1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_bpf.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/sdt.h> 63 #include <sys/socket.h> 64 #include <sys/sysctl.h> 65 #include <sys/taskqueue.h> 66 #include <sys/ucred.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #if defined(SCTP) || defined(SCTP_SUPPORT) 115 #include <netinet/sctp_crc32.h> 116 #endif 117 118 #include <machine/in_cksum.h> 119 #include <security/mac/mac_framework.h> 120 121 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 122 123 SDT_PROVIDER_DEFINE(pf); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 127 "struct pf_kstate *"); 128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 130 "struct pf_kstate *"); 131 132 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 133 "struct mbuf *"); 134 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 135 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 136 "int", "struct pf_keth_rule *", "char *"); 137 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 138 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 139 "int", "struct pf_keth_rule *"); 140 141 /* 142 * Global variables 143 */ 144 145 /* state tables */ 146 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 147 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 148 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 150 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 151 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 152 VNET_DEFINE(struct pf_kstatus, pf_status); 153 154 VNET_DEFINE(u_int32_t, ticket_altqs_active); 155 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 156 VNET_DEFINE(int, altqs_inactive_open); 157 VNET_DEFINE(u_int32_t, ticket_pabuf); 158 159 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 160 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 161 VNET_DEFINE(u_char, pf_tcp_secret[16]); 162 #define V_pf_tcp_secret VNET(pf_tcp_secret) 163 VNET_DEFINE(int, pf_tcp_secret_init); 164 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 165 VNET_DEFINE(int, pf_tcp_iss_off); 166 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 167 VNET_DECLARE(int, pf_vnet_active); 168 #define V_pf_vnet_active VNET(pf_vnet_active) 169 170 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 171 #define V_pf_purge_idx VNET(pf_purge_idx) 172 173 #ifdef PF_WANT_32_TO_64_COUNTER 174 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 175 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 176 177 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 178 VNET_DEFINE(size_t, pf_allrulecount); 179 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 180 #endif 181 182 /* 183 * Queue for pf_intr() sends. 184 */ 185 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 186 struct pf_send_entry { 187 STAILQ_ENTRY(pf_send_entry) pfse_next; 188 struct mbuf *pfse_m; 189 enum { 190 PFSE_IP, 191 PFSE_IP6, 192 PFSE_ICMP, 193 PFSE_ICMP6, 194 } pfse_type; 195 struct { 196 int type; 197 int code; 198 int mtu; 199 } icmpopts; 200 }; 201 202 STAILQ_HEAD(pf_send_head, pf_send_entry); 203 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 204 #define V_pf_sendqueue VNET(pf_sendqueue) 205 206 static struct mtx_padalign pf_sendqueue_mtx; 207 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 208 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 209 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 210 211 /* 212 * Queue for pf_overload_task() tasks. 213 */ 214 struct pf_overload_entry { 215 SLIST_ENTRY(pf_overload_entry) next; 216 struct pf_addr addr; 217 sa_family_t af; 218 uint8_t dir; 219 struct pf_krule *rule; 220 }; 221 222 SLIST_HEAD(pf_overload_head, pf_overload_entry); 223 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 224 #define V_pf_overloadqueue VNET(pf_overloadqueue) 225 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 226 #define V_pf_overloadtask VNET(pf_overloadtask) 227 228 static struct mtx_padalign pf_overloadqueue_mtx; 229 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 230 "pf overload/flush queue", MTX_DEF); 231 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 232 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 233 234 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 235 struct mtx_padalign pf_unlnkdrules_mtx; 236 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 237 MTX_DEF); 238 239 struct sx pf_config_lock; 240 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 241 242 struct mtx_padalign pf_table_stats_lock; 243 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 244 MTX_DEF); 245 246 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 247 #define V_pf_sources_z VNET(pf_sources_z) 248 uma_zone_t pf_mtag_z; 249 VNET_DEFINE(uma_zone_t, pf_state_z); 250 VNET_DEFINE(uma_zone_t, pf_state_key_z); 251 252 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 253 #define PFID_CPUBITS 8 254 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 255 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 256 #define PFID_MAXID (~PFID_CPUMASK) 257 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 258 259 static void pf_src_tree_remove_state(struct pf_kstate *); 260 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 261 u_int32_t); 262 static void pf_add_threshold(struct pf_threshold *); 263 static int pf_check_threshold(struct pf_threshold *); 264 265 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 266 u_int16_t *, u_int16_t *, struct pf_addr *, 267 u_int16_t, u_int8_t, sa_family_t); 268 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 269 struct tcphdr *, struct pf_state_peer *); 270 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 271 struct pf_addr *, struct pf_addr *, u_int16_t, 272 u_int16_t *, u_int16_t *, u_int16_t *, 273 u_int16_t *, u_int8_t, sa_family_t); 274 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 275 sa_family_t, struct pf_krule *); 276 static void pf_detach_state(struct pf_kstate *); 277 static int pf_state_key_attach(struct pf_state_key *, 278 struct pf_state_key *, struct pf_kstate *); 279 static void pf_state_key_detach(struct pf_kstate *, int); 280 static int pf_state_key_ctor(void *, int, void *, int); 281 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 282 void pf_rule_to_actions(struct pf_krule *, 283 struct pf_rule_actions *); 284 static int pf_dummynet(struct pf_pdesc *, int, struct pf_kstate *, 285 struct pf_krule *, struct mbuf **); 286 static int pf_dummynet_route(struct pf_pdesc *, int, 287 struct pf_kstate *, struct pf_krule *, 288 struct ifnet *, struct sockaddr *, struct mbuf **); 289 static int pf_test_eth_rule(int, struct pfi_kkif *, 290 struct mbuf **); 291 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 292 int, struct pfi_kkif *, struct mbuf *, int, 293 struct pf_pdesc *, struct pf_krule **, 294 struct pf_kruleset **, struct inpcb *); 295 static int pf_create_state(struct pf_krule *, struct pf_krule *, 296 struct pf_krule *, struct pf_pdesc *, 297 struct pf_ksrc_node *, struct pf_state_key *, 298 struct pf_state_key *, struct mbuf *, int, 299 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 300 struct pf_kstate **, int, u_int16_t, u_int16_t, 301 int); 302 static int pf_test_fragment(struct pf_krule **, int, 303 struct pfi_kkif *, struct mbuf *, void *, 304 struct pf_pdesc *, struct pf_krule **, 305 struct pf_kruleset **); 306 static int pf_tcp_track_full(struct pf_kstate **, 307 struct pfi_kkif *, struct mbuf *, int, 308 struct pf_pdesc *, u_short *, int *); 309 static int pf_tcp_track_sloppy(struct pf_kstate **, 310 struct pf_pdesc *, u_short *); 311 static int pf_test_state_tcp(struct pf_kstate **, int, 312 struct pfi_kkif *, struct mbuf *, int, 313 void *, struct pf_pdesc *, u_short *); 314 static int pf_test_state_udp(struct pf_kstate **, int, 315 struct pfi_kkif *, struct mbuf *, int, 316 void *, struct pf_pdesc *); 317 static int pf_test_state_icmp(struct pf_kstate **, int, 318 struct pfi_kkif *, struct mbuf *, int, 319 void *, struct pf_pdesc *, u_short *); 320 static int pf_test_state_other(struct pf_kstate **, int, 321 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 322 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 323 int, u_int16_t); 324 static int pf_check_proto_cksum(struct mbuf *, int, int, 325 u_int8_t, sa_family_t); 326 static void pf_print_state_parts(struct pf_kstate *, 327 struct pf_state_key *, struct pf_state_key *); 328 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 329 struct pf_addr_wrap *); 330 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 331 bool, u_int8_t); 332 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 333 struct pf_state_key_cmp *, u_int); 334 static int pf_src_connlimit(struct pf_kstate **); 335 static void pf_overload_task(void *v, int pending); 336 static int pf_insert_src_node(struct pf_ksrc_node **, 337 struct pf_krule *, struct pf_addr *, sa_family_t); 338 static u_int pf_purge_expired_states(u_int, int); 339 static void pf_purge_unlinked_rules(void); 340 static int pf_mtag_uminit(void *, int, int); 341 static void pf_mtag_free(struct m_tag *); 342 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 343 int, struct pf_state_key *); 344 #ifdef INET 345 static void pf_route(struct mbuf **, struct pf_krule *, int, 346 struct ifnet *, struct pf_kstate *, 347 struct pf_pdesc *, struct inpcb *); 348 #endif /* INET */ 349 #ifdef INET6 350 static void pf_change_a6(struct pf_addr *, u_int16_t *, 351 struct pf_addr *, u_int8_t); 352 static void pf_route6(struct mbuf **, struct pf_krule *, int, 353 struct ifnet *, struct pf_kstate *, 354 struct pf_pdesc *, struct inpcb *); 355 #endif /* INET6 */ 356 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 357 358 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 359 360 extern int pf_end_threads; 361 extern struct proc *pf_purge_proc; 362 363 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 364 365 #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ 366 do { \ 367 struct pf_state_key *nk; \ 368 if ((_dir) == PF_OUT) \ 369 nk = (_s)->key[PF_SK_STACK]; \ 370 else \ 371 nk = (_s)->key[PF_SK_WIRE]; \ 372 pf_packet_rework_nat(_m, _pd, _off, nk); \ 373 } while (0) 374 375 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 376 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 377 378 #define STATE_LOOKUP(i, k, d, s, pd) \ 379 do { \ 380 (s) = pf_find_state((i), (k), (d)); \ 381 SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ 382 if ((s) == NULL) \ 383 return (PF_DROP); \ 384 if (PACKET_LOOPED(pd)) \ 385 return (PF_PASS); \ 386 } while (0) 387 388 #define BOUND_IFACE(r, k) \ 389 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 390 391 #define STATE_INC_COUNTERS(s) \ 392 do { \ 393 counter_u64_add(s->rule.ptr->states_cur, 1); \ 394 counter_u64_add(s->rule.ptr->states_tot, 1); \ 395 if (s->anchor.ptr != NULL) { \ 396 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 397 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 398 } \ 399 if (s->nat_rule.ptr != NULL) { \ 400 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 401 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 402 } \ 403 } while (0) 404 405 #define STATE_DEC_COUNTERS(s) \ 406 do { \ 407 if (s->nat_rule.ptr != NULL) \ 408 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 409 if (s->anchor.ptr != NULL) \ 410 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 411 counter_u64_add(s->rule.ptr->states_cur, -1); \ 412 } while (0) 413 414 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 415 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 416 VNET_DEFINE(struct pf_idhash *, pf_idhash); 417 VNET_DEFINE(struct pf_srchash *, pf_srchash); 418 419 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 420 "pf(4)"); 421 422 u_long pf_hashmask; 423 u_long pf_srchashmask; 424 static u_long pf_hashsize; 425 static u_long pf_srchashsize; 426 u_long pf_ioctl_maxcount = 65535; 427 428 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 429 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 430 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 431 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 432 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 433 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 434 435 VNET_DEFINE(void *, pf_swi_cookie); 436 VNET_DEFINE(struct intr_event *, pf_swi_ie); 437 438 VNET_DEFINE(uint32_t, pf_hashseed); 439 #define V_pf_hashseed VNET(pf_hashseed) 440 441 int 442 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 443 { 444 445 switch (af) { 446 #ifdef INET 447 case AF_INET: 448 if (a->addr32[0] > b->addr32[0]) 449 return (1); 450 if (a->addr32[0] < b->addr32[0]) 451 return (-1); 452 break; 453 #endif /* INET */ 454 #ifdef INET6 455 case AF_INET6: 456 if (a->addr32[3] > b->addr32[3]) 457 return (1); 458 if (a->addr32[3] < b->addr32[3]) 459 return (-1); 460 if (a->addr32[2] > b->addr32[2]) 461 return (1); 462 if (a->addr32[2] < b->addr32[2]) 463 return (-1); 464 if (a->addr32[1] > b->addr32[1]) 465 return (1); 466 if (a->addr32[1] < b->addr32[1]) 467 return (-1); 468 if (a->addr32[0] > b->addr32[0]) 469 return (1); 470 if (a->addr32[0] < b->addr32[0]) 471 return (-1); 472 break; 473 #endif /* INET6 */ 474 default: 475 panic("%s: unknown address family %u", __func__, af); 476 } 477 return (0); 478 } 479 480 static void 481 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 482 struct pf_state_key *nk) 483 { 484 485 switch (pd->proto) { 486 case IPPROTO_TCP: { 487 struct tcphdr *th = &pd->hdr.tcp; 488 489 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 490 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 491 &th->th_sum, &nk->addr[pd->sidx], 492 nk->port[pd->sidx], 0, pd->af); 493 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 494 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 495 &th->th_sum, &nk->addr[pd->didx], 496 nk->port[pd->didx], 0, pd->af); 497 m_copyback(m, off, sizeof(*th), (caddr_t)th); 498 break; 499 } 500 case IPPROTO_UDP: { 501 struct udphdr *uh = &pd->hdr.udp; 502 503 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 504 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 505 &uh->uh_sum, &nk->addr[pd->sidx], 506 nk->port[pd->sidx], 1, pd->af); 507 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 508 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 509 &uh->uh_sum, &nk->addr[pd->didx], 510 nk->port[pd->didx], 1, pd->af); 511 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 512 break; 513 } 514 case IPPROTO_ICMP: { 515 struct icmp *ih = &pd->hdr.icmp; 516 517 if (nk->port[pd->sidx] != ih->icmp_id) { 518 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 519 ih->icmp_cksum, ih->icmp_id, 520 nk->port[pd->sidx], 0); 521 ih->icmp_id = nk->port[pd->sidx]; 522 pd->sport = &ih->icmp_id; 523 524 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 525 } 526 /* FALLTHROUGH */ 527 } 528 default: 529 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 530 switch (pd->af) { 531 case AF_INET: 532 pf_change_a(&pd->src->v4.s_addr, 533 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 534 0); 535 break; 536 case AF_INET6: 537 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 538 break; 539 } 540 } 541 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 542 switch (pd->af) { 543 case AF_INET: 544 pf_change_a(&pd->dst->v4.s_addr, 545 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 546 0); 547 break; 548 case AF_INET6: 549 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 550 break; 551 } 552 } 553 break; 554 } 555 } 556 557 static __inline uint32_t 558 pf_hashkey(struct pf_state_key *sk) 559 { 560 uint32_t h; 561 562 h = murmur3_32_hash32((uint32_t *)sk, 563 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 564 V_pf_hashseed); 565 566 return (h & pf_hashmask); 567 } 568 569 static __inline uint32_t 570 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 571 { 572 uint32_t h; 573 574 switch (af) { 575 case AF_INET: 576 h = murmur3_32_hash32((uint32_t *)&addr->v4, 577 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 578 break; 579 case AF_INET6: 580 h = murmur3_32_hash32((uint32_t *)&addr->v6, 581 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 582 break; 583 default: 584 panic("%s: unknown address family %u", __func__, af); 585 } 586 587 return (h & pf_srchashmask); 588 } 589 590 #ifdef ALTQ 591 static int 592 pf_state_hash(struct pf_kstate *s) 593 { 594 u_int32_t hv = (intptr_t)s / sizeof(*s); 595 596 hv ^= crc32(&s->src, sizeof(s->src)); 597 hv ^= crc32(&s->dst, sizeof(s->dst)); 598 if (hv == 0) 599 hv = 1; 600 return (hv); 601 } 602 #endif 603 604 static __inline void 605 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 606 { 607 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 608 s->dst.state = newstate; 609 if (which == PF_PEER_DST) 610 return; 611 if (s->src.state == newstate) 612 return; 613 if (s->creatorid == V_pf_status.hostid && 614 s->key[PF_SK_STACK] != NULL && 615 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 616 !(TCPS_HAVEESTABLISHED(s->src.state) || 617 s->src.state == TCPS_CLOSED) && 618 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 619 atomic_add_32(&V_pf_status.states_halfopen, -1); 620 621 s->src.state = newstate; 622 } 623 624 #ifdef INET6 625 void 626 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 627 { 628 switch (af) { 629 #ifdef INET 630 case AF_INET: 631 dst->addr32[0] = src->addr32[0]; 632 break; 633 #endif /* INET */ 634 case AF_INET6: 635 dst->addr32[0] = src->addr32[0]; 636 dst->addr32[1] = src->addr32[1]; 637 dst->addr32[2] = src->addr32[2]; 638 dst->addr32[3] = src->addr32[3]; 639 break; 640 } 641 } 642 #endif /* INET6 */ 643 644 static void 645 pf_init_threshold(struct pf_threshold *threshold, 646 u_int32_t limit, u_int32_t seconds) 647 { 648 threshold->limit = limit * PF_THRESHOLD_MULT; 649 threshold->seconds = seconds; 650 threshold->count = 0; 651 threshold->last = time_uptime; 652 } 653 654 static void 655 pf_add_threshold(struct pf_threshold *threshold) 656 { 657 u_int32_t t = time_uptime, diff = t - threshold->last; 658 659 if (diff >= threshold->seconds) 660 threshold->count = 0; 661 else 662 threshold->count -= threshold->count * diff / 663 threshold->seconds; 664 threshold->count += PF_THRESHOLD_MULT; 665 threshold->last = t; 666 } 667 668 static int 669 pf_check_threshold(struct pf_threshold *threshold) 670 { 671 return (threshold->count > threshold->limit); 672 } 673 674 static int 675 pf_src_connlimit(struct pf_kstate **state) 676 { 677 struct pf_overload_entry *pfoe; 678 int bad = 0; 679 680 PF_STATE_LOCK_ASSERT(*state); 681 682 (*state)->src_node->conn++; 683 (*state)->src.tcp_est = 1; 684 pf_add_threshold(&(*state)->src_node->conn_rate); 685 686 if ((*state)->rule.ptr->max_src_conn && 687 (*state)->rule.ptr->max_src_conn < 688 (*state)->src_node->conn) { 689 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 690 bad++; 691 } 692 693 if ((*state)->rule.ptr->max_src_conn_rate.limit && 694 pf_check_threshold(&(*state)->src_node->conn_rate)) { 695 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 696 bad++; 697 } 698 699 if (!bad) 700 return (0); 701 702 /* Kill this state. */ 703 (*state)->timeout = PFTM_PURGE; 704 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 705 706 if ((*state)->rule.ptr->overload_tbl == NULL) 707 return (1); 708 709 /* Schedule overloading and flushing task. */ 710 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 711 if (pfoe == NULL) 712 return (1); /* too bad :( */ 713 714 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 715 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 716 pfoe->rule = (*state)->rule.ptr; 717 pfoe->dir = (*state)->direction; 718 PF_OVERLOADQ_LOCK(); 719 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 720 PF_OVERLOADQ_UNLOCK(); 721 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 722 723 return (1); 724 } 725 726 static void 727 pf_overload_task(void *v, int pending) 728 { 729 struct pf_overload_head queue; 730 struct pfr_addr p; 731 struct pf_overload_entry *pfoe, *pfoe1; 732 uint32_t killed = 0; 733 734 CURVNET_SET((struct vnet *)v); 735 736 PF_OVERLOADQ_LOCK(); 737 queue = V_pf_overloadqueue; 738 SLIST_INIT(&V_pf_overloadqueue); 739 PF_OVERLOADQ_UNLOCK(); 740 741 bzero(&p, sizeof(p)); 742 SLIST_FOREACH(pfoe, &queue, next) { 743 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 744 if (V_pf_status.debug >= PF_DEBUG_MISC) { 745 printf("%s: blocking address ", __func__); 746 pf_print_host(&pfoe->addr, 0, pfoe->af); 747 printf("\n"); 748 } 749 750 p.pfra_af = pfoe->af; 751 switch (pfoe->af) { 752 #ifdef INET 753 case AF_INET: 754 p.pfra_net = 32; 755 p.pfra_ip4addr = pfoe->addr.v4; 756 break; 757 #endif 758 #ifdef INET6 759 case AF_INET6: 760 p.pfra_net = 128; 761 p.pfra_ip6addr = pfoe->addr.v6; 762 break; 763 #endif 764 } 765 766 PF_RULES_WLOCK(); 767 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 768 PF_RULES_WUNLOCK(); 769 } 770 771 /* 772 * Remove those entries, that don't need flushing. 773 */ 774 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 775 if (pfoe->rule->flush == 0) { 776 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 777 free(pfoe, M_PFTEMP); 778 } else 779 counter_u64_add( 780 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 781 782 /* If nothing to flush, return. */ 783 if (SLIST_EMPTY(&queue)) { 784 CURVNET_RESTORE(); 785 return; 786 } 787 788 for (int i = 0; i <= pf_hashmask; i++) { 789 struct pf_idhash *ih = &V_pf_idhash[i]; 790 struct pf_state_key *sk; 791 struct pf_kstate *s; 792 793 PF_HASHROW_LOCK(ih); 794 LIST_FOREACH(s, &ih->states, entry) { 795 sk = s->key[PF_SK_WIRE]; 796 SLIST_FOREACH(pfoe, &queue, next) 797 if (sk->af == pfoe->af && 798 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 799 pfoe->rule == s->rule.ptr) && 800 ((pfoe->dir == PF_OUT && 801 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 802 (pfoe->dir == PF_IN && 803 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 804 s->timeout = PFTM_PURGE; 805 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 806 killed++; 807 } 808 } 809 PF_HASHROW_UNLOCK(ih); 810 } 811 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 812 free(pfoe, M_PFTEMP); 813 if (V_pf_status.debug >= PF_DEBUG_MISC) 814 printf("%s: %u states killed", __func__, killed); 815 816 CURVNET_RESTORE(); 817 } 818 819 /* 820 * Can return locked on failure, so that we can consistently 821 * allocate and insert a new one. 822 */ 823 struct pf_ksrc_node * 824 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 825 int returnlocked) 826 { 827 struct pf_srchash *sh; 828 struct pf_ksrc_node *n; 829 830 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 831 832 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 833 PF_HASHROW_LOCK(sh); 834 LIST_FOREACH(n, &sh->nodes, entry) 835 if (n->rule.ptr == rule && n->af == af && 836 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 837 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 838 break; 839 if (n != NULL) { 840 n->states++; 841 PF_HASHROW_UNLOCK(sh); 842 } else if (returnlocked == 0) 843 PF_HASHROW_UNLOCK(sh); 844 845 return (n); 846 } 847 848 static void 849 pf_free_src_node(struct pf_ksrc_node *sn) 850 { 851 852 for (int i = 0; i < 2; i++) { 853 counter_u64_free(sn->bytes[i]); 854 counter_u64_free(sn->packets[i]); 855 } 856 uma_zfree(V_pf_sources_z, sn); 857 } 858 859 static int 860 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 861 struct pf_addr *src, sa_family_t af) 862 { 863 864 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 865 rule->rpool.opts & PF_POOL_STICKYADDR), 866 ("%s for non-tracking rule %p", __func__, rule)); 867 868 if (*sn == NULL) 869 *sn = pf_find_src_node(src, rule, af, 1); 870 871 if (*sn == NULL) { 872 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 873 874 PF_HASHROW_ASSERT(sh); 875 876 if (!rule->max_src_nodes || 877 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 878 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 879 else 880 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 881 1); 882 if ((*sn) == NULL) { 883 PF_HASHROW_UNLOCK(sh); 884 return (-1); 885 } 886 887 for (int i = 0; i < 2; i++) { 888 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 889 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 890 891 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 892 pf_free_src_node(*sn); 893 PF_HASHROW_UNLOCK(sh); 894 return (-1); 895 } 896 } 897 898 pf_init_threshold(&(*sn)->conn_rate, 899 rule->max_src_conn_rate.limit, 900 rule->max_src_conn_rate.seconds); 901 902 (*sn)->af = af; 903 (*sn)->rule.ptr = rule; 904 PF_ACPY(&(*sn)->addr, src, af); 905 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 906 (*sn)->creation = time_uptime; 907 (*sn)->ruletype = rule->action; 908 (*sn)->states = 1; 909 if ((*sn)->rule.ptr != NULL) 910 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 911 PF_HASHROW_UNLOCK(sh); 912 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 913 } else { 914 if (rule->max_src_states && 915 (*sn)->states >= rule->max_src_states) { 916 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 917 1); 918 return (-1); 919 } 920 } 921 return (0); 922 } 923 924 void 925 pf_unlink_src_node(struct pf_ksrc_node *src) 926 { 927 928 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 929 LIST_REMOVE(src, entry); 930 if (src->rule.ptr) 931 counter_u64_add(src->rule.ptr->src_nodes, -1); 932 } 933 934 u_int 935 pf_free_src_nodes(struct pf_ksrc_node_list *head) 936 { 937 struct pf_ksrc_node *sn, *tmp; 938 u_int count = 0; 939 940 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 941 pf_free_src_node(sn); 942 count++; 943 } 944 945 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 946 947 return (count); 948 } 949 950 void 951 pf_mtag_initialize(void) 952 { 953 954 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 955 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 956 UMA_ALIGN_PTR, 0); 957 } 958 959 /* Per-vnet data storage structures initialization. */ 960 void 961 pf_initialize(void) 962 { 963 struct pf_keyhash *kh; 964 struct pf_idhash *ih; 965 struct pf_srchash *sh; 966 u_int i; 967 968 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 969 pf_hashsize = PF_HASHSIZ; 970 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 971 pf_srchashsize = PF_SRCHASHSIZ; 972 973 V_pf_hashseed = arc4random(); 974 975 /* States and state keys storage. */ 976 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 977 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 978 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 979 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 980 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 981 982 V_pf_state_key_z = uma_zcreate("pf state keys", 983 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 984 UMA_ALIGN_PTR, 0); 985 986 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 987 M_PFHASH, M_NOWAIT | M_ZERO); 988 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 989 M_PFHASH, M_NOWAIT | M_ZERO); 990 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 991 printf("pf: Unable to allocate memory for " 992 "state_hashsize %lu.\n", pf_hashsize); 993 994 free(V_pf_keyhash, M_PFHASH); 995 free(V_pf_idhash, M_PFHASH); 996 997 pf_hashsize = PF_HASHSIZ; 998 V_pf_keyhash = mallocarray(pf_hashsize, 999 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1000 V_pf_idhash = mallocarray(pf_hashsize, 1001 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1002 } 1003 1004 pf_hashmask = pf_hashsize - 1; 1005 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1006 i++, kh++, ih++) { 1007 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1008 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1009 } 1010 1011 /* Source nodes. */ 1012 V_pf_sources_z = uma_zcreate("pf source nodes", 1013 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1014 0); 1015 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1016 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1017 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1018 1019 V_pf_srchash = mallocarray(pf_srchashsize, 1020 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1021 if (V_pf_srchash == NULL) { 1022 printf("pf: Unable to allocate memory for " 1023 "source_hashsize %lu.\n", pf_srchashsize); 1024 1025 pf_srchashsize = PF_SRCHASHSIZ; 1026 V_pf_srchash = mallocarray(pf_srchashsize, 1027 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1028 } 1029 1030 pf_srchashmask = pf_srchashsize - 1; 1031 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1032 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1033 1034 /* ALTQ */ 1035 TAILQ_INIT(&V_pf_altqs[0]); 1036 TAILQ_INIT(&V_pf_altqs[1]); 1037 TAILQ_INIT(&V_pf_altqs[2]); 1038 TAILQ_INIT(&V_pf_altqs[3]); 1039 TAILQ_INIT(&V_pf_pabuf); 1040 V_pf_altqs_active = &V_pf_altqs[0]; 1041 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1042 V_pf_altqs_inactive = &V_pf_altqs[2]; 1043 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1044 1045 /* Send & overload+flush queues. */ 1046 STAILQ_INIT(&V_pf_sendqueue); 1047 SLIST_INIT(&V_pf_overloadqueue); 1048 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1049 1050 /* Unlinked, but may be referenced rules. */ 1051 TAILQ_INIT(&V_pf_unlinked_rules); 1052 } 1053 1054 void 1055 pf_mtag_cleanup(void) 1056 { 1057 1058 uma_zdestroy(pf_mtag_z); 1059 } 1060 1061 void 1062 pf_cleanup(void) 1063 { 1064 struct pf_keyhash *kh; 1065 struct pf_idhash *ih; 1066 struct pf_srchash *sh; 1067 struct pf_send_entry *pfse, *next; 1068 u_int i; 1069 1070 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1071 i++, kh++, ih++) { 1072 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1073 __func__)); 1074 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1075 __func__)); 1076 mtx_destroy(&kh->lock); 1077 mtx_destroy(&ih->lock); 1078 } 1079 free(V_pf_keyhash, M_PFHASH); 1080 free(V_pf_idhash, M_PFHASH); 1081 1082 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1083 KASSERT(LIST_EMPTY(&sh->nodes), 1084 ("%s: source node hash not empty", __func__)); 1085 mtx_destroy(&sh->lock); 1086 } 1087 free(V_pf_srchash, M_PFHASH); 1088 1089 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1090 m_freem(pfse->pfse_m); 1091 free(pfse, M_PFTEMP); 1092 } 1093 1094 uma_zdestroy(V_pf_sources_z); 1095 uma_zdestroy(V_pf_state_z); 1096 uma_zdestroy(V_pf_state_key_z); 1097 } 1098 1099 static int 1100 pf_mtag_uminit(void *mem, int size, int how) 1101 { 1102 struct m_tag *t; 1103 1104 t = (struct m_tag *)mem; 1105 t->m_tag_cookie = MTAG_ABI_COMPAT; 1106 t->m_tag_id = PACKET_TAG_PF; 1107 t->m_tag_len = sizeof(struct pf_mtag); 1108 t->m_tag_free = pf_mtag_free; 1109 1110 return (0); 1111 } 1112 1113 static void 1114 pf_mtag_free(struct m_tag *t) 1115 { 1116 1117 uma_zfree(pf_mtag_z, t); 1118 } 1119 1120 struct pf_mtag * 1121 pf_get_mtag(struct mbuf *m) 1122 { 1123 struct m_tag *mtag; 1124 1125 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1126 return ((struct pf_mtag *)(mtag + 1)); 1127 1128 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1129 if (mtag == NULL) 1130 return (NULL); 1131 bzero(mtag + 1, sizeof(struct pf_mtag)); 1132 m_tag_prepend(m, mtag); 1133 1134 return ((struct pf_mtag *)(mtag + 1)); 1135 } 1136 1137 static int 1138 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1139 struct pf_kstate *s) 1140 { 1141 struct pf_keyhash *khs, *khw, *kh; 1142 struct pf_state_key *sk, *cur; 1143 struct pf_kstate *si, *olds = NULL; 1144 int idx; 1145 1146 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1147 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1148 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1149 1150 /* 1151 * We need to lock hash slots of both keys. To avoid deadlock 1152 * we always lock the slot with lower address first. Unlock order 1153 * isn't important. 1154 * 1155 * We also need to lock ID hash slot before dropping key 1156 * locks. On success we return with ID hash slot locked. 1157 */ 1158 1159 if (skw == sks) { 1160 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1161 PF_HASHROW_LOCK(khs); 1162 } else { 1163 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1164 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1165 if (khs == khw) { 1166 PF_HASHROW_LOCK(khs); 1167 } else if (khs < khw) { 1168 PF_HASHROW_LOCK(khs); 1169 PF_HASHROW_LOCK(khw); 1170 } else { 1171 PF_HASHROW_LOCK(khw); 1172 PF_HASHROW_LOCK(khs); 1173 } 1174 } 1175 1176 #define KEYS_UNLOCK() do { \ 1177 if (khs != khw) { \ 1178 PF_HASHROW_UNLOCK(khs); \ 1179 PF_HASHROW_UNLOCK(khw); \ 1180 } else \ 1181 PF_HASHROW_UNLOCK(khs); \ 1182 } while (0) 1183 1184 /* 1185 * First run: start with wire key. 1186 */ 1187 sk = skw; 1188 kh = khw; 1189 idx = PF_SK_WIRE; 1190 1191 MPASS(s->lock == NULL); 1192 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1193 1194 keyattach: 1195 LIST_FOREACH(cur, &kh->keys, entry) 1196 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1197 break; 1198 1199 if (cur != NULL) { 1200 /* Key exists. Check for same kif, if none, add to key. */ 1201 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1202 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1203 1204 PF_HASHROW_LOCK(ih); 1205 if (si->kif == s->kif && 1206 si->direction == s->direction) { 1207 if (sk->proto == IPPROTO_TCP && 1208 si->src.state >= TCPS_FIN_WAIT_2 && 1209 si->dst.state >= TCPS_FIN_WAIT_2) { 1210 /* 1211 * New state matches an old >FIN_WAIT_2 1212 * state. We can't drop key hash locks, 1213 * thus we can't unlink it properly. 1214 * 1215 * As a workaround we drop it into 1216 * TCPS_CLOSED state, schedule purge 1217 * ASAP and push it into the very end 1218 * of the slot TAILQ, so that it won't 1219 * conflict with our new state. 1220 */ 1221 pf_set_protostate(si, PF_PEER_BOTH, 1222 TCPS_CLOSED); 1223 si->timeout = PFTM_PURGE; 1224 olds = si; 1225 } else { 1226 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1227 printf("pf: %s key attach " 1228 "failed on %s: ", 1229 (idx == PF_SK_WIRE) ? 1230 "wire" : "stack", 1231 s->kif->pfik_name); 1232 pf_print_state_parts(s, 1233 (idx == PF_SK_WIRE) ? 1234 sk : NULL, 1235 (idx == PF_SK_STACK) ? 1236 sk : NULL); 1237 printf(", existing: "); 1238 pf_print_state_parts(si, 1239 (idx == PF_SK_WIRE) ? 1240 sk : NULL, 1241 (idx == PF_SK_STACK) ? 1242 sk : NULL); 1243 printf("\n"); 1244 } 1245 PF_HASHROW_UNLOCK(ih); 1246 KEYS_UNLOCK(); 1247 uma_zfree(V_pf_state_key_z, sk); 1248 if (idx == PF_SK_STACK) 1249 pf_detach_state(s); 1250 return (EEXIST); /* collision! */ 1251 } 1252 } 1253 PF_HASHROW_UNLOCK(ih); 1254 } 1255 uma_zfree(V_pf_state_key_z, sk); 1256 s->key[idx] = cur; 1257 } else { 1258 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1259 s->key[idx] = sk; 1260 } 1261 1262 stateattach: 1263 /* List is sorted, if-bound states before floating. */ 1264 if (s->kif == V_pfi_all) 1265 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1266 else 1267 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1268 1269 if (olds) { 1270 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1271 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1272 key_list[idx]); 1273 olds = NULL; 1274 } 1275 1276 /* 1277 * Attach done. See how should we (or should not?) 1278 * attach a second key. 1279 */ 1280 if (sks == skw) { 1281 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1282 idx = PF_SK_STACK; 1283 sks = NULL; 1284 goto stateattach; 1285 } else if (sks != NULL) { 1286 /* 1287 * Continue attaching with stack key. 1288 */ 1289 sk = sks; 1290 kh = khs; 1291 idx = PF_SK_STACK; 1292 sks = NULL; 1293 goto keyattach; 1294 } 1295 1296 PF_STATE_LOCK(s); 1297 KEYS_UNLOCK(); 1298 1299 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1300 ("%s failure", __func__)); 1301 1302 return (0); 1303 #undef KEYS_UNLOCK 1304 } 1305 1306 static void 1307 pf_detach_state(struct pf_kstate *s) 1308 { 1309 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1310 struct pf_keyhash *kh; 1311 1312 if (sks != NULL) { 1313 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1314 PF_HASHROW_LOCK(kh); 1315 if (s->key[PF_SK_STACK] != NULL) 1316 pf_state_key_detach(s, PF_SK_STACK); 1317 /* 1318 * If both point to same key, then we are done. 1319 */ 1320 if (sks == s->key[PF_SK_WIRE]) { 1321 pf_state_key_detach(s, PF_SK_WIRE); 1322 PF_HASHROW_UNLOCK(kh); 1323 return; 1324 } 1325 PF_HASHROW_UNLOCK(kh); 1326 } 1327 1328 if (s->key[PF_SK_WIRE] != NULL) { 1329 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1330 PF_HASHROW_LOCK(kh); 1331 if (s->key[PF_SK_WIRE] != NULL) 1332 pf_state_key_detach(s, PF_SK_WIRE); 1333 PF_HASHROW_UNLOCK(kh); 1334 } 1335 } 1336 1337 static void 1338 pf_state_key_detach(struct pf_kstate *s, int idx) 1339 { 1340 struct pf_state_key *sk = s->key[idx]; 1341 #ifdef INVARIANTS 1342 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1343 1344 PF_HASHROW_ASSERT(kh); 1345 #endif 1346 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1347 s->key[idx] = NULL; 1348 1349 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1350 LIST_REMOVE(sk, entry); 1351 uma_zfree(V_pf_state_key_z, sk); 1352 } 1353 } 1354 1355 static int 1356 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1357 { 1358 struct pf_state_key *sk = mem; 1359 1360 bzero(sk, sizeof(struct pf_state_key_cmp)); 1361 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1362 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1363 1364 return (0); 1365 } 1366 1367 struct pf_state_key * 1368 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1369 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1370 { 1371 struct pf_state_key *sk; 1372 1373 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1374 if (sk == NULL) 1375 return (NULL); 1376 1377 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1378 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1379 sk->port[pd->sidx] = sport; 1380 sk->port[pd->didx] = dport; 1381 sk->proto = pd->proto; 1382 sk->af = pd->af; 1383 1384 return (sk); 1385 } 1386 1387 struct pf_state_key * 1388 pf_state_key_clone(struct pf_state_key *orig) 1389 { 1390 struct pf_state_key *sk; 1391 1392 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1393 if (sk == NULL) 1394 return (NULL); 1395 1396 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1397 1398 return (sk); 1399 } 1400 1401 int 1402 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1403 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1404 { 1405 struct pf_idhash *ih; 1406 struct pf_kstate *cur; 1407 int error; 1408 1409 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1410 ("%s: sks not pristine", __func__)); 1411 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1412 ("%s: skw not pristine", __func__)); 1413 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1414 1415 s->kif = kif; 1416 s->orig_kif = orig_kif; 1417 1418 if (s->id == 0 && s->creatorid == 0) { 1419 /* XXX: should be atomic, but probability of collision low */ 1420 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1421 V_pf_stateid[curcpu] = 1; 1422 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1423 s->id = htobe64(s->id); 1424 s->creatorid = V_pf_status.hostid; 1425 } 1426 1427 /* Returns with ID locked on success. */ 1428 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1429 return (error); 1430 1431 ih = &V_pf_idhash[PF_IDHASH(s)]; 1432 PF_HASHROW_ASSERT(ih); 1433 LIST_FOREACH(cur, &ih->states, entry) 1434 if (cur->id == s->id && cur->creatorid == s->creatorid) 1435 break; 1436 1437 if (cur != NULL) { 1438 PF_HASHROW_UNLOCK(ih); 1439 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1440 printf("pf: state ID collision: " 1441 "id: %016llx creatorid: %08x\n", 1442 (unsigned long long)be64toh(s->id), 1443 ntohl(s->creatorid)); 1444 } 1445 pf_detach_state(s); 1446 return (EEXIST); 1447 } 1448 LIST_INSERT_HEAD(&ih->states, s, entry); 1449 /* One for keys, one for ID hash. */ 1450 refcount_init(&s->refs, 2); 1451 1452 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1453 if (V_pfsync_insert_state_ptr != NULL) 1454 V_pfsync_insert_state_ptr(s); 1455 1456 /* Returns locked. */ 1457 return (0); 1458 } 1459 1460 /* 1461 * Find state by ID: returns with locked row on success. 1462 */ 1463 struct pf_kstate * 1464 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1465 { 1466 struct pf_idhash *ih; 1467 struct pf_kstate *s; 1468 1469 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1470 1471 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1472 1473 PF_HASHROW_LOCK(ih); 1474 LIST_FOREACH(s, &ih->states, entry) 1475 if (s->id == id && s->creatorid == creatorid) 1476 break; 1477 1478 if (s == NULL) 1479 PF_HASHROW_UNLOCK(ih); 1480 1481 return (s); 1482 } 1483 1484 /* 1485 * Find state by key. 1486 * Returns with ID hash slot locked on success. 1487 */ 1488 static struct pf_kstate * 1489 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1490 { 1491 struct pf_keyhash *kh; 1492 struct pf_state_key *sk; 1493 struct pf_kstate *s; 1494 int idx; 1495 1496 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1497 1498 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1499 1500 PF_HASHROW_LOCK(kh); 1501 LIST_FOREACH(sk, &kh->keys, entry) 1502 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1503 break; 1504 if (sk == NULL) { 1505 PF_HASHROW_UNLOCK(kh); 1506 return (NULL); 1507 } 1508 1509 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1510 1511 /* List is sorted, if-bound states before floating ones. */ 1512 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1513 if (s->kif == V_pfi_all || s->kif == kif) { 1514 PF_STATE_LOCK(s); 1515 PF_HASHROW_UNLOCK(kh); 1516 if (__predict_false(s->timeout >= PFTM_MAX)) { 1517 /* 1518 * State is either being processed by 1519 * pf_unlink_state() in an other thread, or 1520 * is scheduled for immediate expiry. 1521 */ 1522 PF_STATE_UNLOCK(s); 1523 return (NULL); 1524 } 1525 return (s); 1526 } 1527 PF_HASHROW_UNLOCK(kh); 1528 1529 return (NULL); 1530 } 1531 1532 /* 1533 * Returns with ID hash slot locked on success. 1534 */ 1535 struct pf_kstate * 1536 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1537 { 1538 struct pf_keyhash *kh; 1539 struct pf_state_key *sk; 1540 struct pf_kstate *s, *ret = NULL; 1541 int idx, inout = 0; 1542 1543 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1544 1545 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1546 1547 PF_HASHROW_LOCK(kh); 1548 LIST_FOREACH(sk, &kh->keys, entry) 1549 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1550 break; 1551 if (sk == NULL) { 1552 PF_HASHROW_UNLOCK(kh); 1553 return (NULL); 1554 } 1555 switch (dir) { 1556 case PF_IN: 1557 idx = PF_SK_WIRE; 1558 break; 1559 case PF_OUT: 1560 idx = PF_SK_STACK; 1561 break; 1562 case PF_INOUT: 1563 idx = PF_SK_WIRE; 1564 inout = 1; 1565 break; 1566 default: 1567 panic("%s: dir %u", __func__, dir); 1568 } 1569 second_run: 1570 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1571 if (more == NULL) { 1572 PF_STATE_LOCK(s); 1573 PF_HASHROW_UNLOCK(kh); 1574 return (s); 1575 } 1576 1577 if (ret) 1578 (*more)++; 1579 else { 1580 ret = s; 1581 PF_STATE_LOCK(s); 1582 } 1583 } 1584 if (inout == 1) { 1585 inout = 0; 1586 idx = PF_SK_STACK; 1587 goto second_run; 1588 } 1589 PF_HASHROW_UNLOCK(kh); 1590 1591 return (ret); 1592 } 1593 1594 /* 1595 * FIXME 1596 * This routine is inefficient -- locks the state only to unlock immediately on 1597 * return. 1598 * It is racy -- after the state is unlocked nothing stops other threads from 1599 * removing it. 1600 */ 1601 bool 1602 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1603 { 1604 struct pf_kstate *s; 1605 1606 s = pf_find_state_all(key, dir, NULL); 1607 if (s != NULL) { 1608 PF_STATE_UNLOCK(s); 1609 return (true); 1610 } 1611 return (false); 1612 } 1613 1614 /* END state table stuff */ 1615 1616 static void 1617 pf_send(struct pf_send_entry *pfse) 1618 { 1619 1620 PF_SENDQ_LOCK(); 1621 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1622 PF_SENDQ_UNLOCK(); 1623 swi_sched(V_pf_swi_cookie, 0); 1624 } 1625 1626 static bool 1627 pf_isforlocal(struct mbuf *m, int af) 1628 { 1629 switch (af) { 1630 #ifdef INET 1631 case AF_INET: { 1632 struct ip *ip = mtod(m, struct ip *); 1633 1634 return (in_localip(ip->ip_dst)); 1635 } 1636 #endif 1637 #ifdef INET6 1638 case AF_INET6: { 1639 struct ip6_hdr *ip6; 1640 struct in6_ifaddr *ia; 1641 ip6 = mtod(m, struct ip6_hdr *); 1642 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1643 if (ia == NULL) 1644 return (false); 1645 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1646 } 1647 #endif 1648 default: 1649 panic("Unsupported af %d", af); 1650 } 1651 1652 return (false); 1653 } 1654 1655 void 1656 pf_intr(void *v) 1657 { 1658 struct epoch_tracker et; 1659 struct pf_send_head queue; 1660 struct pf_send_entry *pfse, *next; 1661 1662 CURVNET_SET((struct vnet *)v); 1663 1664 PF_SENDQ_LOCK(); 1665 queue = V_pf_sendqueue; 1666 STAILQ_INIT(&V_pf_sendqueue); 1667 PF_SENDQ_UNLOCK(); 1668 1669 NET_EPOCH_ENTER(et); 1670 1671 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1672 switch (pfse->pfse_type) { 1673 #ifdef INET 1674 case PFSE_IP: { 1675 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1676 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1677 pfse->pfse_m->m_pkthdr.csum_flags |= 1678 CSUM_IP_VALID | CSUM_IP_CHECKED; 1679 ip_input(pfse->pfse_m); 1680 } else { 1681 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1682 NULL); 1683 } 1684 break; 1685 } 1686 case PFSE_ICMP: 1687 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1688 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1689 break; 1690 #endif /* INET */ 1691 #ifdef INET6 1692 case PFSE_IP6: 1693 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1694 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1695 ip6_input(pfse->pfse_m); 1696 } else { 1697 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1698 NULL, NULL); 1699 } 1700 break; 1701 case PFSE_ICMP6: 1702 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1703 pfse->icmpopts.code, pfse->icmpopts.mtu); 1704 break; 1705 #endif /* INET6 */ 1706 default: 1707 panic("%s: unknown type", __func__); 1708 } 1709 free(pfse, M_PFTEMP); 1710 } 1711 NET_EPOCH_EXIT(et); 1712 CURVNET_RESTORE(); 1713 } 1714 1715 #define pf_purge_thread_period (hz / 10) 1716 1717 #ifdef PF_WANT_32_TO_64_COUNTER 1718 static void 1719 pf_status_counter_u64_periodic(void) 1720 { 1721 1722 PF_RULES_RASSERT(); 1723 1724 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1725 return; 1726 } 1727 1728 for (int i = 0; i < FCNT_MAX; i++) { 1729 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1730 } 1731 } 1732 1733 static void 1734 pf_kif_counter_u64_periodic(void) 1735 { 1736 struct pfi_kkif *kif; 1737 size_t r, run; 1738 1739 PF_RULES_RASSERT(); 1740 1741 if (__predict_false(V_pf_allkifcount == 0)) { 1742 return; 1743 } 1744 1745 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1746 return; 1747 } 1748 1749 run = V_pf_allkifcount / 10; 1750 if (run < 5) 1751 run = 5; 1752 1753 for (r = 0; r < run; r++) { 1754 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1755 if (kif == NULL) { 1756 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1757 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1758 break; 1759 } 1760 1761 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1762 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1763 1764 for (int i = 0; i < 2; i++) { 1765 for (int j = 0; j < 2; j++) { 1766 for (int k = 0; k < 2; k++) { 1767 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1768 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1769 } 1770 } 1771 } 1772 } 1773 } 1774 1775 static void 1776 pf_rule_counter_u64_periodic(void) 1777 { 1778 struct pf_krule *rule; 1779 size_t r, run; 1780 1781 PF_RULES_RASSERT(); 1782 1783 if (__predict_false(V_pf_allrulecount == 0)) { 1784 return; 1785 } 1786 1787 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1788 return; 1789 } 1790 1791 run = V_pf_allrulecount / 10; 1792 if (run < 5) 1793 run = 5; 1794 1795 for (r = 0; r < run; r++) { 1796 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1797 if (rule == NULL) { 1798 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1799 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1800 break; 1801 } 1802 1803 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1804 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1805 1806 pf_counter_u64_periodic(&rule->evaluations); 1807 for (int i = 0; i < 2; i++) { 1808 pf_counter_u64_periodic(&rule->packets[i]); 1809 pf_counter_u64_periodic(&rule->bytes[i]); 1810 } 1811 } 1812 } 1813 1814 static void 1815 pf_counter_u64_periodic_main(void) 1816 { 1817 PF_RULES_RLOCK_TRACKER; 1818 1819 V_pf_counter_periodic_iter++; 1820 1821 PF_RULES_RLOCK(); 1822 pf_counter_u64_critical_enter(); 1823 pf_status_counter_u64_periodic(); 1824 pf_kif_counter_u64_periodic(); 1825 pf_rule_counter_u64_periodic(); 1826 pf_counter_u64_critical_exit(); 1827 PF_RULES_RUNLOCK(); 1828 } 1829 #else 1830 #define pf_counter_u64_periodic_main() do { } while (0) 1831 #endif 1832 1833 void 1834 pf_purge_thread(void *unused __unused) 1835 { 1836 VNET_ITERATOR_DECL(vnet_iter); 1837 1838 sx_xlock(&pf_end_lock); 1839 while (pf_end_threads == 0) { 1840 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1841 1842 VNET_LIST_RLOCK(); 1843 VNET_FOREACH(vnet_iter) { 1844 CURVNET_SET(vnet_iter); 1845 1846 /* Wait until V_pf_default_rule is initialized. */ 1847 if (V_pf_vnet_active == 0) { 1848 CURVNET_RESTORE(); 1849 continue; 1850 } 1851 1852 pf_counter_u64_periodic_main(); 1853 1854 /* 1855 * Process 1/interval fraction of the state 1856 * table every run. 1857 */ 1858 V_pf_purge_idx = 1859 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1860 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1861 1862 /* 1863 * Purge other expired types every 1864 * PFTM_INTERVAL seconds. 1865 */ 1866 if (V_pf_purge_idx == 0) { 1867 /* 1868 * Order is important: 1869 * - states and src nodes reference rules 1870 * - states and rules reference kifs 1871 */ 1872 pf_purge_expired_fragments(); 1873 pf_purge_expired_src_nodes(); 1874 pf_purge_unlinked_rules(); 1875 pfi_kkif_purge(); 1876 } 1877 CURVNET_RESTORE(); 1878 } 1879 VNET_LIST_RUNLOCK(); 1880 } 1881 1882 pf_end_threads++; 1883 sx_xunlock(&pf_end_lock); 1884 kproc_exit(0); 1885 } 1886 1887 void 1888 pf_unload_vnet_purge(void) 1889 { 1890 1891 /* 1892 * To cleanse up all kifs and rules we need 1893 * two runs: first one clears reference flags, 1894 * then pf_purge_expired_states() doesn't 1895 * raise them, and then second run frees. 1896 */ 1897 pf_purge_unlinked_rules(); 1898 pfi_kkif_purge(); 1899 1900 /* 1901 * Now purge everything. 1902 */ 1903 pf_purge_expired_states(0, pf_hashmask); 1904 pf_purge_fragments(UINT_MAX); 1905 pf_purge_expired_src_nodes(); 1906 1907 /* 1908 * Now all kifs & rules should be unreferenced, 1909 * thus should be successfully freed. 1910 */ 1911 pf_purge_unlinked_rules(); 1912 pfi_kkif_purge(); 1913 } 1914 1915 u_int32_t 1916 pf_state_expires(const struct pf_kstate *state) 1917 { 1918 u_int32_t timeout; 1919 u_int32_t start; 1920 u_int32_t end; 1921 u_int32_t states; 1922 1923 /* handle all PFTM_* > PFTM_MAX here */ 1924 if (state->timeout == PFTM_PURGE) 1925 return (time_uptime); 1926 KASSERT(state->timeout != PFTM_UNLINKED, 1927 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1928 KASSERT((state->timeout < PFTM_MAX), 1929 ("pf_state_expires: timeout > PFTM_MAX")); 1930 timeout = state->rule.ptr->timeout[state->timeout]; 1931 if (!timeout) 1932 timeout = V_pf_default_rule.timeout[state->timeout]; 1933 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1934 if (start && state->rule.ptr != &V_pf_default_rule) { 1935 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1936 states = counter_u64_fetch(state->rule.ptr->states_cur); 1937 } else { 1938 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1939 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1940 states = V_pf_status.states; 1941 } 1942 if (end && states > start && start < end) { 1943 if (states < end) { 1944 timeout = (u_int64_t)timeout * (end - states) / 1945 (end - start); 1946 return (state->expire + timeout); 1947 } 1948 else 1949 return (time_uptime); 1950 } 1951 return (state->expire + timeout); 1952 } 1953 1954 void 1955 pf_purge_expired_src_nodes(void) 1956 { 1957 struct pf_ksrc_node_list freelist; 1958 struct pf_srchash *sh; 1959 struct pf_ksrc_node *cur, *next; 1960 int i; 1961 1962 LIST_INIT(&freelist); 1963 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1964 PF_HASHROW_LOCK(sh); 1965 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1966 if (cur->states == 0 && cur->expire <= time_uptime) { 1967 pf_unlink_src_node(cur); 1968 LIST_INSERT_HEAD(&freelist, cur, entry); 1969 } else if (cur->rule.ptr != NULL) 1970 cur->rule.ptr->rule_ref |= PFRULE_REFS; 1971 PF_HASHROW_UNLOCK(sh); 1972 } 1973 1974 pf_free_src_nodes(&freelist); 1975 1976 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1977 } 1978 1979 static void 1980 pf_src_tree_remove_state(struct pf_kstate *s) 1981 { 1982 struct pf_ksrc_node *sn; 1983 struct pf_srchash *sh; 1984 uint32_t timeout; 1985 1986 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1987 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1988 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1989 1990 if (s->src_node != NULL) { 1991 sn = s->src_node; 1992 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1993 PF_HASHROW_LOCK(sh); 1994 if (s->src.tcp_est) 1995 --sn->conn; 1996 if (--sn->states == 0) 1997 sn->expire = time_uptime + timeout; 1998 PF_HASHROW_UNLOCK(sh); 1999 } 2000 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2001 sn = s->nat_src_node; 2002 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 2003 PF_HASHROW_LOCK(sh); 2004 if (--sn->states == 0) 2005 sn->expire = time_uptime + timeout; 2006 PF_HASHROW_UNLOCK(sh); 2007 } 2008 s->src_node = s->nat_src_node = NULL; 2009 } 2010 2011 /* 2012 * Unlink and potentilly free a state. Function may be 2013 * called with ID hash row locked, but always returns 2014 * unlocked, since it needs to go through key hash locking. 2015 */ 2016 int 2017 pf_unlink_state(struct pf_kstate *s) 2018 { 2019 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2020 2021 PF_HASHROW_ASSERT(ih); 2022 2023 if (s->timeout == PFTM_UNLINKED) { 2024 /* 2025 * State is being processed 2026 * by pf_unlink_state() in 2027 * an other thread. 2028 */ 2029 PF_HASHROW_UNLOCK(ih); 2030 return (0); /* XXXGL: undefined actually */ 2031 } 2032 2033 if (s->src.state == PF_TCPS_PROXY_DST) { 2034 /* XXX wire key the right one? */ 2035 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2036 &s->key[PF_SK_WIRE]->addr[1], 2037 &s->key[PF_SK_WIRE]->addr[0], 2038 s->key[PF_SK_WIRE]->port[1], 2039 s->key[PF_SK_WIRE]->port[0], 2040 s->src.seqhi, s->src.seqlo + 1, 2041 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); 2042 } 2043 2044 LIST_REMOVE(s, entry); 2045 pf_src_tree_remove_state(s); 2046 2047 if (V_pfsync_delete_state_ptr != NULL) 2048 V_pfsync_delete_state_ptr(s); 2049 2050 STATE_DEC_COUNTERS(s); 2051 2052 s->timeout = PFTM_UNLINKED; 2053 2054 /* Ensure we remove it from the list of halfopen states, if needed. */ 2055 if (s->key[PF_SK_STACK] != NULL && 2056 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2057 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2058 2059 PF_HASHROW_UNLOCK(ih); 2060 2061 pf_detach_state(s); 2062 /* pf_state_insert() initialises refs to 2 */ 2063 return (pf_release_staten(s, 2)); 2064 } 2065 2066 struct pf_kstate * 2067 pf_alloc_state(int flags) 2068 { 2069 2070 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2071 } 2072 2073 void 2074 pf_free_state(struct pf_kstate *cur) 2075 { 2076 2077 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2078 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2079 cur->timeout)); 2080 2081 pf_normalize_tcp_cleanup(cur); 2082 uma_zfree(V_pf_state_z, cur); 2083 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2084 } 2085 2086 /* 2087 * Called only from pf_purge_thread(), thus serialized. 2088 */ 2089 static u_int 2090 pf_purge_expired_states(u_int i, int maxcheck) 2091 { 2092 struct pf_idhash *ih; 2093 struct pf_kstate *s; 2094 2095 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2096 2097 /* 2098 * Go through hash and unlink states that expire now. 2099 */ 2100 while (maxcheck > 0) { 2101 ih = &V_pf_idhash[i]; 2102 2103 /* only take the lock if we expect to do work */ 2104 if (!LIST_EMPTY(&ih->states)) { 2105 relock: 2106 PF_HASHROW_LOCK(ih); 2107 LIST_FOREACH(s, &ih->states, entry) { 2108 if (pf_state_expires(s) <= time_uptime) { 2109 V_pf_status.states -= 2110 pf_unlink_state(s); 2111 goto relock; 2112 } 2113 s->rule.ptr->rule_ref |= PFRULE_REFS; 2114 if (s->nat_rule.ptr != NULL) 2115 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2116 if (s->anchor.ptr != NULL) 2117 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2118 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2119 if (s->rt_kif) 2120 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2121 } 2122 PF_HASHROW_UNLOCK(ih); 2123 } 2124 2125 /* Return when we hit end of hash. */ 2126 if (++i > pf_hashmask) { 2127 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2128 return (0); 2129 } 2130 2131 maxcheck--; 2132 } 2133 2134 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2135 2136 return (i); 2137 } 2138 2139 static void 2140 pf_purge_unlinked_rules(void) 2141 { 2142 struct pf_krulequeue tmpq; 2143 struct pf_krule *r, *r1; 2144 2145 /* 2146 * If we have overloading task pending, then we'd 2147 * better skip purging this time. There is a tiny 2148 * probability that overloading task references 2149 * an already unlinked rule. 2150 */ 2151 PF_OVERLOADQ_LOCK(); 2152 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2153 PF_OVERLOADQ_UNLOCK(); 2154 return; 2155 } 2156 PF_OVERLOADQ_UNLOCK(); 2157 2158 /* 2159 * Do naive mark-and-sweep garbage collecting of old rules. 2160 * Reference flag is raised by pf_purge_expired_states() 2161 * and pf_purge_expired_src_nodes(). 2162 * 2163 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2164 * use a temporary queue. 2165 */ 2166 TAILQ_INIT(&tmpq); 2167 PF_UNLNKDRULES_LOCK(); 2168 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2169 if (!(r->rule_ref & PFRULE_REFS)) { 2170 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2171 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2172 } else 2173 r->rule_ref &= ~PFRULE_REFS; 2174 } 2175 PF_UNLNKDRULES_UNLOCK(); 2176 2177 if (!TAILQ_EMPTY(&tmpq)) { 2178 PF_CONFIG_LOCK(); 2179 PF_RULES_WLOCK(); 2180 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2181 TAILQ_REMOVE(&tmpq, r, entries); 2182 pf_free_rule(r); 2183 } 2184 PF_RULES_WUNLOCK(); 2185 PF_CONFIG_UNLOCK(); 2186 } 2187 } 2188 2189 void 2190 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2191 { 2192 switch (af) { 2193 #ifdef INET 2194 case AF_INET: { 2195 u_int32_t a = ntohl(addr->addr32[0]); 2196 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2197 (a>>8)&255, a&255); 2198 if (p) { 2199 p = ntohs(p); 2200 printf(":%u", p); 2201 } 2202 break; 2203 } 2204 #endif /* INET */ 2205 #ifdef INET6 2206 case AF_INET6: { 2207 u_int16_t b; 2208 u_int8_t i, curstart, curend, maxstart, maxend; 2209 curstart = curend = maxstart = maxend = 255; 2210 for (i = 0; i < 8; i++) { 2211 if (!addr->addr16[i]) { 2212 if (curstart == 255) 2213 curstart = i; 2214 curend = i; 2215 } else { 2216 if ((curend - curstart) > 2217 (maxend - maxstart)) { 2218 maxstart = curstart; 2219 maxend = curend; 2220 } 2221 curstart = curend = 255; 2222 } 2223 } 2224 if ((curend - curstart) > 2225 (maxend - maxstart)) { 2226 maxstart = curstart; 2227 maxend = curend; 2228 } 2229 for (i = 0; i < 8; i++) { 2230 if (i >= maxstart && i <= maxend) { 2231 if (i == 0) 2232 printf(":"); 2233 if (i == maxend) 2234 printf(":"); 2235 } else { 2236 b = ntohs(addr->addr16[i]); 2237 printf("%x", b); 2238 if (i < 7) 2239 printf(":"); 2240 } 2241 } 2242 if (p) { 2243 p = ntohs(p); 2244 printf("[%u]", p); 2245 } 2246 break; 2247 } 2248 #endif /* INET6 */ 2249 } 2250 } 2251 2252 void 2253 pf_print_state(struct pf_kstate *s) 2254 { 2255 pf_print_state_parts(s, NULL, NULL); 2256 } 2257 2258 static void 2259 pf_print_state_parts(struct pf_kstate *s, 2260 struct pf_state_key *skwp, struct pf_state_key *sksp) 2261 { 2262 struct pf_state_key *skw, *sks; 2263 u_int8_t proto, dir; 2264 2265 /* Do our best to fill these, but they're skipped if NULL */ 2266 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2267 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2268 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2269 dir = s ? s->direction : 0; 2270 2271 switch (proto) { 2272 case IPPROTO_IPV4: 2273 printf("IPv4"); 2274 break; 2275 case IPPROTO_IPV6: 2276 printf("IPv6"); 2277 break; 2278 case IPPROTO_TCP: 2279 printf("TCP"); 2280 break; 2281 case IPPROTO_UDP: 2282 printf("UDP"); 2283 break; 2284 case IPPROTO_ICMP: 2285 printf("ICMP"); 2286 break; 2287 case IPPROTO_ICMPV6: 2288 printf("ICMPv6"); 2289 break; 2290 default: 2291 printf("%u", proto); 2292 break; 2293 } 2294 switch (dir) { 2295 case PF_IN: 2296 printf(" in"); 2297 break; 2298 case PF_OUT: 2299 printf(" out"); 2300 break; 2301 } 2302 if (skw) { 2303 printf(" wire: "); 2304 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2305 printf(" "); 2306 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2307 } 2308 if (sks) { 2309 printf(" stack: "); 2310 if (sks != skw) { 2311 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2312 printf(" "); 2313 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2314 } else 2315 printf("-"); 2316 } 2317 if (s) { 2318 if (proto == IPPROTO_TCP) { 2319 printf(" [lo=%u high=%u win=%u modulator=%u", 2320 s->src.seqlo, s->src.seqhi, 2321 s->src.max_win, s->src.seqdiff); 2322 if (s->src.wscale && s->dst.wscale) 2323 printf(" wscale=%u", 2324 s->src.wscale & PF_WSCALE_MASK); 2325 printf("]"); 2326 printf(" [lo=%u high=%u win=%u modulator=%u", 2327 s->dst.seqlo, s->dst.seqhi, 2328 s->dst.max_win, s->dst.seqdiff); 2329 if (s->src.wscale && s->dst.wscale) 2330 printf(" wscale=%u", 2331 s->dst.wscale & PF_WSCALE_MASK); 2332 printf("]"); 2333 } 2334 printf(" %u:%u", s->src.state, s->dst.state); 2335 } 2336 } 2337 2338 void 2339 pf_print_flags(u_int8_t f) 2340 { 2341 if (f) 2342 printf(" "); 2343 if (f & TH_FIN) 2344 printf("F"); 2345 if (f & TH_SYN) 2346 printf("S"); 2347 if (f & TH_RST) 2348 printf("R"); 2349 if (f & TH_PUSH) 2350 printf("P"); 2351 if (f & TH_ACK) 2352 printf("A"); 2353 if (f & TH_URG) 2354 printf("U"); 2355 if (f & TH_ECE) 2356 printf("E"); 2357 if (f & TH_CWR) 2358 printf("W"); 2359 } 2360 2361 #define PF_SET_SKIP_STEPS(i) \ 2362 do { \ 2363 while (head[i] != cur) { \ 2364 head[i]->skip[i].ptr = cur; \ 2365 head[i] = TAILQ_NEXT(head[i], entries); \ 2366 } \ 2367 } while (0) 2368 2369 void 2370 pf_calc_skip_steps(struct pf_krulequeue *rules) 2371 { 2372 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2373 int i; 2374 2375 cur = TAILQ_FIRST(rules); 2376 prev = cur; 2377 for (i = 0; i < PF_SKIP_COUNT; ++i) 2378 head[i] = cur; 2379 while (cur != NULL) { 2380 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2381 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2382 if (cur->direction != prev->direction) 2383 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2384 if (cur->af != prev->af) 2385 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2386 if (cur->proto != prev->proto) 2387 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2388 if (cur->src.neg != prev->src.neg || 2389 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2390 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2391 if (cur->src.port[0] != prev->src.port[0] || 2392 cur->src.port[1] != prev->src.port[1] || 2393 cur->src.port_op != prev->src.port_op) 2394 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2395 if (cur->dst.neg != prev->dst.neg || 2396 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2397 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2398 if (cur->dst.port[0] != prev->dst.port[0] || 2399 cur->dst.port[1] != prev->dst.port[1] || 2400 cur->dst.port_op != prev->dst.port_op) 2401 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2402 2403 prev = cur; 2404 cur = TAILQ_NEXT(cur, entries); 2405 } 2406 for (i = 0; i < PF_SKIP_COUNT; ++i) 2407 PF_SET_SKIP_STEPS(i); 2408 } 2409 2410 static int 2411 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2412 { 2413 if (aw1->type != aw2->type) 2414 return (1); 2415 switch (aw1->type) { 2416 case PF_ADDR_ADDRMASK: 2417 case PF_ADDR_RANGE: 2418 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2419 return (1); 2420 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2421 return (1); 2422 return (0); 2423 case PF_ADDR_DYNIFTL: 2424 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2425 case PF_ADDR_NOROUTE: 2426 case PF_ADDR_URPFFAILED: 2427 return (0); 2428 case PF_ADDR_TABLE: 2429 return (aw1->p.tbl != aw2->p.tbl); 2430 default: 2431 printf("invalid address type: %d\n", aw1->type); 2432 return (1); 2433 } 2434 } 2435 2436 /** 2437 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2438 * header isn't always a full checksum. In some cases (i.e. output) it's a 2439 * pseudo-header checksum, which is a partial checksum over src/dst IP 2440 * addresses, protocol number and length. 2441 * 2442 * That means we have the following cases: 2443 * * Input or forwarding: we don't have TSO, the checksum fields are full 2444 * checksums, we need to update the checksum whenever we change anything. 2445 * * Output (i.e. the checksum is a pseudo-header checksum): 2446 * x The field being updated is src/dst address or affects the length of 2447 * the packet. We need to update the pseudo-header checksum (note that this 2448 * checksum is not ones' complement). 2449 * x Some other field is being modified (e.g. src/dst port numbers): We 2450 * don't have to update anything. 2451 **/ 2452 u_int16_t 2453 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2454 { 2455 u_int32_t x; 2456 2457 x = cksum + old - new; 2458 x = (x + (x >> 16)) & 0xffff; 2459 2460 /* optimise: eliminate a branch when not udp */ 2461 if (udp && cksum == 0x0000) 2462 return cksum; 2463 if (udp && x == 0x0000) 2464 x = 0xffff; 2465 2466 return (u_int16_t)(x); 2467 } 2468 2469 static void 2470 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2471 u_int8_t udp) 2472 { 2473 u_int16_t old = htons(hi ? (*f << 8) : *f); 2474 u_int16_t new = htons(hi ? ( v << 8) : v); 2475 2476 if (*f == v) 2477 return; 2478 2479 *f = v; 2480 2481 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2482 return; 2483 2484 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2485 } 2486 2487 void 2488 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2489 bool hi, u_int8_t udp) 2490 { 2491 u_int8_t *fb = (u_int8_t *)f; 2492 u_int8_t *vb = (u_int8_t *)&v; 2493 2494 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2495 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2496 } 2497 2498 void 2499 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2500 bool hi, u_int8_t udp) 2501 { 2502 u_int8_t *fb = (u_int8_t *)f; 2503 u_int8_t *vb = (u_int8_t *)&v; 2504 2505 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2506 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2507 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2508 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2509 } 2510 2511 u_int16_t 2512 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2513 u_int16_t new, u_int8_t udp) 2514 { 2515 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2516 return (cksum); 2517 2518 return (pf_cksum_fixup(cksum, old, new, udp)); 2519 } 2520 2521 static void 2522 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2523 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2524 sa_family_t af) 2525 { 2526 struct pf_addr ao; 2527 u_int16_t po = *p; 2528 2529 PF_ACPY(&ao, a, af); 2530 PF_ACPY(a, an, af); 2531 2532 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2533 *pc = ~*pc; 2534 2535 *p = pn; 2536 2537 switch (af) { 2538 #ifdef INET 2539 case AF_INET: 2540 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2541 ao.addr16[0], an->addr16[0], 0), 2542 ao.addr16[1], an->addr16[1], 0); 2543 *p = pn; 2544 2545 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2546 ao.addr16[0], an->addr16[0], u), 2547 ao.addr16[1], an->addr16[1], u); 2548 2549 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2550 break; 2551 #endif /* INET */ 2552 #ifdef INET6 2553 case AF_INET6: 2554 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2555 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2556 pf_cksum_fixup(pf_cksum_fixup(*pc, 2557 ao.addr16[0], an->addr16[0], u), 2558 ao.addr16[1], an->addr16[1], u), 2559 ao.addr16[2], an->addr16[2], u), 2560 ao.addr16[3], an->addr16[3], u), 2561 ao.addr16[4], an->addr16[4], u), 2562 ao.addr16[5], an->addr16[5], u), 2563 ao.addr16[6], an->addr16[6], u), 2564 ao.addr16[7], an->addr16[7], u); 2565 2566 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2567 break; 2568 #endif /* INET6 */ 2569 } 2570 2571 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2572 CSUM_DELAY_DATA_IPV6)) { 2573 *pc = ~*pc; 2574 if (! *pc) 2575 *pc = 0xffff; 2576 } 2577 } 2578 2579 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2580 void 2581 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2582 { 2583 u_int32_t ao; 2584 2585 memcpy(&ao, a, sizeof(ao)); 2586 memcpy(a, &an, sizeof(u_int32_t)); 2587 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2588 ao % 65536, an % 65536, u); 2589 } 2590 2591 void 2592 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2593 { 2594 u_int32_t ao; 2595 2596 memcpy(&ao, a, sizeof(ao)); 2597 memcpy(a, &an, sizeof(u_int32_t)); 2598 2599 *c = pf_proto_cksum_fixup(m, 2600 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2601 ao % 65536, an % 65536, udp); 2602 } 2603 2604 #ifdef INET6 2605 static void 2606 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2607 { 2608 struct pf_addr ao; 2609 2610 PF_ACPY(&ao, a, AF_INET6); 2611 PF_ACPY(a, an, AF_INET6); 2612 2613 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2614 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2615 pf_cksum_fixup(pf_cksum_fixup(*c, 2616 ao.addr16[0], an->addr16[0], u), 2617 ao.addr16[1], an->addr16[1], u), 2618 ao.addr16[2], an->addr16[2], u), 2619 ao.addr16[3], an->addr16[3], u), 2620 ao.addr16[4], an->addr16[4], u), 2621 ao.addr16[5], an->addr16[5], u), 2622 ao.addr16[6], an->addr16[6], u), 2623 ao.addr16[7], an->addr16[7], u); 2624 } 2625 #endif /* INET6 */ 2626 2627 static void 2628 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2629 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2630 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2631 { 2632 struct pf_addr oia, ooa; 2633 2634 PF_ACPY(&oia, ia, af); 2635 if (oa) 2636 PF_ACPY(&ooa, oa, af); 2637 2638 /* Change inner protocol port, fix inner protocol checksum. */ 2639 if (ip != NULL) { 2640 u_int16_t oip = *ip; 2641 u_int32_t opc; 2642 2643 if (pc != NULL) 2644 opc = *pc; 2645 *ip = np; 2646 if (pc != NULL) 2647 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2648 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2649 if (pc != NULL) 2650 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2651 } 2652 /* Change inner ip address, fix inner ip and icmp checksums. */ 2653 PF_ACPY(ia, na, af); 2654 switch (af) { 2655 #ifdef INET 2656 case AF_INET: { 2657 u_int32_t oh2c = *h2c; 2658 2659 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2660 oia.addr16[0], ia->addr16[0], 0), 2661 oia.addr16[1], ia->addr16[1], 0); 2662 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2663 oia.addr16[0], ia->addr16[0], 0), 2664 oia.addr16[1], ia->addr16[1], 0); 2665 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2666 break; 2667 } 2668 #endif /* INET */ 2669 #ifdef INET6 2670 case AF_INET6: 2671 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2672 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2673 pf_cksum_fixup(pf_cksum_fixup(*ic, 2674 oia.addr16[0], ia->addr16[0], u), 2675 oia.addr16[1], ia->addr16[1], u), 2676 oia.addr16[2], ia->addr16[2], u), 2677 oia.addr16[3], ia->addr16[3], u), 2678 oia.addr16[4], ia->addr16[4], u), 2679 oia.addr16[5], ia->addr16[5], u), 2680 oia.addr16[6], ia->addr16[6], u), 2681 oia.addr16[7], ia->addr16[7], u); 2682 break; 2683 #endif /* INET6 */ 2684 } 2685 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2686 if (oa) { 2687 PF_ACPY(oa, na, af); 2688 switch (af) { 2689 #ifdef INET 2690 case AF_INET: 2691 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2692 ooa.addr16[0], oa->addr16[0], 0), 2693 ooa.addr16[1], oa->addr16[1], 0); 2694 break; 2695 #endif /* INET */ 2696 #ifdef INET6 2697 case AF_INET6: 2698 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2699 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2700 pf_cksum_fixup(pf_cksum_fixup(*ic, 2701 ooa.addr16[0], oa->addr16[0], u), 2702 ooa.addr16[1], oa->addr16[1], u), 2703 ooa.addr16[2], oa->addr16[2], u), 2704 ooa.addr16[3], oa->addr16[3], u), 2705 ooa.addr16[4], oa->addr16[4], u), 2706 ooa.addr16[5], oa->addr16[5], u), 2707 ooa.addr16[6], oa->addr16[6], u), 2708 ooa.addr16[7], oa->addr16[7], u); 2709 break; 2710 #endif /* INET6 */ 2711 } 2712 } 2713 } 2714 2715 /* 2716 * Need to modulate the sequence numbers in the TCP SACK option 2717 * (credits to Krzysztof Pfaff for report and patch) 2718 */ 2719 static int 2720 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2721 struct tcphdr *th, struct pf_state_peer *dst) 2722 { 2723 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2724 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2725 int copyback = 0, i, olen; 2726 struct sackblk sack; 2727 2728 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2729 if (hlen < TCPOLEN_SACKLEN || 2730 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2731 return 0; 2732 2733 while (hlen >= TCPOLEN_SACKLEN) { 2734 size_t startoff = opt - opts; 2735 olen = opt[1]; 2736 switch (*opt) { 2737 case TCPOPT_EOL: /* FALLTHROUGH */ 2738 case TCPOPT_NOP: 2739 opt++; 2740 hlen--; 2741 break; 2742 case TCPOPT_SACK: 2743 if (olen > hlen) 2744 olen = hlen; 2745 if (olen >= TCPOLEN_SACKLEN) { 2746 for (i = 2; i + TCPOLEN_SACK <= olen; 2747 i += TCPOLEN_SACK) { 2748 memcpy(&sack, &opt[i], sizeof(sack)); 2749 pf_patch_32_unaligned(m, 2750 &th->th_sum, &sack.start, 2751 htonl(ntohl(sack.start) - dst->seqdiff), 2752 PF_ALGNMNT(startoff), 2753 0); 2754 pf_patch_32_unaligned(m, &th->th_sum, 2755 &sack.end, 2756 htonl(ntohl(sack.end) - dst->seqdiff), 2757 PF_ALGNMNT(startoff), 2758 0); 2759 memcpy(&opt[i], &sack, sizeof(sack)); 2760 } 2761 copyback = 1; 2762 } 2763 /* FALLTHROUGH */ 2764 default: 2765 if (olen < 2) 2766 olen = 2; 2767 hlen -= olen; 2768 opt += olen; 2769 } 2770 } 2771 2772 if (copyback) 2773 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2774 return (copyback); 2775 } 2776 2777 struct mbuf * 2778 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2779 const struct pf_addr *saddr, const struct pf_addr *daddr, 2780 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2781 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2782 u_int16_t rtag) 2783 { 2784 struct mbuf *m; 2785 int len, tlen; 2786 #ifdef INET 2787 struct ip *h = NULL; 2788 #endif /* INET */ 2789 #ifdef INET6 2790 struct ip6_hdr *h6 = NULL; 2791 #endif /* INET6 */ 2792 struct tcphdr *th; 2793 char *opt; 2794 struct pf_mtag *pf_mtag; 2795 2796 len = 0; 2797 th = NULL; 2798 2799 /* maximum segment size tcp option */ 2800 tlen = sizeof(struct tcphdr); 2801 if (mss) 2802 tlen += 4; 2803 2804 switch (af) { 2805 #ifdef INET 2806 case AF_INET: 2807 len = sizeof(struct ip) + tlen; 2808 break; 2809 #endif /* INET */ 2810 #ifdef INET6 2811 case AF_INET6: 2812 len = sizeof(struct ip6_hdr) + tlen; 2813 break; 2814 #endif /* INET6 */ 2815 default: 2816 panic("%s: unsupported af %d", __func__, af); 2817 } 2818 2819 m = m_gethdr(M_NOWAIT, MT_DATA); 2820 if (m == NULL) 2821 return (NULL); 2822 2823 #ifdef MAC 2824 mac_netinet_firewall_send(m); 2825 #endif 2826 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2827 m_freem(m); 2828 return (NULL); 2829 } 2830 if (tag) 2831 m->m_flags |= M_SKIP_FIREWALL; 2832 pf_mtag->tag = rtag; 2833 2834 if (r != NULL && r->rtableid >= 0) 2835 M_SETFIB(m, r->rtableid); 2836 2837 #ifdef ALTQ 2838 if (r != NULL && r->qid) { 2839 pf_mtag->qid = r->qid; 2840 2841 /* add hints for ecn */ 2842 pf_mtag->hdr = mtod(m, struct ip *); 2843 } 2844 #endif /* ALTQ */ 2845 m->m_data += max_linkhdr; 2846 m->m_pkthdr.len = m->m_len = len; 2847 /* The rest of the stack assumes a rcvif, so provide one. 2848 * This is a locally generated packet, so .. close enough. */ 2849 m->m_pkthdr.rcvif = V_loif; 2850 bzero(m->m_data, len); 2851 switch (af) { 2852 #ifdef INET 2853 case AF_INET: 2854 h = mtod(m, struct ip *); 2855 2856 /* IP header fields included in the TCP checksum */ 2857 h->ip_p = IPPROTO_TCP; 2858 h->ip_len = htons(tlen); 2859 h->ip_src.s_addr = saddr->v4.s_addr; 2860 h->ip_dst.s_addr = daddr->v4.s_addr; 2861 2862 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2863 break; 2864 #endif /* INET */ 2865 #ifdef INET6 2866 case AF_INET6: 2867 h6 = mtod(m, struct ip6_hdr *); 2868 2869 /* IP header fields included in the TCP checksum */ 2870 h6->ip6_nxt = IPPROTO_TCP; 2871 h6->ip6_plen = htons(tlen); 2872 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2873 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2874 2875 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2876 break; 2877 #endif /* INET6 */ 2878 } 2879 2880 /* TCP header */ 2881 th->th_sport = sport; 2882 th->th_dport = dport; 2883 th->th_seq = htonl(seq); 2884 th->th_ack = htonl(ack); 2885 th->th_off = tlen >> 2; 2886 th->th_flags = flags; 2887 th->th_win = htons(win); 2888 2889 if (mss) { 2890 opt = (char *)(th + 1); 2891 opt[0] = TCPOPT_MAXSEG; 2892 opt[1] = 4; 2893 HTONS(mss); 2894 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2895 } 2896 2897 switch (af) { 2898 #ifdef INET 2899 case AF_INET: 2900 /* TCP checksum */ 2901 th->th_sum = in_cksum(m, len); 2902 2903 /* Finish the IP header */ 2904 h->ip_v = 4; 2905 h->ip_hl = sizeof(*h) >> 2; 2906 h->ip_tos = IPTOS_LOWDELAY; 2907 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2908 h->ip_len = htons(len); 2909 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2910 h->ip_sum = 0; 2911 break; 2912 #endif /* INET */ 2913 #ifdef INET6 2914 case AF_INET6: 2915 /* TCP checksum */ 2916 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2917 sizeof(struct ip6_hdr), tlen); 2918 2919 h6->ip6_vfc |= IPV6_VERSION; 2920 h6->ip6_hlim = IPV6_DEFHLIM; 2921 break; 2922 #endif /* INET6 */ 2923 } 2924 2925 return (m); 2926 } 2927 2928 void 2929 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 2930 const struct pf_addr *saddr, const struct pf_addr *daddr, 2931 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2932 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2933 u_int16_t rtag) 2934 { 2935 struct pf_send_entry *pfse; 2936 struct mbuf *m; 2937 2938 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, 2939 win, mss, ttl, tag, rtag); 2940 if (m == NULL) 2941 return; 2942 2943 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2944 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2945 if (pfse == NULL) { 2946 m_freem(m); 2947 return; 2948 } 2949 2950 switch (af) { 2951 #ifdef INET 2952 case AF_INET: 2953 pfse->pfse_type = PFSE_IP; 2954 break; 2955 #endif /* INET */ 2956 #ifdef INET6 2957 case AF_INET6: 2958 pfse->pfse_type = PFSE_IP6; 2959 break; 2960 #endif /* INET6 */ 2961 } 2962 2963 pfse->pfse_m = m; 2964 pf_send(pfse); 2965 } 2966 2967 static void 2968 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 2969 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2970 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2971 u_short *reason) 2972 { 2973 struct pf_addr * const saddr = pd->src; 2974 struct pf_addr * const daddr = pd->dst; 2975 sa_family_t af = pd->af; 2976 2977 /* undo NAT changes, if they have taken place */ 2978 if (nr != NULL) { 2979 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2980 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2981 if (pd->sport) 2982 *pd->sport = sk->port[pd->sidx]; 2983 if (pd->dport) 2984 *pd->dport = sk->port[pd->didx]; 2985 if (pd->proto_sum) 2986 *pd->proto_sum = bproto_sum; 2987 if (pd->ip_sum) 2988 *pd->ip_sum = bip_sum; 2989 m_copyback(m, off, hdrlen, pd->hdr.any); 2990 } 2991 if (pd->proto == IPPROTO_TCP && 2992 ((r->rule_flag & PFRULE_RETURNRST) || 2993 (r->rule_flag & PFRULE_RETURN)) && 2994 !(th->th_flags & TH_RST)) { 2995 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2996 int len = 0; 2997 #ifdef INET 2998 struct ip *h4; 2999 #endif 3000 #ifdef INET6 3001 struct ip6_hdr *h6; 3002 #endif 3003 3004 switch (af) { 3005 #ifdef INET 3006 case AF_INET: 3007 h4 = mtod(m, struct ip *); 3008 len = ntohs(h4->ip_len) - off; 3009 break; 3010 #endif 3011 #ifdef INET6 3012 case AF_INET6: 3013 h6 = mtod(m, struct ip6_hdr *); 3014 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3015 break; 3016 #endif 3017 } 3018 3019 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3020 REASON_SET(reason, PFRES_PROTCKSUM); 3021 else { 3022 if (th->th_flags & TH_SYN) 3023 ack++; 3024 if (th->th_flags & TH_FIN) 3025 ack++; 3026 pf_send_tcp(r, af, pd->dst, 3027 pd->src, th->th_dport, th->th_sport, 3028 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3029 r->return_ttl, 1, 0); 3030 } 3031 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3032 r->return_icmp) 3033 pf_send_icmp(m, r->return_icmp >> 8, 3034 r->return_icmp & 255, af, r); 3035 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3036 r->return_icmp6) 3037 pf_send_icmp(m, r->return_icmp6 >> 8, 3038 r->return_icmp6 & 255, af, r); 3039 } 3040 3041 static int 3042 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3043 { 3044 struct m_tag *mtag; 3045 u_int8_t mpcp; 3046 3047 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3048 if (mtag == NULL) 3049 return (0); 3050 3051 if (prio == PF_PRIO_ZERO) 3052 prio = 0; 3053 3054 mpcp = *(uint8_t *)(mtag + 1); 3055 3056 return (mpcp == prio); 3057 } 3058 3059 static void 3060 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3061 struct pf_krule *r) 3062 { 3063 struct pf_send_entry *pfse; 3064 struct mbuf *m0; 3065 struct pf_mtag *pf_mtag; 3066 3067 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3068 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3069 if (pfse == NULL) 3070 return; 3071 3072 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3073 free(pfse, M_PFTEMP); 3074 return; 3075 } 3076 3077 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3078 free(pfse, M_PFTEMP); 3079 return; 3080 } 3081 /* XXX: revisit */ 3082 m0->m_flags |= M_SKIP_FIREWALL; 3083 3084 if (r->rtableid >= 0) 3085 M_SETFIB(m0, r->rtableid); 3086 3087 #ifdef ALTQ 3088 if (r->qid) { 3089 pf_mtag->qid = r->qid; 3090 /* add hints for ecn */ 3091 pf_mtag->hdr = mtod(m0, struct ip *); 3092 } 3093 #endif /* ALTQ */ 3094 3095 switch (af) { 3096 #ifdef INET 3097 case AF_INET: 3098 pfse->pfse_type = PFSE_ICMP; 3099 break; 3100 #endif /* INET */ 3101 #ifdef INET6 3102 case AF_INET6: 3103 pfse->pfse_type = PFSE_ICMP6; 3104 break; 3105 #endif /* INET6 */ 3106 } 3107 pfse->pfse_m = m0; 3108 pfse->icmpopts.type = type; 3109 pfse->icmpopts.code = code; 3110 pf_send(pfse); 3111 } 3112 3113 /* 3114 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3115 * If n is 0, they match if they are equal. If n is != 0, they match if they 3116 * are different. 3117 */ 3118 int 3119 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3120 struct pf_addr *b, sa_family_t af) 3121 { 3122 int match = 0; 3123 3124 switch (af) { 3125 #ifdef INET 3126 case AF_INET: 3127 if ((a->addr32[0] & m->addr32[0]) == 3128 (b->addr32[0] & m->addr32[0])) 3129 match++; 3130 break; 3131 #endif /* INET */ 3132 #ifdef INET6 3133 case AF_INET6: 3134 if (((a->addr32[0] & m->addr32[0]) == 3135 (b->addr32[0] & m->addr32[0])) && 3136 ((a->addr32[1] & m->addr32[1]) == 3137 (b->addr32[1] & m->addr32[1])) && 3138 ((a->addr32[2] & m->addr32[2]) == 3139 (b->addr32[2] & m->addr32[2])) && 3140 ((a->addr32[3] & m->addr32[3]) == 3141 (b->addr32[3] & m->addr32[3]))) 3142 match++; 3143 break; 3144 #endif /* INET6 */ 3145 } 3146 if (match) { 3147 if (n) 3148 return (0); 3149 else 3150 return (1); 3151 } else { 3152 if (n) 3153 return (1); 3154 else 3155 return (0); 3156 } 3157 } 3158 3159 /* 3160 * Return 1 if b <= a <= e, otherwise return 0. 3161 */ 3162 int 3163 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3164 struct pf_addr *a, sa_family_t af) 3165 { 3166 switch (af) { 3167 #ifdef INET 3168 case AF_INET: 3169 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3170 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3171 return (0); 3172 break; 3173 #endif /* INET */ 3174 #ifdef INET6 3175 case AF_INET6: { 3176 int i; 3177 3178 /* check a >= b */ 3179 for (i = 0; i < 4; ++i) 3180 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3181 break; 3182 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3183 return (0); 3184 /* check a <= e */ 3185 for (i = 0; i < 4; ++i) 3186 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3187 break; 3188 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3189 return (0); 3190 break; 3191 } 3192 #endif /* INET6 */ 3193 } 3194 return (1); 3195 } 3196 3197 static int 3198 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3199 { 3200 switch (op) { 3201 case PF_OP_IRG: 3202 return ((p > a1) && (p < a2)); 3203 case PF_OP_XRG: 3204 return ((p < a1) || (p > a2)); 3205 case PF_OP_RRG: 3206 return ((p >= a1) && (p <= a2)); 3207 case PF_OP_EQ: 3208 return (p == a1); 3209 case PF_OP_NE: 3210 return (p != a1); 3211 case PF_OP_LT: 3212 return (p < a1); 3213 case PF_OP_LE: 3214 return (p <= a1); 3215 case PF_OP_GT: 3216 return (p > a1); 3217 case PF_OP_GE: 3218 return (p >= a1); 3219 } 3220 return (0); /* never reached */ 3221 } 3222 3223 int 3224 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3225 { 3226 NTOHS(a1); 3227 NTOHS(a2); 3228 NTOHS(p); 3229 return (pf_match(op, a1, a2, p)); 3230 } 3231 3232 static int 3233 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3234 { 3235 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3236 return (0); 3237 return (pf_match(op, a1, a2, u)); 3238 } 3239 3240 static int 3241 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3242 { 3243 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3244 return (0); 3245 return (pf_match(op, a1, a2, g)); 3246 } 3247 3248 int 3249 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3250 { 3251 if (*tag == -1) 3252 *tag = mtag; 3253 3254 return ((!r->match_tag_not && r->match_tag == *tag) || 3255 (r->match_tag_not && r->match_tag != *tag)); 3256 } 3257 3258 int 3259 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3260 { 3261 3262 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3263 3264 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3265 return (ENOMEM); 3266 3267 pd->pf_mtag->tag = tag; 3268 3269 return (0); 3270 } 3271 3272 #define PF_ANCHOR_STACKSIZE 32 3273 struct pf_kanchor_stackframe { 3274 struct pf_kruleset *rs; 3275 struct pf_krule *r; /* XXX: + match bit */ 3276 struct pf_kanchor *child; 3277 }; 3278 3279 /* 3280 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3281 */ 3282 #define PF_ANCHORSTACK_MATCH 0x00000001 3283 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3284 3285 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3286 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3287 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3288 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3289 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3290 } while (0) 3291 3292 void 3293 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3294 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3295 int *match) 3296 { 3297 struct pf_kanchor_stackframe *f; 3298 3299 PF_RULES_RASSERT(); 3300 3301 if (match) 3302 *match = 0; 3303 if (*depth >= PF_ANCHOR_STACKSIZE) { 3304 printf("%s: anchor stack overflow on %s\n", 3305 __func__, (*r)->anchor->name); 3306 *r = TAILQ_NEXT(*r, entries); 3307 return; 3308 } else if (*depth == 0 && a != NULL) 3309 *a = *r; 3310 f = stack + (*depth)++; 3311 f->rs = *rs; 3312 f->r = *r; 3313 if ((*r)->anchor_wildcard) { 3314 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3315 3316 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3317 *r = NULL; 3318 return; 3319 } 3320 *rs = &f->child->ruleset; 3321 } else { 3322 f->child = NULL; 3323 *rs = &(*r)->anchor->ruleset; 3324 } 3325 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3326 } 3327 3328 int 3329 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3330 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3331 int *match) 3332 { 3333 struct pf_kanchor_stackframe *f; 3334 struct pf_krule *fr; 3335 int quick = 0; 3336 3337 PF_RULES_RASSERT(); 3338 3339 do { 3340 if (*depth <= 0) 3341 break; 3342 f = stack + *depth - 1; 3343 fr = PF_ANCHOR_RULE(f); 3344 if (f->child != NULL) { 3345 /* 3346 * This block traverses through 3347 * a wildcard anchor. 3348 */ 3349 if (match != NULL && *match) { 3350 /* 3351 * If any of "*" matched, then 3352 * "foo/ *" matched, mark frame 3353 * appropriately. 3354 */ 3355 PF_ANCHOR_SET_MATCH(f); 3356 *match = 0; 3357 } 3358 f->child = RB_NEXT(pf_kanchor_node, 3359 &fr->anchor->children, f->child); 3360 if (f->child != NULL) { 3361 *rs = &f->child->ruleset; 3362 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3363 if (*r == NULL) 3364 continue; 3365 else 3366 break; 3367 } 3368 } 3369 (*depth)--; 3370 if (*depth == 0 && a != NULL) 3371 *a = NULL; 3372 *rs = f->rs; 3373 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3374 quick = fr->quick; 3375 *r = TAILQ_NEXT(fr, entries); 3376 } while (*r == NULL); 3377 3378 return (quick); 3379 } 3380 3381 struct pf_keth_anchor_stackframe { 3382 struct pf_keth_ruleset *rs; 3383 struct pf_keth_rule *r; /* XXX: + match bit */ 3384 struct pf_keth_anchor *child; 3385 }; 3386 3387 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3388 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3389 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3390 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3391 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3392 } while (0) 3393 3394 void 3395 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3396 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3397 struct pf_keth_rule **a, int *match) 3398 { 3399 struct pf_keth_anchor_stackframe *f; 3400 3401 NET_EPOCH_ASSERT(); 3402 3403 if (match) 3404 *match = 0; 3405 if (*depth >= PF_ANCHOR_STACKSIZE) { 3406 printf("%s: anchor stack overflow on %s\n", 3407 __func__, (*r)->anchor->name); 3408 *r = TAILQ_NEXT(*r, entries); 3409 return; 3410 } else if (*depth == 0 && a != NULL) 3411 *a = *r; 3412 f = stack + (*depth)++; 3413 f->rs = *rs; 3414 f->r = *r; 3415 if ((*r)->anchor_wildcard) { 3416 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3417 3418 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3419 *r = NULL; 3420 return; 3421 } 3422 *rs = &f->child->ruleset; 3423 } else { 3424 f->child = NULL; 3425 *rs = &(*r)->anchor->ruleset; 3426 } 3427 *r = TAILQ_FIRST((*rs)->active.rules); 3428 } 3429 3430 int 3431 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3432 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3433 struct pf_keth_rule **a, int *match) 3434 { 3435 struct pf_keth_anchor_stackframe *f; 3436 struct pf_keth_rule *fr; 3437 int quick = 0; 3438 3439 NET_EPOCH_ASSERT(); 3440 3441 do { 3442 if (*depth <= 0) 3443 break; 3444 f = stack + *depth - 1; 3445 fr = PF_ETH_ANCHOR_RULE(f); 3446 if (f->child != NULL) { 3447 /* 3448 * This block traverses through 3449 * a wildcard anchor. 3450 */ 3451 if (match != NULL && *match) { 3452 /* 3453 * If any of "*" matched, then 3454 * "foo/ *" matched, mark frame 3455 * appropriately. 3456 */ 3457 PF_ETH_ANCHOR_SET_MATCH(f); 3458 *match = 0; 3459 } 3460 f->child = RB_NEXT(pf_keth_anchor_node, 3461 &fr->anchor->children, f->child); 3462 if (f->child != NULL) { 3463 *rs = &f->child->ruleset; 3464 *r = TAILQ_FIRST((*rs)->active.rules); 3465 if (*r == NULL) 3466 continue; 3467 else 3468 break; 3469 } 3470 } 3471 (*depth)--; 3472 if (*depth == 0 && a != NULL) 3473 *a = NULL; 3474 *rs = f->rs; 3475 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3476 quick = fr->quick; 3477 *r = TAILQ_NEXT(fr, entries); 3478 } while (*r == NULL); 3479 3480 return (quick); 3481 } 3482 3483 #ifdef INET6 3484 void 3485 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3486 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3487 { 3488 switch (af) { 3489 #ifdef INET 3490 case AF_INET: 3491 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3492 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3493 break; 3494 #endif /* INET */ 3495 case AF_INET6: 3496 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3497 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3498 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3499 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3500 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3501 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3502 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3503 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3504 break; 3505 } 3506 } 3507 3508 void 3509 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3510 { 3511 switch (af) { 3512 #ifdef INET 3513 case AF_INET: 3514 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3515 break; 3516 #endif /* INET */ 3517 case AF_INET6: 3518 if (addr->addr32[3] == 0xffffffff) { 3519 addr->addr32[3] = 0; 3520 if (addr->addr32[2] == 0xffffffff) { 3521 addr->addr32[2] = 0; 3522 if (addr->addr32[1] == 0xffffffff) { 3523 addr->addr32[1] = 0; 3524 addr->addr32[0] = 3525 htonl(ntohl(addr->addr32[0]) + 1); 3526 } else 3527 addr->addr32[1] = 3528 htonl(ntohl(addr->addr32[1]) + 1); 3529 } else 3530 addr->addr32[2] = 3531 htonl(ntohl(addr->addr32[2]) + 1); 3532 } else 3533 addr->addr32[3] = 3534 htonl(ntohl(addr->addr32[3]) + 1); 3535 break; 3536 } 3537 } 3538 #endif /* INET6 */ 3539 3540 void 3541 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3542 { 3543 if (r->qid) 3544 a->qid = r->qid; 3545 if (r->pqid) 3546 a->pqid = r->pqid; 3547 if (r->dnpipe) 3548 a->dnpipe = r->dnpipe; 3549 if (r->dnrpipe) 3550 a->dnrpipe = r->dnrpipe; 3551 if (r->dnpipe || r->dnrpipe) { 3552 if (r->free_flags & PFRULE_DN_IS_PIPE) 3553 a->flags |= PFRULE_DN_IS_PIPE; 3554 else 3555 a->flags &= ~PFRULE_DN_IS_PIPE; 3556 } 3557 } 3558 3559 int 3560 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3561 { 3562 struct pf_addr *saddr, *daddr; 3563 u_int16_t sport, dport; 3564 struct inpcbinfo *pi; 3565 struct inpcb *inp; 3566 3567 pd->lookup.uid = UID_MAX; 3568 pd->lookup.gid = GID_MAX; 3569 3570 switch (pd->proto) { 3571 case IPPROTO_TCP: 3572 sport = pd->hdr.tcp.th_sport; 3573 dport = pd->hdr.tcp.th_dport; 3574 pi = &V_tcbinfo; 3575 break; 3576 case IPPROTO_UDP: 3577 sport = pd->hdr.udp.uh_sport; 3578 dport = pd->hdr.udp.uh_dport; 3579 pi = &V_udbinfo; 3580 break; 3581 default: 3582 return (-1); 3583 } 3584 if (direction == PF_IN) { 3585 saddr = pd->src; 3586 daddr = pd->dst; 3587 } else { 3588 u_int16_t p; 3589 3590 p = sport; 3591 sport = dport; 3592 dport = p; 3593 saddr = pd->dst; 3594 daddr = pd->src; 3595 } 3596 switch (pd->af) { 3597 #ifdef INET 3598 case AF_INET: 3599 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3600 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3601 if (inp == NULL) { 3602 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3603 daddr->v4, dport, INPLOOKUP_WILDCARD | 3604 INPLOOKUP_RLOCKPCB, NULL, m); 3605 if (inp == NULL) 3606 return (-1); 3607 } 3608 break; 3609 #endif /* INET */ 3610 #ifdef INET6 3611 case AF_INET6: 3612 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3613 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3614 if (inp == NULL) { 3615 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3616 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3617 INPLOOKUP_RLOCKPCB, NULL, m); 3618 if (inp == NULL) 3619 return (-1); 3620 } 3621 break; 3622 #endif /* INET6 */ 3623 3624 default: 3625 return (-1); 3626 } 3627 INP_RLOCK_ASSERT(inp); 3628 pd->lookup.uid = inp->inp_cred->cr_uid; 3629 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3630 INP_RUNLOCK(inp); 3631 3632 return (1); 3633 } 3634 3635 u_int8_t 3636 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3637 { 3638 int hlen; 3639 u_int8_t hdr[60]; 3640 u_int8_t *opt, optlen; 3641 u_int8_t wscale = 0; 3642 3643 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3644 if (hlen <= sizeof(struct tcphdr)) 3645 return (0); 3646 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3647 return (0); 3648 opt = hdr + sizeof(struct tcphdr); 3649 hlen -= sizeof(struct tcphdr); 3650 while (hlen >= 3) { 3651 switch (*opt) { 3652 case TCPOPT_EOL: 3653 case TCPOPT_NOP: 3654 ++opt; 3655 --hlen; 3656 break; 3657 case TCPOPT_WINDOW: 3658 wscale = opt[2]; 3659 if (wscale > TCP_MAX_WINSHIFT) 3660 wscale = TCP_MAX_WINSHIFT; 3661 wscale |= PF_WSCALE_FLAG; 3662 /* FALLTHROUGH */ 3663 default: 3664 optlen = opt[1]; 3665 if (optlen < 2) 3666 optlen = 2; 3667 hlen -= optlen; 3668 opt += optlen; 3669 break; 3670 } 3671 } 3672 return (wscale); 3673 } 3674 3675 u_int16_t 3676 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3677 { 3678 int hlen; 3679 u_int8_t hdr[60]; 3680 u_int8_t *opt, optlen; 3681 u_int16_t mss = V_tcp_mssdflt; 3682 3683 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3684 if (hlen <= sizeof(struct tcphdr)) 3685 return (0); 3686 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3687 return (0); 3688 opt = hdr + sizeof(struct tcphdr); 3689 hlen -= sizeof(struct tcphdr); 3690 while (hlen >= TCPOLEN_MAXSEG) { 3691 switch (*opt) { 3692 case TCPOPT_EOL: 3693 case TCPOPT_NOP: 3694 ++opt; 3695 --hlen; 3696 break; 3697 case TCPOPT_MAXSEG: 3698 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3699 NTOHS(mss); 3700 /* FALLTHROUGH */ 3701 default: 3702 optlen = opt[1]; 3703 if (optlen < 2) 3704 optlen = 2; 3705 hlen -= optlen; 3706 opt += optlen; 3707 break; 3708 } 3709 } 3710 return (mss); 3711 } 3712 3713 static u_int16_t 3714 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3715 { 3716 struct nhop_object *nh; 3717 #ifdef INET6 3718 struct in6_addr dst6; 3719 uint32_t scopeid; 3720 #endif /* INET6 */ 3721 int hlen = 0; 3722 uint16_t mss = 0; 3723 3724 NET_EPOCH_ASSERT(); 3725 3726 switch (af) { 3727 #ifdef INET 3728 case AF_INET: 3729 hlen = sizeof(struct ip); 3730 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3731 if (nh != NULL) 3732 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3733 break; 3734 #endif /* INET */ 3735 #ifdef INET6 3736 case AF_INET6: 3737 hlen = sizeof(struct ip6_hdr); 3738 in6_splitscope(&addr->v6, &dst6, &scopeid); 3739 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3740 if (nh != NULL) 3741 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3742 break; 3743 #endif /* INET6 */ 3744 } 3745 3746 mss = max(V_tcp_mssdflt, mss); 3747 mss = min(mss, offer); 3748 mss = max(mss, 64); /* sanity - at least max opt space */ 3749 return (mss); 3750 } 3751 3752 static u_int32_t 3753 pf_tcp_iss(struct pf_pdesc *pd) 3754 { 3755 MD5_CTX ctx; 3756 u_int32_t digest[4]; 3757 3758 if (V_pf_tcp_secret_init == 0) { 3759 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3760 MD5Init(&V_pf_tcp_secret_ctx); 3761 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3762 sizeof(V_pf_tcp_secret)); 3763 V_pf_tcp_secret_init = 1; 3764 } 3765 3766 ctx = V_pf_tcp_secret_ctx; 3767 3768 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3769 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3770 if (pd->af == AF_INET6) { 3771 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3772 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3773 } else { 3774 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3775 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3776 } 3777 MD5Final((u_char *)digest, &ctx); 3778 V_pf_tcp_iss_off += 4096; 3779 #define ISN_RANDOM_INCREMENT (4096 - 1) 3780 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3781 V_pf_tcp_iss_off); 3782 #undef ISN_RANDOM_INCREMENT 3783 } 3784 3785 static bool 3786 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 3787 { 3788 bool match = true; 3789 3790 /* Always matches if not set */ 3791 if (! r->isset) 3792 return (!r->neg); 3793 3794 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 3795 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 3796 match = false; 3797 break; 3798 } 3799 } 3800 3801 return (match ^ r->neg); 3802 } 3803 3804 static int 3805 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 3806 { 3807 if (*tag == -1) 3808 *tag = mtag; 3809 3810 return ((!r->match_tag_not && r->match_tag == *tag) || 3811 (r->match_tag_not && r->match_tag != *tag)); 3812 } 3813 3814 static int 3815 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 3816 { 3817 #ifdef INET 3818 struct ip ip; 3819 #endif 3820 #ifdef INET6 3821 struct ip6_hdr ip6; 3822 #endif 3823 struct mbuf *m = *m0; 3824 struct ether_header *e; 3825 struct pf_keth_rule *r, *rm, *a = NULL; 3826 struct pf_keth_ruleset *ruleset = NULL; 3827 struct pf_mtag *mtag; 3828 struct pf_keth_ruleq *rules; 3829 struct pf_addr *src = NULL, *dst = NULL; 3830 sa_family_t af = 0; 3831 uint16_t proto; 3832 int asd = 0, match = 0; 3833 int tag = -1; 3834 uint8_t action; 3835 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3836 3837 MPASS(kif->pfik_ifp->if_vnet == curvnet); 3838 NET_EPOCH_ASSERT(); 3839 3840 PF_RULES_RLOCK_TRACKER; 3841 3842 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 3843 3844 mtag = pf_find_mtag(m); 3845 if (mtag != NULL && mtag->flags & PF_TAG_DUMMYNET) { 3846 /* Dummynet re-injects packets after they've 3847 * completed their delay. We've already 3848 * processed them, so pass unconditionally. */ 3849 3850 /* But only once. We may see the packet multiple times (e.g. 3851 * PFIL_IN/PFIL_OUT). */ 3852 mtag->flags &= ~PF_TAG_DUMMYNET; 3853 3854 return (PF_PASS); 3855 } 3856 3857 ruleset = V_pf_keth; 3858 rules = ck_pr_load_ptr(&ruleset->active.rules); 3859 r = TAILQ_FIRST(rules); 3860 rm = NULL; 3861 3862 e = mtod(m, struct ether_header *); 3863 proto = ntohs(e->ether_type); 3864 3865 switch (proto) { 3866 #ifdef INET 3867 case ETHERTYPE_IP: { 3868 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3869 sizeof(ip))) 3870 return (PF_DROP); 3871 3872 af = AF_INET; 3873 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 3874 (caddr_t)&ip); 3875 src = (struct pf_addr *)&ip.ip_src; 3876 dst = (struct pf_addr *)&ip.ip_dst; 3877 break; 3878 } 3879 #endif /* INET */ 3880 #ifdef INET6 3881 case ETHERTYPE_IPV6: { 3882 if (m_length(m, NULL) < (sizeof(struct ether_header) + 3883 sizeof(ip6))) 3884 return (PF_DROP); 3885 3886 af = AF_INET6; 3887 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 3888 (caddr_t)&ip6); 3889 src = (struct pf_addr *)&ip6.ip6_src; 3890 dst = (struct pf_addr *)&ip6.ip6_dst; 3891 break; 3892 } 3893 #endif /* INET6 */ 3894 } 3895 3896 PF_RULES_RLOCK(); 3897 3898 while (r != NULL) { 3899 counter_u64_add(r->evaluations, 1); 3900 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 3901 3902 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 3903 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3904 "kif"); 3905 r = r->skip[PFE_SKIP_IFP].ptr; 3906 } 3907 else if (r->direction && r->direction != dir) { 3908 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3909 "dir"); 3910 r = r->skip[PFE_SKIP_DIR].ptr; 3911 } 3912 else if (r->proto && r->proto != proto) { 3913 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3914 "proto"); 3915 r = r->skip[PFE_SKIP_PROTO].ptr; 3916 } 3917 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 3918 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3919 "src"); 3920 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 3921 } 3922 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 3923 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3924 "dst"); 3925 r = TAILQ_NEXT(r, entries); 3926 } 3927 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 3928 r->ipsrc.neg, kif, M_GETFIB(m))) { 3929 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3930 "ip_src"); 3931 r = TAILQ_NEXT(r, entries); 3932 } 3933 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 3934 r->ipdst.neg, kif, M_GETFIB(m))) { 3935 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3936 "ip_dst"); 3937 r = TAILQ_NEXT(r, entries); 3938 } 3939 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 3940 mtag ? mtag->tag : 0)) { 3941 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 3942 "match_tag"); 3943 r = TAILQ_NEXT(r, entries); 3944 } 3945 else { 3946 if (r->tag) 3947 tag = r->tag; 3948 if (r->anchor == NULL) { 3949 /* Rule matches */ 3950 rm = r; 3951 3952 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 3953 3954 if (r->quick) 3955 break; 3956 3957 r = TAILQ_NEXT(r, entries); 3958 } else { 3959 pf_step_into_keth_anchor(anchor_stack, &asd, 3960 &ruleset, &r, &a, &match); 3961 } 3962 } 3963 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 3964 &ruleset, &r, &a, &match)) 3965 break; 3966 } 3967 3968 r = rm; 3969 3970 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 3971 3972 /* Default to pass. */ 3973 if (r == NULL) { 3974 PF_RULES_RUNLOCK(); 3975 return (PF_PASS); 3976 } 3977 3978 /* Execute action. */ 3979 counter_u64_add(r->packets[dir == PF_OUT], 1); 3980 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 3981 pf_update_timestamp(r); 3982 3983 /* Shortcut. Don't tag if we're just going to drop anyway. */ 3984 if (r->action == PF_DROP) { 3985 PF_RULES_RUNLOCK(); 3986 return (PF_DROP); 3987 } 3988 3989 if (tag > 0) { 3990 if (mtag == NULL) 3991 mtag = pf_get_mtag(m); 3992 if (mtag == NULL) { 3993 PF_RULES_RUNLOCK(); 3994 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 3995 return (PF_DROP); 3996 } 3997 mtag->tag = tag; 3998 } 3999 4000 if (r->qid != 0) { 4001 if (mtag == NULL) 4002 mtag = pf_get_mtag(m); 4003 if (mtag == NULL) { 4004 PF_RULES_RUNLOCK(); 4005 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4006 return (PF_DROP); 4007 } 4008 mtag->qid = r->qid; 4009 } 4010 4011 /* Dummynet */ 4012 if (r->dnpipe) { 4013 struct ip_fw_args dnflow; 4014 4015 /* Drop packet if dummynet is not loaded. */ 4016 if (ip_dn_io_ptr == NULL) { 4017 PF_RULES_RUNLOCK(); 4018 m_freem(m); 4019 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4020 return (PF_DROP); 4021 } 4022 if (mtag == NULL) 4023 mtag = pf_get_mtag(m); 4024 if (mtag == NULL) { 4025 PF_RULES_RUNLOCK(); 4026 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4027 return (PF_DROP); 4028 } 4029 4030 bzero(&dnflow, sizeof(dnflow)); 4031 4032 /* We don't have port numbers here, so we set 0. That means 4033 * that we'll be somewhat limited in distinguishing flows (i.e. 4034 * only based on IP addresses, not based on port numbers), but 4035 * it's better than nothing. */ 4036 dnflow.f_id.dst_port = 0; 4037 dnflow.f_id.src_port = 0; 4038 dnflow.f_id.proto = 0; 4039 4040 dnflow.rule.info = r->dnpipe; 4041 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4042 if (r->dnflags & PFRULE_DN_IS_PIPE) 4043 dnflow.rule.info |= IPFW_IS_PIPE; 4044 4045 dnflow.f_id.extra = dnflow.rule.info; 4046 4047 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4048 dnflow.flags |= IPFW_ARGS_ETHER; 4049 dnflow.ifp = kif->pfik_ifp; 4050 4051 switch (af) { 4052 case AF_INET: 4053 dnflow.f_id.addr_type = 4; 4054 dnflow.f_id.src_ip = src->v4.s_addr; 4055 dnflow.f_id.dst_ip = dst->v4.s_addr; 4056 break; 4057 case AF_INET6: 4058 dnflow.flags |= IPFW_ARGS_IP6; 4059 dnflow.f_id.addr_type = 6; 4060 dnflow.f_id.src_ip6 = src->v6; 4061 dnflow.f_id.dst_ip6 = dst->v6; 4062 break; 4063 } 4064 4065 mtag->flags |= PF_TAG_DUMMYNET; 4066 ip_dn_io_ptr(m0, &dnflow); 4067 if (*m0 != NULL) 4068 mtag->flags &= ~PF_TAG_DUMMYNET; 4069 } 4070 4071 action = r->action; 4072 4073 PF_RULES_RUNLOCK(); 4074 4075 return (action); 4076 } 4077 4078 static int 4079 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, 4080 struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 4081 struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) 4082 { 4083 struct pf_krule *nr = NULL; 4084 struct pf_addr * const saddr = pd->src; 4085 struct pf_addr * const daddr = pd->dst; 4086 sa_family_t af = pd->af; 4087 struct pf_krule *r, *a = NULL; 4088 struct pf_kruleset *ruleset = NULL; 4089 struct pf_ksrc_node *nsn = NULL; 4090 struct tcphdr *th = &pd->hdr.tcp; 4091 struct pf_state_key *sk = NULL, *nk = NULL; 4092 u_short reason; 4093 int rewrite = 0, hdrlen = 0; 4094 int tag = -1, rtableid = -1; 4095 int asd = 0; 4096 int match = 0; 4097 int state_icmp = 0; 4098 u_int16_t sport = 0, dport = 0; 4099 u_int16_t bproto_sum = 0, bip_sum = 0; 4100 u_int8_t icmptype = 0, icmpcode = 0; 4101 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4102 4103 PF_RULES_RASSERT(); 4104 4105 if (inp != NULL) { 4106 INP_LOCK_ASSERT(inp); 4107 pd->lookup.uid = inp->inp_cred->cr_uid; 4108 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4109 pd->lookup.done = 1; 4110 } 4111 4112 switch (pd->proto) { 4113 case IPPROTO_TCP: 4114 sport = th->th_sport; 4115 dport = th->th_dport; 4116 hdrlen = sizeof(*th); 4117 break; 4118 case IPPROTO_UDP: 4119 sport = pd->hdr.udp.uh_sport; 4120 dport = pd->hdr.udp.uh_dport; 4121 hdrlen = sizeof(pd->hdr.udp); 4122 break; 4123 #ifdef INET 4124 case IPPROTO_ICMP: 4125 if (pd->af != AF_INET) 4126 break; 4127 sport = dport = pd->hdr.icmp.icmp_id; 4128 hdrlen = sizeof(pd->hdr.icmp); 4129 icmptype = pd->hdr.icmp.icmp_type; 4130 icmpcode = pd->hdr.icmp.icmp_code; 4131 4132 if (icmptype == ICMP_UNREACH || 4133 icmptype == ICMP_SOURCEQUENCH || 4134 icmptype == ICMP_REDIRECT || 4135 icmptype == ICMP_TIMXCEED || 4136 icmptype == ICMP_PARAMPROB) 4137 state_icmp++; 4138 break; 4139 #endif /* INET */ 4140 #ifdef INET6 4141 case IPPROTO_ICMPV6: 4142 if (af != AF_INET6) 4143 break; 4144 sport = dport = pd->hdr.icmp6.icmp6_id; 4145 hdrlen = sizeof(pd->hdr.icmp6); 4146 icmptype = pd->hdr.icmp6.icmp6_type; 4147 icmpcode = pd->hdr.icmp6.icmp6_code; 4148 4149 if (icmptype == ICMP6_DST_UNREACH || 4150 icmptype == ICMP6_PACKET_TOO_BIG || 4151 icmptype == ICMP6_TIME_EXCEEDED || 4152 icmptype == ICMP6_PARAM_PROB) 4153 state_icmp++; 4154 break; 4155 #endif /* INET6 */ 4156 default: 4157 sport = dport = hdrlen = 0; 4158 break; 4159 } 4160 4161 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4162 4163 /* check packet for BINAT/NAT/RDR */ 4164 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 4165 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4166 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4167 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4168 4169 if (nr->log) { 4170 PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, 4171 ruleset, pd, 1); 4172 } 4173 4174 if (pd->ip_sum) 4175 bip_sum = *pd->ip_sum; 4176 4177 switch (pd->proto) { 4178 case IPPROTO_TCP: 4179 bproto_sum = th->th_sum; 4180 pd->proto_sum = &th->th_sum; 4181 4182 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4183 nk->port[pd->sidx] != sport) { 4184 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4185 &th->th_sum, &nk->addr[pd->sidx], 4186 nk->port[pd->sidx], 0, af); 4187 pd->sport = &th->th_sport; 4188 sport = th->th_sport; 4189 } 4190 4191 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4192 nk->port[pd->didx] != dport) { 4193 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4194 &th->th_sum, &nk->addr[pd->didx], 4195 nk->port[pd->didx], 0, af); 4196 dport = th->th_dport; 4197 pd->dport = &th->th_dport; 4198 } 4199 rewrite++; 4200 break; 4201 case IPPROTO_UDP: 4202 bproto_sum = pd->hdr.udp.uh_sum; 4203 pd->proto_sum = &pd->hdr.udp.uh_sum; 4204 4205 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4206 nk->port[pd->sidx] != sport) { 4207 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4208 pd->ip_sum, &pd->hdr.udp.uh_sum, 4209 &nk->addr[pd->sidx], 4210 nk->port[pd->sidx], 1, af); 4211 sport = pd->hdr.udp.uh_sport; 4212 pd->sport = &pd->hdr.udp.uh_sport; 4213 } 4214 4215 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4216 nk->port[pd->didx] != dport) { 4217 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4218 pd->ip_sum, &pd->hdr.udp.uh_sum, 4219 &nk->addr[pd->didx], 4220 nk->port[pd->didx], 1, af); 4221 dport = pd->hdr.udp.uh_dport; 4222 pd->dport = &pd->hdr.udp.uh_dport; 4223 } 4224 rewrite++; 4225 break; 4226 #ifdef INET 4227 case IPPROTO_ICMP: 4228 nk->port[0] = nk->port[1]; 4229 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4230 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4231 nk->addr[pd->sidx].v4.s_addr, 0); 4232 4233 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4234 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4235 nk->addr[pd->didx].v4.s_addr, 0); 4236 4237 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4238 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4239 pd->hdr.icmp.icmp_cksum, sport, 4240 nk->port[1], 0); 4241 pd->hdr.icmp.icmp_id = nk->port[1]; 4242 pd->sport = &pd->hdr.icmp.icmp_id; 4243 } 4244 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4245 break; 4246 #endif /* INET */ 4247 #ifdef INET6 4248 case IPPROTO_ICMPV6: 4249 nk->port[0] = nk->port[1]; 4250 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4251 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4252 &nk->addr[pd->sidx], 0); 4253 4254 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4255 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4256 &nk->addr[pd->didx], 0); 4257 rewrite++; 4258 break; 4259 #endif /* INET */ 4260 default: 4261 switch (af) { 4262 #ifdef INET 4263 case AF_INET: 4264 if (PF_ANEQ(saddr, 4265 &nk->addr[pd->sidx], AF_INET)) 4266 pf_change_a(&saddr->v4.s_addr, 4267 pd->ip_sum, 4268 nk->addr[pd->sidx].v4.s_addr, 0); 4269 4270 if (PF_ANEQ(daddr, 4271 &nk->addr[pd->didx], AF_INET)) 4272 pf_change_a(&daddr->v4.s_addr, 4273 pd->ip_sum, 4274 nk->addr[pd->didx].v4.s_addr, 0); 4275 break; 4276 #endif /* INET */ 4277 #ifdef INET6 4278 case AF_INET6: 4279 if (PF_ANEQ(saddr, 4280 &nk->addr[pd->sidx], AF_INET6)) 4281 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4282 4283 if (PF_ANEQ(daddr, 4284 &nk->addr[pd->didx], AF_INET6)) 4285 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4286 break; 4287 #endif /* INET */ 4288 } 4289 break; 4290 } 4291 if (nr->natpass) 4292 r = NULL; 4293 pd->nat_rule = nr; 4294 } 4295 4296 while (r != NULL) { 4297 pf_counter_u64_add(&r->evaluations, 1); 4298 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4299 r = r->skip[PF_SKIP_IFP].ptr; 4300 else if (r->direction && r->direction != direction) 4301 r = r->skip[PF_SKIP_DIR].ptr; 4302 else if (r->af && r->af != af) 4303 r = r->skip[PF_SKIP_AF].ptr; 4304 else if (r->proto && r->proto != pd->proto) 4305 r = r->skip[PF_SKIP_PROTO].ptr; 4306 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4307 r->src.neg, kif, M_GETFIB(m))) 4308 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4309 /* tcp/udp only. port_op always 0 in other cases */ 4310 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4311 r->src.port[0], r->src.port[1], sport)) 4312 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4313 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4314 r->dst.neg, NULL, M_GETFIB(m))) 4315 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4316 /* tcp/udp only. port_op always 0 in other cases */ 4317 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4318 r->dst.port[0], r->dst.port[1], dport)) 4319 r = r->skip[PF_SKIP_DST_PORT].ptr; 4320 /* icmp only. type always 0 in other cases */ 4321 else if (r->type && r->type != icmptype + 1) 4322 r = TAILQ_NEXT(r, entries); 4323 /* icmp only. type always 0 in other cases */ 4324 else if (r->code && r->code != icmpcode + 1) 4325 r = TAILQ_NEXT(r, entries); 4326 else if (r->tos && !(r->tos == pd->tos)) 4327 r = TAILQ_NEXT(r, entries); 4328 else if (r->rule_flag & PFRULE_FRAGMENT) 4329 r = TAILQ_NEXT(r, entries); 4330 else if (pd->proto == IPPROTO_TCP && 4331 (r->flagset & th->th_flags) != r->flags) 4332 r = TAILQ_NEXT(r, entries); 4333 /* tcp/udp only. uid.op always 0 in other cases */ 4334 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4335 pf_socket_lookup(direction, pd, m), 1)) && 4336 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4337 pd->lookup.uid)) 4338 r = TAILQ_NEXT(r, entries); 4339 /* tcp/udp only. gid.op always 0 in other cases */ 4340 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4341 pf_socket_lookup(direction, pd, m), 1)) && 4342 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4343 pd->lookup.gid)) 4344 r = TAILQ_NEXT(r, entries); 4345 else if (r->prio && 4346 !pf_match_ieee8021q_pcp(r->prio, m)) 4347 r = TAILQ_NEXT(r, entries); 4348 else if (r->prob && 4349 r->prob <= arc4random()) 4350 r = TAILQ_NEXT(r, entries); 4351 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4352 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4353 r = TAILQ_NEXT(r, entries); 4354 else if (r->os_fingerprint != PF_OSFP_ANY && 4355 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4356 pf_osfp_fingerprint(pd, m, off, th), 4357 r->os_fingerprint))) 4358 r = TAILQ_NEXT(r, entries); 4359 else { 4360 if (r->tag) 4361 tag = r->tag; 4362 if (r->rtableid >= 0) 4363 rtableid = r->rtableid; 4364 if (r->anchor == NULL) { 4365 if (r->action == PF_MATCH) { 4366 pf_counter_u64_critical_enter(); 4367 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4368 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4369 pf_counter_u64_critical_exit(); 4370 pf_rule_to_actions(r, &pd->act); 4371 if (r->log) 4372 PFLOG_PACKET(kif, m, af, 4373 direction, PFRES_MATCH, r, 4374 a, ruleset, pd, 1); 4375 } else { 4376 match = 1; 4377 *rm = r; 4378 *am = a; 4379 *rsm = ruleset; 4380 } 4381 if ((*rm)->quick) 4382 break; 4383 r = TAILQ_NEXT(r, entries); 4384 } else 4385 pf_step_into_anchor(anchor_stack, &asd, 4386 &ruleset, PF_RULESET_FILTER, &r, &a, 4387 &match); 4388 } 4389 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4390 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4391 break; 4392 } 4393 r = *rm; 4394 a = *am; 4395 ruleset = *rsm; 4396 4397 REASON_SET(&reason, PFRES_MATCH); 4398 4399 /* apply actions for last matching pass/block rule */ 4400 pf_rule_to_actions(r, &pd->act); 4401 4402 if (r->log) { 4403 if (rewrite) 4404 m_copyback(m, off, hdrlen, pd->hdr.any); 4405 PFLOG_PACKET(kif, m, af, direction, reason, r, a, 4406 ruleset, pd, 1); 4407 } 4408 4409 if ((r->action == PF_DROP) && 4410 ((r->rule_flag & PFRULE_RETURNRST) || 4411 (r->rule_flag & PFRULE_RETURNICMP) || 4412 (r->rule_flag & PFRULE_RETURN))) { 4413 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4414 bip_sum, hdrlen, &reason); 4415 } 4416 4417 if (r->action == PF_DROP) 4418 goto cleanup; 4419 4420 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4421 REASON_SET(&reason, PFRES_MEMORY); 4422 goto cleanup; 4423 } 4424 if (rtableid >= 0) 4425 M_SETFIB(m, rtableid); 4426 4427 if (!state_icmp && (r->keep_state || nr != NULL || 4428 (pd->flags & PFDESC_TCP_NORM))) { 4429 int action; 4430 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4431 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4432 hdrlen); 4433 if (action != PF_PASS) { 4434 if (action == PF_DROP && 4435 (r->rule_flag & PFRULE_RETURN)) 4436 pf_return(r, nr, pd, sk, off, m, th, kif, 4437 bproto_sum, bip_sum, hdrlen, &reason); 4438 return (action); 4439 } 4440 } else { 4441 if (sk != NULL) 4442 uma_zfree(V_pf_state_key_z, sk); 4443 if (nk != NULL) 4444 uma_zfree(V_pf_state_key_z, nk); 4445 } 4446 4447 /* copy back packet headers if we performed NAT operations */ 4448 if (rewrite) 4449 m_copyback(m, off, hdrlen, pd->hdr.any); 4450 4451 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4452 direction == PF_OUT && 4453 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4454 /* 4455 * We want the state created, but we dont 4456 * want to send this in case a partner 4457 * firewall has to know about it to allow 4458 * replies through it. 4459 */ 4460 return (PF_DEFER); 4461 4462 return (PF_PASS); 4463 4464 cleanup: 4465 if (sk != NULL) 4466 uma_zfree(V_pf_state_key_z, sk); 4467 if (nk != NULL) 4468 uma_zfree(V_pf_state_key_z, nk); 4469 return (PF_DROP); 4470 } 4471 4472 static int 4473 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4474 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4475 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4476 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4477 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 4478 { 4479 struct pf_kstate *s = NULL; 4480 struct pf_ksrc_node *sn = NULL; 4481 struct tcphdr *th = &pd->hdr.tcp; 4482 u_int16_t mss = V_tcp_mssdflt; 4483 u_short reason; 4484 4485 /* check maximums */ 4486 if (r->max_states && 4487 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4488 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4489 REASON_SET(&reason, PFRES_MAXSTATES); 4490 goto csfailed; 4491 } 4492 /* src node for filter rule */ 4493 if ((r->rule_flag & PFRULE_SRCTRACK || 4494 r->rpool.opts & PF_POOL_STICKYADDR) && 4495 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 4496 REASON_SET(&reason, PFRES_SRCLIMIT); 4497 goto csfailed; 4498 } 4499 /* src node for translation rule */ 4500 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4501 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 4502 REASON_SET(&reason, PFRES_SRCLIMIT); 4503 goto csfailed; 4504 } 4505 s = pf_alloc_state(M_NOWAIT); 4506 if (s == NULL) { 4507 REASON_SET(&reason, PFRES_MEMORY); 4508 goto csfailed; 4509 } 4510 s->rule.ptr = r; 4511 s->nat_rule.ptr = nr; 4512 s->anchor.ptr = a; 4513 STATE_INC_COUNTERS(s); 4514 if (r->allow_opts) 4515 s->state_flags |= PFSTATE_ALLOWOPTS; 4516 if (r->rule_flag & PFRULE_STATESLOPPY) 4517 s->state_flags |= PFSTATE_SLOPPY; 4518 s->log = r->log & PF_LOG_ALL; 4519 s->sync_state = PFSYNC_S_NONE; 4520 s->qid = pd->act.qid; 4521 s->pqid = pd->act.pqid; 4522 s->dnpipe = pd->act.dnpipe; 4523 s->dnrpipe = pd->act.dnrpipe; 4524 s->state_flags |= pd->act.flags; 4525 if (nr != NULL) 4526 s->log |= nr->log & PF_LOG_ALL; 4527 switch (pd->proto) { 4528 case IPPROTO_TCP: 4529 s->src.seqlo = ntohl(th->th_seq); 4530 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4531 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4532 r->keep_state == PF_STATE_MODULATE) { 4533 /* Generate sequence number modulator */ 4534 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4535 0) 4536 s->src.seqdiff = 1; 4537 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4538 htonl(s->src.seqlo + s->src.seqdiff), 0); 4539 *rewrite = 1; 4540 } else 4541 s->src.seqdiff = 0; 4542 if (th->th_flags & TH_SYN) { 4543 s->src.seqhi++; 4544 s->src.wscale = pf_get_wscale(m, off, 4545 th->th_off, pd->af); 4546 } 4547 s->src.max_win = MAX(ntohs(th->th_win), 1); 4548 if (s->src.wscale & PF_WSCALE_MASK) { 4549 /* Remove scale factor from initial window */ 4550 int win = s->src.max_win; 4551 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4552 s->src.max_win = (win - 1) >> 4553 (s->src.wscale & PF_WSCALE_MASK); 4554 } 4555 if (th->th_flags & TH_FIN) 4556 s->src.seqhi++; 4557 s->dst.seqhi = 1; 4558 s->dst.max_win = 1; 4559 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4560 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4561 s->timeout = PFTM_TCP_FIRST_PACKET; 4562 atomic_add_32(&V_pf_status.states_halfopen, 1); 4563 break; 4564 case IPPROTO_UDP: 4565 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4566 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4567 s->timeout = PFTM_UDP_FIRST_PACKET; 4568 break; 4569 case IPPROTO_ICMP: 4570 #ifdef INET6 4571 case IPPROTO_ICMPV6: 4572 #endif 4573 s->timeout = PFTM_ICMP_FIRST_PACKET; 4574 break; 4575 default: 4576 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4577 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4578 s->timeout = PFTM_OTHER_FIRST_PACKET; 4579 } 4580 4581 if (r->rt) { 4582 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 4583 REASON_SET(&reason, PFRES_MAPFAILED); 4584 pf_src_tree_remove_state(s); 4585 s->timeout = PFTM_UNLINKED; 4586 STATE_DEC_COUNTERS(s); 4587 pf_free_state(s); 4588 goto csfailed; 4589 } 4590 s->rt_kif = r->rpool.cur->kif; 4591 } 4592 4593 s->creation = time_uptime; 4594 s->expire = time_uptime; 4595 4596 if (sn != NULL) 4597 s->src_node = sn; 4598 if (nsn != NULL) { 4599 /* XXX We only modify one side for now. */ 4600 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4601 s->nat_src_node = nsn; 4602 } 4603 if (pd->proto == IPPROTO_TCP) { 4604 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 4605 off, pd, th, &s->src, &s->dst)) { 4606 REASON_SET(&reason, PFRES_MEMORY); 4607 pf_src_tree_remove_state(s); 4608 s->timeout = PFTM_UNLINKED; 4609 STATE_DEC_COUNTERS(s); 4610 pf_free_state(s); 4611 return (PF_DROP); 4612 } 4613 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 4614 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4615 &s->src, &s->dst, rewrite)) { 4616 /* This really shouldn't happen!!! */ 4617 DPFPRINTF(PF_DEBUG_URGENT, 4618 ("pf_normalize_tcp_stateful failed on first " 4619 "pkt\n")); 4620 pf_src_tree_remove_state(s); 4621 s->timeout = PFTM_UNLINKED; 4622 STATE_DEC_COUNTERS(s); 4623 pf_free_state(s); 4624 return (PF_DROP); 4625 } 4626 } 4627 s->direction = pd->dir; 4628 4629 /* 4630 * sk/nk could already been setup by pf_get_translation(). 4631 */ 4632 if (nr == NULL) { 4633 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4634 __func__, nr, sk, nk)); 4635 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4636 if (sk == NULL) 4637 goto csfailed; 4638 nk = sk; 4639 } else 4640 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4641 __func__, nr, sk, nk)); 4642 4643 /* Swap sk/nk for PF_OUT. */ 4644 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4645 (pd->dir == PF_IN) ? sk : nk, 4646 (pd->dir == PF_IN) ? nk : sk, s)) { 4647 REASON_SET(&reason, PFRES_STATEINS); 4648 pf_src_tree_remove_state(s); 4649 s->timeout = PFTM_UNLINKED; 4650 STATE_DEC_COUNTERS(s); 4651 pf_free_state(s); 4652 return (PF_DROP); 4653 } else 4654 *sm = s; 4655 4656 if (tag > 0) 4657 s->tag = tag; 4658 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4659 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4660 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4661 /* undo NAT changes, if they have taken place */ 4662 if (nr != NULL) { 4663 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4664 if (pd->dir == PF_OUT) 4665 skt = s->key[PF_SK_STACK]; 4666 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4667 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4668 if (pd->sport) 4669 *pd->sport = skt->port[pd->sidx]; 4670 if (pd->dport) 4671 *pd->dport = skt->port[pd->didx]; 4672 if (pd->proto_sum) 4673 *pd->proto_sum = bproto_sum; 4674 if (pd->ip_sum) 4675 *pd->ip_sum = bip_sum; 4676 m_copyback(m, off, hdrlen, pd->hdr.any); 4677 } 4678 s->src.seqhi = htonl(arc4random()); 4679 /* Find mss option */ 4680 int rtid = M_GETFIB(m); 4681 mss = pf_get_mss(m, off, th->th_off, pd->af); 4682 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4683 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4684 s->src.mss = mss; 4685 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4686 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4687 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); 4688 REASON_SET(&reason, PFRES_SYNPROXY); 4689 return (PF_SYNPROXY_DROP); 4690 } 4691 4692 return (PF_PASS); 4693 4694 csfailed: 4695 if (sk != NULL) 4696 uma_zfree(V_pf_state_key_z, sk); 4697 if (nk != NULL) 4698 uma_zfree(V_pf_state_key_z, nk); 4699 4700 if (sn != NULL) { 4701 struct pf_srchash *sh; 4702 4703 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 4704 PF_HASHROW_LOCK(sh); 4705 if (--sn->states == 0 && sn->expire == 0) { 4706 pf_unlink_src_node(sn); 4707 uma_zfree(V_pf_sources_z, sn); 4708 counter_u64_add( 4709 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4710 } 4711 PF_HASHROW_UNLOCK(sh); 4712 } 4713 4714 if (nsn != sn && nsn != NULL) { 4715 struct pf_srchash *sh; 4716 4717 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 4718 PF_HASHROW_LOCK(sh); 4719 if (--nsn->states == 0 && nsn->expire == 0) { 4720 pf_unlink_src_node(nsn); 4721 uma_zfree(V_pf_sources_z, nsn); 4722 counter_u64_add( 4723 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 4724 } 4725 PF_HASHROW_UNLOCK(sh); 4726 } 4727 4728 return (PF_DROP); 4729 } 4730 4731 static int 4732 pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, 4733 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 4734 struct pf_kruleset **rsm) 4735 { 4736 struct pf_krule *r, *a = NULL; 4737 struct pf_kruleset *ruleset = NULL; 4738 sa_family_t af = pd->af; 4739 u_short reason; 4740 int tag = -1; 4741 int asd = 0; 4742 int match = 0; 4743 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4744 4745 PF_RULES_RASSERT(); 4746 4747 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4748 while (r != NULL) { 4749 pf_counter_u64_add(&r->evaluations, 1); 4750 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4751 r = r->skip[PF_SKIP_IFP].ptr; 4752 else if (r->direction && r->direction != direction) 4753 r = r->skip[PF_SKIP_DIR].ptr; 4754 else if (r->af && r->af != af) 4755 r = r->skip[PF_SKIP_AF].ptr; 4756 else if (r->proto && r->proto != pd->proto) 4757 r = r->skip[PF_SKIP_PROTO].ptr; 4758 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 4759 r->src.neg, kif, M_GETFIB(m))) 4760 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4761 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 4762 r->dst.neg, NULL, M_GETFIB(m))) 4763 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4764 else if (r->tos && !(r->tos == pd->tos)) 4765 r = TAILQ_NEXT(r, entries); 4766 else if (r->os_fingerprint != PF_OSFP_ANY) 4767 r = TAILQ_NEXT(r, entries); 4768 else if (pd->proto == IPPROTO_UDP && 4769 (r->src.port_op || r->dst.port_op)) 4770 r = TAILQ_NEXT(r, entries); 4771 else if (pd->proto == IPPROTO_TCP && 4772 (r->src.port_op || r->dst.port_op || r->flagset)) 4773 r = TAILQ_NEXT(r, entries); 4774 else if ((pd->proto == IPPROTO_ICMP || 4775 pd->proto == IPPROTO_ICMPV6) && 4776 (r->type || r->code)) 4777 r = TAILQ_NEXT(r, entries); 4778 else if (r->prio && 4779 !pf_match_ieee8021q_pcp(r->prio, m)) 4780 r = TAILQ_NEXT(r, entries); 4781 else if (r->prob && r->prob <= 4782 (arc4random() % (UINT_MAX - 1) + 1)) 4783 r = TAILQ_NEXT(r, entries); 4784 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4785 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4786 r = TAILQ_NEXT(r, entries); 4787 else { 4788 if (r->anchor == NULL) { 4789 if (r->action == PF_MATCH) { 4790 pf_counter_u64_critical_enter(); 4791 pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); 4792 pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); 4793 pf_counter_u64_critical_exit(); 4794 pf_rule_to_actions(r, &pd->act); 4795 if (r->log) 4796 PFLOG_PACKET(kif, m, af, 4797 direction, PFRES_MATCH, r, 4798 a, ruleset, pd, 1); 4799 } else { 4800 match = 1; 4801 *rm = r; 4802 *am = a; 4803 *rsm = ruleset; 4804 } 4805 if ((*rm)->quick) 4806 break; 4807 r = TAILQ_NEXT(r, entries); 4808 } else 4809 pf_step_into_anchor(anchor_stack, &asd, 4810 &ruleset, PF_RULESET_FILTER, &r, &a, 4811 &match); 4812 } 4813 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4814 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4815 break; 4816 } 4817 r = *rm; 4818 a = *am; 4819 ruleset = *rsm; 4820 4821 REASON_SET(&reason, PFRES_MATCH); 4822 4823 /* apply actions for last matching pass/block rule */ 4824 pf_rule_to_actions(r, &pd->act); 4825 4826 if (r->log) 4827 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 4828 1); 4829 4830 if (r->action != PF_PASS) 4831 return (PF_DROP); 4832 4833 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4834 REASON_SET(&reason, PFRES_MEMORY); 4835 return (PF_DROP); 4836 } 4837 4838 return (PF_PASS); 4839 } 4840 4841 static int 4842 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 4843 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 4844 int *copyback) 4845 { 4846 struct tcphdr *th = &pd->hdr.tcp; 4847 struct pf_state_peer *src, *dst; 4848 u_int16_t win = ntohs(th->th_win); 4849 u_int32_t ack, end, seq, orig_seq; 4850 u_int8_t sws, dws, psrc, pdst; 4851 int ackskew; 4852 4853 if (pd->dir == (*state)->direction) { 4854 src = &(*state)->src; 4855 dst = &(*state)->dst; 4856 psrc = PF_PEER_SRC; 4857 pdst = PF_PEER_DST; 4858 } else { 4859 src = &(*state)->dst; 4860 dst = &(*state)->src; 4861 psrc = PF_PEER_DST; 4862 pdst = PF_PEER_SRC; 4863 } 4864 4865 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 4866 sws = src->wscale & PF_WSCALE_MASK; 4867 dws = dst->wscale & PF_WSCALE_MASK; 4868 } else 4869 sws = dws = 0; 4870 4871 /* 4872 * Sequence tracking algorithm from Guido van Rooij's paper: 4873 * http://www.madison-gurkha.com/publications/tcp_filtering/ 4874 * tcp_filtering.ps 4875 */ 4876 4877 orig_seq = seq = ntohl(th->th_seq); 4878 if (src->seqlo == 0) { 4879 /* First packet from this end. Set its state */ 4880 4881 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 4882 src->scrub == NULL) { 4883 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 4884 REASON_SET(reason, PFRES_MEMORY); 4885 return (PF_DROP); 4886 } 4887 } 4888 4889 /* Deferred generation of sequence number modulator */ 4890 if (dst->seqdiff && !src->seqdiff) { 4891 /* use random iss for the TCP server */ 4892 while ((src->seqdiff = arc4random() - seq) == 0) 4893 ; 4894 ack = ntohl(th->th_ack) - dst->seqdiff; 4895 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4896 src->seqdiff), 0); 4897 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4898 *copyback = 1; 4899 } else { 4900 ack = ntohl(th->th_ack); 4901 } 4902 4903 end = seq + pd->p_len; 4904 if (th->th_flags & TH_SYN) { 4905 end++; 4906 if (dst->wscale & PF_WSCALE_FLAG) { 4907 src->wscale = pf_get_wscale(m, off, th->th_off, 4908 pd->af); 4909 if (src->wscale & PF_WSCALE_FLAG) { 4910 /* Remove scale factor from initial 4911 * window */ 4912 sws = src->wscale & PF_WSCALE_MASK; 4913 win = ((u_int32_t)win + (1 << sws) - 1) 4914 >> sws; 4915 dws = dst->wscale & PF_WSCALE_MASK; 4916 } else { 4917 /* fixup other window */ 4918 dst->max_win <<= dst->wscale & 4919 PF_WSCALE_MASK; 4920 /* in case of a retrans SYN|ACK */ 4921 dst->wscale = 0; 4922 } 4923 } 4924 } 4925 if (th->th_flags & TH_FIN) 4926 end++; 4927 4928 src->seqlo = seq; 4929 if (src->state < TCPS_SYN_SENT) 4930 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 4931 4932 /* 4933 * May need to slide the window (seqhi may have been set by 4934 * the crappy stack check or if we picked up the connection 4935 * after establishment) 4936 */ 4937 if (src->seqhi == 1 || 4938 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4939 src->seqhi = end + MAX(1, dst->max_win << dws); 4940 if (win > src->max_win) 4941 src->max_win = win; 4942 4943 } else { 4944 ack = ntohl(th->th_ack) - dst->seqdiff; 4945 if (src->seqdiff) { 4946 /* Modulate sequence numbers */ 4947 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4948 src->seqdiff), 0); 4949 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4950 *copyback = 1; 4951 } 4952 end = seq + pd->p_len; 4953 if (th->th_flags & TH_SYN) 4954 end++; 4955 if (th->th_flags & TH_FIN) 4956 end++; 4957 } 4958 4959 if ((th->th_flags & TH_ACK) == 0) { 4960 /* Let it pass through the ack skew check */ 4961 ack = dst->seqlo; 4962 } else if ((ack == 0 && 4963 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4964 /* broken tcp stacks do not set ack */ 4965 (dst->state < TCPS_SYN_SENT)) { 4966 /* 4967 * Many stacks (ours included) will set the ACK number in an 4968 * FIN|ACK if the SYN times out -- no sequence to ACK. 4969 */ 4970 ack = dst->seqlo; 4971 } 4972 4973 if (seq == end) { 4974 /* Ease sequencing restrictions on no data packets */ 4975 seq = src->seqlo; 4976 end = seq; 4977 } 4978 4979 ackskew = dst->seqlo - ack; 4980 4981 /* 4982 * Need to demodulate the sequence numbers in any TCP SACK options 4983 * (Selective ACK). We could optionally validate the SACK values 4984 * against the current ACK window, either forwards or backwards, but 4985 * I'm not confident that SACK has been implemented properly 4986 * everywhere. It wouldn't surprise me if several stacks accidentally 4987 * SACK too far backwards of previously ACKed data. There really aren't 4988 * any security implications of bad SACKing unless the target stack 4989 * doesn't validate the option length correctly. Someone trying to 4990 * spoof into a TCP connection won't bother blindly sending SACK 4991 * options anyway. 4992 */ 4993 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4994 if (pf_modulate_sack(m, off, pd, th, dst)) 4995 *copyback = 1; 4996 } 4997 4998 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4999 if (SEQ_GEQ(src->seqhi, end) && 5000 /* Last octet inside other's window space */ 5001 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5002 /* Retrans: not more than one window back */ 5003 (ackskew >= -MAXACKWINDOW) && 5004 /* Acking not more than one reassembled fragment backwards */ 5005 (ackskew <= (MAXACKWINDOW << sws)) && 5006 /* Acking not more than one window forward */ 5007 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5008 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5009 (pd->flags & PFDESC_IP_REAS) == 0)) { 5010 /* Require an exact/+1 sequence match on resets when possible */ 5011 5012 if (dst->scrub || src->scrub) { 5013 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5014 *state, src, dst, copyback)) 5015 return (PF_DROP); 5016 } 5017 5018 /* update max window */ 5019 if (src->max_win < win) 5020 src->max_win = win; 5021 /* synchronize sequencing */ 5022 if (SEQ_GT(end, src->seqlo)) 5023 src->seqlo = end; 5024 /* slide the window of what the other end can send */ 5025 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5026 dst->seqhi = ack + MAX((win << sws), 1); 5027 5028 /* update states */ 5029 if (th->th_flags & TH_SYN) 5030 if (src->state < TCPS_SYN_SENT) 5031 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5032 if (th->th_flags & TH_FIN) 5033 if (src->state < TCPS_CLOSING) 5034 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5035 if (th->th_flags & TH_ACK) { 5036 if (dst->state == TCPS_SYN_SENT) { 5037 pf_set_protostate(*state, pdst, 5038 TCPS_ESTABLISHED); 5039 if (src->state == TCPS_ESTABLISHED && 5040 (*state)->src_node != NULL && 5041 pf_src_connlimit(state)) { 5042 REASON_SET(reason, PFRES_SRCLIMIT); 5043 return (PF_DROP); 5044 } 5045 } else if (dst->state == TCPS_CLOSING) 5046 pf_set_protostate(*state, pdst, 5047 TCPS_FIN_WAIT_2); 5048 } 5049 if (th->th_flags & TH_RST) 5050 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5051 5052 /* update expire time */ 5053 (*state)->expire = time_uptime; 5054 if (src->state >= TCPS_FIN_WAIT_2 && 5055 dst->state >= TCPS_FIN_WAIT_2) 5056 (*state)->timeout = PFTM_TCP_CLOSED; 5057 else if (src->state >= TCPS_CLOSING && 5058 dst->state >= TCPS_CLOSING) 5059 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5060 else if (src->state < TCPS_ESTABLISHED || 5061 dst->state < TCPS_ESTABLISHED) 5062 (*state)->timeout = PFTM_TCP_OPENING; 5063 else if (src->state >= TCPS_CLOSING || 5064 dst->state >= TCPS_CLOSING) 5065 (*state)->timeout = PFTM_TCP_CLOSING; 5066 else 5067 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5068 5069 /* Fall through to PASS packet */ 5070 5071 } else if ((dst->state < TCPS_SYN_SENT || 5072 dst->state >= TCPS_FIN_WAIT_2 || 5073 src->state >= TCPS_FIN_WAIT_2) && 5074 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5075 /* Within a window forward of the originating packet */ 5076 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5077 /* Within a window backward of the originating packet */ 5078 5079 /* 5080 * This currently handles three situations: 5081 * 1) Stupid stacks will shotgun SYNs before their peer 5082 * replies. 5083 * 2) When PF catches an already established stream (the 5084 * firewall rebooted, the state table was flushed, routes 5085 * changed...) 5086 * 3) Packets get funky immediately after the connection 5087 * closes (this should catch Solaris spurious ACK|FINs 5088 * that web servers like to spew after a close) 5089 * 5090 * This must be a little more careful than the above code 5091 * since packet floods will also be caught here. We don't 5092 * update the TTL here to mitigate the damage of a packet 5093 * flood and so the same code can handle awkward establishment 5094 * and a loosened connection close. 5095 * In the establishment case, a correct peer response will 5096 * validate the connection, go through the normal state code 5097 * and keep updating the state TTL. 5098 */ 5099 5100 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5101 printf("pf: loose state match: "); 5102 pf_print_state(*state); 5103 pf_print_flags(th->th_flags); 5104 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5105 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5106 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5107 (unsigned long long)(*state)->packets[1], 5108 pd->dir == PF_IN ? "in" : "out", 5109 pd->dir == (*state)->direction ? "fwd" : "rev"); 5110 } 5111 5112 if (dst->scrub || src->scrub) { 5113 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5114 *state, src, dst, copyback)) 5115 return (PF_DROP); 5116 } 5117 5118 /* update max window */ 5119 if (src->max_win < win) 5120 src->max_win = win; 5121 /* synchronize sequencing */ 5122 if (SEQ_GT(end, src->seqlo)) 5123 src->seqlo = end; 5124 /* slide the window of what the other end can send */ 5125 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5126 dst->seqhi = ack + MAX((win << sws), 1); 5127 5128 /* 5129 * Cannot set dst->seqhi here since this could be a shotgunned 5130 * SYN and not an already established connection. 5131 */ 5132 5133 if (th->th_flags & TH_FIN) 5134 if (src->state < TCPS_CLOSING) 5135 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5136 if (th->th_flags & TH_RST) 5137 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5138 5139 /* Fall through to PASS packet */ 5140 5141 } else { 5142 if ((*state)->dst.state == TCPS_SYN_SENT && 5143 (*state)->src.state == TCPS_SYN_SENT) { 5144 /* Send RST for state mismatches during handshake */ 5145 if (!(th->th_flags & TH_RST)) 5146 pf_send_tcp((*state)->rule.ptr, pd->af, 5147 pd->dst, pd->src, th->th_dport, 5148 th->th_sport, ntohl(th->th_ack), 0, 5149 TH_RST, 0, 0, 5150 (*state)->rule.ptr->return_ttl, 1, 0); 5151 src->seqlo = 0; 5152 src->seqhi = 1; 5153 src->max_win = 1; 5154 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5155 printf("pf: BAD state: "); 5156 pf_print_state(*state); 5157 pf_print_flags(th->th_flags); 5158 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5159 "pkts=%llu:%llu dir=%s,%s\n", 5160 seq, orig_seq, ack, pd->p_len, ackskew, 5161 (unsigned long long)(*state)->packets[0], 5162 (unsigned long long)(*state)->packets[1], 5163 pd->dir == PF_IN ? "in" : "out", 5164 pd->dir == (*state)->direction ? "fwd" : "rev"); 5165 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5166 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5167 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5168 ' ': '2', 5169 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5170 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5171 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5172 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5173 } 5174 REASON_SET(reason, PFRES_BADSTATE); 5175 return (PF_DROP); 5176 } 5177 5178 return (PF_PASS); 5179 } 5180 5181 static int 5182 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5183 { 5184 struct tcphdr *th = &pd->hdr.tcp; 5185 struct pf_state_peer *src, *dst; 5186 u_int8_t psrc, pdst; 5187 5188 if (pd->dir == (*state)->direction) { 5189 src = &(*state)->src; 5190 dst = &(*state)->dst; 5191 psrc = PF_PEER_SRC; 5192 pdst = PF_PEER_DST; 5193 } else { 5194 src = &(*state)->dst; 5195 dst = &(*state)->src; 5196 psrc = PF_PEER_DST; 5197 pdst = PF_PEER_SRC; 5198 } 5199 5200 if (th->th_flags & TH_SYN) 5201 if (src->state < TCPS_SYN_SENT) 5202 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5203 if (th->th_flags & TH_FIN) 5204 if (src->state < TCPS_CLOSING) 5205 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5206 if (th->th_flags & TH_ACK) { 5207 if (dst->state == TCPS_SYN_SENT) { 5208 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5209 if (src->state == TCPS_ESTABLISHED && 5210 (*state)->src_node != NULL && 5211 pf_src_connlimit(state)) { 5212 REASON_SET(reason, PFRES_SRCLIMIT); 5213 return (PF_DROP); 5214 } 5215 } else if (dst->state == TCPS_CLOSING) { 5216 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5217 } else if (src->state == TCPS_SYN_SENT && 5218 dst->state < TCPS_SYN_SENT) { 5219 /* 5220 * Handle a special sloppy case where we only see one 5221 * half of the connection. If there is a ACK after 5222 * the initial SYN without ever seeing a packet from 5223 * the destination, set the connection to established. 5224 */ 5225 pf_set_protostate(*state, PF_PEER_BOTH, 5226 TCPS_ESTABLISHED); 5227 dst->state = src->state = TCPS_ESTABLISHED; 5228 if ((*state)->src_node != NULL && 5229 pf_src_connlimit(state)) { 5230 REASON_SET(reason, PFRES_SRCLIMIT); 5231 return (PF_DROP); 5232 } 5233 } else if (src->state == TCPS_CLOSING && 5234 dst->state == TCPS_ESTABLISHED && 5235 dst->seqlo == 0) { 5236 /* 5237 * Handle the closing of half connections where we 5238 * don't see the full bidirectional FIN/ACK+ACK 5239 * handshake. 5240 */ 5241 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5242 } 5243 } 5244 if (th->th_flags & TH_RST) 5245 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5246 5247 /* update expire time */ 5248 (*state)->expire = time_uptime; 5249 if (src->state >= TCPS_FIN_WAIT_2 && 5250 dst->state >= TCPS_FIN_WAIT_2) 5251 (*state)->timeout = PFTM_TCP_CLOSED; 5252 else if (src->state >= TCPS_CLOSING && 5253 dst->state >= TCPS_CLOSING) 5254 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5255 else if (src->state < TCPS_ESTABLISHED || 5256 dst->state < TCPS_ESTABLISHED) 5257 (*state)->timeout = PFTM_TCP_OPENING; 5258 else if (src->state >= TCPS_CLOSING || 5259 dst->state >= TCPS_CLOSING) 5260 (*state)->timeout = PFTM_TCP_CLOSING; 5261 else 5262 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5263 5264 return (PF_PASS); 5265 } 5266 5267 static int 5268 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5269 { 5270 struct pf_state_key *sk = (*state)->key[pd->didx]; 5271 struct tcphdr *th = &pd->hdr.tcp; 5272 5273 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5274 if (pd->dir != (*state)->direction) { 5275 REASON_SET(reason, PFRES_SYNPROXY); 5276 return (PF_SYNPROXY_DROP); 5277 } 5278 if (th->th_flags & TH_SYN) { 5279 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5280 REASON_SET(reason, PFRES_SYNPROXY); 5281 return (PF_DROP); 5282 } 5283 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5284 pd->src, th->th_dport, th->th_sport, 5285 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5286 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); 5287 REASON_SET(reason, PFRES_SYNPROXY); 5288 return (PF_SYNPROXY_DROP); 5289 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5290 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5291 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5292 REASON_SET(reason, PFRES_SYNPROXY); 5293 return (PF_DROP); 5294 } else if ((*state)->src_node != NULL && 5295 pf_src_connlimit(state)) { 5296 REASON_SET(reason, PFRES_SRCLIMIT); 5297 return (PF_DROP); 5298 } else 5299 pf_set_protostate(*state, PF_PEER_SRC, 5300 PF_TCPS_PROXY_DST); 5301 } 5302 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5303 if (pd->dir == (*state)->direction) { 5304 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5305 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5306 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5307 REASON_SET(reason, PFRES_SYNPROXY); 5308 return (PF_DROP); 5309 } 5310 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5311 if ((*state)->dst.seqhi == 1) 5312 (*state)->dst.seqhi = htonl(arc4random()); 5313 pf_send_tcp((*state)->rule.ptr, pd->af, 5314 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5315 sk->port[pd->sidx], sk->port[pd->didx], 5316 (*state)->dst.seqhi, 0, TH_SYN, 0, 5317 (*state)->src.mss, 0, 0, (*state)->tag); 5318 REASON_SET(reason, PFRES_SYNPROXY); 5319 return (PF_SYNPROXY_DROP); 5320 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5321 (TH_SYN|TH_ACK)) || 5322 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5323 REASON_SET(reason, PFRES_SYNPROXY); 5324 return (PF_DROP); 5325 } else { 5326 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5327 (*state)->dst.seqlo = ntohl(th->th_seq); 5328 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5329 pd->src, th->th_dport, th->th_sport, 5330 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5331 TH_ACK, (*state)->src.max_win, 0, 0, 0, 5332 (*state)->tag); 5333 pf_send_tcp((*state)->rule.ptr, pd->af, 5334 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5335 sk->port[pd->sidx], sk->port[pd->didx], 5336 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5337 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); 5338 (*state)->src.seqdiff = (*state)->dst.seqhi - 5339 (*state)->src.seqlo; 5340 (*state)->dst.seqdiff = (*state)->src.seqhi - 5341 (*state)->dst.seqlo; 5342 (*state)->src.seqhi = (*state)->src.seqlo + 5343 (*state)->dst.max_win; 5344 (*state)->dst.seqhi = (*state)->dst.seqlo + 5345 (*state)->src.max_win; 5346 (*state)->src.wscale = (*state)->dst.wscale = 0; 5347 pf_set_protostate(*state, PF_PEER_BOTH, 5348 TCPS_ESTABLISHED); 5349 REASON_SET(reason, PFRES_SYNPROXY); 5350 return (PF_SYNPROXY_DROP); 5351 } 5352 } 5353 5354 return (PF_PASS); 5355 } 5356 5357 static int 5358 pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5359 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5360 u_short *reason) 5361 { 5362 struct pf_state_key_cmp key; 5363 struct tcphdr *th = &pd->hdr.tcp; 5364 int copyback = 0; 5365 int action; 5366 struct pf_state_peer *src, *dst; 5367 5368 bzero(&key, sizeof(key)); 5369 key.af = pd->af; 5370 key.proto = IPPROTO_TCP; 5371 if (direction == PF_IN) { /* wire side, straight */ 5372 PF_ACPY(&key.addr[0], pd->src, key.af); 5373 PF_ACPY(&key.addr[1], pd->dst, key.af); 5374 key.port[0] = th->th_sport; 5375 key.port[1] = th->th_dport; 5376 } else { /* stack side, reverse */ 5377 PF_ACPY(&key.addr[1], pd->src, key.af); 5378 PF_ACPY(&key.addr[0], pd->dst, key.af); 5379 key.port[1] = th->th_sport; 5380 key.port[0] = th->th_dport; 5381 } 5382 5383 STATE_LOOKUP(kif, &key, direction, *state, pd); 5384 5385 if (direction == (*state)->direction) { 5386 src = &(*state)->src; 5387 dst = &(*state)->dst; 5388 } else { 5389 src = &(*state)->dst; 5390 dst = &(*state)->src; 5391 } 5392 5393 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5394 return (action); 5395 5396 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 5397 dst->state >= TCPS_FIN_WAIT_2 && 5398 src->state >= TCPS_FIN_WAIT_2) { 5399 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5400 printf("pf: state reuse "); 5401 pf_print_state(*state); 5402 pf_print_flags(th->th_flags); 5403 printf("\n"); 5404 } 5405 /* XXX make sure it's the same direction ?? */ 5406 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5407 pf_unlink_state(*state); 5408 *state = NULL; 5409 return (PF_DROP); 5410 } 5411 5412 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5413 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5414 return (PF_DROP); 5415 } else { 5416 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5417 ©back) == PF_DROP) 5418 return (PF_DROP); 5419 } 5420 5421 /* translate source/destination address, if necessary */ 5422 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5423 struct pf_state_key *nk = (*state)->key[pd->didx]; 5424 5425 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5426 nk->port[pd->sidx] != th->th_sport) 5427 pf_change_ap(m, pd->src, &th->th_sport, 5428 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5429 nk->port[pd->sidx], 0, pd->af); 5430 5431 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5432 nk->port[pd->didx] != th->th_dport) 5433 pf_change_ap(m, pd->dst, &th->th_dport, 5434 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5435 nk->port[pd->didx], 0, pd->af); 5436 copyback = 1; 5437 } 5438 5439 /* Copyback sequence modulation or stateful scrub changes if needed */ 5440 if (copyback) 5441 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5442 5443 return (PF_PASS); 5444 } 5445 5446 static int 5447 pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5448 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5449 { 5450 struct pf_state_peer *src, *dst; 5451 struct pf_state_key_cmp key; 5452 struct udphdr *uh = &pd->hdr.udp; 5453 uint8_t psrc, pdst; 5454 5455 bzero(&key, sizeof(key)); 5456 key.af = pd->af; 5457 key.proto = IPPROTO_UDP; 5458 if (direction == PF_IN) { /* wire side, straight */ 5459 PF_ACPY(&key.addr[0], pd->src, key.af); 5460 PF_ACPY(&key.addr[1], pd->dst, key.af); 5461 key.port[0] = uh->uh_sport; 5462 key.port[1] = uh->uh_dport; 5463 } else { /* stack side, reverse */ 5464 PF_ACPY(&key.addr[1], pd->src, key.af); 5465 PF_ACPY(&key.addr[0], pd->dst, key.af); 5466 key.port[1] = uh->uh_sport; 5467 key.port[0] = uh->uh_dport; 5468 } 5469 5470 STATE_LOOKUP(kif, &key, direction, *state, pd); 5471 5472 if (direction == (*state)->direction) { 5473 src = &(*state)->src; 5474 dst = &(*state)->dst; 5475 psrc = PF_PEER_SRC; 5476 pdst = PF_PEER_DST; 5477 } else { 5478 src = &(*state)->dst; 5479 dst = &(*state)->src; 5480 psrc = PF_PEER_DST; 5481 pdst = PF_PEER_SRC; 5482 } 5483 5484 /* update states */ 5485 if (src->state < PFUDPS_SINGLE) 5486 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5487 if (dst->state == PFUDPS_SINGLE) 5488 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5489 5490 /* update expire time */ 5491 (*state)->expire = time_uptime; 5492 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5493 (*state)->timeout = PFTM_UDP_MULTIPLE; 5494 else 5495 (*state)->timeout = PFTM_UDP_SINGLE; 5496 5497 /* translate source/destination address, if necessary */ 5498 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5499 struct pf_state_key *nk = (*state)->key[pd->didx]; 5500 5501 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5502 nk->port[pd->sidx] != uh->uh_sport) 5503 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5504 &uh->uh_sum, &nk->addr[pd->sidx], 5505 nk->port[pd->sidx], 1, pd->af); 5506 5507 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5508 nk->port[pd->didx] != uh->uh_dport) 5509 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5510 &uh->uh_sum, &nk->addr[pd->didx], 5511 nk->port[pd->didx], 1, pd->af); 5512 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5513 } 5514 5515 return (PF_PASS); 5516 } 5517 5518 static int 5519 pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 5520 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5521 { 5522 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5523 u_int16_t icmpid = 0, *icmpsum; 5524 u_int8_t icmptype, icmpcode; 5525 int state_icmp = 0; 5526 struct pf_state_key_cmp key; 5527 5528 bzero(&key, sizeof(key)); 5529 switch (pd->proto) { 5530 #ifdef INET 5531 case IPPROTO_ICMP: 5532 icmptype = pd->hdr.icmp.icmp_type; 5533 icmpcode = pd->hdr.icmp.icmp_code; 5534 icmpid = pd->hdr.icmp.icmp_id; 5535 icmpsum = &pd->hdr.icmp.icmp_cksum; 5536 5537 if (icmptype == ICMP_UNREACH || 5538 icmptype == ICMP_SOURCEQUENCH || 5539 icmptype == ICMP_REDIRECT || 5540 icmptype == ICMP_TIMXCEED || 5541 icmptype == ICMP_PARAMPROB) 5542 state_icmp++; 5543 break; 5544 #endif /* INET */ 5545 #ifdef INET6 5546 case IPPROTO_ICMPV6: 5547 icmptype = pd->hdr.icmp6.icmp6_type; 5548 icmpcode = pd->hdr.icmp6.icmp6_code; 5549 icmpid = pd->hdr.icmp6.icmp6_id; 5550 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5551 5552 if (icmptype == ICMP6_DST_UNREACH || 5553 icmptype == ICMP6_PACKET_TOO_BIG || 5554 icmptype == ICMP6_TIME_EXCEEDED || 5555 icmptype == ICMP6_PARAM_PROB) 5556 state_icmp++; 5557 break; 5558 #endif /* INET6 */ 5559 } 5560 5561 if (!state_icmp) { 5562 /* 5563 * ICMP query/reply message not related to a TCP/UDP packet. 5564 * Search for an ICMP state. 5565 */ 5566 key.af = pd->af; 5567 key.proto = pd->proto; 5568 key.port[0] = key.port[1] = icmpid; 5569 if (direction == PF_IN) { /* wire side, straight */ 5570 PF_ACPY(&key.addr[0], pd->src, key.af); 5571 PF_ACPY(&key.addr[1], pd->dst, key.af); 5572 } else { /* stack side, reverse */ 5573 PF_ACPY(&key.addr[1], pd->src, key.af); 5574 PF_ACPY(&key.addr[0], pd->dst, key.af); 5575 } 5576 5577 STATE_LOOKUP(kif, &key, direction, *state, pd); 5578 5579 (*state)->expire = time_uptime; 5580 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5581 5582 /* translate source/destination address, if necessary */ 5583 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5584 struct pf_state_key *nk = (*state)->key[pd->didx]; 5585 5586 switch (pd->af) { 5587 #ifdef INET 5588 case AF_INET: 5589 if (PF_ANEQ(pd->src, 5590 &nk->addr[pd->sidx], AF_INET)) 5591 pf_change_a(&saddr->v4.s_addr, 5592 pd->ip_sum, 5593 nk->addr[pd->sidx].v4.s_addr, 0); 5594 5595 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5596 AF_INET)) 5597 pf_change_a(&daddr->v4.s_addr, 5598 pd->ip_sum, 5599 nk->addr[pd->didx].v4.s_addr, 0); 5600 5601 if (nk->port[0] != 5602 pd->hdr.icmp.icmp_id) { 5603 pd->hdr.icmp.icmp_cksum = 5604 pf_cksum_fixup( 5605 pd->hdr.icmp.icmp_cksum, icmpid, 5606 nk->port[pd->sidx], 0); 5607 pd->hdr.icmp.icmp_id = 5608 nk->port[pd->sidx]; 5609 } 5610 5611 m_copyback(m, off, ICMP_MINLEN, 5612 (caddr_t )&pd->hdr.icmp); 5613 break; 5614 #endif /* INET */ 5615 #ifdef INET6 5616 case AF_INET6: 5617 if (PF_ANEQ(pd->src, 5618 &nk->addr[pd->sidx], AF_INET6)) 5619 pf_change_a6(saddr, 5620 &pd->hdr.icmp6.icmp6_cksum, 5621 &nk->addr[pd->sidx], 0); 5622 5623 if (PF_ANEQ(pd->dst, 5624 &nk->addr[pd->didx], AF_INET6)) 5625 pf_change_a6(daddr, 5626 &pd->hdr.icmp6.icmp6_cksum, 5627 &nk->addr[pd->didx], 0); 5628 5629 m_copyback(m, off, sizeof(struct icmp6_hdr), 5630 (caddr_t )&pd->hdr.icmp6); 5631 break; 5632 #endif /* INET6 */ 5633 } 5634 } 5635 return (PF_PASS); 5636 5637 } else { 5638 /* 5639 * ICMP error message in response to a TCP/UDP packet. 5640 * Extract the inner TCP/UDP header and search for that state. 5641 */ 5642 5643 struct pf_pdesc pd2; 5644 bzero(&pd2, sizeof pd2); 5645 #ifdef INET 5646 struct ip h2; 5647 #endif /* INET */ 5648 #ifdef INET6 5649 struct ip6_hdr h2_6; 5650 int terminal = 0; 5651 #endif /* INET6 */ 5652 int ipoff2 = 0; 5653 int off2 = 0; 5654 5655 pd2.af = pd->af; 5656 /* Payload packet is from the opposite direction. */ 5657 pd2.sidx = (direction == PF_IN) ? 1 : 0; 5658 pd2.didx = (direction == PF_IN) ? 0 : 1; 5659 switch (pd->af) { 5660 #ifdef INET 5661 case AF_INET: 5662 /* offset of h2 in mbuf chain */ 5663 ipoff2 = off + ICMP_MINLEN; 5664 5665 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 5666 NULL, reason, pd2.af)) { 5667 DPFPRINTF(PF_DEBUG_MISC, 5668 ("pf: ICMP error message too short " 5669 "(ip)\n")); 5670 return (PF_DROP); 5671 } 5672 /* 5673 * ICMP error messages don't refer to non-first 5674 * fragments 5675 */ 5676 if (h2.ip_off & htons(IP_OFFMASK)) { 5677 REASON_SET(reason, PFRES_FRAG); 5678 return (PF_DROP); 5679 } 5680 5681 /* offset of protocol header that follows h2 */ 5682 off2 = ipoff2 + (h2.ip_hl << 2); 5683 5684 pd2.proto = h2.ip_p; 5685 pd2.src = (struct pf_addr *)&h2.ip_src; 5686 pd2.dst = (struct pf_addr *)&h2.ip_dst; 5687 pd2.ip_sum = &h2.ip_sum; 5688 break; 5689 #endif /* INET */ 5690 #ifdef INET6 5691 case AF_INET6: 5692 ipoff2 = off + sizeof(struct icmp6_hdr); 5693 5694 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 5695 NULL, reason, pd2.af)) { 5696 DPFPRINTF(PF_DEBUG_MISC, 5697 ("pf: ICMP error message too short " 5698 "(ip6)\n")); 5699 return (PF_DROP); 5700 } 5701 pd2.proto = h2_6.ip6_nxt; 5702 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 5703 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 5704 pd2.ip_sum = NULL; 5705 off2 = ipoff2 + sizeof(h2_6); 5706 do { 5707 switch (pd2.proto) { 5708 case IPPROTO_FRAGMENT: 5709 /* 5710 * ICMPv6 error messages for 5711 * non-first fragments 5712 */ 5713 REASON_SET(reason, PFRES_FRAG); 5714 return (PF_DROP); 5715 case IPPROTO_AH: 5716 case IPPROTO_HOPOPTS: 5717 case IPPROTO_ROUTING: 5718 case IPPROTO_DSTOPTS: { 5719 /* get next header and header length */ 5720 struct ip6_ext opt6; 5721 5722 if (!pf_pull_hdr(m, off2, &opt6, 5723 sizeof(opt6), NULL, reason, 5724 pd2.af)) { 5725 DPFPRINTF(PF_DEBUG_MISC, 5726 ("pf: ICMPv6 short opt\n")); 5727 return (PF_DROP); 5728 } 5729 if (pd2.proto == IPPROTO_AH) 5730 off2 += (opt6.ip6e_len + 2) * 4; 5731 else 5732 off2 += (opt6.ip6e_len + 1) * 8; 5733 pd2.proto = opt6.ip6e_nxt; 5734 /* goto the next header */ 5735 break; 5736 } 5737 default: 5738 terminal++; 5739 break; 5740 } 5741 } while (!terminal); 5742 break; 5743 #endif /* INET6 */ 5744 } 5745 5746 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 5747 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5748 printf("pf: BAD ICMP %d:%d outer dst: ", 5749 icmptype, icmpcode); 5750 pf_print_host(pd->src, 0, pd->af); 5751 printf(" -> "); 5752 pf_print_host(pd->dst, 0, pd->af); 5753 printf(" inner src: "); 5754 pf_print_host(pd2.src, 0, pd2.af); 5755 printf(" -> "); 5756 pf_print_host(pd2.dst, 0, pd2.af); 5757 printf("\n"); 5758 } 5759 REASON_SET(reason, PFRES_BADSTATE); 5760 return (PF_DROP); 5761 } 5762 5763 switch (pd2.proto) { 5764 case IPPROTO_TCP: { 5765 struct tcphdr th; 5766 u_int32_t seq; 5767 struct pf_state_peer *src, *dst; 5768 u_int8_t dws; 5769 int copyback = 0; 5770 5771 /* 5772 * Only the first 8 bytes of the TCP header can be 5773 * expected. Don't access any TCP header fields after 5774 * th_seq, an ackskew test is not possible. 5775 */ 5776 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 5777 pd2.af)) { 5778 DPFPRINTF(PF_DEBUG_MISC, 5779 ("pf: ICMP error message too short " 5780 "(tcp)\n")); 5781 return (PF_DROP); 5782 } 5783 5784 key.af = pd2.af; 5785 key.proto = IPPROTO_TCP; 5786 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5787 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5788 key.port[pd2.sidx] = th.th_sport; 5789 key.port[pd2.didx] = th.th_dport; 5790 5791 STATE_LOOKUP(kif, &key, direction, *state, pd); 5792 5793 if (direction == (*state)->direction) { 5794 src = &(*state)->dst; 5795 dst = &(*state)->src; 5796 } else { 5797 src = &(*state)->src; 5798 dst = &(*state)->dst; 5799 } 5800 5801 if (src->wscale && dst->wscale) 5802 dws = dst->wscale & PF_WSCALE_MASK; 5803 else 5804 dws = 0; 5805 5806 /* Demodulate sequence number */ 5807 seq = ntohl(th.th_seq) - src->seqdiff; 5808 if (src->seqdiff) { 5809 pf_change_a(&th.th_seq, icmpsum, 5810 htonl(seq), 0); 5811 copyback = 1; 5812 } 5813 5814 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 5815 (!SEQ_GEQ(src->seqhi, seq) || 5816 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 5817 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5818 printf("pf: BAD ICMP %d:%d ", 5819 icmptype, icmpcode); 5820 pf_print_host(pd->src, 0, pd->af); 5821 printf(" -> "); 5822 pf_print_host(pd->dst, 0, pd->af); 5823 printf(" state: "); 5824 pf_print_state(*state); 5825 printf(" seq=%u\n", seq); 5826 } 5827 REASON_SET(reason, PFRES_BADSTATE); 5828 return (PF_DROP); 5829 } else { 5830 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5831 printf("pf: OK ICMP %d:%d ", 5832 icmptype, icmpcode); 5833 pf_print_host(pd->src, 0, pd->af); 5834 printf(" -> "); 5835 pf_print_host(pd->dst, 0, pd->af); 5836 printf(" state: "); 5837 pf_print_state(*state); 5838 printf(" seq=%u\n", seq); 5839 } 5840 } 5841 5842 /* translate source/destination address, if necessary */ 5843 if ((*state)->key[PF_SK_WIRE] != 5844 (*state)->key[PF_SK_STACK]) { 5845 struct pf_state_key *nk = 5846 (*state)->key[pd->didx]; 5847 5848 if (PF_ANEQ(pd2.src, 5849 &nk->addr[pd2.sidx], pd2.af) || 5850 nk->port[pd2.sidx] != th.th_sport) 5851 pf_change_icmp(pd2.src, &th.th_sport, 5852 daddr, &nk->addr[pd2.sidx], 5853 nk->port[pd2.sidx], NULL, 5854 pd2.ip_sum, icmpsum, 5855 pd->ip_sum, 0, pd2.af); 5856 5857 if (PF_ANEQ(pd2.dst, 5858 &nk->addr[pd2.didx], pd2.af) || 5859 nk->port[pd2.didx] != th.th_dport) 5860 pf_change_icmp(pd2.dst, &th.th_dport, 5861 saddr, &nk->addr[pd2.didx], 5862 nk->port[pd2.didx], NULL, 5863 pd2.ip_sum, icmpsum, 5864 pd->ip_sum, 0, pd2.af); 5865 copyback = 1; 5866 } 5867 5868 if (copyback) { 5869 switch (pd2.af) { 5870 #ifdef INET 5871 case AF_INET: 5872 m_copyback(m, off, ICMP_MINLEN, 5873 (caddr_t )&pd->hdr.icmp); 5874 m_copyback(m, ipoff2, sizeof(h2), 5875 (caddr_t )&h2); 5876 break; 5877 #endif /* INET */ 5878 #ifdef INET6 5879 case AF_INET6: 5880 m_copyback(m, off, 5881 sizeof(struct icmp6_hdr), 5882 (caddr_t )&pd->hdr.icmp6); 5883 m_copyback(m, ipoff2, sizeof(h2_6), 5884 (caddr_t )&h2_6); 5885 break; 5886 #endif /* INET6 */ 5887 } 5888 m_copyback(m, off2, 8, (caddr_t)&th); 5889 } 5890 5891 return (PF_PASS); 5892 break; 5893 } 5894 case IPPROTO_UDP: { 5895 struct udphdr uh; 5896 5897 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 5898 NULL, reason, pd2.af)) { 5899 DPFPRINTF(PF_DEBUG_MISC, 5900 ("pf: ICMP error message too short " 5901 "(udp)\n")); 5902 return (PF_DROP); 5903 } 5904 5905 key.af = pd2.af; 5906 key.proto = IPPROTO_UDP; 5907 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5908 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5909 key.port[pd2.sidx] = uh.uh_sport; 5910 key.port[pd2.didx] = uh.uh_dport; 5911 5912 STATE_LOOKUP(kif, &key, direction, *state, pd); 5913 5914 /* translate source/destination address, if necessary */ 5915 if ((*state)->key[PF_SK_WIRE] != 5916 (*state)->key[PF_SK_STACK]) { 5917 struct pf_state_key *nk = 5918 (*state)->key[pd->didx]; 5919 5920 if (PF_ANEQ(pd2.src, 5921 &nk->addr[pd2.sidx], pd2.af) || 5922 nk->port[pd2.sidx] != uh.uh_sport) 5923 pf_change_icmp(pd2.src, &uh.uh_sport, 5924 daddr, &nk->addr[pd2.sidx], 5925 nk->port[pd2.sidx], &uh.uh_sum, 5926 pd2.ip_sum, icmpsum, 5927 pd->ip_sum, 1, pd2.af); 5928 5929 if (PF_ANEQ(pd2.dst, 5930 &nk->addr[pd2.didx], pd2.af) || 5931 nk->port[pd2.didx] != uh.uh_dport) 5932 pf_change_icmp(pd2.dst, &uh.uh_dport, 5933 saddr, &nk->addr[pd2.didx], 5934 nk->port[pd2.didx], &uh.uh_sum, 5935 pd2.ip_sum, icmpsum, 5936 pd->ip_sum, 1, pd2.af); 5937 5938 switch (pd2.af) { 5939 #ifdef INET 5940 case AF_INET: 5941 m_copyback(m, off, ICMP_MINLEN, 5942 (caddr_t )&pd->hdr.icmp); 5943 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5944 break; 5945 #endif /* INET */ 5946 #ifdef INET6 5947 case AF_INET6: 5948 m_copyback(m, off, 5949 sizeof(struct icmp6_hdr), 5950 (caddr_t )&pd->hdr.icmp6); 5951 m_copyback(m, ipoff2, sizeof(h2_6), 5952 (caddr_t )&h2_6); 5953 break; 5954 #endif /* INET6 */ 5955 } 5956 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5957 } 5958 return (PF_PASS); 5959 break; 5960 } 5961 #ifdef INET 5962 case IPPROTO_ICMP: { 5963 struct icmp iih; 5964 5965 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5966 NULL, reason, pd2.af)) { 5967 DPFPRINTF(PF_DEBUG_MISC, 5968 ("pf: ICMP error message too short i" 5969 "(icmp)\n")); 5970 return (PF_DROP); 5971 } 5972 5973 key.af = pd2.af; 5974 key.proto = IPPROTO_ICMP; 5975 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5976 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5977 key.port[0] = key.port[1] = iih.icmp_id; 5978 5979 STATE_LOOKUP(kif, &key, direction, *state, pd); 5980 5981 /* translate source/destination address, if necessary */ 5982 if ((*state)->key[PF_SK_WIRE] != 5983 (*state)->key[PF_SK_STACK]) { 5984 struct pf_state_key *nk = 5985 (*state)->key[pd->didx]; 5986 5987 if (PF_ANEQ(pd2.src, 5988 &nk->addr[pd2.sidx], pd2.af) || 5989 nk->port[pd2.sidx] != iih.icmp_id) 5990 pf_change_icmp(pd2.src, &iih.icmp_id, 5991 daddr, &nk->addr[pd2.sidx], 5992 nk->port[pd2.sidx], NULL, 5993 pd2.ip_sum, icmpsum, 5994 pd->ip_sum, 0, AF_INET); 5995 5996 if (PF_ANEQ(pd2.dst, 5997 &nk->addr[pd2.didx], pd2.af) || 5998 nk->port[pd2.didx] != iih.icmp_id) 5999 pf_change_icmp(pd2.dst, &iih.icmp_id, 6000 saddr, &nk->addr[pd2.didx], 6001 nk->port[pd2.didx], NULL, 6002 pd2.ip_sum, icmpsum, 6003 pd->ip_sum, 0, AF_INET); 6004 6005 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6006 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6007 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6008 } 6009 return (PF_PASS); 6010 break; 6011 } 6012 #endif /* INET */ 6013 #ifdef INET6 6014 case IPPROTO_ICMPV6: { 6015 struct icmp6_hdr iih; 6016 6017 if (!pf_pull_hdr(m, off2, &iih, 6018 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6019 DPFPRINTF(PF_DEBUG_MISC, 6020 ("pf: ICMP error message too short " 6021 "(icmp6)\n")); 6022 return (PF_DROP); 6023 } 6024 6025 key.af = pd2.af; 6026 key.proto = IPPROTO_ICMPV6; 6027 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6028 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6029 key.port[0] = key.port[1] = iih.icmp6_id; 6030 6031 STATE_LOOKUP(kif, &key, direction, *state, pd); 6032 6033 /* translate source/destination address, if necessary */ 6034 if ((*state)->key[PF_SK_WIRE] != 6035 (*state)->key[PF_SK_STACK]) { 6036 struct pf_state_key *nk = 6037 (*state)->key[pd->didx]; 6038 6039 if (PF_ANEQ(pd2.src, 6040 &nk->addr[pd2.sidx], pd2.af) || 6041 nk->port[pd2.sidx] != iih.icmp6_id) 6042 pf_change_icmp(pd2.src, &iih.icmp6_id, 6043 daddr, &nk->addr[pd2.sidx], 6044 nk->port[pd2.sidx], NULL, 6045 pd2.ip_sum, icmpsum, 6046 pd->ip_sum, 0, AF_INET6); 6047 6048 if (PF_ANEQ(pd2.dst, 6049 &nk->addr[pd2.didx], pd2.af) || 6050 nk->port[pd2.didx] != iih.icmp6_id) 6051 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6052 saddr, &nk->addr[pd2.didx], 6053 nk->port[pd2.didx], NULL, 6054 pd2.ip_sum, icmpsum, 6055 pd->ip_sum, 0, AF_INET6); 6056 6057 m_copyback(m, off, sizeof(struct icmp6_hdr), 6058 (caddr_t)&pd->hdr.icmp6); 6059 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6060 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6061 (caddr_t)&iih); 6062 } 6063 return (PF_PASS); 6064 break; 6065 } 6066 #endif /* INET6 */ 6067 default: { 6068 key.af = pd2.af; 6069 key.proto = pd2.proto; 6070 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6071 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6072 key.port[0] = key.port[1] = 0; 6073 6074 STATE_LOOKUP(kif, &key, direction, *state, pd); 6075 6076 /* translate source/destination address, if necessary */ 6077 if ((*state)->key[PF_SK_WIRE] != 6078 (*state)->key[PF_SK_STACK]) { 6079 struct pf_state_key *nk = 6080 (*state)->key[pd->didx]; 6081 6082 if (PF_ANEQ(pd2.src, 6083 &nk->addr[pd2.sidx], pd2.af)) 6084 pf_change_icmp(pd2.src, NULL, daddr, 6085 &nk->addr[pd2.sidx], 0, NULL, 6086 pd2.ip_sum, icmpsum, 6087 pd->ip_sum, 0, pd2.af); 6088 6089 if (PF_ANEQ(pd2.dst, 6090 &nk->addr[pd2.didx], pd2.af)) 6091 pf_change_icmp(pd2.dst, NULL, saddr, 6092 &nk->addr[pd2.didx], 0, NULL, 6093 pd2.ip_sum, icmpsum, 6094 pd->ip_sum, 0, pd2.af); 6095 6096 switch (pd2.af) { 6097 #ifdef INET 6098 case AF_INET: 6099 m_copyback(m, off, ICMP_MINLEN, 6100 (caddr_t)&pd->hdr.icmp); 6101 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6102 break; 6103 #endif /* INET */ 6104 #ifdef INET6 6105 case AF_INET6: 6106 m_copyback(m, off, 6107 sizeof(struct icmp6_hdr), 6108 (caddr_t )&pd->hdr.icmp6); 6109 m_copyback(m, ipoff2, sizeof(h2_6), 6110 (caddr_t )&h2_6); 6111 break; 6112 #endif /* INET6 */ 6113 } 6114 } 6115 return (PF_PASS); 6116 break; 6117 } 6118 } 6119 } 6120 } 6121 6122 static int 6123 pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, 6124 struct mbuf *m, struct pf_pdesc *pd) 6125 { 6126 struct pf_state_peer *src, *dst; 6127 struct pf_state_key_cmp key; 6128 uint8_t psrc, pdst; 6129 6130 bzero(&key, sizeof(key)); 6131 key.af = pd->af; 6132 key.proto = pd->proto; 6133 if (direction == PF_IN) { 6134 PF_ACPY(&key.addr[0], pd->src, key.af); 6135 PF_ACPY(&key.addr[1], pd->dst, key.af); 6136 key.port[0] = key.port[1] = 0; 6137 } else { 6138 PF_ACPY(&key.addr[1], pd->src, key.af); 6139 PF_ACPY(&key.addr[0], pd->dst, key.af); 6140 key.port[1] = key.port[0] = 0; 6141 } 6142 6143 STATE_LOOKUP(kif, &key, direction, *state, pd); 6144 6145 if (direction == (*state)->direction) { 6146 src = &(*state)->src; 6147 dst = &(*state)->dst; 6148 psrc = PF_PEER_SRC; 6149 pdst = PF_PEER_DST; 6150 } else { 6151 src = &(*state)->dst; 6152 dst = &(*state)->src; 6153 psrc = PF_PEER_DST; 6154 pdst = PF_PEER_SRC; 6155 } 6156 6157 /* update states */ 6158 if (src->state < PFOTHERS_SINGLE) 6159 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6160 if (dst->state == PFOTHERS_SINGLE) 6161 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6162 6163 /* update expire time */ 6164 (*state)->expire = time_uptime; 6165 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6166 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6167 else 6168 (*state)->timeout = PFTM_OTHER_SINGLE; 6169 6170 /* translate source/destination address, if necessary */ 6171 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6172 struct pf_state_key *nk = (*state)->key[pd->didx]; 6173 6174 KASSERT(nk, ("%s: nk is null", __func__)); 6175 KASSERT(pd, ("%s: pd is null", __func__)); 6176 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6177 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6178 switch (pd->af) { 6179 #ifdef INET 6180 case AF_INET: 6181 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6182 pf_change_a(&pd->src->v4.s_addr, 6183 pd->ip_sum, 6184 nk->addr[pd->sidx].v4.s_addr, 6185 0); 6186 6187 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6188 pf_change_a(&pd->dst->v4.s_addr, 6189 pd->ip_sum, 6190 nk->addr[pd->didx].v4.s_addr, 6191 0); 6192 6193 break; 6194 #endif /* INET */ 6195 #ifdef INET6 6196 case AF_INET6: 6197 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6198 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6199 6200 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6201 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6202 #endif /* INET6 */ 6203 } 6204 } 6205 return (PF_PASS); 6206 } 6207 6208 /* 6209 * ipoff and off are measured from the start of the mbuf chain. 6210 * h must be at "ipoff" on the mbuf chain. 6211 */ 6212 void * 6213 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6214 u_short *actionp, u_short *reasonp, sa_family_t af) 6215 { 6216 switch (af) { 6217 #ifdef INET 6218 case AF_INET: { 6219 struct ip *h = mtod(m, struct ip *); 6220 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6221 6222 if (fragoff) { 6223 if (fragoff >= len) 6224 ACTION_SET(actionp, PF_PASS); 6225 else { 6226 ACTION_SET(actionp, PF_DROP); 6227 REASON_SET(reasonp, PFRES_FRAG); 6228 } 6229 return (NULL); 6230 } 6231 if (m->m_pkthdr.len < off + len || 6232 ntohs(h->ip_len) < off + len) { 6233 ACTION_SET(actionp, PF_DROP); 6234 REASON_SET(reasonp, PFRES_SHORT); 6235 return (NULL); 6236 } 6237 break; 6238 } 6239 #endif /* INET */ 6240 #ifdef INET6 6241 case AF_INET6: { 6242 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6243 6244 if (m->m_pkthdr.len < off + len || 6245 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6246 (unsigned)(off + len)) { 6247 ACTION_SET(actionp, PF_DROP); 6248 REASON_SET(reasonp, PFRES_SHORT); 6249 return (NULL); 6250 } 6251 break; 6252 } 6253 #endif /* INET6 */ 6254 } 6255 m_copydata(m, off, len, p); 6256 return (p); 6257 } 6258 6259 int 6260 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6261 int rtableid) 6262 { 6263 struct ifnet *ifp; 6264 6265 /* 6266 * Skip check for addresses with embedded interface scope, 6267 * as they would always match anyway. 6268 */ 6269 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6270 return (1); 6271 6272 if (af != AF_INET && af != AF_INET6) 6273 return (0); 6274 6275 /* Skip checks for ipsec interfaces */ 6276 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6277 return (1); 6278 6279 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6280 6281 switch (af) { 6282 #ifdef INET6 6283 case AF_INET6: 6284 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6285 ifp)); 6286 #endif 6287 #ifdef INET 6288 case AF_INET: 6289 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6290 ifp)); 6291 #endif 6292 } 6293 6294 return (0); 6295 } 6296 6297 #ifdef INET 6298 static void 6299 pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6300 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6301 { 6302 struct mbuf *m0, *m1, *md; 6303 struct sockaddr_in dst; 6304 struct ip *ip; 6305 struct ifnet *ifp = NULL; 6306 struct pf_addr naddr; 6307 struct pf_ksrc_node *sn = NULL; 6308 int error = 0; 6309 uint16_t ip_len, ip_off; 6310 6311 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6312 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6313 __func__)); 6314 6315 if ((pd->pf_mtag == NULL && 6316 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6317 pd->pf_mtag->routed++ > 3) { 6318 m0 = *m; 6319 *m = NULL; 6320 goto bad_locked; 6321 } 6322 6323 if (r->rt == PF_DUPTO) { 6324 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6325 if (s == NULL) { 6326 ifp = r->rpool.cur->kif ? 6327 r->rpool.cur->kif->pfik_ifp : NULL; 6328 } else { 6329 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6330 /* If pfsync'd */ 6331 if (ifp == NULL) 6332 ifp = r->rpool.cur->kif ? 6333 r->rpool.cur->kif->pfik_ifp : NULL; 6334 PF_STATE_UNLOCK(s); 6335 } 6336 if (ifp == oifp) { 6337 /* When the 2nd interface is not skipped */ 6338 return; 6339 } else { 6340 m0 = *m; 6341 *m = NULL; 6342 goto bad; 6343 } 6344 } else { 6345 pd->pf_mtag->flags |= PF_DUPLICATED; 6346 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6347 if (s) 6348 PF_STATE_UNLOCK(s); 6349 return; 6350 } 6351 } 6352 } else { 6353 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6354 pf_dummynet(pd, dir, s, r, m); 6355 if (s) 6356 PF_STATE_UNLOCK(s); 6357 return; 6358 } 6359 m0 = *m; 6360 } 6361 6362 ip = mtod(m0, struct ip *); 6363 6364 bzero(&dst, sizeof(dst)); 6365 dst.sin_family = AF_INET; 6366 dst.sin_len = sizeof(dst); 6367 dst.sin_addr = ip->ip_dst; 6368 6369 bzero(&naddr, sizeof(naddr)); 6370 6371 if (s == NULL) { 6372 if (TAILQ_EMPTY(&r->rpool.list)) { 6373 DPFPRINTF(PF_DEBUG_URGENT, 6374 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6375 goto bad_locked; 6376 } 6377 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6378 &naddr, NULL, &sn); 6379 if (!PF_AZERO(&naddr, AF_INET)) 6380 dst.sin_addr.s_addr = naddr.v4.s_addr; 6381 ifp = r->rpool.cur->kif ? 6382 r->rpool.cur->kif->pfik_ifp : NULL; 6383 } else { 6384 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6385 dst.sin_addr.s_addr = 6386 s->rt_addr.v4.s_addr; 6387 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6388 PF_STATE_UNLOCK(s); 6389 } 6390 /* If pfsync'd */ 6391 if (ifp == NULL) 6392 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6393 if (ifp == NULL) 6394 goto bad; 6395 6396 if (dir == PF_IN) { 6397 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6398 goto bad; 6399 else if (m0 == NULL) 6400 goto done; 6401 if (m0->m_len < sizeof(struct ip)) { 6402 DPFPRINTF(PF_DEBUG_URGENT, 6403 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6404 goto bad; 6405 } 6406 ip = mtod(m0, struct ip *); 6407 } 6408 6409 if (ifp->if_flags & IFF_LOOPBACK) 6410 m0->m_flags |= M_SKIP_FIREWALL; 6411 6412 ip_len = ntohs(ip->ip_len); 6413 ip_off = ntohs(ip->ip_off); 6414 6415 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6416 m0->m_pkthdr.csum_flags |= CSUM_IP; 6417 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6418 in_delayed_cksum(m0); 6419 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6420 } 6421 #if defined(SCTP) || defined(SCTP_SUPPORT) 6422 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6423 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 6424 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6425 } 6426 #endif 6427 6428 /* 6429 * If small enough for interface, or the interface will take 6430 * care of the fragmentation for us, we can just send directly. 6431 */ 6432 if (ip_len <= ifp->if_mtu || 6433 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6434 ip->ip_sum = 0; 6435 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6436 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6437 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6438 } 6439 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6440 6441 md = m0; 6442 error = pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6443 if (md != NULL) 6444 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6445 goto done; 6446 } 6447 6448 /* Balk when DF bit is set or the interface didn't support TSO. */ 6449 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6450 error = EMSGSIZE; 6451 KMOD_IPSTAT_INC(ips_cantfrag); 6452 if (r->rt != PF_DUPTO) { 6453 if (s && pd->nat_rule != NULL) 6454 PACKET_UNDO_NAT(m0, pd, 6455 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6456 s, dir); 6457 6458 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6459 ifp->if_mtu); 6460 goto done; 6461 } else 6462 goto bad; 6463 } 6464 6465 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6466 if (error) 6467 goto bad; 6468 6469 for (; m0; m0 = m1) { 6470 m1 = m0->m_nextpkt; 6471 m0->m_nextpkt = NULL; 6472 if (error == 0) { 6473 m_clrprotoflags(m0); 6474 md = m0; 6475 error = pf_dummynet_route(pd, dir, s, r, ifp, 6476 sintosa(&dst), &md); 6477 if (md != NULL) 6478 error = (*ifp->if_output)(ifp, md, 6479 sintosa(&dst), NULL); 6480 } else 6481 m_freem(m0); 6482 } 6483 6484 if (error == 0) 6485 KMOD_IPSTAT_INC(ips_fragmented); 6486 6487 done: 6488 if (r->rt != PF_DUPTO) 6489 *m = NULL; 6490 return; 6491 6492 bad_locked: 6493 if (s) 6494 PF_STATE_UNLOCK(s); 6495 bad: 6496 m_freem(m0); 6497 goto done; 6498 } 6499 #endif /* INET */ 6500 6501 #ifdef INET6 6502 static void 6503 pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, 6504 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6505 { 6506 struct mbuf *m0, *md; 6507 struct sockaddr_in6 dst; 6508 struct ip6_hdr *ip6; 6509 struct ifnet *ifp = NULL; 6510 struct pf_addr naddr; 6511 struct pf_ksrc_node *sn = NULL; 6512 6513 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6514 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 6515 __func__)); 6516 6517 if ((pd->pf_mtag == NULL && 6518 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6519 pd->pf_mtag->routed++ > 3) { 6520 m0 = *m; 6521 *m = NULL; 6522 goto bad_locked; 6523 } 6524 6525 if (r->rt == PF_DUPTO) { 6526 if ((pd->pf_mtag->flags & PF_DUPLICATED)) { 6527 if (s == NULL) { 6528 ifp = r->rpool.cur->kif ? 6529 r->rpool.cur->kif->pfik_ifp : NULL; 6530 } else { 6531 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6532 /* If pfsync'd */ 6533 if (ifp == NULL) 6534 ifp = r->rpool.cur->kif ? 6535 r->rpool.cur->kif->pfik_ifp : NULL; 6536 PF_STATE_UNLOCK(s); 6537 } 6538 if (ifp == oifp) { 6539 /* When the 2nd interface is not skipped */ 6540 return; 6541 } else { 6542 m0 = *m; 6543 *m = NULL; 6544 goto bad; 6545 } 6546 } else { 6547 pd->pf_mtag->flags |= PF_DUPLICATED; 6548 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6549 if (s) 6550 PF_STATE_UNLOCK(s); 6551 return; 6552 } 6553 } 6554 } else { 6555 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 6556 pf_dummynet(pd, dir, s, r, m); 6557 if (s) 6558 PF_STATE_UNLOCK(s); 6559 return; 6560 } 6561 m0 = *m; 6562 } 6563 6564 ip6 = mtod(m0, struct ip6_hdr *); 6565 6566 bzero(&dst, sizeof(dst)); 6567 dst.sin6_family = AF_INET6; 6568 dst.sin6_len = sizeof(dst); 6569 dst.sin6_addr = ip6->ip6_dst; 6570 6571 bzero(&naddr, sizeof(naddr)); 6572 6573 if (s == NULL) { 6574 if (TAILQ_EMPTY(&r->rpool.list)) { 6575 DPFPRINTF(PF_DEBUG_URGENT, 6576 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6577 goto bad_locked; 6578 } 6579 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6580 &naddr, NULL, &sn); 6581 if (!PF_AZERO(&naddr, AF_INET6)) 6582 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6583 &naddr, AF_INET6); 6584 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6585 } else { 6586 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 6587 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 6588 &s->rt_addr, AF_INET6); 6589 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6590 } 6591 6592 if (s) 6593 PF_STATE_UNLOCK(s); 6594 6595 /* If pfsync'd */ 6596 if (ifp == NULL) 6597 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6598 if (ifp == NULL) 6599 goto bad; 6600 6601 if (dir == PF_IN) { 6602 if (pf_test6(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 6603 goto bad; 6604 else if (m0 == NULL) 6605 goto done; 6606 if (m0->m_len < sizeof(struct ip6_hdr)) { 6607 DPFPRINTF(PF_DEBUG_URGENT, 6608 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 6609 __func__)); 6610 goto bad; 6611 } 6612 ip6 = mtod(m0, struct ip6_hdr *); 6613 } 6614 6615 if (ifp->if_flags & IFF_LOOPBACK) 6616 m0->m_flags |= M_SKIP_FIREWALL; 6617 6618 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 6619 ~ifp->if_hwassist) { 6620 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 6621 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 6622 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 6623 } 6624 6625 /* 6626 * If the packet is too large for the outgoing interface, 6627 * send back an icmp6 error. 6628 */ 6629 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 6630 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 6631 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 6632 md = m0; 6633 pf_dummynet_route(pd, dir, s, r, ifp, sintosa(&dst), &md); 6634 if (md != NULL) 6635 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 6636 } 6637 else { 6638 in6_ifstat_inc(ifp, ifs6_in_toobig); 6639 if (r->rt != PF_DUPTO) { 6640 if (s && pd->nat_rule != NULL) 6641 PACKET_UNDO_NAT(m0, pd, 6642 ((caddr_t)ip6 - m0->m_data) + 6643 sizeof(struct ip6_hdr), s, dir); 6644 6645 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 6646 } else 6647 goto bad; 6648 } 6649 6650 done: 6651 if (r->rt != PF_DUPTO) 6652 *m = NULL; 6653 return; 6654 6655 bad_locked: 6656 if (s) 6657 PF_STATE_UNLOCK(s); 6658 bad: 6659 m_freem(m0); 6660 goto done; 6661 } 6662 #endif /* INET6 */ 6663 6664 /* 6665 * FreeBSD supports cksum offloads for the following drivers. 6666 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 6667 * 6668 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 6669 * network driver performed cksum including pseudo header, need to verify 6670 * csum_data 6671 * CSUM_DATA_VALID : 6672 * network driver performed cksum, needs to additional pseudo header 6673 * cksum computation with partial csum_data(i.e. lack of H/W support for 6674 * pseudo header, for instance sk(4) and possibly gem(4)) 6675 * 6676 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 6677 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 6678 * TCP/UDP layer. 6679 * Also, set csum_data to 0xffff to force cksum validation. 6680 */ 6681 static int 6682 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 6683 { 6684 u_int16_t sum = 0; 6685 int hw_assist = 0; 6686 struct ip *ip; 6687 6688 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 6689 return (1); 6690 if (m->m_pkthdr.len < off + len) 6691 return (1); 6692 6693 switch (p) { 6694 case IPPROTO_TCP: 6695 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6696 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6697 sum = m->m_pkthdr.csum_data; 6698 } else { 6699 ip = mtod(m, struct ip *); 6700 sum = in_pseudo(ip->ip_src.s_addr, 6701 ip->ip_dst.s_addr, htonl((u_short)len + 6702 m->m_pkthdr.csum_data + IPPROTO_TCP)); 6703 } 6704 sum ^= 0xffff; 6705 ++hw_assist; 6706 } 6707 break; 6708 case IPPROTO_UDP: 6709 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 6710 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 6711 sum = m->m_pkthdr.csum_data; 6712 } else { 6713 ip = mtod(m, struct ip *); 6714 sum = in_pseudo(ip->ip_src.s_addr, 6715 ip->ip_dst.s_addr, htonl((u_short)len + 6716 m->m_pkthdr.csum_data + IPPROTO_UDP)); 6717 } 6718 sum ^= 0xffff; 6719 ++hw_assist; 6720 } 6721 break; 6722 case IPPROTO_ICMP: 6723 #ifdef INET6 6724 case IPPROTO_ICMPV6: 6725 #endif /* INET6 */ 6726 break; 6727 default: 6728 return (1); 6729 } 6730 6731 if (!hw_assist) { 6732 switch (af) { 6733 case AF_INET: 6734 if (p == IPPROTO_ICMP) { 6735 if (m->m_len < off) 6736 return (1); 6737 m->m_data += off; 6738 m->m_len -= off; 6739 sum = in_cksum(m, len); 6740 m->m_data -= off; 6741 m->m_len += off; 6742 } else { 6743 if (m->m_len < sizeof(struct ip)) 6744 return (1); 6745 sum = in4_cksum(m, p, off, len); 6746 } 6747 break; 6748 #ifdef INET6 6749 case AF_INET6: 6750 if (m->m_len < sizeof(struct ip6_hdr)) 6751 return (1); 6752 sum = in6_cksum(m, p, off, len); 6753 break; 6754 #endif /* INET6 */ 6755 default: 6756 return (1); 6757 } 6758 } 6759 if (sum) { 6760 switch (p) { 6761 case IPPROTO_TCP: 6762 { 6763 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 6764 break; 6765 } 6766 case IPPROTO_UDP: 6767 { 6768 KMOD_UDPSTAT_INC(udps_badsum); 6769 break; 6770 } 6771 #ifdef INET 6772 case IPPROTO_ICMP: 6773 { 6774 KMOD_ICMPSTAT_INC(icps_checksum); 6775 break; 6776 } 6777 #endif 6778 #ifdef INET6 6779 case IPPROTO_ICMPV6: 6780 { 6781 KMOD_ICMP6STAT_INC(icp6s_checksum); 6782 break; 6783 } 6784 #endif /* INET6 */ 6785 } 6786 return (1); 6787 } else { 6788 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 6789 m->m_pkthdr.csum_flags |= 6790 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 6791 m->m_pkthdr.csum_data = 0xffff; 6792 } 6793 } 6794 return (0); 6795 } 6796 6797 static bool 6798 pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, 6799 const struct pf_krule *r, const struct pf_kstate *s, 6800 struct ip_fw_args *dnflow) 6801 { 6802 int dndir = r->direction; 6803 6804 if (s && dndir == PF_INOUT) { 6805 dndir = s->direction; 6806 } else if (dndir == PF_INOUT) { 6807 /* Assume primary direction. Happens when we've set dnpipe in 6808 * the ethernet level code. */ 6809 dndir = dir; 6810 } 6811 6812 memset(dnflow, 0, sizeof(*dnflow)); 6813 6814 if (pd->dport != NULL) 6815 dnflow->f_id.dst_port = ntohs(*pd->dport); 6816 if (pd->sport != NULL) 6817 dnflow->f_id.src_port = ntohs(*pd->sport); 6818 6819 if (dir == PF_IN) 6820 dnflow->flags |= IPFW_ARGS_IN; 6821 else 6822 dnflow->flags |= IPFW_ARGS_OUT; 6823 6824 if (dir != dndir && pd->act.dnrpipe) { 6825 dnflow->rule.info = pd->act.dnrpipe; 6826 } 6827 else if (dir == dndir && pd->act.dnpipe) { 6828 dnflow->rule.info = pd->act.dnpipe; 6829 } 6830 else { 6831 return (false); 6832 } 6833 6834 dnflow->rule.info |= IPFW_IS_DUMMYNET; 6835 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFRULE_DN_IS_PIPE) 6836 dnflow->rule.info |= IPFW_IS_PIPE; 6837 6838 dnflow->f_id.proto = pd->proto; 6839 dnflow->f_id.extra = dnflow->rule.info; 6840 switch (pd->af) { 6841 case AF_INET: 6842 dnflow->f_id.addr_type = 4; 6843 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 6844 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 6845 break; 6846 case AF_INET6: 6847 dnflow->flags |= IPFW_ARGS_IP6; 6848 dnflow->f_id.addr_type = 6; 6849 dnflow->f_id.src_ip6 = pd->src->v6; 6850 dnflow->f_id.dst_ip6 = pd->dst->v6; 6851 break; 6852 default: 6853 panic("Invalid AF"); 6854 break; 6855 } 6856 6857 return (true); 6858 } 6859 6860 int 6861 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 6862 struct inpcb *inp) 6863 { 6864 struct pfi_kkif *kif; 6865 struct mbuf *m = *m0; 6866 6867 M_ASSERTPKTHDR(m); 6868 MPASS(ifp->if_vnet == curvnet); 6869 NET_EPOCH_ASSERT(); 6870 6871 if (!V_pf_status.running) 6872 return (PF_PASS); 6873 6874 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6875 6876 if (kif == NULL) { 6877 DPFPRINTF(PF_DEBUG_URGENT, 6878 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6879 return (PF_DROP); 6880 } 6881 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6882 return (PF_PASS); 6883 6884 if (m->m_flags & M_SKIP_FIREWALL) 6885 return (PF_PASS); 6886 6887 /* Stateless! */ 6888 return (pf_test_eth_rule(dir, kif, m0)); 6889 } 6890 6891 static int 6892 pf_dummynet(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 6893 struct pf_krule *r, struct mbuf **m0) 6894 { 6895 return (pf_dummynet_route(pd, dir, s, r, NULL, NULL, m0)); 6896 } 6897 6898 static int 6899 pf_dummynet_route(struct pf_pdesc *pd, int dir, struct pf_kstate *s, 6900 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 6901 struct mbuf **m0) 6902 { 6903 NET_EPOCH_ASSERT(); 6904 6905 if (s && (s->dnpipe || s->dnrpipe)) { 6906 pd->act.dnpipe = s->dnpipe; 6907 pd->act.dnrpipe = s->dnrpipe; 6908 pd->act.flags = s->state_flags; 6909 } else if (r->dnpipe || r->dnrpipe) { 6910 pd->act.dnpipe = r->dnpipe; 6911 pd->act.dnrpipe = r->dnrpipe; 6912 pd->act.flags = r->free_flags; 6913 } 6914 if (pd->act.dnpipe || pd->act.dnrpipe) { 6915 struct ip_fw_args dnflow; 6916 if (ip_dn_io_ptr == NULL) { 6917 m_freem(*m0); 6918 *m0 = NULL; 6919 return (ENOMEM); 6920 } 6921 6922 if (pd->pf_mtag == NULL && 6923 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 6924 m_freem(*m0); 6925 *m0 = NULL; 6926 return (ENOMEM); 6927 } 6928 6929 if (ifp != NULL) { 6930 pd->pf_mtag->flags |= PF_TAG_ROUTE_TO; 6931 6932 pd->pf_mtag->if_index = ifp->if_index; 6933 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 6934 6935 MPASS(sa != NULL); 6936 6937 if (pd->af == AF_INET) 6938 memcpy(&pd->pf_mtag->dst, sa, 6939 sizeof(struct sockaddr_in)); 6940 else 6941 memcpy(&pd->pf_mtag->dst, sa, 6942 sizeof(struct sockaddr_in6)); 6943 } 6944 6945 if (pf_pdesc_to_dnflow(dir, pd, r, s, &dnflow)) { 6946 pd->pf_mtag->flags |= PF_TAG_DUMMYNET; 6947 ip_dn_io_ptr(m0, &dnflow); 6948 if (*m0 != NULL) 6949 pd->pf_mtag->flags &= ~PF_TAG_DUMMYNET; 6950 } 6951 } 6952 6953 return (0); 6954 } 6955 6956 #ifdef INET 6957 int 6958 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6959 { 6960 struct pfi_kkif *kif; 6961 u_short action, reason = 0, log = 0; 6962 struct mbuf *m = *m0; 6963 struct ip *h = NULL; 6964 struct m_tag *ipfwtag; 6965 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6966 struct pf_kstate *s = NULL; 6967 struct pf_kruleset *ruleset = NULL; 6968 struct pf_pdesc pd; 6969 int off, dirndx, pqid = 0; 6970 6971 PF_RULES_RLOCK_TRACKER; 6972 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 6973 M_ASSERTPKTHDR(m); 6974 6975 if (!V_pf_status.running) 6976 return (PF_PASS); 6977 6978 PF_RULES_RLOCK(); 6979 6980 kif = (struct pfi_kkif *)ifp->if_pf_kif; 6981 6982 if (__predict_false(kif == NULL)) { 6983 DPFPRINTF(PF_DEBUG_URGENT, 6984 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 6985 PF_RULES_RUNLOCK(); 6986 return (PF_DROP); 6987 } 6988 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 6989 PF_RULES_RUNLOCK(); 6990 return (PF_PASS); 6991 } 6992 6993 if (m->m_flags & M_SKIP_FIREWALL) { 6994 PF_RULES_RUNLOCK(); 6995 return (PF_PASS); 6996 } 6997 6998 memset(&pd, 0, sizeof(pd)); 6999 pd.pf_mtag = pf_find_mtag(m); 7000 7001 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7002 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7003 7004 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7005 pd.pf_mtag->if_idxgen); 7006 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7007 PF_RULES_RUNLOCK(); 7008 m_freem(*m0); 7009 *m0 = NULL; 7010 return (PF_PASS); 7011 } 7012 PF_RULES_RUNLOCK(); 7013 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7014 *m0 = NULL; 7015 return (PF_PASS); 7016 } 7017 7018 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7019 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7020 pd.act.flags = pd.pf_mtag->dnflags; 7021 } 7022 7023 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7024 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7025 /* Dummynet re-injects packets after they've 7026 * completed their delay. We've already 7027 * processed them, so pass unconditionally. */ 7028 7029 /* But only once. We may see the packet multiple times (e.g. 7030 * PFIL_IN/PFIL_OUT). */ 7031 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7032 PF_RULES_RUNLOCK(); 7033 7034 return (PF_PASS); 7035 } 7036 7037 if (__predict_false(ip_divert_ptr != NULL) && 7038 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7039 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7040 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7041 if (pd.pf_mtag == NULL && 7042 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7043 action = PF_DROP; 7044 goto done; 7045 } 7046 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 7047 m_tag_delete(m, ipfwtag); 7048 } 7049 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 7050 m->m_flags |= M_FASTFWD_OURS; 7051 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 7052 } 7053 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 7054 /* We do IP header normalization and packet reassembly here */ 7055 action = PF_DROP; 7056 goto done; 7057 } 7058 m = *m0; /* pf_normalize messes with m0 */ 7059 h = mtod(m, struct ip *); 7060 7061 off = h->ip_hl << 2; 7062 if (off < (int)sizeof(struct ip)) { 7063 action = PF_DROP; 7064 REASON_SET(&reason, PFRES_SHORT); 7065 log = 1; 7066 goto done; 7067 } 7068 7069 pd.src = (struct pf_addr *)&h->ip_src; 7070 pd.dst = (struct pf_addr *)&h->ip_dst; 7071 pd.sport = pd.dport = NULL; 7072 pd.ip_sum = &h->ip_sum; 7073 pd.proto_sum = NULL; 7074 pd.proto = h->ip_p; 7075 pd.dir = dir; 7076 pd.sidx = (dir == PF_IN) ? 0 : 1; 7077 pd.didx = (dir == PF_IN) ? 1 : 0; 7078 pd.af = AF_INET; 7079 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7080 pd.tot_len = ntohs(h->ip_len); 7081 7082 /* handle fragments that didn't get reassembled by normalization */ 7083 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7084 action = pf_test_fragment(&r, dir, kif, m, h, 7085 &pd, &a, &ruleset); 7086 goto done; 7087 } 7088 7089 switch (h->ip_p) { 7090 case IPPROTO_TCP: { 7091 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7092 &action, &reason, AF_INET)) { 7093 log = action != PF_PASS; 7094 goto done; 7095 } 7096 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7097 7098 pd.sport = &pd.hdr.tcp.th_sport; 7099 pd.dport = &pd.hdr.tcp.th_dport; 7100 7101 /* Respond to SYN with a syncookie. */ 7102 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7103 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7104 pf_syncookie_send(m, off, &pd); 7105 action = PF_DROP; 7106 break; 7107 } 7108 7109 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7110 pqid = 1; 7111 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7112 if (action == PF_DROP) 7113 goto done; 7114 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7115 &reason); 7116 if (action == PF_PASS) { 7117 if (V_pfsync_update_state_ptr != NULL) 7118 V_pfsync_update_state_ptr(s); 7119 r = s->rule.ptr; 7120 a = s->anchor.ptr; 7121 log = s->log; 7122 } else if (s == NULL) { 7123 /* Validate remote SYN|ACK, re-create original SYN if 7124 * valid. */ 7125 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7126 TH_ACK && pf_syncookie_validate(&pd) && 7127 pd.dir == PF_IN) { 7128 struct mbuf *msyn; 7129 7130 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 7131 off,&pd); 7132 if (msyn == NULL) { 7133 action = PF_DROP; 7134 break; 7135 } 7136 7137 action = pf_test(dir, pflags, ifp, &msyn, inp); 7138 m_freem(msyn); 7139 7140 if (action == PF_PASS) { 7141 action = pf_test_state_tcp(&s, dir, 7142 kif, m, off, h, &pd, &reason); 7143 if (action != PF_PASS || s == NULL) { 7144 action = PF_DROP; 7145 break; 7146 } 7147 7148 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 7149 - 1; 7150 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 7151 - 1; 7152 pf_set_protostate(s, PF_PEER_SRC, 7153 PF_TCPS_PROXY_DST); 7154 7155 action = pf_synproxy(&pd, &s, &reason); 7156 if (action != PF_PASS) 7157 break; 7158 } 7159 break; 7160 } 7161 else { 7162 action = pf_test_rule(&r, &s, dir, kif, m, off, 7163 &pd, &a, &ruleset, inp); 7164 } 7165 } 7166 break; 7167 } 7168 7169 case IPPROTO_UDP: { 7170 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7171 &action, &reason, AF_INET)) { 7172 log = action != PF_PASS; 7173 goto done; 7174 } 7175 pd.sport = &pd.hdr.udp.uh_sport; 7176 pd.dport = &pd.hdr.udp.uh_dport; 7177 if (pd.hdr.udp.uh_dport == 0 || 7178 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7179 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7180 action = PF_DROP; 7181 REASON_SET(&reason, PFRES_SHORT); 7182 goto done; 7183 } 7184 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7185 if (action == PF_PASS) { 7186 if (V_pfsync_update_state_ptr != NULL) 7187 V_pfsync_update_state_ptr(s); 7188 r = s->rule.ptr; 7189 a = s->anchor.ptr; 7190 log = s->log; 7191 } else if (s == NULL) 7192 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7193 &a, &ruleset, inp); 7194 break; 7195 } 7196 7197 case IPPROTO_ICMP: { 7198 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7199 &action, &reason, AF_INET)) { 7200 log = action != PF_PASS; 7201 goto done; 7202 } 7203 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 7204 &reason); 7205 if (action == PF_PASS) { 7206 if (V_pfsync_update_state_ptr != NULL) 7207 V_pfsync_update_state_ptr(s); 7208 r = s->rule.ptr; 7209 a = s->anchor.ptr; 7210 log = s->log; 7211 } else if (s == NULL) 7212 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7213 &a, &ruleset, inp); 7214 break; 7215 } 7216 7217 #ifdef INET6 7218 case IPPROTO_ICMPV6: { 7219 action = PF_DROP; 7220 DPFPRINTF(PF_DEBUG_MISC, 7221 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7222 goto done; 7223 } 7224 #endif 7225 7226 default: 7227 action = pf_test_state_other(&s, dir, kif, m, &pd); 7228 if (action == PF_PASS) { 7229 if (V_pfsync_update_state_ptr != NULL) 7230 V_pfsync_update_state_ptr(s); 7231 r = s->rule.ptr; 7232 a = s->anchor.ptr; 7233 log = s->log; 7234 } else if (s == NULL) 7235 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7236 &a, &ruleset, inp); 7237 break; 7238 } 7239 7240 done: 7241 PF_RULES_RUNLOCK(); 7242 if (action == PF_PASS && h->ip_hl > 5 && 7243 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7244 action = PF_DROP; 7245 REASON_SET(&reason, PFRES_IPOPTIONS); 7246 log = r->log; 7247 DPFPRINTF(PF_DEBUG_MISC, 7248 ("pf: dropping packet with ip options\n")); 7249 } 7250 7251 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7252 action = PF_DROP; 7253 REASON_SET(&reason, PFRES_MEMORY); 7254 } 7255 if (r->rtableid >= 0) 7256 M_SETFIB(m, r->rtableid); 7257 7258 if (r->scrub_flags & PFSTATE_SETPRIO) { 7259 if (pd.tos & IPTOS_LOWDELAY) 7260 pqid = 1; 7261 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7262 action = PF_DROP; 7263 REASON_SET(&reason, PFRES_MEMORY); 7264 log = 1; 7265 DPFPRINTF(PF_DEBUG_MISC, 7266 ("pf: failed to allocate 802.1q mtag\n")); 7267 } 7268 } 7269 7270 #ifdef ALTQ 7271 if (s && s->qid) { 7272 pd.act.pqid = s->pqid; 7273 pd.act.qid = s->qid; 7274 } else if (r->qid) { 7275 pd.act.pqid = r->pqid; 7276 pd.act.qid = r->qid; 7277 } 7278 if (action == PF_PASS && pd.act.qid) { 7279 if (pd.pf_mtag == NULL && 7280 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7281 action = PF_DROP; 7282 REASON_SET(&reason, PFRES_MEMORY); 7283 } else { 7284 if (s != NULL) 7285 pd.pf_mtag->qid_hash = pf_state_hash(s); 7286 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 7287 pd.pf_mtag->qid = pd.act.pqid; 7288 else 7289 pd.pf_mtag->qid = pd.act.qid; 7290 /* Add hints for ecn. */ 7291 pd.pf_mtag->hdr = h; 7292 } 7293 } 7294 #endif /* ALTQ */ 7295 7296 /* 7297 * connections redirected to loopback should not match sockets 7298 * bound specifically to loopback due to security implications, 7299 * see tcp_input() and in_pcblookup_listen(). 7300 */ 7301 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7302 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7303 (s->nat_rule.ptr->action == PF_RDR || 7304 s->nat_rule.ptr->action == PF_BINAT) && 7305 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7306 m->m_flags |= M_SKIP_FIREWALL; 7307 7308 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7309 r->divert.port && !PACKET_LOOPED(&pd)) { 7310 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7311 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7312 if (ipfwtag != NULL) { 7313 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7314 ntohs(r->divert.port); 7315 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7316 7317 if (s) 7318 PF_STATE_UNLOCK(s); 7319 7320 m_tag_prepend(m, ipfwtag); 7321 if (m->m_flags & M_FASTFWD_OURS) { 7322 if (pd.pf_mtag == NULL && 7323 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7324 action = PF_DROP; 7325 REASON_SET(&reason, PFRES_MEMORY); 7326 log = 1; 7327 DPFPRINTF(PF_DEBUG_MISC, 7328 ("pf: failed to allocate tag\n")); 7329 } else { 7330 pd.pf_mtag->flags |= 7331 PF_FASTFWD_OURS_PRESENT; 7332 m->m_flags &= ~M_FASTFWD_OURS; 7333 } 7334 } 7335 ip_divert_ptr(*m0, dir == PF_IN); 7336 *m0 = NULL; 7337 7338 return (action); 7339 } else { 7340 /* XXX: ipfw has the same behaviour! */ 7341 action = PF_DROP; 7342 REASON_SET(&reason, PFRES_MEMORY); 7343 log = 1; 7344 DPFPRINTF(PF_DEBUG_MISC, 7345 ("pf: failed to allocate divert tag\n")); 7346 } 7347 } 7348 7349 if (log) { 7350 struct pf_krule *lr; 7351 7352 if (s != NULL && s->nat_rule.ptr != NULL && 7353 s->nat_rule.ptr->log & PF_LOG_ALL) 7354 lr = s->nat_rule.ptr; 7355 else 7356 lr = r; 7357 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 7358 (s == NULL)); 7359 } 7360 7361 pf_counter_u64_critical_enter(); 7362 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7363 pd.tot_len); 7364 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7365 1); 7366 7367 if (action == PF_PASS || r->action == PF_DROP) { 7368 dirndx = (dir == PF_OUT); 7369 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7370 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7371 pf_update_timestamp(r); 7372 7373 if (a != NULL) { 7374 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7375 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7376 } 7377 if (s != NULL) { 7378 if (s->nat_rule.ptr != NULL) { 7379 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7380 1); 7381 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7382 pd.tot_len); 7383 } 7384 if (s->src_node != NULL) { 7385 counter_u64_add(s->src_node->packets[dirndx], 7386 1); 7387 counter_u64_add(s->src_node->bytes[dirndx], 7388 pd.tot_len); 7389 } 7390 if (s->nat_src_node != NULL) { 7391 counter_u64_add(s->nat_src_node->packets[dirndx], 7392 1); 7393 counter_u64_add(s->nat_src_node->bytes[dirndx], 7394 pd.tot_len); 7395 } 7396 dirndx = (dir == s->direction) ? 0 : 1; 7397 s->packets[dirndx]++; 7398 s->bytes[dirndx] += pd.tot_len; 7399 } 7400 tr = r; 7401 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7402 if (nr != NULL && r == &V_pf_default_rule) 7403 tr = nr; 7404 if (tr->src.addr.type == PF_ADDR_TABLE) 7405 pfr_update_stats(tr->src.addr.p.tbl, 7406 (s == NULL) ? pd.src : 7407 &s->key[(s->direction == PF_IN)]-> 7408 addr[(s->direction == PF_OUT)], 7409 pd.af, pd.tot_len, dir == PF_OUT, 7410 r->action == PF_PASS, tr->src.neg); 7411 if (tr->dst.addr.type == PF_ADDR_TABLE) 7412 pfr_update_stats(tr->dst.addr.p.tbl, 7413 (s == NULL) ? pd.dst : 7414 &s->key[(s->direction == PF_IN)]-> 7415 addr[(s->direction == PF_IN)], 7416 pd.af, pd.tot_len, dir == PF_OUT, 7417 r->action == PF_PASS, tr->dst.neg); 7418 } 7419 pf_counter_u64_critical_exit(); 7420 7421 switch (action) { 7422 case PF_SYNPROXY_DROP: 7423 m_freem(*m0); 7424 case PF_DEFER: 7425 *m0 = NULL; 7426 action = PF_PASS; 7427 break; 7428 case PF_DROP: 7429 m_freem(*m0); 7430 *m0 = NULL; 7431 break; 7432 default: 7433 /* pf_route() returns unlocked. */ 7434 if (r->rt) { 7435 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7436 return (action); 7437 } 7438 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7439 action = PF_DROP; 7440 REASON_SET(&reason, PFRES_MEMORY); 7441 } 7442 break; 7443 } 7444 7445 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7446 7447 if (s) 7448 PF_STATE_UNLOCK(s); 7449 7450 return (action); 7451 } 7452 #endif /* INET */ 7453 7454 #ifdef INET6 7455 int 7456 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 7457 { 7458 struct pfi_kkif *kif; 7459 u_short action, reason = 0, log = 0; 7460 struct mbuf *m = *m0, *n = NULL; 7461 struct m_tag *mtag; 7462 struct ip6_hdr *h = NULL; 7463 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7464 struct pf_kstate *s = NULL; 7465 struct pf_kruleset *ruleset = NULL; 7466 struct pf_pdesc pd; 7467 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 7468 7469 PF_RULES_RLOCK_TRACKER; 7470 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7471 M_ASSERTPKTHDR(m); 7472 7473 if (!V_pf_status.running) 7474 return (PF_PASS); 7475 7476 PF_RULES_RLOCK(); 7477 7478 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7479 if (__predict_false(kif == NULL)) { 7480 DPFPRINTF(PF_DEBUG_URGENT, 7481 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7482 PF_RULES_RUNLOCK(); 7483 return (PF_DROP); 7484 } 7485 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7486 PF_RULES_RUNLOCK(); 7487 return (PF_PASS); 7488 } 7489 7490 if (m->m_flags & M_SKIP_FIREWALL) { 7491 PF_RULES_RUNLOCK(); 7492 return (PF_PASS); 7493 } 7494 7495 memset(&pd, 0, sizeof(pd)); 7496 pd.pf_mtag = pf_find_mtag(m); 7497 7498 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_TAG_ROUTE_TO)) { 7499 pd.pf_mtag->flags &= ~PF_TAG_ROUTE_TO; 7500 7501 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7502 pd.pf_mtag->if_idxgen); 7503 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7504 PF_RULES_RUNLOCK(); 7505 m_freem(*m0); 7506 *m0 = NULL; 7507 return (PF_PASS); 7508 } 7509 PF_RULES_RUNLOCK(); 7510 nd6_output_ifp(ifp, ifp, m, 7511 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7512 *m0 = NULL; 7513 return (PF_PASS); 7514 } 7515 7516 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7517 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7518 pd.act.flags = pd.pf_mtag->dnflags; 7519 } 7520 7521 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7522 pd.pf_mtag->flags & PF_TAG_DUMMYNET) { 7523 pd.pf_mtag->flags &= ~PF_TAG_DUMMYNET; 7524 /* Dummynet re-injects packets after they've 7525 * completed their delay. We've already 7526 * processed them, so pass unconditionally. */ 7527 PF_RULES_RUNLOCK(); 7528 return (PF_PASS); 7529 } 7530 7531 /* We do IP header normalization and packet reassembly here */ 7532 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 7533 action = PF_DROP; 7534 goto done; 7535 } 7536 m = *m0; /* pf_normalize messes with m0 */ 7537 h = mtod(m, struct ip6_hdr *); 7538 7539 /* 7540 * we do not support jumbogram. if we keep going, zero ip6_plen 7541 * will do something bad, so drop the packet for now. 7542 */ 7543 if (htons(h->ip6_plen) == 0) { 7544 action = PF_DROP; 7545 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 7546 goto done; 7547 } 7548 7549 pd.src = (struct pf_addr *)&h->ip6_src; 7550 pd.dst = (struct pf_addr *)&h->ip6_dst; 7551 pd.sport = pd.dport = NULL; 7552 pd.ip_sum = NULL; 7553 pd.proto_sum = NULL; 7554 pd.dir = dir; 7555 pd.sidx = (dir == PF_IN) ? 0 : 1; 7556 pd.didx = (dir == PF_IN) ? 1 : 0; 7557 pd.af = AF_INET6; 7558 pd.tos = IPV6_DSCP(h); 7559 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 7560 7561 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 7562 pd.proto = h->ip6_nxt; 7563 do { 7564 switch (pd.proto) { 7565 case IPPROTO_FRAGMENT: 7566 action = pf_test_fragment(&r, dir, kif, m, h, 7567 &pd, &a, &ruleset); 7568 if (action == PF_DROP) 7569 REASON_SET(&reason, PFRES_FRAG); 7570 goto done; 7571 case IPPROTO_ROUTING: { 7572 struct ip6_rthdr rthdr; 7573 7574 if (rh_cnt++) { 7575 DPFPRINTF(PF_DEBUG_MISC, 7576 ("pf: IPv6 more than one rthdr\n")); 7577 action = PF_DROP; 7578 REASON_SET(&reason, PFRES_IPOPTIONS); 7579 log = 1; 7580 goto done; 7581 } 7582 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 7583 &reason, pd.af)) { 7584 DPFPRINTF(PF_DEBUG_MISC, 7585 ("pf: IPv6 short rthdr\n")); 7586 action = PF_DROP; 7587 REASON_SET(&reason, PFRES_SHORT); 7588 log = 1; 7589 goto done; 7590 } 7591 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 7592 DPFPRINTF(PF_DEBUG_MISC, 7593 ("pf: IPv6 rthdr0\n")); 7594 action = PF_DROP; 7595 REASON_SET(&reason, PFRES_IPOPTIONS); 7596 log = 1; 7597 goto done; 7598 } 7599 /* FALLTHROUGH */ 7600 } 7601 case IPPROTO_AH: 7602 case IPPROTO_HOPOPTS: 7603 case IPPROTO_DSTOPTS: { 7604 /* get next header and header length */ 7605 struct ip6_ext opt6; 7606 7607 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 7608 NULL, &reason, pd.af)) { 7609 DPFPRINTF(PF_DEBUG_MISC, 7610 ("pf: IPv6 short opt\n")); 7611 action = PF_DROP; 7612 log = 1; 7613 goto done; 7614 } 7615 if (pd.proto == IPPROTO_AH) 7616 off += (opt6.ip6e_len + 2) * 4; 7617 else 7618 off += (opt6.ip6e_len + 1) * 8; 7619 pd.proto = opt6.ip6e_nxt; 7620 /* goto the next header */ 7621 break; 7622 } 7623 default: 7624 terminal++; 7625 break; 7626 } 7627 } while (!terminal); 7628 7629 /* if there's no routing header, use unmodified mbuf for checksumming */ 7630 if (!n) 7631 n = m; 7632 7633 switch (pd.proto) { 7634 case IPPROTO_TCP: { 7635 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7636 &action, &reason, AF_INET6)) { 7637 log = action != PF_PASS; 7638 goto done; 7639 } 7640 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7641 pd.sport = &pd.hdr.tcp.th_sport; 7642 pd.dport = &pd.hdr.tcp.th_dport; 7643 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 7644 if (action == PF_DROP) 7645 goto done; 7646 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 7647 &reason); 7648 if (action == PF_PASS) { 7649 if (V_pfsync_update_state_ptr != NULL) 7650 V_pfsync_update_state_ptr(s); 7651 r = s->rule.ptr; 7652 a = s->anchor.ptr; 7653 log = s->log; 7654 } else if (s == NULL) 7655 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7656 &a, &ruleset, inp); 7657 break; 7658 } 7659 7660 case IPPROTO_UDP: { 7661 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7662 &action, &reason, AF_INET6)) { 7663 log = action != PF_PASS; 7664 goto done; 7665 } 7666 pd.sport = &pd.hdr.udp.uh_sport; 7667 pd.dport = &pd.hdr.udp.uh_dport; 7668 if (pd.hdr.udp.uh_dport == 0 || 7669 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7670 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7671 action = PF_DROP; 7672 REASON_SET(&reason, PFRES_SHORT); 7673 goto done; 7674 } 7675 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 7676 if (action == PF_PASS) { 7677 if (V_pfsync_update_state_ptr != NULL) 7678 V_pfsync_update_state_ptr(s); 7679 r = s->rule.ptr; 7680 a = s->anchor.ptr; 7681 log = s->log; 7682 } else if (s == NULL) 7683 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7684 &a, &ruleset, inp); 7685 break; 7686 } 7687 7688 case IPPROTO_ICMP: { 7689 action = PF_DROP; 7690 DPFPRINTF(PF_DEBUG_MISC, 7691 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 7692 goto done; 7693 } 7694 7695 case IPPROTO_ICMPV6: { 7696 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 7697 &action, &reason, AF_INET6)) { 7698 log = action != PF_PASS; 7699 goto done; 7700 } 7701 action = pf_test_state_icmp(&s, dir, kif, 7702 m, off, h, &pd, &reason); 7703 if (action == PF_PASS) { 7704 if (V_pfsync_update_state_ptr != NULL) 7705 V_pfsync_update_state_ptr(s); 7706 r = s->rule.ptr; 7707 a = s->anchor.ptr; 7708 log = s->log; 7709 } else if (s == NULL) 7710 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7711 &a, &ruleset, inp); 7712 break; 7713 } 7714 7715 default: 7716 action = pf_test_state_other(&s, dir, kif, m, &pd); 7717 if (action == PF_PASS) { 7718 if (V_pfsync_update_state_ptr != NULL) 7719 V_pfsync_update_state_ptr(s); 7720 r = s->rule.ptr; 7721 a = s->anchor.ptr; 7722 log = s->log; 7723 } else if (s == NULL) 7724 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 7725 &a, &ruleset, inp); 7726 break; 7727 } 7728 7729 done: 7730 PF_RULES_RUNLOCK(); 7731 if (n != m) { 7732 m_freem(n); 7733 n = NULL; 7734 } 7735 7736 /* handle dangerous IPv6 extension headers. */ 7737 if (action == PF_PASS && rh_cnt && 7738 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7739 action = PF_DROP; 7740 REASON_SET(&reason, PFRES_IPOPTIONS); 7741 log = r->log; 7742 DPFPRINTF(PF_DEBUG_MISC, 7743 ("pf: dropping packet with dangerous v6 headers\n")); 7744 } 7745 7746 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 7747 action = PF_DROP; 7748 REASON_SET(&reason, PFRES_MEMORY); 7749 } 7750 if (r->rtableid >= 0) 7751 M_SETFIB(m, r->rtableid); 7752 7753 if (r->scrub_flags & PFSTATE_SETPRIO) { 7754 if (pd.tos & IPTOS_LOWDELAY) 7755 pqid = 1; 7756 if (vlan_set_pcp(m, r->set_prio[pqid])) { 7757 action = PF_DROP; 7758 REASON_SET(&reason, PFRES_MEMORY); 7759 log = 1; 7760 DPFPRINTF(PF_DEBUG_MISC, 7761 ("pf: failed to allocate 802.1q mtag\n")); 7762 } 7763 } 7764 7765 #ifdef ALTQ 7766 if (s && s->qid) { 7767 pd.act.pqid = s->pqid; 7768 pd.act.qid = s->qid; 7769 } else if (r->qid) { 7770 pd.act.pqid = r->pqid; 7771 pd.act.qid = r->qid; 7772 } 7773 if (action == PF_PASS && pd.act.qid) { 7774 if (pd.pf_mtag == NULL && 7775 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7776 action = PF_DROP; 7777 REASON_SET(&reason, PFRES_MEMORY); 7778 } else { 7779 if (s != NULL) 7780 pd.pf_mtag->qid_hash = pf_state_hash(s); 7781 if (pd.tos & IPTOS_LOWDELAY) 7782 pd.pf_mtag->qid = pd.act.pqid; 7783 else 7784 pd.pf_mtag->qid = pd.act.qid; 7785 /* Add hints for ecn. */ 7786 pd.pf_mtag->hdr = h; 7787 } 7788 } 7789 #endif /* ALTQ */ 7790 7791 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7792 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7793 (s->nat_rule.ptr->action == PF_RDR || 7794 s->nat_rule.ptr->action == PF_BINAT) && 7795 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 7796 m->m_flags |= M_SKIP_FIREWALL; 7797 7798 /* XXX: Anybody working on it?! */ 7799 if (r->divert.port) 7800 printf("pf: divert(9) is not supported for IPv6\n"); 7801 7802 if (log) { 7803 struct pf_krule *lr; 7804 7805 if (s != NULL && s->nat_rule.ptr != NULL && 7806 s->nat_rule.ptr->log & PF_LOG_ALL) 7807 lr = s->nat_rule.ptr; 7808 else 7809 lr = r; 7810 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 7811 &pd, (s == NULL)); 7812 } 7813 7814 pf_counter_u64_critical_enter(); 7815 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 7816 pd.tot_len); 7817 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 7818 1); 7819 7820 if (action == PF_PASS || r->action == PF_DROP) { 7821 dirndx = (dir == PF_OUT); 7822 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7823 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7824 if (a != NULL) { 7825 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7826 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7827 } 7828 if (s != NULL) { 7829 if (s->nat_rule.ptr != NULL) { 7830 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7831 1); 7832 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7833 pd.tot_len); 7834 } 7835 if (s->src_node != NULL) { 7836 counter_u64_add(s->src_node->packets[dirndx], 7837 1); 7838 counter_u64_add(s->src_node->bytes[dirndx], 7839 pd.tot_len); 7840 } 7841 if (s->nat_src_node != NULL) { 7842 counter_u64_add(s->nat_src_node->packets[dirndx], 7843 1); 7844 counter_u64_add(s->nat_src_node->bytes[dirndx], 7845 pd.tot_len); 7846 } 7847 dirndx = (dir == s->direction) ? 0 : 1; 7848 s->packets[dirndx]++; 7849 s->bytes[dirndx] += pd.tot_len; 7850 } 7851 tr = r; 7852 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7853 if (nr != NULL && r == &V_pf_default_rule) 7854 tr = nr; 7855 if (tr->src.addr.type == PF_ADDR_TABLE) 7856 pfr_update_stats(tr->src.addr.p.tbl, 7857 (s == NULL) ? pd.src : 7858 &s->key[(s->direction == PF_IN)]->addr[0], 7859 pd.af, pd.tot_len, dir == PF_OUT, 7860 r->action == PF_PASS, tr->src.neg); 7861 if (tr->dst.addr.type == PF_ADDR_TABLE) 7862 pfr_update_stats(tr->dst.addr.p.tbl, 7863 (s == NULL) ? pd.dst : 7864 &s->key[(s->direction == PF_IN)]->addr[1], 7865 pd.af, pd.tot_len, dir == PF_OUT, 7866 r->action == PF_PASS, tr->dst.neg); 7867 } 7868 pf_counter_u64_critical_exit(); 7869 7870 switch (action) { 7871 case PF_SYNPROXY_DROP: 7872 m_freem(*m0); 7873 case PF_DEFER: 7874 *m0 = NULL; 7875 action = PF_PASS; 7876 break; 7877 case PF_DROP: 7878 m_freem(*m0); 7879 *m0 = NULL; 7880 break; 7881 default: 7882 /* pf_route6() returns unlocked. */ 7883 if (r->rt) { 7884 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 7885 return (action); 7886 } 7887 if (pf_dummynet(&pd, dir, s, r, m0) != 0) { 7888 action = PF_DROP; 7889 REASON_SET(&reason, PFRES_MEMORY); 7890 } 7891 break; 7892 } 7893 7894 if (s) 7895 PF_STATE_UNLOCK(s); 7896 7897 /* If reassembled packet passed, create new fragments. */ 7898 if (action == PF_PASS && *m0 && dir == PF_OUT && 7899 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 7900 action = pf_refragment6(ifp, m0, mtag); 7901 7902 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 7903 7904 return (action); 7905 } 7906 #endif /* INET6 */ 7907