1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #if defined(SCTP) || defined(SCTP_SUPPORT) 115 #include <netinet/sctp_crc32.h> 116 #endif 117 118 #include <machine/in_cksum.h> 119 #include <security/mac/mac_framework.h> 120 121 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 122 123 SDT_PROVIDER_DEFINE(pf); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 127 "struct pf_kstate *"); 128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 130 "struct pf_kstate *"); 131 132 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 133 "struct mbuf *"); 134 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 135 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 136 "int", "struct pf_keth_rule *", "char *"); 137 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 139 "int", "struct pf_keth_rule *"); 140 141 /* 142 * Global variables 143 */ 144 145 /* state tables */ 146 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 147 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 148 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 152 VNET_DEFINE(struct pf_kstatus, pf_status); 153 154 VNET_DEFINE(u_int32_t, ticket_altqs_active); 155 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 156 VNET_DEFINE(int, altqs_inactive_open); 157 VNET_DEFINE(u_int32_t, ticket_pabuf); 158 159 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 160 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 161 VNET_DEFINE(u_char, pf_tcp_secret[16]); 162 #define V_pf_tcp_secret VNET(pf_tcp_secret) 163 VNET_DEFINE(int, pf_tcp_secret_init); 164 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 165 VNET_DEFINE(int, pf_tcp_iss_off); 166 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 167 VNET_DECLARE(int, pf_vnet_active); 168 #define V_pf_vnet_active VNET(pf_vnet_active) 169 170 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 171 #define V_pf_purge_idx VNET(pf_purge_idx) 172 173 #ifdef PF_WANT_32_TO_64_COUNTER 174 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 175 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 176 177 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 178 VNET_DEFINE(size_t, pf_allrulecount); 179 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 180 #endif 181 182 /* 183 * Queue for pf_intr() sends. 184 */ 185 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 186 struct pf_send_entry { 187 STAILQ_ENTRY(pf_send_entry) pfse_next; 188 struct mbuf *pfse_m; 189 enum { 190 PFSE_IP, 191 PFSE_IP6, 192 PFSE_ICMP, 193 PFSE_ICMP6, 194 } pfse_type; 195 struct { 196 int type; 197 int code; 198 int mtu; 199 } icmpopts; 200 }; 201 202 STAILQ_HEAD(pf_send_head, pf_send_entry); 203 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 204 #define V_pf_sendqueue VNET(pf_sendqueue) 205 206 static struct mtx_padalign pf_sendqueue_mtx; 207 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 208 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 209 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 210 211 /* 212 * Queue for pf_overload_task() tasks. 213 */ 214 struct pf_overload_entry { 215 SLIST_ENTRY(pf_overload_entry) next; 216 struct pf_addr addr; 217 sa_family_t af; 218 uint8_t dir; 219 struct pf_krule *rule; 220 }; 221 222 SLIST_HEAD(pf_overload_head, pf_overload_entry); 223 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 224 #define V_pf_overloadqueue VNET(pf_overloadqueue) 225 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 226 #define V_pf_overloadtask VNET(pf_overloadtask) 227 228 static struct mtx_padalign pf_overloadqueue_mtx; 229 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 230 "pf overload/flush queue", MTX_DEF); 231 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 232 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 233 234 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 235 struct mtx_padalign pf_unlnkdrules_mtx; 236 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 237 MTX_DEF); 238 239 struct sx pf_config_lock; 240 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 241 242 struct mtx_padalign pf_table_stats_lock; 243 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 244 MTX_DEF); 245 246 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 247 #define V_pf_sources_z VNET(pf_sources_z) 248 uma_zone_t pf_mtag_z; 249 VNET_DEFINE(uma_zone_t, pf_state_z); 250 VNET_DEFINE(uma_zone_t, pf_state_key_z); 251 252 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 253 #define PFID_CPUBITS 8 254 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 255 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 256 #define PFID_MAXID (~PFID_CPUMASK) 257 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 258 259 static void pf_src_tree_remove_state(struct pf_kstate *); 260 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 261 u_int32_t); 262 static void pf_add_threshold(struct pf_threshold *); 263 static int pf_check_threshold(struct pf_threshold *); 264 265 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 266 u_int16_t *, u_int16_t *, struct pf_addr *, 267 u_int16_t, u_int8_t, sa_family_t); 268 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 269 struct tcphdr *, struct pf_state_peer *); 270 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 271 struct pf_addr *, struct pf_addr *, u_int16_t, 272 u_int16_t *, u_int16_t *, u_int16_t *, 273 u_int16_t *, u_int8_t, sa_family_t); 274 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 275 sa_family_t, struct pf_krule *); 276 static void pf_detach_state(struct pf_kstate *); 277 static int pf_state_key_attach(struct pf_state_key *, 278 struct pf_state_key *, struct pf_kstate *); 279 static void pf_state_key_detach(struct pf_kstate *, int); 280 static int pf_state_key_ctor(void *, int, void *, int); 281 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 282 void pf_rule_to_actions(struct pf_krule *, 283 struct pf_rule_actions *); 284 static int pf_test_eth_rule(int, struct pfi_kkif *, 285 struct mbuf **); 286 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 287 int, struct pfi_kkif *, struct mbuf *, int, 288 struct pf_pdesc *, struct pf_krule **, 289 struct pf_kruleset **, struct inpcb *); 290 static int pf_create_state(struct pf_krule *, struct pf_krule *, 291 struct pf_krule *, struct pf_pdesc *, 292 struct pf_ksrc_node *, struct pf_state_key *, 293 struct pf_state_key *, struct mbuf *, int, 294 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 295 struct pf_kstate **, int, u_int16_t, u_int16_t, 296 int); 297 static int pf_test_fragment(struct pf_krule **, int, 298 struct pfi_kkif *, struct mbuf *, void *, 299 struct pf_pdesc *, struct pf_krule **, 300 struct pf_kruleset **); 301 static int pf_tcp_track_full(struct pf_kstate **, 302 struct pfi_kkif *, struct mbuf *, int, 303 struct pf_pdesc *, u_short *, int *); 304 static int pf_tcp_track_sloppy(struct pf_kstate **, 305 struct pf_pdesc *, u_short *); 306 static int pf_test_state_tcp(struct pf_kstate **, int, 307 struct pfi_kkif *, struct mbuf *, int, 308 void *, struct pf_pdesc *, u_short *); 309 static int pf_test_state_udp(struct pf_kstate **, int, 310 struct pfi_kkif *, struct mbuf *, int, 311 void *, struct pf_pdesc *); 312 static int pf_test_state_icmp(struct pf_kstate **, int, 313 struct pfi_kkif *, struct mbuf *, int, 314 void *, struct pf_pdesc *, u_short *); 315 static int pf_test_state_other(struct pf_kstate **, int, 316 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 317 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 318 int, u_int16_t); 319 static int pf_check_proto_cksum(struct mbuf *, int, int, 320 u_int8_t, sa_family_t); 321 static void pf_print_state_parts(struct pf_kstate *, 322 struct pf_state_key *, struct pf_state_key *); 323 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 324 struct pf_addr_wrap *); 325 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 326 bool, u_int8_t); 327 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 328 struct pf_state_key_cmp *, u_int); 329 static int pf_src_connlimit(struct pf_kstate **); 330 static void pf_overload_task(void *v, int pending); 331 static int pf_insert_src_node(struct pf_ksrc_node **, 332 struct pf_krule *, struct pf_addr *, sa_family_t); 333 static u_int pf_purge_expired_states(u_int, int); 334 static void pf_purge_unlinked_rules(void); 335 static int pf_mtag_uminit(void *, int, int); 336 static void pf_mtag_free(struct m_tag *); 337 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 338 int, struct pf_state_key *); 339 #ifdef INET 340 static void pf_route(struct mbuf **, struct pf_krule *, int, 341 struct ifnet *, struct pf_kstate *, 342 struct pf_pdesc *, struct inpcb *); 343 #endif /* INET */ 344 #ifdef INET6 345 static void pf_change_a6(struct pf_addr *, u_int16_t *, 346 struct pf_addr *, u_int8_t); 347 static void pf_route6(struct mbuf **, struct pf_krule *, int, 348 struct ifnet *, struct pf_kstate *, 349 struct pf_pdesc *, struct inpcb *); 350 #endif /* INET6 */ 351 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 352 353 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 354 355 extern int pf_end_threads; 356 extern struct proc *pf_purge_proc; 357 358 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 359 360 #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ 361 do { \ 362 struct pf_state_key *nk; \ 363 if ((_dir) == PF_OUT) \ 364 nk = (_s)->key[PF_SK_STACK]; \ 365 else \ 366 nk = (_s)->key[PF_SK_WIRE]; \ 367 pf_packet_rework_nat(_m, _pd, _off, nk); \ 368 } while (0) 369 370 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 371 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 372 373 #define STATE_LOOKUP(i, k, d, s, pd) \ 374 do { \ 375 (s) = pf_find_state((i), (k), (d)); \ 376 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 377 if ((s) == NULL) \ 378 return (PF_DROP); \ 379 if (PACKET_LOOPED(pd)) \ 380 return (PF_PASS); \ 381 } while (0) 382 383 #define BOUND_IFACE(r, k) \ 384 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 385 386 #define STATE_INC_COUNTERS(s) \ 387 do { \ 388 counter_u64_add(s->rule.ptr->states_cur, 1); \ 389 counter_u64_add(s->rule.ptr->states_tot, 1); \ 390 if (s->anchor.ptr != NULL) { \ 391 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 392 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 393 } \ 394 if (s->nat_rule.ptr != NULL) { \ 395 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 396 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 397 } \ 398 } while (0) 399 400 #define STATE_DEC_COUNTERS(s) \ 401 do { \ 402 if (s->nat_rule.ptr != NULL) \ 403 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 404 if (s->anchor.ptr != NULL) \ 405 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 406 counter_u64_add(s->rule.ptr->states_cur, -1); \ 407 } while (0) 408 409 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 410 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 411 VNET_DEFINE(struct pf_idhash *, pf_idhash); 412 VNET_DEFINE(struct pf_srchash *, pf_srchash); 413 414 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 415 "pf(4)"); 416 417 u_long pf_hashmask; 418 u_long pf_srchashmask; 419 static u_long pf_hashsize; 420 static u_long pf_srchashsize; 421 u_long pf_ioctl_maxcount = 65535; 422 423 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 424 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 425 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 426 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 427 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 428 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 429 430 VNET_DEFINE(void *, pf_swi_cookie); 431 VNET_DEFINE(struct intr_event *, pf_swi_ie); 432 433 VNET_DEFINE(uint32_t, pf_hashseed); 434 #define V_pf_hashseed VNET(pf_hashseed) 435 436 #ifdef __LP64__ 437 static int 438 pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig) 439 { 440 unsigned long *k1 = (unsigned long *)k1_orig; 441 unsigned long *k2 = (unsigned long *)k2_orig; 442 443 if (k1[0] != k2[0]) 444 return (1); 445 446 if (k1[1] != k2[1]) 447 return (1); 448 449 if (k1[2] != k2[2]) 450 return (1); 451 452 if (k1[3] != k2[3]) 453 return (1); 454 455 if (k1[4] != k2[4]) 456 return (1); 457 458 return (0); 459 } 460 _Static_assert(sizeof(struct pf_state_key_cmp) == 40, "bad size of pf_state_key_cmp"); 461 #else 462 static inline int 463 pf_bcmp_state_key(struct pf_state_key *k1_orig, struct pf_state_key_cmp *k2_orig) 464 { 465 466 return (bcmp(k1_orig, k2_orig, sizeof(struct pf_state_key_cmp))); 467 } 468 #endif 469 470 int 471 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 472 { 473 474 switch (af) { 475 #ifdef INET 476 case AF_INET: 477 if (a->addr32[0] > b->addr32[0]) 478 return (1); 479 if (a->addr32[0] < b->addr32[0]) 480 return (-1); 481 break; 482 #endif /* INET */ 483 #ifdef INET6 484 case AF_INET6: 485 if (a->addr32[3] > b->addr32[3]) 486 return (1); 487 if (a->addr32[3] < b->addr32[3]) 488 return (-1); 489 if (a->addr32[2] > b->addr32[2]) 490 return (1); 491 if (a->addr32[2] < b->addr32[2]) 492 return (-1); 493 if (a->addr32[1] > b->addr32[1]) 494 return (1); 495 if (a->addr32[1] < b->addr32[1]) 496 return (-1); 497 if (a->addr32[0] > b->addr32[0]) 498 return (1); 499 if (a->addr32[0] < b->addr32[0]) 500 return (-1); 501 break; 502 #endif /* INET6 */ 503 default: 504 panic("%s: unknown address family %u", __func__, af); 505 } 506 return (0); 507 } 508 509 static void 510 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 511 struct pf_state_key *nk) 512 { 513 514 switch (pd->proto) { 515 case IPPROTO_TCP: { 516 struct tcphdr *th = &pd->hdr.tcp; 517 518 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 519 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 520 &th->th_sum, &nk->addr[pd->sidx], 521 nk->port[pd->sidx], 0, pd->af); 522 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 523 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 524 &th->th_sum, &nk->addr[pd->didx], 525 nk->port[pd->didx], 0, pd->af); 526 m_copyback(m, off, sizeof(*th), (caddr_t)th); 527 break; 528 } 529 case IPPROTO_UDP: { 530 struct udphdr *uh = &pd->hdr.udp; 531 532 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 533 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 534 &uh->uh_sum, &nk->addr[pd->sidx], 535 nk->port[pd->sidx], 1, pd->af); 536 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 537 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 538 &uh->uh_sum, &nk->addr[pd->didx], 539 nk->port[pd->didx], 1, pd->af); 540 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 541 break; 542 } 543 case IPPROTO_ICMP: { 544 struct icmp *ih = &pd->hdr.icmp; 545 546 if (nk->port[pd->sidx] != ih->icmp_id) { 547 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 548 ih->icmp_cksum, ih->icmp_id, 549 nk->port[pd->sidx], 0); 550 ih->icmp_id = nk->port[pd->sidx]; 551 pd->sport = &ih->icmp_id; 552 553 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 554 } 555 /* FALLTHROUGH */ 556 } 557 default: 558 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 559 switch (pd->af) { 560 case AF_INET: 561 pf_change_a(&pd->src->v4.s_addr, 562 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 563 0); 564 break; 565 case AF_INET6: 566 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 567 break; 568 } 569 } 570 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 571 switch (pd->af) { 572 case AF_INET: 573 pf_change_a(&pd->dst->v4.s_addr, 574 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 575 0); 576 break; 577 case AF_INET6: 578 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 579 break; 580 } 581 } 582 break; 583 } 584 } 585 586 static __inline uint32_t 587 pf_hashkey(struct pf_state_key *sk) 588 { 589 uint32_t h; 590 591 h = murmur3_32_hash32((uint32_t *)sk, 592 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 593 V_pf_hashseed); 594 595 return (h & pf_hashmask); 596 } 597 598 static __inline uint32_t 599 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 600 { 601 uint32_t h; 602 603 switch (af) { 604 case AF_INET: 605 h = murmur3_32_hash32((uint32_t *)&addr->v4, 606 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 607 break; 608 case AF_INET6: 609 h = murmur3_32_hash32((uint32_t *)&addr->v6, 610 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 611 break; 612 default: 613 panic("%s: unknown address family %u", __func__, af); 614 } 615 616 return (h & pf_srchashmask); 617 } 618 619 #ifdef ALTQ 620 static int 621 pf_state_hash(struct pf_kstate *s) 622 { 623 u_int32_t hv = (intptr_t)s / sizeof(*s); 624 625 hv ^= crc32(&s->src, sizeof(s->src)); 626 hv ^= crc32(&s->dst, sizeof(s->dst)); 627 if (hv == 0) 628 hv = 1; 629 return (hv); 630 } 631 #endif 632 633 static __inline void 634 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 635 { 636 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 637 s->dst.state = newstate; 638 if (which == PF_PEER_DST) 639 return; 640 if (s->src.state == newstate) 641 return; 642 if (s->creatorid == V_pf_status.hostid && 643 s->key[PF_SK_STACK] != NULL && 644 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 645 !(TCPS_HAVEESTABLISHED(s->src.state) || 646 s->src.state == TCPS_CLOSED) && 647 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 648 atomic_add_32(&V_pf_status.states_halfopen, -1); 649 650 s->src.state = newstate; 651 } 652 653 #ifdef INET6 654 void 655 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 656 { 657 switch (af) { 658 #ifdef INET 659 case AF_INET: 660 dst->addr32[0] = src->addr32[0]; 661 break; 662 #endif /* INET */ 663 case AF_INET6: 664 dst->addr32[0] = src->addr32[0]; 665 dst->addr32[1] = src->addr32[1]; 666 dst->addr32[2] = src->addr32[2]; 667 dst->addr32[3] = src->addr32[3]; 668 break; 669 } 670 } 671 #endif /* INET6 */ 672 673 static void 674 pf_init_threshold(struct pf_threshold *threshold, 675 u_int32_t limit, u_int32_t seconds) 676 { 677 threshold->limit = limit * PF_THRESHOLD_MULT; 678 threshold->seconds = seconds; 679 threshold->count = 0; 680 threshold->last = time_uptime; 681 } 682 683 static void 684 pf_add_threshold(struct pf_threshold *threshold) 685 { 686 u_int32_t t = time_uptime, diff = t - threshold->last; 687 688 if (diff >= threshold->seconds) 689 threshold->count = 0; 690 else 691 threshold->count -= threshold->count * diff / 692 threshold->seconds; 693 threshold->count += PF_THRESHOLD_MULT; 694 threshold->last = t; 695 } 696 697 static int 698 pf_check_threshold(struct pf_threshold *threshold) 699 { 700 return (threshold->count > threshold->limit); 701 } 702 703 static int 704 pf_src_connlimit(struct pf_kstate **state) 705 { 706 struct pf_overload_entry *pfoe; 707 int bad = 0; 708 709 PF_STATE_LOCK_ASSERT(*state); 710 711 (*state)->src_node->conn++; 712 (*state)->src.tcp_est = 1; 713 pf_add_threshold(&(*state)->src_node->conn_rate); 714 715 if ((*state)->rule.ptr->max_src_conn && 716 (*state)->rule.ptr->max_src_conn < 717 (*state)->src_node->conn) { 718 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 719 bad++; 720 } 721 722 if ((*state)->rule.ptr->max_src_conn_rate.limit && 723 pf_check_threshold(&(*state)->src_node->conn_rate)) { 724 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 725 bad++; 726 } 727 728 if (!bad) 729 return (0); 730 731 /* Kill this state. */ 732 (*state)->timeout = PFTM_PURGE; 733 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 734 735 if ((*state)->rule.ptr->overload_tbl == NULL) 736 return (1); 737 738 /* Schedule overloading and flushing task. */ 739 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 740 if (pfoe == NULL) 741 return (1); /* too bad :( */ 742 743 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 744 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 745 pfoe->rule = (*state)->rule.ptr; 746 pfoe->dir = (*state)->direction; 747 PF_OVERLOADQ_LOCK(); 748 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 749 PF_OVERLOADQ_UNLOCK(); 750 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 751 752 return (1); 753 } 754 755 static void 756 pf_overload_task(void *v, int pending) 757 { 758 struct pf_overload_head queue; 759 struct pfr_addr p; 760 struct pf_overload_entry *pfoe, *pfoe1; 761 uint32_t killed = 0; 762 763 CURVNET_SET((struct vnet *)v); 764 765 PF_OVERLOADQ_LOCK(); 766 queue = V_pf_overloadqueue; 767 SLIST_INIT(&V_pf_overloadqueue); 768 PF_OVERLOADQ_UNLOCK(); 769 770 bzero(&p, sizeof(p)); 771 SLIST_FOREACH(pfoe, &queue, next) { 772 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 773 if (V_pf_status.debug >= PF_DEBUG_MISC) { 774 printf("%s: blocking address ", __func__); 775 pf_print_host(&pfoe->addr, 0, pfoe->af); 776 printf("\n"); 777 } 778 779 p.pfra_af = pfoe->af; 780 switch (pfoe->af) { 781 #ifdef INET 782 case AF_INET: 783 p.pfra_net = 32; 784 p.pfra_ip4addr = pfoe->addr.v4; 785 break; 786 #endif 787 #ifdef INET6 788 case AF_INET6: 789 p.pfra_net = 128; 790 p.pfra_ip6addr = pfoe->addr.v6; 791 break; 792 #endif 793 } 794 795 PF_RULES_WLOCK(); 796 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 797 PF_RULES_WUNLOCK(); 798 } 799 800 /* 801 * Remove those entries, that don't need flushing. 802 */ 803 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 804 if (pfoe->rule->flush == 0) { 805 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 806 free(pfoe, M_PFTEMP); 807 } else 808 counter_u64_add( 809 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 810 811 /* If nothing to flush, return. */ 812 if (SLIST_EMPTY(&queue)) { 813 CURVNET_RESTORE(); 814 return; 815 } 816 817 for (int i = 0; i <= pf_hashmask; i++) { 818 struct pf_idhash *ih = &V_pf_idhash[i]; 819 struct pf_state_key *sk; 820 struct pf_kstate *s; 821 822 PF_HASHROW_LOCK(ih); 823 LIST_FOREACH(s, &ih->states, entry) { 824 sk = s->key[PF_SK_WIRE]; 825 SLIST_FOREACH(pfoe, &queue, next) 826 if (sk->af == pfoe->af && 827 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 828 pfoe->rule == s->rule.ptr) && 829 ((pfoe->dir == PF_OUT && 830 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 831 (pfoe->dir == PF_IN && 832 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 833 s->timeout = PFTM_PURGE; 834 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 835 killed++; 836 } 837 } 838 PF_HASHROW_UNLOCK(ih); 839 } 840 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 841 free(pfoe, M_PFTEMP); 842 if (V_pf_status.debug >= PF_DEBUG_MISC) 843 printf("%s: %u states killed", __func__, killed); 844 845 CURVNET_RESTORE(); 846 } 847 848 /* 849 * Can return locked on failure, so that we can consistently 850 * allocate and insert a new one. 851 */ 852 struct pf_ksrc_node * 853 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 854 int returnlocked) 855 { 856 struct pf_srchash *sh; 857 struct pf_ksrc_node *n; 858 859 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 860 861 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 862 PF_HASHROW_LOCK(sh); 863 LIST_FOREACH(n, &sh->nodes, entry) 864 if (n->rule.ptr == rule && n->af == af && 865 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 866 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 867 break; 868 if (n != NULL) { 869 n->states++; 870 PF_HASHROW_UNLOCK(sh); 871 } else if (returnlocked == 0) 872 PF_HASHROW_UNLOCK(sh); 873 874 return (n); 875 } 876 877 static void 878 pf_free_src_node(struct pf_ksrc_node *sn) 879 { 880 881 for (int i = 0; i < 2; i++) { 882 counter_u64_free(sn->bytes[i]); 883 counter_u64_free(sn->packets[i]); 884 } 885 uma_zfree(V_pf_sources_z, sn); 886 } 887 888 static int 889 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 890 struct pf_addr *src, sa_family_t af) 891 { 892 893 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 894 rule->rpool.opts & PF_POOL_STICKYADDR), 895 ("%s for non-tracking rule %p", __func__, rule)); 896 897 if (*sn == NULL) 898 *sn = pf_find_src_node(src, rule, af, 1); 899 900 if (*sn == NULL) { 901 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 902 903 PF_HASHROW_ASSERT(sh); 904 905 if (!rule->max_src_nodes || 906 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 907 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 908 else 909 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 910 1); 911 if ((*sn) == NULL) { 912 PF_HASHROW_UNLOCK(sh); 913 return (-1); 914 } 915 916 for (int i = 0; i < 2; i++) { 917 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 918 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 919 920 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 921 pf_free_src_node(*sn); 922 PF_HASHROW_UNLOCK(sh); 923 return (-1); 924 } 925 } 926 927 pf_init_threshold(&(*sn)->conn_rate, 928 rule->max_src_conn_rate.limit, 929 rule->max_src_conn_rate.seconds); 930 931 (*sn)->af = af; 932 (*sn)->rule.ptr = rule; 933 PF_ACPY(&(*sn)->addr, src, af); 934 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 935 (*sn)->creation = time_uptime; 936 (*sn)->ruletype = rule->action; 937 (*sn)->states = 1; 938 if ((*sn)->rule.ptr != NULL) 939 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 940 PF_HASHROW_UNLOCK(sh); 941 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 942 } else { 943 if (rule->max_src_states && 944 (*sn)->states >= rule->max_src_states) { 945 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 946 1); 947 return (-1); 948 } 949 } 950 return (0); 951 } 952 953 void 954 pf_unlink_src_node(struct pf_ksrc_node *src) 955 { 956 957 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 958 LIST_REMOVE(src, entry); 959 if (src->rule.ptr) 960 counter_u64_add(src->rule.ptr->src_nodes, -1); 961 } 962 963 u_int 964 pf_free_src_nodes(struct pf_ksrc_node_list *head) 965 { 966 struct pf_ksrc_node *sn, *tmp; 967 u_int count = 0; 968 969 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 970 pf_free_src_node(sn); 971 count++; 972 } 973 974 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 975 976 return (count); 977 } 978 979 void 980 pf_mtag_initialize() 981 { 982 983 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 984 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 985 UMA_ALIGN_PTR, 0); 986 } 987 988 /* Per-vnet data storage structures initialization. */ 989 void 990 pf_initialize() 991 { 992 struct pf_keyhash *kh; 993 struct pf_idhash *ih; 994 struct pf_srchash *sh; 995 u_int i; 996 997 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 998 pf_hashsize = PF_HASHSIZ; 999 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1000 pf_srchashsize = PF_SRCHASHSIZ; 1001 1002 V_pf_hashseed = arc4random(); 1003 1004 /* States and state keys storage. */ 1005 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1006 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1007 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1008 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1009 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1010 1011 V_pf_state_key_z = uma_zcreate("pf state keys", 1012 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1013 UMA_ALIGN_PTR, 0); 1014 1015 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1016 M_PFHASH, M_NOWAIT | M_ZERO); 1017 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1018 M_PFHASH, M_NOWAIT | M_ZERO); 1019 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1020 printf("pf: Unable to allocate memory for " 1021 "state_hashsize %lu.\n", pf_hashsize); 1022 1023 free(V_pf_keyhash, M_PFHASH); 1024 free(V_pf_idhash, M_PFHASH); 1025 1026 pf_hashsize = PF_HASHSIZ; 1027 V_pf_keyhash = mallocarray(pf_hashsize, 1028 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1029 V_pf_idhash = mallocarray(pf_hashsize, 1030 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1031 } 1032 1033 pf_hashmask = pf_hashsize - 1; 1034 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1035 i++, kh++, ih++) { 1036 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1037 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1038 } 1039 1040 /* Source nodes. */ 1041 V_pf_sources_z = uma_zcreate("pf source nodes", 1042 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1043 0); 1044 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1045 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1046 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1047 1048 V_pf_srchash = mallocarray(pf_srchashsize, 1049 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1050 if (V_pf_srchash == NULL) { 1051 printf("pf: Unable to allocate memory for " 1052 "source_hashsize %lu.\n", pf_srchashsize); 1053 1054 pf_srchashsize = PF_SRCHASHSIZ; 1055 V_pf_srchash = mallocarray(pf_srchashsize, 1056 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1057 } 1058 1059 pf_srchashmask = pf_srchashsize - 1; 1060 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1061 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1062 1063 /* ALTQ */ 1064 TAILQ_INIT(&V_pf_altqs[0]); 1065 TAILQ_INIT(&V_pf_altqs[1]); 1066 TAILQ_INIT(&V_pf_altqs[2]); 1067 TAILQ_INIT(&V_pf_altqs[3]); 1068 TAILQ_INIT(&V_pf_pabuf); 1069 V_pf_altqs_active = &V_pf_altqs[0]; 1070 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1071 V_pf_altqs_inactive = &V_pf_altqs[2]; 1072 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1073 1074 /* Send & overload+flush queues. */ 1075 STAILQ_INIT(&V_pf_sendqueue); 1076 SLIST_INIT(&V_pf_overloadqueue); 1077 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1078 1079 /* Unlinked, but may be referenced rules. */ 1080 TAILQ_INIT(&V_pf_unlinked_rules); 1081 } 1082 1083 void 1084 pf_mtag_cleanup() 1085 { 1086 1087 uma_zdestroy(pf_mtag_z); 1088 } 1089 1090 void 1091 pf_cleanup() 1092 { 1093 struct pf_keyhash *kh; 1094 struct pf_idhash *ih; 1095 struct pf_srchash *sh; 1096 struct pf_send_entry *pfse, *next; 1097 u_int i; 1098 1099 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1100 i++, kh++, ih++) { 1101 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1102 __func__)); 1103 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1104 __func__)); 1105 mtx_destroy(&kh->lock); 1106 mtx_destroy(&ih->lock); 1107 } 1108 free(V_pf_keyhash, M_PFHASH); 1109 free(V_pf_idhash, M_PFHASH); 1110 1111 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1112 KASSERT(LIST_EMPTY(&sh->nodes), 1113 ("%s: source node hash not empty", __func__)); 1114 mtx_destroy(&sh->lock); 1115 } 1116 free(V_pf_srchash, M_PFHASH); 1117 1118 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1119 m_freem(pfse->pfse_m); 1120 free(pfse, M_PFTEMP); 1121 } 1122 1123 uma_zdestroy(V_pf_sources_z); 1124 uma_zdestroy(V_pf_state_z); 1125 uma_zdestroy(V_pf_state_key_z); 1126 } 1127 1128 static int 1129 pf_mtag_uminit(void *mem, int size, int how) 1130 { 1131 struct m_tag *t; 1132 1133 t = (struct m_tag *)mem; 1134 t->m_tag_cookie = MTAG_ABI_COMPAT; 1135 t->m_tag_id = PACKET_TAG_PF; 1136 t->m_tag_len = sizeof(struct pf_mtag); 1137 t->m_tag_free = pf_mtag_free; 1138 1139 return (0); 1140 } 1141 1142 static void 1143 pf_mtag_free(struct m_tag *t) 1144 { 1145 1146 uma_zfree(pf_mtag_z, t); 1147 } 1148 1149 struct pf_mtag * 1150 pf_get_mtag(struct mbuf *m) 1151 { 1152 struct m_tag *mtag; 1153 1154 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1155 return ((struct pf_mtag *)(mtag + 1)); 1156 1157 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1158 if (mtag == NULL) 1159 return (NULL); 1160 bzero(mtag + 1, sizeof(struct pf_mtag)); 1161 m_tag_prepend(m, mtag); 1162 1163 return ((struct pf_mtag *)(mtag + 1)); 1164 } 1165 1166 static int 1167 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1168 struct pf_kstate *s) 1169 { 1170 struct pf_keyhash *khs, *khw, *kh; 1171 struct pf_state_key *sk, *cur; 1172 struct pf_kstate *si, *olds = NULL; 1173 int idx; 1174 1175 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1176 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1177 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1178 1179 /* 1180 * We need to lock hash slots of both keys. To avoid deadlock 1181 * we always lock the slot with lower address first. Unlock order 1182 * isn't important. 1183 * 1184 * We also need to lock ID hash slot before dropping key 1185 * locks. On success we return with ID hash slot locked. 1186 */ 1187 1188 if (skw == sks) { 1189 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1190 PF_HASHROW_LOCK(khs); 1191 } else { 1192 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1193 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1194 if (khs == khw) { 1195 PF_HASHROW_LOCK(khs); 1196 } else if (khs < khw) { 1197 PF_HASHROW_LOCK(khs); 1198 PF_HASHROW_LOCK(khw); 1199 } else { 1200 PF_HASHROW_LOCK(khw); 1201 PF_HASHROW_LOCK(khs); 1202 } 1203 } 1204 1205 #define KEYS_UNLOCK() do { \ 1206 if (khs != khw) { \ 1207 PF_HASHROW_UNLOCK(khs); \ 1208 PF_HASHROW_UNLOCK(khw); \ 1209 } else \ 1210 PF_HASHROW_UNLOCK(khs); \ 1211 } while (0) 1212 1213 /* 1214 * First run: start with wire key. 1215 */ 1216 sk = skw; 1217 kh = khw; 1218 idx = PF_SK_WIRE; 1219 1220 MPASS(s->lock == NULL); 1221 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1222 1223 keyattach: 1224 LIST_FOREACH(cur, &kh->keys, entry) 1225 if (pf_bcmp_state_key(cur, (struct pf_state_key_cmp *)sk) == 0) 1226 break; 1227 1228 if (cur != NULL) { 1229 /* Key exists. Check for same kif, if none, add to key. */ 1230 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1231 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1232 1233 PF_HASHROW_LOCK(ih); 1234 if (si->kif == s->kif && 1235 si->direction == s->direction) { 1236 if (sk->proto == IPPROTO_TCP && 1237 si->src.state >= TCPS_FIN_WAIT_2 && 1238 si->dst.state >= TCPS_FIN_WAIT_2) { 1239 /* 1240 * New state matches an old >FIN_WAIT_2 1241 * state. We can't drop key hash locks, 1242 * thus we can't unlink it properly. 1243 * 1244 * As a workaround we drop it into 1245 * TCPS_CLOSED state, schedule purge 1246 * ASAP and push it into the very end 1247 * of the slot TAILQ, so that it won't 1248 * conflict with our new state. 1249 */ 1250 pf_set_protostate(si, PF_PEER_BOTH, 1251 TCPS_CLOSED); 1252 si->timeout = PFTM_PURGE; 1253 olds = si; 1254 } else { 1255 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1256 printf("pf: %s key attach " 1257 "failed on %s: ", 1258 (idx == PF_SK_WIRE) ? 1259 "wire" : "stack", 1260 s->kif->pfik_name); 1261 pf_print_state_parts(s, 1262 (idx == PF_SK_WIRE) ? 1263 sk : NULL, 1264 (idx == PF_SK_STACK) ? 1265 sk : NULL); 1266 printf(", existing: "); 1267 pf_print_state_parts(si, 1268 (idx == PF_SK_WIRE) ? 1269 sk : NULL, 1270 (idx == PF_SK_STACK) ? 1271 sk : NULL); 1272 printf("\n"); 1273 } 1274 PF_HASHROW_UNLOCK(ih); 1275 KEYS_UNLOCK(); 1276 uma_zfree(V_pf_state_key_z, sk); 1277 if (idx == PF_SK_STACK) 1278 pf_detach_state(s); 1279 return (EEXIST); /* collision! */ 1280 } 1281 } 1282 PF_HASHROW_UNLOCK(ih); 1283 } 1284 uma_zfree(V_pf_state_key_z, sk); 1285 s->key[idx] = cur; 1286 } else { 1287 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1288 s->key[idx] = sk; 1289 } 1290 1291 stateattach: 1292 /* List is sorted, if-bound states before floating. */ 1293 if (s->kif == V_pfi_all) 1294 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1295 else 1296 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1297 1298 if (olds) { 1299 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1300 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1301 key_list[idx]); 1302 olds = NULL; 1303 } 1304 1305 /* 1306 * Attach done. See how should we (or should not?) 1307 * attach a second key. 1308 */ 1309 if (sks == skw) { 1310 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1311 idx = PF_SK_STACK; 1312 sks = NULL; 1313 goto stateattach; 1314 } else if (sks != NULL) { 1315 /* 1316 * Continue attaching with stack key. 1317 */ 1318 sk = sks; 1319 kh = khs; 1320 idx = PF_SK_STACK; 1321 sks = NULL; 1322 goto keyattach; 1323 } 1324 1325 PF_STATE_LOCK(s); 1326 KEYS_UNLOCK(); 1327 1328 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1329 ("%s failure", __func__)); 1330 1331 return (0); 1332 #undef KEYS_UNLOCK 1333 } 1334 1335 static void 1336 pf_detach_state(struct pf_kstate *s) 1337 { 1338 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1339 struct pf_keyhash *kh; 1340 1341 if (sks != NULL) { 1342 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1343 PF_HASHROW_LOCK(kh); 1344 if (s->key[PF_SK_STACK] != NULL) 1345 pf_state_key_detach(s, PF_SK_STACK); 1346 /* 1347 * If both point to same key, then we are done. 1348 */ 1349 if (sks == s->key[PF_SK_WIRE]) { 1350 pf_state_key_detach(s, PF_SK_WIRE); 1351 PF_HASHROW_UNLOCK(kh); 1352 return; 1353 } 1354 PF_HASHROW_UNLOCK(kh); 1355 } 1356 1357 if (s->key[PF_SK_WIRE] != NULL) { 1358 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1359 PF_HASHROW_LOCK(kh); 1360 if (s->key[PF_SK_WIRE] != NULL) 1361 pf_state_key_detach(s, PF_SK_WIRE); 1362 PF_HASHROW_UNLOCK(kh); 1363 } 1364 } 1365 1366 static void 1367 pf_state_key_detach(struct pf_kstate *s, int idx) 1368 { 1369 struct pf_state_key *sk = s->key[idx]; 1370 #ifdef INVARIANTS 1371 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1372 1373 PF_HASHROW_ASSERT(kh); 1374 #endif 1375 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1376 s->key[idx] = NULL; 1377 1378 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1379 LIST_REMOVE(sk, entry); 1380 uma_zfree(V_pf_state_key_z, sk); 1381 } 1382 } 1383 1384 static int 1385 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1386 { 1387 struct pf_state_key *sk = mem; 1388 1389 bzero(sk, sizeof(struct pf_state_key_cmp)); 1390 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1391 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1392 1393 return (0); 1394 } 1395 1396 struct pf_state_key * 1397 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1398 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1399 { 1400 struct pf_state_key *sk; 1401 1402 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1403 if (sk == NULL) 1404 return (NULL); 1405 1406 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1407 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1408 sk->port[pd->sidx] = sport; 1409 sk->port[pd->didx] = dport; 1410 sk->proto = pd->proto; 1411 sk->af = pd->af; 1412 1413 return (sk); 1414 } 1415 1416 struct pf_state_key * 1417 pf_state_key_clone(struct pf_state_key *orig) 1418 { 1419 struct pf_state_key *sk; 1420 1421 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1422 if (sk == NULL) 1423 return (NULL); 1424 1425 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1426 1427 return (sk); 1428 } 1429 1430 int 1431 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1432 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1433 { 1434 struct pf_idhash *ih; 1435 struct pf_kstate *cur; 1436 int error; 1437 1438 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1439 ("%s: sks not pristine", __func__)); 1440 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1441 ("%s: skw not pristine", __func__)); 1442 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1443 1444 s->kif = kif; 1445 s->orig_kif = orig_kif; 1446 1447 if (s->id == 0 && s->creatorid == 0) { 1448 /* XXX: should be atomic, but probability of collision low */ 1449 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1450 V_pf_stateid[curcpu] = 1; 1451 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1452 s->id = htobe64(s->id); 1453 s->creatorid = V_pf_status.hostid; 1454 } 1455 1456 /* Returns with ID locked on success. */ 1457 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1458 return (error); 1459 1460 ih = &V_pf_idhash[PF_IDHASH(s)]; 1461 PF_HASHROW_ASSERT(ih); 1462 LIST_FOREACH(cur, &ih->states, entry) 1463 if (cur->id == s->id && cur->creatorid == s->creatorid) 1464 break; 1465 1466 if (cur != NULL) { 1467 PF_HASHROW_UNLOCK(ih); 1468 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1469 printf("pf: state ID collision: " 1470 "id: %016llx creatorid: %08x\n", 1471 (unsigned long long)be64toh(s->id), 1472 ntohl(s->creatorid)); 1473 } 1474 pf_detach_state(s); 1475 return (EEXIST); 1476 } 1477 LIST_INSERT_HEAD(&ih->states, s, entry); 1478 /* One for keys, one for ID hash. */ 1479 refcount_init(&s->refs, 2); 1480 1481 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1482 if (V_pfsync_insert_state_ptr != NULL) 1483 V_pfsync_insert_state_ptr(s); 1484 1485 /* Returns locked. */ 1486 return (0); 1487 } 1488 1489 /* 1490 * Find state by ID: returns with locked row on success. 1491 */ 1492 struct pf_kstate * 1493 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1494 { 1495 struct pf_idhash *ih; 1496 struct pf_kstate *s; 1497 1498 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1499 1500 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1501 1502 PF_HASHROW_LOCK(ih); 1503 LIST_FOREACH(s, &ih->states, entry) 1504 if (s->id == id && s->creatorid == creatorid) 1505 break; 1506 1507 if (s == NULL) 1508 PF_HASHROW_UNLOCK(ih); 1509 1510 return (s); 1511 } 1512 1513 /* 1514 * Find state by key. 1515 * Returns with ID hash slot locked on success. 1516 */ 1517 static struct pf_kstate * 1518 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1519 { 1520 struct pf_keyhash *kh; 1521 struct pf_state_key *sk; 1522 struct pf_kstate *s; 1523 int idx; 1524 1525 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1526 1527 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1528 1529 PF_HASHROW_LOCK(kh); 1530 LIST_FOREACH(sk, &kh->keys, entry) 1531 if (pf_bcmp_state_key(sk, key) == 0) 1532 break; 1533 if (sk == NULL) { 1534 PF_HASHROW_UNLOCK(kh); 1535 return (NULL); 1536 } 1537 1538 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1539 1540 /* List is sorted, if-bound states before floating ones. */ 1541 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1542 if (s->kif == V_pfi_all || s->kif == kif) { 1543 PF_STATE_LOCK(s); 1544 PF_HASHROW_UNLOCK(kh); 1545 if (__predict_false(s->timeout >= PFTM_MAX)) { 1546 /* 1547 * State is either being processed by 1548 * pf_unlink_state() in an other thread, or 1549 * is scheduled for immediate expiry. 1550 */ 1551 PF_STATE_UNLOCK(s); 1552 return (NULL); 1553 } 1554 return (s); 1555 } 1556 PF_HASHROW_UNLOCK(kh); 1557 1558 return (NULL); 1559 } 1560 1561 /* 1562 * Returns with ID hash slot locked on success. 1563 */ 1564 struct pf_kstate * 1565 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1566 { 1567 struct pf_keyhash *kh; 1568 struct pf_state_key *sk; 1569 struct pf_kstate *s, *ret = NULL; 1570 int idx, inout = 0; 1571 1572 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1573 1574 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1575 1576 PF_HASHROW_LOCK(kh); 1577 LIST_FOREACH(sk, &kh->keys, entry) 1578 if (pf_bcmp_state_key(sk, key) == 0) 1579 break; 1580 if (sk == NULL) { 1581 PF_HASHROW_UNLOCK(kh); 1582 return (NULL); 1583 } 1584 switch (dir) { 1585 case PF_IN: 1586 idx = PF_SK_WIRE; 1587 break; 1588 case PF_OUT: 1589 idx = PF_SK_STACK; 1590 break; 1591 case PF_INOUT: 1592 idx = PF_SK_WIRE; 1593 inout = 1; 1594 break; 1595 default: 1596 panic("%s: dir %u", __func__, dir); 1597 } 1598 second_run: 1599 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1600 if (more == NULL) { 1601 PF_STATE_LOCK(s); 1602 PF_HASHROW_UNLOCK(kh); 1603 return (s); 1604 } 1605 1606 if (ret) 1607 (*more)++; 1608 else { 1609 ret = s; 1610 PF_STATE_LOCK(s); 1611 } 1612 } 1613 if (inout == 1) { 1614 inout = 0; 1615 idx = PF_SK_STACK; 1616 goto second_run; 1617 } 1618 PF_HASHROW_UNLOCK(kh); 1619 1620 return (ret); 1621 } 1622 1623 /* 1624 * FIXME 1625 * This routine is inefficient -- locks the state only to unlock immediately on 1626 * return. 1627 * It is racy -- after the state is unlocked nothing stops other threads from 1628 * removing it. 1629 */ 1630 bool 1631 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1632 { 1633 struct pf_kstate *s; 1634 1635 s = pf_find_state_all(key, dir, NULL); 1636 if (s != NULL) { 1637 PF_STATE_UNLOCK(s); 1638 return (true); 1639 } 1640 return (false); 1641 } 1642 1643 /* END state table stuff */ 1644 1645 static void 1646 pf_send(struct pf_send_entry *pfse) 1647 { 1648 1649 PF_SENDQ_LOCK(); 1650 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1651 PF_SENDQ_UNLOCK(); 1652 swi_sched(V_pf_swi_cookie, 0); 1653 } 1654 1655 static bool 1656 pf_isforlocal(struct mbuf *m, int af) 1657 { 1658 switch (af) { 1659 #ifdef INET 1660 case AF_INET: { 1661 struct ip *ip = mtod(m, struct ip *); 1662 1663 return (in_localip(ip->ip_dst)); 1664 } 1665 #endif 1666 #ifdef INET6 1667 case AF_INET6: { 1668 struct ip6_hdr *ip6; 1669 struct in6_ifaddr *ia; 1670 ip6 = mtod(m, struct ip6_hdr *); 1671 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1672 if (ia == NULL) 1673 return (false); 1674 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1675 } 1676 #endif 1677 default: 1678 panic("Unsupported af %d", af); 1679 } 1680 1681 return (false); 1682 } 1683 1684 void 1685 pf_intr(void *v) 1686 { 1687 struct epoch_tracker et; 1688 struct pf_send_head queue; 1689 struct pf_send_entry *pfse, *next; 1690 1691 CURVNET_SET((struct vnet *)v); 1692 1693 PF_SENDQ_LOCK(); 1694 queue = V_pf_sendqueue; 1695 STAILQ_INIT(&V_pf_sendqueue); 1696 PF_SENDQ_UNLOCK(); 1697 1698 NET_EPOCH_ENTER(et); 1699 1700 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1701 switch (pfse->pfse_type) { 1702 #ifdef INET 1703 case PFSE_IP: { 1704 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1705 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1706 pfse->pfse_m->m_pkthdr.csum_flags |= 1707 CSUM_IP_VALID | CSUM_IP_CHECKED; 1708 ip_input(pfse->pfse_m); 1709 } else { 1710 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1711 NULL); 1712 } 1713 break; 1714 } 1715 case PFSE_ICMP: 1716 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1717 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1718 break; 1719 #endif /* INET */ 1720 #ifdef INET6 1721 case PFSE_IP6: 1722 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1723 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1724 ip6_input(pfse->pfse_m); 1725 } else { 1726 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1727 NULL, NULL); 1728 } 1729 break; 1730 case PFSE_ICMP6: 1731 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1732 pfse->icmpopts.code, pfse->icmpopts.mtu); 1733 break; 1734 #endif /* INET6 */ 1735 default: 1736 panic("%s: unknown type", __func__); 1737 } 1738 free(pfse, M_PFTEMP); 1739 } 1740 NET_EPOCH_EXIT(et); 1741 CURVNET_RESTORE(); 1742 } 1743 1744 #define pf_purge_thread_period (hz / 10) 1745 1746 #ifdef PF_WANT_32_TO_64_COUNTER 1747 static void 1748 pf_status_counter_u64_periodic(void) 1749 { 1750 1751 PF_RULES_RASSERT(); 1752 1753 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1754 return; 1755 } 1756 1757 for (int i = 0; i < FCNT_MAX; i++) { 1758 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1759 } 1760 } 1761 1762 static void 1763 pf_kif_counter_u64_periodic(void) 1764 { 1765 struct pfi_kkif *kif; 1766 size_t r, run; 1767 1768 PF_RULES_RASSERT(); 1769 1770 if (__predict_false(V_pf_allkifcount == 0)) { 1771 return; 1772 } 1773 1774 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1775 return; 1776 } 1777 1778 run = V_pf_allkifcount / 10; 1779 if (run < 5) 1780 run = 5; 1781 1782 for (r = 0; r < run; r++) { 1783 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1784 if (kif == NULL) { 1785 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1786 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1787 break; 1788 } 1789 1790 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1791 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1792 1793 for (int i = 0; i < 2; i++) { 1794 for (int j = 0; j < 2; j++) { 1795 for (int k = 0; k < 2; k++) { 1796 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1797 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1798 } 1799 } 1800 } 1801 } 1802 } 1803 1804 static void 1805 pf_rule_counter_u64_periodic(void) 1806 { 1807 struct pf_krule *rule; 1808 size_t r, run; 1809 1810 PF_RULES_RASSERT(); 1811 1812 if (__predict_false(V_pf_allrulecount == 0)) { 1813 return; 1814 } 1815 1816 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1817 return; 1818 } 1819 1820 run = V_pf_allrulecount / 10; 1821 if (run < 5) 1822 run = 5; 1823 1824 for (r = 0; r < run; r++) { 1825 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1826 if (rule == NULL) { 1827 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1828 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1829 break; 1830 } 1831 1832 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1833 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1834 1835 pf_counter_u64_periodic(&rule->evaluations); 1836 for (int i = 0; i < 2; i++) { 1837 pf_counter_u64_periodic(&rule->packets[i]); 1838 pf_counter_u64_periodic(&rule->bytes[i]); 1839 } 1840 } 1841 } 1842 1843 static void 1844 pf_counter_u64_periodic_main(void) 1845 { 1846 PF_RULES_RLOCK_TRACKER; 1847 1848 V_pf_counter_periodic_iter++; 1849 1850 PF_RULES_RLOCK(); 1851 pf_counter_u64_critical_enter(); 1852 pf_status_counter_u64_periodic(); 1853 pf_kif_counter_u64_periodic(); 1854 pf_rule_counter_u64_periodic(); 1855 pf_counter_u64_critical_exit(); 1856 PF_RULES_RUNLOCK(); 1857 } 1858 #else 1859 #define pf_counter_u64_periodic_main() do { } while (0) 1860 #endif 1861 1862 void 1863 pf_purge_thread(void *unused __unused) 1864 { 1865 VNET_ITERATOR_DECL(vnet_iter); 1866 1867 sx_xlock(&pf_end_lock); 1868 while (pf_end_threads == 0) { 1869 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1870 1871 VNET_LIST_RLOCK(); 1872 VNET_FOREACH(vnet_iter) { 1873 CURVNET_SET(vnet_iter); 1874 1875 /* Wait until V_pf_default_rule is initialized. */ 1876 if (V_pf_vnet_active == 0) { 1877 CURVNET_RESTORE(); 1878 continue; 1879 } 1880 1881 pf_counter_u64_periodic_main(); 1882 1883 /* 1884 * Process 1/interval fraction of the state 1885 * table every run. 1886 */ 1887 V_pf_purge_idx = 1888 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1889 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1890 1891 /* 1892 * Purge other expired types every 1893 * PFTM_INTERVAL seconds. 1894 */ 1895 if (V_pf_purge_idx == 0) { 1896 /* 1897 * Order is important: 1898 * - states and src nodes reference rules 1899 * - states and rules reference kifs 1900 */ 1901 pf_purge_expired_fragments(); 1902 pf_purge_expired_src_nodes(); 1903 pf_purge_unlinked_rules(); 1904 pfi_kkif_purge(); 1905 } 1906 CURVNET_RESTORE(); 1907 } 1908 VNET_LIST_RUNLOCK(); 1909 } 1910 1911 pf_end_threads++; 1912 sx_xunlock(&pf_end_lock); 1913 kproc_exit(0); 1914 } 1915 1916 void 1917 pf_unload_vnet_purge(void) 1918 { 1919 1920 /* 1921 * To cleanse up all kifs and rules we need 1922 * two runs: first one clears reference flags, 1923 * then pf_purge_expired_states() doesn't 1924 * raise them, and then second run frees. 1925 */ 1926 pf_purge_unlinked_rules(); 1927 pfi_kkif_purge(); 1928 1929 /* 1930 * Now purge everything. 1931 */ 1932 pf_purge_expired_states(0, pf_hashmask); 1933 pf_purge_fragments(UINT_MAX); 1934 pf_purge_expired_src_nodes(); 1935 1936 /* 1937 * Now all kifs & rules should be unreferenced, 1938 * thus should be successfully freed. 1939 */ 1940 pf_purge_unlinked_rules(); 1941 pfi_kkif_purge(); 1942 } 1943 1944 u_int32_t 1945 pf_state_expires(const struct pf_kstate *state) 1946 { 1947 u_int32_t timeout; 1948 u_int32_t start; 1949 u_int32_t end; 1950 u_int32_t states; 1951 1952 /* handle all PFTM_* > PFTM_MAX here */ 1953 if (state->timeout == PFTM_PURGE) 1954 return (time_uptime); 1955 KASSERT(state->timeout != PFTM_UNLINKED, 1956 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1957 KASSERT((state->timeout < PFTM_MAX), 1958 ("pf_state_expires: timeout > PFTM_MAX")); 1959 timeout = state->rule.ptr->timeout[state->timeout]; 1960 if (!timeout) 1961 timeout = V_pf_default_rule.timeout[state->timeout]; 1962 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1963 if (start && state->rule.ptr != &V_pf_default_rule) { 1964 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1965 states = counter_u64_fetch(state->rule.ptr->states_cur); 1966 } else { 1967 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1968 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1969 states = V_pf_status.states; 1970 } 1971 if (end && states > start && start < end) { 1972 if (states < end) { 1973 timeout = (u_int64_t)timeout * (end - states) / 1974 (end - start); 1975 return (state->expire + timeout); 1976 } 1977 else 1978 return (time_uptime); 1979 } 1980 return (state->expire + timeout); 1981 } 1982 1983 void 1984 pf_purge_expired_src_nodes() 1985 { 1986 struct pf_ksrc_node_list freelist; 1987 struct pf_srchash *sh; 1988 struct pf_ksrc_node *cur, *next; 1989 int i; 1990 1991 LIST_INIT(&freelist); 1992 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1993 PF_HASHROW_LOCK(sh); 1994 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1995 if (cur->states == 0 && cur->expire <= time_uptime) { 1996 pf_unlink_src_node(cur); 1997 LIST_INSERT_HEAD(&freelist, cur, entry); 1998 } else if (cur->rule.ptr != NULL) 1999 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2000 PF_HASHROW_UNLOCK(sh); 2001 } 2002 2003 pf_free_src_nodes(&freelist); 2004 2005 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2006 } 2007 2008 static void 2009 pf_src_tree_remove_state(struct pf_kstate *s) 2010 { 2011 struct pf_ksrc_node *sn; 2012 struct pf_srchash *sh; 2013 uint32_t timeout; 2014 2015 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2016 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2017 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2018 2019 if (s->src_node != NULL) { 2020 sn = s->src_node; 2021 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2022 PF_HASHROW_LOCK(sh); 2023 if (s->src.tcp_est) 2024 --sn->conn; 2025 if (--sn->states == 0) 2026 sn->expire = time_uptime + timeout; 2027 PF_HASHROW_UNLOCK(sh); 2028 } 2029 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2030 sn = s->nat_src_node; 2031 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2032 PF_HASHROW_LOCK(sh); 2033 if (--sn->states == 0) 2034 sn->expire = time_uptime + timeout; 2035 PF_HASHROW_UNLOCK(sh); 2036 } 2037 s->src_node = s->nat_src_node = NULL; 2038 } 2039 2040 /* 2041 * Unlink and potentilly free a state. Function may be 2042 * called with ID hash row locked, but always returns 2043 * unlocked, since it needs to go through key hash locking. 2044 */ 2045 int 2046 pf_unlink_state(struct pf_kstate *s) 2047 { 2048 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2049 2050 PF_HASHROW_ASSERT(ih); 2051 2052 if (s->timeout == PFTM_UNLINKED) { 2053 /* 2054 * State is being processed 2055 * by pf_unlink_state() in 2056 * an other thread. 2057 */ 2058 PF_HASHROW_UNLOCK(ih); 2059 return (0); /* XXXGL: undefined actually */ 2060 } 2061 2062 if (s->src.state == PF_TCPS_PROXY_DST) { 2063 /* XXX wire key the right one? */ 2064 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2065 &s->key[PF_SK_WIRE]->addr[1], 2066 &s->key[PF_SK_WIRE]->addr[0], 2067 s->key[PF_SK_WIRE]->port[1], 2068 s->key[PF_SK_WIRE]->port[0], 2069 s->src.seqhi, s->src.seqlo + 1, 2070 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 2071 } 2072 2073 LIST_REMOVE(s, entry); 2074 pf_src_tree_remove_state(s); 2075 2076 if (V_pfsync_delete_state_ptr != NULL) 2077 V_pfsync_delete_state_ptr(s); 2078 2079 STATE_DEC_COUNTERS(s); 2080 2081 s->timeout = PFTM_UNLINKED; 2082 2083 /* Ensure we remove it from the list of halfopen states, if needed. */ 2084 if (s->key[PF_SK_STACK] != NULL && 2085 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2086 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2087 2088 PF_HASHROW_UNLOCK(ih); 2089 2090 pf_detach_state(s); 2091 /* pf_state_insert() initialises refs to 2 */ 2092 return (pf_release_staten(s, 2)); 2093 } 2094 2095 struct pf_kstate * 2096 pf_alloc_state(int flags) 2097 { 2098 2099 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2100 } 2101 2102 void 2103 pf_free_state(struct pf_kstate *cur) 2104 { 2105 2106 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2107 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2108 cur->timeout)); 2109 2110 pf_normalize_tcp_cleanup(cur); 2111 uma_zfree(V_pf_state_z, cur); 2112 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2113 } 2114 2115 /* 2116 * Called only from pf_purge_thread(), thus serialized. 2117 */ 2118 static u_int 2119 pf_purge_expired_states(u_int i, int maxcheck) 2120 { 2121 struct pf_idhash *ih; 2122 struct pf_kstate *s; 2123 2124 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2125 2126 /* 2127 * Go through hash and unlink states that expire now. 2128 */ 2129 while (maxcheck > 0) { 2130 ih = &V_pf_idhash[i]; 2131 2132 /* only take the lock if we expect to do work */ 2133 if (!LIST_EMPTY(&ih->states)) { 2134 relock: 2135 PF_HASHROW_LOCK(ih); 2136 LIST_FOREACH(s, &ih->states, entry) { 2137 if (pf_state_expires(s) <= time_uptime) { 2138 V_pf_status.states -= 2139 pf_unlink_state(s); 2140 goto relock; 2141 } 2142 s->rule.ptr->rule_ref |= PFRULE_REFS; 2143 if (s->nat_rule.ptr != NULL) 2144 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2145 if (s->anchor.ptr != NULL) 2146 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2147 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2148 if (s->rt_kif) 2149 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2150 } 2151 PF_HASHROW_UNLOCK(ih); 2152 } 2153 2154 /* Return when we hit end of hash. */ 2155 if (++i > pf_hashmask) { 2156 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2157 return (0); 2158 } 2159 2160 maxcheck--; 2161 } 2162 2163 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2164 2165 return (i); 2166 } 2167 2168 static void 2169 pf_purge_unlinked_rules() 2170 { 2171 struct pf_krulequeue tmpq; 2172 struct pf_krule *r, *r1; 2173 2174 /* 2175 * If we have overloading task pending, then we'd 2176 * better skip purging this time. There is a tiny 2177 * probability that overloading task references 2178 * an already unlinked rule. 2179 */ 2180 PF_OVERLOADQ_LOCK(); 2181 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2182 PF_OVERLOADQ_UNLOCK(); 2183 return; 2184 } 2185 PF_OVERLOADQ_UNLOCK(); 2186 2187 /* 2188 * Do naive mark-and-sweep garbage collecting of old rules. 2189 * Reference flag is raised by pf_purge_expired_states() 2190 * and pf_purge_expired_src_nodes(). 2191 * 2192 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2193 * use a temporary queue. 2194 */ 2195 TAILQ_INIT(&tmpq); 2196 PF_UNLNKDRULES_LOCK(); 2197 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2198 if (!(r->rule_ref & PFRULE_REFS)) { 2199 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2200 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2201 } else 2202 r->rule_ref &= ~PFRULE_REFS; 2203 } 2204 PF_UNLNKDRULES_UNLOCK(); 2205 2206 if (!TAILQ_EMPTY(&tmpq)) { 2207 PF_CONFIG_LOCK(); 2208 PF_RULES_WLOCK(); 2209 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2210 TAILQ_REMOVE(&tmpq, r, entries); 2211 pf_free_rule(r); 2212 } 2213 PF_RULES_WUNLOCK(); 2214 PF_CONFIG_UNLOCK(); 2215 } 2216 } 2217 2218 void 2219 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2220 { 2221 switch (af) { 2222 #ifdef INET 2223 case AF_INET: { 2224 u_int32_t a = ntohl(addr->addr32[0]); 2225 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2226 (a>>8)&255, a&255); 2227 if (p) { 2228 p = ntohs(p); 2229 printf(":%u", p); 2230 } 2231 break; 2232 } 2233 #endif /* INET */ 2234 #ifdef INET6 2235 case AF_INET6: { 2236 u_int16_t b; 2237 u_int8_t i, curstart, curend, maxstart, maxend; 2238 curstart = curend = maxstart = maxend = 255; 2239 for (i = 0; i < 8; i++) { 2240 if (!addr->addr16[i]) { 2241 if (curstart == 255) 2242 curstart = i; 2243 curend = i; 2244 } else { 2245 if ((curend - curstart) > 2246 (maxend - maxstart)) { 2247 maxstart = curstart; 2248 maxend = curend; 2249 } 2250 curstart = curend = 255; 2251 } 2252 } 2253 if ((curend - curstart) > 2254 (maxend - maxstart)) { 2255 maxstart = curstart; 2256 maxend = curend; 2257 } 2258 for (i = 0; i < 8; i++) { 2259 if (i >= maxstart && i <= maxend) { 2260 if (i == 0) 2261 printf(":"); 2262 if (i == maxend) 2263 printf(":"); 2264 } else { 2265 b = ntohs(addr->addr16[i]); 2266 printf("%x", b); 2267 if (i < 7) 2268 printf(":"); 2269 } 2270 } 2271 if (p) { 2272 p = ntohs(p); 2273 printf("[%u]", p); 2274 } 2275 break; 2276 } 2277 #endif /* INET6 */ 2278 } 2279 } 2280 2281 void 2282 pf_print_state(struct pf_kstate *s) 2283 { 2284 pf_print_state_parts(s, NULL, NULL); 2285 } 2286 2287 static void 2288 pf_print_state_parts(struct pf_kstate *s, 2289 struct pf_state_key *skwp, struct pf_state_key *sksp) 2290 { 2291 struct pf_state_key *skw, *sks; 2292 u_int8_t proto, dir; 2293 2294 /* Do our best to fill these, but they're skipped if NULL */ 2295 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2296 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2297 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2298 dir = s ? s->direction : 0; 2299 2300 switch (proto) { 2301 case IPPROTO_IPV4: 2302 printf("IPv4"); 2303 break; 2304 case IPPROTO_IPV6: 2305 printf("IPv6"); 2306 break; 2307 case IPPROTO_TCP: 2308 printf("TCP"); 2309 break; 2310 case IPPROTO_UDP: 2311 printf("UDP"); 2312 break; 2313 case IPPROTO_ICMP: 2314 printf("ICMP"); 2315 break; 2316 case IPPROTO_ICMPV6: 2317 printf("ICMPv6"); 2318 break; 2319 default: 2320 printf("%u", proto); 2321 break; 2322 } 2323 switch (dir) { 2324 case PF_IN: 2325 printf(" in"); 2326 break; 2327 case PF_OUT: 2328 printf(" out"); 2329 break; 2330 } 2331 if (skw) { 2332 printf(" wire: "); 2333 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2334 printf(" "); 2335 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2336 } 2337 if (sks) { 2338 printf(" stack: "); 2339 if (sks != skw) { 2340 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2341 printf(" "); 2342 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2343 } else 2344 printf("-"); 2345 } 2346 if (s) { 2347 if (proto == IPPROTO_TCP) { 2348 printf(" [lo=%u high=%u win=%u modulator=%u", 2349 s->src.seqlo, s->src.seqhi, 2350 s->src.max_win, s->src.seqdiff); 2351 if (s->src.wscale && s->dst.wscale) 2352 printf(" wscale=%u", 2353 s->src.wscale & PF_WSCALE_MASK); 2354 printf("]"); 2355 printf(" [lo=%u high=%u win=%u modulator=%u", 2356 s->dst.seqlo, s->dst.seqhi, 2357 s->dst.max_win, s->dst.seqdiff); 2358 if (s->src.wscale && s->dst.wscale) 2359 printf(" wscale=%u", 2360 s->dst.wscale & PF_WSCALE_MASK); 2361 printf("]"); 2362 } 2363 printf(" %u:%u", s->src.state, s->dst.state); 2364 } 2365 } 2366 2367 void 2368 pf_print_flags(u_int8_t f) 2369 { 2370 if (f) 2371 printf(" "); 2372 if (f & TH_FIN) 2373 printf("F"); 2374 if (f & TH_SYN) 2375 printf("S"); 2376 if (f & TH_RST) 2377 printf("R"); 2378 if (f & TH_PUSH) 2379 printf("P"); 2380 if (f & TH_ACK) 2381 printf("A"); 2382 if (f & TH_URG) 2383 printf("U"); 2384 if (f & TH_ECE) 2385 printf("E"); 2386 if (f & TH_CWR) 2387 printf("W"); 2388 } 2389 2390 #define PF_SET_SKIP_STEPS(i) \ 2391 do { \ 2392 while (head[i] != cur) { \ 2393 head[i]->skip[i].ptr = cur; \ 2394 head[i] = TAILQ_NEXT(head[i], entries); \ 2395 } \ 2396 } while (0) 2397 2398 void 2399 pf_calc_skip_steps(struct pf_krulequeue *rules) 2400 { 2401 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2402 int i; 2403 2404 cur = TAILQ_FIRST(rules); 2405 prev = cur; 2406 for (i = 0; i < PF_SKIP_COUNT; ++i) 2407 head[i] = cur; 2408 while (cur != NULL) { 2409 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2410 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2411 if (cur->direction != prev->direction) 2412 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2413 if (cur->af != prev->af) 2414 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2415 if (cur->proto != prev->proto) 2416 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2417 if (cur->src.neg != prev->src.neg || 2418 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2419 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2420 if (cur->src.port[0] != prev->src.port[0] || 2421 cur->src.port[1] != prev->src.port[1] || 2422 cur->src.port_op != prev->src.port_op) 2423 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2424 if (cur->dst.neg != prev->dst.neg || 2425 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2426 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2427 if (cur->dst.port[0] != prev->dst.port[0] || 2428 cur->dst.port[1] != prev->dst.port[1] || 2429 cur->dst.port_op != prev->dst.port_op) 2430 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2431 2432 prev = cur; 2433 cur = TAILQ_NEXT(cur, entries); 2434 } 2435 for (i = 0; i < PF_SKIP_COUNT; ++i) 2436 PF_SET_SKIP_STEPS(i); 2437 } 2438 2439 static int 2440 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2441 { 2442 if (aw1->type != aw2->type) 2443 return (1); 2444 switch (aw1->type) { 2445 case PF_ADDR_ADDRMASK: 2446 case PF_ADDR_RANGE: 2447 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2448 return (1); 2449 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2450 return (1); 2451 return (0); 2452 case PF_ADDR_DYNIFTL: 2453 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2454 case PF_ADDR_NOROUTE: 2455 case PF_ADDR_URPFFAILED: 2456 return (0); 2457 case PF_ADDR_TABLE: 2458 return (aw1->p.tbl != aw2->p.tbl); 2459 default: 2460 printf("invalid address type: %d\n", aw1->type); 2461 return (1); 2462 } 2463 } 2464 2465 /** 2466 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2467 * header isn't always a full checksum. In some cases (i.e. output) it's a 2468 * pseudo-header checksum, which is a partial checksum over src/dst IP 2469 * addresses, protocol number and length. 2470 * 2471 * That means we have the following cases: 2472 * * Input or forwarding: we don't have TSO, the checksum fields are full 2473 * checksums, we need to update the checksum whenever we change anything. 2474 * * Output (i.e. the checksum is a pseudo-header checksum): 2475 * x The field being updated is src/dst address or affects the length of 2476 * the packet. We need to update the pseudo-header checksum (note that this 2477 * checksum is not ones' complement). 2478 * x Some other field is being modified (e.g. src/dst port numbers): We 2479 * don't have to update anything. 2480 **/ 2481 u_int16_t 2482 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2483 { 2484 u_int32_t x; 2485 2486 x = cksum + old - new; 2487 x = (x + (x >> 16)) & 0xffff; 2488 2489 /* optimise: eliminate a branch when not udp */ 2490 if (udp && cksum == 0x0000) 2491 return cksum; 2492 if (udp && x == 0x0000) 2493 x = 0xffff; 2494 2495 return (u_int16_t)(x); 2496 } 2497 2498 static void 2499 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2500 u_int8_t udp) 2501 { 2502 u_int16_t old = htons(hi ? (*f << 8) : *f); 2503 u_int16_t new = htons(hi ? ( v << 8) : v); 2504 2505 if (*f == v) 2506 return; 2507 2508 *f = v; 2509 2510 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2511 return; 2512 2513 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2514 } 2515 2516 void 2517 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2518 bool hi, u_int8_t udp) 2519 { 2520 u_int8_t *fb = (u_int8_t *)f; 2521 u_int8_t *vb = (u_int8_t *)&v; 2522 2523 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2524 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2525 } 2526 2527 void 2528 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2529 bool hi, u_int8_t udp) 2530 { 2531 u_int8_t *fb = (u_int8_t *)f; 2532 u_int8_t *vb = (u_int8_t *)&v; 2533 2534 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2535 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2536 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2537 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2538 } 2539 2540 u_int16_t 2541 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2542 u_int16_t new, u_int8_t udp) 2543 { 2544 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2545 return (cksum); 2546 2547 return (pf_cksum_fixup(cksum, old, new, udp)); 2548 } 2549 2550 static void 2551 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2552 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2553 sa_family_t af) 2554 { 2555 struct pf_addr ao; 2556 u_int16_t po = *p; 2557 2558 PF_ACPY(&ao, a, af); 2559 PF_ACPY(a, an, af); 2560 2561 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2562 *pc = ~*pc; 2563 2564 *p = pn; 2565 2566 switch (af) { 2567 #ifdef INET 2568 case AF_INET: 2569 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2570 ao.addr16[0], an->addr16[0], 0), 2571 ao.addr16[1], an->addr16[1], 0); 2572 *p = pn; 2573 2574 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2575 ao.addr16[0], an->addr16[0], u), 2576 ao.addr16[1], an->addr16[1], u); 2577 2578 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2579 break; 2580 #endif /* INET */ 2581 #ifdef INET6 2582 case AF_INET6: 2583 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2584 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2585 pf_cksum_fixup(pf_cksum_fixup(*pc, 2586 ao.addr16[0], an->addr16[0], u), 2587 ao.addr16[1], an->addr16[1], u), 2588 ao.addr16[2], an->addr16[2], u), 2589 ao.addr16[3], an->addr16[3], u), 2590 ao.addr16[4], an->addr16[4], u), 2591 ao.addr16[5], an->addr16[5], u), 2592 ao.addr16[6], an->addr16[6], u), 2593 ao.addr16[7], an->addr16[7], u); 2594 2595 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2596 break; 2597 #endif /* INET6 */ 2598 } 2599 2600 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2601 CSUM_DELAY_DATA_IPV6)) { 2602 *pc = ~*pc; 2603 if (! *pc) 2604 *pc = 0xffff; 2605 } 2606 } 2607 2608 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2609 void 2610 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2611 { 2612 u_int32_t ao; 2613 2614 memcpy(&ao, a, sizeof(ao)); 2615 memcpy(a, &an, sizeof(u_int32_t)); 2616 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2617 ao % 65536, an % 65536, u); 2618 } 2619 2620 void 2621 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2622 { 2623 u_int32_t ao; 2624 2625 memcpy(&ao, a, sizeof(ao)); 2626 memcpy(a, &an, sizeof(u_int32_t)); 2627 2628 *c = pf_proto_cksum_fixup(m, 2629 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2630 ao % 65536, an % 65536, udp); 2631 } 2632 2633 #ifdef INET6 2634 static void 2635 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2636 { 2637 struct pf_addr ao; 2638 2639 PF_ACPY(&ao, a, AF_INET6); 2640 PF_ACPY(a, an, AF_INET6); 2641 2642 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2643 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2644 pf_cksum_fixup(pf_cksum_fixup(*c, 2645 ao.addr16[0], an->addr16[0], u), 2646 ao.addr16[1], an->addr16[1], u), 2647 ao.addr16[2], an->addr16[2], u), 2648 ao.addr16[3], an->addr16[3], u), 2649 ao.addr16[4], an->addr16[4], u), 2650 ao.addr16[5], an->addr16[5], u), 2651 ao.addr16[6], an->addr16[6], u), 2652 ao.addr16[7], an->addr16[7], u); 2653 } 2654 #endif /* INET6 */ 2655 2656 static void 2657 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2658 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2659 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2660 { 2661 struct pf_addr oia, ooa; 2662 2663 PF_ACPY(&oia, ia, af); 2664 if (oa) 2665 PF_ACPY(&ooa, oa, af); 2666 2667 /* Change inner protocol port, fix inner protocol checksum. */ 2668 if (ip != NULL) { 2669 u_int16_t oip = *ip; 2670 u_int32_t opc; 2671 2672 if (pc != NULL) 2673 opc = *pc; 2674 *ip = np; 2675 if (pc != NULL) 2676 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2677 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2678 if (pc != NULL) 2679 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2680 } 2681 /* Change inner ip address, fix inner ip and icmp checksums. */ 2682 PF_ACPY(ia, na, af); 2683 switch (af) { 2684 #ifdef INET 2685 case AF_INET: { 2686 u_int32_t oh2c = *h2c; 2687 2688 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2689 oia.addr16[0], ia->addr16[0], 0), 2690 oia.addr16[1], ia->addr16[1], 0); 2691 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2692 oia.addr16[0], ia->addr16[0], 0), 2693 oia.addr16[1], ia->addr16[1], 0); 2694 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2695 break; 2696 } 2697 #endif /* INET */ 2698 #ifdef INET6 2699 case AF_INET6: 2700 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2701 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2702 pf_cksum_fixup(pf_cksum_fixup(*ic, 2703 oia.addr16[0], ia->addr16[0], u), 2704 oia.addr16[1], ia->addr16[1], u), 2705 oia.addr16[2], ia->addr16[2], u), 2706 oia.addr16[3], ia->addr16[3], u), 2707 oia.addr16[4], ia->addr16[4], u), 2708 oia.addr16[5], ia->addr16[5], u), 2709 oia.addr16[6], ia->addr16[6], u), 2710 oia.addr16[7], ia->addr16[7], u); 2711 break; 2712 #endif /* INET6 */ 2713 } 2714 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2715 if (oa) { 2716 PF_ACPY(oa, na, af); 2717 switch (af) { 2718 #ifdef INET 2719 case AF_INET: 2720 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2721 ooa.addr16[0], oa->addr16[0], 0), 2722 ooa.addr16[1], oa->addr16[1], 0); 2723 break; 2724 #endif /* INET */ 2725 #ifdef INET6 2726 case AF_INET6: 2727 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2728 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2729 pf_cksum_fixup(pf_cksum_fixup(*ic, 2730 ooa.addr16[0], oa->addr16[0], u), 2731 ooa.addr16[1], oa->addr16[1], u), 2732 ooa.addr16[2], oa->addr16[2], u), 2733 ooa.addr16[3], oa->addr16[3], u), 2734 ooa.addr16[4], oa->addr16[4], u), 2735 ooa.addr16[5], oa->addr16[5], u), 2736 ooa.addr16[6], oa->addr16[6], u), 2737 ooa.addr16[7], oa->addr16[7], u); 2738 break; 2739 #endif /* INET6 */ 2740 } 2741 } 2742 } 2743 2744 /* 2745 * Need to modulate the sequence numbers in the TCP SACK option 2746 * (credits to Krzysztof Pfaff for report and patch) 2747 */ 2748 static int 2749 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2750 struct tcphdr *th, struct pf_state_peer *dst) 2751 { 2752 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2753 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2754 int copyback = 0, i, olen; 2755 struct sackblk sack; 2756 2757 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2758 if (hlen < TCPOLEN_SACKLEN || 2759 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2760 return 0; 2761 2762 while (hlen >= TCPOLEN_SACKLEN) { 2763 size_t startoff = opt - opts; 2764 olen = opt[1]; 2765 switch (*opt) { 2766 case TCPOPT_EOL: /* FALLTHROUGH */ 2767 case TCPOPT_NOP: 2768 opt++; 2769 hlen--; 2770 break; 2771 case TCPOPT_SACK: 2772 if (olen > hlen) 2773 olen = hlen; 2774 if (olen >= TCPOLEN_SACKLEN) { 2775 for (i = 2; i + TCPOLEN_SACK <= olen; 2776 i += TCPOLEN_SACK) { 2777 memcpy(&sack, &opt[i], sizeof(sack)); 2778 pf_patch_32_unaligned(m, 2779 &th->th_sum, &sack.start, 2780 htonl(ntohl(sack.start) - dst->seqdiff), 2781 PF_ALGNMNT(startoff), 2782 0); 2783 pf_patch_32_unaligned(m, &th->th_sum, 2784 &sack.end, 2785 htonl(ntohl(sack.end) - dst->seqdiff), 2786 PF_ALGNMNT(startoff), 2787 0); 2788 memcpy(&opt[i], &sack, sizeof(sack)); 2789 } 2790 copyback = 1; 2791 } 2792 /* FALLTHROUGH */ 2793 default: 2794 if (olen < 2) 2795 olen = 2; 2796 hlen -= olen; 2797 opt += olen; 2798 } 2799 } 2800 2801 if (copyback) 2802 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2803 return (copyback); 2804 } 2805 2806 struct mbuf * 2807 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2808 const struct pf_addr *saddr, const struct pf_addr *daddr, 2809 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2810 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2811 u_int16_t rtag) 2812 { 2813 struct mbuf *m; 2814 int len, tlen; 2815 #ifdef INET 2816 struct ip *h = NULL; 2817 #endif /* INET */ 2818 #ifdef INET6 2819 struct ip6_hdr *h6 = NULL; 2820 #endif /* INET6 */ 2821 struct tcphdr *th; 2822 char *opt; 2823 struct pf_mtag *pf_mtag; 2824 2825 len = 0; 2826 th = NULL; 2827 2828 /* maximum segment size tcp option */ 2829 tlen = sizeof(struct tcphdr); 2830 if (mss) 2831 tlen += 4; 2832 2833 switch (af) { 2834 #ifdef INET 2835 case AF_INET: 2836 len = sizeof(struct ip) + tlen; 2837 break; 2838 #endif /* INET */ 2839 #ifdef INET6 2840 case AF_INET6: 2841 len = sizeof(struct ip6_hdr) + tlen; 2842 break; 2843 #endif /* INET6 */ 2844 default: 2845 panic("%s: unsupported af %d", __func__, af); 2846 } 2847 2848 m = m_gethdr(M_NOWAIT, MT_DATA); 2849 if (m == NULL) 2850 return (NULL); 2851 2852 #ifdef MAC 2853 mac_netinet_firewall_send(m); 2854 #endif 2855 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2856 m_freem(m); 2857 return (NULL); 2858 } 2859 if (tag) 2860 m->m_flags |= M_SKIP_FIREWALL; 2861 pf_mtag->tag = rtag; 2862 2863 if (r != NULL && r->rtableid >= 0) 2864 M_SETFIB(m, r->rtableid); 2865 2866 #ifdef ALTQ 2867 if (r != NULL && r->qid) { 2868 pf_mtag->qid = r->qid; 2869 2870 /* add hints for ecn */ 2871 pf_mtag->hdr = mtod(m, struct ip *); 2872 } 2873 #endif /* ALTQ */ 2874 m->m_data += max_linkhdr; 2875 m->m_pkthdr.len = m->m_len = len; 2876 /* The rest of the stack assumes a rcvif, so provide one. 2877 * This is a locally generated packet, so .. close enough. */ 2878 m->m_pkthdr.rcvif = V_loif; 2879 bzero(m->m_data, len); 2880 switch (af) { 2881 #ifdef INET 2882 case AF_INET: 2883 h = mtod(m, struct ip *); 2884 2885 /* IP header fields included in the TCP checksum */ 2886 h->ip_p = IPPROTO_TCP; 2887 h->ip_len = htons(tlen); 2888 h->ip_src.s_addr = saddr->v4.s_addr; 2889 h->ip_dst.s_addr = daddr->v4.s_addr; 2890 2891 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2892 break; 2893 #endif /* INET */ 2894 #ifdef INET6 2895 case AF_INET6: 2896 h6 = mtod(m, struct ip6_hdr *); 2897 2898 /* IP header fields included in the TCP checksum */ 2899 h6->ip6_nxt = IPPROTO_TCP; 2900 h6->ip6_plen = htons(tlen); 2901 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2902 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2903 2904 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2905 break; 2906 #endif /* INET6 */ 2907 } 2908 2909 /* TCP header */ 2910 th->th_sport = sport; 2911 th->th_dport = dport; 2912 th->th_seq = htonl(seq); 2913 th->th_ack = htonl(ack); 2914 th->th_off = tlen >> 2; 2915 th->th_flags = flags; 2916 th->th_win = htons(win); 2917 2918 if (mss) { 2919 opt = (char *)(th + 1); 2920 opt[0] = TCPOPT_MAXSEG; 2921 opt[1] = 4; 2922 HTONS(mss); 2923 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2924 } 2925 2926 switch (af) { 2927 #ifdef INET 2928 case AF_INET: 2929 /* TCP checksum */ 2930 th->th_sum = in_cksum(m, len); 2931 2932 /* Finish the IP header */ 2933 h->ip_v = 4; 2934 h->ip_hl = sizeof(*h) >> 2; 2935 h->ip_tos = IPTOS_LOWDELAY; 2936 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2937 h->ip_len = htons(len); 2938 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2939 h->ip_sum = 0; 2940 break; 2941 #endif /* INET */ 2942 #ifdef INET6 2943 case AF_INET6: 2944 /* TCP checksum */ 2945 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2946 sizeof(struct ip6_hdr), tlen); 2947 2948 h6->ip6_vfc |= IPV6_VERSION; 2949 h6->ip6_hlim = IPV6_DEFHLIM; 2950 break; 2951 #endif /* INET6 */ 2952 } 2953 2954 return (m); 2955 } 2956 2957 void 2958 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2959 const struct pf_addr *saddr, const struct pf_addr *daddr, 2960 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2961 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2962 u_int16_t rtag) 2963 { 2964 struct pf_send_entry *pfse; 2965 struct mbuf *m; 2966 2967 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2968 win, mss, ttl, tag, rtag); 2969 if (m == NULL) 2970 return; 2971 2972 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2973 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2974 if (pfse == NULL) { 2975 m_freem(m); 2976 return; 2977 } 2978 2979 switch (af) { 2980 #ifdef INET 2981 case AF_INET: 2982 pfse->pfse_type = PFSE_IP; 2983 break; 2984 #endif /* INET */ 2985 #ifdef INET6 2986 case AF_INET6: 2987 pfse->pfse_type = PFSE_IP6; 2988 break; 2989 #endif /* INET6 */ 2990 } 2991 2992 pfse->pfse_m = m; 2993 pf_send(pfse); 2994 } 2995 2996 static void 2997 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2998 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2999 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3000 u_short *reason) 3001 { 3002 struct pf_addr * const saddr = pd->src; 3003 struct pf_addr * const daddr = pd->dst; 3004 sa_family_t af = pd->af; 3005 3006 /* undo NAT changes, if they have taken place */ 3007 if (nr != NULL) { 3008 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3009 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3010 if (pd->sport) 3011 *pd->sport = sk->port[pd->sidx]; 3012 if (pd->dport) 3013 *pd->dport = sk->port[pd->didx]; 3014 if (pd->proto_sum) 3015 *pd->proto_sum = bproto_sum; 3016 if (pd->ip_sum) 3017 *pd->ip_sum = bip_sum; 3018 m_copyback(m, off, hdrlen, pd->hdr.any); 3019 } 3020 if (pd->proto == IPPROTO_TCP && 3021 ((r->rule_flag & PFRULE_RETURNRST) || 3022 (r->rule_flag & PFRULE_RETURN)) && 3023 !(th->th_flags & TH_RST)) { 3024 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3025 int len = 0; 3026 #ifdef INET 3027 struct ip *h4; 3028 #endif 3029 #ifdef INET6 3030 struct ip6_hdr *h6; 3031 #endif 3032 3033 switch (af) { 3034 #ifdef INET 3035 case AF_INET: 3036 h4 = mtod(m, struct ip *); 3037 len = ntohs(h4->ip_len) - off; 3038 break; 3039 #endif 3040 #ifdef INET6 3041 case AF_INET6: 3042 h6 = mtod(m, struct ip6_hdr *); 3043 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3044 break; 3045 #endif 3046 } 3047 3048 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3049 REASON_SET(reason, PFRES_PROTCKSUM); 3050 else { 3051 if (th->th_flags & TH_SYN) 3052 ack++; 3053 if (th->th_flags & TH_FIN) 3054 ack++; 3055 pf_send_tcp(r, af, pd->dst, 3056 pd->src, th->th_dport, th->th_sport, 3057 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3058 r->return_ttl, 1, 0); 3059 } 3060 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3061 r->return_icmp) 3062 pf_send_icmp(m, r->return_icmp >> 8, 3063 r->return_icmp & 255, af, r); 3064 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3065 r->return_icmp6) 3066 pf_send_icmp(m, r->return_icmp6 >> 8, 3067 r->return_icmp6 & 255, af, r); 3068 } 3069 3070 static int 3071 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3072 { 3073 struct m_tag *mtag; 3074 u_int8_t mpcp; 3075 3076 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3077 if (mtag == NULL) 3078 return (0); 3079 3080 if (prio == PF_PRIO_ZERO) 3081 prio = 0; 3082 3083 mpcp = *(uint8_t *)(mtag + 1); 3084 3085 return (mpcp == prio); 3086 } 3087 3088 static void 3089 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3090 struct pf_krule *r) 3091 { 3092 struct pf_send_entry *pfse; 3093 struct mbuf *m0; 3094 struct pf_mtag *pf_mtag; 3095 3096 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3097 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3098 if (pfse == NULL) 3099 return; 3100 3101 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3102 free(pfse, M_PFTEMP); 3103 return; 3104 } 3105 3106 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3107 free(pfse, M_PFTEMP); 3108 return; 3109 } 3110 /* XXX: revisit */ 3111 m0->m_flags |= M_SKIP_FIREWALL; 3112 3113 if (r->rtableid >= 0) 3114 M_SETFIB(m0, r->rtableid); 3115 3116 #ifdef ALTQ 3117 if (r->qid) { 3118 pf_mtag->qid = r->qid; 3119 /* add hints for ecn */ 3120 pf_mtag->hdr = mtod(m0, struct ip *); 3121 } 3122 #endif /* ALTQ */ 3123 3124 switch (af) { 3125 #ifdef INET 3126 case AF_INET: 3127 pfse->pfse_type = PFSE_ICMP; 3128 break; 3129 #endif /* INET */ 3130 #ifdef INET6 3131 case AF_INET6: 3132 pfse->pfse_type = PFSE_ICMP6; 3133 break; 3134 #endif /* INET6 */ 3135 } 3136 pfse->pfse_m = m0; 3137 pfse->icmpopts.type = type; 3138 pfse->icmpopts.code = code; 3139 pf_send(pfse); 3140 } 3141 3142 /* 3143 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3144 * If n is 0, they match if they are equal. If n is != 0, they match if they 3145 * are different. 3146 */ 3147 int 3148 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3149 struct pf_addr *b, sa_family_t af) 3150 { 3151 int match = 0; 3152 3153 switch (af) { 3154 #ifdef INET 3155 case AF_INET: 3156 if ((a->addr32[0] & m->addr32[0]) == 3157 (b->addr32[0] & m->addr32[0])) 3158 match++; 3159 break; 3160 #endif /* INET */ 3161 #ifdef INET6 3162 case AF_INET6: 3163 if (((a->addr32[0] & m->addr32[0]) == 3164 (b->addr32[0] & m->addr32[0])) && 3165 ((a->addr32[1] & m->addr32[1]) == 3166 (b->addr32[1] & m->addr32[1])) && 3167 ((a->addr32[2] & m->addr32[2]) == 3168 (b->addr32[2] & m->addr32[2])) && 3169 ((a->addr32[3] & m->addr32[3]) == 3170 (b->addr32[3] & m->addr32[3]))) 3171 match++; 3172 break; 3173 #endif /* INET6 */ 3174 } 3175 if (match) { 3176 if (n) 3177 return (0); 3178 else 3179 return (1); 3180 } else { 3181 if (n) 3182 return (1); 3183 else 3184 return (0); 3185 } 3186 } 3187 3188 /* 3189 * Return 1 if b <= a <= e, otherwise return 0. 3190 */ 3191 int 3192 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3193 struct pf_addr *a, sa_family_t af) 3194 { 3195 switch (af) { 3196 #ifdef INET 3197 case AF_INET: 3198 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3199 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3200 return (0); 3201 break; 3202 #endif /* INET */ 3203 #ifdef INET6 3204 case AF_INET6: { 3205 int i; 3206 3207 /* check a >= b */ 3208 for (i = 0; i < 4; ++i) 3209 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3210 break; 3211 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3212 return (0); 3213 /* check a <= e */ 3214 for (i = 0; i < 4; ++i) 3215 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3216 break; 3217 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3218 return (0); 3219 break; 3220 } 3221 #endif /* INET6 */ 3222 } 3223 return (1); 3224 } 3225 3226 static int 3227 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3228 { 3229 switch (op) { 3230 case PF_OP_IRG: 3231 return ((p > a1) && (p < a2)); 3232 case PF_OP_XRG: 3233 return ((p < a1) || (p > a2)); 3234 case PF_OP_RRG: 3235 return ((p >= a1) && (p <= a2)); 3236 case PF_OP_EQ: 3237 return (p == a1); 3238 case PF_OP_NE: 3239 return (p != a1); 3240 case PF_OP_LT: 3241 return (p < a1); 3242 case PF_OP_LE: 3243 return (p <= a1); 3244 case PF_OP_GT: 3245 return (p > a1); 3246 case PF_OP_GE: 3247 return (p >= a1); 3248 } 3249 return (0); /* never reached */ 3250 } 3251 3252 int 3253 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3254 { 3255 NTOHS(a1); 3256 NTOHS(a2); 3257 NTOHS(p); 3258 return (pf_match(op, a1, a2, p)); 3259 } 3260 3261 static int 3262 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3263 { 3264 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3265 return (0); 3266 return (pf_match(op, a1, a2, u)); 3267 } 3268 3269 static int 3270 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3271 { 3272 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3273 return (0); 3274 return (pf_match(op, a1, a2, g)); 3275 } 3276 3277 int 3278 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3279 { 3280 if (*tag == -1) 3281 *tag = mtag; 3282 3283 return ((!r->match_tag_not && r->match_tag == *tag) || 3284 (r->match_tag_not && r->match_tag != *tag)); 3285 } 3286 3287 int 3288 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3289 { 3290 3291 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3292 3293 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3294 return (ENOMEM); 3295 3296 pd->pf_mtag->tag = tag; 3297 3298 return (0); 3299 } 3300 3301 #define PF_ANCHOR_STACKSIZE 32 3302 struct pf_kanchor_stackframe { 3303 struct pf_kruleset *rs; 3304 struct pf_krule *r; /* XXX: + match bit */ 3305 struct pf_kanchor *child; 3306 }; 3307 3308 /* 3309 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3310 */ 3311 #define PF_ANCHORSTACK_MATCH 0x00000001 3312 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3313 3314 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3315 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3316 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3317 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3318 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3319 } while (0) 3320 3321 void 3322 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3323 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3324 int *match) 3325 { 3326 struct pf_kanchor_stackframe *f; 3327 3328 PF_RULES_RASSERT(); 3329 3330 if (match) 3331 *match = 0; 3332 if (*depth >= PF_ANCHOR_STACKSIZE) { 3333 printf("%s: anchor stack overflow on %s\n", 3334 __func__, (*r)->anchor->name); 3335 *r = TAILQ_NEXT(*r, entries); 3336 return; 3337 } else if (*depth == 0 && a != NULL) 3338 *a = *r; 3339 f = stack + (*depth)++; 3340 f->rs = *rs; 3341 f->r = *r; 3342 if ((*r)->anchor_wildcard) { 3343 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3344 3345 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3346 *r = NULL; 3347 return; 3348 } 3349 *rs = &f->child->ruleset; 3350 } else { 3351 f->child = NULL; 3352 *rs = &(*r)->anchor->ruleset; 3353 } 3354 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3355 } 3356 3357 int 3358 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3359 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3360 int *match) 3361 { 3362 struct pf_kanchor_stackframe *f; 3363 struct pf_krule *fr; 3364 int quick = 0; 3365 3366 PF_RULES_RASSERT(); 3367 3368 do { 3369 if (*depth <= 0) 3370 break; 3371 f = stack + *depth - 1; 3372 fr = PF_ANCHOR_RULE(f); 3373 if (f->child != NULL) { 3374 struct pf_kanchor_node *parent; 3375 3376 /* 3377 * This block traverses through 3378 * a wildcard anchor. 3379 */ 3380 parent = &fr->anchor->children; 3381 if (match != NULL && *match) { 3382 /* 3383 * If any of "*" matched, then 3384 * "foo/ *" matched, mark frame 3385 * appropriately. 3386 */ 3387 PF_ANCHOR_SET_MATCH(f); 3388 *match = 0; 3389 } 3390 f->child = RB_NEXT(pf_kanchor_node, parent, f->child); 3391 if (f->child != NULL) { 3392 *rs = &f->child->ruleset; 3393 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3394 if (*r == NULL) 3395 continue; 3396 else 3397 break; 3398 } 3399 } 3400 (*depth)--; 3401 if (*depth == 0 && a != NULL) 3402 *a = NULL; 3403 *rs = f->rs; 3404 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3405 quick = fr->quick; 3406 *r = TAILQ_NEXT(fr, entries); 3407 } while (*r == NULL); 3408 3409 return (quick); 3410 } 3411 3412 struct pf_keth_anchor_stackframe { 3413 struct pf_keth_ruleset *rs; 3414 struct pf_keth_rule *r; /* XXX: + match bit */ 3415 struct pf_keth_anchor *child; 3416 }; 3417 3418 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3419 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3420 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3421 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3422 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3423 } while (0) 3424 3425 void 3426 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3427 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3428 struct pf_keth_rule **a, int *match) 3429 { 3430 struct pf_keth_anchor_stackframe *f; 3431 3432 NET_EPOCH_ASSERT(); 3433 3434 if (match) 3435 *match = 0; 3436 if (*depth >= PF_ANCHOR_STACKSIZE) { 3437 printf("%s: anchor stack overflow on %s\n", 3438 __func__, (*r)->anchor->name); 3439 *r = TAILQ_NEXT(*r, entries); 3440 return; 3441 } else if (*depth == 0 && a != NULL) 3442 *a = *r; 3443 f = stack + (*depth)++; 3444 f->rs = *rs; 3445 f->r = *r; 3446 if ((*r)->anchor_wildcard) { 3447 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3448 3449 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3450 *r = NULL; 3451 return; 3452 } 3453 *rs = &f->child->ruleset; 3454 } else { 3455 f->child = NULL; 3456 *rs = &(*r)->anchor->ruleset; 3457 } 3458 *r = TAILQ_FIRST((*rs)->active.rules); 3459 } 3460 3461 int 3462 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3463 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3464 struct pf_keth_rule **a, int *match) 3465 { 3466 struct pf_keth_anchor_stackframe *f; 3467 struct pf_keth_rule *fr; 3468 int quick = 0; 3469 3470 NET_EPOCH_ASSERT(); 3471 3472 do { 3473 if (*depth <= 0) 3474 break; 3475 f = stack + *depth - 1; 3476 fr = PF_ETH_ANCHOR_RULE(f); 3477 if (f->child != NULL) { 3478 struct pf_keth_anchor_node *parent; 3479 /* 3480 * This block traverses through 3481 * a wildcard anchor. 3482 */ 3483 parent = &fr->anchor->children; 3484 if (match != NULL && *match) { 3485 /* 3486 * If any of "*" matched, then 3487 * "foo/ *" matched, mark frame 3488 * appropriately. 3489 */ 3490 PF_ETH_ANCHOR_SET_MATCH(f); 3491 *match = 0; 3492 } 3493 f->child = RB_NEXT(pf_keth_anchor_node, parent, 3494 f->child); 3495 if (f->child != NULL) { 3496 *rs = &f->child->ruleset; 3497 *r = TAILQ_FIRST((*rs)->active.rules); 3498 if (*r == NULL) 3499 continue; 3500 else 3501 break; 3502 } 3503 } 3504 (*depth)--; 3505 if (*depth == 0 && a != NULL) 3506 *a = NULL; 3507 *rs = f->rs; 3508 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3509 quick = fr->quick; 3510 *r = TAILQ_NEXT(fr, entries); 3511 } while (*r == NULL); 3512 3513 return (quick); 3514 } 3515 3516 #ifdef INET6 3517 void 3518 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3519 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3520 { 3521 switch (af) { 3522 #ifdef INET 3523 case AF_INET: 3524 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3525 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3526 break; 3527 #endif /* INET */ 3528 case AF_INET6: 3529 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3530 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3531 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3532 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3533 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3534 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3535 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3536 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3537 break; 3538 } 3539 } 3540 3541 void 3542 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3543 { 3544 switch (af) { 3545 #ifdef INET 3546 case AF_INET: 3547 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3548 break; 3549 #endif /* INET */ 3550 case AF_INET6: 3551 if (addr->addr32[3] == 0xffffffff) { 3552 addr->addr32[3] = 0; 3553 if (addr->addr32[2] == 0xffffffff) { 3554 addr->addr32[2] = 0; 3555 if (addr->addr32[1] == 0xffffffff) { 3556 addr->addr32[1] = 0; 3557 addr->addr32[0] = 3558 htonl(ntohl(addr->addr32[0]) + 1); 3559 } else 3560 addr->addr32[1] = 3561 htonl(ntohl(addr->addr32[1]) + 1); 3562 } else 3563 addr->addr32[2] = 3564 htonl(ntohl(addr->addr32[2]) + 1); 3565 } else 3566 addr->addr32[3] = 3567 htonl(ntohl(addr->addr32[3]) + 1); 3568 break; 3569 } 3570 } 3571 #endif /* INET6 */ 3572 3573 void 3574 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3575 { 3576 if (r->qid) 3577 a->qid = r->qid; 3578 if (r->pqid) 3579 a->pqid = r->pqid; 3580 if (r->dnpipe) 3581 a->dnpipe = r->dnpipe; 3582 if (r->dnrpipe) 3583 a->dnpipe = r->dnrpipe; 3584 if (r->free_flags & PFRULE_DN_IS_PIPE) 3585 a->flags |= PFRULE_DN_IS_PIPE; 3586 } 3587 3588 int 3589 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3590 { 3591 struct pf_addr *saddr, *daddr; 3592 u_int16_t sport, dport; 3593 struct inpcbinfo *pi; 3594 struct inpcb *inp; 3595 3596 pd->lookup.uid = UID_MAX; 3597 pd->lookup.gid = GID_MAX; 3598 3599 switch (pd->proto) { 3600 case IPPROTO_TCP: 3601 sport = pd->hdr.tcp.th_sport; 3602 dport = pd->hdr.tcp.th_dport; 3603 pi = &V_tcbinfo; 3604 break; 3605 case IPPROTO_UDP: 3606 sport = pd->hdr.udp.uh_sport; 3607 dport = pd->hdr.udp.uh_dport; 3608 pi = &V_udbinfo; 3609 break; 3610 default: 3611 return (-1); 3612 } 3613 if (direction == PF_IN) { 3614 saddr = pd->src; 3615 daddr = pd->dst; 3616 } else { 3617 u_int16_t p; 3618 3619 p = sport; 3620 sport = dport; 3621 dport = p; 3622 saddr = pd->dst; 3623 daddr = pd->src; 3624 } 3625 switch (pd->af) { 3626 #ifdef INET 3627 case AF_INET: 3628 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3629 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3630 if (inp == NULL) { 3631 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3632 daddr->v4, dport, INPLOOKUP_WILDCARD | 3633 INPLOOKUP_RLOCKPCB, NULL, m); 3634 if (inp == NULL) 3635 return (-1); 3636 } 3637 break; 3638 #endif /* INET */ 3639 #ifdef INET6 3640 case AF_INET6: 3641 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3642 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3643 if (inp == NULL) { 3644 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3645 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3646 INPLOOKUP_RLOCKPCB, NULL, m); 3647 if (inp == NULL) 3648 return (-1); 3649 } 3650 break; 3651 #endif /* INET6 */ 3652 3653 default: 3654 return (-1); 3655 } 3656 INP_RLOCK_ASSERT(inp); 3657 pd->lookup.uid = inp->inp_cred->cr_uid; 3658 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3659 INP_RUNLOCK(inp); 3660 3661 return (1); 3662 } 3663 3664 u_int8_t 3665 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3666 { 3667 int hlen; 3668 u_int8_t hdr[60]; 3669 u_int8_t *opt, optlen; 3670 u_int8_t wscale = 0; 3671 3672 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3673 if (hlen <= sizeof(struct tcphdr)) 3674 return (0); 3675 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3676 return (0); 3677 opt = hdr + sizeof(struct tcphdr); 3678 hlen -= sizeof(struct tcphdr); 3679 while (hlen >= 3) { 3680 switch (*opt) { 3681 case TCPOPT_EOL: 3682 case TCPOPT_NOP: 3683 ++opt; 3684 --hlen; 3685 break; 3686 case TCPOPT_WINDOW: 3687 wscale = opt[2]; 3688 if (wscale > TCP_MAX_WINSHIFT) 3689 wscale = TCP_MAX_WINSHIFT; 3690 wscale |= PF_WSCALE_FLAG; 3691 /* FALLTHROUGH */ 3692 default: 3693 optlen = opt[1]; 3694 if (optlen < 2) 3695 optlen = 2; 3696 hlen -= optlen; 3697 opt += optlen; 3698 break; 3699 } 3700 } 3701 return (wscale); 3702 } 3703 3704 u_int16_t 3705 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3706 { 3707 int hlen; 3708 u_int8_t hdr[60]; 3709 u_int8_t *opt, optlen; 3710 u_int16_t mss = V_tcp_mssdflt; 3711 3712 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3713 if (hlen <= sizeof(struct tcphdr)) 3714 return (0); 3715 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3716 return (0); 3717 opt = hdr + sizeof(struct tcphdr); 3718 hlen -= sizeof(struct tcphdr); 3719 while (hlen >= TCPOLEN_MAXSEG) { 3720 switch (*opt) { 3721 case TCPOPT_EOL: 3722 case TCPOPT_NOP: 3723 ++opt; 3724 --hlen; 3725 break; 3726 case TCPOPT_MAXSEG: 3727 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3728 NTOHS(mss); 3729 /* FALLTHROUGH */ 3730 default: 3731 optlen = opt[1]; 3732 if (optlen < 2) 3733 optlen = 2; 3734 hlen -= optlen; 3735 opt += optlen; 3736 break; 3737 } 3738 } 3739 return (mss); 3740 } 3741 3742 static u_int16_t 3743 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3744 { 3745 struct nhop_object *nh; 3746 #ifdef INET6 3747 struct in6_addr dst6; 3748 uint32_t scopeid; 3749 #endif /* INET6 */ 3750 int hlen = 0; 3751 uint16_t mss = 0; 3752 3753 NET_EPOCH_ASSERT(); 3754 3755 switch (af) { 3756 #ifdef INET 3757 case AF_INET: 3758 hlen = sizeof(struct ip); 3759 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3760 if (nh != NULL) 3761 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3762 break; 3763 #endif /* INET */ 3764 #ifdef INET6 3765 case AF_INET6: 3766 hlen = sizeof(struct ip6_hdr); 3767 in6_splitscope(&addr->v6, &dst6, &scopeid); 3768 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3769 if (nh != NULL) 3770 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3771 break; 3772 #endif /* INET6 */ 3773 } 3774 3775 mss = max(V_tcp_mssdflt, mss); 3776 mss = min(mss, offer); 3777 mss = max(mss, 64); /* sanity - at least max opt space */ 3778 return (mss); 3779 } 3780 3781 static u_int32_t 3782 pf_tcp_iss(struct pf_pdesc *pd) 3783 { 3784 MD5_CTX ctx; 3785 u_int32_t digest[4]; 3786 3787 if (V_pf_tcp_secret_init == 0) { 3788 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3789 MD5Init(&V_pf_tcp_secret_ctx); 3790 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3791 sizeof(V_pf_tcp_secret)); 3792 V_pf_tcp_secret_init = 1; 3793 } 3794 3795 ctx = V_pf_tcp_secret_ctx; 3796 3797 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3798 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3799 if (pd->af == AF_INET6) { 3800 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3801 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3802 } else { 3803 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3804 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3805 } 3806 MD5Final((u_char *)digest, &ctx); 3807 V_pf_tcp_iss_off += 4096; 3808 #define ISN_RANDOM_INCREMENT (4096 - 1) 3809 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3810 V_pf_tcp_iss_off); 3811 #undef ISN_RANDOM_INCREMENT 3812 } 3813 3814 static bool 3815 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 3816 { 3817 bool match = true; 3818 3819 /* Always matches if not set */ 3820 if (! r->isset) 3821 return (!r->neg); 3822 3823 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 3824 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 3825 match = false; 3826 break; 3827 } 3828 } 3829 3830 return (match ^ r->neg); 3831 } 3832 3833 static int 3834 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 3835 { 3836 struct mbuf *m = *m0; 3837 struct ether_header *e; 3838 struct pf_keth_rule *r, *rm, *a = NULL; 3839 struct pf_keth_ruleset *ruleset = NULL; 3840 struct pf_mtag *mtag; 3841 struct pf_keth_ruleq *rules; 3842 struct pf_addr *src, *dst; 3843 sa_family_t af = 0; 3844 uint16_t proto; 3845 int asd = 0, match = 0; 3846 uint8_t action; 3847 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3848 3849 MPASS(kif->pfik_ifp->if_vnet == curvnet); 3850 NET_EPOCH_ASSERT(); 3851 3852 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 3853 3854 ruleset = V_pf_keth; 3855 rules = ck_pr_load_ptr(&ruleset->active.rules); 3856 r = TAILQ_FIRST(rules); 3857 rm = NULL; 3858 3859 e = mtod(m, struct ether_header *); 3860 proto = ntohs(e->ether_type); 3861 3862 switch (proto) { 3863 #ifdef INET 3864 case ETHERTYPE_IP: { 3865 struct ip *ip; 3866 m = m_pullup(m, sizeof(struct ether_header) + 3867 sizeof(struct ip)); 3868 if (m == NULL) { 3869 *m0 = NULL; 3870 return (PF_DROP); 3871 } 3872 af = AF_INET; 3873 ip = mtodo(m, sizeof(struct ether_header)); 3874 src = (struct pf_addr *)&ip->ip_src; 3875 dst = (struct pf_addr *)&ip->ip_dst; 3876 break; 3877 } 3878 #endif /* INET */ 3879 #ifdef INET6 3880 case ETHERTYPE_IPV6: { 3881 struct ip6_hdr *ip6; 3882 m = m_pullup(m, sizeof(struct ether_header) + 3883 sizeof(struct ip6_hdr)); 3884 if (m == NULL) { 3885 *m0 = NULL; 3886 return (PF_DROP); 3887 } 3888 af = AF_INET6; 3889 ip6 = mtodo(m, sizeof(struct ether_header)); 3890 src = (struct pf_addr *)&ip6->ip6_src; 3891 dst = (struct pf_addr *)&ip6->ip6_dst; 3892 break; 3893 } 3894 #endif /* INET6 */ 3895 } 3896 e = mtod(m, struct ether_header *); 3897 *m0 = m; 3898 3899 while (r != NULL) { 3900 counter_u64_add(r->evaluations, 1); 3901 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 3902 3903 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 3904 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3905 "kif"); 3906 r = r->skip[PFE_SKIP_IFP].ptr; 3907 } 3908 else if (r->direction && r->direction != dir) { 3909 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3910 "dir"); 3911 r = r->skip[PFE_SKIP_DIR].ptr; 3912 } 3913 else if (r->proto && r->proto != proto) { 3914 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3915 "proto"); 3916 r = r->skip[PFE_SKIP_PROTO].ptr; 3917 } 3918 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 3919 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3920 "src"); 3921 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 3922 } 3923 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 3924 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3925 "dst"); 3926 r = TAILQ_NEXT(r, entries); 3927 } 3928 else if (af != 0 && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 3929 r->ipsrc.neg, kif, M_GETFIB(m))) { 3930 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3931 "ip_src"); 3932 r = TAILQ_NEXT(r, entries); 3933 } 3934 else if (af != 0 && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 3935 r->ipdst.neg, kif, M_GETFIB(m))) { 3936 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3937 "ip_dst"); 3938 r = TAILQ_NEXT(r, entries); 3939 } 3940 else { 3941 if (r->anchor == NULL) { 3942 /* Rule matches */ 3943 rm = r; 3944 3945 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 3946 3947 if (r->quick) 3948 break; 3949 3950 r = TAILQ_NEXT(r, entries); 3951 } else { 3952 pf_step_into_keth_anchor(anchor_stack, &asd, 3953 &ruleset, &r, &a, &match); 3954 } 3955 } 3956 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 3957 &ruleset, &r, &a, &match)) 3958 break; 3959 } 3960 3961 r = rm; 3962 3963 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 3964 3965 /* Default to pass. */ 3966 if (r == NULL) 3967 return (PF_PASS); 3968 3969 /* Execute action. */ 3970 counter_u64_add(r->packets[dir == PF_OUT], 1); 3971 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 3972 3973 /* Shortcut. Don't tag if we're just going to drop anyway. */ 3974 if (r->action == PF_DROP) 3975 return (PF_DROP); 3976 3977 if (r->tag > 0) { 3978 mtag = pf_get_mtag(m); 3979 if (mtag == NULL) { 3980 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 3981 return (PF_DROP); 3982 } 3983 mtag->tag = r->tag; 3984 } 3985 3986 if (r->qid != 0) { 3987 mtag = pf_get_mtag(m); 3988 if (mtag == NULL) { 3989 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 3990 return (PF_DROP); 3991 } 3992 mtag->qid = r->qid; 3993 } 3994 3995 /* Dummynet */ 3996 if (r->dnpipe) { 3997 /** While dummynet supports handling Ethernet packets directly 3998 * it still wants some L3/L4 information, and we're not set up 3999 * to provide that here. Instead we'll do what we do for ALTQ 4000 * and merely mark the packet with the dummynet queue/pipe number. 4001 **/ 4002 mtag = pf_get_mtag(m); 4003 if (mtag == NULL) { 4004 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4005 return (PF_DROP); 4006 } 4007 mtag->dnpipe = r->dnpipe; 4008 mtag->dnflags = r->dnflags; 4009 } 4010 4011 action = r->action; 4012 4013 return (action); 4014 } 4015 4016 static int 4017 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 4018 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 4019 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 4020 { 4021 struct pf_krule *nr = NULL; 4022 struct pf_addr * const saddr = pd->src; 4023 struct pf_addr * const daddr = pd->dst; 4024 sa_family_t af = pd->af; 4025 struct pf_krule *r, *a = NULL; 4026 struct pf_kruleset *ruleset = NULL; 4027 struct pf_ksrc_node *nsn = NULL; 4028 struct tcphdr *th = &pd->hdr.tcp; 4029 struct pf_state_key *sk = NULL, *nk = NULL; 4030 u_short reason; 4031 int rewrite = 0, hdrlen = 0; 4032 int tag = -1, rtableid = -1; 4033 int asd = 0; 4034 int match = 0; 4035 int state_icmp = 0; 4036 u_int16_t sport = 0, dport = 0; 4037 u_int16_t bproto_sum = 0, bip_sum = 0; 4038 u_int8_t icmptype = 0, icmpcode = 0; 4039 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4040 4041 PF_RULES_RASSERT(); 4042 4043 if (inp != NULL) { 4044 INP_LOCK_ASSERT(inp); 4045 pd->lookup.uid = inp->inp_cred->cr_uid; 4046 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4047 pd->lookup.done = 1; 4048 } 4049 4050 switch (pd->proto) { 4051 case IPPROTO_TCP: 4052 sport = th->th_sport; 4053 dport = th->th_dport; 4054 hdrlen = sizeof(*th); 4055 break; 4056 case IPPROTO_UDP: 4057 sport = pd->hdr.udp.uh_sport; 4058 dport = pd->hdr.udp.uh_dport; 4059 hdrlen = sizeof(pd->hdr.udp); 4060 break; 4061 #ifdef INET 4062 case IPPROTO_ICMP: 4063 if (pd->af != AF_INET) 4064 break; 4065 sport = dport = pd->hdr.icmp.icmp_id; 4066 hdrlen = sizeof(pd->hdr.icmp); 4067 icmptype = pd->hdr.icmp.icmp_type; 4068 icmpcode = pd->hdr.icmp.icmp_code; 4069 4070 if (icmptype == ICMP_UNREACH || 4071 icmptype == ICMP_SOURCEQUENCH || 4072 icmptype == ICMP_REDIRECT || 4073 icmptype == ICMP_TIMXCEED || 4074 icmptype == ICMP_PARAMPROB) 4075 state_icmp++; 4076 break; 4077 #endif /* INET */ 4078 #ifdef INET6 4079 case IPPROTO_ICMPV6: 4080 if (af != AF_INET6) 4081 break; 4082 sport = dport = pd->hdr.icmp6.icmp6_id; 4083 hdrlen = sizeof(pd->hdr.icmp6); 4084 icmptype = pd->hdr.icmp6.icmp6_type; 4085 icmpcode = pd->hdr.icmp6.icmp6_code; 4086 4087 if (icmptype == ICMP6_DST_UNREACH || 4088 icmptype == ICMP6_PACKET_TOO_BIG || 4089 icmptype == ICMP6_TIME_EXCEEDED || 4090 icmptype == ICMP6_PARAM_PROB) 4091 state_icmp++; 4092 break; 4093 #endif /* INET6 */ 4094 default: 4095 sport = dport = hdrlen = 0; 4096 break; 4097 } 4098 4099 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4100 4101 /* check packet for BINAT/NAT/RDR */ 4102 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 4103 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4104 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4105 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4106 4107 if (nr->log) { 4108 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 4109 ruleset, pd, 1); 4110 } 4111 4112 if (pd->ip_sum) 4113 bip_sum = *pd->ip_sum; 4114 4115 switch (pd->proto) { 4116 case IPPROTO_TCP: 4117 bproto_sum = th->th_sum; 4118 pd->proto_sum = &th->th_sum; 4119 4120 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4121 nk->port[pd->sidx] != sport) { 4122 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4123 &th->th_sum, &nk->addr[pd->sidx], 4124 nk->port[pd->sidx], 0, af); 4125 pd->sport = &th->th_sport; 4126 sport = th->th_sport; 4127 } 4128 4129 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4130 nk->port[pd->didx] != dport) { 4131 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4132 &th->th_sum, &nk->addr[pd->didx], 4133 nk->port[pd->didx], 0, af); 4134 dport = th->th_dport; 4135 pd->dport = &th->th_dport; 4136 } 4137 rewrite++; 4138 break; 4139 case IPPROTO_UDP: 4140 bproto_sum = pd->hdr.udp.uh_sum; 4141 pd->proto_sum = &pd->hdr.udp.uh_sum; 4142 4143 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4144 nk->port[pd->sidx] != sport) { 4145 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4146 pd->ip_sum, &pd->hdr.udp.uh_sum, 4147 &nk->addr[pd->sidx], 4148 nk->port[pd->sidx], 1, af); 4149 sport = pd->hdr.udp.uh_sport; 4150 pd->sport = &pd->hdr.udp.uh_sport; 4151 } 4152 4153 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4154 nk->port[pd->didx] != dport) { 4155 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4156 pd->ip_sum, &pd->hdr.udp.uh_sum, 4157 &nk->addr[pd->didx], 4158 nk->port[pd->didx], 1, af); 4159 dport = pd->hdr.udp.uh_dport; 4160 pd->dport = &pd->hdr.udp.uh_dport; 4161 } 4162 rewrite++; 4163 break; 4164 #ifdef INET 4165 case IPPROTO_ICMP: 4166 nk->port[0] = nk->port[1]; 4167 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4168 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4169 nk->addr[pd->sidx].v4.s_addr, 0); 4170 4171 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4172 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4173 nk->addr[pd->didx].v4.s_addr, 0); 4174 4175 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4176 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4177 pd->hdr.icmp.icmp_cksum, sport, 4178 nk->port[1], 0); 4179 pd->hdr.icmp.icmp_id = nk->port[1]; 4180 pd->sport = &pd->hdr.icmp.icmp_id; 4181 } 4182 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4183 break; 4184 #endif /* INET */ 4185 #ifdef INET6 4186 case IPPROTO_ICMPV6: 4187 nk->port[0] = nk->port[1]; 4188 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4189 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4190 &nk->addr[pd->sidx], 0); 4191 4192 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4193 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4194 &nk->addr[pd->didx], 0); 4195 rewrite++; 4196 break; 4197 #endif /* INET */ 4198 default: 4199 switch (af) { 4200 #ifdef INET 4201 case AF_INET: 4202 if (PF_ANEQ(saddr, 4203 &nk->addr[pd->sidx], AF_INET)) 4204 pf_change_a(&saddr->v4.s_addr, 4205 pd->ip_sum, 4206 nk->addr[pd->sidx].v4.s_addr, 0); 4207 4208 if (PF_ANEQ(daddr, 4209 &nk->addr[pd->didx], AF_INET)) 4210 pf_change_a(&daddr->v4.s_addr, 4211 pd->ip_sum, 4212 nk->addr[pd->didx].v4.s_addr, 0); 4213 break; 4214 #endif /* INET */ 4215 #ifdef INET6 4216 case AF_INET6: 4217 if (PF_ANEQ(saddr, 4218 &nk->addr[pd->sidx], AF_INET6)) 4219 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4220 4221 if (PF_ANEQ(daddr, 4222 &nk->addr[pd->didx], AF_INET6)) 4223 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4224 break; 4225 #endif /* INET */ 4226 } 4227 break; 4228 } 4229 if (nr->natpass) 4230 r = NULL; 4231 pd->nat_rule = nr; 4232 } 4233 4234 while (r != NULL) { 4235 pf_counter_u64_add(&r->evaluations, 1); 4236 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4237 r = r->skip[PF_SKIP_IFP].ptr; 4238 else if (r->direction && r->direction != direction) 4239 r = r->skip[PF_SKIP_DIR].ptr; 4240 else if (r->af && r->af != af) 4241 r = r->skip[PF_SKIP_AF].ptr; 4242 else if (r->proto && r->proto != pd->proto) 4243 r = r->skip[PF_SKIP_PROTO].ptr; 4244 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4245 r->src.neg, kif, M_GETFIB(m))) 4246 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4247 /* tcp/udp only. port_op always 0 in other cases */ 4248 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4249 r->src.port[0], r->src.port[1], sport)) 4250 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4251 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4252 r->dst.neg, NULL, M_GETFIB(m))) 4253 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4254 /* tcp/udp only. port_op always 0 in other cases */ 4255 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4256 r->dst.port[0], r->dst.port[1], dport)) 4257 r = r->skip[PF_SKIP_DST_PORT].ptr; 4258 /* icmp only. type always 0 in other cases */ 4259 else if (r->type && r->type != icmptype + 1) 4260 r = TAILQ_NEXT(r, entries); 4261 /* icmp only. type always 0 in other cases */ 4262 else if (r->code && r->code != icmpcode + 1) 4263 r = TAILQ_NEXT(r, entries); 4264 else if (r->tos && !(r->tos == pd->tos)) 4265 r = TAILQ_NEXT(r, entries); 4266 else if (r->rule_flag & PFRULE_FRAGMENT) 4267 r = TAILQ_NEXT(r, entries); 4268 else if (pd->proto == IPPROTO_TCP && 4269 (r->flagset & th->th_flags) != r->flags) 4270 r = TAILQ_NEXT(r, entries); 4271 /* tcp/udp only. uid.op always 0 in other cases */ 4272 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4273 pf_socket_lookup(direction, pd, m), 1)) && 4274 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4275 pd->lookup.uid)) 4276 r = TAILQ_NEXT(r, entries); 4277 /* tcp/udp only. gid.op always 0 in other cases */ 4278 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4279 pf_socket_lookup(direction, pd, m), 1)) && 4280 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4281 pd->lookup.gid)) 4282 r = TAILQ_NEXT(r, entries); 4283 else if (r->prio && 4284 !pf_match_ieee8021q_pcp(r->prio, m)) 4285 r = TAILQ_NEXT(r, entries); 4286 else if (r->prob && 4287 r->prob <= arc4random()) 4288 r = TAILQ_NEXT(r, entries); 4289 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4290 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4291 r = TAILQ_NEXT(r, entries); 4292 else if (r->os_fingerprint != PF_OSFP_ANY && 4293 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4294 pf_osfp_fingerprint(pd, m, off, th), 4295 r->os_fingerprint))) 4296 r = TAILQ_NEXT(r, entries); 4297 else { 4298 if (r->tag) 4299 tag = r->tag; 4300 if (r->rtableid >= 0) 4301 rtableid = r->rtableid; 4302 if (r->anchor == NULL) { 4303 if (r->action == PF_MATCH) { 4304 pf_counter_u64_critical_enter(); 4305 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4306 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4307 pf_counter_u64_critical_exit(); 4308 pf_rule_to_actions(r, &pd->act); 4309 if (r->log) 4310 PFLOG_PACKET(kif, m, af, 4311 direction, PFRES_MATCH, r, 4312 a, ruleset, pd, 1); 4313 } else { 4314 match = 1; 4315 *rm = r; 4316 *am = a; 4317 *rsm = ruleset; 4318 } 4319 if ((*rm)->quick) 4320 break; 4321 r = TAILQ_NEXT(r, entries); 4322 } else 4323 pf_step_into_anchor(anchor_stack, &asd, 4324 &ruleset, PF_RULESET_FILTER, &r, &a, 4325 &match); 4326 } 4327 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4328 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4329 break; 4330 } 4331 r = *rm; 4332 a = *am; 4333 ruleset = *rsm; 4334 4335 REASON_SET(&reason, PFRES_MATCH); 4336 4337 /* apply actions for last matching pass/block rule */ 4338 pf_rule_to_actions(r, &pd->act); 4339 4340 if (r->log) { 4341 if (rewrite) 4342 m_copyback(m, off, hdrlen, pd->hdr.any); 4343 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4344 ruleset, pd, 1); 4345 } 4346 4347 if ((r->action == PF_DROP) && 4348 ((r->rule_flag & PFRULE_RETURNRST) || 4349 (r->rule_flag & PFRULE_RETURNICMP) || 4350 (r->rule_flag & PFRULE_RETURN))) { 4351 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4352 bip_sum, hdrlen, &reason); 4353 } 4354 4355 if (r->action == PF_DROP) 4356 goto cleanup; 4357 4358 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4359 REASON_SET(&reason, PFRES_MEMORY); 4360 goto cleanup; 4361 } 4362 if (rtableid >= 0) 4363 M_SETFIB(m, rtableid); 4364 4365 if (!state_icmp && (r->keep_state || nr != NULL || 4366 (pd->flags & PFDESC_TCP_NORM))) { 4367 int action; 4368 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4369 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4370 hdrlen); 4371 if (action != PF_PASS) { 4372 if (action == PF_DROP && 4373 (r->rule_flag & PFRULE_RETURN)) 4374 pf_return(r, nr, pd, sk, off, m, th, kif, 4375 bproto_sum, bip_sum, hdrlen, &reason); 4376 return (action); 4377 } 4378 } else { 4379 if (sk != NULL) 4380 uma_zfree(V_pf_state_key_z, sk); 4381 if (nk != NULL) 4382 uma_zfree(V_pf_state_key_z, nk); 4383 } 4384 4385 /* copy back packet headers if we performed NAT operations */ 4386 if (rewrite) 4387 m_copyback(m, off, hdrlen, pd->hdr.any); 4388 4389 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4390 direction == PF_OUT && 4391 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4392 /* 4393 * We want the state created, but we dont 4394 * want to send this in case a partner 4395 * firewall has to know about it to allow 4396 * replies through it. 4397 */ 4398 return (PF_DEFER); 4399 4400 return (PF_PASS); 4401 4402 cleanup: 4403 if (sk != NULL) 4404 uma_zfree(V_pf_state_key_z, sk); 4405 if (nk != NULL) 4406 uma_zfree(V_pf_state_key_z, nk); 4407 return (PF_DROP); 4408 } 4409 4410 static int 4411 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4412 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4413 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4414 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4415 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 4416 { 4417 struct pf_kstate *s = NULL; 4418 struct pf_ksrc_node *sn = NULL; 4419 struct tcphdr *th = &pd->hdr.tcp; 4420 u_int16_t mss = V_tcp_mssdflt; 4421 u_short reason; 4422 4423 /* check maximums */ 4424 if (r->max_states && 4425 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4426 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4427 REASON_SET(&reason, PFRES_MAXSTATES); 4428 goto csfailed; 4429 } 4430 /* src node for filter rule */ 4431 if ((r->rule_flag & PFRULE_SRCTRACK || 4432 r->rpool.opts & PF_POOL_STICKYADDR) && 4433 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 4434 REASON_SET(&reason, PFRES_SRCLIMIT); 4435 goto csfailed; 4436 } 4437 /* src node for translation rule */ 4438 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4439 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 4440 REASON_SET(&reason, PFRES_SRCLIMIT); 4441 goto csfailed; 4442 } 4443 s = pf_alloc_state(M_NOWAIT); 4444 if (s == NULL) { 4445 REASON_SET(&reason, PFRES_MEMORY); 4446 goto csfailed; 4447 } 4448 s->rule.ptr = r; 4449 s->nat_rule.ptr = nr; 4450 s->anchor.ptr = a; 4451 STATE_INC_COUNTERS(s); 4452 if (r->allow_opts) 4453 s->state_flags |= PFSTATE_ALLOWOPTS; 4454 if (r->rule_flag & PFRULE_STATESLOPPY) 4455 s->state_flags |= PFSTATE_SLOPPY; 4456 s->log = r->log & PF_LOG_ALL; 4457 s->sync_state = PFSYNC_S_NONE; 4458 s->qid = pd->act.qid; 4459 s->pqid = pd->act.pqid; 4460 s->dnpipe = pd->act.dnpipe; 4461 s->dnrpipe = pd->act.dnrpipe; 4462 s->state_flags |= pd->act.flags; 4463 if (nr != NULL) 4464 s->log |= nr->log & PF_LOG_ALL; 4465 switch (pd->proto) { 4466 case IPPROTO_TCP: 4467 s->src.seqlo = ntohl(th->th_seq); 4468 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4469 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4470 r->keep_state == PF_STATE_MODULATE) { 4471 /* Generate sequence number modulator */ 4472 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4473 0) 4474 s->src.seqdiff = 1; 4475 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4476 htonl(s->src.seqlo + s->src.seqdiff), 0); 4477 *rewrite = 1; 4478 } else 4479 s->src.seqdiff = 0; 4480 if (th->th_flags & TH_SYN) { 4481 s->src.seqhi++; 4482 s->src.wscale = pf_get_wscale(m, off, 4483 th->th_off, pd->af); 4484 } 4485 s->src.max_win = MAX(ntohs(th->th_win), 1); 4486 if (s->src.wscale & PF_WSCALE_MASK) { 4487 /* Remove scale factor from initial window */ 4488 int win = s->src.max_win; 4489 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4490 s->src.max_win = (win - 1) >> 4491 (s->src.wscale & PF_WSCALE_MASK); 4492 } 4493 if (th->th_flags & TH_FIN) 4494 s->src.seqhi++; 4495 s->dst.seqhi = 1; 4496 s->dst.max_win = 1; 4497 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4498 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4499 s->timeout = PFTM_TCP_FIRST_PACKET; 4500 atomic_add_32(&V_pf_status.states_halfopen, 1); 4501 break; 4502 case IPPROTO_UDP: 4503 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4504 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4505 s->timeout = PFTM_UDP_FIRST_PACKET; 4506 break; 4507 case IPPROTO_ICMP: 4508 #ifdef INET6 4509 case IPPROTO_ICMPV6: 4510 #endif 4511 s->timeout = PFTM_ICMP_FIRST_PACKET; 4512 break; 4513 default: 4514 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4515 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4516 s->timeout = PFTM_OTHER_FIRST_PACKET; 4517 } 4518 4519 if (r->rt) { 4520 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4521 REASON_SET(&reason, PFRES_MAPFAILED); 4522 pf_src_tree_remove_state(s); 4523 s->timeout = PFTM_UNLINKED; 4524 STATE_DEC_COUNTERS(s); 4525 pf_free_state(s); 4526 goto csfailed; 4527 } 4528 s->rt_kif = r->rpool.cur->kif; 4529 } 4530 4531 s->creation = time_uptime; 4532 s->expire = time_uptime; 4533 4534 if (sn != NULL) 4535 s->src_node = sn; 4536 if (nsn != NULL) { 4537 /* XXX We only modify one side for now. */ 4538 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4539 s->nat_src_node = nsn; 4540 } 4541 if (pd->proto == IPPROTO_TCP) { 4542 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4543 off, pd, th, &s->src, &s->dst)) { 4544 REASON_SET(&reason, PFRES_MEMORY); 4545 pf_src_tree_remove_state(s); 4546 s->timeout = PFTM_UNLINKED; 4547 STATE_DEC_COUNTERS(s); 4548 pf_free_state(s); 4549 return (PF_DROP); 4550 } 4551 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4552 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4553 &s->src, &s->dst, rewrite)) { 4554 /* This really shouldn't happen!!! */ 4555 DPFPRINTF(PF_DEBUG_URGENT, 4556 ("pf_normalize_tcp_stateful failed on first " 4557 "pkt\n")); 4558 pf_src_tree_remove_state(s); 4559 s->timeout = PFTM_UNLINKED; 4560 STATE_DEC_COUNTERS(s); 4561 pf_free_state(s); 4562 return (PF_DROP); 4563 } 4564 } 4565 s->direction = pd->dir; 4566 4567 /* 4568 * sk/nk could already been setup by pf_get_translation(). 4569 */ 4570 if (nr == NULL) { 4571 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4572 __func__, nr, sk, nk)); 4573 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4574 if (sk == NULL) 4575 goto csfailed; 4576 nk = sk; 4577 } else 4578 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4579 __func__, nr, sk, nk)); 4580 4581 /* Swap sk/nk for PF_OUT. */ 4582 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4583 (pd->dir == PF_IN) ? sk : nk, 4584 (pd->dir == PF_IN) ? nk : sk, s)) { 4585 REASON_SET(&reason, PFRES_STATEINS); 4586 pf_src_tree_remove_state(s); 4587 s->timeout = PFTM_UNLINKED; 4588 STATE_DEC_COUNTERS(s); 4589 pf_free_state(s); 4590 return (PF_DROP); 4591 } else 4592 *sm = s; 4593 4594 if (tag > 0) 4595 s->tag = tag; 4596 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4597 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4598 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4599 /* undo NAT changes, if they have taken place */ 4600 if (nr != NULL) { 4601 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4602 if (pd->dir == PF_OUT) 4603 skt = s->key[PF_SK_STACK]; 4604 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4605 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4606 if (pd->sport) 4607 *pd->sport = skt->port[pd->sidx]; 4608 if (pd->dport) 4609 *pd->dport = skt->port[pd->didx]; 4610 if (pd->proto_sum) 4611 *pd->proto_sum = bproto_sum; 4612 if (pd->ip_sum) 4613 *pd->ip_sum = bip_sum; 4614 m_copyback(m, off, hdrlen, pd->hdr.any); 4615 } 4616 s->src.seqhi = htonl(arc4random()); 4617 /* Find mss option */ 4618 int rtid = M_GETFIB(m); 4619 mss = pf_get_mss(m, off, th->th_off, pd->af); 4620 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4621 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4622 s->src.mss = mss; 4623 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4624 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4625 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4626 REASON_SET(&reason, PFRES_SYNPROXY); 4627 return (PF_SYNPROXY_DROP); 4628 } 4629 4630 return (PF_PASS); 4631 4632 csfailed: 4633 if (sk != NULL) 4634 uma_zfree(V_pf_state_key_z, sk); 4635 if (nk != NULL) 4636 uma_zfree(V_pf_state_key_z, nk); 4637 4638 if (sn != NULL) { 4639 struct pf_srchash *sh; 4640 4641 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4642 PF_HASHROW_LOCK(sh); 4643 if (--sn->states == 0 && sn->expire == 0) { 4644 pf_unlink_src_node(sn); 4645 uma_zfree(V_pf_sources_z, sn); 4646 counter_u64_add( 4647 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4648 } 4649 PF_HASHROW_UNLOCK(sh); 4650 } 4651 4652 if (nsn != sn && nsn != NULL) { 4653 struct pf_srchash *sh; 4654 4655 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4656 PF_HASHROW_LOCK(sh); 4657 if (--nsn->states == 0 && nsn->expire == 0) { 4658 pf_unlink_src_node(nsn); 4659 uma_zfree(V_pf_sources_z, nsn); 4660 counter_u64_add( 4661 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4662 } 4663 PF_HASHROW_UNLOCK(sh); 4664 } 4665 4666 return (PF_DROP); 4667 } 4668 4669 static int 4670 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4671 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4672 struct pf_kruleset **rsm) 4673 { 4674 struct pf_krule *r, *a = NULL; 4675 struct pf_kruleset *ruleset = NULL; 4676 sa_family_t af = pd->af; 4677 u_short reason; 4678 int tag = -1; 4679 int asd = 0; 4680 int match = 0; 4681 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4682 4683 PF_RULES_RASSERT(); 4684 4685 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4686 while (r != NULL) { 4687 pf_counter_u64_add(&r->evaluations, 1); 4688 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4689 r = r->skip[PF_SKIP_IFP].ptr; 4690 else if (r->direction && r->direction != direction) 4691 r = r->skip[PF_SKIP_DIR].ptr; 4692 else if (r->af && r->af != af) 4693 r = r->skip[PF_SKIP_AF].ptr; 4694 else if (r->proto && r->proto != pd->proto) 4695 r = r->skip[PF_SKIP_PROTO].ptr; 4696 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4697 r->src.neg, kif, M_GETFIB(m))) 4698 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4699 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4700 r->dst.neg, NULL, M_GETFIB(m))) 4701 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4702 else if (r->tos && !(r->tos == pd->tos)) 4703 r = TAILQ_NEXT(r, entries); 4704 else if (r->os_fingerprint != PF_OSFP_ANY) 4705 r = TAILQ_NEXT(r, entries); 4706 else if (pd->proto == IPPROTO_UDP && 4707 (r->src.port_op || r->dst.port_op)) 4708 r = TAILQ_NEXT(r, entries); 4709 else if (pd->proto == IPPROTO_TCP && 4710 (r->src.port_op || r->dst.port_op || r->flagset)) 4711 r = TAILQ_NEXT(r, entries); 4712 else if ((pd->proto == IPPROTO_ICMP || 4713 pd->proto == IPPROTO_ICMPV6) && 4714 (r->type || r->code)) 4715 r = TAILQ_NEXT(r, entries); 4716 else if (r->prio && 4717 !pf_match_ieee8021q_pcp(r->prio, m)) 4718 r = TAILQ_NEXT(r, entries); 4719 else if (r->prob && r->prob <= 4720 (arc4random() % (UINT_MAX - 1) + 1)) 4721 r = TAILQ_NEXT(r, entries); 4722 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4723 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4724 r = TAILQ_NEXT(r, entries); 4725 else { 4726 if (r->anchor == NULL) { 4727 if (r->action == PF_MATCH) { 4728 pf_counter_u64_critical_enter(); 4729 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4730 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4731 pf_counter_u64_critical_exit(); 4732 pf_rule_to_actions(r, &pd->act); 4733 if (r->log) 4734 PFLOG_PACKET(kif, m, af, 4735 direction, PFRES_MATCH, r, 4736 a, ruleset, pd, 1); 4737 } else { 4738 match = 1; 4739 *rm = r; 4740 *am = a; 4741 *rsm = ruleset; 4742 } 4743 if ((*rm)->quick) 4744 break; 4745 r = TAILQ_NEXT(r, entries); 4746 } else 4747 pf_step_into_anchor(anchor_stack, &asd, 4748 &ruleset, PF_RULESET_FILTER, &r, &a, 4749 &match); 4750 } 4751 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4752 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4753 break; 4754 } 4755 r = *rm; 4756 a = *am; 4757 ruleset = *rsm; 4758 4759 REASON_SET(&reason, PFRES_MATCH); 4760 4761 /* apply actions for last matching pass/block rule */ 4762 pf_rule_to_actions(r, &pd->act); 4763 4764 if (r->log) 4765 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4766 1); 4767 4768 if (r->action != PF_PASS) 4769 return (PF_DROP); 4770 4771 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4772 REASON_SET(&reason, PFRES_MEMORY); 4773 return (PF_DROP); 4774 } 4775 4776 return (PF_PASS); 4777 } 4778 4779 static int 4780 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4781 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4782 int *copyback) 4783 { 4784 struct tcphdr *th = &pd->hdr.tcp; 4785 struct pf_state_peer *src, *dst; 4786 u_int16_t win = ntohs(th->th_win); 4787 u_int32_t ack, end, seq, orig_seq; 4788 u_int8_t sws, dws, psrc, pdst; 4789 int ackskew; 4790 4791 if (pd->dir == (*state)->direction) { 4792 src = &(*state)->src; 4793 dst = &(*state)->dst; 4794 psrc = PF_PEER_SRC; 4795 pdst = PF_PEER_DST; 4796 } else { 4797 src = &(*state)->dst; 4798 dst = &(*state)->src; 4799 psrc = PF_PEER_DST; 4800 pdst = PF_PEER_SRC; 4801 } 4802 4803 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4804 sws = src->wscale & PF_WSCALE_MASK; 4805 dws = dst->wscale & PF_WSCALE_MASK; 4806 } else 4807 sws = dws = 0; 4808 4809 /* 4810 * Sequence tracking algorithm from Guido van Rooij's paper: 4811 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4812 * tcp_filtering.ps 4813 */ 4814 4815 orig_seq = seq = ntohl(th->th_seq); 4816 if (src->seqlo == 0) { 4817 /* First packet from this end. Set its state */ 4818 4819 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4820 src->scrub == NULL) { 4821 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4822 REASON_SET(reason, PFRES_MEMORY); 4823 return (PF_DROP); 4824 } 4825 } 4826 4827 /* Deferred generation of sequence number modulator */ 4828 if (dst->seqdiff && !src->seqdiff) { 4829 /* use random iss for the TCP server */ 4830 while ((src->seqdiff = arc4random() - seq) == 0) 4831 ; 4832 ack = ntohl(th->th_ack) - dst->seqdiff; 4833 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4834 src->seqdiff), 0); 4835 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4836 *copyback = 1; 4837 } else { 4838 ack = ntohl(th->th_ack); 4839 } 4840 4841 end = seq + pd->p_len; 4842 if (th->th_flags & TH_SYN) { 4843 end++; 4844 if (dst->wscale & PF_WSCALE_FLAG) { 4845 src->wscale = pf_get_wscale(m, off, th->th_off, 4846 pd->af); 4847 if (src->wscale & PF_WSCALE_FLAG) { 4848 /* Remove scale factor from initial 4849 * window */ 4850 sws = src->wscale & PF_WSCALE_MASK; 4851 win = ((u_int32_t)win + (1 << sws) - 1) 4852 >> sws; 4853 dws = dst->wscale & PF_WSCALE_MASK; 4854 } else { 4855 /* fixup other window */ 4856 dst->max_win <<= dst->wscale & 4857 PF_WSCALE_MASK; 4858 /* in case of a retrans SYN|ACK */ 4859 dst->wscale = 0; 4860 } 4861 } 4862 } 4863 if (th->th_flags & TH_FIN) 4864 end++; 4865 4866 src->seqlo = seq; 4867 if (src->state < TCPS_SYN_SENT) 4868 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4869 4870 /* 4871 * May need to slide the window (seqhi may have been set by 4872 * the crappy stack check or if we picked up the connection 4873 * after establishment) 4874 */ 4875 if (src->seqhi == 1 || 4876 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4877 src->seqhi = end + MAX(1, dst->max_win << dws); 4878 if (win > src->max_win) 4879 src->max_win = win; 4880 4881 } else { 4882 ack = ntohl(th->th_ack) - dst->seqdiff; 4883 if (src->seqdiff) { 4884 /* Modulate sequence numbers */ 4885 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4886 src->seqdiff), 0); 4887 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4888 *copyback = 1; 4889 } 4890 end = seq + pd->p_len; 4891 if (th->th_flags & TH_SYN) 4892 end++; 4893 if (th->th_flags & TH_FIN) 4894 end++; 4895 } 4896 4897 if ((th->th_flags & TH_ACK) == 0) { 4898 /* Let it pass through the ack skew check */ 4899 ack = dst->seqlo; 4900 } else if ((ack == 0 && 4901 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4902 /* broken tcp stacks do not set ack */ 4903 (dst->state < TCPS_SYN_SENT)) { 4904 /* 4905 * Many stacks (ours included) will set the ACK number in an 4906 * FIN|ACK if the SYN times out -- no sequence to ACK. 4907 */ 4908 ack = dst->seqlo; 4909 } 4910 4911 if (seq == end) { 4912 /* Ease sequencing restrictions on no data packets */ 4913 seq = src->seqlo; 4914 end = seq; 4915 } 4916 4917 ackskew = dst->seqlo - ack; 4918 4919 /* 4920 * Need to demodulate the sequence numbers in any TCP SACK options 4921 * (Selective ACK). We could optionally validate the SACK values 4922 * against the current ACK window, either forwards or backwards, but 4923 * I'm not confident that SACK has been implemented properly 4924 * everywhere. It wouldn't surprise me if several stacks accidentally 4925 * SACK too far backwards of previously ACKed data. There really aren't 4926 * any security implications of bad SACKing unless the target stack 4927 * doesn't validate the option length correctly. Someone trying to 4928 * spoof into a TCP connection won't bother blindly sending SACK 4929 * options anyway. 4930 */ 4931 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4932 if (pf_modulate_sack(m, off, pd, th, dst)) 4933 *copyback = 1; 4934 } 4935 4936 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4937 if (SEQ_GEQ(src->seqhi, end) && 4938 /* Last octet inside other's window space */ 4939 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4940 /* Retrans: not more than one window back */ 4941 (ackskew >= -MAXACKWINDOW) && 4942 /* Acking not more than one reassembled fragment backwards */ 4943 (ackskew <= (MAXACKWINDOW << sws)) && 4944 /* Acking not more than one window forward */ 4945 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4946 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4947 (pd->flags & PFDESC_IP_REAS) == 0)) { 4948 /* Require an exact/+1 sequence match on resets when possible */ 4949 4950 if (dst->scrub || src->scrub) { 4951 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4952 *state, src, dst, copyback)) 4953 return (PF_DROP); 4954 } 4955 4956 /* update max window */ 4957 if (src->max_win < win) 4958 src->max_win = win; 4959 /* synchronize sequencing */ 4960 if (SEQ_GT(end, src->seqlo)) 4961 src->seqlo = end; 4962 /* slide the window of what the other end can send */ 4963 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4964 dst->seqhi = ack + MAX((win << sws), 1); 4965 4966 /* update states */ 4967 if (th->th_flags & TH_SYN) 4968 if (src->state < TCPS_SYN_SENT) 4969 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4970 if (th->th_flags & TH_FIN) 4971 if (src->state < TCPS_CLOSING) 4972 pf_set_protostate(*state, psrc, TCPS_CLOSING); 4973 if (th->th_flags & TH_ACK) { 4974 if (dst->state == TCPS_SYN_SENT) { 4975 pf_set_protostate(*state, pdst, 4976 TCPS_ESTABLISHED); 4977 if (src->state == TCPS_ESTABLISHED && 4978 (*state)->src_node != NULL && 4979 pf_src_connlimit(state)) { 4980 REASON_SET(reason, PFRES_SRCLIMIT); 4981 return (PF_DROP); 4982 } 4983 } else if (dst->state == TCPS_CLOSING) 4984 pf_set_protostate(*state, pdst, 4985 TCPS_FIN_WAIT_2); 4986 } 4987 if (th->th_flags & TH_RST) 4988 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 4989 4990 /* update expire time */ 4991 (*state)->expire = time_uptime; 4992 if (src->state >= TCPS_FIN_WAIT_2 && 4993 dst->state >= TCPS_FIN_WAIT_2) 4994 (*state)->timeout = PFTM_TCP_CLOSED; 4995 else if (src->state >= TCPS_CLOSING && 4996 dst->state >= TCPS_CLOSING) 4997 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4998 else if (src->state < TCPS_ESTABLISHED || 4999 dst->state < TCPS_ESTABLISHED) 5000 (*state)->timeout = PFTM_TCP_OPENING; 5001 else if (src->state >= TCPS_CLOSING || 5002 dst->state >= TCPS_CLOSING) 5003 (*state)->timeout = PFTM_TCP_CLOSING; 5004 else 5005 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5006 5007 /* Fall through to PASS packet */ 5008 5009 } else if ((dst->state < TCPS_SYN_SENT || 5010 dst->state >= TCPS_FIN_WAIT_2 || 5011 src->state >= TCPS_FIN_WAIT_2) && 5012 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5013 /* Within a window forward of the originating packet */ 5014 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5015 /* Within a window backward of the originating packet */ 5016 5017 /* 5018 * This currently handles three situations: 5019 * 1) Stupid stacks will shotgun SYNs before their peer 5020 * replies. 5021 * 2) When PF catches an already established stream (the 5022 * firewall rebooted, the state table was flushed, routes 5023 * changed...) 5024 * 3) Packets get funky immediately after the connection 5025 * closes (this should catch Solaris spurious ACK|FINs 5026 * that web servers like to spew after a close) 5027 * 5028 * This must be a little more careful than the above code 5029 * since packet floods will also be caught here. We don't 5030 * update the TTL here to mitigate the damage of a packet 5031 * flood and so the same code can handle awkward establishment 5032 * and a loosened connection close. 5033 * In the establishment case, a correct peer response will 5034 * validate the connection, go through the normal state code 5035 * and keep updating the state TTL. 5036 */ 5037 5038 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5039 printf("pf: loose state match: "); 5040 pf_print_state(*state); 5041 pf_print_flags(th->th_flags); 5042 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5043 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5044 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5045 (unsigned long long)(*state)->packets[1], 5046 pd->dir == PF_IN ? "in" : "out", 5047 pd->dir == (*state)->direction ? "fwd" : "rev"); 5048 } 5049 5050 if (dst->scrub || src->scrub) { 5051 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5052 *state, src, dst, copyback)) 5053 return (PF_DROP); 5054 } 5055 5056 /* update max window */ 5057 if (src->max_win < win) 5058 src->max_win = win; 5059 /* synchronize sequencing */ 5060 if (SEQ_GT(end, src->seqlo)) 5061 src->seqlo = end; 5062 /* slide the window of what the other end can send */ 5063 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5064 dst->seqhi = ack + MAX((win << sws), 1); 5065 5066 /* 5067 * Cannot set dst->seqhi here since this could be a shotgunned 5068 * SYN and not an already established connection. 5069 */ 5070 5071 if (th->th_flags & TH_FIN) 5072 if (src->state < TCPS_CLOSING) 5073 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5074 if (th->th_flags & TH_RST) 5075 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5076 5077 /* Fall through to PASS packet */ 5078 5079 } else { 5080 if ((*state)->dst.state == TCPS_SYN_SENT && 5081 (*state)->src.state == TCPS_SYN_SENT) { 5082 /* Send RST for state mismatches during handshake */ 5083 if (!(th->th_flags & TH_RST)) 5084 pf_send_tcp((*state)->rule.ptr, pd->af, 5085 pd->dst, pd->src, th->th_dport, 5086 th->th_sport, ntohl(th->th_ack), 0, 5087 TH_RST, 0, 0, 5088 (*state)->rule.ptr->return_ttl, 1, 0); 5089 src->seqlo = 0; 5090 src->seqhi = 1; 5091 src->max_win = 1; 5092 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5093 printf("pf: BAD state: "); 5094 pf_print_state(*state); 5095 pf_print_flags(th->th_flags); 5096 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5097 "pkts=%llu:%llu dir=%s,%s\n", 5098 seq, orig_seq, ack, pd->p_len, ackskew, 5099 (unsigned long long)(*state)->packets[0], 5100 (unsigned long long)(*state)->packets[1], 5101 pd->dir == PF_IN ? "in" : "out", 5102 pd->dir == (*state)->direction ? "fwd" : "rev"); 5103 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5104 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5105 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5106 ' ': '2', 5107 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5108 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5109 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5110 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5111 } 5112 REASON_SET(reason, PFRES_BADSTATE); 5113 return (PF_DROP); 5114 } 5115 5116 return (PF_PASS); 5117 } 5118 5119 static int 5120 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5121 { 5122 struct tcphdr *th = &pd->hdr.tcp; 5123 struct pf_state_peer *src, *dst; 5124 u_int8_t psrc, pdst; 5125 5126 if (pd->dir == (*state)->direction) { 5127 src = &(*state)->src; 5128 dst = &(*state)->dst; 5129 psrc = PF_PEER_SRC; 5130 pdst = PF_PEER_DST; 5131 } else { 5132 src = &(*state)->dst; 5133 dst = &(*state)->src; 5134 psrc = PF_PEER_DST; 5135 pdst = PF_PEER_SRC; 5136 } 5137 5138 if (th->th_flags & TH_SYN) 5139 if (src->state < TCPS_SYN_SENT) 5140 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5141 if (th->th_flags & TH_FIN) 5142 if (src->state < TCPS_CLOSING) 5143 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5144 if (th->th_flags & TH_ACK) { 5145 if (dst->state == TCPS_SYN_SENT) { 5146 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5147 if (src->state == TCPS_ESTABLISHED && 5148 (*state)->src_node != NULL && 5149 pf_src_connlimit(state)) { 5150 REASON_SET(reason, PFRES_SRCLIMIT); 5151 return (PF_DROP); 5152 } 5153 } else if (dst->state == TCPS_CLOSING) { 5154 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5155 } else if (src->state == TCPS_SYN_SENT && 5156 dst->state < TCPS_SYN_SENT) { 5157 /* 5158 * Handle a special sloppy case where we only see one 5159 * half of the connection. If there is a ACK after 5160 * the initial SYN without ever seeing a packet from 5161 * the destination, set the connection to established. 5162 */ 5163 pf_set_protostate(*state, PF_PEER_BOTH, 5164 TCPS_ESTABLISHED); 5165 dst->state = src->state = TCPS_ESTABLISHED; 5166 if ((*state)->src_node != NULL && 5167 pf_src_connlimit(state)) { 5168 REASON_SET(reason, PFRES_SRCLIMIT); 5169 return (PF_DROP); 5170 } 5171 } else if (src->state == TCPS_CLOSING && 5172 dst->state == TCPS_ESTABLISHED && 5173 dst->seqlo == 0) { 5174 /* 5175 * Handle the closing of half connections where we 5176 * don't see the full bidirectional FIN/ACK+ACK 5177 * handshake. 5178 */ 5179 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5180 } 5181 } 5182 if (th->th_flags & TH_RST) 5183 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5184 5185 /* update expire time */ 5186 (*state)->expire = time_uptime; 5187 if (src->state >= TCPS_FIN_WAIT_2 && 5188 dst->state >= TCPS_FIN_WAIT_2) 5189 (*state)->timeout = PFTM_TCP_CLOSED; 5190 else if (src->state >= TCPS_CLOSING && 5191 dst->state >= TCPS_CLOSING) 5192 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5193 else if (src->state < TCPS_ESTABLISHED || 5194 dst->state < TCPS_ESTABLISHED) 5195 (*state)->timeout = PFTM_TCP_OPENING; 5196 else if (src->state >= TCPS_CLOSING || 5197 dst->state >= TCPS_CLOSING) 5198 (*state)->timeout = PFTM_TCP_CLOSING; 5199 else 5200 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5201 5202 return (PF_PASS); 5203 } 5204 5205 static int 5206 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5207 { 5208 struct pf_state_key *sk = (*state)->key[pd->didx]; 5209 struct tcphdr *th = &pd->hdr.tcp; 5210 5211 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5212 if (pd->dir != (*state)->direction) { 5213 REASON_SET(reason, PFRES_SYNPROXY); 5214 return (PF_SYNPROXY_DROP); 5215 } 5216 if (th->th_flags & TH_SYN) { 5217 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5218 REASON_SET(reason, PFRES_SYNPROXY); 5219 return (PF_DROP); 5220 } 5221 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5222 pd->src, th->th_dport, th->th_sport, 5223 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5224 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 5225 REASON_SET(reason, PFRES_SYNPROXY); 5226 return (PF_SYNPROXY_DROP); 5227 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5228 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5229 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5230 REASON_SET(reason, PFRES_SYNPROXY); 5231 return (PF_DROP); 5232 } else if ((*state)->src_node != NULL && 5233 pf_src_connlimit(state)) { 5234 REASON_SET(reason, PFRES_SRCLIMIT); 5235 return (PF_DROP); 5236 } else 5237 pf_set_protostate(*state, PF_PEER_SRC, 5238 PF_TCPS_PROXY_DST); 5239 } 5240 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5241 if (pd->dir == (*state)->direction) { 5242 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5243 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5244 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5245 REASON_SET(reason, PFRES_SYNPROXY); 5246 return (PF_DROP); 5247 } 5248 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5249 if ((*state)->dst.seqhi == 1) 5250 (*state)->dst.seqhi = htonl(arc4random()); 5251 pf_send_tcp((*state)->rule.ptr, pd->af, 5252 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5253 sk->port[pd->sidx], sk->port[pd->didx], 5254 (*state)->dst.seqhi, 0, TH_SYN, 0, 5255 (*state)->src.mss, 0, 0, (*state)->tag); 5256 REASON_SET(reason, PFRES_SYNPROXY); 5257 return (PF_SYNPROXY_DROP); 5258 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5259 (TH_SYN|TH_ACK)) || 5260 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5261 REASON_SET(reason, PFRES_SYNPROXY); 5262 return (PF_DROP); 5263 } else { 5264 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5265 (*state)->dst.seqlo = ntohl(th->th_seq); 5266 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5267 pd->src, th->th_dport, th->th_sport, 5268 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5269 TH_ACK, (*state)->src.max_win, 0, 0, 0, 5270 (*state)->tag); 5271 pf_send_tcp((*state)->rule.ptr, pd->af, 5272 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5273 sk->port[pd->sidx], sk->port[pd->didx], 5274 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5275 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 5276 (*state)->src.seqdiff = (*state)->dst.seqhi - 5277 (*state)->src.seqlo; 5278 (*state)->dst.seqdiff = (*state)->src.seqhi - 5279 (*state)->dst.seqlo; 5280 (*state)->src.seqhi = (*state)->src.seqlo + 5281 (*state)->dst.max_win; 5282 (*state)->dst.seqhi = (*state)->dst.seqlo + 5283 (*state)->src.max_win; 5284 (*state)->src.wscale = (*state)->dst.wscale = 0; 5285 pf_set_protostate(*state, PF_PEER_BOTH, 5286 TCPS_ESTABLISHED); 5287 REASON_SET(reason, PFRES_SYNPROXY); 5288 return (PF_SYNPROXY_DROP); 5289 } 5290 } 5291 5292 return (PF_PASS); 5293 } 5294 5295 static int 5296 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5297 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5298 u_short *reason) 5299 { 5300 struct pf_state_key_cmp key; 5301 struct tcphdr *th = &pd->hdr.tcp; 5302 int copyback = 0; 5303 int action; 5304 struct pf_state_peer *src, *dst; 5305 5306 bzero(&key, sizeof(key)); 5307 key.af = pd->af; 5308 key.proto = IPPROTO_TCP; 5309 if (direction == PF_IN) { /* wire side, straight */ 5310 PF_ACPY(&key.addr[0], pd->src, key.af); 5311 PF_ACPY(&key.addr[1], pd->dst, key.af); 5312 key.port[0] = th->th_sport; 5313 key.port[1] = th->th_dport; 5314 } else { /* stack side, reverse */ 5315 PF_ACPY(&key.addr[1], pd->src, key.af); 5316 PF_ACPY(&key.addr[0], pd->dst, key.af); 5317 key.port[1] = th->th_sport; 5318 key.port[0] = th->th_dport; 5319 } 5320 5321 STATE_LOOKUP(kif, &key, direction, *state, pd); 5322 5323 if (direction == (*state)->direction) { 5324 src = &(*state)->src; 5325 dst = &(*state)->dst; 5326 } else { 5327 src = &(*state)->dst; 5328 dst = &(*state)->src; 5329 } 5330 5331 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5332 return (action); 5333 5334 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 5335 dst->state >= TCPS_FIN_WAIT_2 && 5336 src->state >= TCPS_FIN_WAIT_2) { 5337 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5338 printf("pf: state reuse "); 5339 pf_print_state(*state); 5340 pf_print_flags(th->th_flags); 5341 printf("\n"); 5342 } 5343 /* XXX make sure it's the same direction ?? */ 5344 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5345 pf_unlink_state(*state); 5346 *state = NULL; 5347 return (PF_DROP); 5348 } 5349 5350 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5351 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5352 return (PF_DROP); 5353 } else { 5354 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5355 ©back) == PF_DROP) 5356 return (PF_DROP); 5357 } 5358 5359 /* translate source/destination address, if necessary */ 5360 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5361 struct pf_state_key *nk = (*state)->key[pd->didx]; 5362 5363 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5364 nk->port[pd->sidx] != th->th_sport) 5365 pf_change_ap(m, pd->src, &th->th_sport, 5366 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5367 nk->port[pd->sidx], 0, pd->af); 5368 5369 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5370 nk->port[pd->didx] != th->th_dport) 5371 pf_change_ap(m, pd->dst, &th->th_dport, 5372 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5373 nk->port[pd->didx], 0, pd->af); 5374 copyback = 1; 5375 } 5376 5377 /* Copyback sequence modulation or stateful scrub changes if needed */ 5378 if (copyback) 5379 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5380 5381 return (PF_PASS); 5382 } 5383 5384 static int 5385 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5386 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5387 { 5388 struct pf_state_peer *src, *dst; 5389 struct pf_state_key_cmp key; 5390 struct udphdr *uh = &pd->hdr.udp; 5391 uint8_t psrc, pdst; 5392 5393 bzero(&key, sizeof(key)); 5394 key.af = pd->af; 5395 key.proto = IPPROTO_UDP; 5396 if (direction == PF_IN) { /* wire side, straight */ 5397 PF_ACPY(&key.addr[0], pd->src, key.af); 5398 PF_ACPY(&key.addr[1], pd->dst, key.af); 5399 key.port[0] = uh->uh_sport; 5400 key.port[1] = uh->uh_dport; 5401 } else { /* stack side, reverse */ 5402 PF_ACPY(&key.addr[1], pd->src, key.af); 5403 PF_ACPY(&key.addr[0], pd->dst, key.af); 5404 key.port[1] = uh->uh_sport; 5405 key.port[0] = uh->uh_dport; 5406 } 5407 5408 STATE_LOOKUP(kif, &key, direction, *state, pd); 5409 5410 if (direction == (*state)->direction) { 5411 src = &(*state)->src; 5412 dst = &(*state)->dst; 5413 psrc = PF_PEER_SRC; 5414 pdst = PF_PEER_DST; 5415 } else { 5416 src = &(*state)->dst; 5417 dst = &(*state)->src; 5418 psrc = PF_PEER_DST; 5419 pdst = PF_PEER_SRC; 5420 } 5421 5422 /* update states */ 5423 if (src->state < PFUDPS_SINGLE) 5424 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5425 if (dst->state == PFUDPS_SINGLE) 5426 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5427 5428 /* update expire time */ 5429 (*state)->expire = time_uptime; 5430 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5431 (*state)->timeout = PFTM_UDP_MULTIPLE; 5432 else 5433 (*state)->timeout = PFTM_UDP_SINGLE; 5434 5435 /* translate source/destination address, if necessary */ 5436 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5437 struct pf_state_key *nk = (*state)->key[pd->didx]; 5438 5439 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5440 nk->port[pd->sidx] != uh->uh_sport) 5441 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5442 &uh->uh_sum, &nk->addr[pd->sidx], 5443 nk->port[pd->sidx], 1, pd->af); 5444 5445 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5446 nk->port[pd->didx] != uh->uh_dport) 5447 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5448 &uh->uh_sum, &nk->addr[pd->didx], 5449 nk->port[pd->didx], 1, pd->af); 5450 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5451 } 5452 5453 return (PF_PASS); 5454 } 5455 5456 static int 5457 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5458 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5459 { 5460 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5461 u_int16_t icmpid = 0, *icmpsum; 5462 u_int8_t icmptype, icmpcode; 5463 int state_icmp = 0; 5464 struct pf_state_key_cmp key; 5465 5466 bzero(&key, sizeof(key)); 5467 switch (pd->proto) { 5468 #ifdef INET 5469 case IPPROTO_ICMP: 5470 icmptype = pd->hdr.icmp.icmp_type; 5471 icmpcode = pd->hdr.icmp.icmp_code; 5472 icmpid = pd->hdr.icmp.icmp_id; 5473 icmpsum = &pd->hdr.icmp.icmp_cksum; 5474 5475 if (icmptype == ICMP_UNREACH || 5476 icmptype == ICMP_SOURCEQUENCH || 5477 icmptype == ICMP_REDIRECT || 5478 icmptype == ICMP_TIMXCEED || 5479 icmptype == ICMP_PARAMPROB) 5480 state_icmp++; 5481 break; 5482 #endif /* INET */ 5483 #ifdef INET6 5484 case IPPROTO_ICMPV6: 5485 icmptype = pd->hdr.icmp6.icmp6_type; 5486 icmpcode = pd->hdr.icmp6.icmp6_code; 5487 icmpid = pd->hdr.icmp6.icmp6_id; 5488 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5489 5490 if (icmptype == ICMP6_DST_UNREACH || 5491 icmptype == ICMP6_PACKET_TOO_BIG || 5492 icmptype == ICMP6_TIME_EXCEEDED || 5493 icmptype == ICMP6_PARAM_PROB) 5494 state_icmp++; 5495 break; 5496 #endif /* INET6 */ 5497 } 5498 5499 if (!state_icmp) { 5500 /* 5501 * ICMP query/reply message not related to a TCP/UDP packet. 5502 * Search for an ICMP state. 5503 */ 5504 key.af = pd->af; 5505 key.proto = pd->proto; 5506 key.port[0] = key.port[1] = icmpid; 5507 if (direction == PF_IN) { /* wire side, straight */ 5508 PF_ACPY(&key.addr[0], pd->src, key.af); 5509 PF_ACPY(&key.addr[1], pd->dst, key.af); 5510 } else { /* stack side, reverse */ 5511 PF_ACPY(&key.addr[1], pd->src, key.af); 5512 PF_ACPY(&key.addr[0], pd->dst, key.af); 5513 } 5514 5515 STATE_LOOKUP(kif, &key, direction, *state, pd); 5516 5517 (*state)->expire = time_uptime; 5518 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5519 5520 /* translate source/destination address, if necessary */ 5521 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5522 struct pf_state_key *nk = (*state)->key[pd->didx]; 5523 5524 switch (pd->af) { 5525 #ifdef INET 5526 case AF_INET: 5527 if (PF_ANEQ(pd->src, 5528 &nk->addr[pd->sidx], AF_INET)) 5529 pf_change_a(&saddr->v4.s_addr, 5530 pd->ip_sum, 5531 nk->addr[pd->sidx].v4.s_addr, 0); 5532 5533 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5534 AF_INET)) 5535 pf_change_a(&daddr->v4.s_addr, 5536 pd->ip_sum, 5537 nk->addr[pd->didx].v4.s_addr, 0); 5538 5539 if (nk->port[0] != 5540 pd->hdr.icmp.icmp_id) { 5541 pd->hdr.icmp.icmp_cksum = 5542 pf_cksum_fixup( 5543 pd->hdr.icmp.icmp_cksum, icmpid, 5544 nk->port[pd->sidx], 0); 5545 pd->hdr.icmp.icmp_id = 5546 nk->port[pd->sidx]; 5547 } 5548 5549 m_copyback(m, off, ICMP_MINLEN, 5550 (caddr_t )&pd->hdr.icmp); 5551 break; 5552 #endif /* INET */ 5553 #ifdef INET6 5554 case AF_INET6: 5555 if (PF_ANEQ(pd->src, 5556 &nk->addr[pd->sidx], AF_INET6)) 5557 pf_change_a6(saddr, 5558 &pd->hdr.icmp6.icmp6_cksum, 5559 &nk->addr[pd->sidx], 0); 5560 5561 if (PF_ANEQ(pd->dst, 5562 &nk->addr[pd->didx], AF_INET6)) 5563 pf_change_a6(daddr, 5564 &pd->hdr.icmp6.icmp6_cksum, 5565 &nk->addr[pd->didx], 0); 5566 5567 m_copyback(m, off, sizeof(struct icmp6_hdr), 5568 (caddr_t )&pd->hdr.icmp6); 5569 break; 5570 #endif /* INET6 */ 5571 } 5572 } 5573 return (PF_PASS); 5574 5575 } else { 5576 /* 5577 * ICMP error message in response to a TCP/UDP packet. 5578 * Extract the inner TCP/UDP header and search for that state. 5579 */ 5580 5581 struct pf_pdesc pd2; 5582 bzero(&pd2, sizeof pd2); 5583 #ifdef INET 5584 struct ip h2; 5585 #endif /* INET */ 5586 #ifdef INET6 5587 struct ip6_hdr h2_6; 5588 int terminal = 0; 5589 #endif /* INET6 */ 5590 int ipoff2 = 0; 5591 int off2 = 0; 5592 5593 pd2.af = pd->af; 5594 /* Payload packet is from the opposite direction. */ 5595 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5596 pd2.didx = (direction == PF_IN) ? 0 : 1; 5597 switch (pd->af) { 5598 #ifdef INET 5599 case AF_INET: 5600 /* offset of h2 in mbuf chain */ 5601 ipoff2 = off + ICMP_MINLEN; 5602 5603 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5604 NULL, reason, pd2.af)) { 5605 DPFPRINTF(PF_DEBUG_MISC, 5606 ("pf: ICMP error message too short " 5607 "(ip)\n")); 5608 return (PF_DROP); 5609 } 5610 /* 5611 * ICMP error messages don't refer to non-first 5612 * fragments 5613 */ 5614 if (h2.ip_off & htons(IP_OFFMASK)) { 5615 REASON_SET(reason, PFRES_FRAG); 5616 return (PF_DROP); 5617 } 5618 5619 /* offset of protocol header that follows h2 */ 5620 off2 = ipoff2 + (h2.ip_hl << 2); 5621 5622 pd2.proto = h2.ip_p; 5623 pd2.src = (struct pf_addr *)&h2.ip_src; 5624 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5625 pd2.ip_sum = &h2.ip_sum; 5626 break; 5627 #endif /* INET */ 5628 #ifdef INET6 5629 case AF_INET6: 5630 ipoff2 = off + sizeof(struct icmp6_hdr); 5631 5632 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5633 NULL, reason, pd2.af)) { 5634 DPFPRINTF(PF_DEBUG_MISC, 5635 ("pf: ICMP error message too short " 5636 "(ip6)\n")); 5637 return (PF_DROP); 5638 } 5639 pd2.proto = h2_6.ip6_nxt; 5640 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5641 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5642 pd2.ip_sum = NULL; 5643 off2 = ipoff2 + sizeof(h2_6); 5644 do { 5645 switch (pd2.proto) { 5646 case IPPROTO_FRAGMENT: 5647 /* 5648 * ICMPv6 error messages for 5649 * non-first fragments 5650 */ 5651 REASON_SET(reason, PFRES_FRAG); 5652 return (PF_DROP); 5653 case IPPROTO_AH: 5654 case IPPROTO_HOPOPTS: 5655 case IPPROTO_ROUTING: 5656 case IPPROTO_DSTOPTS: { 5657 /* get next header and header length */ 5658 struct ip6_ext opt6; 5659 5660 if (!pf_pull_hdr(m, off2, &opt6, 5661 sizeof(opt6), NULL, reason, 5662 pd2.af)) { 5663 DPFPRINTF(PF_DEBUG_MISC, 5664 ("pf: ICMPv6 short opt\n")); 5665 return (PF_DROP); 5666 } 5667 if (pd2.proto == IPPROTO_AH) 5668 off2 += (opt6.ip6e_len + 2) * 4; 5669 else 5670 off2 += (opt6.ip6e_len + 1) * 8; 5671 pd2.proto = opt6.ip6e_nxt; 5672 /* goto the next header */ 5673 break; 5674 } 5675 default: 5676 terminal++; 5677 break; 5678 } 5679 } while (!terminal); 5680 break; 5681 #endif /* INET6 */ 5682 } 5683 5684 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5685 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5686 printf("pf: BAD ICMP %d:%d outer dst: ", 5687 icmptype, icmpcode); 5688 pf_print_host(pd->src, 0, pd->af); 5689 printf(" -> "); 5690 pf_print_host(pd->dst, 0, pd->af); 5691 printf(" inner src: "); 5692 pf_print_host(pd2.src, 0, pd2.af); 5693 printf(" -> "); 5694 pf_print_host(pd2.dst, 0, pd2.af); 5695 printf("\n"); 5696 } 5697 REASON_SET(reason, PFRES_BADSTATE); 5698 return (PF_DROP); 5699 } 5700 5701 switch (pd2.proto) { 5702 case IPPROTO_TCP: { 5703 struct tcphdr th; 5704 u_int32_t seq; 5705 struct pf_state_peer *src, *dst; 5706 u_int8_t dws; 5707 int copyback = 0; 5708 5709 /* 5710 * Only the first 8 bytes of the TCP header can be 5711 * expected. Don't access any TCP header fields after 5712 * th_seq, an ackskew test is not possible. 5713 */ 5714 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5715 pd2.af)) { 5716 DPFPRINTF(PF_DEBUG_MISC, 5717 ("pf: ICMP error message too short " 5718 "(tcp)\n")); 5719 return (PF_DROP); 5720 } 5721 5722 key.af = pd2.af; 5723 key.proto = IPPROTO_TCP; 5724 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5725 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5726 key.port[pd2.sidx] = th.th_sport; 5727 key.port[pd2.didx] = th.th_dport; 5728 5729 STATE_LOOKUP(kif, &key, direction, *state, pd); 5730 5731 if (direction == (*state)->direction) { 5732 src = &(*state)->dst; 5733 dst = &(*state)->src; 5734 } else { 5735 src = &(*state)->src; 5736 dst = &(*state)->dst; 5737 } 5738 5739 if (src->wscale && dst->wscale) 5740 dws = dst->wscale & PF_WSCALE_MASK; 5741 else 5742 dws = 0; 5743 5744 /* Demodulate sequence number */ 5745 seq = ntohl(th.th_seq) - src->seqdiff; 5746 if (src->seqdiff) { 5747 pf_change_a(&th.th_seq, icmpsum, 5748 htonl(seq), 0); 5749 copyback = 1; 5750 } 5751 5752 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5753 (!SEQ_GEQ(src->seqhi, seq) || 5754 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5755 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5756 printf("pf: BAD ICMP %d:%d ", 5757 icmptype, icmpcode); 5758 pf_print_host(pd->src, 0, pd->af); 5759 printf(" -> "); 5760 pf_print_host(pd->dst, 0, pd->af); 5761 printf(" state: "); 5762 pf_print_state(*state); 5763 printf(" seq=%u\n", seq); 5764 } 5765 REASON_SET(reason, PFRES_BADSTATE); 5766 return (PF_DROP); 5767 } else { 5768 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5769 printf("pf: OK ICMP %d:%d ", 5770 icmptype, icmpcode); 5771 pf_print_host(pd->src, 0, pd->af); 5772 printf(" -> "); 5773 pf_print_host(pd->dst, 0, pd->af); 5774 printf(" state: "); 5775 pf_print_state(*state); 5776 printf(" seq=%u\n", seq); 5777 } 5778 } 5779 5780 /* translate source/destination address, if necessary */ 5781 if ((*state)->key[PF_SK_WIRE] != 5782 (*state)->key[PF_SK_STACK]) { 5783 struct pf_state_key *nk = 5784 (*state)->key[pd->didx]; 5785 5786 if (PF_ANEQ(pd2.src, 5787 &nk->addr[pd2.sidx], pd2.af) || 5788 nk->port[pd2.sidx] != th.th_sport) 5789 pf_change_icmp(pd2.src, &th.th_sport, 5790 daddr, &nk->addr[pd2.sidx], 5791 nk->port[pd2.sidx], NULL, 5792 pd2.ip_sum, icmpsum, 5793 pd->ip_sum, 0, pd2.af); 5794 5795 if (PF_ANEQ(pd2.dst, 5796 &nk->addr[pd2.didx], pd2.af) || 5797 nk->port[pd2.didx] != th.th_dport) 5798 pf_change_icmp(pd2.dst, &th.th_dport, 5799 saddr, &nk->addr[pd2.didx], 5800 nk->port[pd2.didx], NULL, 5801 pd2.ip_sum, icmpsum, 5802 pd->ip_sum, 0, pd2.af); 5803 copyback = 1; 5804 } 5805 5806 if (copyback) { 5807 switch (pd2.af) { 5808 #ifdef INET 5809 case AF_INET: 5810 m_copyback(m, off, ICMP_MINLEN, 5811 (caddr_t )&pd->hdr.icmp); 5812 m_copyback(m, ipoff2, sizeof(h2), 5813 (caddr_t )&h2); 5814 break; 5815 #endif /* INET */ 5816 #ifdef INET6 5817 case AF_INET6: 5818 m_copyback(m, off, 5819 sizeof(struct icmp6_hdr), 5820 (caddr_t )&pd->hdr.icmp6); 5821 m_copyback(m, ipoff2, sizeof(h2_6), 5822 (caddr_t )&h2_6); 5823 break; 5824 #endif /* INET6 */ 5825 } 5826 m_copyback(m, off2, 8, (caddr_t)&th); 5827 } 5828 5829 return (PF_PASS); 5830 break; 5831 } 5832 case IPPROTO_UDP: { 5833 struct udphdr uh; 5834 5835 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5836 NULL, reason, pd2.af)) { 5837 DPFPRINTF(PF_DEBUG_MISC, 5838 ("pf: ICMP error message too short " 5839 "(udp)\n")); 5840 return (PF_DROP); 5841 } 5842 5843 key.af = pd2.af; 5844 key.proto = IPPROTO_UDP; 5845 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5846 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5847 key.port[pd2.sidx] = uh.uh_sport; 5848 key.port[pd2.didx] = uh.uh_dport; 5849 5850 STATE_LOOKUP(kif, &key, direction, *state, pd); 5851 5852 /* translate source/destination address, if necessary */ 5853 if ((*state)->key[PF_SK_WIRE] != 5854 (*state)->key[PF_SK_STACK]) { 5855 struct pf_state_key *nk = 5856 (*state)->key[pd->didx]; 5857 5858 if (PF_ANEQ(pd2.src, 5859 &nk->addr[pd2.sidx], pd2.af) || 5860 nk->port[pd2.sidx] != uh.uh_sport) 5861 pf_change_icmp(pd2.src, &uh.uh_sport, 5862 daddr, &nk->addr[pd2.sidx], 5863 nk->port[pd2.sidx], &uh.uh_sum, 5864 pd2.ip_sum, icmpsum, 5865 pd->ip_sum, 1, pd2.af); 5866 5867 if (PF_ANEQ(pd2.dst, 5868 &nk->addr[pd2.didx], pd2.af) || 5869 nk->port[pd2.didx] != uh.uh_dport) 5870 pf_change_icmp(pd2.dst, &uh.uh_dport, 5871 saddr, &nk->addr[pd2.didx], 5872 nk->port[pd2.didx], &uh.uh_sum, 5873 pd2.ip_sum, icmpsum, 5874 pd->ip_sum, 1, pd2.af); 5875 5876 switch (pd2.af) { 5877 #ifdef INET 5878 case AF_INET: 5879 m_copyback(m, off, ICMP_MINLEN, 5880 (caddr_t )&pd->hdr.icmp); 5881 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5882 break; 5883 #endif /* INET */ 5884 #ifdef INET6 5885 case AF_INET6: 5886 m_copyback(m, off, 5887 sizeof(struct icmp6_hdr), 5888 (caddr_t )&pd->hdr.icmp6); 5889 m_copyback(m, ipoff2, sizeof(h2_6), 5890 (caddr_t )&h2_6); 5891 break; 5892 #endif /* INET6 */ 5893 } 5894 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5895 } 5896 return (PF_PASS); 5897 break; 5898 } 5899 #ifdef INET 5900 case IPPROTO_ICMP: { 5901 struct icmp iih; 5902 5903 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5904 NULL, reason, pd2.af)) { 5905 DPFPRINTF(PF_DEBUG_MISC, 5906 ("pf: ICMP error message too short i" 5907 "(icmp)\n")); 5908 return (PF_DROP); 5909 } 5910 5911 key.af = pd2.af; 5912 key.proto = IPPROTO_ICMP; 5913 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5914 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5915 key.port[0] = key.port[1] = iih.icmp_id; 5916 5917 STATE_LOOKUP(kif, &key, direction, *state, pd); 5918 5919 /* translate source/destination address, if necessary */ 5920 if ((*state)->key[PF_SK_WIRE] != 5921 (*state)->key[PF_SK_STACK]) { 5922 struct pf_state_key *nk = 5923 (*state)->key[pd->didx]; 5924 5925 if (PF_ANEQ(pd2.src, 5926 &nk->addr[pd2.sidx], pd2.af) || 5927 nk->port[pd2.sidx] != iih.icmp_id) 5928 pf_change_icmp(pd2.src, &iih.icmp_id, 5929 daddr, &nk->addr[pd2.sidx], 5930 nk->port[pd2.sidx], NULL, 5931 pd2.ip_sum, icmpsum, 5932 pd->ip_sum, 0, AF_INET); 5933 5934 if (PF_ANEQ(pd2.dst, 5935 &nk->addr[pd2.didx], pd2.af) || 5936 nk->port[pd2.didx] != iih.icmp_id) 5937 pf_change_icmp(pd2.dst, &iih.icmp_id, 5938 saddr, &nk->addr[pd2.didx], 5939 nk->port[pd2.didx], NULL, 5940 pd2.ip_sum, icmpsum, 5941 pd->ip_sum, 0, AF_INET); 5942 5943 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 5944 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5945 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5946 } 5947 return (PF_PASS); 5948 break; 5949 } 5950 #endif /* INET */ 5951 #ifdef INET6 5952 case IPPROTO_ICMPV6: { 5953 struct icmp6_hdr iih; 5954 5955 if (!pf_pull_hdr(m, off2, &iih, 5956 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5957 DPFPRINTF(PF_DEBUG_MISC, 5958 ("pf: ICMP error message too short " 5959 "(icmp6)\n")); 5960 return (PF_DROP); 5961 } 5962 5963 key.af = pd2.af; 5964 key.proto = IPPROTO_ICMPV6; 5965 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5966 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5967 key.port[0] = key.port[1] = iih.icmp6_id; 5968 5969 STATE_LOOKUP(kif, &key, direction, *state, pd); 5970 5971 /* translate source/destination address, if necessary */ 5972 if ((*state)->key[PF_SK_WIRE] != 5973 (*state)->key[PF_SK_STACK]) { 5974 struct pf_state_key *nk = 5975 (*state)->key[pd->didx]; 5976 5977 if (PF_ANEQ(pd2.src, 5978 &nk->addr[pd2.sidx], pd2.af) || 5979 nk->port[pd2.sidx] != iih.icmp6_id) 5980 pf_change_icmp(pd2.src, &iih.icmp6_id, 5981 daddr, &nk->addr[pd2.sidx], 5982 nk->port[pd2.sidx], NULL, 5983 pd2.ip_sum, icmpsum, 5984 pd->ip_sum, 0, AF_INET6); 5985 5986 if (PF_ANEQ(pd2.dst, 5987 &nk->addr[pd2.didx], pd2.af) || 5988 nk->port[pd2.didx] != iih.icmp6_id) 5989 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5990 saddr, &nk->addr[pd2.didx], 5991 nk->port[pd2.didx], NULL, 5992 pd2.ip_sum, icmpsum, 5993 pd->ip_sum, 0, AF_INET6); 5994 5995 m_copyback(m, off, sizeof(struct icmp6_hdr), 5996 (caddr_t)&pd->hdr.icmp6); 5997 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5998 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5999 (caddr_t)&iih); 6000 } 6001 return (PF_PASS); 6002 break; 6003 } 6004 #endif /* INET6 */ 6005 default: { 6006 key.af = pd2.af; 6007 key.proto = pd2.proto; 6008 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6009 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6010 key.port[0] = key.port[1] = 0; 6011 6012 STATE_LOOKUP(kif, &key, direction, *state, pd); 6013 6014 /* translate source/destination address, if necessary */ 6015 if ((*state)->key[PF_SK_WIRE] != 6016 (*state)->key[PF_SK_STACK]) { 6017 struct pf_state_key *nk = 6018 (*state)->key[pd->didx]; 6019 6020 if (PF_ANEQ(pd2.src, 6021 &nk->addr[pd2.sidx], pd2.af)) 6022 pf_change_icmp(pd2.src, NULL, daddr, 6023 &nk->addr[pd2.sidx], 0, NULL, 6024 pd2.ip_sum, icmpsum, 6025 pd->ip_sum, 0, pd2.af); 6026 6027 if (PF_ANEQ(pd2.dst, 6028 &nk->addr[pd2.didx], pd2.af)) 6029 pf_change_icmp(pd2.dst, NULL, saddr, 6030 &nk->addr[pd2.didx], 0, NULL, 6031 pd2.ip_sum, icmpsum, 6032 pd->ip_sum, 0, pd2.af); 6033 6034 switch (pd2.af) { 6035 #ifdef INET 6036 case AF_INET: 6037 m_copyback(m, off, ICMP_MINLEN, 6038 (caddr_t)&pd->hdr.icmp); 6039 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6040 break; 6041 #endif /* INET */ 6042 #ifdef INET6 6043 case AF_INET6: 6044 m_copyback(m, off, 6045 sizeof(struct icmp6_hdr), 6046 (caddr_t )&pd->hdr.icmp6); 6047 m_copyback(m, ipoff2, sizeof(h2_6), 6048 (caddr_t )&h2_6); 6049 break; 6050 #endif /* INET6 */ 6051 } 6052 } 6053 return (PF_PASS); 6054 break; 6055 } 6056 } 6057 } 6058 } 6059 6060 static int 6061 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 6062 struct mbuf *m, struct pf_pdesc *pd) 6063 { 6064 struct pf_state_peer *src, *dst; 6065 struct pf_state_key_cmp key; 6066 uint8_t psrc, pdst; 6067 6068 bzero(&key, sizeof(key)); 6069 key.af = pd->af; 6070 key.proto = pd->proto; 6071 if (direction == PF_IN) { 6072 PF_ACPY(&key.addr[0], pd->src, key.af); 6073 PF_ACPY(&key.addr[1], pd->dst, key.af); 6074 key.port[0] = key.port[1] = 0; 6075 } else { 6076 PF_ACPY(&key.addr[1], pd->src, key.af); 6077 PF_ACPY(&key.addr[0], pd->dst, key.af); 6078 key.port[1] = key.port[0] = 0; 6079 } 6080 6081 STATE_LOOKUP(kif, &key, direction, *state, pd); 6082 6083 if (direction == (*state)->direction) { 6084 src = &(*state)->src; 6085 dst = &(*state)->dst; 6086 psrc = PF_PEER_SRC; 6087 pdst = PF_PEER_DST; 6088 } else { 6089 src = &(*state)->dst; 6090 dst = &(*state)->src; 6091 psrc = PF_PEER_DST; 6092 pdst = PF_PEER_SRC; 6093 } 6094 6095 /* update states */ 6096 if (src->state < PFOTHERS_SINGLE) 6097 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6098 if (dst->state == PFOTHERS_SINGLE) 6099 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6100 6101 /* update expire time */ 6102 (*state)->expire = time_uptime; 6103 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6104 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6105 else 6106 (*state)->timeout = PFTM_OTHER_SINGLE; 6107 6108 /* translate source/destination address, if necessary */ 6109 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6110 struct pf_state_key *nk = (*state)->key[pd->didx]; 6111 6112 KASSERT(nk, ("%s: nk is null", __func__)); 6113 KASSERT(pd, ("%s: pd is null", __func__)); 6114 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6115 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6116 switch (pd->af) { 6117 #ifdef INET 6118 case AF_INET: 6119 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6120 pf_change_a(&pd->src->v4.s_addr, 6121 pd->ip_sum, 6122 nk->addr[pd->sidx].v4.s_addr, 6123 0); 6124 6125 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6126 pf_change_a(&pd->dst->v4.s_addr, 6127 pd->ip_sum, 6128 nk->addr[pd->didx].v4.s_addr, 6129 0); 6130 6131 break; 6132 #endif /* INET */ 6133 #ifdef INET6 6134 case AF_INET6: 6135 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6136 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6137 6138 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6139 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6140 #endif /* INET6 */ 6141 } 6142 } 6143 return (PF_PASS); 6144 } 6145 6146 /* 6147 * ipoff and off are measured from the start of the mbuf chain. 6148 * h must be at "ipoff" on the mbuf chain. 6149 */ 6150 void * 6151 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6152 u_short *actionp, u_short *reasonp, sa_family_t af) 6153 { 6154 switch (af) { 6155 #ifdef INET 6156 case AF_INET: { 6157 struct ip *h = mtod(m, struct ip *); 6158 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6159 6160 if (fragoff) { 6161 if (fragoff >= len) 6162 ACTION_SET(actionp, PF_PASS); 6163 else { 6164 ACTION_SET(actionp, PF_DROP); 6165 REASON_SET(reasonp, PFRES_FRAG); 6166 } 6167 return (NULL); 6168 } 6169 if (m->m_pkthdr.len < off + len || 6170 ntohs(h->ip_len) < off + len) { 6171 ACTION_SET(actionp, PF_DROP); 6172 REASON_SET(reasonp, PFRES_SHORT); 6173 return (NULL); 6174 } 6175 break; 6176 } 6177 #endif /* INET */ 6178 #ifdef INET6 6179 case AF_INET6: { 6180 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6181 6182 if (m->m_pkthdr.len < off + len || 6183 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6184 (unsigned)(off + len)) { 6185 ACTION_SET(actionp, PF_DROP); 6186 REASON_SET(reasonp, PFRES_SHORT); 6187 return (NULL); 6188 } 6189 break; 6190 } 6191 #endif /* INET6 */ 6192 } 6193 m_copydata(m, off, len, p); 6194 return (p); 6195 } 6196 6197 int 6198 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6199 int rtableid) 6200 { 6201 struct ifnet *ifp; 6202 6203 /* 6204 * Skip check for addresses with embedded interface scope, 6205 * as they would always match anyway. 6206 */ 6207 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6208 return (1); 6209 6210 if (af != AF_INET && af != AF_INET6) 6211 return (0); 6212 6213 /* Skip checks for ipsec interfaces */ 6214 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6215 return (1); 6216 6217 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6218 6219 switch (af) { 6220 #ifdef INET6 6221 case AF_INET6: 6222 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6223 ifp)); 6224 #endif 6225 #ifdef INET 6226 case AF_INET: 6227 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6228 ifp)); 6229 #endif 6230 } 6231 6232 return (0); 6233 } 6234 6235 #ifdef INET 6236 static void 6237 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6238 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6239 { 6240 struct mbuf *m0, *m1; 6241 struct sockaddr_in dst; 6242 struct ip *ip; 6243 struct ifnet *ifp = NULL; 6244 struct pf_addr naddr; 6245 struct pf_ksrc_node *sn = NULL; 6246 int error = 0; 6247 uint16_t ip_len, ip_off; 6248 6249 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6250 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6251 __func__)); 6252 6253 if ((pd->pf_mtag == NULL && 6254 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6255 pd->pf_mtag->routed++ > 3) { 6256 m0 = *m; 6257 *m = NULL; 6258 goto bad_locked; 6259 } 6260 6261 if (r->rt == PF_DUPTO) { 6262 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6263 if (s == NULL) { 6264 ifp = r->rpool.cur->kif ? 6265 r->rpool.cur->kif->pfik_ifp : NULL; 6266 } else { 6267 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6268 PF_STATE_UNLOCK(s); 6269 } 6270 if (ifp == oifp) { 6271 /* When the 2nd interface is not skipped */ 6272 return; 6273 } else { 6274 m0 = *m; 6275 *m = NULL; 6276 goto bad; 6277 } 6278 } else { 6279 pd->pf_mtag->flags |= PF_DUPLICATED; 6280 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6281 if (s) 6282 PF_STATE_UNLOCK(s); 6283 return; 6284 } 6285 } 6286 } else { 6287 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6288 if (s) 6289 PF_STATE_UNLOCK(s); 6290 return; 6291 } 6292 m0 = *m; 6293 } 6294 6295 ip = mtod(m0, struct ip *); 6296 6297 bzero(&dst, sizeof(dst)); 6298 dst.sin_family = AF_INET; 6299 dst.sin_len = sizeof(dst); 6300 dst.sin_addr = ip->ip_dst; 6301 6302 bzero(&naddr, sizeof(naddr)); 6303 6304 if (s == NULL) { 6305 if (TAILQ_EMPTY(&r->rpool.list)) { 6306 DPFPRINTF(PF_DEBUG_URGENT, 6307 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6308 goto bad_locked; 6309 } 6310 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6311 &naddr, NULL, &sn); 6312 if (!PF_AZERO(&naddr, AF_INET)) 6313 dst.sin_addr.s_addr = naddr.v4.s_addr; 6314 ifp = r->rpool.cur->kif ? 6315 r->rpool.cur->kif->pfik_ifp : NULL; 6316 } else { 6317 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6318 dst.sin_addr.s_addr = 6319 s->rt_addr.v4.s_addr; 6320 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6321 PF_STATE_UNLOCK(s); 6322 } 6323 if (ifp == NULL) 6324 goto bad; 6325 6326 if (dir == PF_IN) { 6327 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6328 goto bad; 6329 else if (m0 == NULL) 6330 goto done; 6331 if (m0->m_len < sizeof(struct ip)) { 6332 DPFPRINTF(PF_DEBUG_URGENT, 6333 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6334 goto bad; 6335 } 6336 ip = mtod(m0, struct ip *); 6337 } 6338 6339 if (ifp->if_flags & IFF_LOOPBACK) 6340 m0->m_flags |= M_SKIP_FIREWALL; 6341 6342 ip_len = ntohs(ip->ip_len); 6343 ip_off = ntohs(ip->ip_off); 6344 6345 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6346 m0->m_pkthdr.csum_flags |= CSUM_IP; 6347 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6348 in_delayed_cksum(m0); 6349 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6350 } 6351 #if defined(SCTP) || defined(SCTP_SUPPORT) 6352 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6353 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6354 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6355 } 6356 #endif 6357 6358 /* 6359 * If small enough for interface, or the interface will take 6360 * care of the fragmentation for us, we can just send directly. 6361 */ 6362 if (ip_len <= ifp->if_mtu || 6363 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6364 ip->ip_sum = 0; 6365 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6366 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6367 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6368 } 6369 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6370 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 6371 goto done; 6372 } 6373 6374 /* Balk when DF bit is set or the interface didn't support TSO. */ 6375 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6376 error = EMSGSIZE; 6377 KMOD_IPSTAT_INC(ips_cantfrag); 6378 if (r->rt != PF_DUPTO) { 6379 if (s && pd->nat_rule != NULL) 6380 PACKET_UNDO_NAT(m0, pd, 6381 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6382 s, dir); 6383 6384 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6385 ifp->if_mtu); 6386 goto done; 6387 } else 6388 goto bad; 6389 } 6390 6391 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6392 if (error) 6393 goto bad; 6394 6395 for (; m0; m0 = m1) { 6396 m1 = m0->m_nextpkt; 6397 m0->m_nextpkt = NULL; 6398 if (error == 0) { 6399 m_clrprotoflags(m0); 6400 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 6401 } else 6402 m_freem(m0); 6403 } 6404 6405 if (error == 0) 6406 KMOD_IPSTAT_INC(ips_fragmented); 6407 6408 done: 6409 if (r->rt != PF_DUPTO) 6410 *m = NULL; 6411 return; 6412 6413 bad_locked: 6414 if (s) 6415 PF_STATE_UNLOCK(s); 6416 bad: 6417 m_freem(m0); 6418 goto done; 6419 } 6420 #endif /* INET */ 6421 6422 #ifdef INET6 6423 static void 6424 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6425 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6426 { 6427 struct mbuf *m0; 6428 struct sockaddr_in6 dst; 6429 struct ip6_hdr *ip6; 6430 struct ifnet *ifp = NULL; 6431 struct pf_addr naddr; 6432 struct pf_ksrc_node *sn = NULL; 6433 6434 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6435 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6436 __func__)); 6437 6438 if ((pd->pf_mtag == NULL && 6439 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6440 pd->pf_mtag->routed++ > 3) { 6441 m0 = *m; 6442 *m = NULL; 6443 goto bad_locked; 6444 } 6445 6446 if (r->rt == PF_DUPTO) { 6447 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6448 if (s == NULL) { 6449 ifp = r->rpool.cur->kif ? 6450 r->rpool.cur->kif->pfik_ifp : NULL; 6451 } else { 6452 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6453 PF_STATE_UNLOCK(s); 6454 } 6455 if (ifp == oifp) { 6456 /* When the 2nd interface is not skipped */ 6457 return; 6458 } else { 6459 m0 = *m; 6460 *m = NULL; 6461 goto bad; 6462 } 6463 } else { 6464 pd->pf_mtag->flags |= PF_DUPLICATED; 6465 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6466 if (s) 6467 PF_STATE_UNLOCK(s); 6468 return; 6469 } 6470 } 6471 } else { 6472 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6473 if (s) 6474 PF_STATE_UNLOCK(s); 6475 return; 6476 } 6477 m0 = *m; 6478 } 6479 6480 ip6 = mtod(m0, struct ip6_hdr *); 6481 6482 bzero(&dst, sizeof(dst)); 6483 dst.sin6_family = AF_INET6; 6484 dst.sin6_len = sizeof(dst); 6485 dst.sin6_addr = ip6->ip6_dst; 6486 6487 bzero(&naddr, sizeof(naddr)); 6488 6489 if (s == NULL) { 6490 if (TAILQ_EMPTY(&r->rpool.list)) { 6491 DPFPRINTF(PF_DEBUG_URGENT, 6492 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6493 goto bad_locked; 6494 } 6495 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6496 &naddr, NULL, &sn); 6497 if (!PF_AZERO(&naddr, AF_INET6)) 6498 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6499 &naddr, AF_INET6); 6500 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6501 } else { 6502 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6503 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6504 &s->rt_addr, AF_INET6); 6505 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6506 } 6507 6508 if (s) 6509 PF_STATE_UNLOCK(s); 6510 6511 if (ifp == NULL) 6512 goto bad; 6513 6514 if (dir == PF_IN) { 6515 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 6516 goto bad; 6517 else if (m0 == NULL) 6518 goto done; 6519 if (m0->m_len < sizeof(struct ip6_hdr)) { 6520 DPFPRINTF(PF_DEBUG_URGENT, 6521 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6522 __func__)); 6523 goto bad; 6524 } 6525 ip6 = mtod(m0, struct ip6_hdr *); 6526 } 6527 6528 if (ifp->if_flags & IFF_LOOPBACK) 6529 m0->m_flags |= M_SKIP_FIREWALL; 6530 6531 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6532 ~ifp->if_hwassist) { 6533 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6534 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6535 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6536 } 6537 6538 /* 6539 * If the packet is too large for the outgoing interface, 6540 * send back an icmp6 error. 6541 */ 6542 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6543 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6544 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 6545 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 6546 else { 6547 in6_ifstat_inc(ifp, ifs6_in_toobig); 6548 if (r->rt != PF_DUPTO) { 6549 if (s && pd->nat_rule != NULL) 6550 PACKET_UNDO_NAT(m0, pd, 6551 ((caddr_t)ip6 - m0->m_data) + 6552 sizeof(struct ip6_hdr), s, dir); 6553 6554 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6555 } else 6556 goto bad; 6557 } 6558 6559 done: 6560 if (r->rt != PF_DUPTO) 6561 *m = NULL; 6562 return; 6563 6564 bad_locked: 6565 if (s) 6566 PF_STATE_UNLOCK(s); 6567 bad: 6568 m_freem(m0); 6569 goto done; 6570 } 6571 #endif /* INET6 */ 6572 6573 /* 6574 * FreeBSD supports cksum offloads for the following drivers. 6575 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6576 * 6577 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6578 * network driver performed cksum including pseudo header, need to verify 6579 * csum_data 6580 * CSUM_DATA_VALID : 6581 * network driver performed cksum, needs to additional pseudo header 6582 * cksum computation with partial csum_data(i.e. lack of H/W support for 6583 * pseudo header, for instance sk(4) and possibly gem(4)) 6584 * 6585 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6586 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6587 * TCP/UDP layer. 6588 * Also, set csum_data to 0xffff to force cksum validation. 6589 */ 6590 static int 6591 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6592 { 6593 u_int16_t sum = 0; 6594 int hw_assist = 0; 6595 struct ip *ip; 6596 6597 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6598 return (1); 6599 if (m->m_pkthdr.len < off + len) 6600 return (1); 6601 6602 switch (p) { 6603 case IPPROTO_TCP: 6604 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6605 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6606 sum = m->m_pkthdr.csum_data; 6607 } else { 6608 ip = mtod(m, struct ip *); 6609 sum = in_pseudo(ip->ip_src.s_addr, 6610 ip->ip_dst.s_addr, htonl((u_short)len + 6611 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6612 } 6613 sum ^= 0xffff; 6614 ++hw_assist; 6615 } 6616 break; 6617 case IPPROTO_UDP: 6618 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6619 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6620 sum = m->m_pkthdr.csum_data; 6621 } else { 6622 ip = mtod(m, struct ip *); 6623 sum = in_pseudo(ip->ip_src.s_addr, 6624 ip->ip_dst.s_addr, htonl((u_short)len + 6625 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6626 } 6627 sum ^= 0xffff; 6628 ++hw_assist; 6629 } 6630 break; 6631 case IPPROTO_ICMP: 6632 #ifdef INET6 6633 case IPPROTO_ICMPV6: 6634 #endif /* INET6 */ 6635 break; 6636 default: 6637 return (1); 6638 } 6639 6640 if (!hw_assist) { 6641 switch (af) { 6642 case AF_INET: 6643 if (p == IPPROTO_ICMP) { 6644 if (m->m_len < off) 6645 return (1); 6646 m->m_data += off; 6647 m->m_len -= off; 6648 sum = in_cksum(m, len); 6649 m->m_data -= off; 6650 m->m_len += off; 6651 } else { 6652 if (m->m_len < sizeof(struct ip)) 6653 return (1); 6654 sum = in4_cksum(m, p, off, len); 6655 } 6656 break; 6657 #ifdef INET6 6658 case AF_INET6: 6659 if (m->m_len < sizeof(struct ip6_hdr)) 6660 return (1); 6661 sum = in6_cksum(m, p, off, len); 6662 break; 6663 #endif /* INET6 */ 6664 default: 6665 return (1); 6666 } 6667 } 6668 if (sum) { 6669 switch (p) { 6670 case IPPROTO_TCP: 6671 { 6672 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6673 break; 6674 } 6675 case IPPROTO_UDP: 6676 { 6677 KMOD_UDPSTAT_INC(udps_badsum); 6678 break; 6679 } 6680 #ifdef INET 6681 case IPPROTO_ICMP: 6682 { 6683 KMOD_ICMPSTAT_INC(icps_checksum); 6684 break; 6685 } 6686 #endif 6687 #ifdef INET6 6688 case IPPROTO_ICMPV6: 6689 { 6690 KMOD_ICMP6STAT_INC(icp6s_checksum); 6691 break; 6692 } 6693 #endif /* INET6 */ 6694 } 6695 return (1); 6696 } else { 6697 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6698 m->m_pkthdr.csum_flags |= 6699 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6700 m->m_pkthdr.csum_data = 0xffff; 6701 } 6702 } 6703 return (0); 6704 } 6705 6706 static bool 6707 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6708 const struct pf_krule *r, const struct pf_kstate *s, 6709 struct ip_fw_args *dnflow) 6710 { 6711 int dndir = r->direction; 6712 6713 if (s && dndir == PF_INOUT) { 6714 dndir = s->direction; 6715 } else if (dndir == PF_INOUT) { 6716 /* Assume primary direction. Happens when we've set dnpipe in 6717 * the ethernet level code. */ 6718 dndir = dir; 6719 } 6720 6721 memset(dnflow, 0, sizeof(*dnflow)); 6722 6723 if (pd->dport != NULL) 6724 dnflow->f_id.dst_port = ntohs(*pd->dport); 6725 if (pd->sport != NULL) 6726 dnflow->f_id.src_port = ntohs(*pd->sport); 6727 6728 if (dir == PF_IN) 6729 dnflow->flags |= IPFW_ARGS_IN; 6730 else 6731 dnflow->flags |= IPFW_ARGS_OUT; 6732 6733 if (dir != dndir && pd->act.dnrpipe) { 6734 dnflow->rule.info = pd->act.dnrpipe; 6735 } 6736 else if (dir == dndir) { 6737 dnflow->rule.info = pd->act.dnpipe; 6738 } 6739 else { 6740 return (false); 6741 } 6742 6743 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6744 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFRULE_DN_IS_PIPE) 6745 dnflow->rule.info |= IPFW_IS_PIPE; 6746 6747 dnflow->f_id.proto = pd->proto; 6748 dnflow->f_id.extra = dnflow->rule.info; 6749 switch (pd->af) { 6750 case AF_INET: 6751 dnflow->f_id.addr_type = 4; 6752 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6753 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6754 break; 6755 case AF_INET6: 6756 dnflow->flags |= IPFW_ARGS_IP6; 6757 dnflow->f_id.addr_type = 6; 6758 dnflow->f_id.src_ip6 = pd->src->v6; 6759 dnflow->f_id.dst_ip6 = pd->dst->v6; 6760 break; 6761 default: 6762 panic("Invalid AF"); 6763 break; 6764 } 6765 6766 return (true); 6767 } 6768 6769 int 6770 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 6771 struct inpcb *inp) 6772 { 6773 struct pfi_kkif *kif; 6774 struct mbuf *m = *m0; 6775 6776 M_ASSERTPKTHDR(m); 6777 MPASS(ifp->if_vnet == curvnet); 6778 NET_EPOCH_ASSERT(); 6779 6780 if (!V_pf_status.running) 6781 return (PF_PASS); 6782 6783 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6784 6785 if (kif == NULL) { 6786 DPFPRINTF(PF_DEBUG_URGENT, 6787 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6788 return (PF_DROP); 6789 } 6790 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6791 return (PF_PASS); 6792 6793 if (m->m_flags & M_SKIP_FIREWALL) 6794 return (PF_PASS); 6795 6796 /* Stateless! */ 6797 return (pf_test_eth_rule(dir, kif, m0)); 6798 } 6799 6800 #ifdef INET 6801 int 6802 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6803 { 6804 struct pfi_kkif *kif; 6805 u_short action, reason = 0, log = 0; 6806 struct mbuf *m = *m0; 6807 struct ip *h = NULL; 6808 struct m_tag *ipfwtag; 6809 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6810 struct pf_kstate *s = NULL; 6811 struct pf_kruleset *ruleset = NULL; 6812 struct pf_pdesc pd; 6813 int off, dirndx, pqid = 0; 6814 6815 PF_RULES_RLOCK_TRACKER; 6816 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6817 M_ASSERTPKTHDR(m); 6818 6819 if (!V_pf_status.running) 6820 return (PF_PASS); 6821 6822 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6823 6824 if (kif == NULL) { 6825 DPFPRINTF(PF_DEBUG_URGENT, 6826 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6827 return (PF_DROP); 6828 } 6829 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6830 return (PF_PASS); 6831 6832 if (m->m_flags & M_SKIP_FIREWALL) 6833 return (PF_PASS); 6834 6835 memset(&pd, 0, sizeof(pd)); 6836 pd.pf_mtag = pf_find_mtag(m); 6837 6838 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 6839 pd.act.dnpipe = pd.pf_mtag->dnpipe; 6840 pd.act.flags = pd.pf_mtag->dnflags; 6841 } 6842 6843 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 6844 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 6845 /* Dummynet re-injects packets after they've 6846 * completed their delay. We've already 6847 * processed them, so pass unconditionally. */ 6848 6849 /* But only once. We may see the packet multiple times (e.g. 6850 * PFIL_IN/PFIL_OUT). */ 6851 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 6852 6853 return (PF_PASS); 6854 } 6855 6856 PF_RULES_RLOCK(); 6857 6858 if (__predict_false(ip_divert_ptr != NULL) && 6859 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 6860 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 6861 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 6862 if (pd.pf_mtag == NULL && 6863 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6864 action = PF_DROP; 6865 goto done; 6866 } 6867 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 6868 m_tag_delete(m, ipfwtag); 6869 } 6870 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 6871 m->m_flags |= M_FASTFWD_OURS; 6872 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 6873 } 6874 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 6875 /* We do IP header normalization and packet reassembly here */ 6876 action = PF_DROP; 6877 goto done; 6878 } 6879 m = *m0; /* pf_normalize messes with m0 */ 6880 h = mtod(m, struct ip *); 6881 6882 off = h->ip_hl << 2; 6883 if (off < (int)sizeof(struct ip)) { 6884 action = PF_DROP; 6885 REASON_SET(&reason, PFRES_SHORT); 6886 log = 1; 6887 goto done; 6888 } 6889 6890 pd.src = (struct pf_addr *)&h->ip_src; 6891 pd.dst = (struct pf_addr *)&h->ip_dst; 6892 pd.sport = pd.dport = NULL; 6893 pd.ip_sum = &h->ip_sum; 6894 pd.proto_sum = NULL; 6895 pd.proto = h->ip_p; 6896 pd.dir = dir; 6897 pd.sidx = (dir == PF_IN) ? 0 : 1; 6898 pd.didx = (dir == PF_IN) ? 1 : 0; 6899 pd.af = AF_INET; 6900 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6901 pd.tot_len = ntohs(h->ip_len); 6902 6903 /* handle fragments that didn't get reassembled by normalization */ 6904 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6905 action = pf_test_fragment(&r, dir, kif, m, h, 6906 &pd, &a, &ruleset); 6907 goto done; 6908 } 6909 6910 switch (h->ip_p) { 6911 case IPPROTO_TCP: { 6912 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 6913 &action, &reason, AF_INET)) { 6914 log = action != PF_PASS; 6915 goto done; 6916 } 6917 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 6918 6919 pd.sport = &pd.hdr.tcp.th_sport; 6920 pd.dport = &pd.hdr.tcp.th_dport; 6921 6922 /* Respond to SYN with a syncookie. */ 6923 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 6924 pd.dir == PF_IN && pf_synflood_check(&pd)) { 6925 pf_syncookie_send(m, off, &pd); 6926 action = PF_DROP; 6927 break; 6928 } 6929 6930 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 6931 pqid = 1; 6932 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6933 if (action == PF_DROP) 6934 goto done; 6935 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6936 &reason); 6937 if (action == PF_PASS) { 6938 if (V_pfsync_update_state_ptr != NULL) 6939 V_pfsync_update_state_ptr(s); 6940 r = s->rule.ptr; 6941 a = s->anchor.ptr; 6942 log = s->log; 6943 } else if (s == NULL) { 6944 /* Validate remote SYN|ACK, re-create original SYN if 6945 * valid. */ 6946 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 6947 TH_ACK && pf_syncookie_validate(&pd) && 6948 pd.dir == PF_IN) { 6949 struct mbuf *msyn; 6950 6951 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 6952 off,&pd); 6953 if (msyn == NULL) { 6954 action = PF_DROP; 6955 break; 6956 } 6957 6958 action = pf_test(dir, pflags, ifp, &msyn, inp); 6959 m_freem(msyn); 6960 6961 if (action == PF_PASS) { 6962 action = pf_test_state_tcp(&s, dir, 6963 kif, m, off, h, &pd, &reason); 6964 if (action != PF_PASS || s == NULL) { 6965 action = PF_DROP; 6966 break; 6967 } 6968 6969 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 6970 - 1; 6971 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 6972 - 1; 6973 pf_set_protostate(s, PF_PEER_SRC, 6974 PF_TCPS_PROXY_DST); 6975 6976 action = pf_synproxy(&pd, &s, &reason); 6977 if (action != PF_PASS) 6978 break; 6979 } 6980 break; 6981 } 6982 else { 6983 action = pf_test_rule(&r, &s, dir, kif, m, off, 6984 &pd, &a, &ruleset, inp); 6985 } 6986 } 6987 break; 6988 } 6989 6990 case IPPROTO_UDP: { 6991 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 6992 &action, &reason, AF_INET)) { 6993 log = action != PF_PASS; 6994 goto done; 6995 } 6996 pd.sport = &pd.hdr.udp.uh_sport; 6997 pd.dport = &pd.hdr.udp.uh_dport; 6998 if (pd.hdr.udp.uh_dport == 0 || 6999 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7000 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7001 action = PF_DROP; 7002 REASON_SET(&reason, PFRES_SHORT); 7003 goto done; 7004 } 7005 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7006 if (action == PF_PASS) { 7007 if (V_pfsync_update_state_ptr != NULL) 7008 V_pfsync_update_state_ptr(s); 7009 r = s->rule.ptr; 7010 a = s->anchor.ptr; 7011 log = s->log; 7012 } else if (s == NULL) 7013 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7014 &a, &ruleset, inp); 7015 break; 7016 } 7017 7018 case IPPROTO_ICMP: { 7019 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7020 &action, &reason, AF_INET)) { 7021 log = action != PF_PASS; 7022 goto done; 7023 } 7024 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 7025 &reason); 7026 if (action == PF_PASS) { 7027 if (V_pfsync_update_state_ptr != NULL) 7028 V_pfsync_update_state_ptr(s); 7029 r = s->rule.ptr; 7030 a = s->anchor.ptr; 7031 log = s->log; 7032 } else if (s == NULL) 7033 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7034 &a, &ruleset, inp); 7035 break; 7036 } 7037 7038 #ifdef INET6 7039 case IPPROTO_ICMPV6: { 7040 action = PF_DROP; 7041 DPFPRINTF(PF_DEBUG_MISC, 7042 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7043 goto done; 7044 } 7045 #endif 7046 7047 default: 7048 action = pf_test_state_other(&s, dir, kif, m, &pd); 7049 if (action == PF_PASS) { 7050 if (V_pfsync_update_state_ptr != NULL) 7051 V_pfsync_update_state_ptr(s); 7052 r = s->rule.ptr; 7053 a = s->anchor.ptr; 7054 log = s->log; 7055 } else if (s == NULL) 7056 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7057 &a, &ruleset, inp); 7058 break; 7059 } 7060 7061 done: 7062 PF_RULES_RUNLOCK(); 7063 if (action == PF_PASS && h->ip_hl > 5 && 7064 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7065 action = PF_DROP; 7066 REASON_SET(&reason, PFRES_IPOPTIONS); 7067 log = r->log; 7068 DPFPRINTF(PF_DEBUG_MISC, 7069 ("pf: dropping packet with ip options\n")); 7070 } 7071 7072 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7073 action = PF_DROP; 7074 REASON_SET(&reason, PFRES_MEMORY); 7075 } 7076 if (r->rtableid >= 0) 7077 M_SETFIB(m, r->rtableid); 7078 7079 if (r->scrub_flags & PFSTATE_SETPRIO) { 7080 if (pd.tos & IPTOS_LOWDELAY) 7081 pqid = 1; 7082 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7083 action = PF_DROP; 7084 REASON_SET(&reason, PFRES_MEMORY); 7085 log = 1; 7086 DPFPRINTF(PF_DEBUG_MISC, 7087 ("pf: failed to allocate 802.1q mtag\n")); 7088 } 7089 } 7090 7091 #ifdef ALTQ 7092 if (s && s->qid) { 7093 pd.act.pqid = s->pqid; 7094 pd.act.qid = s->qid; 7095 } else if (r->qid) { 7096 pd.act.pqid = r->pqid; 7097 pd.act.qid = r->qid; 7098 } 7099 if (action == PF_PASS && pd.act.qid) { 7100 if (pd.pf_mtag == NULL && 7101 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7102 action = PF_DROP; 7103 REASON_SET(&reason, PFRES_MEMORY); 7104 } else { 7105 if (s != NULL) 7106 pd.pf_mtag->qid_hash = pf_state_hash(s); 7107 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 7108 pd.pf_mtag->qid = pd.act.pqid; 7109 else 7110 pd.pf_mtag->qid = pd.act.qid; 7111 /* Add hints for ecn. */ 7112 pd.pf_mtag->hdr = h; 7113 } 7114 } 7115 #endif /* ALTQ */ 7116 7117 /* 7118 * connections redirected to loopback should not match sockets 7119 * bound specifically to loopback due to security implications, 7120 * see tcp_input() and in_pcblookup_listen(). 7121 */ 7122 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7123 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7124 (s->nat_rule.ptr->action == PF_RDR || 7125 s->nat_rule.ptr->action == PF_BINAT) && 7126 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7127 m->m_flags |= M_SKIP_FIREWALL; 7128 7129 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7130 r->divert.port && !PACKET_LOOPED(&pd)) { 7131 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7132 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7133 if (ipfwtag != NULL) { 7134 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7135 ntohs(r->divert.port); 7136 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7137 7138 if (s) 7139 PF_STATE_UNLOCK(s); 7140 7141 m_tag_prepend(m, ipfwtag); 7142 if (m->m_flags & M_FASTFWD_OURS) { 7143 if (pd.pf_mtag == NULL && 7144 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7145 action = PF_DROP; 7146 REASON_SET(&reason, PFRES_MEMORY); 7147 log = 1; 7148 DPFPRINTF(PF_DEBUG_MISC, 7149 ("pf: failed to allocate tag\n")); 7150 } else { 7151 pd.pf_mtag->flags |= 7152 PF_FASTFWD_OURS_PRESENT; 7153 m->m_flags &= ~M_FASTFWD_OURS; 7154 } 7155 } 7156 ip_divert_ptr(*m0, dir == PF_IN); 7157 *m0 = NULL; 7158 7159 return (action); 7160 } else { 7161 /* XXX: ipfw has the same behaviour! */ 7162 action = PF_DROP; 7163 REASON_SET(&reason, PFRES_MEMORY); 7164 log = 1; 7165 DPFPRINTF(PF_DEBUG_MISC, 7166 ("pf: failed to allocate divert tag\n")); 7167 } 7168 } 7169 7170 if (log) { 7171 struct pf_krule *lr; 7172 7173 if (s != NULL && s->nat_rule.ptr != NULL && 7174 s->nat_rule.ptr->log & PF_LOG_ALL) 7175 lr = s->nat_rule.ptr; 7176 else 7177 lr = r; 7178 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 7179 (s == NULL)); 7180 } 7181 7182 pf_counter_u64_critical_enter(); 7183 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7184 pd.tot_len); 7185 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7186 1); 7187 7188 if (action == PF_PASS || r->action == PF_DROP) { 7189 dirndx = (dir == PF_OUT); 7190 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7191 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7192 if (a != NULL) { 7193 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7194 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7195 } 7196 if (s != NULL) { 7197 if (s->nat_rule.ptr != NULL) { 7198 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7199 1); 7200 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7201 pd.tot_len); 7202 } 7203 if (s->src_node != NULL) { 7204 counter_u64_add(s->src_node->packets[dirndx], 7205 1); 7206 counter_u64_add(s->src_node->bytes[dirndx], 7207 pd.tot_len); 7208 } 7209 if (s->nat_src_node != NULL) { 7210 counter_u64_add(s->nat_src_node->packets[dirndx], 7211 1); 7212 counter_u64_add(s->nat_src_node->bytes[dirndx], 7213 pd.tot_len); 7214 } 7215 dirndx = (dir == s->direction) ? 0 : 1; 7216 s->packets[dirndx]++; 7217 s->bytes[dirndx] += pd.tot_len; 7218 } 7219 tr = r; 7220 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7221 if (nr != NULL && r == &V_pf_default_rule) 7222 tr = nr; 7223 if (tr->src.addr.type == PF_ADDR_TABLE) 7224 pfr_update_stats(tr->src.addr.p.tbl, 7225 (s == NULL) ? pd.src : 7226 &s->key[(s->direction == PF_IN)]-> 7227 addr[(s->direction == PF_OUT)], 7228 pd.af, pd.tot_len, dir == PF_OUT, 7229 r->action == PF_PASS, tr->src.neg); 7230 if (tr->dst.addr.type == PF_ADDR_TABLE) 7231 pfr_update_stats(tr->dst.addr.p.tbl, 7232 (s == NULL) ? pd.dst : 7233 &s->key[(s->direction == PF_IN)]-> 7234 addr[(s->direction == PF_IN)], 7235 pd.af, pd.tot_len, dir == PF_OUT, 7236 r->action == PF_PASS, tr->dst.neg); 7237 } 7238 pf_counter_u64_critical_exit(); 7239 7240 switch (action) { 7241 case PF_SYNPROXY_DROP: 7242 m_freem(*m0); 7243 case PF_DEFER: 7244 *m0 = NULL; 7245 action = PF_PASS; 7246 break; 7247 case PF_DROP: 7248 m_freem(*m0); 7249 *m0 = NULL; 7250 break; 7251 default: 7252 /* pf_route() returns unlocked. */ 7253 if (r->rt) { 7254 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7255 return (action); 7256 } 7257 /* Dummynet processing. */ 7258 if (s && (s->dnpipe || s->dnrpipe)) { 7259 pd.act.dnpipe = s->dnpipe; 7260 pd.act.dnrpipe = s->dnrpipe; 7261 pd.act.flags = s->state_flags; 7262 } else if (r->dnpipe || r->dnrpipe) { 7263 pd.act.dnpipe = r->dnpipe; 7264 pd.act.dnrpipe = r->dnrpipe; 7265 pd.act.flags = r->free_flags; 7266 } 7267 if (pd.act.dnpipe || pd.act.dnrpipe) { 7268 struct ip_fw_args dnflow; 7269 if (ip_dn_io_ptr == NULL) { 7270 m_freem(*m0); 7271 *m0 = NULL; 7272 action = PF_DROP; 7273 REASON_SET(&reason, PFRES_MEMORY); 7274 break; 7275 } 7276 7277 if (pd.pf_mtag == NULL && 7278 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7279 m_freem(*m0); 7280 *m0 = NULL; 7281 action = PF_DROP; 7282 REASON_SET(&reason, PFRES_MEMORY); 7283 break; 7284 } 7285 7286 if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { 7287 pd.pf_mtag->flags |= PF_TAG_DUMMYNET; 7288 ip_dn_io_ptr(m0, &dnflow); 7289 if (*m0 == NULL) 7290 action = PF_DROP; 7291 } 7292 } 7293 break; 7294 } 7295 7296 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7297 7298 if (s) 7299 PF_STATE_UNLOCK(s); 7300 7301 return (action); 7302 } 7303 #endif /* INET */ 7304 7305 #ifdef INET6 7306 int 7307 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7308 { 7309 struct pfi_kkif *kif; 7310 u_short action, reason = 0, log = 0; 7311 struct mbuf *m = *m0, *n = NULL; 7312 struct m_tag *mtag; 7313 struct ip6_hdr *h = NULL; 7314 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7315 struct pf_kstate *s = NULL; 7316 struct pf_kruleset *ruleset = NULL; 7317 struct pf_pdesc pd; 7318 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 7319 7320 PF_RULES_RLOCK_TRACKER; 7321 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7322 M_ASSERTPKTHDR(m); 7323 7324 if (!V_pf_status.running) 7325 return (PF_PASS); 7326 7327 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7328 if (kif == NULL) { 7329 DPFPRINTF(PF_DEBUG_URGENT, 7330 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7331 return (PF_DROP); 7332 } 7333 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7334 return (PF_PASS); 7335 7336 if (m->m_flags & M_SKIP_FIREWALL) 7337 return (PF_PASS); 7338 7339 memset(&pd, 0, sizeof(pd)); 7340 pd.pf_mtag = pf_find_mtag(m); 7341 7342 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7343 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7344 pd.act.flags = pd.pf_mtag->dnflags; 7345 } 7346 7347 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7348 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7349 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7350 /* Dummynet re-injects packets after they've 7351 * completed their delay. We've already 7352 * processed them, so pass unconditionally. */ 7353 return (PF_PASS); 7354 } 7355 7356 PF_RULES_RLOCK(); 7357 7358 /* We do IP header normalization and packet reassembly here */ 7359 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 7360 action = PF_DROP; 7361 goto done; 7362 } 7363 m = *m0; /* pf_normalize messes with m0 */ 7364 h = mtod(m, struct ip6_hdr *); 7365 7366 /* 7367 * we do not support jumbogram. if we keep going, zero ip6_plen 7368 * will do something bad, so drop the packet for now. 7369 */ 7370 if (htons(h->ip6_plen) == 0) { 7371 action = PF_DROP; 7372 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7373 goto done; 7374 } 7375 7376 pd.src = (struct pf_addr *)&h->ip6_src; 7377 pd.dst = (struct pf_addr *)&h->ip6_dst; 7378 pd.sport = pd.dport = NULL; 7379 pd.ip_sum = NULL; 7380 pd.proto_sum = NULL; 7381 pd.dir = dir; 7382 pd.sidx = (dir == PF_IN) ? 0 : 1; 7383 pd.didx = (dir == PF_IN) ? 1 : 0; 7384 pd.af = AF_INET6; 7385 pd.tos = IPV6_DSCP(h); 7386 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7387 7388 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7389 pd.proto = h->ip6_nxt; 7390 do { 7391 switch (pd.proto) { 7392 case IPPROTO_FRAGMENT: 7393 action = pf_test_fragment(&r, dir, kif, m, h, 7394 &pd, &a, &ruleset); 7395 if (action == PF_DROP) 7396 REASON_SET(&reason, PFRES_FRAG); 7397 goto done; 7398 case IPPROTO_ROUTING: { 7399 struct ip6_rthdr rthdr; 7400 7401 if (rh_cnt++) { 7402 DPFPRINTF(PF_DEBUG_MISC, 7403 ("pf: IPv6 more than one rthdr\n")); 7404 action = PF_DROP; 7405 REASON_SET(&reason, PFRES_IPOPTIONS); 7406 log = 1; 7407 goto done; 7408 } 7409 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7410 &reason, pd.af)) { 7411 DPFPRINTF(PF_DEBUG_MISC, 7412 ("pf: IPv6 short rthdr\n")); 7413 action = PF_DROP; 7414 REASON_SET(&reason, PFRES_SHORT); 7415 log = 1; 7416 goto done; 7417 } 7418 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7419 DPFPRINTF(PF_DEBUG_MISC, 7420 ("pf: IPv6 rthdr0\n")); 7421 action = PF_DROP; 7422 REASON_SET(&reason, PFRES_IPOPTIONS); 7423 log = 1; 7424 goto done; 7425 } 7426 /* FALLTHROUGH */ 7427 } 7428 case IPPROTO_AH: 7429 case IPPROTO_HOPOPTS: 7430 case IPPROTO_DSTOPTS: { 7431 /* get next header and header length */ 7432 struct ip6_ext opt6; 7433 7434 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7435 NULL, &reason, pd.af)) { 7436 DPFPRINTF(PF_DEBUG_MISC, 7437 ("pf: IPv6 short opt\n")); 7438 action = PF_DROP; 7439 log = 1; 7440 goto done; 7441 } 7442 if (pd.proto == IPPROTO_AH) 7443 off += (opt6.ip6e_len + 2) * 4; 7444 else 7445 off += (opt6.ip6e_len + 1) * 8; 7446 pd.proto = opt6.ip6e_nxt; 7447 /* goto the next header */ 7448 break; 7449 } 7450 default: 7451 terminal++; 7452 break; 7453 } 7454 } while (!terminal); 7455 7456 /* if there's no routing header, use unmodified mbuf for checksumming */ 7457 if (!n) 7458 n = m; 7459 7460 switch (pd.proto) { 7461 case IPPROTO_TCP: { 7462 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7463 &action, &reason, AF_INET6)) { 7464 log = action != PF_PASS; 7465 goto done; 7466 } 7467 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7468 pd.sport = &pd.hdr.tcp.th_sport; 7469 pd.dport = &pd.hdr.tcp.th_dport; 7470 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7471 if (action == PF_DROP) 7472 goto done; 7473 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7474 &reason); 7475 if (action == PF_PASS) { 7476 if (V_pfsync_update_state_ptr != NULL) 7477 V_pfsync_update_state_ptr(s); 7478 r = s->rule.ptr; 7479 a = s->anchor.ptr; 7480 log = s->log; 7481 } else if (s == NULL) 7482 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7483 &a, &ruleset, inp); 7484 break; 7485 } 7486 7487 case IPPROTO_UDP: { 7488 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7489 &action, &reason, AF_INET6)) { 7490 log = action != PF_PASS; 7491 goto done; 7492 } 7493 pd.sport = &pd.hdr.udp.uh_sport; 7494 pd.dport = &pd.hdr.udp.uh_dport; 7495 if (pd.hdr.udp.uh_dport == 0 || 7496 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7497 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7498 action = PF_DROP; 7499 REASON_SET(&reason, PFRES_SHORT); 7500 goto done; 7501 } 7502 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7503 if (action == PF_PASS) { 7504 if (V_pfsync_update_state_ptr != NULL) 7505 V_pfsync_update_state_ptr(s); 7506 r = s->rule.ptr; 7507 a = s->anchor.ptr; 7508 log = s->log; 7509 } else if (s == NULL) 7510 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7511 &a, &ruleset, inp); 7512 break; 7513 } 7514 7515 case IPPROTO_ICMP: { 7516 action = PF_DROP; 7517 DPFPRINTF(PF_DEBUG_MISC, 7518 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7519 goto done; 7520 } 7521 7522 case IPPROTO_ICMPV6: { 7523 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7524 &action, &reason, AF_INET6)) { 7525 log = action != PF_PASS; 7526 goto done; 7527 } 7528 action = pf_test_state_icmp(&s, dir, kif, 7529 m, off, h, &pd, &reason); 7530 if (action == PF_PASS) { 7531 if (V_pfsync_update_state_ptr != NULL) 7532 V_pfsync_update_state_ptr(s); 7533 r = s->rule.ptr; 7534 a = s->anchor.ptr; 7535 log = s->log; 7536 } else if (s == NULL) 7537 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7538 &a, &ruleset, inp); 7539 break; 7540 } 7541 7542 default: 7543 action = pf_test_state_other(&s, dir, kif, m, &pd); 7544 if (action == PF_PASS) { 7545 if (V_pfsync_update_state_ptr != NULL) 7546 V_pfsync_update_state_ptr(s); 7547 r = s->rule.ptr; 7548 a = s->anchor.ptr; 7549 log = s->log; 7550 } else if (s == NULL) 7551 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7552 &a, &ruleset, inp); 7553 break; 7554 } 7555 7556 done: 7557 PF_RULES_RUNLOCK(); 7558 if (n != m) { 7559 m_freem(n); 7560 n = NULL; 7561 } 7562 7563 /* handle dangerous IPv6 extension headers. */ 7564 if (action == PF_PASS && rh_cnt && 7565 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7566 action = PF_DROP; 7567 REASON_SET(&reason, PFRES_IPOPTIONS); 7568 log = r->log; 7569 DPFPRINTF(PF_DEBUG_MISC, 7570 ("pf: dropping packet with dangerous v6 headers\n")); 7571 } 7572 7573 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7574 action = PF_DROP; 7575 REASON_SET(&reason, PFRES_MEMORY); 7576 } 7577 if (r->rtableid >= 0) 7578 M_SETFIB(m, r->rtableid); 7579 7580 if (r->scrub_flags & PFSTATE_SETPRIO) { 7581 if (pd.tos & IPTOS_LOWDELAY) 7582 pqid = 1; 7583 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7584 action = PF_DROP; 7585 REASON_SET(&reason, PFRES_MEMORY); 7586 log = 1; 7587 DPFPRINTF(PF_DEBUG_MISC, 7588 ("pf: failed to allocate 802.1q mtag\n")); 7589 } 7590 } 7591 7592 #ifdef ALTQ 7593 if (s && s->qid) { 7594 pd.act.pqid = s->pqid; 7595 pd.act.qid = s->qid; 7596 } else if (r->qid) { 7597 pd.act.pqid = r->pqid; 7598 pd.act.qid = r->qid; 7599 } 7600 if (action == PF_PASS && pd.act.qid) { 7601 if (pd.pf_mtag == NULL && 7602 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7603 action = PF_DROP; 7604 REASON_SET(&reason, PFRES_MEMORY); 7605 } else { 7606 if (s != NULL) 7607 pd.pf_mtag->qid_hash = pf_state_hash(s); 7608 if (pd.tos & IPTOS_LOWDELAY) 7609 pd.pf_mtag->qid = pd.act.pqid; 7610 else 7611 pd.pf_mtag->qid = pd.act.qid; 7612 /* Add hints for ecn. */ 7613 pd.pf_mtag->hdr = h; 7614 } 7615 } 7616 #endif /* ALTQ */ 7617 7618 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7619 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7620 (s->nat_rule.ptr->action == PF_RDR || 7621 s->nat_rule.ptr->action == PF_BINAT) && 7622 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7623 m->m_flags |= M_SKIP_FIREWALL; 7624 7625 /* XXX: Anybody working on it?! */ 7626 if (r->divert.port) 7627 printf("pf: divert(9) is not supported for IPv6\n"); 7628 7629 if (log) { 7630 struct pf_krule *lr; 7631 7632 if (s != NULL && s->nat_rule.ptr != NULL && 7633 s->nat_rule.ptr->log & PF_LOG_ALL) 7634 lr = s->nat_rule.ptr; 7635 else 7636 lr = r; 7637 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 7638 &pd, (s == NULL)); 7639 } 7640 7641 pf_counter_u64_critical_enter(); 7642 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 7643 pd.tot_len); 7644 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 7645 1); 7646 7647 if (action == PF_PASS || r->action == PF_DROP) { 7648 dirndx = (dir == PF_OUT); 7649 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7650 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7651 if (a != NULL) { 7652 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7653 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7654 } 7655 if (s != NULL) { 7656 if (s->nat_rule.ptr != NULL) { 7657 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7658 1); 7659 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7660 pd.tot_len); 7661 } 7662 if (s->src_node != NULL) { 7663 counter_u64_add(s->src_node->packets[dirndx], 7664 1); 7665 counter_u64_add(s->src_node->bytes[dirndx], 7666 pd.tot_len); 7667 } 7668 if (s->nat_src_node != NULL) { 7669 counter_u64_add(s->nat_src_node->packets[dirndx], 7670 1); 7671 counter_u64_add(s->nat_src_node->bytes[dirndx], 7672 pd.tot_len); 7673 } 7674 dirndx = (dir == s->direction) ? 0 : 1; 7675 s->packets[dirndx]++; 7676 s->bytes[dirndx] += pd.tot_len; 7677 } 7678 tr = r; 7679 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7680 if (nr != NULL && r == &V_pf_default_rule) 7681 tr = nr; 7682 if (tr->src.addr.type == PF_ADDR_TABLE) 7683 pfr_update_stats(tr->src.addr.p.tbl, 7684 (s == NULL) ? pd.src : 7685 &s->key[(s->direction == PF_IN)]->addr[0], 7686 pd.af, pd.tot_len, dir == PF_OUT, 7687 r->action == PF_PASS, tr->src.neg); 7688 if (tr->dst.addr.type == PF_ADDR_TABLE) 7689 pfr_update_stats(tr->dst.addr.p.tbl, 7690 (s == NULL) ? pd.dst : 7691 &s->key[(s->direction == PF_IN)]->addr[1], 7692 pd.af, pd.tot_len, dir == PF_OUT, 7693 r->action == PF_PASS, tr->dst.neg); 7694 } 7695 pf_counter_u64_critical_exit(); 7696 7697 switch (action) { 7698 case PF_SYNPROXY_DROP: 7699 m_freem(*m0); 7700 case PF_DEFER: 7701 *m0 = NULL; 7702 action = PF_PASS; 7703 break; 7704 case PF_DROP: 7705 m_freem(*m0); 7706 *m0 = NULL; 7707 break; 7708 default: 7709 /* pf_route6() returns unlocked. */ 7710 if (r->rt) { 7711 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7712 return (action); 7713 } 7714 /* Dummynet processing. */ 7715 if (s && (s->dnpipe || s->dnrpipe)) { 7716 pd.act.dnpipe = s->dnpipe; 7717 pd.act.dnrpipe = s->dnrpipe; 7718 pd.act.flags = s->state_flags; 7719 } else { 7720 pd.act.dnpipe = r->dnpipe; 7721 pd.act.dnrpipe = r->dnrpipe; 7722 pd.act.flags = r->free_flags; 7723 } 7724 if (pd.act.dnpipe || pd.act.dnrpipe) { 7725 struct ip_fw_args dnflow; 7726 7727 if (ip_dn_io_ptr == NULL) { 7728 m_freem(*m0); 7729 *m0 = NULL; 7730 action = PF_DROP; 7731 REASON_SET(&reason, PFRES_MEMORY); 7732 break; 7733 } 7734 7735 if (pd.pf_mtag == NULL && 7736 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7737 m_freem(*m0); 7738 *m0 = NULL; 7739 action = PF_DROP; 7740 REASON_SET(&reason, PFRES_MEMORY); 7741 break; 7742 } 7743 7744 if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { 7745 pd.pf_mtag->flags |= PF_TAG_DUMMYNET; 7746 ip_dn_io_ptr(m0, &dnflow); 7747 if (*m0 == NULL) 7748 action = PF_DROP; 7749 } 7750 } 7751 break; 7752 } 7753 7754 if (s) 7755 PF_STATE_UNLOCK(s); 7756 7757 /* If reassembled packet passed, create new fragments. */ 7758 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 7759 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7760 action = pf_refragment6(ifp, m0, mtag); 7761 7762 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7763 7764 return (action); 7765 } 7766 #endif /* INET6 */ 7767