1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_private.h> 71 #include <net/if_types.h> 72 #include <net/if_vlan_var.h> 73 #include <net/route.h> 74 #include <net/route/nhop.h> 75 #include <net/vnet.h> 76 77 #include <net/pfil.h> 78 #include <net/pfvar.h> 79 #include <net/if_pflog.h> 80 #include <net/if_pfsync.h> 81 82 #include <netinet/in_pcb.h> 83 #include <netinet/in_var.h> 84 #include <netinet/in_fib.h> 85 #include <netinet/ip.h> 86 #include <netinet/ip_fw.h> 87 #include <netinet/ip_icmp.h> 88 #include <netinet/icmp_var.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp.h> 91 #include <netinet/tcp_fsm.h> 92 #include <netinet/tcp_seq.h> 93 #include <netinet/tcp_timer.h> 94 #include <netinet/tcp_var.h> 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 98 /* dummynet */ 99 #include <netinet/ip_dummynet.h> 100 #include <netinet/ip_fw.h> 101 #include <netpfil/ipfw/dn_heap.h> 102 #include <netpfil/ipfw/ip_fw_private.h> 103 #include <netpfil/ipfw/ip_dn_private.h> 104 105 #ifdef INET6 106 #include <netinet/ip6.h> 107 #include <netinet/icmp6.h> 108 #include <netinet6/nd6.h> 109 #include <netinet6/ip6_var.h> 110 #include <netinet6/in6_pcb.h> 111 #include <netinet6/in6_fib.h> 112 #include <netinet6/scope6_var.h> 113 #endif /* INET6 */ 114 115 #if defined(SCTP) || defined(SCTP_SUPPORT) 116 #include <netinet/sctp_crc32.h> 117 #endif 118 119 #include <machine/in_cksum.h> 120 #include <security/mac/mac_framework.h> 121 122 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 123 124 SDT_PROVIDER_DEFINE(pf); 125 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 126 "struct pf_kstate *"); 127 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 130 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 131 "struct pf_kstate *"); 132 133 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 134 "struct mbuf *"); 135 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 136 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 137 "int", "struct pf_keth_rule *", "char *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 139 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 140 "int", "struct pf_keth_rule *"); 141 142 /* 143 * Global variables 144 */ 145 146 /* state tables */ 147 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 148 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 152 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 153 VNET_DEFINE(struct pf_kstatus, pf_status); 154 155 VNET_DEFINE(u_int32_t, ticket_altqs_active); 156 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 157 VNET_DEFINE(int, altqs_inactive_open); 158 VNET_DEFINE(u_int32_t, ticket_pabuf); 159 160 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 161 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 162 VNET_DEFINE(u_char, pf_tcp_secret[16]); 163 #define V_pf_tcp_secret VNET(pf_tcp_secret) 164 VNET_DEFINE(int, pf_tcp_secret_init); 165 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 166 VNET_DEFINE(int, pf_tcp_iss_off); 167 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 168 VNET_DECLARE(int, pf_vnet_active); 169 #define V_pf_vnet_active VNET(pf_vnet_active) 170 171 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 172 #define V_pf_purge_idx VNET(pf_purge_idx) 173 174 #ifdef PF_WANT_32_TO_64_COUNTER 175 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 176 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 177 178 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 179 VNET_DEFINE(size_t, pf_allrulecount); 180 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 181 #endif 182 183 /* 184 * Queue for pf_intr() sends. 185 */ 186 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 187 struct pf_send_entry { 188 STAILQ_ENTRY(pf_send_entry) pfse_next; 189 struct mbuf *pfse_m; 190 enum { 191 PFSE_IP, 192 PFSE_IP6, 193 PFSE_ICMP, 194 PFSE_ICMP6, 195 } pfse_type; 196 struct { 197 int type; 198 int code; 199 int mtu; 200 } icmpopts; 201 }; 202 203 STAILQ_HEAD(pf_send_head, pf_send_entry); 204 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 205 #define V_pf_sendqueue VNET(pf_sendqueue) 206 207 static struct mtx_padalign pf_sendqueue_mtx; 208 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 209 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 210 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 211 212 /* 213 * Queue for pf_overload_task() tasks. 214 */ 215 struct pf_overload_entry { 216 SLIST_ENTRY(pf_overload_entry) next; 217 struct pf_addr addr; 218 sa_family_t af; 219 uint8_t dir; 220 struct pf_krule *rule; 221 }; 222 223 SLIST_HEAD(pf_overload_head, pf_overload_entry); 224 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 225 #define V_pf_overloadqueue VNET(pf_overloadqueue) 226 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 227 #define V_pf_overloadtask VNET(pf_overloadtask) 228 229 static struct mtx_padalign pf_overloadqueue_mtx; 230 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 231 "pf overload/flush queue", MTX_DEF); 232 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 233 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 234 235 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 236 struct mtx_padalign pf_unlnkdrules_mtx; 237 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 238 MTX_DEF); 239 240 struct sx pf_config_lock; 241 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 242 243 struct mtx_padalign pf_table_stats_lock; 244 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 245 MTX_DEF); 246 247 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 248 #define V_pf_sources_z VNET(pf_sources_z) 249 uma_zone_t pf_mtag_z; 250 VNET_DEFINE(uma_zone_t, pf_state_z); 251 VNET_DEFINE(uma_zone_t, pf_state_key_z); 252 253 VNET_DEFINE(struct unrhdr64, pf_stateid); 254 255 static void pf_src_tree_remove_state(struct pf_kstate *); 256 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 257 u_int32_t); 258 static void pf_add_threshold(struct pf_threshold *); 259 static int pf_check_threshold(struct pf_threshold *); 260 261 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 262 u_int16_t *, u_int16_t *, struct pf_addr *, 263 u_int16_t, u_int8_t, sa_family_t); 264 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 265 struct tcphdr *, struct pf_state_peer *); 266 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 267 struct pf_addr *, struct pf_addr *, u_int16_t, 268 u_int16_t *, u_int16_t *, u_int16_t *, 269 u_int16_t *, u_int8_t, sa_family_t); 270 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 271 sa_family_t, struct pf_krule *, int); 272 static void pf_detach_state(struct pf_kstate *); 273 static int pf_state_key_attach(struct pf_state_key *, 274 struct pf_state_key *, struct pf_kstate *); 275 static void pf_state_key_detach(struct pf_kstate *, int); 276 static int pf_state_key_ctor(void *, int, void *, int); 277 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 278 void pf_rule_to_actions(struct pf_krule *, 279 struct pf_rule_actions *); 280 static int pf_dummynet(struct pf_pdesc *, int, struct pf_kstate *, 281 struct pf_krule *, struct mbuf **); 282 static int pf_dummynet_route(struct pf_pdesc *, int, 283 struct pf_kstate *, struct pf_krule *, 284 struct ifnet *, struct sockaddr *, struct mbuf **); 285 static int pf_test_eth_rule(int, struct pfi_kkif *, 286 struct mbuf **); 287 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 288 int, struct pfi_kkif *, struct mbuf *, int, 289 struct pf_pdesc *, struct pf_krule **, 290 struct pf_kruleset **, struct inpcb *); 291 static int pf_create_state(struct pf_krule *, struct pf_krule *, 292 struct pf_krule *, struct pf_pdesc *, 293 struct pf_ksrc_node *, struct pf_state_key *, 294 struct pf_state_key *, struct mbuf *, int, 295 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 296 struct pf_kstate **, int, u_int16_t, u_int16_t, 297 int, struct pf_krule_slist *); 298 static int pf_test_fragment(struct pf_krule **, int, 299 struct pfi_kkif *, struct mbuf *, void *, 300 struct pf_pdesc *, struct pf_krule **, 301 struct pf_kruleset **); 302 static int pf_tcp_track_full(struct pf_kstate **, 303 struct pfi_kkif *, struct mbuf *, int, 304 struct pf_pdesc *, u_short *, int *); 305 static int pf_tcp_track_sloppy(struct pf_kstate **, 306 struct pf_pdesc *, u_short *); 307 static int pf_test_state_tcp(struct pf_kstate **, int, 308 struct pfi_kkif *, struct mbuf *, int, 309 void *, struct pf_pdesc *, u_short *); 310 static int pf_test_state_udp(struct pf_kstate **, int, 311 struct pfi_kkif *, struct mbuf *, int, 312 void *, struct pf_pdesc *); 313 static int pf_test_state_icmp(struct pf_kstate **, int, 314 struct pfi_kkif *, struct mbuf *, int, 315 void *, struct pf_pdesc *, u_short *); 316 static int pf_test_state_other(struct pf_kstate **, int, 317 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 318 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 319 int, u_int16_t); 320 static int pf_check_proto_cksum(struct mbuf *, int, int, 321 u_int8_t, sa_family_t); 322 static void pf_print_state_parts(struct pf_kstate *, 323 struct pf_state_key *, struct pf_state_key *); 324 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 325 struct pf_addr_wrap *); 326 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 327 bool, u_int8_t); 328 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 329 struct pf_state_key_cmp *, u_int); 330 static int pf_src_connlimit(struct pf_kstate **); 331 static void pf_overload_task(void *v, int pending); 332 static int pf_insert_src_node(struct pf_ksrc_node **, 333 struct pf_krule *, struct pf_addr *, sa_family_t); 334 static u_int pf_purge_expired_states(u_int, int); 335 static void pf_purge_unlinked_rules(void); 336 static int pf_mtag_uminit(void *, int, int); 337 static void pf_mtag_free(struct m_tag *); 338 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 339 int, struct pf_state_key *); 340 #ifdef INET 341 static void pf_route(struct mbuf **, struct pf_krule *, int, 342 struct ifnet *, struct pf_kstate *, 343 struct pf_pdesc *, struct inpcb *); 344 #endif /* INET */ 345 #ifdef INET6 346 static void pf_change_a6(struct pf_addr *, u_int16_t *, 347 struct pf_addr *, u_int8_t); 348 static void pf_route6(struct mbuf **, struct pf_krule *, int, 349 struct ifnet *, struct pf_kstate *, 350 struct pf_pdesc *, struct inpcb *); 351 #endif /* INET6 */ 352 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 353 354 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 355 356 extern int pf_end_threads; 357 extern struct proc *pf_purge_proc; 358 359 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 360 361 #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ 362 do { \ 363 struct pf_state_key *nk; \ 364 if ((_dir) == PF_OUT) \ 365 nk = (_s)->key[PF_SK_STACK]; \ 366 else \ 367 nk = (_s)->key[PF_SK_WIRE]; \ 368 pf_packet_rework_nat(_m, _pd, _off, nk); \ 369 } while (0) 370 371 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 372 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 373 374 #define STATE_LOOKUP(i, k, d, s, pd) \ 375 do { \ 376 (s) = pf_find_state((i), (k), (d)); \ 377 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 378 if ((s) == NULL) \ 379 return (PF_DROP); \ 380 if (PACKET_LOOPED(pd)) \ 381 return (PF_PASS); \ 382 } while (0) 383 384 #define BOUND_IFACE(r, k) \ 385 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 386 387 #define STATE_INC_COUNTERS(s) \ 388 do { \ 389 struct pf_krule_item *mrm; \ 390 counter_u64_add(s->rule.ptr->states_cur, 1); \ 391 counter_u64_add(s->rule.ptr->states_tot, 1); \ 392 if (s->anchor.ptr != NULL) { \ 393 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 394 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 395 } \ 396 if (s->nat_rule.ptr != NULL) { \ 397 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 398 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 399 } \ 400 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 401 counter_u64_add(mrm->r->states_cur, 1); \ 402 counter_u64_add(mrm->r->states_tot, 1); \ 403 } \ 404 } while (0) 405 406 #define STATE_DEC_COUNTERS(s) \ 407 do { \ 408 struct pf_krule_item *mrm; \ 409 if (s->nat_rule.ptr != NULL) \ 410 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 411 if (s->anchor.ptr != NULL) \ 412 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 413 counter_u64_add(s->rule.ptr->states_cur, -1); \ 414 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 415 counter_u64_add(mrm->r->states_cur, -1); \ 416 } while (0) 417 418 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 419 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 420 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 421 VNET_DEFINE(struct pf_idhash *, pf_idhash); 422 VNET_DEFINE(struct pf_srchash *, pf_srchash); 423 424 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 425 "pf(4)"); 426 427 u_long pf_hashmask; 428 u_long pf_srchashmask; 429 static u_long pf_hashsize; 430 static u_long pf_srchashsize; 431 u_long pf_ioctl_maxcount = 65535; 432 433 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 434 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 435 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 436 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 437 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 438 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 439 440 VNET_DEFINE(void *, pf_swi_cookie); 441 VNET_DEFINE(struct intr_event *, pf_swi_ie); 442 443 VNET_DEFINE(uint32_t, pf_hashseed); 444 #define V_pf_hashseed VNET(pf_hashseed) 445 446 int 447 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 448 { 449 450 switch (af) { 451 #ifdef INET 452 case AF_INET: 453 if (a->addr32[0] > b->addr32[0]) 454 return (1); 455 if (a->addr32[0] < b->addr32[0]) 456 return (-1); 457 break; 458 #endif /* INET */ 459 #ifdef INET6 460 case AF_INET6: 461 if (a->addr32[3] > b->addr32[3]) 462 return (1); 463 if (a->addr32[3] < b->addr32[3]) 464 return (-1); 465 if (a->addr32[2] > b->addr32[2]) 466 return (1); 467 if (a->addr32[2] < b->addr32[2]) 468 return (-1); 469 if (a->addr32[1] > b->addr32[1]) 470 return (1); 471 if (a->addr32[1] < b->addr32[1]) 472 return (-1); 473 if (a->addr32[0] > b->addr32[0]) 474 return (1); 475 if (a->addr32[0] < b->addr32[0]) 476 return (-1); 477 break; 478 #endif /* INET6 */ 479 default: 480 panic("%s: unknown address family %u", __func__, af); 481 } 482 return (0); 483 } 484 485 static void 486 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 487 struct pf_state_key *nk) 488 { 489 490 switch (pd->proto) { 491 case IPPROTO_TCP: { 492 struct tcphdr *th = &pd->hdr.tcp; 493 494 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 495 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 496 &th->th_sum, &nk->addr[pd->sidx], 497 nk->port[pd->sidx], 0, pd->af); 498 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 499 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 500 &th->th_sum, &nk->addr[pd->didx], 501 nk->port[pd->didx], 0, pd->af); 502 m_copyback(m, off, sizeof(*th), (caddr_t)th); 503 break; 504 } 505 case IPPROTO_UDP: { 506 struct udphdr *uh = &pd->hdr.udp; 507 508 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 509 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 510 &uh->uh_sum, &nk->addr[pd->sidx], 511 nk->port[pd->sidx], 1, pd->af); 512 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 513 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 514 &uh->uh_sum, &nk->addr[pd->didx], 515 nk->port[pd->didx], 1, pd->af); 516 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 517 break; 518 } 519 case IPPROTO_ICMP: { 520 struct icmp *ih = &pd->hdr.icmp; 521 522 if (nk->port[pd->sidx] != ih->icmp_id) { 523 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 524 ih->icmp_cksum, ih->icmp_id, 525 nk->port[pd->sidx], 0); 526 ih->icmp_id = nk->port[pd->sidx]; 527 pd->sport = &ih->icmp_id; 528 529 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 530 } 531 /* FALLTHROUGH */ 532 } 533 default: 534 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 535 switch (pd->af) { 536 case AF_INET: 537 pf_change_a(&pd->src->v4.s_addr, 538 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 539 0); 540 break; 541 case AF_INET6: 542 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 543 break; 544 } 545 } 546 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 547 switch (pd->af) { 548 case AF_INET: 549 pf_change_a(&pd->dst->v4.s_addr, 550 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 551 0); 552 break; 553 case AF_INET6: 554 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 555 break; 556 } 557 } 558 break; 559 } 560 } 561 562 static __inline uint32_t 563 pf_hashkey(struct pf_state_key *sk) 564 { 565 uint32_t h; 566 567 h = murmur3_32_hash32((uint32_t *)sk, 568 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 569 V_pf_hashseed); 570 571 return (h & pf_hashmask); 572 } 573 574 static __inline uint32_t 575 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 576 { 577 uint32_t h; 578 579 switch (af) { 580 case AF_INET: 581 h = murmur3_32_hash32((uint32_t *)&addr->v4, 582 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 583 break; 584 case AF_INET6: 585 h = murmur3_32_hash32((uint32_t *)&addr->v6, 586 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 587 break; 588 default: 589 panic("%s: unknown address family %u", __func__, af); 590 } 591 592 return (h & pf_srchashmask); 593 } 594 595 #ifdef ALTQ 596 static int 597 pf_state_hash(struct pf_kstate *s) 598 { 599 u_int32_t hv = (intptr_t)s / sizeof(*s); 600 601 hv ^= crc32(&s->src, sizeof(s->src)); 602 hv ^= crc32(&s->dst, sizeof(s->dst)); 603 if (hv == 0) 604 hv = 1; 605 return (hv); 606 } 607 #endif 608 609 static __inline void 610 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 611 { 612 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 613 s->dst.state = newstate; 614 if (which == PF_PEER_DST) 615 return; 616 if (s->src.state == newstate) 617 return; 618 if (s->creatorid == V_pf_status.hostid && 619 s->key[PF_SK_STACK] != NULL && 620 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 621 !(TCPS_HAVEESTABLISHED(s->src.state) || 622 s->src.state == TCPS_CLOSED) && 623 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 624 atomic_add_32(&V_pf_status.states_halfopen, -1); 625 626 s->src.state = newstate; 627 } 628 629 #ifdef INET6 630 void 631 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 632 { 633 switch (af) { 634 #ifdef INET 635 case AF_INET: 636 dst->addr32[0] = src->addr32[0]; 637 break; 638 #endif /* INET */ 639 case AF_INET6: 640 dst->addr32[0] = src->addr32[0]; 641 dst->addr32[1] = src->addr32[1]; 642 dst->addr32[2] = src->addr32[2]; 643 dst->addr32[3] = src->addr32[3]; 644 break; 645 } 646 } 647 #endif /* INET6 */ 648 649 static void 650 pf_init_threshold(struct pf_threshold *threshold, 651 u_int32_t limit, u_int32_t seconds) 652 { 653 threshold->limit = limit * PF_THRESHOLD_MULT; 654 threshold->seconds = seconds; 655 threshold->count = 0; 656 threshold->last = time_uptime; 657 } 658 659 static void 660 pf_add_threshold(struct pf_threshold *threshold) 661 { 662 u_int32_t t = time_uptime, diff = t - threshold->last; 663 664 if (diff >= threshold->seconds) 665 threshold->count = 0; 666 else 667 threshold->count -= threshold->count * diff / 668 threshold->seconds; 669 threshold->count += PF_THRESHOLD_MULT; 670 threshold->last = t; 671 } 672 673 static int 674 pf_check_threshold(struct pf_threshold *threshold) 675 { 676 return (threshold->count > threshold->limit); 677 } 678 679 static int 680 pf_src_connlimit(struct pf_kstate **state) 681 { 682 struct pf_overload_entry *pfoe; 683 int bad = 0; 684 685 PF_STATE_LOCK_ASSERT(*state); 686 687 (*state)->src_node->conn++; 688 (*state)->src.tcp_est = 1; 689 pf_add_threshold(&(*state)->src_node->conn_rate); 690 691 if ((*state)->rule.ptr->max_src_conn && 692 (*state)->rule.ptr->max_src_conn < 693 (*state)->src_node->conn) { 694 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 695 bad++; 696 } 697 698 if ((*state)->rule.ptr->max_src_conn_rate.limit && 699 pf_check_threshold(&(*state)->src_node->conn_rate)) { 700 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 701 bad++; 702 } 703 704 if (!bad) 705 return (0); 706 707 /* Kill this state. */ 708 (*state)->timeout = PFTM_PURGE; 709 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 710 711 if ((*state)->rule.ptr->overload_tbl == NULL) 712 return (1); 713 714 /* Schedule overloading and flushing task. */ 715 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 716 if (pfoe == NULL) 717 return (1); /* too bad :( */ 718 719 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 720 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 721 pfoe->rule = (*state)->rule.ptr; 722 pfoe->dir = (*state)->direction; 723 PF_OVERLOADQ_LOCK(); 724 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 725 PF_OVERLOADQ_UNLOCK(); 726 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 727 728 return (1); 729 } 730 731 static void 732 pf_overload_task(void *v, int pending) 733 { 734 struct pf_overload_head queue; 735 struct pfr_addr p; 736 struct pf_overload_entry *pfoe, *pfoe1; 737 uint32_t killed = 0; 738 739 CURVNET_SET((struct vnet *)v); 740 741 PF_OVERLOADQ_LOCK(); 742 queue = V_pf_overloadqueue; 743 SLIST_INIT(&V_pf_overloadqueue); 744 PF_OVERLOADQ_UNLOCK(); 745 746 bzero(&p, sizeof(p)); 747 SLIST_FOREACH(pfoe, &queue, next) { 748 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 749 if (V_pf_status.debug >= PF_DEBUG_MISC) { 750 printf("%s: blocking address ", __func__); 751 pf_print_host(&pfoe->addr, 0, pfoe->af); 752 printf("\n"); 753 } 754 755 p.pfra_af = pfoe->af; 756 switch (pfoe->af) { 757 #ifdef INET 758 case AF_INET: 759 p.pfra_net = 32; 760 p.pfra_ip4addr = pfoe->addr.v4; 761 break; 762 #endif 763 #ifdef INET6 764 case AF_INET6: 765 p.pfra_net = 128; 766 p.pfra_ip6addr = pfoe->addr.v6; 767 break; 768 #endif 769 } 770 771 PF_RULES_WLOCK(); 772 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 773 PF_RULES_WUNLOCK(); 774 } 775 776 /* 777 * Remove those entries, that don't need flushing. 778 */ 779 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 780 if (pfoe->rule->flush == 0) { 781 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 782 free(pfoe, M_PFTEMP); 783 } else 784 counter_u64_add( 785 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 786 787 /* If nothing to flush, return. */ 788 if (SLIST_EMPTY(&queue)) { 789 CURVNET_RESTORE(); 790 return; 791 } 792 793 for (int i = 0; i <= pf_hashmask; i++) { 794 struct pf_idhash *ih = &V_pf_idhash[i]; 795 struct pf_state_key *sk; 796 struct pf_kstate *s; 797 798 PF_HASHROW_LOCK(ih); 799 LIST_FOREACH(s, &ih->states, entry) { 800 sk = s->key[PF_SK_WIRE]; 801 SLIST_FOREACH(pfoe, &queue, next) 802 if (sk->af == pfoe->af && 803 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 804 pfoe->rule == s->rule.ptr) && 805 ((pfoe->dir == PF_OUT && 806 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 807 (pfoe->dir == PF_IN && 808 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 809 s->timeout = PFTM_PURGE; 810 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 811 killed++; 812 } 813 } 814 PF_HASHROW_UNLOCK(ih); 815 } 816 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 817 free(pfoe, M_PFTEMP); 818 if (V_pf_status.debug >= PF_DEBUG_MISC) 819 printf("%s: %u states killed", __func__, killed); 820 821 CURVNET_RESTORE(); 822 } 823 824 /* 825 * Can return locked on failure, so that we can consistently 826 * allocate and insert a new one. 827 */ 828 struct pf_ksrc_node * 829 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 830 int returnlocked) 831 { 832 struct pf_srchash *sh; 833 struct pf_ksrc_node *n; 834 835 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 836 837 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 838 PF_HASHROW_LOCK(sh); 839 LIST_FOREACH(n, &sh->nodes, entry) 840 if (n->rule.ptr == rule && n->af == af && 841 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 842 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 843 break; 844 if (n != NULL) { 845 n->states++; 846 PF_HASHROW_UNLOCK(sh); 847 } else if (returnlocked == 0) 848 PF_HASHROW_UNLOCK(sh); 849 850 return (n); 851 } 852 853 static void 854 pf_free_src_node(struct pf_ksrc_node *sn) 855 { 856 857 for (int i = 0; i < 2; i++) { 858 counter_u64_free(sn->bytes[i]); 859 counter_u64_free(sn->packets[i]); 860 } 861 uma_zfree(V_pf_sources_z, sn); 862 } 863 864 static int 865 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 866 struct pf_addr *src, sa_family_t af) 867 { 868 869 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 870 rule->rpool.opts & PF_POOL_STICKYADDR), 871 ("%s for non-tracking rule %p", __func__, rule)); 872 873 if (*sn == NULL) 874 *sn = pf_find_src_node(src, rule, af, 1); 875 876 if (*sn == NULL) { 877 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 878 879 PF_HASHROW_ASSERT(sh); 880 881 if (!rule->max_src_nodes || 882 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 883 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 884 else 885 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 886 1); 887 if ((*sn) == NULL) { 888 PF_HASHROW_UNLOCK(sh); 889 return (-1); 890 } 891 892 for (int i = 0; i < 2; i++) { 893 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 894 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 895 896 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 897 pf_free_src_node(*sn); 898 PF_HASHROW_UNLOCK(sh); 899 return (-1); 900 } 901 } 902 903 pf_init_threshold(&(*sn)->conn_rate, 904 rule->max_src_conn_rate.limit, 905 rule->max_src_conn_rate.seconds); 906 907 (*sn)->af = af; 908 (*sn)->rule.ptr = rule; 909 PF_ACPY(&(*sn)->addr, src, af); 910 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 911 (*sn)->creation = time_uptime; 912 (*sn)->ruletype = rule->action; 913 (*sn)->states = 1; 914 if ((*sn)->rule.ptr != NULL) 915 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 916 PF_HASHROW_UNLOCK(sh); 917 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 918 } else { 919 if (rule->max_src_states && 920 (*sn)->states >= rule->max_src_states) { 921 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 922 1); 923 return (-1); 924 } 925 } 926 return (0); 927 } 928 929 void 930 pf_unlink_src_node(struct pf_ksrc_node *src) 931 { 932 933 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 934 LIST_REMOVE(src, entry); 935 if (src->rule.ptr) 936 counter_u64_add(src->rule.ptr->src_nodes, -1); 937 } 938 939 u_int 940 pf_free_src_nodes(struct pf_ksrc_node_list *head) 941 { 942 struct pf_ksrc_node *sn, *tmp; 943 u_int count = 0; 944 945 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 946 pf_free_src_node(sn); 947 count++; 948 } 949 950 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 951 952 return (count); 953 } 954 955 void 956 pf_mtag_initialize(void) 957 { 958 959 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 960 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 961 UMA_ALIGN_PTR, 0); 962 } 963 964 /* Per-vnet data storage structures initialization. */ 965 void 966 pf_initialize(void) 967 { 968 struct pf_keyhash *kh; 969 struct pf_idhash *ih; 970 struct pf_srchash *sh; 971 u_int i; 972 973 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 974 pf_hashsize = PF_HASHSIZ; 975 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 976 pf_srchashsize = PF_SRCHASHSIZ; 977 978 V_pf_hashseed = arc4random(); 979 980 /* States and state keys storage. */ 981 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 982 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 983 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 984 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 985 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 986 987 V_pf_state_key_z = uma_zcreate("pf state keys", 988 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 989 UMA_ALIGN_PTR, 0); 990 991 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 992 M_PFHASH, M_NOWAIT | M_ZERO); 993 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 994 M_PFHASH, M_NOWAIT | M_ZERO); 995 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 996 printf("pf: Unable to allocate memory for " 997 "state_hashsize %lu.\n", pf_hashsize); 998 999 free(V_pf_keyhash, M_PFHASH); 1000 free(V_pf_idhash, M_PFHASH); 1001 1002 pf_hashsize = PF_HASHSIZ; 1003 V_pf_keyhash = mallocarray(pf_hashsize, 1004 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1005 V_pf_idhash = mallocarray(pf_hashsize, 1006 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1007 } 1008 1009 pf_hashmask = pf_hashsize - 1; 1010 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1011 i++, kh++, ih++) { 1012 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1013 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1014 } 1015 1016 /* Source nodes. */ 1017 V_pf_sources_z = uma_zcreate("pf source nodes", 1018 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1019 0); 1020 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1021 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1022 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1023 1024 V_pf_srchash = mallocarray(pf_srchashsize, 1025 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1026 if (V_pf_srchash == NULL) { 1027 printf("pf: Unable to allocate memory for " 1028 "source_hashsize %lu.\n", pf_srchashsize); 1029 1030 pf_srchashsize = PF_SRCHASHSIZ; 1031 V_pf_srchash = mallocarray(pf_srchashsize, 1032 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1033 } 1034 1035 pf_srchashmask = pf_srchashsize - 1; 1036 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1037 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1038 1039 /* ALTQ */ 1040 TAILQ_INIT(&V_pf_altqs[0]); 1041 TAILQ_INIT(&V_pf_altqs[1]); 1042 TAILQ_INIT(&V_pf_altqs[2]); 1043 TAILQ_INIT(&V_pf_altqs[3]); 1044 TAILQ_INIT(&V_pf_pabuf); 1045 V_pf_altqs_active = &V_pf_altqs[0]; 1046 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1047 V_pf_altqs_inactive = &V_pf_altqs[2]; 1048 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1049 1050 /* Send & overload+flush queues. */ 1051 STAILQ_INIT(&V_pf_sendqueue); 1052 SLIST_INIT(&V_pf_overloadqueue); 1053 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1054 1055 /* Unlinked, but may be referenced rules. */ 1056 TAILQ_INIT(&V_pf_unlinked_rules); 1057 } 1058 1059 void 1060 pf_mtag_cleanup(void) 1061 { 1062 1063 uma_zdestroy(pf_mtag_z); 1064 } 1065 1066 void 1067 pf_cleanup(void) 1068 { 1069 struct pf_keyhash *kh; 1070 struct pf_idhash *ih; 1071 struct pf_srchash *sh; 1072 struct pf_send_entry *pfse, *next; 1073 u_int i; 1074 1075 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1076 i++, kh++, ih++) { 1077 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1078 __func__)); 1079 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1080 __func__)); 1081 mtx_destroy(&kh->lock); 1082 mtx_destroy(&ih->lock); 1083 } 1084 free(V_pf_keyhash, M_PFHASH); 1085 free(V_pf_idhash, M_PFHASH); 1086 1087 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1088 KASSERT(LIST_EMPTY(&sh->nodes), 1089 ("%s: source node hash not empty", __func__)); 1090 mtx_destroy(&sh->lock); 1091 } 1092 free(V_pf_srchash, M_PFHASH); 1093 1094 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1095 m_freem(pfse->pfse_m); 1096 free(pfse, M_PFTEMP); 1097 } 1098 1099 uma_zdestroy(V_pf_sources_z); 1100 uma_zdestroy(V_pf_state_z); 1101 uma_zdestroy(V_pf_state_key_z); 1102 } 1103 1104 static int 1105 pf_mtag_uminit(void *mem, int size, int how) 1106 { 1107 struct m_tag *t; 1108 1109 t = (struct m_tag *)mem; 1110 t->m_tag_cookie = MTAG_ABI_COMPAT; 1111 t->m_tag_id = PACKET_TAG_PF; 1112 t->m_tag_len = sizeof(struct pf_mtag); 1113 t->m_tag_free = pf_mtag_free; 1114 1115 return (0); 1116 } 1117 1118 static void 1119 pf_mtag_free(struct m_tag *t) 1120 { 1121 1122 uma_zfree(pf_mtag_z, t); 1123 } 1124 1125 struct pf_mtag * 1126 pf_get_mtag(struct mbuf *m) 1127 { 1128 struct m_tag *mtag; 1129 1130 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1131 return ((struct pf_mtag *)(mtag + 1)); 1132 1133 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1134 if (mtag == NULL) 1135 return (NULL); 1136 bzero(mtag + 1, sizeof(struct pf_mtag)); 1137 m_tag_prepend(m, mtag); 1138 1139 return ((struct pf_mtag *)(mtag + 1)); 1140 } 1141 1142 static int 1143 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1144 struct pf_kstate *s) 1145 { 1146 struct pf_keyhash *khs, *khw, *kh; 1147 struct pf_state_key *sk, *cur; 1148 struct pf_kstate *si, *olds = NULL; 1149 int idx; 1150 1151 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1152 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1153 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1154 1155 /* 1156 * We need to lock hash slots of both keys. To avoid deadlock 1157 * we always lock the slot with lower address first. Unlock order 1158 * isn't important. 1159 * 1160 * We also need to lock ID hash slot before dropping key 1161 * locks. On success we return with ID hash slot locked. 1162 */ 1163 1164 if (skw == sks) { 1165 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1166 PF_HASHROW_LOCK(khs); 1167 } else { 1168 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1169 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1170 if (khs == khw) { 1171 PF_HASHROW_LOCK(khs); 1172 } else if (khs < khw) { 1173 PF_HASHROW_LOCK(khs); 1174 PF_HASHROW_LOCK(khw); 1175 } else { 1176 PF_HASHROW_LOCK(khw); 1177 PF_HASHROW_LOCK(khs); 1178 } 1179 } 1180 1181 #define KEYS_UNLOCK() do { \ 1182 if (khs != khw) { \ 1183 PF_HASHROW_UNLOCK(khs); \ 1184 PF_HASHROW_UNLOCK(khw); \ 1185 } else \ 1186 PF_HASHROW_UNLOCK(khs); \ 1187 } while (0) 1188 1189 /* 1190 * First run: start with wire key. 1191 */ 1192 sk = skw; 1193 kh = khw; 1194 idx = PF_SK_WIRE; 1195 1196 MPASS(s->lock == NULL); 1197 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1198 1199 keyattach: 1200 LIST_FOREACH(cur, &kh->keys, entry) 1201 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1202 break; 1203 1204 if (cur != NULL) { 1205 /* Key exists. Check for same kif, if none, add to key. */ 1206 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1207 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1208 1209 PF_HASHROW_LOCK(ih); 1210 if (si->kif == s->kif && 1211 si->direction == s->direction) { 1212 if (sk->proto == IPPROTO_TCP && 1213 si->src.state >= TCPS_FIN_WAIT_2 && 1214 si->dst.state >= TCPS_FIN_WAIT_2) { 1215 /* 1216 * New state matches an old >FIN_WAIT_2 1217 * state. We can't drop key hash locks, 1218 * thus we can't unlink it properly. 1219 * 1220 * As a workaround we drop it into 1221 * TCPS_CLOSED state, schedule purge 1222 * ASAP and push it into the very end 1223 * of the slot TAILQ, so that it won't 1224 * conflict with our new state. 1225 */ 1226 pf_set_protostate(si, PF_PEER_BOTH, 1227 TCPS_CLOSED); 1228 si->timeout = PFTM_PURGE; 1229 olds = si; 1230 } else { 1231 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1232 printf("pf: %s key attach " 1233 "failed on %s: ", 1234 (idx == PF_SK_WIRE) ? 1235 "wire" : "stack", 1236 s->kif->pfik_name); 1237 pf_print_state_parts(s, 1238 (idx == PF_SK_WIRE) ? 1239 sk : NULL, 1240 (idx == PF_SK_STACK) ? 1241 sk : NULL); 1242 printf(", existing: "); 1243 pf_print_state_parts(si, 1244 (idx == PF_SK_WIRE) ? 1245 sk : NULL, 1246 (idx == PF_SK_STACK) ? 1247 sk : NULL); 1248 printf("\n"); 1249 } 1250 PF_HASHROW_UNLOCK(ih); 1251 KEYS_UNLOCK(); 1252 uma_zfree(V_pf_state_key_z, sk); 1253 if (idx == PF_SK_STACK) 1254 pf_detach_state(s); 1255 return (EEXIST); /* collision! */ 1256 } 1257 } 1258 PF_HASHROW_UNLOCK(ih); 1259 } 1260 uma_zfree(V_pf_state_key_z, sk); 1261 s->key[idx] = cur; 1262 } else { 1263 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1264 s->key[idx] = sk; 1265 } 1266 1267 stateattach: 1268 /* List is sorted, if-bound states before floating. */ 1269 if (s->kif == V_pfi_all) 1270 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1271 else 1272 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1273 1274 if (olds) { 1275 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1276 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1277 key_list[idx]); 1278 olds = NULL; 1279 } 1280 1281 /* 1282 * Attach done. See how should we (or should not?) 1283 * attach a second key. 1284 */ 1285 if (sks == skw) { 1286 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1287 idx = PF_SK_STACK; 1288 sks = NULL; 1289 goto stateattach; 1290 } else if (sks != NULL) { 1291 /* 1292 * Continue attaching with stack key. 1293 */ 1294 sk = sks; 1295 kh = khs; 1296 idx = PF_SK_STACK; 1297 sks = NULL; 1298 goto keyattach; 1299 } 1300 1301 PF_STATE_LOCK(s); 1302 KEYS_UNLOCK(); 1303 1304 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1305 ("%s failure", __func__)); 1306 1307 return (0); 1308 #undef KEYS_UNLOCK 1309 } 1310 1311 static void 1312 pf_detach_state(struct pf_kstate *s) 1313 { 1314 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1315 struct pf_keyhash *kh; 1316 1317 if (sks != NULL) { 1318 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1319 PF_HASHROW_LOCK(kh); 1320 if (s->key[PF_SK_STACK] != NULL) 1321 pf_state_key_detach(s, PF_SK_STACK); 1322 /* 1323 * If both point to same key, then we are done. 1324 */ 1325 if (sks == s->key[PF_SK_WIRE]) { 1326 pf_state_key_detach(s, PF_SK_WIRE); 1327 PF_HASHROW_UNLOCK(kh); 1328 return; 1329 } 1330 PF_HASHROW_UNLOCK(kh); 1331 } 1332 1333 if (s->key[PF_SK_WIRE] != NULL) { 1334 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1335 PF_HASHROW_LOCK(kh); 1336 if (s->key[PF_SK_WIRE] != NULL) 1337 pf_state_key_detach(s, PF_SK_WIRE); 1338 PF_HASHROW_UNLOCK(kh); 1339 } 1340 } 1341 1342 static void 1343 pf_state_key_detach(struct pf_kstate *s, int idx) 1344 { 1345 struct pf_state_key *sk = s->key[idx]; 1346 #ifdef INVARIANTS 1347 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1348 1349 PF_HASHROW_ASSERT(kh); 1350 #endif 1351 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1352 s->key[idx] = NULL; 1353 1354 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1355 LIST_REMOVE(sk, entry); 1356 uma_zfree(V_pf_state_key_z, sk); 1357 } 1358 } 1359 1360 static int 1361 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1362 { 1363 struct pf_state_key *sk = mem; 1364 1365 bzero(sk, sizeof(struct pf_state_key_cmp)); 1366 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1367 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1368 1369 return (0); 1370 } 1371 1372 struct pf_state_key * 1373 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1374 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1375 { 1376 struct pf_state_key *sk; 1377 1378 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1379 if (sk == NULL) 1380 return (NULL); 1381 1382 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1383 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1384 sk->port[pd->sidx] = sport; 1385 sk->port[pd->didx] = dport; 1386 sk->proto = pd->proto; 1387 sk->af = pd->af; 1388 1389 return (sk); 1390 } 1391 1392 struct pf_state_key * 1393 pf_state_key_clone(struct pf_state_key *orig) 1394 { 1395 struct pf_state_key *sk; 1396 1397 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1398 if (sk == NULL) 1399 return (NULL); 1400 1401 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1402 1403 return (sk); 1404 } 1405 1406 int 1407 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1408 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1409 { 1410 struct pf_idhash *ih; 1411 struct pf_kstate *cur; 1412 int error; 1413 1414 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1415 ("%s: sks not pristine", __func__)); 1416 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1417 ("%s: skw not pristine", __func__)); 1418 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1419 1420 s->kif = kif; 1421 s->orig_kif = orig_kif; 1422 1423 if (s->id == 0 && s->creatorid == 0) { 1424 s->id = alloc_unr64(&V_pf_stateid); 1425 s->id = htobe64(s->id); 1426 s->creatorid = V_pf_status.hostid; 1427 } 1428 1429 /* Returns with ID locked on success. */ 1430 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1431 return (error); 1432 1433 ih = &V_pf_idhash[PF_IDHASH(s)]; 1434 PF_HASHROW_ASSERT(ih); 1435 LIST_FOREACH(cur, &ih->states, entry) 1436 if (cur->id == s->id && cur->creatorid == s->creatorid) 1437 break; 1438 1439 if (cur != NULL) { 1440 PF_HASHROW_UNLOCK(ih); 1441 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1442 printf("pf: state ID collision: " 1443 "id: %016llx creatorid: %08x\n", 1444 (unsigned long long)be64toh(s->id), 1445 ntohl(s->creatorid)); 1446 } 1447 pf_detach_state(s); 1448 return (EEXIST); 1449 } 1450 LIST_INSERT_HEAD(&ih->states, s, entry); 1451 /* One for keys, one for ID hash. */ 1452 refcount_init(&s->refs, 2); 1453 1454 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1455 if (V_pfsync_insert_state_ptr != NULL) 1456 V_pfsync_insert_state_ptr(s); 1457 1458 /* Returns locked. */ 1459 return (0); 1460 } 1461 1462 /* 1463 * Find state by ID: returns with locked row on success. 1464 */ 1465 struct pf_kstate * 1466 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1467 { 1468 struct pf_idhash *ih; 1469 struct pf_kstate *s; 1470 1471 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1472 1473 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1474 1475 PF_HASHROW_LOCK(ih); 1476 LIST_FOREACH(s, &ih->states, entry) 1477 if (s->id == id && s->creatorid == creatorid) 1478 break; 1479 1480 if (s == NULL) 1481 PF_HASHROW_UNLOCK(ih); 1482 1483 return (s); 1484 } 1485 1486 /* 1487 * Find state by key. 1488 * Returns with ID hash slot locked on success. 1489 */ 1490 static struct pf_kstate * 1491 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1492 { 1493 struct pf_keyhash *kh; 1494 struct pf_state_key *sk; 1495 struct pf_kstate *s; 1496 int idx; 1497 1498 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1499 1500 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1501 1502 PF_HASHROW_LOCK(kh); 1503 LIST_FOREACH(sk, &kh->keys, entry) 1504 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1505 break; 1506 if (sk == NULL) { 1507 PF_HASHROW_UNLOCK(kh); 1508 return (NULL); 1509 } 1510 1511 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1512 1513 /* List is sorted, if-bound states before floating ones. */ 1514 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1515 if (s->kif == V_pfi_all || s->kif == kif) { 1516 PF_STATE_LOCK(s); 1517 PF_HASHROW_UNLOCK(kh); 1518 if (__predict_false(s->timeout >= PFTM_MAX)) { 1519 /* 1520 * State is either being processed by 1521 * pf_unlink_state() in an other thread, or 1522 * is scheduled for immediate expiry. 1523 */ 1524 PF_STATE_UNLOCK(s); 1525 return (NULL); 1526 } 1527 return (s); 1528 } 1529 PF_HASHROW_UNLOCK(kh); 1530 1531 return (NULL); 1532 } 1533 1534 /* 1535 * Returns with ID hash slot locked on success. 1536 */ 1537 struct pf_kstate * 1538 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1539 { 1540 struct pf_keyhash *kh; 1541 struct pf_state_key *sk; 1542 struct pf_kstate *s, *ret = NULL; 1543 int idx, inout = 0; 1544 1545 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1546 1547 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1548 1549 PF_HASHROW_LOCK(kh); 1550 LIST_FOREACH(sk, &kh->keys, entry) 1551 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1552 break; 1553 if (sk == NULL) { 1554 PF_HASHROW_UNLOCK(kh); 1555 return (NULL); 1556 } 1557 switch (dir) { 1558 case PF_IN: 1559 idx = PF_SK_WIRE; 1560 break; 1561 case PF_OUT: 1562 idx = PF_SK_STACK; 1563 break; 1564 case PF_INOUT: 1565 idx = PF_SK_WIRE; 1566 inout = 1; 1567 break; 1568 default: 1569 panic("%s: dir %u", __func__, dir); 1570 } 1571 second_run: 1572 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1573 if (more == NULL) { 1574 PF_STATE_LOCK(s); 1575 PF_HASHROW_UNLOCK(kh); 1576 return (s); 1577 } 1578 1579 if (ret) 1580 (*more)++; 1581 else { 1582 ret = s; 1583 PF_STATE_LOCK(s); 1584 } 1585 } 1586 if (inout == 1) { 1587 inout = 0; 1588 idx = PF_SK_STACK; 1589 goto second_run; 1590 } 1591 PF_HASHROW_UNLOCK(kh); 1592 1593 return (ret); 1594 } 1595 1596 /* 1597 * FIXME 1598 * This routine is inefficient -- locks the state only to unlock immediately on 1599 * return. 1600 * It is racy -- after the state is unlocked nothing stops other threads from 1601 * removing it. 1602 */ 1603 bool 1604 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1605 { 1606 struct pf_kstate *s; 1607 1608 s = pf_find_state_all(key, dir, NULL); 1609 if (s != NULL) { 1610 PF_STATE_UNLOCK(s); 1611 return (true); 1612 } 1613 return (false); 1614 } 1615 1616 /* END state table stuff */ 1617 1618 static void 1619 pf_send(struct pf_send_entry *pfse) 1620 { 1621 1622 PF_SENDQ_LOCK(); 1623 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1624 PF_SENDQ_UNLOCK(); 1625 swi_sched(V_pf_swi_cookie, 0); 1626 } 1627 1628 static bool 1629 pf_isforlocal(struct mbuf *m, int af) 1630 { 1631 switch (af) { 1632 #ifdef INET 1633 case AF_INET: { 1634 struct ip *ip = mtod(m, struct ip *); 1635 1636 return (in_localip(ip->ip_dst)); 1637 } 1638 #endif 1639 #ifdef INET6 1640 case AF_INET6: { 1641 struct ip6_hdr *ip6; 1642 struct in6_ifaddr *ia; 1643 ip6 = mtod(m, struct ip6_hdr *); 1644 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1645 if (ia == NULL) 1646 return (false); 1647 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1648 } 1649 #endif 1650 default: 1651 panic("Unsupported af %d", af); 1652 } 1653 1654 return (false); 1655 } 1656 1657 void 1658 pf_intr(void *v) 1659 { 1660 struct epoch_tracker et; 1661 struct pf_send_head queue; 1662 struct pf_send_entry *pfse, *next; 1663 1664 CURVNET_SET((struct vnet *)v); 1665 1666 PF_SENDQ_LOCK(); 1667 queue = V_pf_sendqueue; 1668 STAILQ_INIT(&V_pf_sendqueue); 1669 PF_SENDQ_UNLOCK(); 1670 1671 NET_EPOCH_ENTER(et); 1672 1673 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1674 switch (pfse->pfse_type) { 1675 #ifdef INET 1676 case PFSE_IP: { 1677 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1678 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1679 pfse->pfse_m->m_pkthdr.csum_flags |= 1680 CSUM_IP_VALID | CSUM_IP_CHECKED; 1681 ip_input(pfse->pfse_m); 1682 } else { 1683 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1684 NULL); 1685 } 1686 break; 1687 } 1688 case PFSE_ICMP: 1689 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1690 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1691 break; 1692 #endif /* INET */ 1693 #ifdef INET6 1694 case PFSE_IP6: 1695 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1696 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1697 ip6_input(pfse->pfse_m); 1698 } else { 1699 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1700 NULL, NULL); 1701 } 1702 break; 1703 case PFSE_ICMP6: 1704 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1705 pfse->icmpopts.code, pfse->icmpopts.mtu); 1706 break; 1707 #endif /* INET6 */ 1708 default: 1709 panic("%s: unknown type", __func__); 1710 } 1711 free(pfse, M_PFTEMP); 1712 } 1713 NET_EPOCH_EXIT(et); 1714 CURVNET_RESTORE(); 1715 } 1716 1717 #define pf_purge_thread_period (hz / 10) 1718 1719 #ifdef PF_WANT_32_TO_64_COUNTER 1720 static void 1721 pf_status_counter_u64_periodic(void) 1722 { 1723 1724 PF_RULES_RASSERT(); 1725 1726 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1727 return; 1728 } 1729 1730 for (int i = 0; i < FCNT_MAX; i++) { 1731 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1732 } 1733 } 1734 1735 static void 1736 pf_kif_counter_u64_periodic(void) 1737 { 1738 struct pfi_kkif *kif; 1739 size_t r, run; 1740 1741 PF_RULES_RASSERT(); 1742 1743 if (__predict_false(V_pf_allkifcount == 0)) { 1744 return; 1745 } 1746 1747 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1748 return; 1749 } 1750 1751 run = V_pf_allkifcount / 10; 1752 if (run < 5) 1753 run = 5; 1754 1755 for (r = 0; r < run; r++) { 1756 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1757 if (kif == NULL) { 1758 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1759 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1760 break; 1761 } 1762 1763 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1764 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1765 1766 for (int i = 0; i < 2; i++) { 1767 for (int j = 0; j < 2; j++) { 1768 for (int k = 0; k < 2; k++) { 1769 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1770 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1771 } 1772 } 1773 } 1774 } 1775 } 1776 1777 static void 1778 pf_rule_counter_u64_periodic(void) 1779 { 1780 struct pf_krule *rule; 1781 size_t r, run; 1782 1783 PF_RULES_RASSERT(); 1784 1785 if (__predict_false(V_pf_allrulecount == 0)) { 1786 return; 1787 } 1788 1789 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1790 return; 1791 } 1792 1793 run = V_pf_allrulecount / 10; 1794 if (run < 5) 1795 run = 5; 1796 1797 for (r = 0; r < run; r++) { 1798 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1799 if (rule == NULL) { 1800 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1801 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1802 break; 1803 } 1804 1805 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1806 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1807 1808 pf_counter_u64_periodic(&rule->evaluations); 1809 for (int i = 0; i < 2; i++) { 1810 pf_counter_u64_periodic(&rule->packets[i]); 1811 pf_counter_u64_periodic(&rule->bytes[i]); 1812 } 1813 } 1814 } 1815 1816 static void 1817 pf_counter_u64_periodic_main(void) 1818 { 1819 PF_RULES_RLOCK_TRACKER; 1820 1821 V_pf_counter_periodic_iter++; 1822 1823 PF_RULES_RLOCK(); 1824 pf_counter_u64_critical_enter(); 1825 pf_status_counter_u64_periodic(); 1826 pf_kif_counter_u64_periodic(); 1827 pf_rule_counter_u64_periodic(); 1828 pf_counter_u64_critical_exit(); 1829 PF_RULES_RUNLOCK(); 1830 } 1831 #else 1832 #define pf_counter_u64_periodic_main() do { } while (0) 1833 #endif 1834 1835 void 1836 pf_purge_thread(void *unused __unused) 1837 { 1838 VNET_ITERATOR_DECL(vnet_iter); 1839 1840 sx_xlock(&pf_end_lock); 1841 while (pf_end_threads == 0) { 1842 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1843 1844 VNET_LIST_RLOCK(); 1845 VNET_FOREACH(vnet_iter) { 1846 CURVNET_SET(vnet_iter); 1847 1848 /* Wait until V_pf_default_rule is initialized. */ 1849 if (V_pf_vnet_active == 0) { 1850 CURVNET_RESTORE(); 1851 continue; 1852 } 1853 1854 pf_counter_u64_periodic_main(); 1855 1856 /* 1857 * Process 1/interval fraction of the state 1858 * table every run. 1859 */ 1860 V_pf_purge_idx = 1861 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1862 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1863 1864 /* 1865 * Purge other expired types every 1866 * PFTM_INTERVAL seconds. 1867 */ 1868 if (V_pf_purge_idx == 0) { 1869 /* 1870 * Order is important: 1871 * - states and src nodes reference rules 1872 * - states and rules reference kifs 1873 */ 1874 pf_purge_expired_fragments(); 1875 pf_purge_expired_src_nodes(); 1876 pf_purge_unlinked_rules(); 1877 pfi_kkif_purge(); 1878 } 1879 CURVNET_RESTORE(); 1880 } 1881 VNET_LIST_RUNLOCK(); 1882 } 1883 1884 pf_end_threads++; 1885 sx_xunlock(&pf_end_lock); 1886 kproc_exit(0); 1887 } 1888 1889 void 1890 pf_unload_vnet_purge(void) 1891 { 1892 1893 /* 1894 * To cleanse up all kifs and rules we need 1895 * two runs: first one clears reference flags, 1896 * then pf_purge_expired_states() doesn't 1897 * raise them, and then second run frees. 1898 */ 1899 pf_purge_unlinked_rules(); 1900 pfi_kkif_purge(); 1901 1902 /* 1903 * Now purge everything. 1904 */ 1905 pf_purge_expired_states(0, pf_hashmask); 1906 pf_purge_fragments(UINT_MAX); 1907 pf_purge_expired_src_nodes(); 1908 1909 /* 1910 * Now all kifs & rules should be unreferenced, 1911 * thus should be successfully freed. 1912 */ 1913 pf_purge_unlinked_rules(); 1914 pfi_kkif_purge(); 1915 } 1916 1917 u_int32_t 1918 pf_state_expires(const struct pf_kstate *state) 1919 { 1920 u_int32_t timeout; 1921 u_int32_t start; 1922 u_int32_t end; 1923 u_int32_t states; 1924 1925 /* handle all PFTM_* > PFTM_MAX here */ 1926 if (state->timeout == PFTM_PURGE) 1927 return (time_uptime); 1928 KASSERT(state->timeout != PFTM_UNLINKED, 1929 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1930 KASSERT((state->timeout < PFTM_MAX), 1931 ("pf_state_expires: timeout > PFTM_MAX")); 1932 timeout = state->rule.ptr->timeout[state->timeout]; 1933 if (!timeout) 1934 timeout = V_pf_default_rule.timeout[state->timeout]; 1935 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1936 if (start && state->rule.ptr != &V_pf_default_rule) { 1937 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1938 states = counter_u64_fetch(state->rule.ptr->states_cur); 1939 } else { 1940 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1941 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1942 states = V_pf_status.states; 1943 } 1944 if (end && states > start && start < end) { 1945 if (states < end) { 1946 timeout = (u_int64_t)timeout * (end - states) / 1947 (end - start); 1948 return (state->expire + timeout); 1949 } 1950 else 1951 return (time_uptime); 1952 } 1953 return (state->expire + timeout); 1954 } 1955 1956 void 1957 pf_purge_expired_src_nodes(void) 1958 { 1959 struct pf_ksrc_node_list freelist; 1960 struct pf_srchash *sh; 1961 struct pf_ksrc_node *cur, *next; 1962 int i; 1963 1964 LIST_INIT(&freelist); 1965 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1966 PF_HASHROW_LOCK(sh); 1967 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1968 if (cur->states == 0 && cur->expire <= time_uptime) { 1969 pf_unlink_src_node(cur); 1970 LIST_INSERT_HEAD(&freelist, cur, entry); 1971 } else if (cur->rule.ptr != NULL) 1972 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1973 PF_HASHROW_UNLOCK(sh); 1974 } 1975 1976 pf_free_src_nodes(&freelist); 1977 1978 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1979 } 1980 1981 static void 1982 pf_src_tree_remove_state(struct pf_kstate *s) 1983 { 1984 struct pf_ksrc_node *sn; 1985 struct pf_srchash *sh; 1986 uint32_t timeout; 1987 1988 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1989 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1990 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1991 1992 if (s->src_node != NULL) { 1993 sn = s->src_node; 1994 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1995 PF_HASHROW_LOCK(sh); 1996 if (s->src.tcp_est) 1997 --sn->conn; 1998 if (--sn->states == 0) 1999 sn->expire = time_uptime + timeout; 2000 PF_HASHROW_UNLOCK(sh); 2001 } 2002 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2003 sn = s->nat_src_node; 2004 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2005 PF_HASHROW_LOCK(sh); 2006 if (--sn->states == 0) 2007 sn->expire = time_uptime + timeout; 2008 PF_HASHROW_UNLOCK(sh); 2009 } 2010 s->src_node = s->nat_src_node = NULL; 2011 } 2012 2013 /* 2014 * Unlink and potentilly free a state. Function may be 2015 * called with ID hash row locked, but always returns 2016 * unlocked, since it needs to go through key hash locking. 2017 */ 2018 int 2019 pf_unlink_state(struct pf_kstate *s) 2020 { 2021 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2022 2023 PF_HASHROW_ASSERT(ih); 2024 2025 if (s->timeout == PFTM_UNLINKED) { 2026 /* 2027 * State is being processed 2028 * by pf_unlink_state() in 2029 * an other thread. 2030 */ 2031 PF_HASHROW_UNLOCK(ih); 2032 return (0); /* XXXGL: undefined actually */ 2033 } 2034 2035 if (s->src.state == PF_TCPS_PROXY_DST) { 2036 /* XXX wire key the right one? */ 2037 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2038 &s->key[PF_SK_WIRE]->addr[1], 2039 &s->key[PF_SK_WIRE]->addr[0], 2040 s->key[PF_SK_WIRE]->port[1], 2041 s->key[PF_SK_WIRE]->port[0], 2042 s->src.seqhi, s->src.seqlo + 1, 2043 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, s->rtableid); 2044 } 2045 2046 LIST_REMOVE(s, entry); 2047 pf_src_tree_remove_state(s); 2048 2049 if (V_pfsync_delete_state_ptr != NULL) 2050 V_pfsync_delete_state_ptr(s); 2051 2052 STATE_DEC_COUNTERS(s); 2053 2054 s->timeout = PFTM_UNLINKED; 2055 2056 /* Ensure we remove it from the list of halfopen states, if needed. */ 2057 if (s->key[PF_SK_STACK] != NULL && 2058 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2059 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2060 2061 PF_HASHROW_UNLOCK(ih); 2062 2063 pf_detach_state(s); 2064 /* pf_state_insert() initialises refs to 2 */ 2065 return (pf_release_staten(s, 2)); 2066 } 2067 2068 struct pf_kstate * 2069 pf_alloc_state(int flags) 2070 { 2071 2072 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2073 } 2074 2075 void 2076 pf_free_state(struct pf_kstate *cur) 2077 { 2078 struct pf_krule_item *ri; 2079 2080 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2081 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2082 cur->timeout)); 2083 2084 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2085 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2086 free(ri, M_PF_RULE_ITEM); 2087 } 2088 2089 pf_normalize_tcp_cleanup(cur); 2090 uma_zfree(V_pf_state_z, cur); 2091 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2092 } 2093 2094 /* 2095 * Called only from pf_purge_thread(), thus serialized. 2096 */ 2097 static u_int 2098 pf_purge_expired_states(u_int i, int maxcheck) 2099 { 2100 struct pf_idhash *ih; 2101 struct pf_kstate *s; 2102 struct pf_krule_item *mrm; 2103 2104 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2105 2106 /* 2107 * Go through hash and unlink states that expire now. 2108 */ 2109 while (maxcheck > 0) { 2110 ih = &V_pf_idhash[i]; 2111 2112 /* only take the lock if we expect to do work */ 2113 if (!LIST_EMPTY(&ih->states)) { 2114 relock: 2115 PF_HASHROW_LOCK(ih); 2116 LIST_FOREACH(s, &ih->states, entry) { 2117 if (pf_state_expires(s) <= time_uptime) { 2118 V_pf_status.states -= 2119 pf_unlink_state(s); 2120 goto relock; 2121 } 2122 s->rule.ptr->rule_ref |= PFRULE_REFS; 2123 if (s->nat_rule.ptr != NULL) 2124 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2125 if (s->anchor.ptr != NULL) 2126 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2127 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2128 SLIST_FOREACH(mrm, &s->match_rules, entry) 2129 mrm->r->rule_ref |= PFRULE_REFS; 2130 if (s->rt_kif) 2131 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2132 } 2133 PF_HASHROW_UNLOCK(ih); 2134 } 2135 2136 /* Return when we hit end of hash. */ 2137 if (++i > pf_hashmask) { 2138 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2139 return (0); 2140 } 2141 2142 maxcheck--; 2143 } 2144 2145 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2146 2147 return (i); 2148 } 2149 2150 static void 2151 pf_purge_unlinked_rules(void) 2152 { 2153 struct pf_krulequeue tmpq; 2154 struct pf_krule *r, *r1; 2155 2156 /* 2157 * If we have overloading task pending, then we'd 2158 * better skip purging this time. There is a tiny 2159 * probability that overloading task references 2160 * an already unlinked rule. 2161 */ 2162 PF_OVERLOADQ_LOCK(); 2163 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2164 PF_OVERLOADQ_UNLOCK(); 2165 return; 2166 } 2167 PF_OVERLOADQ_UNLOCK(); 2168 2169 /* 2170 * Do naive mark-and-sweep garbage collecting of old rules. 2171 * Reference flag is raised by pf_purge_expired_states() 2172 * and pf_purge_expired_src_nodes(). 2173 * 2174 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2175 * use a temporary queue. 2176 */ 2177 TAILQ_INIT(&tmpq); 2178 PF_UNLNKDRULES_LOCK(); 2179 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2180 if (!(r->rule_ref & PFRULE_REFS)) { 2181 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2182 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2183 } else 2184 r->rule_ref &= ~PFRULE_REFS; 2185 } 2186 PF_UNLNKDRULES_UNLOCK(); 2187 2188 if (!TAILQ_EMPTY(&tmpq)) { 2189 PF_CONFIG_LOCK(); 2190 PF_RULES_WLOCK(); 2191 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2192 TAILQ_REMOVE(&tmpq, r, entries); 2193 pf_free_rule(r); 2194 } 2195 PF_RULES_WUNLOCK(); 2196 PF_CONFIG_UNLOCK(); 2197 } 2198 } 2199 2200 void 2201 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2202 { 2203 switch (af) { 2204 #ifdef INET 2205 case AF_INET: { 2206 u_int32_t a = ntohl(addr->addr32[0]); 2207 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2208 (a>>8)&255, a&255); 2209 if (p) { 2210 p = ntohs(p); 2211 printf(":%u", p); 2212 } 2213 break; 2214 } 2215 #endif /* INET */ 2216 #ifdef INET6 2217 case AF_INET6: { 2218 u_int16_t b; 2219 u_int8_t i, curstart, curend, maxstart, maxend; 2220 curstart = curend = maxstart = maxend = 255; 2221 for (i = 0; i < 8; i++) { 2222 if (!addr->addr16[i]) { 2223 if (curstart == 255) 2224 curstart = i; 2225 curend = i; 2226 } else { 2227 if ((curend - curstart) > 2228 (maxend - maxstart)) { 2229 maxstart = curstart; 2230 maxend = curend; 2231 } 2232 curstart = curend = 255; 2233 } 2234 } 2235 if ((curend - curstart) > 2236 (maxend - maxstart)) { 2237 maxstart = curstart; 2238 maxend = curend; 2239 } 2240 for (i = 0; i < 8; i++) { 2241 if (i >= maxstart && i <= maxend) { 2242 if (i == 0) 2243 printf(":"); 2244 if (i == maxend) 2245 printf(":"); 2246 } else { 2247 b = ntohs(addr->addr16[i]); 2248 printf("%x", b); 2249 if (i < 7) 2250 printf(":"); 2251 } 2252 } 2253 if (p) { 2254 p = ntohs(p); 2255 printf("[%u]", p); 2256 } 2257 break; 2258 } 2259 #endif /* INET6 */ 2260 } 2261 } 2262 2263 void 2264 pf_print_state(struct pf_kstate *s) 2265 { 2266 pf_print_state_parts(s, NULL, NULL); 2267 } 2268 2269 static void 2270 pf_print_state_parts(struct pf_kstate *s, 2271 struct pf_state_key *skwp, struct pf_state_key *sksp) 2272 { 2273 struct pf_state_key *skw, *sks; 2274 u_int8_t proto, dir; 2275 2276 /* Do our best to fill these, but they're skipped if NULL */ 2277 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2278 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2279 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2280 dir = s ? s->direction : 0; 2281 2282 switch (proto) { 2283 case IPPROTO_IPV4: 2284 printf("IPv4"); 2285 break; 2286 case IPPROTO_IPV6: 2287 printf("IPv6"); 2288 break; 2289 case IPPROTO_TCP: 2290 printf("TCP"); 2291 break; 2292 case IPPROTO_UDP: 2293 printf("UDP"); 2294 break; 2295 case IPPROTO_ICMP: 2296 printf("ICMP"); 2297 break; 2298 case IPPROTO_ICMPV6: 2299 printf("ICMPv6"); 2300 break; 2301 default: 2302 printf("%u", proto); 2303 break; 2304 } 2305 switch (dir) { 2306 case PF_IN: 2307 printf(" in"); 2308 break; 2309 case PF_OUT: 2310 printf(" out"); 2311 break; 2312 } 2313 if (skw) { 2314 printf(" wire: "); 2315 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2316 printf(" "); 2317 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2318 } 2319 if (sks) { 2320 printf(" stack: "); 2321 if (sks != skw) { 2322 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2323 printf(" "); 2324 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2325 } else 2326 printf("-"); 2327 } 2328 if (s) { 2329 if (proto == IPPROTO_TCP) { 2330 printf(" [lo=%u high=%u win=%u modulator=%u", 2331 s->src.seqlo, s->src.seqhi, 2332 s->src.max_win, s->src.seqdiff); 2333 if (s->src.wscale && s->dst.wscale) 2334 printf(" wscale=%u", 2335 s->src.wscale & PF_WSCALE_MASK); 2336 printf("]"); 2337 printf(" [lo=%u high=%u win=%u modulator=%u", 2338 s->dst.seqlo, s->dst.seqhi, 2339 s->dst.max_win, s->dst.seqdiff); 2340 if (s->src.wscale && s->dst.wscale) 2341 printf(" wscale=%u", 2342 s->dst.wscale & PF_WSCALE_MASK); 2343 printf("]"); 2344 } 2345 printf(" %u:%u", s->src.state, s->dst.state); 2346 } 2347 } 2348 2349 void 2350 pf_print_flags(u_int8_t f) 2351 { 2352 if (f) 2353 printf(" "); 2354 if (f & TH_FIN) 2355 printf("F"); 2356 if (f & TH_SYN) 2357 printf("S"); 2358 if (f & TH_RST) 2359 printf("R"); 2360 if (f & TH_PUSH) 2361 printf("P"); 2362 if (f & TH_ACK) 2363 printf("A"); 2364 if (f & TH_URG) 2365 printf("U"); 2366 if (f & TH_ECE) 2367 printf("E"); 2368 if (f & TH_CWR) 2369 printf("W"); 2370 } 2371 2372 #define PF_SET_SKIP_STEPS(i) \ 2373 do { \ 2374 while (head[i] != cur) { \ 2375 head[i]->skip[i].ptr = cur; \ 2376 head[i] = TAILQ_NEXT(head[i], entries); \ 2377 } \ 2378 } while (0) 2379 2380 void 2381 pf_calc_skip_steps(struct pf_krulequeue *rules) 2382 { 2383 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2384 int i; 2385 2386 cur = TAILQ_FIRST(rules); 2387 prev = cur; 2388 for (i = 0; i < PF_SKIP_COUNT; ++i) 2389 head[i] = cur; 2390 while (cur != NULL) { 2391 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2392 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2393 if (cur->direction != prev->direction) 2394 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2395 if (cur->af != prev->af) 2396 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2397 if (cur->proto != prev->proto) 2398 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2399 if (cur->src.neg != prev->src.neg || 2400 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2401 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2402 if (cur->src.port[0] != prev->src.port[0] || 2403 cur->src.port[1] != prev->src.port[1] || 2404 cur->src.port_op != prev->src.port_op) 2405 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2406 if (cur->dst.neg != prev->dst.neg || 2407 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2408 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2409 if (cur->dst.port[0] != prev->dst.port[0] || 2410 cur->dst.port[1] != prev->dst.port[1] || 2411 cur->dst.port_op != prev->dst.port_op) 2412 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2413 2414 prev = cur; 2415 cur = TAILQ_NEXT(cur, entries); 2416 } 2417 for (i = 0; i < PF_SKIP_COUNT; ++i) 2418 PF_SET_SKIP_STEPS(i); 2419 } 2420 2421 static int 2422 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2423 { 2424 if (aw1->type != aw2->type) 2425 return (1); 2426 switch (aw1->type) { 2427 case PF_ADDR_ADDRMASK: 2428 case PF_ADDR_RANGE: 2429 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2430 return (1); 2431 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2432 return (1); 2433 return (0); 2434 case PF_ADDR_DYNIFTL: 2435 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2436 case PF_ADDR_NOROUTE: 2437 case PF_ADDR_URPFFAILED: 2438 return (0); 2439 case PF_ADDR_TABLE: 2440 return (aw1->p.tbl != aw2->p.tbl); 2441 default: 2442 printf("invalid address type: %d\n", aw1->type); 2443 return (1); 2444 } 2445 } 2446 2447 /** 2448 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2449 * header isn't always a full checksum. In some cases (i.e. output) it's a 2450 * pseudo-header checksum, which is a partial checksum over src/dst IP 2451 * addresses, protocol number and length. 2452 * 2453 * That means we have the following cases: 2454 * * Input or forwarding: we don't have TSO, the checksum fields are full 2455 * checksums, we need to update the checksum whenever we change anything. 2456 * * Output (i.e. the checksum is a pseudo-header checksum): 2457 * x The field being updated is src/dst address or affects the length of 2458 * the packet. We need to update the pseudo-header checksum (note that this 2459 * checksum is not ones' complement). 2460 * x Some other field is being modified (e.g. src/dst port numbers): We 2461 * don't have to update anything. 2462 **/ 2463 u_int16_t 2464 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2465 { 2466 u_int32_t x; 2467 2468 x = cksum + old - new; 2469 x = (x + (x >> 16)) & 0xffff; 2470 2471 /* optimise: eliminate a branch when not udp */ 2472 if (udp && cksum == 0x0000) 2473 return cksum; 2474 if (udp && x == 0x0000) 2475 x = 0xffff; 2476 2477 return (u_int16_t)(x); 2478 } 2479 2480 static void 2481 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2482 u_int8_t udp) 2483 { 2484 u_int16_t old = htons(hi ? (*f << 8) : *f); 2485 u_int16_t new = htons(hi ? ( v << 8) : v); 2486 2487 if (*f == v) 2488 return; 2489 2490 *f = v; 2491 2492 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2493 return; 2494 2495 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2496 } 2497 2498 void 2499 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2500 bool hi, u_int8_t udp) 2501 { 2502 u_int8_t *fb = (u_int8_t *)f; 2503 u_int8_t *vb = (u_int8_t *)&v; 2504 2505 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2506 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2507 } 2508 2509 void 2510 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2511 bool hi, u_int8_t udp) 2512 { 2513 u_int8_t *fb = (u_int8_t *)f; 2514 u_int8_t *vb = (u_int8_t *)&v; 2515 2516 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2517 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2518 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2519 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2520 } 2521 2522 u_int16_t 2523 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2524 u_int16_t new, u_int8_t udp) 2525 { 2526 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2527 return (cksum); 2528 2529 return (pf_cksum_fixup(cksum, old, new, udp)); 2530 } 2531 2532 static void 2533 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2534 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2535 sa_family_t af) 2536 { 2537 struct pf_addr ao; 2538 u_int16_t po = *p; 2539 2540 PF_ACPY(&ao, a, af); 2541 PF_ACPY(a, an, af); 2542 2543 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2544 *pc = ~*pc; 2545 2546 *p = pn; 2547 2548 switch (af) { 2549 #ifdef INET 2550 case AF_INET: 2551 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2552 ao.addr16[0], an->addr16[0], 0), 2553 ao.addr16[1], an->addr16[1], 0); 2554 *p = pn; 2555 2556 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2557 ao.addr16[0], an->addr16[0], u), 2558 ao.addr16[1], an->addr16[1], u); 2559 2560 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2561 break; 2562 #endif /* INET */ 2563 #ifdef INET6 2564 case AF_INET6: 2565 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2566 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2567 pf_cksum_fixup(pf_cksum_fixup(*pc, 2568 ao.addr16[0], an->addr16[0], u), 2569 ao.addr16[1], an->addr16[1], u), 2570 ao.addr16[2], an->addr16[2], u), 2571 ao.addr16[3], an->addr16[3], u), 2572 ao.addr16[4], an->addr16[4], u), 2573 ao.addr16[5], an->addr16[5], u), 2574 ao.addr16[6], an->addr16[6], u), 2575 ao.addr16[7], an->addr16[7], u); 2576 2577 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2578 break; 2579 #endif /* INET6 */ 2580 } 2581 2582 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2583 CSUM_DELAY_DATA_IPV6)) { 2584 *pc = ~*pc; 2585 if (! *pc) 2586 *pc = 0xffff; 2587 } 2588 } 2589 2590 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2591 void 2592 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2593 { 2594 u_int32_t ao; 2595 2596 memcpy(&ao, a, sizeof(ao)); 2597 memcpy(a, &an, sizeof(u_int32_t)); 2598 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2599 ao % 65536, an % 65536, u); 2600 } 2601 2602 void 2603 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2604 { 2605 u_int32_t ao; 2606 2607 memcpy(&ao, a, sizeof(ao)); 2608 memcpy(a, &an, sizeof(u_int32_t)); 2609 2610 *c = pf_proto_cksum_fixup(m, 2611 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2612 ao % 65536, an % 65536, udp); 2613 } 2614 2615 #ifdef INET6 2616 static void 2617 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2618 { 2619 struct pf_addr ao; 2620 2621 PF_ACPY(&ao, a, AF_INET6); 2622 PF_ACPY(a, an, AF_INET6); 2623 2624 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2625 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2626 pf_cksum_fixup(pf_cksum_fixup(*c, 2627 ao.addr16[0], an->addr16[0], u), 2628 ao.addr16[1], an->addr16[1], u), 2629 ao.addr16[2], an->addr16[2], u), 2630 ao.addr16[3], an->addr16[3], u), 2631 ao.addr16[4], an->addr16[4], u), 2632 ao.addr16[5], an->addr16[5], u), 2633 ao.addr16[6], an->addr16[6], u), 2634 ao.addr16[7], an->addr16[7], u); 2635 } 2636 #endif /* INET6 */ 2637 2638 static void 2639 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2640 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2641 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2642 { 2643 struct pf_addr oia, ooa; 2644 2645 PF_ACPY(&oia, ia, af); 2646 if (oa) 2647 PF_ACPY(&ooa, oa, af); 2648 2649 /* Change inner protocol port, fix inner protocol checksum. */ 2650 if (ip != NULL) { 2651 u_int16_t oip = *ip; 2652 u_int32_t opc; 2653 2654 if (pc != NULL) 2655 opc = *pc; 2656 *ip = np; 2657 if (pc != NULL) 2658 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2659 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2660 if (pc != NULL) 2661 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2662 } 2663 /* Change inner ip address, fix inner ip and icmp checksums. */ 2664 PF_ACPY(ia, na, af); 2665 switch (af) { 2666 #ifdef INET 2667 case AF_INET: { 2668 u_int32_t oh2c = *h2c; 2669 2670 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2671 oia.addr16[0], ia->addr16[0], 0), 2672 oia.addr16[1], ia->addr16[1], 0); 2673 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2674 oia.addr16[0], ia->addr16[0], 0), 2675 oia.addr16[1], ia->addr16[1], 0); 2676 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2677 break; 2678 } 2679 #endif /* INET */ 2680 #ifdef INET6 2681 case AF_INET6: 2682 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2683 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2684 pf_cksum_fixup(pf_cksum_fixup(*ic, 2685 oia.addr16[0], ia->addr16[0], u), 2686 oia.addr16[1], ia->addr16[1], u), 2687 oia.addr16[2], ia->addr16[2], u), 2688 oia.addr16[3], ia->addr16[3], u), 2689 oia.addr16[4], ia->addr16[4], u), 2690 oia.addr16[5], ia->addr16[5], u), 2691 oia.addr16[6], ia->addr16[6], u), 2692 oia.addr16[7], ia->addr16[7], u); 2693 break; 2694 #endif /* INET6 */ 2695 } 2696 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2697 if (oa) { 2698 PF_ACPY(oa, na, af); 2699 switch (af) { 2700 #ifdef INET 2701 case AF_INET: 2702 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2703 ooa.addr16[0], oa->addr16[0], 0), 2704 ooa.addr16[1], oa->addr16[1], 0); 2705 break; 2706 #endif /* INET */ 2707 #ifdef INET6 2708 case AF_INET6: 2709 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2710 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2711 pf_cksum_fixup(pf_cksum_fixup(*ic, 2712 ooa.addr16[0], oa->addr16[0], u), 2713 ooa.addr16[1], oa->addr16[1], u), 2714 ooa.addr16[2], oa->addr16[2], u), 2715 ooa.addr16[3], oa->addr16[3], u), 2716 ooa.addr16[4], oa->addr16[4], u), 2717 ooa.addr16[5], oa->addr16[5], u), 2718 ooa.addr16[6], oa->addr16[6], u), 2719 ooa.addr16[7], oa->addr16[7], u); 2720 break; 2721 #endif /* INET6 */ 2722 } 2723 } 2724 } 2725 2726 /* 2727 * Need to modulate the sequence numbers in the TCP SACK option 2728 * (credits to Krzysztof Pfaff for report and patch) 2729 */ 2730 static int 2731 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2732 struct tcphdr *th, struct pf_state_peer *dst) 2733 { 2734 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2735 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2736 int copyback = 0, i, olen; 2737 struct sackblk sack; 2738 2739 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2740 if (hlen < TCPOLEN_SACKLEN || 2741 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2742 return 0; 2743 2744 while (hlen >= TCPOLEN_SACKLEN) { 2745 size_t startoff = opt - opts; 2746 olen = opt[1]; 2747 switch (*opt) { 2748 case TCPOPT_EOL: /* FALLTHROUGH */ 2749 case TCPOPT_NOP: 2750 opt++; 2751 hlen--; 2752 break; 2753 case TCPOPT_SACK: 2754 if (olen > hlen) 2755 olen = hlen; 2756 if (olen >= TCPOLEN_SACKLEN) { 2757 for (i = 2; i + TCPOLEN_SACK <= olen; 2758 i += TCPOLEN_SACK) { 2759 memcpy(&sack, &opt[i], sizeof(sack)); 2760 pf_patch_32_unaligned(m, 2761 &th->th_sum, &sack.start, 2762 htonl(ntohl(sack.start) - dst->seqdiff), 2763 PF_ALGNMNT(startoff), 2764 0); 2765 pf_patch_32_unaligned(m, &th->th_sum, 2766 &sack.end, 2767 htonl(ntohl(sack.end) - dst->seqdiff), 2768 PF_ALGNMNT(startoff), 2769 0); 2770 memcpy(&opt[i], &sack, sizeof(sack)); 2771 } 2772 copyback = 1; 2773 } 2774 /* FALLTHROUGH */ 2775 default: 2776 if (olen < 2) 2777 olen = 2; 2778 hlen -= olen; 2779 opt += olen; 2780 } 2781 } 2782 2783 if (copyback) 2784 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2785 return (copyback); 2786 } 2787 2788 struct mbuf * 2789 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2790 const struct pf_addr *saddr, const struct pf_addr *daddr, 2791 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2792 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2793 u_int16_t rtag, int rtableid) 2794 { 2795 struct mbuf *m; 2796 int len, tlen; 2797 #ifdef INET 2798 struct ip *h = NULL; 2799 #endif /* INET */ 2800 #ifdef INET6 2801 struct ip6_hdr *h6 = NULL; 2802 #endif /* INET6 */ 2803 struct tcphdr *th; 2804 char *opt; 2805 struct pf_mtag *pf_mtag; 2806 2807 len = 0; 2808 th = NULL; 2809 2810 /* maximum segment size tcp option */ 2811 tlen = sizeof(struct tcphdr); 2812 if (mss) 2813 tlen += 4; 2814 2815 switch (af) { 2816 #ifdef INET 2817 case AF_INET: 2818 len = sizeof(struct ip) + tlen; 2819 break; 2820 #endif /* INET */ 2821 #ifdef INET6 2822 case AF_INET6: 2823 len = sizeof(struct ip6_hdr) + tlen; 2824 break; 2825 #endif /* INET6 */ 2826 default: 2827 panic("%s: unsupported af %d", __func__, af); 2828 } 2829 2830 m = m_gethdr(M_NOWAIT, MT_DATA); 2831 if (m == NULL) 2832 return (NULL); 2833 2834 #ifdef MAC 2835 mac_netinet_firewall_send(m); 2836 #endif 2837 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2838 m_freem(m); 2839 return (NULL); 2840 } 2841 if (tag) 2842 m->m_flags |= M_SKIP_FIREWALL; 2843 pf_mtag->tag = rtag; 2844 2845 if (rtableid >= 0) 2846 M_SETFIB(m, rtableid); 2847 2848 #ifdef ALTQ 2849 if (r != NULL && r->qid) { 2850 pf_mtag->qid = r->qid; 2851 2852 /* add hints for ecn */ 2853 pf_mtag->hdr = mtod(m, struct ip *); 2854 } 2855 #endif /* ALTQ */ 2856 m->m_data += max_linkhdr; 2857 m->m_pkthdr.len = m->m_len = len; 2858 /* The rest of the stack assumes a rcvif, so provide one. 2859 * This is a locally generated packet, so .. close enough. */ 2860 m->m_pkthdr.rcvif = V_loif; 2861 bzero(m->m_data, len); 2862 switch (af) { 2863 #ifdef INET 2864 case AF_INET: 2865 h = mtod(m, struct ip *); 2866 2867 /* IP header fields included in the TCP checksum */ 2868 h->ip_p = IPPROTO_TCP; 2869 h->ip_len = htons(tlen); 2870 h->ip_src.s_addr = saddr->v4.s_addr; 2871 h->ip_dst.s_addr = daddr->v4.s_addr; 2872 2873 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2874 break; 2875 #endif /* INET */ 2876 #ifdef INET6 2877 case AF_INET6: 2878 h6 = mtod(m, struct ip6_hdr *); 2879 2880 /* IP header fields included in the TCP checksum */ 2881 h6->ip6_nxt = IPPROTO_TCP; 2882 h6->ip6_plen = htons(tlen); 2883 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2884 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2885 2886 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2887 break; 2888 #endif /* INET6 */ 2889 } 2890 2891 /* TCP header */ 2892 th->th_sport = sport; 2893 th->th_dport = dport; 2894 th->th_seq = htonl(seq); 2895 th->th_ack = htonl(ack); 2896 th->th_off = tlen >> 2; 2897 th->th_flags = flags; 2898 th->th_win = htons(win); 2899 2900 if (mss) { 2901 opt = (char *)(th + 1); 2902 opt[0] = TCPOPT_MAXSEG; 2903 opt[1] = 4; 2904 HTONS(mss); 2905 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2906 } 2907 2908 switch (af) { 2909 #ifdef INET 2910 case AF_INET: 2911 /* TCP checksum */ 2912 th->th_sum = in_cksum(m, len); 2913 2914 /* Finish the IP header */ 2915 h->ip_v = 4; 2916 h->ip_hl = sizeof(*h) >> 2; 2917 h->ip_tos = IPTOS_LOWDELAY; 2918 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2919 h->ip_len = htons(len); 2920 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2921 h->ip_sum = 0; 2922 break; 2923 #endif /* INET */ 2924 #ifdef INET6 2925 case AF_INET6: 2926 /* TCP checksum */ 2927 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2928 sizeof(struct ip6_hdr), tlen); 2929 2930 h6->ip6_vfc |= IPV6_VERSION; 2931 h6->ip6_hlim = IPV6_DEFHLIM; 2932 break; 2933 #endif /* INET6 */ 2934 } 2935 2936 return (m); 2937 } 2938 2939 void 2940 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2941 const struct pf_addr *saddr, const struct pf_addr *daddr, 2942 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2943 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2944 u_int16_t rtag, int rtableid) 2945 { 2946 struct pf_send_entry *pfse; 2947 struct mbuf *m; 2948 2949 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2950 win, mss, ttl, tag, rtag, rtableid); 2951 if (m == NULL) 2952 return; 2953 2954 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2955 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2956 if (pfse == NULL) { 2957 m_freem(m); 2958 return; 2959 } 2960 2961 switch (af) { 2962 #ifdef INET 2963 case AF_INET: 2964 pfse->pfse_type = PFSE_IP; 2965 break; 2966 #endif /* INET */ 2967 #ifdef INET6 2968 case AF_INET6: 2969 pfse->pfse_type = PFSE_IP6; 2970 break; 2971 #endif /* INET6 */ 2972 } 2973 2974 pfse->pfse_m = m; 2975 pf_send(pfse); 2976 } 2977 2978 static void 2979 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2980 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2981 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2982 u_short *reason, int rtableid) 2983 { 2984 struct pf_addr * const saddr = pd->src; 2985 struct pf_addr * const daddr = pd->dst; 2986 sa_family_t af = pd->af; 2987 2988 /* undo NAT changes, if they have taken place */ 2989 if (nr != NULL) { 2990 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2991 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2992 if (pd->sport) 2993 *pd->sport = sk->port[pd->sidx]; 2994 if (pd->dport) 2995 *pd->dport = sk->port[pd->didx]; 2996 if (pd->proto_sum) 2997 *pd->proto_sum = bproto_sum; 2998 if (pd->ip_sum) 2999 *pd->ip_sum = bip_sum; 3000 m_copyback(m, off, hdrlen, pd->hdr.any); 3001 } 3002 if (pd->proto == IPPROTO_TCP && 3003 ((r->rule_flag & PFRULE_RETURNRST) || 3004 (r->rule_flag & PFRULE_RETURN)) && 3005 !(th->th_flags & TH_RST)) { 3006 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3007 int len = 0; 3008 #ifdef INET 3009 struct ip *h4; 3010 #endif 3011 #ifdef INET6 3012 struct ip6_hdr *h6; 3013 #endif 3014 3015 switch (af) { 3016 #ifdef INET 3017 case AF_INET: 3018 h4 = mtod(m, struct ip *); 3019 len = ntohs(h4->ip_len) - off; 3020 break; 3021 #endif 3022 #ifdef INET6 3023 case AF_INET6: 3024 h6 = mtod(m, struct ip6_hdr *); 3025 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3026 break; 3027 #endif 3028 } 3029 3030 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3031 REASON_SET(reason, PFRES_PROTCKSUM); 3032 else { 3033 if (th->th_flags & TH_SYN) 3034 ack++; 3035 if (th->th_flags & TH_FIN) 3036 ack++; 3037 pf_send_tcp(r, af, pd->dst, 3038 pd->src, th->th_dport, th->th_sport, 3039 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3040 r->return_ttl, 1, 0, rtableid); 3041 } 3042 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3043 r->return_icmp) 3044 pf_send_icmp(m, r->return_icmp >> 8, 3045 r->return_icmp & 255, af, r, rtableid); 3046 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3047 r->return_icmp6) 3048 pf_send_icmp(m, r->return_icmp6 >> 8, 3049 r->return_icmp6 & 255, af, r, rtableid); 3050 } 3051 3052 static int 3053 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3054 { 3055 struct m_tag *mtag; 3056 u_int8_t mpcp; 3057 3058 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3059 if (mtag == NULL) 3060 return (0); 3061 3062 if (prio == PF_PRIO_ZERO) 3063 prio = 0; 3064 3065 mpcp = *(uint8_t *)(mtag + 1); 3066 3067 return (mpcp == prio); 3068 } 3069 3070 static int 3071 pf_icmp_to_bandlim(uint8_t type) 3072 { 3073 switch (type) { 3074 case ICMP_ECHO: 3075 case ICMP_ECHOREPLY: 3076 return (BANDLIM_ICMP_ECHO); 3077 case ICMP_TSTAMP: 3078 case ICMP_TSTAMPREPLY: 3079 return (BANDLIM_ICMP_TSTAMP); 3080 case ICMP_UNREACH: 3081 default: 3082 return (BANDLIM_ICMP_UNREACH); 3083 } 3084 } 3085 3086 static void 3087 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3088 struct pf_krule *r, int rtableid) 3089 { 3090 struct pf_send_entry *pfse; 3091 struct mbuf *m0; 3092 struct pf_mtag *pf_mtag; 3093 3094 /* ICMP packet rate limitation. */ 3095 #ifdef INET6 3096 if (af == AF_INET6) { 3097 if (icmp6_ratelimit(NULL, type, code)) 3098 return; 3099 } 3100 #endif 3101 #ifdef INET 3102 if (af == AF_INET) { 3103 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3104 return; 3105 } 3106 #endif 3107 3108 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3109 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3110 if (pfse == NULL) 3111 return; 3112 3113 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3114 free(pfse, M_PFTEMP); 3115 return; 3116 } 3117 3118 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3119 free(pfse, M_PFTEMP); 3120 return; 3121 } 3122 /* XXX: revisit */ 3123 m0->m_flags |= M_SKIP_FIREWALL; 3124 3125 if (rtableid >= 0) 3126 M_SETFIB(m0, rtableid); 3127 3128 #ifdef ALTQ 3129 if (r->qid) { 3130 pf_mtag->qid = r->qid; 3131 /* add hints for ecn */ 3132 pf_mtag->hdr = mtod(m0, struct ip *); 3133 } 3134 #endif /* ALTQ */ 3135 3136 switch (af) { 3137 #ifdef INET 3138 case AF_INET: 3139 pfse->pfse_type = PFSE_ICMP; 3140 break; 3141 #endif /* INET */ 3142 #ifdef INET6 3143 case AF_INET6: 3144 pfse->pfse_type = PFSE_ICMP6; 3145 break; 3146 #endif /* INET6 */ 3147 } 3148 pfse->pfse_m = m0; 3149 pfse->icmpopts.type = type; 3150 pfse->icmpopts.code = code; 3151 pf_send(pfse); 3152 } 3153 3154 /* 3155 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3156 * If n is 0, they match if they are equal. If n is != 0, they match if they 3157 * are different. 3158 */ 3159 int 3160 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3161 struct pf_addr *b, sa_family_t af) 3162 { 3163 int match = 0; 3164 3165 switch (af) { 3166 #ifdef INET 3167 case AF_INET: 3168 if ((a->addr32[0] & m->addr32[0]) == 3169 (b->addr32[0] & m->addr32[0])) 3170 match++; 3171 break; 3172 #endif /* INET */ 3173 #ifdef INET6 3174 case AF_INET6: 3175 if (((a->addr32[0] & m->addr32[0]) == 3176 (b->addr32[0] & m->addr32[0])) && 3177 ((a->addr32[1] & m->addr32[1]) == 3178 (b->addr32[1] & m->addr32[1])) && 3179 ((a->addr32[2] & m->addr32[2]) == 3180 (b->addr32[2] & m->addr32[2])) && 3181 ((a->addr32[3] & m->addr32[3]) == 3182 (b->addr32[3] & m->addr32[3]))) 3183 match++; 3184 break; 3185 #endif /* INET6 */ 3186 } 3187 if (match) { 3188 if (n) 3189 return (0); 3190 else 3191 return (1); 3192 } else { 3193 if (n) 3194 return (1); 3195 else 3196 return (0); 3197 } 3198 } 3199 3200 /* 3201 * Return 1 if b <= a <= e, otherwise return 0. 3202 */ 3203 int 3204 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3205 struct pf_addr *a, sa_family_t af) 3206 { 3207 switch (af) { 3208 #ifdef INET 3209 case AF_INET: 3210 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3211 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3212 return (0); 3213 break; 3214 #endif /* INET */ 3215 #ifdef INET6 3216 case AF_INET6: { 3217 int i; 3218 3219 /* check a >= b */ 3220 for (i = 0; i < 4; ++i) 3221 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3222 break; 3223 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3224 return (0); 3225 /* check a <= e */ 3226 for (i = 0; i < 4; ++i) 3227 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3228 break; 3229 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3230 return (0); 3231 break; 3232 } 3233 #endif /* INET6 */ 3234 } 3235 return (1); 3236 } 3237 3238 static int 3239 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3240 { 3241 switch (op) { 3242 case PF_OP_IRG: 3243 return ((p > a1) && (p < a2)); 3244 case PF_OP_XRG: 3245 return ((p < a1) || (p > a2)); 3246 case PF_OP_RRG: 3247 return ((p >= a1) && (p <= a2)); 3248 case PF_OP_EQ: 3249 return (p == a1); 3250 case PF_OP_NE: 3251 return (p != a1); 3252 case PF_OP_LT: 3253 return (p < a1); 3254 case PF_OP_LE: 3255 return (p <= a1); 3256 case PF_OP_GT: 3257 return (p > a1); 3258 case PF_OP_GE: 3259 return (p >= a1); 3260 } 3261 return (0); /* never reached */ 3262 } 3263 3264 int 3265 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3266 { 3267 NTOHS(a1); 3268 NTOHS(a2); 3269 NTOHS(p); 3270 return (pf_match(op, a1, a2, p)); 3271 } 3272 3273 static int 3274 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3275 { 3276 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3277 return (0); 3278 return (pf_match(op, a1, a2, u)); 3279 } 3280 3281 static int 3282 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3283 { 3284 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3285 return (0); 3286 return (pf_match(op, a1, a2, g)); 3287 } 3288 3289 int 3290 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3291 { 3292 if (*tag == -1) 3293 *tag = mtag; 3294 3295 return ((!r->match_tag_not && r->match_tag == *tag) || 3296 (r->match_tag_not && r->match_tag != *tag)); 3297 } 3298 3299 int 3300 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3301 { 3302 3303 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3304 3305 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3306 return (ENOMEM); 3307 3308 pd->pf_mtag->tag = tag; 3309 3310 return (0); 3311 } 3312 3313 #define PF_ANCHOR_STACKSIZE 32 3314 struct pf_kanchor_stackframe { 3315 struct pf_kruleset *rs; 3316 struct pf_krule *r; /* XXX: + match bit */ 3317 struct pf_kanchor *child; 3318 }; 3319 3320 /* 3321 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3322 */ 3323 #define PF_ANCHORSTACK_MATCH 0x00000001 3324 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3325 3326 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3327 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3328 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3329 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3330 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3331 } while (0) 3332 3333 void 3334 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3335 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3336 int *match) 3337 { 3338 struct pf_kanchor_stackframe *f; 3339 3340 PF_RULES_RASSERT(); 3341 3342 if (match) 3343 *match = 0; 3344 if (*depth >= PF_ANCHOR_STACKSIZE) { 3345 printf("%s: anchor stack overflow on %s\n", 3346 __func__, (*r)->anchor->name); 3347 *r = TAILQ_NEXT(*r, entries); 3348 return; 3349 } else if (*depth == 0 && a != NULL) 3350 *a = *r; 3351 f = stack + (*depth)++; 3352 f->rs = *rs; 3353 f->r = *r; 3354 if ((*r)->anchor_wildcard) { 3355 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3356 3357 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3358 *r = NULL; 3359 return; 3360 } 3361 *rs = &f->child->ruleset; 3362 } else { 3363 f->child = NULL; 3364 *rs = &(*r)->anchor->ruleset; 3365 } 3366 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3367 } 3368 3369 int 3370 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3371 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3372 int *match) 3373 { 3374 struct pf_kanchor_stackframe *f; 3375 struct pf_krule *fr; 3376 int quick = 0; 3377 3378 PF_RULES_RASSERT(); 3379 3380 do { 3381 if (*depth <= 0) 3382 break; 3383 f = stack + *depth - 1; 3384 fr = PF_ANCHOR_RULE(f); 3385 if (f->child != NULL) { 3386 /* 3387 * This block traverses through 3388 * a wildcard anchor. 3389 */ 3390 if (match != NULL && *match) { 3391 /* 3392 * If any of "*" matched, then 3393 * "foo/ *" matched, mark frame 3394 * appropriately. 3395 */ 3396 PF_ANCHOR_SET_MATCH(f); 3397 *match = 0; 3398 } 3399 f->child = RB_NEXT(pf_kanchor_node, 3400 &fr->anchor->children, f->child); 3401 if (f->child != NULL) { 3402 *rs = &f->child->ruleset; 3403 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3404 if (*r == NULL) 3405 continue; 3406 else 3407 break; 3408 } 3409 } 3410 (*depth)--; 3411 if (*depth == 0 && a != NULL) 3412 *a = NULL; 3413 *rs = f->rs; 3414 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3415 quick = fr->quick; 3416 *r = TAILQ_NEXT(fr, entries); 3417 } while (*r == NULL); 3418 3419 return (quick); 3420 } 3421 3422 struct pf_keth_anchor_stackframe { 3423 struct pf_keth_ruleset *rs; 3424 struct pf_keth_rule *r; /* XXX: + match bit */ 3425 struct pf_keth_anchor *child; 3426 }; 3427 3428 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3429 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3430 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3431 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3432 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3433 } while (0) 3434 3435 void 3436 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3437 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3438 struct pf_keth_rule **a, int *match) 3439 { 3440 struct pf_keth_anchor_stackframe *f; 3441 3442 NET_EPOCH_ASSERT(); 3443 3444 if (match) 3445 *match = 0; 3446 if (*depth >= PF_ANCHOR_STACKSIZE) { 3447 printf("%s: anchor stack overflow on %s\n", 3448 __func__, (*r)->anchor->name); 3449 *r = TAILQ_NEXT(*r, entries); 3450 return; 3451 } else if (*depth == 0 && a != NULL) 3452 *a = *r; 3453 f = stack + (*depth)++; 3454 f->rs = *rs; 3455 f->r = *r; 3456 if ((*r)->anchor_wildcard) { 3457 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3458 3459 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3460 *r = NULL; 3461 return; 3462 } 3463 *rs = &f->child->ruleset; 3464 } else { 3465 f->child = NULL; 3466 *rs = &(*r)->anchor->ruleset; 3467 } 3468 *r = TAILQ_FIRST((*rs)->active.rules); 3469 } 3470 3471 int 3472 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3473 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3474 struct pf_keth_rule **a, int *match) 3475 { 3476 struct pf_keth_anchor_stackframe *f; 3477 struct pf_keth_rule *fr; 3478 int quick = 0; 3479 3480 NET_EPOCH_ASSERT(); 3481 3482 do { 3483 if (*depth <= 0) 3484 break; 3485 f = stack + *depth - 1; 3486 fr = PF_ETH_ANCHOR_RULE(f); 3487 if (f->child != NULL) { 3488 /* 3489 * This block traverses through 3490 * a wildcard anchor. 3491 */ 3492 if (match != NULL && *match) { 3493 /* 3494 * If any of "*" matched, then 3495 * "foo/ *" matched, mark frame 3496 * appropriately. 3497 */ 3498 PF_ETH_ANCHOR_SET_MATCH(f); 3499 *match = 0; 3500 } 3501 f->child = RB_NEXT(pf_keth_anchor_node, 3502 &fr->anchor->children, f->child); 3503 if (f->child != NULL) { 3504 *rs = &f->child->ruleset; 3505 *r = TAILQ_FIRST((*rs)->active.rules); 3506 if (*r == NULL) 3507 continue; 3508 else 3509 break; 3510 } 3511 } 3512 (*depth)--; 3513 if (*depth == 0 && a != NULL) 3514 *a = NULL; 3515 *rs = f->rs; 3516 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3517 quick = fr->quick; 3518 *r = TAILQ_NEXT(fr, entries); 3519 } while (*r == NULL); 3520 3521 return (quick); 3522 } 3523 3524 #ifdef INET6 3525 void 3526 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3527 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3528 { 3529 switch (af) { 3530 #ifdef INET 3531 case AF_INET: 3532 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3533 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3534 break; 3535 #endif /* INET */ 3536 case AF_INET6: 3537 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3538 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3539 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3540 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3541 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3542 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3543 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3544 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3545 break; 3546 } 3547 } 3548 3549 void 3550 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3551 { 3552 switch (af) { 3553 #ifdef INET 3554 case AF_INET: 3555 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3556 break; 3557 #endif /* INET */ 3558 case AF_INET6: 3559 if (addr->addr32[3] == 0xffffffff) { 3560 addr->addr32[3] = 0; 3561 if (addr->addr32[2] == 0xffffffff) { 3562 addr->addr32[2] = 0; 3563 if (addr->addr32[1] == 0xffffffff) { 3564 addr->addr32[1] = 0; 3565 addr->addr32[0] = 3566 htonl(ntohl(addr->addr32[0]) + 1); 3567 } else 3568 addr->addr32[1] = 3569 htonl(ntohl(addr->addr32[1]) + 1); 3570 } else 3571 addr->addr32[2] = 3572 htonl(ntohl(addr->addr32[2]) + 1); 3573 } else 3574 addr->addr32[3] = 3575 htonl(ntohl(addr->addr32[3]) + 1); 3576 break; 3577 } 3578 } 3579 #endif /* INET6 */ 3580 3581 void 3582 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3583 { 3584 if (r->qid) 3585 a->qid = r->qid; 3586 if (r->pqid) 3587 a->pqid = r->pqid; 3588 if (r->rtableid >= 0) 3589 a->rtableid = r->rtableid; 3590 a->log |= r->log; 3591 if (r->scrub_flags & PFSTATE_SETTOS) 3592 a->set_tos = r->set_tos; 3593 if (r->min_ttl) 3594 a->min_ttl = r->min_ttl; 3595 if (r->max_mss) 3596 a->max_mss = r->max_mss; 3597 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3598 PFSTATE_SETTOS|PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3599 if (r->dnpipe) 3600 a->dnpipe = r->dnpipe; 3601 if (r->dnrpipe) 3602 a->dnrpipe = r->dnrpipe; 3603 if (r->dnpipe || r->dnrpipe) { 3604 if (r->free_flags & PFRULE_DN_IS_PIPE) 3605 a->flags |= PFSTATE_DN_IS_PIPE; 3606 else 3607 a->flags &= ~PFSTATE_DN_IS_PIPE; 3608 } 3609 } 3610 3611 int 3612 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3613 { 3614 struct pf_addr *saddr, *daddr; 3615 u_int16_t sport, dport; 3616 struct inpcbinfo *pi; 3617 struct inpcb *inp; 3618 3619 pd->lookup.uid = UID_MAX; 3620 pd->lookup.gid = GID_MAX; 3621 3622 switch (pd->proto) { 3623 case IPPROTO_TCP: 3624 sport = pd->hdr.tcp.th_sport; 3625 dport = pd->hdr.tcp.th_dport; 3626 pi = &V_tcbinfo; 3627 break; 3628 case IPPROTO_UDP: 3629 sport = pd->hdr.udp.uh_sport; 3630 dport = pd->hdr.udp.uh_dport; 3631 pi = &V_udbinfo; 3632 break; 3633 default: 3634 return (-1); 3635 } 3636 if (direction == PF_IN) { 3637 saddr = pd->src; 3638 daddr = pd->dst; 3639 } else { 3640 u_int16_t p; 3641 3642 p = sport; 3643 sport = dport; 3644 dport = p; 3645 saddr = pd->dst; 3646 daddr = pd->src; 3647 } 3648 switch (pd->af) { 3649 #ifdef INET 3650 case AF_INET: 3651 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3652 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3653 if (inp == NULL) { 3654 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3655 daddr->v4, dport, INPLOOKUP_WILDCARD | 3656 INPLOOKUP_RLOCKPCB, NULL, m); 3657 if (inp == NULL) 3658 return (-1); 3659 } 3660 break; 3661 #endif /* INET */ 3662 #ifdef INET6 3663 case AF_INET6: 3664 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3665 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3666 if (inp == NULL) { 3667 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3668 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3669 INPLOOKUP_RLOCKPCB, NULL, m); 3670 if (inp == NULL) 3671 return (-1); 3672 } 3673 break; 3674 #endif /* INET6 */ 3675 3676 default: 3677 return (-1); 3678 } 3679 INP_RLOCK_ASSERT(inp); 3680 pd->lookup.uid = inp->inp_cred->cr_uid; 3681 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3682 INP_RUNLOCK(inp); 3683 3684 return (1); 3685 } 3686 3687 u_int8_t 3688 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3689 { 3690 int hlen; 3691 u_int8_t hdr[60]; 3692 u_int8_t *opt, optlen; 3693 u_int8_t wscale = 0; 3694 3695 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3696 if (hlen <= sizeof(struct tcphdr)) 3697 return (0); 3698 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3699 return (0); 3700 opt = hdr + sizeof(struct tcphdr); 3701 hlen -= sizeof(struct tcphdr); 3702 while (hlen >= 3) { 3703 switch (*opt) { 3704 case TCPOPT_EOL: 3705 case TCPOPT_NOP: 3706 ++opt; 3707 --hlen; 3708 break; 3709 case TCPOPT_WINDOW: 3710 wscale = opt[2]; 3711 if (wscale > TCP_MAX_WINSHIFT) 3712 wscale = TCP_MAX_WINSHIFT; 3713 wscale |= PF_WSCALE_FLAG; 3714 /* FALLTHROUGH */ 3715 default: 3716 optlen = opt[1]; 3717 if (optlen < 2) 3718 optlen = 2; 3719 hlen -= optlen; 3720 opt += optlen; 3721 break; 3722 } 3723 } 3724 return (wscale); 3725 } 3726 3727 u_int16_t 3728 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3729 { 3730 int hlen; 3731 u_int8_t hdr[60]; 3732 u_int8_t *opt, optlen; 3733 u_int16_t mss = V_tcp_mssdflt; 3734 3735 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3736 if (hlen <= sizeof(struct tcphdr)) 3737 return (0); 3738 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3739 return (0); 3740 opt = hdr + sizeof(struct tcphdr); 3741 hlen -= sizeof(struct tcphdr); 3742 while (hlen >= TCPOLEN_MAXSEG) { 3743 switch (*opt) { 3744 case TCPOPT_EOL: 3745 case TCPOPT_NOP: 3746 ++opt; 3747 --hlen; 3748 break; 3749 case TCPOPT_MAXSEG: 3750 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3751 NTOHS(mss); 3752 /* FALLTHROUGH */ 3753 default: 3754 optlen = opt[1]; 3755 if (optlen < 2) 3756 optlen = 2; 3757 hlen -= optlen; 3758 opt += optlen; 3759 break; 3760 } 3761 } 3762 return (mss); 3763 } 3764 3765 static u_int16_t 3766 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3767 { 3768 struct nhop_object *nh; 3769 #ifdef INET6 3770 struct in6_addr dst6; 3771 uint32_t scopeid; 3772 #endif /* INET6 */ 3773 int hlen = 0; 3774 uint16_t mss = 0; 3775 3776 NET_EPOCH_ASSERT(); 3777 3778 switch (af) { 3779 #ifdef INET 3780 case AF_INET: 3781 hlen = sizeof(struct ip); 3782 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3783 if (nh != NULL) 3784 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3785 break; 3786 #endif /* INET */ 3787 #ifdef INET6 3788 case AF_INET6: 3789 hlen = sizeof(struct ip6_hdr); 3790 in6_splitscope(&addr->v6, &dst6, &scopeid); 3791 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3792 if (nh != NULL) 3793 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3794 break; 3795 #endif /* INET6 */ 3796 } 3797 3798 mss = max(V_tcp_mssdflt, mss); 3799 mss = min(mss, offer); 3800 mss = max(mss, 64); /* sanity - at least max opt space */ 3801 return (mss); 3802 } 3803 3804 static u_int32_t 3805 pf_tcp_iss(struct pf_pdesc *pd) 3806 { 3807 MD5_CTX ctx; 3808 u_int32_t digest[4]; 3809 3810 if (V_pf_tcp_secret_init == 0) { 3811 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3812 MD5Init(&V_pf_tcp_secret_ctx); 3813 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3814 sizeof(V_pf_tcp_secret)); 3815 V_pf_tcp_secret_init = 1; 3816 } 3817 3818 ctx = V_pf_tcp_secret_ctx; 3819 3820 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3821 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3822 if (pd->af == AF_INET6) { 3823 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3824 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3825 } else { 3826 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3827 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3828 } 3829 MD5Final((u_char *)digest, &ctx); 3830 V_pf_tcp_iss_off += 4096; 3831 #define ISN_RANDOM_INCREMENT (4096 - 1) 3832 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3833 V_pf_tcp_iss_off); 3834 #undef ISN_RANDOM_INCREMENT 3835 } 3836 3837 static bool 3838 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 3839 { 3840 bool match = true; 3841 3842 /* Always matches if not set */ 3843 if (! r->isset) 3844 return (!r->neg); 3845 3846 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 3847 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 3848 match = false; 3849 break; 3850 } 3851 } 3852 3853 return (match ^ r->neg); 3854 } 3855 3856 static int 3857 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 3858 { 3859 if (*tag == -1) 3860 *tag = mtag; 3861 3862 return ((!r->match_tag_not && r->match_tag == *tag) || 3863 (r->match_tag_not && r->match_tag != *tag)); 3864 } 3865 3866 static void 3867 pf_bridge_to(struct pfi_kkif *kif, struct mbuf *m) 3868 { 3869 struct ifnet *ifp = kif->pfik_ifp; 3870 3871 /* If we don't have the interface drop the packet. */ 3872 if (ifp == NULL) { 3873 m_freem(m); 3874 return; 3875 } 3876 3877 switch (ifp->if_type) { 3878 case IFT_ETHER: 3879 case IFT_XETHER: 3880 case IFT_L2VLAN: 3881 case IFT_BRIDGE: 3882 case IFT_IEEE8023ADLAG: 3883 break; 3884 default: 3885 m_freem(m); 3886 return; 3887 } 3888 3889 kif->pfik_ifp->if_transmit(kif->pfik_ifp, m); 3890 } 3891 3892 static int 3893 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 3894 { 3895 #ifdef INET 3896 struct ip ip; 3897 #endif 3898 #ifdef INET6 3899 struct ip6_hdr ip6; 3900 #endif 3901 struct mbuf *m = *m0; 3902 struct ether_header *e; 3903 struct pf_keth_rule *r, *rm, *a = NULL; 3904 struct pf_keth_ruleset *ruleset = NULL; 3905 struct pf_mtag *mtag; 3906 struct pf_keth_ruleq *rules; 3907 struct pf_addr *src = NULL, *dst = NULL; 3908 sa_family_t af = 0; 3909 uint16_t proto; 3910 int asd = 0, match = 0; 3911 int tag = -1; 3912 uint8_t action; 3913 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3914 3915 MPASS(kif->pfik_ifp->if_vnet == curvnet); 3916 NET_EPOCH_ASSERT(); 3917 3918 PF_RULES_RLOCK_TRACKER; 3919 3920 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 3921 3922 mtag = pf_find_mtag(m); 3923 if (mtag != NULL && mtag->flags & PF_TAG_DUMMYNET) { 3924 /* Dummynet re-injects packets after they've 3925 * completed their delay. We've already 3926 * processed them, so pass unconditionally. */ 3927 3928 /* But only once. We may see the packet multiple times (e.g. 3929 * PFIL_IN/PFIL_OUT). */ 3930 mtag->flags &= ~PF_TAG_DUMMYNET; 3931 3932 return (PF_PASS); 3933 } 3934 3935 ruleset = V_pf_keth; 3936 rules = ck_pr_load_ptr(&ruleset->active.rules); 3937 r = TAILQ_FIRST(rules); 3938 rm = NULL; 3939 3940 e = mtod(m, struct ether_header *); 3941 proto = ntohs(e->ether_type); 3942 3943 switch (proto) { 3944 #ifdef INET 3945 case ETHERTYPE_IP: { 3946 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3947 sizeof(ip))) 3948 return (PF_DROP); 3949 3950 af = AF_INET; 3951 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 3952 (caddr_t)&ip); 3953 src = (struct pf_addr *)&ip.ip_src; 3954 dst = (struct pf_addr *)&ip.ip_dst; 3955 break; 3956 } 3957 #endif /* INET */ 3958 #ifdef INET6 3959 case ETHERTYPE_IPV6: { 3960 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3961 sizeof(ip6))) 3962 return (PF_DROP); 3963 3964 af = AF_INET6; 3965 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 3966 (caddr_t)&ip6); 3967 src = (struct pf_addr *)&ip6.ip6_src; 3968 dst = (struct pf_addr *)&ip6.ip6_dst; 3969 break; 3970 } 3971 #endif /* INET6 */ 3972 } 3973 3974 PF_RULES_RLOCK(); 3975 3976 while (r != NULL) { 3977 counter_u64_add(r->evaluations, 1); 3978 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 3979 3980 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 3981 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3982 "kif"); 3983 r = r->skip[PFE_SKIP_IFP].ptr; 3984 } 3985 else if (r->direction && r->direction != dir) { 3986 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3987 "dir"); 3988 r = r->skip[PFE_SKIP_DIR].ptr; 3989 } 3990 else if (r->proto && r->proto != proto) { 3991 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3992 "proto"); 3993 r = r->skip[PFE_SKIP_PROTO].ptr; 3994 } 3995 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 3996 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3997 "src"); 3998 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 3999 } 4000 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4001 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4002 "dst"); 4003 r = TAILQ_NEXT(r, entries); 4004 } 4005 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4006 r->ipsrc.neg, kif, M_GETFIB(m))) { 4007 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4008 "ip_src"); 4009 r = TAILQ_NEXT(r, entries); 4010 } 4011 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4012 r->ipdst.neg, kif, M_GETFIB(m))) { 4013 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4014 "ip_dst"); 4015 r = TAILQ_NEXT(r, entries); 4016 } 4017 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4018 mtag ? mtag->tag : 0)) { 4019 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4020 "match_tag"); 4021 r = TAILQ_NEXT(r, entries); 4022 } 4023 else { 4024 if (r->tag) 4025 tag = r->tag; 4026 if (r->anchor == NULL) { 4027 /* Rule matches */ 4028 rm = r; 4029 4030 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4031 4032 if (r->quick) 4033 break; 4034 4035 r = TAILQ_NEXT(r, entries); 4036 } else { 4037 pf_step_into_keth_anchor(anchor_stack, &asd, 4038 &ruleset, &r, &a, &match); 4039 } 4040 } 4041 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4042 &ruleset, &r, &a, &match)) 4043 break; 4044 } 4045 4046 r = rm; 4047 4048 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4049 4050 /* Default to pass. */ 4051 if (r == NULL) { 4052 PF_RULES_RUNLOCK(); 4053 return (PF_PASS); 4054 } 4055 4056 /* Execute action. */ 4057 counter_u64_add(r->packets[dir == PF_OUT], 1); 4058 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4059 pf_update_timestamp(r); 4060 4061 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4062 if (r->action == PF_DROP) { 4063 PF_RULES_RUNLOCK(); 4064 return (PF_DROP); 4065 } 4066 4067 if (tag > 0) { 4068 if (mtag == NULL) 4069 mtag = pf_get_mtag(m); 4070 if (mtag == NULL) { 4071 PF_RULES_RUNLOCK(); 4072 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4073 return (PF_DROP); 4074 } 4075 mtag->tag = tag; 4076 } 4077 4078 if (r->qid != 0) { 4079 if (mtag == NULL) 4080 mtag = pf_get_mtag(m); 4081 if (mtag == NULL) { 4082 PF_RULES_RUNLOCK(); 4083 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4084 return (PF_DROP); 4085 } 4086 mtag->qid = r->qid; 4087 } 4088 4089 /* Dummynet */ 4090 if (r->dnpipe) { 4091 struct ip_fw_args dnflow; 4092 4093 /* Drop packet if dummynet is not loaded. */ 4094 if (ip_dn_io_ptr == NULL) { 4095 PF_RULES_RUNLOCK(); 4096 m_freem(m); 4097 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4098 return (PF_DROP); 4099 } 4100 if (mtag == NULL) 4101 mtag = pf_get_mtag(m); 4102 if (mtag == NULL) { 4103 PF_RULES_RUNLOCK(); 4104 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4105 return (PF_DROP); 4106 } 4107 4108 bzero(&dnflow, sizeof(dnflow)); 4109 4110 /* We don't have port numbers here, so we set 0. That means 4111 * that we'll be somewhat limited in distinguishing flows (i.e. 4112 * only based on IP addresses, not based on port numbers), but 4113 * it's better than nothing. */ 4114 dnflow.f_id.dst_port = 0; 4115 dnflow.f_id.src_port = 0; 4116 dnflow.f_id.proto = 0; 4117 4118 dnflow.rule.info = r->dnpipe; 4119 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4120 if (r->dnflags & PFRULE_DN_IS_PIPE) 4121 dnflow.rule.info |= IPFW_IS_PIPE; 4122 4123 dnflow.f_id.extra = dnflow.rule.info; 4124 4125 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4126 dnflow.flags |= IPFW_ARGS_ETHER; 4127 dnflow.ifp = kif->pfik_ifp; 4128 4129 switch (af) { 4130 case AF_INET: 4131 dnflow.f_id.addr_type = 4; 4132 dnflow.f_id.src_ip = src->v4.s_addr; 4133 dnflow.f_id.dst_ip = dst->v4.s_addr; 4134 break; 4135 case AF_INET6: 4136 dnflow.flags |= IPFW_ARGS_IP6; 4137 dnflow.f_id.addr_type = 6; 4138 dnflow.f_id.src_ip6 = src->v6; 4139 dnflow.f_id.dst_ip6 = dst->v6; 4140 break; 4141 } 4142 4143 mtag->flags |= PF_TAG_DUMMYNET; 4144 ip_dn_io_ptr(m0, &dnflow); 4145 if (*m0 != NULL) 4146 mtag->flags &= ~PF_TAG_DUMMYNET; 4147 } 4148 4149 action = r->action; 4150 4151 if (action == PF_PASS && r->bridge_to) { 4152 pf_bridge_to(r->bridge_to, *m0); 4153 *m0 = NULL; /* We've eaten the packet. */ 4154 } 4155 4156 PF_RULES_RUNLOCK(); 4157 4158 return (action); 4159 } 4160 4161 static int 4162 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 4163 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 4164 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 4165 { 4166 struct pf_krule *nr = NULL; 4167 struct pf_addr * const saddr = pd->src; 4168 struct pf_addr * const daddr = pd->dst; 4169 sa_family_t af = pd->af; 4170 struct pf_krule *r, *a = NULL; 4171 struct pf_kruleset *ruleset = NULL; 4172 struct pf_krule_slist match_rules; 4173 struct pf_krule_item *ri; 4174 struct pf_ksrc_node *nsn = NULL; 4175 struct tcphdr *th = &pd->hdr.tcp; 4176 struct pf_state_key *sk = NULL, *nk = NULL; 4177 u_short reason; 4178 int rewrite = 0, hdrlen = 0; 4179 int tag = -1; 4180 int asd = 0; 4181 int match = 0; 4182 int state_icmp = 0; 4183 u_int16_t sport = 0, dport = 0; 4184 u_int16_t bproto_sum = 0, bip_sum = 0; 4185 u_int8_t icmptype = 0, icmpcode = 0; 4186 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4187 4188 PF_RULES_RASSERT(); 4189 4190 if (inp != NULL) { 4191 INP_LOCK_ASSERT(inp); 4192 pd->lookup.uid = inp->inp_cred->cr_uid; 4193 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4194 pd->lookup.done = 1; 4195 } 4196 4197 switch (pd->proto) { 4198 case IPPROTO_TCP: 4199 sport = th->th_sport; 4200 dport = th->th_dport; 4201 hdrlen = sizeof(*th); 4202 break; 4203 case IPPROTO_UDP: 4204 sport = pd->hdr.udp.uh_sport; 4205 dport = pd->hdr.udp.uh_dport; 4206 hdrlen = sizeof(pd->hdr.udp); 4207 break; 4208 #ifdef INET 4209 case IPPROTO_ICMP: 4210 if (pd->af != AF_INET) 4211 break; 4212 sport = dport = pd->hdr.icmp.icmp_id; 4213 hdrlen = sizeof(pd->hdr.icmp); 4214 icmptype = pd->hdr.icmp.icmp_type; 4215 icmpcode = pd->hdr.icmp.icmp_code; 4216 4217 if (icmptype == ICMP_UNREACH || 4218 icmptype == ICMP_SOURCEQUENCH || 4219 icmptype == ICMP_REDIRECT || 4220 icmptype == ICMP_TIMXCEED || 4221 icmptype == ICMP_PARAMPROB) 4222 state_icmp++; 4223 break; 4224 #endif /* INET */ 4225 #ifdef INET6 4226 case IPPROTO_ICMPV6: 4227 if (af != AF_INET6) 4228 break; 4229 sport = dport = pd->hdr.icmp6.icmp6_id; 4230 hdrlen = sizeof(pd->hdr.icmp6); 4231 icmptype = pd->hdr.icmp6.icmp6_type; 4232 icmpcode = pd->hdr.icmp6.icmp6_code; 4233 4234 if (icmptype == ICMP6_DST_UNREACH || 4235 icmptype == ICMP6_PACKET_TOO_BIG || 4236 icmptype == ICMP6_TIME_EXCEEDED || 4237 icmptype == ICMP6_PARAM_PROB) 4238 state_icmp++; 4239 break; 4240 #endif /* INET6 */ 4241 default: 4242 sport = dport = hdrlen = 0; 4243 break; 4244 } 4245 4246 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4247 4248 /* check packet for BINAT/NAT/RDR */ 4249 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 4250 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4251 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4252 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4253 4254 if (nr->log) { 4255 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 4256 ruleset, pd, 1); 4257 } 4258 4259 if (pd->ip_sum) 4260 bip_sum = *pd->ip_sum; 4261 4262 switch (pd->proto) { 4263 case IPPROTO_TCP: 4264 bproto_sum = th->th_sum; 4265 pd->proto_sum = &th->th_sum; 4266 4267 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4268 nk->port[pd->sidx] != sport) { 4269 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4270 &th->th_sum, &nk->addr[pd->sidx], 4271 nk->port[pd->sidx], 0, af); 4272 pd->sport = &th->th_sport; 4273 sport = th->th_sport; 4274 } 4275 4276 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4277 nk->port[pd->didx] != dport) { 4278 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4279 &th->th_sum, &nk->addr[pd->didx], 4280 nk->port[pd->didx], 0, af); 4281 dport = th->th_dport; 4282 pd->dport = &th->th_dport; 4283 } 4284 rewrite++; 4285 break; 4286 case IPPROTO_UDP: 4287 bproto_sum = pd->hdr.udp.uh_sum; 4288 pd->proto_sum = &pd->hdr.udp.uh_sum; 4289 4290 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4291 nk->port[pd->sidx] != sport) { 4292 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4293 pd->ip_sum, &pd->hdr.udp.uh_sum, 4294 &nk->addr[pd->sidx], 4295 nk->port[pd->sidx], 1, af); 4296 sport = pd->hdr.udp.uh_sport; 4297 pd->sport = &pd->hdr.udp.uh_sport; 4298 } 4299 4300 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4301 nk->port[pd->didx] != dport) { 4302 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4303 pd->ip_sum, &pd->hdr.udp.uh_sum, 4304 &nk->addr[pd->didx], 4305 nk->port[pd->didx], 1, af); 4306 dport = pd->hdr.udp.uh_dport; 4307 pd->dport = &pd->hdr.udp.uh_dport; 4308 } 4309 rewrite++; 4310 break; 4311 #ifdef INET 4312 case IPPROTO_ICMP: 4313 nk->port[0] = nk->port[1]; 4314 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4315 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4316 nk->addr[pd->sidx].v4.s_addr, 0); 4317 4318 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4319 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4320 nk->addr[pd->didx].v4.s_addr, 0); 4321 4322 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4323 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4324 pd->hdr.icmp.icmp_cksum, sport, 4325 nk->port[1], 0); 4326 pd->hdr.icmp.icmp_id = nk->port[1]; 4327 pd->sport = &pd->hdr.icmp.icmp_id; 4328 } 4329 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4330 break; 4331 #endif /* INET */ 4332 #ifdef INET6 4333 case IPPROTO_ICMPV6: 4334 nk->port[0] = nk->port[1]; 4335 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4336 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4337 &nk->addr[pd->sidx], 0); 4338 4339 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4340 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4341 &nk->addr[pd->didx], 0); 4342 rewrite++; 4343 break; 4344 #endif /* INET */ 4345 default: 4346 switch (af) { 4347 #ifdef INET 4348 case AF_INET: 4349 if (PF_ANEQ(saddr, 4350 &nk->addr[pd->sidx], AF_INET)) 4351 pf_change_a(&saddr->v4.s_addr, 4352 pd->ip_sum, 4353 nk->addr[pd->sidx].v4.s_addr, 0); 4354 4355 if (PF_ANEQ(daddr, 4356 &nk->addr[pd->didx], AF_INET)) 4357 pf_change_a(&daddr->v4.s_addr, 4358 pd->ip_sum, 4359 nk->addr[pd->didx].v4.s_addr, 0); 4360 break; 4361 #endif /* INET */ 4362 #ifdef INET6 4363 case AF_INET6: 4364 if (PF_ANEQ(saddr, 4365 &nk->addr[pd->sidx], AF_INET6)) 4366 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4367 4368 if (PF_ANEQ(daddr, 4369 &nk->addr[pd->didx], AF_INET6)) 4370 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4371 break; 4372 #endif /* INET */ 4373 } 4374 break; 4375 } 4376 if (nr->natpass) 4377 r = NULL; 4378 pd->nat_rule = nr; 4379 } 4380 4381 SLIST_INIT(&match_rules); 4382 while (r != NULL) { 4383 pf_counter_u64_add(&r->evaluations, 1); 4384 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4385 r = r->skip[PF_SKIP_IFP].ptr; 4386 else if (r->direction && r->direction != direction) 4387 r = r->skip[PF_SKIP_DIR].ptr; 4388 else if (r->af && r->af != af) 4389 r = r->skip[PF_SKIP_AF].ptr; 4390 else if (r->proto && r->proto != pd->proto) 4391 r = r->skip[PF_SKIP_PROTO].ptr; 4392 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4393 r->src.neg, kif, M_GETFIB(m))) 4394 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4395 /* tcp/udp only. port_op always 0 in other cases */ 4396 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4397 r->src.port[0], r->src.port[1], sport)) 4398 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4399 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4400 r->dst.neg, NULL, M_GETFIB(m))) 4401 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4402 /* tcp/udp only. port_op always 0 in other cases */ 4403 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4404 r->dst.port[0], r->dst.port[1], dport)) 4405 r = r->skip[PF_SKIP_DST_PORT].ptr; 4406 /* icmp only. type always 0 in other cases */ 4407 else if (r->type && r->type != icmptype + 1) 4408 r = TAILQ_NEXT(r, entries); 4409 /* icmp only. type always 0 in other cases */ 4410 else if (r->code && r->code != icmpcode + 1) 4411 r = TAILQ_NEXT(r, entries); 4412 else if (r->tos && !(r->tos == pd->tos)) 4413 r = TAILQ_NEXT(r, entries); 4414 else if (r->rule_flag & PFRULE_FRAGMENT) 4415 r = TAILQ_NEXT(r, entries); 4416 else if (pd->proto == IPPROTO_TCP && 4417 (r->flagset & th->th_flags) != r->flags) 4418 r = TAILQ_NEXT(r, entries); 4419 /* tcp/udp only. uid.op always 0 in other cases */ 4420 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4421 pf_socket_lookup(direction, pd, m), 1)) && 4422 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4423 pd->lookup.uid)) 4424 r = TAILQ_NEXT(r, entries); 4425 /* tcp/udp only. gid.op always 0 in other cases */ 4426 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4427 pf_socket_lookup(direction, pd, m), 1)) && 4428 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4429 pd->lookup.gid)) 4430 r = TAILQ_NEXT(r, entries); 4431 else if (r->prio && 4432 !pf_match_ieee8021q_pcp(r->prio, m)) 4433 r = TAILQ_NEXT(r, entries); 4434 else if (r->prob && 4435 r->prob <= arc4random()) 4436 r = TAILQ_NEXT(r, entries); 4437 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4438 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4439 r = TAILQ_NEXT(r, entries); 4440 else if (r->os_fingerprint != PF_OSFP_ANY && 4441 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4442 pf_osfp_fingerprint(pd, m, off, th), 4443 r->os_fingerprint))) 4444 r = TAILQ_NEXT(r, entries); 4445 else { 4446 if (r->tag) 4447 tag = r->tag; 4448 if (r->anchor == NULL) { 4449 if (r->action == PF_MATCH) { 4450 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4451 if (ri == NULL) { 4452 REASON_SET(&reason, PFRES_MEMORY); 4453 goto cleanup; 4454 } 4455 ri->r = r; 4456 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4457 pf_counter_u64_critical_enter(); 4458 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4459 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4460 pf_counter_u64_critical_exit(); 4461 pf_rule_to_actions(r, &pd->act); 4462 if (r->log) 4463 PFLOG_PACKET(kif, m, af, 4464 direction, PFRES_MATCH, r, 4465 a, ruleset, pd, 1); 4466 } else { 4467 match = 1; 4468 *rm = r; 4469 *am = a; 4470 *rsm = ruleset; 4471 } 4472 if ((*rm)->quick) 4473 break; 4474 r = TAILQ_NEXT(r, entries); 4475 } else 4476 pf_step_into_anchor(anchor_stack, &asd, 4477 &ruleset, PF_RULESET_FILTER, &r, &a, 4478 &match); 4479 } 4480 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4481 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4482 break; 4483 } 4484 r = *rm; 4485 a = *am; 4486 ruleset = *rsm; 4487 4488 REASON_SET(&reason, PFRES_MATCH); 4489 4490 /* apply actions for last matching pass/block rule */ 4491 pf_rule_to_actions(r, &pd->act); 4492 4493 if (r->log) { 4494 if (rewrite) 4495 m_copyback(m, off, hdrlen, pd->hdr.any); 4496 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4497 ruleset, pd, 1); 4498 } 4499 4500 if ((r->action == PF_DROP) && 4501 ((r->rule_flag & PFRULE_RETURNRST) || 4502 (r->rule_flag & PFRULE_RETURNICMP) || 4503 (r->rule_flag & PFRULE_RETURN))) { 4504 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4505 bip_sum, hdrlen, &reason, r->rtableid); 4506 } 4507 4508 if (r->action == PF_DROP) 4509 goto cleanup; 4510 4511 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4512 REASON_SET(&reason, PFRES_MEMORY); 4513 goto cleanup; 4514 } 4515 if (pd->act.rtableid >= 0) 4516 M_SETFIB(m, pd->act.rtableid); 4517 4518 if (!state_icmp && (r->keep_state || nr != NULL || 4519 (pd->flags & PFDESC_TCP_NORM))) { 4520 int action; 4521 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4522 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4523 hdrlen, &match_rules); 4524 if (action != PF_PASS) { 4525 if (action == PF_DROP && 4526 (r->rule_flag & PFRULE_RETURN)) 4527 pf_return(r, nr, pd, sk, off, m, th, kif, 4528 bproto_sum, bip_sum, hdrlen, &reason, 4529 pd->act.rtableid); 4530 return (action); 4531 } 4532 } else { 4533 if (sk != NULL) 4534 uma_zfree(V_pf_state_key_z, sk); 4535 if (nk != NULL) 4536 uma_zfree(V_pf_state_key_z, nk); 4537 } 4538 4539 /* copy back packet headers if we performed NAT operations */ 4540 if (rewrite) 4541 m_copyback(m, off, hdrlen, pd->hdr.any); 4542 4543 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4544 direction == PF_OUT && 4545 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4546 /* 4547 * We want the state created, but we dont 4548 * want to send this in case a partner 4549 * firewall has to know about it to allow 4550 * replies through it. 4551 */ 4552 return (PF_DEFER); 4553 4554 return (PF_PASS); 4555 4556 cleanup: 4557 while ((ri = SLIST_FIRST(&match_rules))) { 4558 SLIST_REMOVE_HEAD(&match_rules, entry); 4559 free(ri, M_PF_RULE_ITEM); 4560 } 4561 4562 if (sk != NULL) 4563 uma_zfree(V_pf_state_key_z, sk); 4564 if (nk != NULL) 4565 uma_zfree(V_pf_state_key_z, nk); 4566 return (PF_DROP); 4567 } 4568 4569 static int 4570 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4571 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4572 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4573 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4574 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4575 struct pf_krule_slist *match_rules) 4576 { 4577 struct pf_kstate *s = NULL; 4578 struct pf_ksrc_node *sn = NULL; 4579 struct tcphdr *th = &pd->hdr.tcp; 4580 u_int16_t mss = V_tcp_mssdflt; 4581 u_short reason; 4582 4583 /* check maximums */ 4584 if (r->max_states && 4585 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4586 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4587 REASON_SET(&reason, PFRES_MAXSTATES); 4588 goto csfailed; 4589 } 4590 /* src node for filter rule */ 4591 if ((r->rule_flag & PFRULE_SRCTRACK || 4592 r->rpool.opts & PF_POOL_STICKYADDR) && 4593 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 4594 REASON_SET(&reason, PFRES_SRCLIMIT); 4595 goto csfailed; 4596 } 4597 /* src node for translation rule */ 4598 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4599 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 4600 REASON_SET(&reason, PFRES_SRCLIMIT); 4601 goto csfailed; 4602 } 4603 s = pf_alloc_state(M_NOWAIT); 4604 if (s == NULL) { 4605 REASON_SET(&reason, PFRES_MEMORY); 4606 goto csfailed; 4607 } 4608 s->rule.ptr = r; 4609 s->nat_rule.ptr = nr; 4610 s->anchor.ptr = a; 4611 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4612 STATE_INC_COUNTERS(s); 4613 if (r->allow_opts) 4614 s->state_flags |= PFSTATE_ALLOWOPTS; 4615 if (r->rule_flag & PFRULE_STATESLOPPY) 4616 s->state_flags |= PFSTATE_SLOPPY; 4617 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4618 s->state_flags |= PFSTATE_SCRUB_TCP; 4619 s->log = pd->act.log & PF_LOG_ALL; 4620 s->qid = pd->act.qid; 4621 s->pqid = pd->act.pqid; 4622 s->rtableid = pd->act.rtableid; 4623 s->min_ttl = pd->act.min_ttl; 4624 s->set_tos = pd->act.set_tos; 4625 s->max_mss = pd->act.max_mss; 4626 s->sync_state = PFSYNC_S_NONE; 4627 s->qid = pd->act.qid; 4628 s->pqid = pd->act.pqid; 4629 s->dnpipe = pd->act.dnpipe; 4630 s->dnrpipe = pd->act.dnrpipe; 4631 s->state_flags |= pd->act.flags; 4632 if (nr != NULL) 4633 s->log |= nr->log & PF_LOG_ALL; 4634 switch (pd->proto) { 4635 case IPPROTO_TCP: 4636 s->src.seqlo = ntohl(th->th_seq); 4637 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4638 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4639 r->keep_state == PF_STATE_MODULATE) { 4640 /* Generate sequence number modulator */ 4641 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4642 0) 4643 s->src.seqdiff = 1; 4644 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4645 htonl(s->src.seqlo + s->src.seqdiff), 0); 4646 *rewrite = 1; 4647 } else 4648 s->src.seqdiff = 0; 4649 if (th->th_flags & TH_SYN) { 4650 s->src.seqhi++; 4651 s->src.wscale = pf_get_wscale(m, off, 4652 th->th_off, pd->af); 4653 } 4654 s->src.max_win = MAX(ntohs(th->th_win), 1); 4655 if (s->src.wscale & PF_WSCALE_MASK) { 4656 /* Remove scale factor from initial window */ 4657 int win = s->src.max_win; 4658 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4659 s->src.max_win = (win - 1) >> 4660 (s->src.wscale & PF_WSCALE_MASK); 4661 } 4662 if (th->th_flags & TH_FIN) 4663 s->src.seqhi++; 4664 s->dst.seqhi = 1; 4665 s->dst.max_win = 1; 4666 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4667 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4668 s->timeout = PFTM_TCP_FIRST_PACKET; 4669 atomic_add_32(&V_pf_status.states_halfopen, 1); 4670 break; 4671 case IPPROTO_UDP: 4672 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4673 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4674 s->timeout = PFTM_UDP_FIRST_PACKET; 4675 break; 4676 case IPPROTO_ICMP: 4677 #ifdef INET6 4678 case IPPROTO_ICMPV6: 4679 #endif 4680 s->timeout = PFTM_ICMP_FIRST_PACKET; 4681 break; 4682 default: 4683 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4684 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4685 s->timeout = PFTM_OTHER_FIRST_PACKET; 4686 } 4687 4688 if (r->rt) { 4689 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4690 REASON_SET(&reason, PFRES_MAPFAILED); 4691 pf_src_tree_remove_state(s); 4692 s->timeout = PFTM_UNLINKED; 4693 STATE_DEC_COUNTERS(s); 4694 pf_free_state(s); 4695 goto csfailed; 4696 } 4697 s->rt_kif = r->rpool.cur->kif; 4698 } 4699 4700 s->creation = time_uptime; 4701 s->expire = time_uptime; 4702 4703 if (sn != NULL) 4704 s->src_node = sn; 4705 if (nsn != NULL) { 4706 /* XXX We only modify one side for now. */ 4707 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4708 s->nat_src_node = nsn; 4709 } 4710 if (pd->proto == IPPROTO_TCP) { 4711 if (s->state_flags & PFSTATE_SCRUB_TCP && 4712 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4713 REASON_SET(&reason, PFRES_MEMORY); 4714 pf_src_tree_remove_state(s); 4715 s->timeout = PFTM_UNLINKED; 4716 STATE_DEC_COUNTERS(s); 4717 pf_free_state(s); 4718 return (PF_DROP); 4719 } 4720 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4721 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4722 &s->src, &s->dst, rewrite)) { 4723 /* This really shouldn't happen!!! */ 4724 DPFPRINTF(PF_DEBUG_URGENT, 4725 ("pf_normalize_tcp_stateful failed on first " 4726 "pkt\n")); 4727 pf_src_tree_remove_state(s); 4728 s->timeout = PFTM_UNLINKED; 4729 STATE_DEC_COUNTERS(s); 4730 pf_free_state(s); 4731 return (PF_DROP); 4732 } 4733 } 4734 s->direction = pd->dir; 4735 4736 /* 4737 * sk/nk could already been setup by pf_get_translation(). 4738 */ 4739 if (nr == NULL) { 4740 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4741 __func__, nr, sk, nk)); 4742 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4743 if (sk == NULL) 4744 goto csfailed; 4745 nk = sk; 4746 } else 4747 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4748 __func__, nr, sk, nk)); 4749 4750 /* Swap sk/nk for PF_OUT. */ 4751 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4752 (pd->dir == PF_IN) ? sk : nk, 4753 (pd->dir == PF_IN) ? nk : sk, s)) { 4754 REASON_SET(&reason, PFRES_STATEINS); 4755 pf_src_tree_remove_state(s); 4756 s->timeout = PFTM_UNLINKED; 4757 STATE_DEC_COUNTERS(s); 4758 pf_free_state(s); 4759 return (PF_DROP); 4760 } else 4761 *sm = s; 4762 4763 if (tag > 0) 4764 s->tag = tag; 4765 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4766 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4767 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4768 /* undo NAT changes, if they have taken place */ 4769 if (nr != NULL) { 4770 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4771 if (pd->dir == PF_OUT) 4772 skt = s->key[PF_SK_STACK]; 4773 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4774 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4775 if (pd->sport) 4776 *pd->sport = skt->port[pd->sidx]; 4777 if (pd->dport) 4778 *pd->dport = skt->port[pd->didx]; 4779 if (pd->proto_sum) 4780 *pd->proto_sum = bproto_sum; 4781 if (pd->ip_sum) 4782 *pd->ip_sum = bip_sum; 4783 m_copyback(m, off, hdrlen, pd->hdr.any); 4784 } 4785 s->src.seqhi = htonl(arc4random()); 4786 /* Find mss option */ 4787 int rtid = M_GETFIB(m); 4788 mss = pf_get_mss(m, off, th->th_off, pd->af); 4789 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4790 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4791 s->src.mss = mss; 4792 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4793 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4794 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, pd->act.rtableid); 4795 REASON_SET(&reason, PFRES_SYNPROXY); 4796 return (PF_SYNPROXY_DROP); 4797 } 4798 4799 return (PF_PASS); 4800 4801 csfailed: 4802 if (sk != NULL) 4803 uma_zfree(V_pf_state_key_z, sk); 4804 if (nk != NULL) 4805 uma_zfree(V_pf_state_key_z, nk); 4806 4807 if (sn != NULL) { 4808 struct pf_srchash *sh; 4809 4810 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4811 PF_HASHROW_LOCK(sh); 4812 if (--sn->states == 0 && sn->expire == 0) { 4813 pf_unlink_src_node(sn); 4814 uma_zfree(V_pf_sources_z, sn); 4815 counter_u64_add( 4816 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4817 } 4818 PF_HASHROW_UNLOCK(sh); 4819 } 4820 4821 if (nsn != sn && nsn != NULL) { 4822 struct pf_srchash *sh; 4823 4824 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4825 PF_HASHROW_LOCK(sh); 4826 if (--nsn->states == 0 && nsn->expire == 0) { 4827 pf_unlink_src_node(nsn); 4828 uma_zfree(V_pf_sources_z, nsn); 4829 counter_u64_add( 4830 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4831 } 4832 PF_HASHROW_UNLOCK(sh); 4833 } 4834 4835 return (PF_DROP); 4836 } 4837 4838 static int 4839 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4840 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4841 struct pf_kruleset **rsm) 4842 { 4843 struct pf_krule *r, *a = NULL; 4844 struct pf_kruleset *ruleset = NULL; 4845 struct pf_krule_slist match_rules; 4846 struct pf_krule_item *ri; 4847 sa_family_t af = pd->af; 4848 u_short reason; 4849 int tag = -1; 4850 int asd = 0; 4851 int match = 0; 4852 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4853 4854 PF_RULES_RASSERT(); 4855 4856 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4857 SLIST_INIT(&match_rules); 4858 while (r != NULL) { 4859 pf_counter_u64_add(&r->evaluations, 1); 4860 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4861 r = r->skip[PF_SKIP_IFP].ptr; 4862 else if (r->direction && r->direction != direction) 4863 r = r->skip[PF_SKIP_DIR].ptr; 4864 else if (r->af && r->af != af) 4865 r = r->skip[PF_SKIP_AF].ptr; 4866 else if (r->proto && r->proto != pd->proto) 4867 r = r->skip[PF_SKIP_PROTO].ptr; 4868 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4869 r->src.neg, kif, M_GETFIB(m))) 4870 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4871 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4872 r->dst.neg, NULL, M_GETFIB(m))) 4873 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4874 else if (r->tos && !(r->tos == pd->tos)) 4875 r = TAILQ_NEXT(r, entries); 4876 else if (r->os_fingerprint != PF_OSFP_ANY) 4877 r = TAILQ_NEXT(r, entries); 4878 else if (pd->proto == IPPROTO_UDP && 4879 (r->src.port_op || r->dst.port_op)) 4880 r = TAILQ_NEXT(r, entries); 4881 else if (pd->proto == IPPROTO_TCP && 4882 (r->src.port_op || r->dst.port_op || r->flagset)) 4883 r = TAILQ_NEXT(r, entries); 4884 else if ((pd->proto == IPPROTO_ICMP || 4885 pd->proto == IPPROTO_ICMPV6) && 4886 (r->type || r->code)) 4887 r = TAILQ_NEXT(r, entries); 4888 else if (r->prio && 4889 !pf_match_ieee8021q_pcp(r->prio, m)) 4890 r = TAILQ_NEXT(r, entries); 4891 else if (r->prob && r->prob <= 4892 (arc4random() % (UINT_MAX - 1) + 1)) 4893 r = TAILQ_NEXT(r, entries); 4894 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4895 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4896 r = TAILQ_NEXT(r, entries); 4897 else { 4898 if (r->anchor == NULL) { 4899 if (r->action == PF_MATCH) { 4900 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4901 if (ri == NULL) { 4902 REASON_SET(&reason, PFRES_MEMORY); 4903 goto cleanup; 4904 } 4905 ri->r = r; 4906 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4907 pf_counter_u64_critical_enter(); 4908 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4909 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4910 pf_counter_u64_critical_exit(); 4911 pf_rule_to_actions(r, &pd->act); 4912 if (r->log) 4913 PFLOG_PACKET(kif, m, af, 4914 direction, PFRES_MATCH, r, 4915 a, ruleset, pd, 1); 4916 } else { 4917 match = 1; 4918 *rm = r; 4919 *am = a; 4920 *rsm = ruleset; 4921 } 4922 if ((*rm)->quick) 4923 break; 4924 r = TAILQ_NEXT(r, entries); 4925 } else 4926 pf_step_into_anchor(anchor_stack, &asd, 4927 &ruleset, PF_RULESET_FILTER, &r, &a, 4928 &match); 4929 } 4930 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4931 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4932 break; 4933 } 4934 r = *rm; 4935 a = *am; 4936 ruleset = *rsm; 4937 4938 REASON_SET(&reason, PFRES_MATCH); 4939 4940 /* apply actions for last matching pass/block rule */ 4941 pf_rule_to_actions(r, &pd->act); 4942 4943 if (r->log) 4944 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4945 ruleset, pd, 1); 4946 4947 if (r->action != PF_PASS) 4948 return (PF_DROP); 4949 4950 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4951 REASON_SET(&reason, PFRES_MEMORY); 4952 goto cleanup; 4953 } 4954 4955 return (PF_PASS); 4956 4957 cleanup: 4958 while ((ri = SLIST_FIRST(&match_rules))) { 4959 SLIST_REMOVE_HEAD(&match_rules, entry); 4960 free(ri, M_PF_RULE_ITEM); 4961 } 4962 4963 return (PF_DROP); 4964 } 4965 4966 static int 4967 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4968 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4969 int *copyback) 4970 { 4971 struct tcphdr *th = &pd->hdr.tcp; 4972 struct pf_state_peer *src, *dst; 4973 u_int16_t win = ntohs(th->th_win); 4974 u_int32_t ack, end, seq, orig_seq; 4975 u_int8_t sws, dws, psrc, pdst; 4976 int ackskew; 4977 4978 if (pd->dir == (*state)->direction) { 4979 src = &(*state)->src; 4980 dst = &(*state)->dst; 4981 psrc = PF_PEER_SRC; 4982 pdst = PF_PEER_DST; 4983 } else { 4984 src = &(*state)->dst; 4985 dst = &(*state)->src; 4986 psrc = PF_PEER_DST; 4987 pdst = PF_PEER_SRC; 4988 } 4989 4990 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4991 sws = src->wscale & PF_WSCALE_MASK; 4992 dws = dst->wscale & PF_WSCALE_MASK; 4993 } else 4994 sws = dws = 0; 4995 4996 /* 4997 * Sequence tracking algorithm from Guido van Rooij's paper: 4998 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4999 * tcp_filtering.ps 5000 */ 5001 5002 orig_seq = seq = ntohl(th->th_seq); 5003 if (src->seqlo == 0) { 5004 /* First packet from this end. Set its state */ 5005 5006 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5007 src->scrub == NULL) { 5008 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5009 REASON_SET(reason, PFRES_MEMORY); 5010 return (PF_DROP); 5011 } 5012 } 5013 5014 /* Deferred generation of sequence number modulator */ 5015 if (dst->seqdiff && !src->seqdiff) { 5016 /* use random iss for the TCP server */ 5017 while ((src->seqdiff = arc4random() - seq) == 0) 5018 ; 5019 ack = ntohl(th->th_ack) - dst->seqdiff; 5020 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5021 src->seqdiff), 0); 5022 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5023 *copyback = 1; 5024 } else { 5025 ack = ntohl(th->th_ack); 5026 } 5027 5028 end = seq + pd->p_len; 5029 if (th->th_flags & TH_SYN) { 5030 end++; 5031 if (dst->wscale & PF_WSCALE_FLAG) { 5032 src->wscale = pf_get_wscale(m, off, th->th_off, 5033 pd->af); 5034 if (src->wscale & PF_WSCALE_FLAG) { 5035 /* Remove scale factor from initial 5036 * window */ 5037 sws = src->wscale & PF_WSCALE_MASK; 5038 win = ((u_int32_t)win + (1 << sws) - 1) 5039 >> sws; 5040 dws = dst->wscale & PF_WSCALE_MASK; 5041 } else { 5042 /* fixup other window */ 5043 dst->max_win <<= dst->wscale & 5044 PF_WSCALE_MASK; 5045 /* in case of a retrans SYN|ACK */ 5046 dst->wscale = 0; 5047 } 5048 } 5049 } 5050 if (th->th_flags & TH_FIN) 5051 end++; 5052 5053 src->seqlo = seq; 5054 if (src->state < TCPS_SYN_SENT) 5055 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5056 5057 /* 5058 * May need to slide the window (seqhi may have been set by 5059 * the crappy stack check or if we picked up the connection 5060 * after establishment) 5061 */ 5062 if (src->seqhi == 1 || 5063 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5064 src->seqhi = end + MAX(1, dst->max_win << dws); 5065 if (win > src->max_win) 5066 src->max_win = win; 5067 5068 } else { 5069 ack = ntohl(th->th_ack) - dst->seqdiff; 5070 if (src->seqdiff) { 5071 /* Modulate sequence numbers */ 5072 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5073 src->seqdiff), 0); 5074 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5075 *copyback = 1; 5076 } 5077 end = seq + pd->p_len; 5078 if (th->th_flags & TH_SYN) 5079 end++; 5080 if (th->th_flags & TH_FIN) 5081 end++; 5082 } 5083 5084 if ((th->th_flags & TH_ACK) == 0) { 5085 /* Let it pass through the ack skew check */ 5086 ack = dst->seqlo; 5087 } else if ((ack == 0 && 5088 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5089 /* broken tcp stacks do not set ack */ 5090 (dst->state < TCPS_SYN_SENT)) { 5091 /* 5092 * Many stacks (ours included) will set the ACK number in an 5093 * FIN|ACK if the SYN times out -- no sequence to ACK. 5094 */ 5095 ack = dst->seqlo; 5096 } 5097 5098 if (seq == end) { 5099 /* Ease sequencing restrictions on no data packets */ 5100 seq = src->seqlo; 5101 end = seq; 5102 } 5103 5104 ackskew = dst->seqlo - ack; 5105 5106 /* 5107 * Need to demodulate the sequence numbers in any TCP SACK options 5108 * (Selective ACK). We could optionally validate the SACK values 5109 * against the current ACK window, either forwards or backwards, but 5110 * I'm not confident that SACK has been implemented properly 5111 * everywhere. It wouldn't surprise me if several stacks accidentally 5112 * SACK too far backwards of previously ACKed data. There really aren't 5113 * any security implications of bad SACKing unless the target stack 5114 * doesn't validate the option length correctly. Someone trying to 5115 * spoof into a TCP connection won't bother blindly sending SACK 5116 * options anyway. 5117 */ 5118 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5119 if (pf_modulate_sack(m, off, pd, th, dst)) 5120 *copyback = 1; 5121 } 5122 5123 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5124 if (SEQ_GEQ(src->seqhi, end) && 5125 /* Last octet inside other's window space */ 5126 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5127 /* Retrans: not more than one window back */ 5128 (ackskew >= -MAXACKWINDOW) && 5129 /* Acking not more than one reassembled fragment backwards */ 5130 (ackskew <= (MAXACKWINDOW << sws)) && 5131 /* Acking not more than one window forward */ 5132 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5133 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5134 (pd->flags & PFDESC_IP_REAS) == 0)) { 5135 /* Require an exact/+1 sequence match on resets when possible */ 5136 5137 if (dst->scrub || src->scrub) { 5138 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5139 *state, src, dst, copyback)) 5140 return (PF_DROP); 5141 } 5142 5143 /* update max window */ 5144 if (src->max_win < win) 5145 src->max_win = win; 5146 /* synchronize sequencing */ 5147 if (SEQ_GT(end, src->seqlo)) 5148 src->seqlo = end; 5149 /* slide the window of what the other end can send */ 5150 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5151 dst->seqhi = ack + MAX((win << sws), 1); 5152 5153 /* update states */ 5154 if (th->th_flags & TH_SYN) 5155 if (src->state < TCPS_SYN_SENT) 5156 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5157 if (th->th_flags & TH_FIN) 5158 if (src->state < TCPS_CLOSING) 5159 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5160 if (th->th_flags & TH_ACK) { 5161 if (dst->state == TCPS_SYN_SENT) { 5162 pf_set_protostate(*state, pdst, 5163 TCPS_ESTABLISHED); 5164 if (src->state == TCPS_ESTABLISHED && 5165 (*state)->src_node != NULL && 5166 pf_src_connlimit(state)) { 5167 REASON_SET(reason, PFRES_SRCLIMIT); 5168 return (PF_DROP); 5169 } 5170 } else if (dst->state == TCPS_CLOSING) 5171 pf_set_protostate(*state, pdst, 5172 TCPS_FIN_WAIT_2); 5173 } 5174 if (th->th_flags & TH_RST) 5175 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5176 5177 /* update expire time */ 5178 (*state)->expire = time_uptime; 5179 if (src->state >= TCPS_FIN_WAIT_2 && 5180 dst->state >= TCPS_FIN_WAIT_2) 5181 (*state)->timeout = PFTM_TCP_CLOSED; 5182 else if (src->state >= TCPS_CLOSING && 5183 dst->state >= TCPS_CLOSING) 5184 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5185 else if (src->state < TCPS_ESTABLISHED || 5186 dst->state < TCPS_ESTABLISHED) 5187 (*state)->timeout = PFTM_TCP_OPENING; 5188 else if (src->state >= TCPS_CLOSING || 5189 dst->state >= TCPS_CLOSING) 5190 (*state)->timeout = PFTM_TCP_CLOSING; 5191 else 5192 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5193 5194 /* Fall through to PASS packet */ 5195 5196 } else if ((dst->state < TCPS_SYN_SENT || 5197 dst->state >= TCPS_FIN_WAIT_2 || 5198 src->state >= TCPS_FIN_WAIT_2) && 5199 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5200 /* Within a window forward of the originating packet */ 5201 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5202 /* Within a window backward of the originating packet */ 5203 5204 /* 5205 * This currently handles three situations: 5206 * 1) Stupid stacks will shotgun SYNs before their peer 5207 * replies. 5208 * 2) When PF catches an already established stream (the 5209 * firewall rebooted, the state table was flushed, routes 5210 * changed...) 5211 * 3) Packets get funky immediately after the connection 5212 * closes (this should catch Solaris spurious ACK|FINs 5213 * that web servers like to spew after a close) 5214 * 5215 * This must be a little more careful than the above code 5216 * since packet floods will also be caught here. We don't 5217 * update the TTL here to mitigate the damage of a packet 5218 * flood and so the same code can handle awkward establishment 5219 * and a loosened connection close. 5220 * In the establishment case, a correct peer response will 5221 * validate the connection, go through the normal state code 5222 * and keep updating the state TTL. 5223 */ 5224 5225 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5226 printf("pf: loose state match: "); 5227 pf_print_state(*state); 5228 pf_print_flags(th->th_flags); 5229 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5230 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5231 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5232 (unsigned long long)(*state)->packets[1], 5233 pd->dir == PF_IN ? "in" : "out", 5234 pd->dir == (*state)->direction ? "fwd" : "rev"); 5235 } 5236 5237 if (dst->scrub || src->scrub) { 5238 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5239 *state, src, dst, copyback)) 5240 return (PF_DROP); 5241 } 5242 5243 /* update max window */ 5244 if (src->max_win < win) 5245 src->max_win = win; 5246 /* synchronize sequencing */ 5247 if (SEQ_GT(end, src->seqlo)) 5248 src->seqlo = end; 5249 /* slide the window of what the other end can send */ 5250 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5251 dst->seqhi = ack + MAX((win << sws), 1); 5252 5253 /* 5254 * Cannot set dst->seqhi here since this could be a shotgunned 5255 * SYN and not an already established connection. 5256 */ 5257 5258 if (th->th_flags & TH_FIN) 5259 if (src->state < TCPS_CLOSING) 5260 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5261 if (th->th_flags & TH_RST) 5262 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5263 5264 /* Fall through to PASS packet */ 5265 5266 } else { 5267 if ((*state)->dst.state == TCPS_SYN_SENT && 5268 (*state)->src.state == TCPS_SYN_SENT) { 5269 /* Send RST for state mismatches during handshake */ 5270 if (!(th->th_flags & TH_RST)) 5271 pf_send_tcp((*state)->rule.ptr, pd->af, 5272 pd->dst, pd->src, th->th_dport, 5273 th->th_sport, ntohl(th->th_ack), 0, 5274 TH_RST, 0, 0, 5275 (*state)->rule.ptr->return_ttl, 1, 0, 5276 (*state)->rtableid); 5277 src->seqlo = 0; 5278 src->seqhi = 1; 5279 src->max_win = 1; 5280 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5281 printf("pf: BAD state: "); 5282 pf_print_state(*state); 5283 pf_print_flags(th->th_flags); 5284 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5285 "pkts=%llu:%llu dir=%s,%s\n", 5286 seq, orig_seq, ack, pd->p_len, ackskew, 5287 (unsigned long long)(*state)->packets[0], 5288 (unsigned long long)(*state)->packets[1], 5289 pd->dir == PF_IN ? "in" : "out", 5290 pd->dir == (*state)->direction ? "fwd" : "rev"); 5291 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5292 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5293 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5294 ' ': '2', 5295 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5296 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5297 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5298 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5299 } 5300 REASON_SET(reason, PFRES_BADSTATE); 5301 return (PF_DROP); 5302 } 5303 5304 return (PF_PASS); 5305 } 5306 5307 static int 5308 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5309 { 5310 struct tcphdr *th = &pd->hdr.tcp; 5311 struct pf_state_peer *src, *dst; 5312 u_int8_t psrc, pdst; 5313 5314 if (pd->dir == (*state)->direction) { 5315 src = &(*state)->src; 5316 dst = &(*state)->dst; 5317 psrc = PF_PEER_SRC; 5318 pdst = PF_PEER_DST; 5319 } else { 5320 src = &(*state)->dst; 5321 dst = &(*state)->src; 5322 psrc = PF_PEER_DST; 5323 pdst = PF_PEER_SRC; 5324 } 5325 5326 if (th->th_flags & TH_SYN) 5327 if (src->state < TCPS_SYN_SENT) 5328 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5329 if (th->th_flags & TH_FIN) 5330 if (src->state < TCPS_CLOSING) 5331 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5332 if (th->th_flags & TH_ACK) { 5333 if (dst->state == TCPS_SYN_SENT) { 5334 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5335 if (src->state == TCPS_ESTABLISHED && 5336 (*state)->src_node != NULL && 5337 pf_src_connlimit(state)) { 5338 REASON_SET(reason, PFRES_SRCLIMIT); 5339 return (PF_DROP); 5340 } 5341 } else if (dst->state == TCPS_CLOSING) { 5342 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5343 } else if (src->state == TCPS_SYN_SENT && 5344 dst->state < TCPS_SYN_SENT) { 5345 /* 5346 * Handle a special sloppy case where we only see one 5347 * half of the connection. If there is a ACK after 5348 * the initial SYN without ever seeing a packet from 5349 * the destination, set the connection to established. 5350 */ 5351 pf_set_protostate(*state, PF_PEER_BOTH, 5352 TCPS_ESTABLISHED); 5353 dst->state = src->state = TCPS_ESTABLISHED; 5354 if ((*state)->src_node != NULL && 5355 pf_src_connlimit(state)) { 5356 REASON_SET(reason, PFRES_SRCLIMIT); 5357 return (PF_DROP); 5358 } 5359 } else if (src->state == TCPS_CLOSING && 5360 dst->state == TCPS_ESTABLISHED && 5361 dst->seqlo == 0) { 5362 /* 5363 * Handle the closing of half connections where we 5364 * don't see the full bidirectional FIN/ACK+ACK 5365 * handshake. 5366 */ 5367 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5368 } 5369 } 5370 if (th->th_flags & TH_RST) 5371 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5372 5373 /* update expire time */ 5374 (*state)->expire = time_uptime; 5375 if (src->state >= TCPS_FIN_WAIT_2 && 5376 dst->state >= TCPS_FIN_WAIT_2) 5377 (*state)->timeout = PFTM_TCP_CLOSED; 5378 else if (src->state >= TCPS_CLOSING && 5379 dst->state >= TCPS_CLOSING) 5380 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5381 else if (src->state < TCPS_ESTABLISHED || 5382 dst->state < TCPS_ESTABLISHED) 5383 (*state)->timeout = PFTM_TCP_OPENING; 5384 else if (src->state >= TCPS_CLOSING || 5385 dst->state >= TCPS_CLOSING) 5386 (*state)->timeout = PFTM_TCP_CLOSING; 5387 else 5388 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5389 5390 return (PF_PASS); 5391 } 5392 5393 static int 5394 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5395 { 5396 struct pf_state_key *sk = (*state)->key[pd->didx]; 5397 struct tcphdr *th = &pd->hdr.tcp; 5398 5399 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5400 if (pd->dir != (*state)->direction) { 5401 REASON_SET(reason, PFRES_SYNPROXY); 5402 return (PF_SYNPROXY_DROP); 5403 } 5404 if (th->th_flags & TH_SYN) { 5405 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5406 REASON_SET(reason, PFRES_SYNPROXY); 5407 return (PF_DROP); 5408 } 5409 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5410 pd->src, th->th_dport, th->th_sport, 5411 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5412 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, 5413 (*state)->rtableid); 5414 REASON_SET(reason, PFRES_SYNPROXY); 5415 return (PF_SYNPROXY_DROP); 5416 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5417 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5418 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5419 REASON_SET(reason, PFRES_SYNPROXY); 5420 return (PF_DROP); 5421 } else if ((*state)->src_node != NULL && 5422 pf_src_connlimit(state)) { 5423 REASON_SET(reason, PFRES_SRCLIMIT); 5424 return (PF_DROP); 5425 } else 5426 pf_set_protostate(*state, PF_PEER_SRC, 5427 PF_TCPS_PROXY_DST); 5428 } 5429 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5430 if (pd->dir == (*state)->direction) { 5431 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5432 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5433 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5434 REASON_SET(reason, PFRES_SYNPROXY); 5435 return (PF_DROP); 5436 } 5437 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5438 if ((*state)->dst.seqhi == 1) 5439 (*state)->dst.seqhi = htonl(arc4random()); 5440 pf_send_tcp((*state)->rule.ptr, pd->af, 5441 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5442 sk->port[pd->sidx], sk->port[pd->didx], 5443 (*state)->dst.seqhi, 0, TH_SYN, 0, 5444 (*state)->src.mss, 0, 0, (*state)->tag, 5445 (*state)->rtableid); 5446 REASON_SET(reason, PFRES_SYNPROXY); 5447 return (PF_SYNPROXY_DROP); 5448 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5449 (TH_SYN|TH_ACK)) || 5450 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5451 REASON_SET(reason, PFRES_SYNPROXY); 5452 return (PF_DROP); 5453 } else { 5454 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5455 (*state)->dst.seqlo = ntohl(th->th_seq); 5456 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5457 pd->src, th->th_dport, th->th_sport, 5458 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5459 TH_ACK, (*state)->src.max_win, 0, 0, 0, 5460 (*state)->tag, (*state)->rtableid); 5461 pf_send_tcp((*state)->rule.ptr, pd->af, 5462 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5463 sk->port[pd->sidx], sk->port[pd->didx], 5464 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5465 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, 5466 (*state)->rtableid); 5467 (*state)->src.seqdiff = (*state)->dst.seqhi - 5468 (*state)->src.seqlo; 5469 (*state)->dst.seqdiff = (*state)->src.seqhi - 5470 (*state)->dst.seqlo; 5471 (*state)->src.seqhi = (*state)->src.seqlo + 5472 (*state)->dst.max_win; 5473 (*state)->dst.seqhi = (*state)->dst.seqlo + 5474 (*state)->src.max_win; 5475 (*state)->src.wscale = (*state)->dst.wscale = 0; 5476 pf_set_protostate(*state, PF_PEER_BOTH, 5477 TCPS_ESTABLISHED); 5478 REASON_SET(reason, PFRES_SYNPROXY); 5479 return (PF_SYNPROXY_DROP); 5480 } 5481 } 5482 5483 return (PF_PASS); 5484 } 5485 5486 static int 5487 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5488 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5489 u_short *reason) 5490 { 5491 struct pf_state_key_cmp key; 5492 struct tcphdr *th = &pd->hdr.tcp; 5493 int copyback = 0; 5494 int action; 5495 struct pf_state_peer *src, *dst; 5496 5497 bzero(&key, sizeof(key)); 5498 key.af = pd->af; 5499 key.proto = IPPROTO_TCP; 5500 if (direction == PF_IN) { /* wire side, straight */ 5501 PF_ACPY(&key.addr[0], pd->src, key.af); 5502 PF_ACPY(&key.addr[1], pd->dst, key.af); 5503 key.port[0] = th->th_sport; 5504 key.port[1] = th->th_dport; 5505 } else { /* stack side, reverse */ 5506 PF_ACPY(&key.addr[1], pd->src, key.af); 5507 PF_ACPY(&key.addr[0], pd->dst, key.af); 5508 key.port[1] = th->th_sport; 5509 key.port[0] = th->th_dport; 5510 } 5511 5512 STATE_LOOKUP(kif, &key, direction, *state, pd); 5513 5514 if (direction == (*state)->direction) { 5515 src = &(*state)->src; 5516 dst = &(*state)->dst; 5517 } else { 5518 src = &(*state)->dst; 5519 dst = &(*state)->src; 5520 } 5521 5522 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5523 return (action); 5524 5525 if (dst->state >= TCPS_FIN_WAIT_2 && 5526 src->state >= TCPS_FIN_WAIT_2 && 5527 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5528 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5529 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5530 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5531 printf("pf: state reuse "); 5532 pf_print_state(*state); 5533 pf_print_flags(th->th_flags); 5534 printf("\n"); 5535 } 5536 /* XXX make sure it's the same direction ?? */ 5537 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5538 pf_unlink_state(*state); 5539 *state = NULL; 5540 return (PF_DROP); 5541 } 5542 5543 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5544 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5545 return (PF_DROP); 5546 } else { 5547 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5548 ©back) == PF_DROP) 5549 return (PF_DROP); 5550 } 5551 5552 /* translate source/destination address, if necessary */ 5553 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5554 struct pf_state_key *nk = (*state)->key[pd->didx]; 5555 5556 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5557 nk->port[pd->sidx] != th->th_sport) 5558 pf_change_ap(m, pd->src, &th->th_sport, 5559 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5560 nk->port[pd->sidx], 0, pd->af); 5561 5562 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5563 nk->port[pd->didx] != th->th_dport) 5564 pf_change_ap(m, pd->dst, &th->th_dport, 5565 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5566 nk->port[pd->didx], 0, pd->af); 5567 copyback = 1; 5568 } 5569 5570 /* Copyback sequence modulation or stateful scrub changes if needed */ 5571 if (copyback) 5572 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5573 5574 return (PF_PASS); 5575 } 5576 5577 static int 5578 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5579 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5580 { 5581 struct pf_state_peer *src, *dst; 5582 struct pf_state_key_cmp key; 5583 struct udphdr *uh = &pd->hdr.udp; 5584 uint8_t psrc, pdst; 5585 5586 bzero(&key, sizeof(key)); 5587 key.af = pd->af; 5588 key.proto = IPPROTO_UDP; 5589 if (direction == PF_IN) { /* wire side, straight */ 5590 PF_ACPY(&key.addr[0], pd->src, key.af); 5591 PF_ACPY(&key.addr[1], pd->dst, key.af); 5592 key.port[0] = uh->uh_sport; 5593 key.port[1] = uh->uh_dport; 5594 } else { /* stack side, reverse */ 5595 PF_ACPY(&key.addr[1], pd->src, key.af); 5596 PF_ACPY(&key.addr[0], pd->dst, key.af); 5597 key.port[1] = uh->uh_sport; 5598 key.port[0] = uh->uh_dport; 5599 } 5600 5601 STATE_LOOKUP(kif, &key, direction, *state, pd); 5602 5603 if (direction == (*state)->direction) { 5604 src = &(*state)->src; 5605 dst = &(*state)->dst; 5606 psrc = PF_PEER_SRC; 5607 pdst = PF_PEER_DST; 5608 } else { 5609 src = &(*state)->dst; 5610 dst = &(*state)->src; 5611 psrc = PF_PEER_DST; 5612 pdst = PF_PEER_SRC; 5613 } 5614 5615 /* update states */ 5616 if (src->state < PFUDPS_SINGLE) 5617 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5618 if (dst->state == PFUDPS_SINGLE) 5619 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5620 5621 /* update expire time */ 5622 (*state)->expire = time_uptime; 5623 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5624 (*state)->timeout = PFTM_UDP_MULTIPLE; 5625 else 5626 (*state)->timeout = PFTM_UDP_SINGLE; 5627 5628 /* translate source/destination address, if necessary */ 5629 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5630 struct pf_state_key *nk = (*state)->key[pd->didx]; 5631 5632 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5633 nk->port[pd->sidx] != uh->uh_sport) 5634 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5635 &uh->uh_sum, &nk->addr[pd->sidx], 5636 nk->port[pd->sidx], 1, pd->af); 5637 5638 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5639 nk->port[pd->didx] != uh->uh_dport) 5640 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5641 &uh->uh_sum, &nk->addr[pd->didx], 5642 nk->port[pd->didx], 1, pd->af); 5643 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5644 } 5645 5646 return (PF_PASS); 5647 } 5648 5649 static int 5650 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5651 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5652 { 5653 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5654 u_int16_t icmpid = 0, *icmpsum; 5655 u_int8_t icmptype, icmpcode; 5656 int state_icmp = 0; 5657 struct pf_state_key_cmp key; 5658 5659 bzero(&key, sizeof(key)); 5660 switch (pd->proto) { 5661 #ifdef INET 5662 case IPPROTO_ICMP: 5663 icmptype = pd->hdr.icmp.icmp_type; 5664 icmpcode = pd->hdr.icmp.icmp_code; 5665 icmpid = pd->hdr.icmp.icmp_id; 5666 icmpsum = &pd->hdr.icmp.icmp_cksum; 5667 5668 if (icmptype == ICMP_UNREACH || 5669 icmptype == ICMP_SOURCEQUENCH || 5670 icmptype == ICMP_REDIRECT || 5671 icmptype == ICMP_TIMXCEED || 5672 icmptype == ICMP_PARAMPROB) 5673 state_icmp++; 5674 break; 5675 #endif /* INET */ 5676 #ifdef INET6 5677 case IPPROTO_ICMPV6: 5678 icmptype = pd->hdr.icmp6.icmp6_type; 5679 icmpcode = pd->hdr.icmp6.icmp6_code; 5680 icmpid = pd->hdr.icmp6.icmp6_id; 5681 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5682 5683 if (icmptype == ICMP6_DST_UNREACH || 5684 icmptype == ICMP6_PACKET_TOO_BIG || 5685 icmptype == ICMP6_TIME_EXCEEDED || 5686 icmptype == ICMP6_PARAM_PROB) 5687 state_icmp++; 5688 break; 5689 #endif /* INET6 */ 5690 } 5691 5692 if (!state_icmp) { 5693 /* 5694 * ICMP query/reply message not related to a TCP/UDP packet. 5695 * Search for an ICMP state. 5696 */ 5697 key.af = pd->af; 5698 key.proto = pd->proto; 5699 key.port[0] = key.port[1] = icmpid; 5700 if (direction == PF_IN) { /* wire side, straight */ 5701 PF_ACPY(&key.addr[0], pd->src, key.af); 5702 PF_ACPY(&key.addr[1], pd->dst, key.af); 5703 } else { /* stack side, reverse */ 5704 PF_ACPY(&key.addr[1], pd->src, key.af); 5705 PF_ACPY(&key.addr[0], pd->dst, key.af); 5706 } 5707 5708 STATE_LOOKUP(kif, &key, direction, *state, pd); 5709 5710 (*state)->expire = time_uptime; 5711 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5712 5713 /* translate source/destination address, if necessary */ 5714 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5715 struct pf_state_key *nk = (*state)->key[pd->didx]; 5716 5717 switch (pd->af) { 5718 #ifdef INET 5719 case AF_INET: 5720 if (PF_ANEQ(pd->src, 5721 &nk->addr[pd->sidx], AF_INET)) 5722 pf_change_a(&saddr->v4.s_addr, 5723 pd->ip_sum, 5724 nk->addr[pd->sidx].v4.s_addr, 0); 5725 5726 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5727 AF_INET)) 5728 pf_change_a(&daddr->v4.s_addr, 5729 pd->ip_sum, 5730 nk->addr[pd->didx].v4.s_addr, 0); 5731 5732 if (nk->port[0] != 5733 pd->hdr.icmp.icmp_id) { 5734 pd->hdr.icmp.icmp_cksum = 5735 pf_cksum_fixup( 5736 pd->hdr.icmp.icmp_cksum, icmpid, 5737 nk->port[pd->sidx], 0); 5738 pd->hdr.icmp.icmp_id = 5739 nk->port[pd->sidx]; 5740 } 5741 5742 m_copyback(m, off, ICMP_MINLEN, 5743 (caddr_t )&pd->hdr.icmp); 5744 break; 5745 #endif /* INET */ 5746 #ifdef INET6 5747 case AF_INET6: 5748 if (PF_ANEQ(pd->src, 5749 &nk->addr[pd->sidx], AF_INET6)) 5750 pf_change_a6(saddr, 5751 &pd->hdr.icmp6.icmp6_cksum, 5752 &nk->addr[pd->sidx], 0); 5753 5754 if (PF_ANEQ(pd->dst, 5755 &nk->addr[pd->didx], AF_INET6)) 5756 pf_change_a6(daddr, 5757 &pd->hdr.icmp6.icmp6_cksum, 5758 &nk->addr[pd->didx], 0); 5759 5760 m_copyback(m, off, sizeof(struct icmp6_hdr), 5761 (caddr_t )&pd->hdr.icmp6); 5762 break; 5763 #endif /* INET6 */ 5764 } 5765 } 5766 return (PF_PASS); 5767 5768 } else { 5769 /* 5770 * ICMP error message in response to a TCP/UDP packet. 5771 * Extract the inner TCP/UDP header and search for that state. 5772 */ 5773 5774 struct pf_pdesc pd2; 5775 bzero(&pd2, sizeof pd2); 5776 #ifdef INET 5777 struct ip h2; 5778 #endif /* INET */ 5779 #ifdef INET6 5780 struct ip6_hdr h2_6; 5781 int terminal = 0; 5782 #endif /* INET6 */ 5783 int ipoff2 = 0; 5784 int off2 = 0; 5785 5786 pd2.af = pd->af; 5787 /* Payload packet is from the opposite direction. */ 5788 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5789 pd2.didx = (direction == PF_IN) ? 0 : 1; 5790 switch (pd->af) { 5791 #ifdef INET 5792 case AF_INET: 5793 /* offset of h2 in mbuf chain */ 5794 ipoff2 = off + ICMP_MINLEN; 5795 5796 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5797 NULL, reason, pd2.af)) { 5798 DPFPRINTF(PF_DEBUG_MISC, 5799 ("pf: ICMP error message too short " 5800 "(ip)\n")); 5801 return (PF_DROP); 5802 } 5803 /* 5804 * ICMP error messages don't refer to non-first 5805 * fragments 5806 */ 5807 if (h2.ip_off & htons(IP_OFFMASK)) { 5808 REASON_SET(reason, PFRES_FRAG); 5809 return (PF_DROP); 5810 } 5811 5812 /* offset of protocol header that follows h2 */ 5813 off2 = ipoff2 + (h2.ip_hl << 2); 5814 5815 pd2.proto = h2.ip_p; 5816 pd2.src = (struct pf_addr *)&h2.ip_src; 5817 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5818 pd2.ip_sum = &h2.ip_sum; 5819 break; 5820 #endif /* INET */ 5821 #ifdef INET6 5822 case AF_INET6: 5823 ipoff2 = off + sizeof(struct icmp6_hdr); 5824 5825 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5826 NULL, reason, pd2.af)) { 5827 DPFPRINTF(PF_DEBUG_MISC, 5828 ("pf: ICMP error message too short " 5829 "(ip6)\n")); 5830 return (PF_DROP); 5831 } 5832 pd2.proto = h2_6.ip6_nxt; 5833 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5834 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5835 pd2.ip_sum = NULL; 5836 off2 = ipoff2 + sizeof(h2_6); 5837 do { 5838 switch (pd2.proto) { 5839 case IPPROTO_FRAGMENT: 5840 /* 5841 * ICMPv6 error messages for 5842 * non-first fragments 5843 */ 5844 REASON_SET(reason, PFRES_FRAG); 5845 return (PF_DROP); 5846 case IPPROTO_AH: 5847 case IPPROTO_HOPOPTS: 5848 case IPPROTO_ROUTING: 5849 case IPPROTO_DSTOPTS: { 5850 /* get next header and header length */ 5851 struct ip6_ext opt6; 5852 5853 if (!pf_pull_hdr(m, off2, &opt6, 5854 sizeof(opt6), NULL, reason, 5855 pd2.af)) { 5856 DPFPRINTF(PF_DEBUG_MISC, 5857 ("pf: ICMPv6 short opt\n")); 5858 return (PF_DROP); 5859 } 5860 if (pd2.proto == IPPROTO_AH) 5861 off2 += (opt6.ip6e_len + 2) * 4; 5862 else 5863 off2 += (opt6.ip6e_len + 1) * 8; 5864 pd2.proto = opt6.ip6e_nxt; 5865 /* goto the next header */ 5866 break; 5867 } 5868 default: 5869 terminal++; 5870 break; 5871 } 5872 } while (!terminal); 5873 break; 5874 #endif /* INET6 */ 5875 } 5876 5877 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5878 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5879 printf("pf: BAD ICMP %d:%d outer dst: ", 5880 icmptype, icmpcode); 5881 pf_print_host(pd->src, 0, pd->af); 5882 printf(" -> "); 5883 pf_print_host(pd->dst, 0, pd->af); 5884 printf(" inner src: "); 5885 pf_print_host(pd2.src, 0, pd2.af); 5886 printf(" -> "); 5887 pf_print_host(pd2.dst, 0, pd2.af); 5888 printf("\n"); 5889 } 5890 REASON_SET(reason, PFRES_BADSTATE); 5891 return (PF_DROP); 5892 } 5893 5894 switch (pd2.proto) { 5895 case IPPROTO_TCP: { 5896 struct tcphdr th; 5897 u_int32_t seq; 5898 struct pf_state_peer *src, *dst; 5899 u_int8_t dws; 5900 int copyback = 0; 5901 5902 /* 5903 * Only the first 8 bytes of the TCP header can be 5904 * expected. Don't access any TCP header fields after 5905 * th_seq, an ackskew test is not possible. 5906 */ 5907 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5908 pd2.af)) { 5909 DPFPRINTF(PF_DEBUG_MISC, 5910 ("pf: ICMP error message too short " 5911 "(tcp)\n")); 5912 return (PF_DROP); 5913 } 5914 5915 key.af = pd2.af; 5916 key.proto = IPPROTO_TCP; 5917 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5918 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5919 key.port[pd2.sidx] = th.th_sport; 5920 key.port[pd2.didx] = th.th_dport; 5921 5922 STATE_LOOKUP(kif, &key, direction, *state, pd); 5923 5924 if (direction == (*state)->direction) { 5925 src = &(*state)->dst; 5926 dst = &(*state)->src; 5927 } else { 5928 src = &(*state)->src; 5929 dst = &(*state)->dst; 5930 } 5931 5932 if (src->wscale && dst->wscale) 5933 dws = dst->wscale & PF_WSCALE_MASK; 5934 else 5935 dws = 0; 5936 5937 /* Demodulate sequence number */ 5938 seq = ntohl(th.th_seq) - src->seqdiff; 5939 if (src->seqdiff) { 5940 pf_change_a(&th.th_seq, icmpsum, 5941 htonl(seq), 0); 5942 copyback = 1; 5943 } 5944 5945 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5946 (!SEQ_GEQ(src->seqhi, seq) || 5947 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5948 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5949 printf("pf: BAD ICMP %d:%d ", 5950 icmptype, icmpcode); 5951 pf_print_host(pd->src, 0, pd->af); 5952 printf(" -> "); 5953 pf_print_host(pd->dst, 0, pd->af); 5954 printf(" state: "); 5955 pf_print_state(*state); 5956 printf(" seq=%u\n", seq); 5957 } 5958 REASON_SET(reason, PFRES_BADSTATE); 5959 return (PF_DROP); 5960 } else { 5961 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5962 printf("pf: OK ICMP %d:%d ", 5963 icmptype, icmpcode); 5964 pf_print_host(pd->src, 0, pd->af); 5965 printf(" -> "); 5966 pf_print_host(pd->dst, 0, pd->af); 5967 printf(" state: "); 5968 pf_print_state(*state); 5969 printf(" seq=%u\n", seq); 5970 } 5971 } 5972 5973 /* translate source/destination address, if necessary */ 5974 if ((*state)->key[PF_SK_WIRE] != 5975 (*state)->key[PF_SK_STACK]) { 5976 struct pf_state_key *nk = 5977 (*state)->key[pd->didx]; 5978 5979 if (PF_ANEQ(pd2.src, 5980 &nk->addr[pd2.sidx], pd2.af) || 5981 nk->port[pd2.sidx] != th.th_sport) 5982 pf_change_icmp(pd2.src, &th.th_sport, 5983 daddr, &nk->addr[pd2.sidx], 5984 nk->port[pd2.sidx], NULL, 5985 pd2.ip_sum, icmpsum, 5986 pd->ip_sum, 0, pd2.af); 5987 5988 if (PF_ANEQ(pd2.dst, 5989 &nk->addr[pd2.didx], pd2.af) || 5990 nk->port[pd2.didx] != th.th_dport) 5991 pf_change_icmp(pd2.dst, &th.th_dport, 5992 saddr, &nk->addr[pd2.didx], 5993 nk->port[pd2.didx], NULL, 5994 pd2.ip_sum, icmpsum, 5995 pd->ip_sum, 0, pd2.af); 5996 copyback = 1; 5997 } 5998 5999 if (copyback) { 6000 switch (pd2.af) { 6001 #ifdef INET 6002 case AF_INET: 6003 m_copyback(m, off, ICMP_MINLEN, 6004 (caddr_t )&pd->hdr.icmp); 6005 m_copyback(m, ipoff2, sizeof(h2), 6006 (caddr_t )&h2); 6007 break; 6008 #endif /* INET */ 6009 #ifdef INET6 6010 case AF_INET6: 6011 m_copyback(m, off, 6012 sizeof(struct icmp6_hdr), 6013 (caddr_t )&pd->hdr.icmp6); 6014 m_copyback(m, ipoff2, sizeof(h2_6), 6015 (caddr_t )&h2_6); 6016 break; 6017 #endif /* INET6 */ 6018 } 6019 m_copyback(m, off2, 8, (caddr_t)&th); 6020 } 6021 6022 return (PF_PASS); 6023 break; 6024 } 6025 case IPPROTO_UDP: { 6026 struct udphdr uh; 6027 6028 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6029 NULL, reason, pd2.af)) { 6030 DPFPRINTF(PF_DEBUG_MISC, 6031 ("pf: ICMP error message too short " 6032 "(udp)\n")); 6033 return (PF_DROP); 6034 } 6035 6036 key.af = pd2.af; 6037 key.proto = IPPROTO_UDP; 6038 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6039 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6040 key.port[pd2.sidx] = uh.uh_sport; 6041 key.port[pd2.didx] = uh.uh_dport; 6042 6043 STATE_LOOKUP(kif, &key, direction, *state, pd); 6044 6045 /* translate source/destination address, if necessary */ 6046 if ((*state)->key[PF_SK_WIRE] != 6047 (*state)->key[PF_SK_STACK]) { 6048 struct pf_state_key *nk = 6049 (*state)->key[pd->didx]; 6050 6051 if (PF_ANEQ(pd2.src, 6052 &nk->addr[pd2.sidx], pd2.af) || 6053 nk->port[pd2.sidx] != uh.uh_sport) 6054 pf_change_icmp(pd2.src, &uh.uh_sport, 6055 daddr, &nk->addr[pd2.sidx], 6056 nk->port[pd2.sidx], &uh.uh_sum, 6057 pd2.ip_sum, icmpsum, 6058 pd->ip_sum, 1, pd2.af); 6059 6060 if (PF_ANEQ(pd2.dst, 6061 &nk->addr[pd2.didx], pd2.af) || 6062 nk->port[pd2.didx] != uh.uh_dport) 6063 pf_change_icmp(pd2.dst, &uh.uh_dport, 6064 saddr, &nk->addr[pd2.didx], 6065 nk->port[pd2.didx], &uh.uh_sum, 6066 pd2.ip_sum, icmpsum, 6067 pd->ip_sum, 1, pd2.af); 6068 6069 switch (pd2.af) { 6070 #ifdef INET 6071 case AF_INET: 6072 m_copyback(m, off, ICMP_MINLEN, 6073 (caddr_t )&pd->hdr.icmp); 6074 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6075 break; 6076 #endif /* INET */ 6077 #ifdef INET6 6078 case AF_INET6: 6079 m_copyback(m, off, 6080 sizeof(struct icmp6_hdr), 6081 (caddr_t )&pd->hdr.icmp6); 6082 m_copyback(m, ipoff2, sizeof(h2_6), 6083 (caddr_t )&h2_6); 6084 break; 6085 #endif /* INET6 */ 6086 } 6087 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6088 } 6089 return (PF_PASS); 6090 break; 6091 } 6092 #ifdef INET 6093 case IPPROTO_ICMP: { 6094 struct icmp iih; 6095 6096 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6097 NULL, reason, pd2.af)) { 6098 DPFPRINTF(PF_DEBUG_MISC, 6099 ("pf: ICMP error message too short i" 6100 "(icmp)\n")); 6101 return (PF_DROP); 6102 } 6103 6104 key.af = pd2.af; 6105 key.proto = IPPROTO_ICMP; 6106 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6107 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6108 key.port[0] = key.port[1] = iih.icmp_id; 6109 6110 STATE_LOOKUP(kif, &key, direction, *state, pd); 6111 6112 /* translate source/destination address, if necessary */ 6113 if ((*state)->key[PF_SK_WIRE] != 6114 (*state)->key[PF_SK_STACK]) { 6115 struct pf_state_key *nk = 6116 (*state)->key[pd->didx]; 6117 6118 if (PF_ANEQ(pd2.src, 6119 &nk->addr[pd2.sidx], pd2.af) || 6120 nk->port[pd2.sidx] != iih.icmp_id) 6121 pf_change_icmp(pd2.src, &iih.icmp_id, 6122 daddr, &nk->addr[pd2.sidx], 6123 nk->port[pd2.sidx], NULL, 6124 pd2.ip_sum, icmpsum, 6125 pd->ip_sum, 0, AF_INET); 6126 6127 if (PF_ANEQ(pd2.dst, 6128 &nk->addr[pd2.didx], pd2.af) || 6129 nk->port[pd2.didx] != iih.icmp_id) 6130 pf_change_icmp(pd2.dst, &iih.icmp_id, 6131 saddr, &nk->addr[pd2.didx], 6132 nk->port[pd2.didx], NULL, 6133 pd2.ip_sum, icmpsum, 6134 pd->ip_sum, 0, AF_INET); 6135 6136 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6137 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6138 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6139 } 6140 return (PF_PASS); 6141 break; 6142 } 6143 #endif /* INET */ 6144 #ifdef INET6 6145 case IPPROTO_ICMPV6: { 6146 struct icmp6_hdr iih; 6147 6148 if (!pf_pull_hdr(m, off2, &iih, 6149 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6150 DPFPRINTF(PF_DEBUG_MISC, 6151 ("pf: ICMP error message too short " 6152 "(icmp6)\n")); 6153 return (PF_DROP); 6154 } 6155 6156 key.af = pd2.af; 6157 key.proto = IPPROTO_ICMPV6; 6158 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6159 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6160 key.port[0] = key.port[1] = iih.icmp6_id; 6161 6162 STATE_LOOKUP(kif, &key, direction, *state, pd); 6163 6164 /* translate source/destination address, if necessary */ 6165 if ((*state)->key[PF_SK_WIRE] != 6166 (*state)->key[PF_SK_STACK]) { 6167 struct pf_state_key *nk = 6168 (*state)->key[pd->didx]; 6169 6170 if (PF_ANEQ(pd2.src, 6171 &nk->addr[pd2.sidx], pd2.af) || 6172 nk->port[pd2.sidx] != iih.icmp6_id) 6173 pf_change_icmp(pd2.src, &iih.icmp6_id, 6174 daddr, &nk->addr[pd2.sidx], 6175 nk->port[pd2.sidx], NULL, 6176 pd2.ip_sum, icmpsum, 6177 pd->ip_sum, 0, AF_INET6); 6178 6179 if (PF_ANEQ(pd2.dst, 6180 &nk->addr[pd2.didx], pd2.af) || 6181 nk->port[pd2.didx] != iih.icmp6_id) 6182 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6183 saddr, &nk->addr[pd2.didx], 6184 nk->port[pd2.didx], NULL, 6185 pd2.ip_sum, icmpsum, 6186 pd->ip_sum, 0, AF_INET6); 6187 6188 m_copyback(m, off, sizeof(struct icmp6_hdr), 6189 (caddr_t)&pd->hdr.icmp6); 6190 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6191 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6192 (caddr_t)&iih); 6193 } 6194 return (PF_PASS); 6195 break; 6196 } 6197 #endif /* INET6 */ 6198 default: { 6199 key.af = pd2.af; 6200 key.proto = pd2.proto; 6201 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6202 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6203 key.port[0] = key.port[1] = 0; 6204 6205 STATE_LOOKUP(kif, &key, direction, *state, pd); 6206 6207 /* translate source/destination address, if necessary */ 6208 if ((*state)->key[PF_SK_WIRE] != 6209 (*state)->key[PF_SK_STACK]) { 6210 struct pf_state_key *nk = 6211 (*state)->key[pd->didx]; 6212 6213 if (PF_ANEQ(pd2.src, 6214 &nk->addr[pd2.sidx], pd2.af)) 6215 pf_change_icmp(pd2.src, NULL, daddr, 6216 &nk->addr[pd2.sidx], 0, NULL, 6217 pd2.ip_sum, icmpsum, 6218 pd->ip_sum, 0, pd2.af); 6219 6220 if (PF_ANEQ(pd2.dst, 6221 &nk->addr[pd2.didx], pd2.af)) 6222 pf_change_icmp(pd2.dst, NULL, saddr, 6223 &nk->addr[pd2.didx], 0, NULL, 6224 pd2.ip_sum, icmpsum, 6225 pd->ip_sum, 0, pd2.af); 6226 6227 switch (pd2.af) { 6228 #ifdef INET 6229 case AF_INET: 6230 m_copyback(m, off, ICMP_MINLEN, 6231 (caddr_t)&pd->hdr.icmp); 6232 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6233 break; 6234 #endif /* INET */ 6235 #ifdef INET6 6236 case AF_INET6: 6237 m_copyback(m, off, 6238 sizeof(struct icmp6_hdr), 6239 (caddr_t )&pd->hdr.icmp6); 6240 m_copyback(m, ipoff2, sizeof(h2_6), 6241 (caddr_t )&h2_6); 6242 break; 6243 #endif /* INET6 */ 6244 } 6245 } 6246 return (PF_PASS); 6247 break; 6248 } 6249 } 6250 } 6251 } 6252 6253 static int 6254 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 6255 struct mbuf *m, struct pf_pdesc *pd) 6256 { 6257 struct pf_state_peer *src, *dst; 6258 struct pf_state_key_cmp key; 6259 uint8_t psrc, pdst; 6260 6261 bzero(&key, sizeof(key)); 6262 key.af = pd->af; 6263 key.proto = pd->proto; 6264 if (direction == PF_IN) { 6265 PF_ACPY(&key.addr[0], pd->src, key.af); 6266 PF_ACPY(&key.addr[1], pd->dst, key.af); 6267 key.port[0] = key.port[1] = 0; 6268 } else { 6269 PF_ACPY(&key.addr[1], pd->src, key.af); 6270 PF_ACPY(&key.addr[0], pd->dst, key.af); 6271 key.port[1] = key.port[0] = 0; 6272 } 6273 6274 STATE_LOOKUP(kif, &key, direction, *state, pd); 6275 6276 if (direction == (*state)->direction) { 6277 src = &(*state)->src; 6278 dst = &(*state)->dst; 6279 psrc = PF_PEER_SRC; 6280 pdst = PF_PEER_DST; 6281 } else { 6282 src = &(*state)->dst; 6283 dst = &(*state)->src; 6284 psrc = PF_PEER_DST; 6285 pdst = PF_PEER_SRC; 6286 } 6287 6288 /* update states */ 6289 if (src->state < PFOTHERS_SINGLE) 6290 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6291 if (dst->state == PFOTHERS_SINGLE) 6292 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6293 6294 /* update expire time */ 6295 (*state)->expire = time_uptime; 6296 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6297 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6298 else 6299 (*state)->timeout = PFTM_OTHER_SINGLE; 6300 6301 /* translate source/destination address, if necessary */ 6302 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6303 struct pf_state_key *nk = (*state)->key[pd->didx]; 6304 6305 KASSERT(nk, ("%s: nk is null", __func__)); 6306 KASSERT(pd, ("%s: pd is null", __func__)); 6307 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6308 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6309 switch (pd->af) { 6310 #ifdef INET 6311 case AF_INET: 6312 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6313 pf_change_a(&pd->src->v4.s_addr, 6314 pd->ip_sum, 6315 nk->addr[pd->sidx].v4.s_addr, 6316 0); 6317 6318 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6319 pf_change_a(&pd->dst->v4.s_addr, 6320 pd->ip_sum, 6321 nk->addr[pd->didx].v4.s_addr, 6322 0); 6323 6324 break; 6325 #endif /* INET */ 6326 #ifdef INET6 6327 case AF_INET6: 6328 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6329 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6330 6331 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6332 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6333 #endif /* INET6 */ 6334 } 6335 } 6336 return (PF_PASS); 6337 } 6338 6339 /* 6340 * ipoff and off are measured from the start of the mbuf chain. 6341 * h must be at "ipoff" on the mbuf chain. 6342 */ 6343 void * 6344 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6345 u_short *actionp, u_short *reasonp, sa_family_t af) 6346 { 6347 switch (af) { 6348 #ifdef INET 6349 case AF_INET: { 6350 struct ip *h = mtod(m, struct ip *); 6351 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6352 6353 if (fragoff) { 6354 if (fragoff >= len) 6355 ACTION_SET(actionp, PF_PASS); 6356 else { 6357 ACTION_SET(actionp, PF_DROP); 6358 REASON_SET(reasonp, PFRES_FRAG); 6359 } 6360 return (NULL); 6361 } 6362 if (m->m_pkthdr.len < off + len || 6363 ntohs(h->ip_len) < off + len) { 6364 ACTION_SET(actionp, PF_DROP); 6365 REASON_SET(reasonp, PFRES_SHORT); 6366 return (NULL); 6367 } 6368 break; 6369 } 6370 #endif /* INET */ 6371 #ifdef INET6 6372 case AF_INET6: { 6373 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6374 6375 if (m->m_pkthdr.len < off + len || 6376 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6377 (unsigned)(off + len)) { 6378 ACTION_SET(actionp, PF_DROP); 6379 REASON_SET(reasonp, PFRES_SHORT); 6380 return (NULL); 6381 } 6382 break; 6383 } 6384 #endif /* INET6 */ 6385 } 6386 m_copydata(m, off, len, p); 6387 return (p); 6388 } 6389 6390 int 6391 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6392 int rtableid) 6393 { 6394 struct ifnet *ifp; 6395 6396 /* 6397 * Skip check for addresses with embedded interface scope, 6398 * as they would always match anyway. 6399 */ 6400 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6401 return (1); 6402 6403 if (af != AF_INET && af != AF_INET6) 6404 return (0); 6405 6406 /* Skip checks for ipsec interfaces */ 6407 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6408 return (1); 6409 6410 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6411 6412 switch (af) { 6413 #ifdef INET6 6414 case AF_INET6: 6415 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6416 ifp)); 6417 #endif 6418 #ifdef INET 6419 case AF_INET: 6420 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6421 ifp)); 6422 #endif 6423 } 6424 6425 return (0); 6426 } 6427 6428 #ifdef INET 6429 static void 6430 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6431 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6432 { 6433 struct mbuf *m0, *m1, *md; 6434 struct sockaddr_in dst; 6435 struct ip *ip; 6436 struct ifnet *ifp = NULL; 6437 struct pf_addr naddr; 6438 struct pf_ksrc_node *sn = NULL; 6439 int error = 0; 6440 uint16_t ip_len, ip_off; 6441 6442 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6443 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6444 __func__)); 6445 6446 if ((pd->pf_mtag == NULL && 6447 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6448 pd->pf_mtag->routed++ > 3) { 6449 m0 = *m; 6450 *m = NULL; 6451 goto bad_locked; 6452 } 6453 6454 if (r->rt == PF_DUPTO) { 6455 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6456 if (s == NULL) { 6457 ifp = r->rpool.cur->kif ? 6458 r->rpool.cur->kif->pfik_ifp : NULL; 6459 } else { 6460 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6461 /* If pfsync'd */ 6462 if (ifp == NULL) 6463 ifp = r->rpool.cur->kif ? 6464 r->rpool.cur->kif->pfik_ifp : NULL; 6465 PF_STATE_UNLOCK(s); 6466 } 6467 if (ifp == oifp) { 6468 /* When the 2nd interface is not skipped */ 6469 return; 6470 } else { 6471 m0 = *m; 6472 *m = NULL; 6473 goto bad; 6474 } 6475 } else { 6476 pd->pf_mtag->flags |= PF_DUPLICATED; 6477 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6478 if (s) 6479 PF_STATE_UNLOCK(s); 6480 return; 6481 } 6482 } 6483 } else { 6484 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6485 pf_dummynet(pd, dir, s, r, m); 6486 if (s) 6487 PF_STATE_UNLOCK(s); 6488 return; 6489 } 6490 m0 = *m; 6491 } 6492 6493 ip = mtod(m0, struct ip *); 6494 6495 bzero(&dst, sizeof(dst)); 6496 dst.sin_family = AF_INET; 6497 dst.sin_len = sizeof(dst); 6498 dst.sin_addr = ip->ip_dst; 6499 6500 bzero(&naddr, sizeof(naddr)); 6501 6502 if (s == NULL) { 6503 if (TAILQ_EMPTY(&r->rpool.list)) { 6504 DPFPRINTF(PF_DEBUG_URGENT, 6505 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6506 goto bad_locked; 6507 } 6508 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6509 &naddr, NULL, &sn); 6510 if (!PF_AZERO(&naddr, AF_INET)) 6511 dst.sin_addr.s_addr = naddr.v4.s_addr; 6512 ifp = r->rpool.cur->kif ? 6513 r->rpool.cur->kif->pfik_ifp : NULL; 6514 } else { 6515 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6516 dst.sin_addr.s_addr = 6517 s->rt_addr.v4.s_addr; 6518 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6519 PF_STATE_UNLOCK(s); 6520 } 6521 /* If pfsync'd */ 6522 if (ifp == NULL) 6523 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6524 if (ifp == NULL) 6525 goto bad; 6526 6527 if (dir == PF_IN) { 6528 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6529 goto bad; 6530 else if (m0 == NULL) 6531 goto done; 6532 if (m0->m_len < sizeof(struct ip)) { 6533 DPFPRINTF(PF_DEBUG_URGENT, 6534 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6535 goto bad; 6536 } 6537 ip = mtod(m0, struct ip *); 6538 } 6539 6540 if (ifp->if_flags & IFF_LOOPBACK) 6541 m0->m_flags |= M_SKIP_FIREWALL; 6542 6543 ip_len = ntohs(ip->ip_len); 6544 ip_off = ntohs(ip->ip_off); 6545 6546 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6547 m0->m_pkthdr.csum_flags |= CSUM_IP; 6548 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6549 in_delayed_cksum(m0); 6550 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6551 } 6552 #if defined(SCTP) || defined(SCTP_SUPPORT) 6553 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6554 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6555 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6556 } 6557 #endif 6558 6559 /* 6560 * If small enough for interface, or the interface will take 6561 * care of the fragmentation for us, we can just send directly. 6562 */ 6563 if (ip_len <= ifp->if_mtu || 6564 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6565 ip->ip_sum = 0; 6566 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6567 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6568 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6569 } 6570 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6571 6572 md = m0; 6573 error = pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6574 if (md != NULL) 6575 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6576 goto done; 6577 } 6578 6579 /* Balk when DF bit is set or the interface didn't support TSO. */ 6580 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6581 error = EMSGSIZE; 6582 KMOD_IPSTAT_INC(ips_cantfrag); 6583 if (r->rt != PF_DUPTO) { 6584 if (s && pd->nat_rule != NULL) 6585 PACKET_UNDO_NAT(m0, pd, 6586 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6587 s, dir); 6588 6589 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6590 ifp->if_mtu); 6591 goto done; 6592 } else 6593 goto bad; 6594 } 6595 6596 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6597 if (error) 6598 goto bad; 6599 6600 for (; m0; m0 = m1) { 6601 m1 = m0->m_nextpkt; 6602 m0->m_nextpkt = NULL; 6603 if (error == 0) { 6604 m_clrprotoflags(m0); 6605 md = m0; 6606 error = pf_dummynet_route(pd, dir, s, r, ifp, 6607 sintosa(&dst), &md); 6608 if (md != NULL) 6609 error = (*ifp->if_output)(ifp, md, 6610 sintosa(&dst), NULL); 6611 } else 6612 m_freem(m0); 6613 } 6614 6615 if (error == 0) 6616 KMOD_IPSTAT_INC(ips_fragmented); 6617 6618 done: 6619 if (r->rt != PF_DUPTO) 6620 *m = NULL; 6621 return; 6622 6623 bad_locked: 6624 if (s) 6625 PF_STATE_UNLOCK(s); 6626 bad: 6627 m_freem(m0); 6628 goto done; 6629 } 6630 #endif /* INET */ 6631 6632 #ifdef INET6 6633 static void 6634 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6635 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6636 { 6637 struct mbuf *m0, *md; 6638 struct sockaddr_in6 dst; 6639 struct ip6_hdr *ip6; 6640 struct ifnet *ifp = NULL; 6641 struct pf_addr naddr; 6642 struct pf_ksrc_node *sn = NULL; 6643 6644 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6645 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6646 __func__)); 6647 6648 if ((pd->pf_mtag == NULL && 6649 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6650 pd->pf_mtag->routed++ > 3) { 6651 m0 = *m; 6652 *m = NULL; 6653 goto bad_locked; 6654 } 6655 6656 if (r->rt == PF_DUPTO) { 6657 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6658 if (s == NULL) { 6659 ifp = r->rpool.cur->kif ? 6660 r->rpool.cur->kif->pfik_ifp : NULL; 6661 } else { 6662 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6663 /* If pfsync'd */ 6664 if (ifp == NULL) 6665 ifp = r->rpool.cur->kif ? 6666 r->rpool.cur->kif->pfik_ifp : NULL; 6667 PF_STATE_UNLOCK(s); 6668 } 6669 if (ifp == oifp) { 6670 /* When the 2nd interface is not skipped */ 6671 return; 6672 } else { 6673 m0 = *m; 6674 *m = NULL; 6675 goto bad; 6676 } 6677 } else { 6678 pd->pf_mtag->flags |= PF_DUPLICATED; 6679 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6680 if (s) 6681 PF_STATE_UNLOCK(s); 6682 return; 6683 } 6684 } 6685 } else { 6686 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6687 pf_dummynet(pd, dir, s, r, m); 6688 if (s) 6689 PF_STATE_UNLOCK(s); 6690 return; 6691 } 6692 m0 = *m; 6693 } 6694 6695 ip6 = mtod(m0, struct ip6_hdr *); 6696 6697 bzero(&dst, sizeof(dst)); 6698 dst.sin6_family = AF_INET6; 6699 dst.sin6_len = sizeof(dst); 6700 dst.sin6_addr = ip6->ip6_dst; 6701 6702 bzero(&naddr, sizeof(naddr)); 6703 6704 if (s == NULL) { 6705 if (TAILQ_EMPTY(&r->rpool.list)) { 6706 DPFPRINTF(PF_DEBUG_URGENT, 6707 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6708 goto bad_locked; 6709 } 6710 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6711 &naddr, NULL, &sn); 6712 if (!PF_AZERO(&naddr, AF_INET6)) 6713 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6714 &naddr, AF_INET6); 6715 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6716 } else { 6717 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6718 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6719 &s->rt_addr, AF_INET6); 6720 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6721 } 6722 6723 if (s) 6724 PF_STATE_UNLOCK(s); 6725 6726 /* If pfsync'd */ 6727 if (ifp == NULL) 6728 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6729 if (ifp == NULL) 6730 goto bad; 6731 6732 if (dir == PF_IN) { 6733 if (pf_test6(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6734 goto bad; 6735 else if (m0 == NULL) 6736 goto done; 6737 if (m0->m_len < sizeof(struct ip6_hdr)) { 6738 DPFPRINTF(PF_DEBUG_URGENT, 6739 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6740 __func__)); 6741 goto bad; 6742 } 6743 ip6 = mtod(m0, struct ip6_hdr *); 6744 } 6745 6746 if (ifp->if_flags & IFF_LOOPBACK) 6747 m0->m_flags |= M_SKIP_FIREWALL; 6748 6749 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6750 ~ifp->if_hwassist) { 6751 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6752 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6753 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6754 } 6755 6756 /* 6757 * If the packet is too large for the outgoing interface, 6758 * send back an icmp6 error. 6759 */ 6760 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6761 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6762 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 6763 md = m0; 6764 pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6765 if (md != NULL) 6766 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 6767 } 6768 else { 6769 in6_ifstat_inc(ifp, ifs6_in_toobig); 6770 if (r->rt != PF_DUPTO) { 6771 if (s && pd->nat_rule != NULL) 6772 PACKET_UNDO_NAT(m0, pd, 6773 ((caddr_t)ip6 - m0->m_data) + 6774 sizeof(struct ip6_hdr), s, dir); 6775 6776 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6777 } else 6778 goto bad; 6779 } 6780 6781 done: 6782 if (r->rt != PF_DUPTO) 6783 *m = NULL; 6784 return; 6785 6786 bad_locked: 6787 if (s) 6788 PF_STATE_UNLOCK(s); 6789 bad: 6790 m_freem(m0); 6791 goto done; 6792 } 6793 #endif /* INET6 */ 6794 6795 /* 6796 * FreeBSD supports cksum offloads for the following drivers. 6797 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6798 * 6799 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6800 * network driver performed cksum including pseudo header, need to verify 6801 * csum_data 6802 * CSUM_DATA_VALID : 6803 * network driver performed cksum, needs to additional pseudo header 6804 * cksum computation with partial csum_data(i.e. lack of H/W support for 6805 * pseudo header, for instance sk(4) and possibly gem(4)) 6806 * 6807 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6808 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6809 * TCP/UDP layer. 6810 * Also, set csum_data to 0xffff to force cksum validation. 6811 */ 6812 static int 6813 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6814 { 6815 u_int16_t sum = 0; 6816 int hw_assist = 0; 6817 struct ip *ip; 6818 6819 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6820 return (1); 6821 if (m->m_pkthdr.len < off + len) 6822 return (1); 6823 6824 switch (p) { 6825 case IPPROTO_TCP: 6826 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6827 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6828 sum = m->m_pkthdr.csum_data; 6829 } else { 6830 ip = mtod(m, struct ip *); 6831 sum = in_pseudo(ip->ip_src.s_addr, 6832 ip->ip_dst.s_addr, htonl((u_short)len + 6833 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6834 } 6835 sum ^= 0xffff; 6836 ++hw_assist; 6837 } 6838 break; 6839 case IPPROTO_UDP: 6840 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6841 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6842 sum = m->m_pkthdr.csum_data; 6843 } else { 6844 ip = mtod(m, struct ip *); 6845 sum = in_pseudo(ip->ip_src.s_addr, 6846 ip->ip_dst.s_addr, htonl((u_short)len + 6847 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6848 } 6849 sum ^= 0xffff; 6850 ++hw_assist; 6851 } 6852 break; 6853 case IPPROTO_ICMP: 6854 #ifdef INET6 6855 case IPPROTO_ICMPV6: 6856 #endif /* INET6 */ 6857 break; 6858 default: 6859 return (1); 6860 } 6861 6862 if (!hw_assist) { 6863 switch (af) { 6864 case AF_INET: 6865 if (p == IPPROTO_ICMP) { 6866 if (m->m_len < off) 6867 return (1); 6868 m->m_data += off; 6869 m->m_len -= off; 6870 sum = in_cksum(m, len); 6871 m->m_data -= off; 6872 m->m_len += off; 6873 } else { 6874 if (m->m_len < sizeof(struct ip)) 6875 return (1); 6876 sum = in4_cksum(m, p, off, len); 6877 } 6878 break; 6879 #ifdef INET6 6880 case AF_INET6: 6881 if (m->m_len < sizeof(struct ip6_hdr)) 6882 return (1); 6883 sum = in6_cksum(m, p, off, len); 6884 break; 6885 #endif /* INET6 */ 6886 default: 6887 return (1); 6888 } 6889 } 6890 if (sum) { 6891 switch (p) { 6892 case IPPROTO_TCP: 6893 { 6894 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6895 break; 6896 } 6897 case IPPROTO_UDP: 6898 { 6899 KMOD_UDPSTAT_INC(udps_badsum); 6900 break; 6901 } 6902 #ifdef INET 6903 case IPPROTO_ICMP: 6904 { 6905 KMOD_ICMPSTAT_INC(icps_checksum); 6906 break; 6907 } 6908 #endif 6909 #ifdef INET6 6910 case IPPROTO_ICMPV6: 6911 { 6912 KMOD_ICMP6STAT_INC(icp6s_checksum); 6913 break; 6914 } 6915 #endif /* INET6 */ 6916 } 6917 return (1); 6918 } else { 6919 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6920 m->m_pkthdr.csum_flags |= 6921 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6922 m->m_pkthdr.csum_data = 0xffff; 6923 } 6924 } 6925 return (0); 6926 } 6927 6928 static bool 6929 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6930 const struct pf_krule *r, const struct pf_kstate *s, 6931 struct ip_fw_args *dnflow) 6932 { 6933 int dndir = r->direction; 6934 6935 if (s && dndir == PF_INOUT) { 6936 dndir = s->direction; 6937 } else if (dndir == PF_INOUT) { 6938 /* Assume primary direction. Happens when we've set dnpipe in 6939 * the ethernet level code. */ 6940 dndir = dir; 6941 } 6942 6943 memset(dnflow, 0, sizeof(*dnflow)); 6944 6945 if (pd->dport != NULL) 6946 dnflow->f_id.dst_port = ntohs(*pd->dport); 6947 if (pd->sport != NULL) 6948 dnflow->f_id.src_port = ntohs(*pd->sport); 6949 6950 if (dir == PF_IN) 6951 dnflow->flags |= IPFW_ARGS_IN; 6952 else 6953 dnflow->flags |= IPFW_ARGS_OUT; 6954 6955 if (dir != dndir && pd->act.dnrpipe) { 6956 dnflow->rule.info = pd->act.dnrpipe; 6957 } 6958 else if (dir == dndir && pd->act.dnpipe) { 6959 dnflow->rule.info = pd->act.dnpipe; 6960 } 6961 else { 6962 return (false); 6963 } 6964 6965 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6966 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 6967 dnflow->rule.info |= IPFW_IS_PIPE; 6968 6969 dnflow->f_id.proto = pd->proto; 6970 dnflow->f_id.extra = dnflow->rule.info; 6971 switch (pd->af) { 6972 case AF_INET: 6973 dnflow->f_id.addr_type = 4; 6974 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6975 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6976 break; 6977 case AF_INET6: 6978 dnflow->flags |= IPFW_ARGS_IP6; 6979 dnflow->f_id.addr_type = 6; 6980 dnflow->f_id.src_ip6 = pd->src->v6; 6981 dnflow->f_id.dst_ip6 = pd->dst->v6; 6982 break; 6983 default: 6984 panic("Invalid AF"); 6985 break; 6986 } 6987 6988 return (true); 6989 } 6990 6991 int 6992 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 6993 struct inpcb *inp) 6994 { 6995 struct pfi_kkif *kif; 6996 struct mbuf *m = *m0; 6997 6998 M_ASSERTPKTHDR(m); 6999 MPASS(ifp->if_vnet == curvnet); 7000 NET_EPOCH_ASSERT(); 7001 7002 if (!V_pf_status.running) 7003 return (PF_PASS); 7004 7005 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7006 7007 if (kif == NULL) { 7008 DPFPRINTF(PF_DEBUG_URGENT, 7009 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7010 return (PF_DROP); 7011 } 7012 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7013 return (PF_PASS); 7014 7015 if (m->m_flags & M_SKIP_FIREWALL) 7016 return (PF_PASS); 7017 7018 /* Stateless! */ 7019 return (pf_test_eth_rule(dir, kif, m0)); 7020 } 7021 7022 static int 7023 pf_dummynet(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 7024 struct pf_krule *r, struct mbuf **m0) 7025 { 7026 return (pf_dummynet_route(pd, dir, s, r, NULL, NULL, m0)); 7027 } 7028 7029 static int 7030 pf_dummynet_route(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 7031 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7032 struct mbuf **m0) 7033 { 7034 NET_EPOCH_ASSERT(); 7035 7036 if (s && (s->dnpipe || s->dnrpipe)) { 7037 pd->act.dnpipe = s->dnpipe; 7038 pd->act.dnrpipe = s->dnrpipe; 7039 pd->act.flags = s->state_flags; 7040 } else if (r->dnpipe || r->dnrpipe) { 7041 pd->act.dnpipe = r->dnpipe; 7042 pd->act.dnrpipe = r->dnrpipe; 7043 pd->act.flags = r->free_flags; 7044 } 7045 if (pd->act.dnpipe || pd->act.dnrpipe) { 7046 struct ip_fw_args dnflow; 7047 if (ip_dn_io_ptr == NULL) { 7048 m_freem(*m0); 7049 *m0 = NULL; 7050 return (ENOMEM); 7051 } 7052 7053 if (pd->pf_mtag == NULL && 7054 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7055 m_freem(*m0); 7056 *m0 = NULL; 7057 return (ENOMEM); 7058 } 7059 7060 if (ifp != NULL) { 7061 pd->pf_mtag->flags |= PF_TAG_ROUTE_TO; 7062 7063 pd->pf_mtag->if_index = ifp->if_index; 7064 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7065 7066 MPASS(sa != NULL); 7067 7068 if (pd->af == AF_INET) 7069 memcpy(&pd->pf_mtag->dst, sa, 7070 sizeof(struct sockaddr_in)); 7071 else 7072 memcpy(&pd->pf_mtag->dst, sa, 7073 sizeof(struct sockaddr_in6)); 7074 } 7075 7076 if (pf_pdesc_to_dnflow(dir, pd, r, s, &dnflow)) { 7077 pd->pf_mtag->flags |= PF_TAG_DUMMYNET; 7078 ip_dn_io_ptr(m0, &dnflow); 7079 if (*m0 != NULL) 7080 pd->pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7081 } 7082 } 7083 7084 return (0); 7085 } 7086 7087 #ifdef INET 7088 int 7089 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7090 { 7091 struct pfi_kkif *kif; 7092 u_short action, reason = 0, log = 0; 7093 struct mbuf *m = *m0; 7094 struct ip *h = NULL; 7095 struct m_tag *ipfwtag; 7096 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7097 struct pf_kstate *s = NULL; 7098 struct pf_kruleset *ruleset = NULL; 7099 struct pf_pdesc pd; 7100 int off, dirndx, pqid = 0; 7101 7102 PF_RULES_RLOCK_TRACKER; 7103 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7104 M_ASSERTPKTHDR(m); 7105 7106 if (!V_pf_status.running) 7107 return (PF_PASS); 7108 7109 PF_RULES_RLOCK(); 7110 7111 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7112 7113 if (__predict_false(kif == NULL)) { 7114 DPFPRINTF(PF_DEBUG_URGENT, 7115 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7116 PF_RULES_RUNLOCK(); 7117 return (PF_DROP); 7118 } 7119 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7120 PF_RULES_RUNLOCK(); 7121 return (PF_PASS); 7122 } 7123 7124 if (m->m_flags & M_SKIP_FIREWALL) { 7125 PF_RULES_RUNLOCK(); 7126 return (PF_PASS); 7127 } 7128 7129 memset(&pd, 0, sizeof(pd)); 7130 pd.pf_mtag = pf_find_mtag(m); 7131 7132 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7133 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7134 7135 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7136 pd.pf_mtag->if_idxgen); 7137 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7138 PF_RULES_RUNLOCK(); 7139 m_freem(*m0); 7140 *m0 = NULL; 7141 return (PF_PASS); 7142 } 7143 PF_RULES_RUNLOCK(); 7144 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7145 *m0 = NULL; 7146 return (PF_PASS); 7147 } 7148 7149 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7150 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7151 pd.act.flags = pd.pf_mtag->dnflags; 7152 } 7153 7154 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7155 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7156 /* Dummynet re-injects packets after they've 7157 * completed their delay. We've already 7158 * processed them, so pass unconditionally. */ 7159 7160 /* But only once. We may see the packet multiple times (e.g. 7161 * PFIL_IN/PFIL_OUT). */ 7162 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7163 PF_RULES_RUNLOCK(); 7164 7165 return (PF_PASS); 7166 } 7167 7168 if (__predict_false(ip_divert_ptr != NULL) && 7169 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7170 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7171 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7172 if (pd.pf_mtag == NULL && 7173 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7174 action = PF_DROP; 7175 goto done; 7176 } 7177 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 7178 m_tag_delete(m, ipfwtag); 7179 } 7180 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 7181 m->m_flags |= M_FASTFWD_OURS; 7182 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 7183 } 7184 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 7185 /* We do IP header normalization and packet reassembly here */ 7186 action = PF_DROP; 7187 goto done; 7188 } 7189 m = *m0; /* pf_normalize messes with m0 */ 7190 h = mtod(m, struct ip *); 7191 7192 off = h->ip_hl << 2; 7193 if (off < (int)sizeof(struct ip)) { 7194 action = PF_DROP; 7195 REASON_SET(&reason, PFRES_SHORT); 7196 log = PF_LOG_FORCE; 7197 goto done; 7198 } 7199 7200 pd.src = (struct pf_addr *)&h->ip_src; 7201 pd.dst = (struct pf_addr *)&h->ip_dst; 7202 pd.sport = pd.dport = NULL; 7203 pd.ip_sum = &h->ip_sum; 7204 pd.proto_sum = NULL; 7205 pd.proto = h->ip_p; 7206 pd.dir = dir; 7207 pd.sidx = (dir == PF_IN) ? 0 : 1; 7208 pd.didx = (dir == PF_IN) ? 1 : 0; 7209 pd.af = AF_INET; 7210 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7211 pd.tot_len = ntohs(h->ip_len); 7212 pd.act.rtableid = -1; 7213 7214 /* handle fragments that didn't get reassembled by normalization */ 7215 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7216 action = pf_test_fragment(&r, dir, kif, m, h, 7217 &pd, &a, &ruleset); 7218 goto done; 7219 } 7220 7221 switch (h->ip_p) { 7222 case IPPROTO_TCP: { 7223 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7224 &action, &reason, AF_INET)) { 7225 if (action != PF_PASS) 7226 log = PF_LOG_FORCE; 7227 goto done; 7228 } 7229 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7230 7231 pd.sport = &pd.hdr.tcp.th_sport; 7232 pd.dport = &pd.hdr.tcp.th_dport; 7233 7234 /* Respond to SYN with a syncookie. */ 7235 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7236 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7237 pf_syncookie_send(m, off, &pd); 7238 action = PF_DROP; 7239 break; 7240 } 7241 7242 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7243 pqid = 1; 7244 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7245 if (action == PF_DROP) 7246 goto done; 7247 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7248 &reason); 7249 if (action == PF_PASS) { 7250 if (V_pfsync_update_state_ptr != NULL) 7251 V_pfsync_update_state_ptr(s); 7252 r = s->rule.ptr; 7253 a = s->anchor.ptr; 7254 log = s->log; 7255 } else if (s == NULL) { 7256 /* Validate remote SYN|ACK, re-create original SYN if 7257 * valid. */ 7258 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7259 TH_ACK && pf_syncookie_validate(&pd) && 7260 pd.dir == PF_IN) { 7261 struct mbuf *msyn; 7262 7263 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 7264 off,&pd); 7265 if (msyn == NULL) { 7266 action = PF_DROP; 7267 break; 7268 } 7269 7270 action = pf_test(dir, pflags, ifp, &msyn, inp); 7271 m_freem(msyn); 7272 7273 if (action == PF_PASS) { 7274 action = pf_test_state_tcp(&s, dir, 7275 kif, m, off, h, &pd, &reason); 7276 if (action != PF_PASS || s == NULL) { 7277 action = PF_DROP; 7278 break; 7279 } 7280 7281 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 7282 - 1; 7283 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 7284 - 1; 7285 pf_set_protostate(s, PF_PEER_SRC, 7286 PF_TCPS_PROXY_DST); 7287 7288 action = pf_synproxy(&pd, &s, &reason); 7289 if (action != PF_PASS) 7290 break; 7291 } 7292 break; 7293 } 7294 else { 7295 action = pf_test_rule(&r, &s, dir, kif, m, off, 7296 &pd, &a, &ruleset, inp); 7297 } 7298 } 7299 if (s) { 7300 if (s->max_mss) 7301 pf_normalize_mss(m, off, &pd, s->max_mss); 7302 } else if (r->max_mss) 7303 pf_normalize_mss(m, off, &pd, r->max_mss); 7304 break; 7305 } 7306 7307 case IPPROTO_UDP: { 7308 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7309 &action, &reason, AF_INET)) { 7310 if (action != PF_PASS) 7311 log = PF_LOG_FORCE; 7312 goto done; 7313 } 7314 pd.sport = &pd.hdr.udp.uh_sport; 7315 pd.dport = &pd.hdr.udp.uh_dport; 7316 if (pd.hdr.udp.uh_dport == 0 || 7317 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7318 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7319 action = PF_DROP; 7320 REASON_SET(&reason, PFRES_SHORT); 7321 goto done; 7322 } 7323 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7324 if (action == PF_PASS) { 7325 if (V_pfsync_update_state_ptr != NULL) 7326 V_pfsync_update_state_ptr(s); 7327 r = s->rule.ptr; 7328 a = s->anchor.ptr; 7329 log = s->log; 7330 } else if (s == NULL) 7331 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7332 &a, &ruleset, inp); 7333 break; 7334 } 7335 7336 case IPPROTO_ICMP: { 7337 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7338 &action, &reason, AF_INET)) { 7339 if (action != PF_PASS) 7340 log = PF_LOG_FORCE; 7341 goto done; 7342 } 7343 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 7344 &reason); 7345 if (action == PF_PASS) { 7346 if (V_pfsync_update_state_ptr != NULL) 7347 V_pfsync_update_state_ptr(s); 7348 r = s->rule.ptr; 7349 a = s->anchor.ptr; 7350 log = s->log; 7351 } else if (s == NULL) 7352 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7353 &a, &ruleset, inp); 7354 break; 7355 } 7356 7357 #ifdef INET6 7358 case IPPROTO_ICMPV6: { 7359 action = PF_DROP; 7360 DPFPRINTF(PF_DEBUG_MISC, 7361 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7362 goto done; 7363 } 7364 #endif 7365 7366 default: 7367 action = pf_test_state_other(&s, dir, kif, m, &pd); 7368 if (action == PF_PASS) { 7369 if (V_pfsync_update_state_ptr != NULL) 7370 V_pfsync_update_state_ptr(s); 7371 r = s->rule.ptr; 7372 a = s->anchor.ptr; 7373 log = s->log; 7374 } else if (s == NULL) 7375 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7376 &a, &ruleset, inp); 7377 break; 7378 } 7379 7380 done: 7381 PF_RULES_RUNLOCK(); 7382 if (action == PF_PASS && h->ip_hl > 5 && 7383 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7384 action = PF_DROP; 7385 REASON_SET(&reason, PFRES_IPOPTIONS); 7386 log = PF_LOG_FORCE; 7387 DPFPRINTF(PF_DEBUG_MISC, 7388 ("pf: dropping packet with ip options\n")); 7389 } 7390 7391 if (s) { 7392 pf_scrub_ip(&m, s->state_flags, s->min_ttl, s->set_tos); 7393 if (s->rtableid >= 0) 7394 M_SETFIB(m, s->rtableid); 7395 #ifdef ALTQ 7396 if (s->qid) { 7397 pd.act.pqid = s->pqid; 7398 pd.act.qid = s->qid; 7399 } 7400 #endif 7401 } else { 7402 pf_scrub_ip(&m, r->scrub_flags, r->min_ttl, r->set_tos); 7403 if (r->rtableid >= 0) 7404 M_SETFIB(m, r->rtableid); 7405 #ifdef ALTQ 7406 if (r->qid) { 7407 pd.act.pqid = r->pqid; 7408 pd.act.qid = r->qid; 7409 } 7410 #endif 7411 } 7412 7413 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7414 action = PF_DROP; 7415 REASON_SET(&reason, PFRES_MEMORY); 7416 } 7417 7418 if (r->scrub_flags & PFSTATE_SETPRIO) { 7419 if (pd.tos & IPTOS_LOWDELAY) 7420 pqid = 1; 7421 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7422 action = PF_DROP; 7423 REASON_SET(&reason, PFRES_MEMORY); 7424 log = PF_LOG_FORCE; 7425 DPFPRINTF(PF_DEBUG_MISC, 7426 ("pf: failed to allocate 802.1q mtag\n")); 7427 } 7428 } 7429 7430 #ifdef ALTQ 7431 if (action == PF_PASS && pd.act.qid) { 7432 if (pd.pf_mtag == NULL && 7433 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7434 action = PF_DROP; 7435 REASON_SET(&reason, PFRES_MEMORY); 7436 } else { 7437 if (s != NULL) 7438 pd.pf_mtag->qid_hash = pf_state_hash(s); 7439 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 7440 pd.pf_mtag->qid = pd.act.pqid; 7441 else 7442 pd.pf_mtag->qid = pd.act.qid; 7443 /* Add hints for ecn. */ 7444 pd.pf_mtag->hdr = h; 7445 } 7446 } 7447 #endif /* ALTQ */ 7448 7449 /* 7450 * connections redirected to loopback should not match sockets 7451 * bound specifically to loopback due to security implications, 7452 * see tcp_input() and in_pcblookup_listen(). 7453 */ 7454 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7455 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7456 (s->nat_rule.ptr->action == PF_RDR || 7457 s->nat_rule.ptr->action == PF_BINAT) && 7458 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7459 m->m_flags |= M_SKIP_FIREWALL; 7460 7461 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7462 r->divert.port && !PACKET_LOOPED(&pd)) { 7463 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7464 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7465 if (ipfwtag != NULL) { 7466 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7467 ntohs(r->divert.port); 7468 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7469 7470 if (s) 7471 PF_STATE_UNLOCK(s); 7472 7473 m_tag_prepend(m, ipfwtag); 7474 if (m->m_flags & M_FASTFWD_OURS) { 7475 if (pd.pf_mtag == NULL && 7476 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7477 action = PF_DROP; 7478 REASON_SET(&reason, PFRES_MEMORY); 7479 log = PF_LOG_FORCE; 7480 DPFPRINTF(PF_DEBUG_MISC, 7481 ("pf: failed to allocate tag\n")); 7482 } else { 7483 pd.pf_mtag->flags |= 7484 PF_FASTFWD_OURS_PRESENT; 7485 m->m_flags &= ~M_FASTFWD_OURS; 7486 } 7487 } 7488 ip_divert_ptr(*m0, dir == PF_IN); 7489 *m0 = NULL; 7490 7491 return (action); 7492 } else { 7493 /* XXX: ipfw has the same behaviour! */ 7494 action = PF_DROP; 7495 REASON_SET(&reason, PFRES_MEMORY); 7496 log = PF_LOG_FORCE; 7497 DPFPRINTF(PF_DEBUG_MISC, 7498 ("pf: failed to allocate divert tag\n")); 7499 } 7500 } 7501 7502 if (log) { 7503 struct pf_krule *lr; 7504 struct pf_krule_item *ri; 7505 7506 if (s != NULL && s->nat_rule.ptr != NULL && 7507 s->nat_rule.ptr->log & PF_LOG_ALL) 7508 lr = s->nat_rule.ptr; 7509 else 7510 lr = r; 7511 7512 if (log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 7513 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, 7514 ruleset, &pd, (s == NULL)); 7515 if (s) { 7516 SLIST_FOREACH(ri, &s->match_rules, entry) 7517 if (ri->r->log & PF_LOG_ALL) 7518 PFLOG_PACKET(kif, m, AF_INET, dir, 7519 reason, ri->r, a, ruleset, &pd, 0); 7520 } 7521 } 7522 7523 pf_counter_u64_critical_enter(); 7524 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7525 pd.tot_len); 7526 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7527 1); 7528 7529 if (action == PF_PASS || r->action == PF_DROP) { 7530 dirndx = (dir == PF_OUT); 7531 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7532 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7533 pf_update_timestamp(r); 7534 7535 if (a != NULL) { 7536 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7537 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7538 } 7539 if (s != NULL) { 7540 struct pf_krule_item *ri; 7541 7542 if (s->nat_rule.ptr != NULL) { 7543 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7544 1); 7545 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7546 pd.tot_len); 7547 } 7548 if (s->src_node != NULL) { 7549 counter_u64_add(s->src_node->packets[dirndx], 7550 1); 7551 counter_u64_add(s->src_node->bytes[dirndx], 7552 pd.tot_len); 7553 } 7554 if (s->nat_src_node != NULL) { 7555 counter_u64_add(s->nat_src_node->packets[dirndx], 7556 1); 7557 counter_u64_add(s->nat_src_node->bytes[dirndx], 7558 pd.tot_len); 7559 } 7560 dirndx = (dir == s->direction) ? 0 : 1; 7561 s->packets[dirndx]++; 7562 s->bytes[dirndx] += pd.tot_len; 7563 SLIST_FOREACH(ri, &s->match_rules, entry) { 7564 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 7565 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 7566 } 7567 } 7568 tr = r; 7569 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7570 if (nr != NULL && r == &V_pf_default_rule) 7571 tr = nr; 7572 if (tr->src.addr.type == PF_ADDR_TABLE) 7573 pfr_update_stats(tr->src.addr.p.tbl, 7574 (s == NULL) ? pd.src : 7575 &s->key[(s->direction == PF_IN)]-> 7576 addr[(s->direction == PF_OUT)], 7577 pd.af, pd.tot_len, dir == PF_OUT, 7578 r->action == PF_PASS, tr->src.neg); 7579 if (tr->dst.addr.type == PF_ADDR_TABLE) 7580 pfr_update_stats(tr->dst.addr.p.tbl, 7581 (s == NULL) ? pd.dst : 7582 &s->key[(s->direction == PF_IN)]-> 7583 addr[(s->direction == PF_IN)], 7584 pd.af, pd.tot_len, dir == PF_OUT, 7585 r->action == PF_PASS, tr->dst.neg); 7586 } 7587 pf_counter_u64_critical_exit(); 7588 7589 switch (action) { 7590 case PF_SYNPROXY_DROP: 7591 m_freem(*m0); 7592 case PF_DEFER: 7593 *m0 = NULL; 7594 action = PF_PASS; 7595 break; 7596 case PF_DROP: 7597 m_freem(*m0); 7598 *m0 = NULL; 7599 break; 7600 default: 7601 /* pf_route() returns unlocked. */ 7602 if (r->rt) { 7603 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7604 return (action); 7605 } 7606 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7607 action = PF_DROP; 7608 REASON_SET(&reason, PFRES_MEMORY); 7609 } 7610 break; 7611 } 7612 7613 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7614 7615 if (s) 7616 PF_STATE_UNLOCK(s); 7617 7618 return (action); 7619 } 7620 #endif /* INET */ 7621 7622 #ifdef INET6 7623 int 7624 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7625 { 7626 struct pfi_kkif *kif; 7627 u_short action, reason = 0, log = 0; 7628 struct mbuf *m = *m0, *n = NULL; 7629 struct m_tag *mtag; 7630 struct ip6_hdr *h = NULL; 7631 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7632 struct pf_kstate *s = NULL; 7633 struct pf_kruleset *ruleset = NULL; 7634 struct pf_pdesc pd; 7635 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 7636 7637 PF_RULES_RLOCK_TRACKER; 7638 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7639 M_ASSERTPKTHDR(m); 7640 7641 if (!V_pf_status.running) 7642 return (PF_PASS); 7643 7644 PF_RULES_RLOCK(); 7645 7646 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7647 if (__predict_false(kif == NULL)) { 7648 DPFPRINTF(PF_DEBUG_URGENT, 7649 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7650 PF_RULES_RUNLOCK(); 7651 return (PF_DROP); 7652 } 7653 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7654 PF_RULES_RUNLOCK(); 7655 return (PF_PASS); 7656 } 7657 7658 if (m->m_flags & M_SKIP_FIREWALL) { 7659 PF_RULES_RUNLOCK(); 7660 return (PF_PASS); 7661 } 7662 7663 memset(&pd, 0, sizeof(pd)); 7664 pd.pf_mtag = pf_find_mtag(m); 7665 7666 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7667 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7668 7669 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7670 pd.pf_mtag->if_idxgen); 7671 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7672 PF_RULES_RUNLOCK(); 7673 m_freem(*m0); 7674 *m0 = NULL; 7675 return (PF_PASS); 7676 } 7677 PF_RULES_RUNLOCK(); 7678 nd6_output_ifp(ifp, ifp, m, 7679 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7680 *m0 = NULL; 7681 return (PF_PASS); 7682 } 7683 7684 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7685 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7686 pd.act.flags = pd.pf_mtag->dnflags; 7687 } 7688 7689 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7690 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7691 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7692 /* Dummynet re-injects packets after they've 7693 * completed their delay. We've already 7694 * processed them, so pass unconditionally. */ 7695 PF_RULES_RUNLOCK(); 7696 return (PF_PASS); 7697 } 7698 7699 /* We do IP header normalization and packet reassembly here */ 7700 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 7701 action = PF_DROP; 7702 goto done; 7703 } 7704 m = *m0; /* pf_normalize messes with m0 */ 7705 h = mtod(m, struct ip6_hdr *); 7706 7707 /* 7708 * we do not support jumbogram. if we keep going, zero ip6_plen 7709 * will do something bad, so drop the packet for now. 7710 */ 7711 if (htons(h->ip6_plen) == 0) { 7712 action = PF_DROP; 7713 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7714 goto done; 7715 } 7716 7717 pd.src = (struct pf_addr *)&h->ip6_src; 7718 pd.dst = (struct pf_addr *)&h->ip6_dst; 7719 pd.sport = pd.dport = NULL; 7720 pd.ip_sum = NULL; 7721 pd.proto_sum = NULL; 7722 pd.dir = dir; 7723 pd.sidx = (dir == PF_IN) ? 0 : 1; 7724 pd.didx = (dir == PF_IN) ? 1 : 0; 7725 pd.af = AF_INET6; 7726 pd.tos = IPV6_DSCP(h); 7727 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7728 pd.act.rtableid = -1; 7729 7730 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7731 pd.proto = h->ip6_nxt; 7732 do { 7733 switch (pd.proto) { 7734 case IPPROTO_FRAGMENT: 7735 action = pf_test_fragment(&r, dir, kif, m, h, 7736 &pd, &a, &ruleset); 7737 if (action == PF_DROP) 7738 REASON_SET(&reason, PFRES_FRAG); 7739 goto done; 7740 case IPPROTO_ROUTING: { 7741 struct ip6_rthdr rthdr; 7742 7743 if (rh_cnt++) { 7744 DPFPRINTF(PF_DEBUG_MISC, 7745 ("pf: IPv6 more than one rthdr\n")); 7746 action = PF_DROP; 7747 REASON_SET(&reason, PFRES_IPOPTIONS); 7748 log = PF_LOG_FORCE; 7749 goto done; 7750 } 7751 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7752 &reason, pd.af)) { 7753 DPFPRINTF(PF_DEBUG_MISC, 7754 ("pf: IPv6 short rthdr\n")); 7755 action = PF_DROP; 7756 REASON_SET(&reason, PFRES_SHORT); 7757 log = PF_LOG_FORCE; 7758 goto done; 7759 } 7760 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7761 DPFPRINTF(PF_DEBUG_MISC, 7762 ("pf: IPv6 rthdr0\n")); 7763 action = PF_DROP; 7764 REASON_SET(&reason, PFRES_IPOPTIONS); 7765 log = PF_LOG_FORCE; 7766 goto done; 7767 } 7768 /* FALLTHROUGH */ 7769 } 7770 case IPPROTO_AH: 7771 case IPPROTO_HOPOPTS: 7772 case IPPROTO_DSTOPTS: { 7773 /* get next header and header length */ 7774 struct ip6_ext opt6; 7775 7776 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7777 NULL, &reason, pd.af)) { 7778 DPFPRINTF(PF_DEBUG_MISC, 7779 ("pf: IPv6 short opt\n")); 7780 action = PF_DROP; 7781 log = PF_LOG_FORCE; 7782 goto done; 7783 } 7784 if (pd.proto == IPPROTO_AH) 7785 off += (opt6.ip6e_len + 2) * 4; 7786 else 7787 off += (opt6.ip6e_len + 1) * 8; 7788 pd.proto = opt6.ip6e_nxt; 7789 /* goto the next header */ 7790 break; 7791 } 7792 default: 7793 terminal++; 7794 break; 7795 } 7796 } while (!terminal); 7797 7798 /* if there's no routing header, use unmodified mbuf for checksumming */ 7799 if (!n) 7800 n = m; 7801 7802 switch (pd.proto) { 7803 case IPPROTO_TCP: { 7804 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7805 &action, &reason, AF_INET6)) { 7806 if (action != PF_PASS) 7807 log |= PF_LOG_FORCE; 7808 goto done; 7809 } 7810 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7811 pd.sport = &pd.hdr.tcp.th_sport; 7812 pd.dport = &pd.hdr.tcp.th_dport; 7813 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7814 if (action == PF_DROP) 7815 goto done; 7816 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7817 &reason); 7818 if (action == PF_PASS) { 7819 if (V_pfsync_update_state_ptr != NULL) 7820 V_pfsync_update_state_ptr(s); 7821 r = s->rule.ptr; 7822 a = s->anchor.ptr; 7823 log = s->log; 7824 } else if (s == NULL) 7825 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7826 &a, &ruleset, inp); 7827 if (s) { 7828 if (s->max_mss) 7829 pf_normalize_mss(m, off, &pd, s->max_mss); 7830 } else if (r->max_mss) 7831 pf_normalize_mss(m, off, &pd, r->max_mss); 7832 break; 7833 } 7834 7835 case IPPROTO_UDP: { 7836 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7837 &action, &reason, AF_INET6)) { 7838 if (action != PF_PASS) 7839 log |= PF_LOG_FORCE; 7840 goto done; 7841 } 7842 pd.sport = &pd.hdr.udp.uh_sport; 7843 pd.dport = &pd.hdr.udp.uh_dport; 7844 if (pd.hdr.udp.uh_dport == 0 || 7845 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7846 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7847 action = PF_DROP; 7848 REASON_SET(&reason, PFRES_SHORT); 7849 goto done; 7850 } 7851 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7852 if (action == PF_PASS) { 7853 if (V_pfsync_update_state_ptr != NULL) 7854 V_pfsync_update_state_ptr(s); 7855 r = s->rule.ptr; 7856 a = s->anchor.ptr; 7857 log = s->log; 7858 } else if (s == NULL) 7859 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7860 &a, &ruleset, inp); 7861 break; 7862 } 7863 7864 case IPPROTO_ICMP: { 7865 action = PF_DROP; 7866 DPFPRINTF(PF_DEBUG_MISC, 7867 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7868 goto done; 7869 } 7870 7871 case IPPROTO_ICMPV6: { 7872 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7873 &action, &reason, AF_INET6)) { 7874 if (action != PF_PASS) 7875 log |= PF_LOG_FORCE; 7876 goto done; 7877 } 7878 action = pf_test_state_icmp(&s, dir, kif, 7879 m, off, h, &pd, &reason); 7880 if (action == PF_PASS) { 7881 if (V_pfsync_update_state_ptr != NULL) 7882 V_pfsync_update_state_ptr(s); 7883 r = s->rule.ptr; 7884 a = s->anchor.ptr; 7885 log = s->log; 7886 } else if (s == NULL) 7887 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7888 &a, &ruleset, inp); 7889 break; 7890 } 7891 7892 default: 7893 action = pf_test_state_other(&s, dir, kif, m, &pd); 7894 if (action == PF_PASS) { 7895 if (V_pfsync_update_state_ptr != NULL) 7896 V_pfsync_update_state_ptr(s); 7897 r = s->rule.ptr; 7898 a = s->anchor.ptr; 7899 log = s->log; 7900 } else if (s == NULL) 7901 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7902 &a, &ruleset, inp); 7903 break; 7904 } 7905 7906 done: 7907 PF_RULES_RUNLOCK(); 7908 if (n != m) { 7909 m_freem(n); 7910 n = NULL; 7911 } 7912 7913 /* handle dangerous IPv6 extension headers. */ 7914 if (action == PF_PASS && rh_cnt && 7915 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7916 action = PF_DROP; 7917 REASON_SET(&reason, PFRES_IPOPTIONS); 7918 log = r->log; 7919 DPFPRINTF(PF_DEBUG_MISC, 7920 ("pf: dropping packet with dangerous v6 headers\n")); 7921 } 7922 7923 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7924 action = PF_DROP; 7925 REASON_SET(&reason, PFRES_MEMORY); 7926 } 7927 7928 if (s) { 7929 pf_scrub_ip6(&m, s->state_flags, s->min_ttl, s->set_tos); 7930 if (s->rtableid >= 0) 7931 M_SETFIB(m, s->rtableid); 7932 #ifdef ALTQ 7933 if (s->qid) { 7934 pd.act.pqid = s->pqid; 7935 pd.act.qid = s->qid; 7936 } 7937 #endif 7938 } else { 7939 pf_scrub_ip6(&m, r->scrub_flags, r->min_ttl, r->set_tos); 7940 if (r->rtableid >= 0) 7941 M_SETFIB(m, r->rtableid); 7942 #ifdef ALTQ 7943 if (r->qid) { 7944 pd.act.pqid = r->pqid; 7945 pd.act.qid = r->qid; 7946 } 7947 #endif 7948 } 7949 7950 if (r->scrub_flags & PFSTATE_SETPRIO) { 7951 if (pd.tos & IPTOS_LOWDELAY) 7952 pqid = 1; 7953 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7954 action = PF_DROP; 7955 REASON_SET(&reason, PFRES_MEMORY); 7956 log = PF_LOG_FORCE; 7957 DPFPRINTF(PF_DEBUG_MISC, 7958 ("pf: failed to allocate 802.1q mtag\n")); 7959 } 7960 } 7961 7962 #ifdef ALTQ 7963 if (action == PF_PASS && pd.act.qid) { 7964 if (pd.pf_mtag == NULL && 7965 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7966 action = PF_DROP; 7967 REASON_SET(&reason, PFRES_MEMORY); 7968 } else { 7969 if (s != NULL) 7970 pd.pf_mtag->qid_hash = pf_state_hash(s); 7971 if (pd.tos & IPTOS_LOWDELAY) 7972 pd.pf_mtag->qid = pd.act.pqid; 7973 else 7974 pd.pf_mtag->qid = pd.act.qid; 7975 /* Add hints for ecn. */ 7976 pd.pf_mtag->hdr = h; 7977 } 7978 } 7979 #endif /* ALTQ */ 7980 7981 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7982 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7983 (s->nat_rule.ptr->action == PF_RDR || 7984 s->nat_rule.ptr->action == PF_BINAT) && 7985 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7986 m->m_flags |= M_SKIP_FIREWALL; 7987 7988 /* XXX: Anybody working on it?! */ 7989 if (r->divert.port) 7990 printf("pf: divert(9) is not supported for IPv6\n"); 7991 7992 if (log) { 7993 struct pf_krule *lr; 7994 struct pf_krule_item *ri; 7995 7996 if (s != NULL && s->nat_rule.ptr != NULL && 7997 s->nat_rule.ptr->log & PF_LOG_ALL) 7998 lr = s->nat_rule.ptr; 7999 else 8000 lr = r; 8001 8002 if (log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8003 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, 8004 ruleset, &pd, (s == NULL)); 8005 if (s) { 8006 SLIST_FOREACH(ri, &s->match_rules, entry) 8007 if (ri->r->log & PF_LOG_ALL) 8008 PFLOG_PACKET(kif, m, AF_INET6, dir, 8009 reason, ri->r, a, ruleset, &pd, 0); 8010 } 8011 } 8012 8013 pf_counter_u64_critical_enter(); 8014 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 8015 pd.tot_len); 8016 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 8017 1); 8018 8019 if (action == PF_PASS || r->action == PF_DROP) { 8020 dirndx = (dir == PF_OUT); 8021 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8022 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8023 if (a != NULL) { 8024 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8025 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8026 } 8027 if (s != NULL) { 8028 if (s->nat_rule.ptr != NULL) { 8029 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8030 1); 8031 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8032 pd.tot_len); 8033 } 8034 if (s->src_node != NULL) { 8035 counter_u64_add(s->src_node->packets[dirndx], 8036 1); 8037 counter_u64_add(s->src_node->bytes[dirndx], 8038 pd.tot_len); 8039 } 8040 if (s->nat_src_node != NULL) { 8041 counter_u64_add(s->nat_src_node->packets[dirndx], 8042 1); 8043 counter_u64_add(s->nat_src_node->bytes[dirndx], 8044 pd.tot_len); 8045 } 8046 dirndx = (dir == s->direction) ? 0 : 1; 8047 s->packets[dirndx]++; 8048 s->bytes[dirndx] += pd.tot_len; 8049 } 8050 tr = r; 8051 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8052 if (nr != NULL && r == &V_pf_default_rule) 8053 tr = nr; 8054 if (tr->src.addr.type == PF_ADDR_TABLE) 8055 pfr_update_stats(tr->src.addr.p.tbl, 8056 (s == NULL) ? pd.src : 8057 &s->key[(s->direction == PF_IN)]->addr[0], 8058 pd.af, pd.tot_len, dir == PF_OUT, 8059 r->action == PF_PASS, tr->src.neg); 8060 if (tr->dst.addr.type == PF_ADDR_TABLE) 8061 pfr_update_stats(tr->dst.addr.p.tbl, 8062 (s == NULL) ? pd.dst : 8063 &s->key[(s->direction == PF_IN)]->addr[1], 8064 pd.af, pd.tot_len, dir == PF_OUT, 8065 r->action == PF_PASS, tr->dst.neg); 8066 } 8067 pf_counter_u64_critical_exit(); 8068 8069 switch (action) { 8070 case PF_SYNPROXY_DROP: 8071 m_freem(*m0); 8072 case PF_DEFER: 8073 *m0 = NULL; 8074 action = PF_PASS; 8075 break; 8076 case PF_DROP: 8077 m_freem(*m0); 8078 *m0 = NULL; 8079 break; 8080 default: 8081 /* pf_route6() returns unlocked. */ 8082 if (r->rt) { 8083 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 8084 return (action); 8085 } 8086 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 8087 action = PF_DROP; 8088 REASON_SET(&reason, PFRES_MEMORY); 8089 } 8090 break; 8091 } 8092 8093 if (s) 8094 PF_STATE_UNLOCK(s); 8095 8096 /* If reassembled packet passed, create new fragments. */ 8097 if (action == PF_PASS && *m0 && dir == PF_OUT && 8098 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 8099 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 8100 8101 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 8102 8103 return (action); 8104 } 8105 #endif /* INET6 */ 8106