737 icmpcode = pd->hdr.icmp.icmp_code; 4738 icmpid = pd->hdr.icmp.icmp_id; 4739 icmpsum = &pd->hdr.icmp.icmp_cksum; 4740 4741 if (icmptype == ICMP_UNREACH || 4742 icmptype == ICMP_SOURCEQUENCH || 4743 icmptype == ICMP_REDIRECT || 4744 icmptype == ICMP_TIMXCEED || 4745 icmptype == ICMP_PARAMPROB) 4746 state_icmp++; 4747 break; 4748 #endif /* INET */ 4749 #ifdef INET6 4750 case IPPROTO_ICMPV6: 4751 icmptype = pd->hdr.icmp6.icmp6_type; 4752 icmpcode = pd->hdr.icmp6.icmp6_code; 4753 icmpid = pd->hdr.icmp6.icmp6_id; 4754 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 4755 4756 if (icmptype == ICMP6_DST_UNREACH || 4757 icmptype == ICMP6_PACKET_TOO_BIG || 4758 icmptype == ICMP6_TIME_EXCEEDED || 4759 icmptype == ICMP6_PARAM_PROB) 4760 state_icmp++; 4761 break; 4762 #endif /* INET6 */ 4763 } 4764 4765 if (!state_icmp) { 4766 /* 4767 * ICMP query/reply message not related to a TCP/UDP packet. 4768 * Search for an ICMP state. 4769 */ 4770 key.af = pd->af; 4771 key.proto = pd->proto; 4772 key.port[0] = key.port[1] = icmpid; 4773 if (direction == PF_IN) { /* wire side, straight */ 4774 PF_ACPY(&key.addr[0], pd->src, key.af); 4775 PF_ACPY(&key.addr[1], pd->dst, key.af); 4776 } else { /* stack side, reverse */ 4777 PF_ACPY(&key.addr[1], pd->src, key.af); 4778 PF_ACPY(&key.addr[0], pd->dst, key.af); 4779 } 4780 4781 STATE_LOOKUP(kif, &key, direction, *state, pd); 4782 4783 (*state)->expire = time_uptime; 4784 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4785 4786 /* translate source/destination address, if necessary */ 4787 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4788 struct pf_state_key *nk = (*state)->key[pd->didx]; 4789 4790 switch (pd->af) { 4791 #ifdef INET 4792 case AF_INET: 4793 if (PF_ANEQ(pd->src, 4794 &nk->addr[pd->sidx], AF_INET)) 4795 pf_change_a(&saddr->v4.s_addr, 4796 pd->ip_sum, 4797 nk->addr[pd->sidx].v4.s_addr, 0); 4798 4799 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4800 AF_INET)) 4801 pf_change_a(&daddr->v4.s_addr, 4802 pd->ip_sum, 4803 nk->addr[pd->didx].v4.s_addr, 0); 4804 4805 if (nk->port[0] != 4806 pd->hdr.icmp.icmp_id) { 4807 pd->hdr.icmp.icmp_cksum = 4808 pf_cksum_fixup( 4809 pd->hdr.icmp.icmp_cksum, icmpid, 4810 nk->port[pd->sidx], 0); 4811 pd->hdr.icmp.icmp_id = 4812 nk->port[pd->sidx]; 4813 } 4814 4815 m_copyback(m, off, ICMP_MINLEN, 4816 (caddr_t )&pd->hdr.icmp); 4817 break; 4818 #endif /* INET */ 4819 #ifdef INET6 4820 case AF_INET6: 4821 if (PF_ANEQ(pd->src, 4822 &nk->addr[pd->sidx], AF_INET6)) 4823 pf_change_a6(saddr, 4824 &pd->hdr.icmp6.icmp6_cksum, 4825 &nk->addr[pd->sidx], 0); 4826 4827 if (PF_ANEQ(pd->dst, 4828 &nk->addr[pd->didx], AF_INET6)) 4829 pf_change_a6(daddr, 4830 &pd->hdr.icmp6.icmp6_cksum, 4831 &nk->addr[pd->didx], 0); 4832 4833 m_copyback(m, off, sizeof(struct icmp6_hdr), 4834 (caddr_t )&pd->hdr.icmp6); 4835 break; 4836 #endif /* INET6 */ 4837 } 4838 } 4839 return (PF_PASS); 4840 4841 } else { 4842 /* 4843 * ICMP error message in response to a TCP/UDP packet. 4844 * Extract the inner TCP/UDP header and search for that state. 4845 */ 4846 4847 struct pf_pdesc pd2; 4848 bzero(&pd2, sizeof pd2); 4849 #ifdef INET 4850 struct ip h2; 4851 #endif /* INET */ 4852 #ifdef INET6 4853 struct ip6_hdr h2_6; 4854 int terminal = 0; 4855 #endif /* INET6 */ 4856 int ipoff2 = 0; 4857 int off2 = 0; 4858 4859 pd2.af = pd->af; 4860 /* Payload packet is from the opposite direction. */ 4861 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4862 pd2.didx = (direction == PF_IN) ? 0 : 1; 4863 switch (pd->af) { 4864 #ifdef INET 4865 case AF_INET: 4866 /* offset of h2 in mbuf chain */ 4867 ipoff2 = off + ICMP_MINLEN; 4868 4869 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4870 NULL, reason, pd2.af)) { 4871 DPFPRINTF(PF_DEBUG_MISC, 4872 ("pf: ICMP error message too short " 4873 "(ip)\n")); 4874 return (PF_DROP); 4875 } 4876 /* 4877 * ICMP error messages don't refer to non-first 4878 * fragments 4879 */ 4880 if (h2.ip_off & htons(IP_OFFMASK)) { 4881 REASON_SET(reason, PFRES_FRAG); 4882 return (PF_DROP); 4883 } 4884 4885 /* offset of protocol header that follows h2 */ 4886 off2 = ipoff2 + (h2.ip_hl << 2); 4887 4888 pd2.proto = h2.ip_p; 4889 pd2.src = (struct pf_addr *)&h2.ip_src; 4890 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4891 pd2.ip_sum = &h2.ip_sum; 4892 break; 4893 #endif /* INET */ 4894 #ifdef INET6 4895 case AF_INET6: 4896 ipoff2 = off + sizeof(struct icmp6_hdr); 4897 4898 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4899 NULL, reason, pd2.af)) { 4900 DPFPRINTF(PF_DEBUG_MISC, 4901 ("pf: ICMP error message too short " 4902 "(ip6)\n")); 4903 return (PF_DROP); 4904 } 4905 pd2.proto = h2_6.ip6_nxt; 4906 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4907 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4908 pd2.ip_sum = NULL; 4909 off2 = ipoff2 + sizeof(h2_6); 4910 do { 4911 switch (pd2.proto) { 4912 case IPPROTO_FRAGMENT: 4913 /* 4914 * ICMPv6 error messages for 4915 * non-first fragments 4916 */ 4917 REASON_SET(reason, PFRES_FRAG); 4918 return (PF_DROP); 4919 case IPPROTO_AH: 4920 case IPPROTO_HOPOPTS: 4921 case IPPROTO_ROUTING: 4922 case IPPROTO_DSTOPTS: { 4923 /* get next header and header length */ 4924 struct ip6_ext opt6; 4925 4926 if (!pf_pull_hdr(m, off2, &opt6, 4927 sizeof(opt6), NULL, reason, 4928 pd2.af)) { 4929 DPFPRINTF(PF_DEBUG_MISC, 4930 ("pf: ICMPv6 short opt\n")); 4931 return (PF_DROP); 4932 } 4933 if (pd2.proto == IPPROTO_AH) 4934 off2 += (opt6.ip6e_len + 2) * 4; 4935 else 4936 off2 += (opt6.ip6e_len + 1) * 8; 4937 pd2.proto = opt6.ip6e_nxt; 4938 /* goto the next header */ 4939 break; 4940 } 4941 default: 4942 terminal++; 4943 break; 4944 } 4945 } while (!terminal); 4946 break; 4947 #endif /* INET6 */ 4948 } 4949 4950 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4951 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4952 printf("pf: BAD ICMP %d:%d outer dst: ", 4953 icmptype, icmpcode); 4954 pf_print_host(pd->src, 0, pd->af); 4955 printf(" -> "); 4956 pf_print_host(pd->dst, 0, pd->af); 4957 printf(" inner src: "); 4958 pf_print_host(pd2.src, 0, pd2.af); 4959 printf(" -> "); 4960 pf_print_host(pd2.dst, 0, pd2.af); 4961 printf("\n"); 4962 } 4963 REASON_SET(reason, PFRES_BADSTATE); 4964 return (PF_DROP); 4965 } 4966 4967 switch (pd2.proto) { 4968 case IPPROTO_TCP: { 4969 struct tcphdr th; 4970 u_int32_t seq; 4971 struct pf_state_peer *src, *dst; 4972 u_int8_t dws; 4973 int copyback = 0; 4974 4975 /* 4976 * Only the first 8 bytes of the TCP header can be 4977 * expected. Don't access any TCP header fields after 4978 * th_seq, an ackskew test is not possible. 4979 */ 4980 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4981 pd2.af)) { 4982 DPFPRINTF(PF_DEBUG_MISC, 4983 ("pf: ICMP error message too short " 4984 "(tcp)\n")); 4985 return (PF_DROP); 4986 } 4987 4988 key.af = pd2.af; 4989 key.proto = IPPROTO_TCP; 4990 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4991 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4992 key.port[pd2.sidx] = th.th_sport; 4993 key.port[pd2.didx] = th.th_dport; 4994 4995 STATE_LOOKUP(kif, &key, direction, *state, pd); 4996 4997 if (direction == (*state)->direction) { 4998 src = &(*state)->dst; 4999 dst = &(*state)->src; 5000 } else { 5001 src = &(*state)->src; 5002 dst = &(*state)->dst; 5003 } 5004 5005 if (src->wscale && dst->wscale) 5006 dws = dst->wscale & PF_WSCALE_MASK; 5007 else 5008 dws = 0; 5009 5010 /* Demodulate sequence number */ 5011 seq = ntohl(th.th_seq) - src->seqdiff; 5012 if (src->seqdiff) { 5013 pf_change_a(&th.th_seq, icmpsum, 5014 htonl(seq), 0); 5015 copyback = 1; 5016 } 5017 5018 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5019 (!SEQ_GEQ(src->seqhi, seq) || 5020 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5021 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5022 printf("pf: BAD ICMP %d:%d ", 5023 icmptype, icmpcode); 5024 pf_print_host(pd->src, 0, pd->af); 5025 printf(" -> "); 5026 pf_print_host(pd->dst, 0, pd->af); 5027 printf(" state: "); 5028 pf_print_state(*state); 5029 printf(" seq=%u\n", seq); 5030 } 5031 REASON_SET(reason, PFRES_BADSTATE); 5032 return (PF_DROP); 5033 } else { 5034 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5035 printf("pf: OK ICMP %d:%d ", 5036 icmptype, icmpcode); 5037 pf_print_host(pd->src, 0, pd->af); 5038 printf(" -> "); 5039 pf_print_host(pd->dst, 0, pd->af); 5040 printf(" state: "); 5041 pf_print_state(*state); 5042 printf(" seq=%u\n", seq); 5043 } 5044 } 5045 5046 /* translate source/destination address, if necessary */ 5047 if ((*state)->key[PF_SK_WIRE] != 5048 (*state)->key[PF_SK_STACK]) { 5049 struct pf_state_key *nk = 5050 (*state)->key[pd->didx]; 5051 5052 if (PF_ANEQ(pd2.src, 5053 &nk->addr[pd2.sidx], pd2.af) || 5054 nk->port[pd2.sidx] != th.th_sport) 5055 pf_change_icmp(pd2.src, &th.th_sport, 5056 daddr, &nk->addr[pd2.sidx], 5057 nk->port[pd2.sidx], NULL, 5058 pd2.ip_sum, icmpsum, 5059 pd->ip_sum, 0, pd2.af); 5060 5061 if (PF_ANEQ(pd2.dst, 5062 &nk->addr[pd2.didx], pd2.af) || 5063 nk->port[pd2.didx] != th.th_dport) 5064 pf_change_icmp(pd2.dst, &th.th_dport, 5065 saddr, &nk->addr[pd2.didx], 5066 nk->port[pd2.didx], NULL, 5067 pd2.ip_sum, icmpsum, 5068 pd->ip_sum, 0, pd2.af); 5069 copyback = 1; 5070 } 5071 5072 if (copyback) { 5073 switch (pd2.af) { 5074 #ifdef INET 5075 case AF_INET: 5076 m_copyback(m, off, ICMP_MINLEN, 5077 (caddr_t )&pd->hdr.icmp); 5078 m_copyback(m, ipoff2, sizeof(h2), 5079 (caddr_t )&h2); 5080 break; 5081 #endif /* INET */ 5082 #ifdef INET6 5083 case AF_INET6: 5084 m_copyback(m, off, 5085 sizeof(struct icmp6_hdr), 5086 (caddr_t )&pd->hdr.icmp6); 5087 m_copyback(m, ipoff2, sizeof(h2_6), 5088 (caddr_t )&h2_6); 5089 break; 5090 #endif /* INET6 */ 5091 } 5092 m_copyback(m, off2, 8, (caddr_t)&th); 5093 } 5094 5095 return (PF_PASS); 5096 break; 5097 } 5098 case IPPROTO_UDP: { 5099 struct udphdr uh; 5100 5101 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5102 NULL, reason, pd2.af)) { 5103 DPFPRINTF(PF_DEBUG_MISC, 5104 ("pf: ICMP error message too short " 5105 "(udp)\n")); 5106 return (PF_DROP); 5107 } 5108 5109 key.af = pd2.af; 5110 key.proto = IPPROTO_UDP; 5111 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5112 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5113 key.port[pd2.sidx] = uh.uh_sport; 5114 key.port[pd2.didx] = uh.uh_dport; 5115 5116 STATE_LOOKUP(kif, &key, direction, *state, pd); 5117 5118 /* translate source/destination address, if necessary */ 5119 if ((*state)->key[PF_SK_WIRE] != 5120 (*state)->key[PF_SK_STACK]) { 5121 struct pf_state_key *nk = 5122 (*state)->key[pd->didx]; 5123 5124 if (PF_ANEQ(pd2.src, 5125 &nk->addr[pd2.sidx], pd2.af) || 5126 nk->port[pd2.sidx] != uh.uh_sport) 5127 pf_change_icmp(pd2.src, &uh.uh_sport, 5128 daddr, &nk->addr[pd2.sidx], 5129 nk->port[pd2.sidx], &uh.uh_sum, 5130 pd2.ip_sum, icmpsum, 5131 pd->ip_sum, 1, pd2.af); 5132 5133 if (PF_ANEQ(pd2.dst, 5134 &nk->addr[pd2.didx], pd2.af) || 5135 nk->port[pd2.didx] != uh.uh_dport) 5136 pf_change_icmp(pd2.dst, &uh.uh_dport, 5137 saddr, &nk->addr[pd2.didx], 5138 nk->port[pd2.didx], &uh.uh_sum, 5139 pd2.ip_sum, icmpsum, 5140 pd->ip_sum, 1, pd2.af); 5141 5142 switch (pd2.af) { 5143 #ifdef INET 5144 case AF_INET: 5145 m_copyback(m, off, ICMP_MINLEN, 5146 (caddr_t )&pd->hdr.icmp); 5147 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5148 break; 5149 #endif /* INET */ 5150 #ifdef INET6 5151 case AF_INET6: 5152 m_copyback(m, off, 5153 sizeof(struct icmp6_hdr), 5154 (caddr_t )&pd->hdr.icmp6); 5155 m_copyback(m, ipoff2, sizeof(h2_6), 5156 (caddr_t )&h2_6); 5157 break; 5158 #endif /* INET6 */ 5159 } 5160 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5161 } 5162 return (PF_PASS); 5163 break; 5164 } 5165 #ifdef INET 5166 case IPPROTO_ICMP: { 5167 struct icmp iih; 5168 5169 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5170 NULL, reason, pd2.af)) { 5171 DPFPRINTF(PF_DEBUG_MISC, 5172 ("pf: ICMP error message too short i" 5173 "(icmp)\n")); 5174 return (PF_DROP); 5175 } 5176 5177 key.af = pd2.af; 5178 key.proto = IPPROTO_ICMP; 5179 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5180 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5181 key.port[0] = key.port[1] = iih.icmp_id; 5182 5183 STATE_LOOKUP(kif, &key, direction, *state, pd); 5184 5185 /* translate source/destination address, if necessary */ 5186 if ((*state)->key[PF_SK_WIRE] != 5187 (*state)->key[PF_SK_STACK]) { 5188 struct pf_state_key *nk = 5189 (*state)->key[pd->didx]; 5190 5191 if (PF_ANEQ(pd2.src, 5192 &nk->addr[pd2.sidx], pd2.af) || 5193 nk->port[pd2.sidx] != iih.icmp_id) 5194 pf_change_icmp(pd2.src, &iih.icmp_id, 5195 daddr, &nk->addr[pd2.sidx], 5196 nk->port[pd2.sidx], NULL, 5197 pd2.ip_sum, icmpsum, 5198 pd->ip_sum, 0, AF_INET); 5199 5200 if (PF_ANEQ(pd2.dst, 5201 &nk->addr[pd2.didx], pd2.af) || 5202 nk->port[pd2.didx] != iih.icmp_id) 5203 pf_change_icmp(pd2.dst, &iih.icmp_id, 5204 saddr, &nk->addr[pd2.didx], 5205 nk->port[pd2.didx], NULL, 5206 pd2.ip_sum, icmpsum, 5207 pd->ip_sum, 0, AF_INET); 5208 5209 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5210 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5211 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5212 } 5213 return (PF_PASS); 5214 break; 5215 } 5216 #endif /* INET */ 5217 #ifdef INET6 5218 case IPPROTO_ICMPV6: { 5219 struct icmp6_hdr iih; 5220 5221 if (!pf_pull_hdr(m, off2, &iih, 5222 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5223 DPFPRINTF(PF_DEBUG_MISC, 5224 ("pf: ICMP error message too short " 5225 "(icmp6)\n")); 5226 return (PF_DROP); 5227 } 5228 5229 key.af = pd2.af; 5230 key.proto = IPPROTO_ICMPV6; 5231 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5232 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5233 key.port[0] = key.port[1] = iih.icmp6_id; 5234 5235 STATE_LOOKUP(kif, &key, direction, *state, pd); 5236 5237 /* translate source/destination address, if necessary */ 5238 if ((*state)->key[PF_SK_WIRE] != 5239 (*state)->key[PF_SK_STACK]) { 5240 struct pf_state_key *nk = 5241 (*state)->key[pd->didx]; 5242 5243 if (PF_ANEQ(pd2.src, 5244 &nk->addr[pd2.sidx], pd2.af) || 5245 nk->port[pd2.sidx] != iih.icmp6_id) 5246 pf_change_icmp(pd2.src, &iih.icmp6_id, 5247 daddr, &nk->addr[pd2.sidx], 5248 nk->port[pd2.sidx], NULL, 5249 pd2.ip_sum, icmpsum, 5250 pd->ip_sum, 0, AF_INET6); 5251 5252 if (PF_ANEQ(pd2.dst, 5253 &nk->addr[pd2.didx], pd2.af) || 5254 nk->port[pd2.didx] != iih.icmp6_id) 5255 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5256 saddr, &nk->addr[pd2.didx], 5257 nk->port[pd2.didx], NULL, 5258 pd2.ip_sum, icmpsum, 5259 pd->ip_sum, 0, AF_INET6); 5260 5261 m_copyback(m, off, sizeof(struct icmp6_hdr), 5262 (caddr_t)&pd->hdr.icmp6); 5263 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5264 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5265 (caddr_t)&iih); 5266 } 5267 return (PF_PASS); 5268 break; 5269 } 5270 #endif /* INET6 */ 5271 default: { 5272 key.af = pd2.af; 5273 key.proto = pd2.proto; 5274 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5275 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5276 key.port[0] = key.port[1] = 0; 5277 5278 STATE_LOOKUP(kif, &key, direction, *state, pd); 5279 5280 /* translate source/destination address, if necessary */ 5281 if ((*state)->key[PF_SK_WIRE] != 5282 (*state)->key[PF_SK_STACK]) { 5283 struct pf_state_key *nk = 5284 (*state)->key[pd->didx]; 5285 5286 if (PF_ANEQ(pd2.src, 5287 &nk->addr[pd2.sidx], pd2.af)) 5288 pf_change_icmp(pd2.src, NULL, daddr, 5289 &nk->addr[pd2.sidx], 0, NULL, 5290 pd2.ip_sum, icmpsum, 5291 pd->ip_sum, 0, pd2.af); 5292 5293 if (PF_ANEQ(pd2.dst, 5294 &nk->addr[pd2.didx], pd2.af)) 5295 pf_change_icmp(pd2.dst, NULL, saddr, 5296 &nk->addr[pd2.didx], 0, NULL, 5297 pd2.ip_sum, icmpsum, 5298 pd->ip_sum, 0, pd2.af); 5299 5300 switch (pd2.af) { 5301 #ifdef INET 5302 case AF_INET: 5303 m_copyback(m, off, ICMP_MINLEN, 5304 (caddr_t)&pd->hdr.icmp); 5305 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5306 break; 5307 #endif /* INET */ 5308 #ifdef INET6 5309 case AF_INET6: 5310 m_copyback(m, off, 5311 sizeof(struct icmp6_hdr), 5312 (caddr_t )&pd->hdr.icmp6); 5313 m_copyback(m, ipoff2, sizeof(h2_6), 5314 (caddr_t )&h2_6); 5315 break; 5316 #endif /* INET6 */ 5317 } 5318 } 5319 return (PF_PASS); 5320 break; 5321 } 5322 } 5323 } 5324 } 5325 5326 static int 5327 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5328 struct mbuf *m, struct pf_pdesc *pd) 5329 { 5330 struct pf_state_peer *src, *dst; 5331 struct pf_state_key_cmp key; 5332 5333 bzero(&key, sizeof(key)); 5334 key.af = pd->af; 5335 key.proto = pd->proto; 5336 if (direction == PF_IN) { 5337 PF_ACPY(&key.addr[0], pd->src, key.af); 5338 PF_ACPY(&key.addr[1], pd->dst, key.af); 5339 key.port[0] = key.port[1] = 0; 5340 } else { 5341 PF_ACPY(&key.addr[1], pd->src, key.af); 5342 PF_ACPY(&key.addr[0], pd->dst, key.af); 5343 key.port[1] = key.port[0] = 0; 5344 } 5345 5346 STATE_LOOKUP(kif, &key, direction, *state, pd); 5347 5348 if (direction == (*state)->direction) { 5349 src = &(*state)->src; 5350 dst = &(*state)->dst; 5351 } else { 5352 src = &(*state)->dst; 5353 dst = &(*state)->src; 5354 } 5355 5356 /* update states */ 5357 if (src->state < PFOTHERS_SINGLE) 5358 src->state = PFOTHERS_SINGLE; 5359 if (dst->state == PFOTHERS_SINGLE) 5360 dst->state = PFOTHERS_MULTIPLE; 5361 5362 /* update expire time */ 5363 (*state)->expire = time_uptime; 5364 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5365 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5366 else 5367 (*state)->timeout = PFTM_OTHER_SINGLE; 5368 5369 /* translate source/destination address, if necessary */ 5370 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5371 struct pf_state_key *nk = (*state)->key[pd->didx]; 5372 5373 KASSERT(nk, ("%s: nk is null", __func__)); 5374 KASSERT(pd, ("%s: pd is null", __func__)); 5375 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5376 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5377 switch (pd->af) { 5378 #ifdef INET 5379 case AF_INET: 5380 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5381 pf_change_a(&pd->src->v4.s_addr, 5382 pd->ip_sum, 5383 nk->addr[pd->sidx].v4.s_addr, 5384 0); 5385 5386 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5387 pf_change_a(&pd->dst->v4.s_addr, 5388 pd->ip_sum, 5389 nk->addr[pd->didx].v4.s_addr, 5390 0); 5391 5392 break; 5393 #endif /* INET */ 5394 #ifdef INET6 5395 case AF_INET6: 5396 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5397 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5398 5399 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5400 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5401 #endif /* INET6 */ 5402 } 5403 } 5404 return (PF_PASS); 5405 } 5406 5407 /* 5408 * ipoff and off are measured from the start of the mbuf chain. 5409 * h must be at "ipoff" on the mbuf chain. 5410 */ 5411 void * 5412 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5413 u_short *actionp, u_short *reasonp, sa_family_t af) 5414 { 5415 switch (af) { 5416 #ifdef INET 5417 case AF_INET: { 5418 struct ip *h = mtod(m, struct ip *); 5419 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5420 5421 if (fragoff) { 5422 if (fragoff >= len) 5423 ACTION_SET(actionp, PF_PASS); 5424 else { 5425 ACTION_SET(actionp, PF_DROP); 5426 REASON_SET(reasonp, PFRES_FRAG); 5427 } 5428 return (NULL); 5429 } 5430 if (m->m_pkthdr.len < off + len || 5431 ntohs(h->ip_len) < off + len) { 5432 ACTION_SET(actionp, PF_DROP); 5433 REASON_SET(reasonp, PFRES_SHORT); 5434 return (NULL); 5435 } 5436 break; 5437 } 5438 #endif /* INET */ 5439 #ifdef INET6 5440 case AF_INET6: { 5441 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5442 5443 if (m->m_pkthdr.len < off + len || 5444 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5445 (unsigned)(off + len)) { 5446 ACTION_SET(actionp, PF_DROP); 5447 REASON_SET(reasonp, PFRES_SHORT); 5448 return (NULL); 5449 } 5450 break; 5451 } 5452 #endif /* INET6 */ 5453 } 5454 m_copydata(m, off, len, p); 5455 return (p); 5456 } 5457 5458 int 5459 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 5460 int rtableid) 5461 { 5462 struct ifnet *ifp; 5463 5464 /* 5465 * Skip check for addresses with embedded interface scope, 5466 * as they would always match anyway. 5467 */ 5468 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5469 return (1); 5470 5471 if (af != AF_INET && af != AF_INET6) 5472 return (0); 5473 5474 /* Skip checks for ipsec interfaces */ 5475 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5476 return (1); 5477 5478 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5479 5480 switch (af) { 5481 #ifdef INET6 5482 case AF_INET6: 5483 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5484 ifp)); 5485 #endif 5486 #ifdef INET 5487 case AF_INET: 5488 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5489 ifp)); 5490 #endif 5491 } 5492 5493 return (0); 5494 } 5495 5496 #ifdef INET 5497 static void 5498 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5499 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5500 { 5501 struct mbuf *m0, *m1; 5502 struct sockaddr_in dst; 5503 struct ip *ip; 5504 struct ifnet *ifp = NULL; 5505 struct pf_addr naddr; 5506 struct pf_ksrc_node *sn = NULL; 5507 int error = 0; 5508 uint16_t ip_len, ip_off; 5509 5510 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5511 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5512 __func__)); 5513 5514 if ((pd->pf_mtag == NULL && 5515 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5516 pd->pf_mtag->routed++ > 3) { 5517 m0 = *m; 5518 *m = NULL; 5519 goto bad_locked; 5520 } 5521 5522 if (r->rt == PF_DUPTO) { 5523 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5524 if (s == NULL) { 5525 ifp = r->rpool.cur->kif ? 5526 r->rpool.cur->kif->pfik_ifp : NULL; 5527 } else { 5528 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5529 PF_STATE_UNLOCK(s); 5530 } 5531 if (ifp == oifp) { 5532 /* When the 2nd interface is not skipped */ 5533 return; 5534 } else { 5535 m0 = *m; 5536 *m = NULL; 5537 goto bad; 5538 } 5539 } else { 5540 pd->pf_mtag->flags |= PF_DUPLICATED; 5541 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5542 if (s) 5543 PF_STATE_UNLOCK(s); 5544 return; 5545 } 5546 } 5547 } else { 5548 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5549 if (s) 5550 PF_STATE_UNLOCK(s); 5551 return; 5552 } 5553 m0 = *m; 5554 } 5555 5556 ip = mtod(m0, struct ip *); 5557 5558 bzero(&dst, sizeof(dst)); 5559 dst.sin_family = AF_INET; 5560 dst.sin_len = sizeof(dst); 5561 dst.sin_addr = ip->ip_dst; 5562 5563 bzero(&naddr, sizeof(naddr)); 5564 5565 if (TAILQ_EMPTY(&r->rpool.list)) { 5566 DPFPRINTF(PF_DEBUG_URGENT, 5567 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5568 goto bad_locked; 5569 } 5570 if (s == NULL) { 5571 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5572 &naddr, NULL, &sn); 5573 if (!PF_AZERO(&naddr, AF_INET)) 5574 dst.sin_addr.s_addr = naddr.v4.s_addr; 5575 ifp = r->rpool.cur->kif ? 5576 r->rpool.cur->kif->pfik_ifp : NULL; 5577 } else { 5578 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5579 dst.sin_addr.s_addr = 5580 s->rt_addr.v4.s_addr; 5581 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5582 PF_STATE_UNLOCK(s); 5583 } 5584 if (ifp == NULL) 5585 goto bad; 5586 5587 if (dir == PF_IN) { 5588 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5589 goto bad; 5590 else if (m0 == NULL) 5591 goto done; 5592 if (m0->m_len < sizeof(struct ip)) { 5593 DPFPRINTF(PF_DEBUG_URGENT, 5594 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5595 goto bad; 5596 } 5597 ip = mtod(m0, struct ip *); 5598 } 5599 5600 if (ifp->if_flags & IFF_LOOPBACK) 5601 m0->m_flags |= M_SKIP_FIREWALL; 5602 5603 ip_len = ntohs(ip->ip_len); 5604 ip_off = ntohs(ip->ip_off); 5605 5606 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5607 m0->m_pkthdr.csum_flags |= CSUM_IP; 5608 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5609 m0 = mb_unmapped_to_ext(m0); 5610 if (m0 == NULL) 5611 goto done; 5612 in_delayed_cksum(m0); 5613 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5614 } 5615 #if defined(SCTP) || defined(SCTP_SUPPORT) 5616 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5617 m0 = mb_unmapped_to_ext(m0); 5618 if (m0 == NULL) 5619 goto done; 5620 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5621 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5622 } 5623 #endif 5624 5625 /* 5626 * If small enough for interface, or the interface will take 5627 * care of the fragmentation for us, we can just send directly. 5628 */ 5629 if (ip_len <= ifp->if_mtu || 5630 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5631 ip->ip_sum = 0; 5632 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5633 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5634 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5635 } 5636 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5637 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5638 goto done; 5639 } 5640 5641 /* Balk when DF bit is set or the interface didn't support TSO. */ 5642 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5643 error = EMSGSIZE; 5644 KMOD_IPSTAT_INC(ips_cantfrag); 5645 if (r->rt != PF_DUPTO) { 5646 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5647 ifp->if_mtu); 5648 goto done; 5649 } else 5650 goto bad; 5651 } 5652 5653 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5654 if (error) 5655 goto bad; 5656 5657 for (; m0; m0 = m1) { 5658 m1 = m0->m_nextpkt; 5659 m0->m_nextpkt = NULL; 5660 if (error == 0) { 5661 m_clrprotoflags(m0); 5662 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5663 } else 5664 m_freem(m0); 5665 } 5666 5667 if (error == 0) 5668 KMOD_IPSTAT_INC(ips_fragmented); 5669 5670 done: 5671 if (r->rt != PF_DUPTO) 5672 *m = NULL; 5673 return; 5674 5675 bad_locked: 5676 if (s) 5677 PF_STATE_UNLOCK(s); 5678 bad: 5679 m_freem(m0); 5680 goto done; 5681 } 5682 #endif /* INET */ 5683 5684 #ifdef INET6 5685 static void 5686 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 5687 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 5688 { 5689 struct mbuf *m0; 5690 struct sockaddr_in6 dst; 5691 struct ip6_hdr *ip6; 5692 struct ifnet *ifp = NULL; 5693 struct pf_addr naddr; 5694 struct pf_ksrc_node *sn = NULL; 5695 5696 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5697 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5698 __func__)); 5699 5700 if ((pd->pf_mtag == NULL && 5701 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5702 pd->pf_mtag->routed++ > 3) { 5703 m0 = *m; 5704 *m = NULL; 5705 goto bad_locked; 5706 } 5707 5708 if (r->rt == PF_DUPTO) { 5709 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 5710 if (s == NULL) { 5711 ifp = r->rpool.cur->kif ? 5712 r->rpool.cur->kif->pfik_ifp : NULL; 5713 } else { 5714 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5715 PF_STATE_UNLOCK(s); 5716 } 5717 if (ifp == oifp) { 5718 /* When the 2nd interface is not skipped */ 5719 return; 5720 } else { 5721 m0 = *m; 5722 *m = NULL; 5723 goto bad; 5724 } 5725 } else { 5726 pd->pf_mtag->flags |= PF_DUPLICATED; 5727 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 5728 if (s) 5729 PF_STATE_UNLOCK(s); 5730 return; 5731 } 5732 } 5733 } else { 5734 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5735 if (s) 5736 PF_STATE_UNLOCK(s); 5737 return; 5738 } 5739 m0 = *m; 5740 } 5741 5742 ip6 = mtod(m0, struct ip6_hdr *); 5743 5744 bzero(&dst, sizeof(dst)); 5745 dst.sin6_family = AF_INET6; 5746 dst.sin6_len = sizeof(dst); 5747 dst.sin6_addr = ip6->ip6_dst; 5748 5749 bzero(&naddr, sizeof(naddr)); 5750 5751 if (TAILQ_EMPTY(&r->rpool.list)) { 5752 DPFPRINTF(PF_DEBUG_URGENT, 5753 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5754 goto bad_locked; 5755 } 5756 if (s == NULL) { 5757 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5758 &naddr, NULL, &sn); 5759 if (!PF_AZERO(&naddr, AF_INET6)) 5760 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5761 &naddr, AF_INET6); 5762 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5763 } else { 5764 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5765 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5766 &s->rt_addr, AF_INET6); 5767 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5768 } 5769 5770 if (s) 5771 PF_STATE_UNLOCK(s); 5772 5773 if (ifp == NULL) 5774 goto bad; 5775 5776 if (dir == PF_IN) { 5777 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5778 goto bad; 5779 else if (m0 == NULL) 5780 goto done; 5781 if (m0->m_len < sizeof(struct ip6_hdr)) { 5782 DPFPRINTF(PF_DEBUG_URGENT, 5783 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5784 __func__)); 5785 goto bad; 5786 } 5787 ip6 = mtod(m0, struct ip6_hdr *); 5788 } 5789 5790 if (ifp->if_flags & IFF_LOOPBACK) 5791 m0->m_flags |= M_SKIP_FIREWALL; 5792 5793 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5794 ~ifp->if_hwassist) { 5795 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5796 m0 = mb_unmapped_to_ext(m0); 5797 if (m0 == NULL) 5798 goto done; 5799 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5800 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5801 } 5802 5803 /* 5804 * If the packet is too large for the outgoing interface, 5805 * send back an icmp6 error. 5806 */ 5807 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5808 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5809 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5810 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5811 else { 5812 in6_ifstat_inc(ifp, ifs6_in_toobig); 5813 if (r->rt != PF_DUPTO) 5814 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5815 else 5816 goto bad; 5817 } 5818 5819 done: 5820 if (r->rt != PF_DUPTO) 5821 *m = NULL; 5822 return; 5823 5824 bad_locked: 5825 if (s) 5826 PF_STATE_UNLOCK(s); 5827 bad: 5828 m_freem(m0); 5829 goto done; 5830 } 5831 #endif /* INET6 */ 5832 5833 /* 5834 * FreeBSD supports cksum offloads for the following drivers. 5835 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 5836 * 5837 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5838 * network driver performed cksum including pseudo header, need to verify 5839 * csum_data 5840 * CSUM_DATA_VALID : 5841 * network driver performed cksum, needs to additional pseudo header 5842 * cksum computation with partial csum_data(i.e. lack of H/W support for 5843 * pseudo header, for instance sk(4) and possibly gem(4)) 5844 * 5845 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5846 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5847 * TCP/UDP layer. 5848 * Also, set csum_data to 0xffff to force cksum validation. 5849 */ 5850 static int 5851 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5852 { 5853 u_int16_t sum = 0; 5854 int hw_assist = 0; 5855 struct ip *ip; 5856 5857 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5858 return (1); 5859 if (m->m_pkthdr.len < off + len) 5860 return (1); 5861 5862 switch (p) { 5863 case IPPROTO_TCP: 5864 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5865 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5866 sum = m->m_pkthdr.csum_data; 5867 } else { 5868 ip = mtod(m, struct ip *); 5869 sum = in_pseudo(ip->ip_src.s_addr, 5870 ip->ip_dst.s_addr, htonl((u_short)len + 5871 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5872 } 5873 sum ^= 0xffff; 5874 ++hw_assist; 5875 } 5876 break; 5877 case IPPROTO_UDP: 5878 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5879 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5880 sum = m->m_pkthdr.csum_data; 5881 } else { 5882 ip = mtod(m, struct ip *); 5883 sum = in_pseudo(ip->ip_src.s_addr, 5884 ip->ip_dst.s_addr, htonl((u_short)len + 5885 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5886 } 5887 sum ^= 0xffff; 5888 ++hw_assist; 5889 } 5890 break; 5891 case IPPROTO_ICMP: 5892 #ifdef INET6 5893 case IPPROTO_ICMPV6: 5894 #endif /* INET6 */ 5895 break; 5896 default: 5897 return (1); 5898 } 5899 5900 if (!hw_assist) { 5901 switch (af) { 5902 case AF_INET: 5903 if (p == IPPROTO_ICMP) { 5904 if (m->m_len < off) 5905 return (1); 5906 m->m_data += off; 5907 m->m_len -= off; 5908 sum = in_cksum(m, len); 5909 m->m_data -= off; 5910 m->m_len += off; 5911 } else { 5912 if (m->m_len < sizeof(struct ip)) 5913 return (1); 5914 sum = in4_cksum(m, p, off, len); 5915 } 5916 break; 5917 #ifdef INET6 5918 case AF_INET6: 5919 if (m->m_len < sizeof(struct ip6_hdr)) 5920 return (1); 5921 sum = in6_cksum(m, p, off, len); 5922 break; 5923 #endif /* INET6 */ 5924 default: 5925 return (1); 5926 } 5927 } 5928 if (sum) { 5929 switch (p) { 5930 case IPPROTO_TCP: 5931 { 5932 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5933 break; 5934 } 5935 case IPPROTO_UDP: 5936 { 5937 KMOD_UDPSTAT_INC(udps_badsum); 5938 break; 5939 } 5940 #ifdef INET 5941 case IPPROTO_ICMP: 5942 { 5943 KMOD_ICMPSTAT_INC(icps_checksum); 5944 break; 5945 } 5946 #endif 5947 #ifdef INET6 5948 case IPPROTO_ICMPV6: 5949 { 5950 KMOD_ICMP6STAT_INC(icp6s_checksum); 5951 break; 5952 } 5953 #endif /* INET6 */ 5954 } 5955 return (1); 5956 } else { 5957 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5958 m->m_pkthdr.csum_flags |= 5959 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5960 m->m_pkthdr.csum_data = 0xffff; 5961 } 5962 } 5963 return (0); 5964 } 5965 5966 #ifdef INET 5967 int 5968 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5969 { 5970 struct pfi_kkif *kif; 5971 u_short action, reason = 0, log = 0; 5972 struct mbuf *m = *m0; 5973 struct ip *h = NULL; 5974 struct m_tag *ipfwtag; 5975 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5976 struct pf_kstate *s = NULL; 5977 struct pf_kruleset *ruleset = NULL; 5978 struct pf_pdesc pd; 5979 int off, dirndx, pqid = 0; 5980 5981 PF_RULES_RLOCK_TRACKER; 5982 5983 M_ASSERTPKTHDR(m); 5984 5985 if (!V_pf_status.running) 5986 return (PF_PASS); 5987 5988 memset(&pd, 0, sizeof(pd)); 5989 5990 kif = (struct pfi_kkif *)ifp->if_pf_kif; 5991 5992 if (kif == NULL) { 5993 DPFPRINTF(PF_DEBUG_URGENT, 5994 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5995 return (PF_DROP); 5996 } 5997 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5998 return (PF_PASS); 5999 6000 if (m->m_flags & M_SKIP_FIREWALL) 6001 return (PF_PASS); 6002 6003 pd.pf_mtag = pf_find_mtag(m); 6004 6005 PF_RULES_RLOCK(); 6006 6007 if (ip_divert_ptr != NULL && 6008 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6009 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6010 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6011 if (pd.pf_mtag == NULL && 6012 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6013 action = PF_DROP; 6014 goto done; 6015 } 6016 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6017 m_tag_delete(m, ipfwtag); 6018 } 6019 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6020 m->m_flags |= M_FASTFWD_OURS; 6021 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6022 } 6023 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6024 /* We do IP header normalization and packet reassembly here */ 6025 action = PF_DROP; 6026 goto done; 6027 } 6028 m = *m0; /* pf_normalize messes with m0 */ 6029 h = mtod(m, struct ip *); 6030 6031 off = h->ip_hl << 2; 6032 if (off < (int)sizeof(struct ip)) { 6033 action = PF_DROP; 6034 REASON_SET(&reason, PFRES_SHORT); 6035 log = 1; 6036 goto done; 6037 } 6038 6039 pd.src = (struct pf_addr *)&h->ip_src; 6040 pd.dst = (struct pf_addr *)&h->ip_dst; 6041 pd.sport = pd.dport = NULL; 6042 pd.ip_sum = &h->ip_sum; 6043 pd.proto_sum = NULL; 6044 pd.proto = h->ip_p; 6045 pd.dir = dir; 6046 pd.sidx = (dir == PF_IN) ? 0 : 1; 6047 pd.didx = (dir == PF_IN) ? 1 : 0; 6048 pd.af = AF_INET; 6049 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6050 pd.tot_len = ntohs(h->ip_len); 6051 6052 /* handle fragments that didn't get reassembled by normalization */ 6053 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6054 action = pf_test_fragment(&r, dir, kif, m, h, 6055 &pd, &a, &ruleset); 6056 goto done; 6057 } 6058 6059 switch (h->ip_p) { 6060 case IPPROTO_TCP: { 6061 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6062 &action, &reason, AF_INET)) { 6063 log = action != PF_PASS; 6064 goto done; 6065 } 6066 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6067 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6068 pqid = 1; 6069 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6070 if (action == PF_DROP) 6071 goto done; 6072 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6073 &reason); 6074 if (action == PF_PASS) { 6075 if (V_pfsync_update_state_ptr != NULL) 6076 V_pfsync_update_state_ptr(s); 6077 r = s->rule.ptr; 6078 a = s->anchor.ptr; 6079 log = s->log; 6080 } else if (s == NULL) 6081 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6082 &a, &ruleset, inp); 6083 break; 6084 } 6085 6086 case IPPROTO_UDP: { 6087 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6088 &action, &reason, AF_INET)) { 6089 log = action != PF_PASS; 6090 goto done; 6091 } 6092 if (pd.hdr.udp.uh_dport == 0 || 6093 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6094 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6095 action = PF_DROP; 6096 REASON_SET(&reason, PFRES_SHORT); 6097 goto done; 6098 } 6099 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6100 if (action == PF_PASS) { 6101 if (V_pfsync_update_state_ptr != NULL) 6102 V_pfsync_update_state_ptr(s); 6103 r = s->rule.ptr; 6104 a = s->anchor.ptr; 6105 log = s->log; 6106 } else if (s == NULL) 6107 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6108 &a, &ruleset, inp); 6109 break; 6110 } 6111 6112 case IPPROTO_ICMP: { 6113 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 6114 &action, &reason, AF_INET)) { 6115 log = action != PF_PASS; 6116 goto done; 6117 } 6118 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6119 &reason); 6120 if (action == PF_PASS) { 6121 if (V_pfsync_update_state_ptr != NULL) 6122 V_pfsync_update_state_ptr(s); 6123 r = s->rule.ptr; 6124 a = s->anchor.ptr; 6125 log = s->log; 6126 } else if (s == NULL) 6127 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6128 &a, &ruleset, inp); 6129 break; 6130 } 6131 6132 #ifdef INET6 6133 case IPPROTO_ICMPV6: { 6134 action = PF_DROP; 6135 DPFPRINTF(PF_DEBUG_MISC, 6136 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6137 goto done; 6138 } 6139 #endif 6140 6141 default: 6142 action = pf_test_state_other(&s, dir, kif, m, &pd); 6143 if (action == PF_PASS) { 6144 if (V_pfsync_update_state_ptr != NULL) 6145 V_pfsync_update_state_ptr(s); 6146 r = s->rule.ptr; 6147 a = s->anchor.ptr; 6148 log = s->log; 6149 } else if (s == NULL) 6150 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6151 &a, &ruleset, inp); 6152 break; 6153 } 6154 6155 done: 6156 PF_RULES_RUNLOCK(); 6157 if (action == PF_PASS && h->ip_hl > 5 && 6158 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6159 action = PF_DROP; 6160 REASON_SET(&reason, PFRES_IPOPTIONS); 6161 log = r->log; 6162 DPFPRINTF(PF_DEBUG_MISC, 6163 ("pf: dropping packet with ip options\n")); 6164 } 6165 6166 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6167 action = PF_DROP; 6168 REASON_SET(&reason, PFRES_MEMORY); 6169 } 6170 if (r->rtableid >= 0) 6171 M_SETFIB(m, r->rtableid); 6172 6173 if (r->scrub_flags & PFSTATE_SETPRIO) { 6174 if (pd.tos & IPTOS_LOWDELAY) 6175 pqid = 1; 6176 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6177 action = PF_DROP; 6178 REASON_SET(&reason, PFRES_MEMORY); 6179 log = 1; 6180 DPFPRINTF(PF_DEBUG_MISC, 6181 ("pf: failed to allocate 802.1q mtag\n")); 6182 } 6183 } 6184 6185 #ifdef ALTQ 6186 if (s && s->qid) { 6187 pd.act.pqid = s->pqid; 6188 pd.act.qid = s->qid; 6189 } else if (r->qid) { 6190 pd.act.pqid = r->pqid; 6191 pd.act.qid = r->qid; 6192 } 6193 if (action == PF_PASS && pd.act.qid) { 6194 if (pd.pf_mtag == NULL && 6195 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6196 action = PF_DROP; 6197 REASON_SET(&reason, PFRES_MEMORY); 6198 } else { 6199 if (s != NULL) 6200 pd.pf_mtag->qid_hash = pf_state_hash(s); 6201 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6202 pd.pf_mtag->qid = pd.act.pqid; 6203 else 6204 pd.pf_mtag->qid = pd.act.qid; 6205 /* Add hints for ecn. */ 6206 pd.pf_mtag->hdr = h; 6207 } 6208 } 6209 #endif /* ALTQ */ 6210 6211 /* 6212 * connections redirected to loopback should not match sockets 6213 * bound specifically to loopback due to security implications, 6214 * see tcp_input() and in_pcblookup_listen(). 6215 */ 6216 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6217 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6218 (s->nat_rule.ptr->action == PF_RDR || 6219 s->nat_rule.ptr->action == PF_BINAT) && 6220 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6221 m->m_flags |= M_SKIP_FIREWALL; 6222 6223 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6224 !PACKET_LOOPED(&pd)) { 6225 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6226 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6227 if (ipfwtag != NULL) { 6228 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6229 ntohs(r->divert.port); 6230 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6231 6232 if (s) 6233 PF_STATE_UNLOCK(s); 6234 6235 m_tag_prepend(m, ipfwtag); 6236 if (m->m_flags & M_FASTFWD_OURS) { 6237 if (pd.pf_mtag == NULL && 6238 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6239 action = PF_DROP; 6240 REASON_SET(&reason, PFRES_MEMORY); 6241 log = 1; 6242 DPFPRINTF(PF_DEBUG_MISC, 6243 ("pf: failed to allocate tag\n")); 6244 } else { 6245 pd.pf_mtag->flags |= 6246 PF_FASTFWD_OURS_PRESENT; 6247 m->m_flags &= ~M_FASTFWD_OURS; 6248 } 6249 } 6250 ip_divert_ptr(*m0, dir == PF_IN); 6251 *m0 = NULL; 6252 6253 return (action); 6254 } else { 6255 /* XXX: ipfw has the same behaviour! */ 6256 action = PF_DROP; 6257 REASON_SET(&reason, PFRES_MEMORY); 6258 log = 1; 6259 DPFPRINTF(PF_DEBUG_MISC, 6260 ("pf: failed to allocate divert tag\n")); 6261 } 6262 } 6263 6264 if (log) { 6265 struct pf_krule *lr; 6266 6267 if (s != NULL && s->nat_rule.ptr != NULL && 6268 s->nat_rule.ptr->log & PF_LOG_ALL) 6269 lr = s->nat_rule.ptr; 6270 else 6271 lr = r; 6272 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6273 (s == NULL)); 6274 } 6275 6276 counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 6277 pd.tot_len); 6278 counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 6279 1); 6280 6281 if (action == PF_PASS || r->action == PF_DROP) { 6282 dirndx = (dir == PF_OUT); 6283 counter_u64_add(r->packets[dirndx], 1); 6284 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6285 if (a != NULL) { 6286 counter_u64_add(a->packets[dirndx], 1); 6287 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6288 } 6289 if (s != NULL) { 6290 if (s->nat_rule.ptr != NULL) { 6291 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6292 1); 6293 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6294 pd.tot_len); 6295 } 6296 if (s->src_node != NULL) { 6297 counter_u64_add(s->src_node->packets[dirndx], 6298 1); 6299 counter_u64_add(s->src_node->bytes[dirndx], 6300 pd.tot_len); 6301 } 6302 if (s->nat_src_node != NULL) { 6303 counter_u64_add(s->nat_src_node->packets[dirndx], 6304 1); 6305 counter_u64_add(s->nat_src_node->bytes[dirndx], 6306 pd.tot_len); 6307 } 6308 dirndx = (dir == s->direction) ? 0 : 1; 6309 s->packets[dirndx]++; 6310 s->bytes[dirndx] += pd.tot_len; 6311 } 6312 tr = r; 6313 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6314 if (nr != NULL && r == &V_pf_default_rule) 6315 tr = nr; 6316 if (tr->src.addr.type == PF_ADDR_TABLE) 6317 pfr_update_stats(tr->src.addr.p.tbl, 6318 (s == NULL) ? pd.src : 6319 &s->key[(s->direction == PF_IN)]-> 6320 addr[(s->direction == PF_OUT)], 6321 pd.af, pd.tot_len, dir == PF_OUT, 6322 r->action == PF_PASS, tr->src.neg); 6323 if (tr->dst.addr.type == PF_ADDR_TABLE) 6324 pfr_update_stats(tr->dst.addr.p.tbl, 6325 (s == NULL) ? pd.dst : 6326 &s->key[(s->direction == PF_IN)]-> 6327 addr[(s->direction == PF_IN)], 6328 pd.af, pd.tot_len, dir == PF_OUT, 6329 r->action == PF_PASS, tr->dst.neg); 6330 } 6331 6332 switch (action) { 6333 case PF_SYNPROXY_DROP: 6334 m_freem(*m0); 6335 case PF_DEFER: 6336 *m0 = NULL; 6337 action = PF_PASS; 6338 break; 6339 case PF_DROP: 6340 m_freem(*m0); 6341 *m0 = NULL; 6342 break; 6343 default: 6344 /* pf_route() returns unlocked. */ 6345 if (r->rt) { 6346 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6347 return (action); 6348 } 6349 break; 6350 } 6351 6352 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 6353 6354 if (s) 6355 PF_STATE_UNLOCK(s); 6356 6357 return (action); 6358 } 6359 #endif /* INET */ 6360 6361 #ifdef INET6 6362 int 6363 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6364 { 6365 struct pfi_kkif *kif; 6366 u_short action, reason = 0, log = 0; 6367 struct mbuf *m = *m0, *n = NULL; 6368 struct m_tag *mtag; 6369 struct ip6_hdr *h = NULL; 6370 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6371 struct pf_kstate *s = NULL; 6372 struct pf_kruleset *ruleset = NULL; 6373 struct pf_pdesc pd; 6374 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6375 6376 PF_RULES_RLOCK_TRACKER; 6377 M_ASSERTPKTHDR(m); 6378 6379 if (!V_pf_status.running) 6380 return (PF_PASS); 6381 6382 memset(&pd, 0, sizeof(pd)); 6383 pd.pf_mtag = pf_find_mtag(m); 6384 6385 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6386 return (PF_PASS); 6387 6388 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6389 if (kif == NULL) { 6390 DPFPRINTF(PF_DEBUG_URGENT, 6391 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6392 return (PF_DROP); 6393 } 6394 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6395 return (PF_PASS); 6396 6397 if (m->m_flags & M_SKIP_FIREWALL) 6398 return (PF_PASS); 6399 6400 PF_RULES_RLOCK(); 6401 6402 /* We do IP header normalization and packet reassembly here */ 6403 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6404 action = PF_DROP; 6405 goto done; 6406 } 6407 m = *m0; /* pf_normalize messes with m0 */ 6408 h = mtod(m, struct ip6_hdr *); 6409 6410 /* 6411 * we do not support jumbogram. if we keep going, zero ip6_plen 6412 * will do something bad, so drop the packet for now. 6413 */ 6414 if (htons(h->ip6_plen) == 0) { 6415 action = PF_DROP; 6416 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6417 goto done; 6418 } 6419 6420 pd.src = (struct pf_addr *)&h->ip6_src; 6421 pd.dst = (struct pf_addr *)&h->ip6_dst; 6422 pd.sport = pd.dport = NULL; 6423 pd.ip_sum = NULL; 6424 pd.proto_sum = NULL; 6425 pd.dir = dir; 6426 pd.sidx = (dir == PF_IN) ? 0 : 1; 6427 pd.didx = (dir == PF_IN) ? 1 : 0; 6428 pd.af = AF_INET6; 6429 pd.tos = IPV6_DSCP(h); 6430 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6431 6432 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6433 pd.proto = h->ip6_nxt; 6434 do { 6435 switch (pd.proto) { 6436 case IPPROTO_FRAGMENT: 6437 action = pf_test_fragment(&r, dir, kif, m, h, 6438 &pd, &a, &ruleset); 6439 if (action == PF_DROP) 6440 REASON_SET(&reason, PFRES_FRAG); 6441 goto done; 6442 case IPPROTO_ROUTING: { 6443 struct ip6_rthdr rthdr; 6444 6445 if (rh_cnt++) { 6446 DPFPRINTF(PF_DEBUG_MISC, 6447 ("pf: IPv6 more than one rthdr\n")); 6448 action = PF_DROP; 6449 REASON_SET(&reason, PFRES_IPOPTIONS); 6450 log = 1; 6451 goto done; 6452 } 6453 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6454 &reason, pd.af)) { 6455 DPFPRINTF(PF_DEBUG_MISC, 6456 ("pf: IPv6 short rthdr\n")); 6457 action = PF_DROP; 6458 REASON_SET(&reason, PFRES_SHORT); 6459 log = 1; 6460 goto done; 6461 } 6462 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6463 DPFPRINTF(PF_DEBUG_MISC, 6464 ("pf: IPv6 rthdr0\n")); 6465 action = PF_DROP; 6466 REASON_SET(&reason, PFRES_IPOPTIONS); 6467 log = 1; 6468 goto done; 6469 } 6470 /* FALLTHROUGH */ 6471 } 6472 case IPPROTO_AH: 6473 case IPPROTO_HOPOPTS: 6474 case IPPROTO_DSTOPTS: { 6475 /* get next header and header length */ 6476 struct ip6_ext opt6; 6477 6478 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6479 NULL, &reason, pd.af)) { 6480 DPFPRINTF(PF_DEBUG_MISC, 6481 ("pf: IPv6 short opt\n")); 6482 action = PF_DROP; 6483 log = 1; 6484 goto done; 6485 } 6486 if (pd.proto == IPPROTO_AH) 6487 off += (opt6.ip6e_len + 2) * 4; 6488 else 6489 off += (opt6.ip6e_len + 1) * 8; 6490 pd.proto = opt6.ip6e_nxt; 6491 /* goto the next header */ 6492 break; 6493 } 6494 default: 6495 terminal++; 6496 break; 6497 } 6498 } while (!terminal); 6499 6500 /* if there's no routing header, use unmodified mbuf for checksumming */ 6501 if (!n) 6502 n = m; 6503 6504 switch (pd.proto) { 6505 case IPPROTO_TCP: { 6506 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6507 &action, &reason, AF_INET6)) { 6508 log = action != PF_PASS; 6509 goto done; 6510 } 6511 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6512 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6513 if (action == PF_DROP) 6514 goto done; 6515 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6516 &reason); 6517 if (action == PF_PASS) { 6518 if (V_pfsync_update_state_ptr != NULL) 6519 V_pfsync_update_state_ptr(s); 6520 r = s->rule.ptr; 6521 a = s->anchor.ptr; 6522 log = s->log; 6523 } else if (s == NULL) 6524 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6525 &a, &ruleset, inp); 6526 break; 6527 } 6528 6529 case IPPROTO_UDP: { 6530 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6531 &action, &reason, AF_INET6)) { 6532 log = action != PF_PASS; 6533 goto done; 6534 } 6535 if (pd.hdr.udp.uh_dport == 0 || 6536 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 6537 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 6538 action = PF_DROP; 6539 REASON_SET(&reason, PFRES_SHORT); 6540 goto done; 6541 } 6542 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6543 if (action == PF_PASS) { 6544 if (V_pfsync_update_state_ptr != NULL) 6545 V_pfsync_update_state_ptr(s); 6546 r = s->rule.ptr; 6547 a = s->anchor.ptr; 6548 log = s->log; 6549 } else if (s == NULL) 6550 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6551 &a, &ruleset, inp); 6552 break; 6553 } 6554 6555 case IPPROTO_ICMP: { 6556 action = PF_DROP; 6557 DPFPRINTF(PF_DEBUG_MISC, 6558 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6559 goto done; 6560 } 6561 6562 case IPPROTO_ICMPV6: { 6563 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 6564 &action, &reason, AF_INET6)) { 6565 log = action != PF_PASS; 6566 goto done; 6567 } 6568 action = pf_test_state_icmp(&s, dir, kif, 6569 m, off, h, &pd, &reason); 6570 if (action == PF_PASS) { 6571 if (V_pfsync_update_state_ptr != NULL) 6572 V_pfsync_update_state_ptr(s); 6573 r = s->rule.ptr; 6574 a = s->anchor.ptr; 6575 log = s->log; 6576 } else if (s == NULL) 6577 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6578 &a, &ruleset, inp); 6579 break; 6580 } 6581 6582 default: 6583 action = pf_test_state_other(&s, dir, kif, m, &pd); 6584 if (action == PF_PASS) { 6585 if (V_pfsync_update_state_ptr != NULL) 6586 V_pfsync_update_state_ptr(s); 6587 r = s->rule.ptr; 6588 a = s->anchor.ptr; 6589 log = s->log; 6590 } else if (s == NULL) 6591 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6592 &a, &ruleset, inp); 6593 break; 6594 } 6595 6596 done: 6597 PF_RULES_RUNLOCK(); 6598 if (n != m) { 6599 m_freem(n); 6600 n = NULL; 6601 } 6602 6603 /* handle dangerous IPv6 extension headers. */ 6604 if (action == PF_PASS && rh_cnt && 6605 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6606 action = PF_DROP; 6607 REASON_SET(&reason, PFRES_IPOPTIONS); 6608 log = r->log; 6609 DPFPRINTF(PF_DEBUG_MISC, 6610 ("pf: dropping packet with dangerous v6 headers\n")); 6611 } 6612 6613 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6614 action = PF_DROP; 6615 REASON_SET(&reason, PFRES_MEMORY); 6616 } 6617 if (r->rtableid >= 0) 6618 M_SETFIB(m, r->rtableid); 6619 6620 if (r->scrub_flags & PFSTATE_SETPRIO) { 6621 if (pd.tos & IPTOS_LOWDELAY) 6622 pqid = 1; 6623 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6624 action = PF_DROP; 6625 REASON_SET(&reason, PFRES_MEMORY); 6626 log = 1; 6627 DPFPRINTF(PF_DEBUG_MISC, 6628 ("pf: failed to allocate 802.1q mtag\n")); 6629 } 6630 } 6631 6632 #ifdef ALTQ 6633 if (s && s->qid) { 6634 pd.act.pqid = s->pqid; 6635 pd.act.qid = s->qid; 6636 } else if (r->qid) { 6637 pd.act.pqid = r->pqid; 6638 pd.act.qid = r->qid; 6639 } 6640 if (action == PF_PASS && pd.act.qid) { 6641 if (pd.pf_mtag == NULL && 6642 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6643 action = PF_DROP; 6644 REASON_SET(&reason, PFRES_MEMORY); 6645 } else { 6646 if (s != NULL) 6647 pd.pf_mtag->qid_hash = pf_state_hash(s); 6648 if (pd.tos & IPTOS_LOWDELAY) 6649 pd.pf_mtag->qid = pd.act.pqid; 6650 else 6651 pd.pf_mtag->qid = pd.act.qid; 6652 /* Add hints for ecn. */ 6653 pd.pf_mtag->hdr = h; 6654 } 6655 } 6656 #endif /* ALTQ */ 6657 6658 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6659 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6660 (s->nat_rule.ptr->action == PF_RDR || 6661 s->nat_rule.ptr->action == PF_BINAT) && 6662 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6663 m->m_flags |= M_SKIP_FIREWALL; 6664 6665 /* XXX: Anybody working on it?! */ 6666 if (r->divert.port) 6667 printf("pf: divert(9) is not supported for IPv6\n"); 6668 6669 if (log) { 6670 struct pf_krule *lr; 6671 6672 if (s != NULL && s->nat_rule.ptr != NULL && 6673 s->nat_rule.ptr->log & PF_LOG_ALL) 6674 lr = s->nat_rule.ptr; 6675 else 6676 lr = r; 6677 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6678 &pd, (s == NULL)); 6679 } 6680 6681 counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 6682 pd.tot_len); 6683 counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 6684 1); 6685 6686 if (action == PF_PASS || r->action == PF_DROP) { 6687 dirndx = (dir == PF_OUT); 6688 counter_u64_add(r->packets[dirndx], 1); 6689 counter_u64_add(r->bytes[dirndx], pd.tot_len); 6690 if (a != NULL) { 6691 counter_u64_add(a->packets[dirndx], 1); 6692 counter_u64_add(a->bytes[dirndx], pd.tot_len); 6693 } 6694 if (s != NULL) { 6695 if (s->nat_rule.ptr != NULL) { 6696 counter_u64_add(s->nat_rule.ptr->packets[dirndx], 6697 1); 6698 counter_u64_add(s->nat_rule.ptr->bytes[dirndx], 6699 pd.tot_len); 6700 } 6701 if (s->src_node != NULL) { 6702 counter_u64_add(s->src_node->packets[dirndx], 6703 1); 6704 counter_u64_add(s->src_node->bytes[dirndx], 6705 pd.tot_len); 6706 } 6707 if (s->nat_src_node != NULL) { 6708 counter_u64_add(s->nat_src_node->packets[dirndx], 6709 1); 6710 counter_u64_add(s->nat_src_node->bytes[dirndx], 6711 pd.tot_len); 6712 } 6713 dirndx = (dir == s->direction) ? 0 : 1; 6714 s->packets[dirndx]++; 6715 s->bytes[dirndx] += pd.tot_len; 6716 } 6717 tr = r; 6718 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6719 if (nr != NULL && r == &V_pf_default_rule) 6720 tr = nr; 6721 if (tr->src.addr.type == PF_ADDR_TABLE) 6722 pfr_update_stats(tr->src.addr.p.tbl, 6723 (s == NULL) ? pd.src : 6724 &s->key[(s->direction == PF_IN)]->addr[0], 6725 pd.af, pd.tot_len, dir == PF_OUT, 6726 r->action == PF_PASS, tr->src.neg); 6727 if (tr->dst.addr.type == PF_ADDR_TABLE) 6728 pfr_update_stats(tr->dst.addr.p.tbl, 6729 (s == NULL) ? pd.dst : 6730 &s->key[(s->direction == PF_IN)]->addr[1], 6731 pd.af, pd.tot_len, dir == PF_OUT, 6732 r->action == PF_PASS, tr->dst.neg); 6733 } 6734 6735 switch (action) { 6736 case PF_SYNPROXY_DROP: 6737 m_freem(*m0); 6738 case PF_DEFER: 6739 *m0 = NULL; 6740 action = PF_PASS; 6741 break; 6742 case PF_DROP: 6743 m_freem(*m0); 6744 *m0 = NULL; 6745 break; 6746 default: 6747 /* pf_route6() returns unlocked. */ 6748 if (r->rt) { 6749 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6750 return (action); 6751 } 6752 break; 6753 } 6754 6755 if (s) 6756 PF_STATE_UNLOCK(s); 6757 6758 /* If reassembled packet passed, create new fragments. */ 6759 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6760 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6761 action = pf_refragment6(ifp, m0, mtag); 6762 6763 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 6764 6765 return (action); 6766 } 6767 #endif /* INET6 */ 6768