1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <net/if.h> 66 #include <net/if_var.h> 67 #include <net/if_types.h> 68 #include <net/if_vlan_var.h> 69 #include <net/route.h> 70 #include <net/radix_mpath.h> 71 #include <net/vnet.h> 72 73 #include <net/pfil.h> 74 #include <net/pfvar.h> 75 #include <net/if_pflog.h> 76 #include <net/if_pfsync.h> 77 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_var.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/ip.h> 82 #include <netinet/ip_fw.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/tcp.h> 87 #include <netinet/tcp_fsm.h> 88 #include <netinet/tcp_seq.h> 89 #include <netinet/tcp_timer.h> 90 #include <netinet/tcp_var.h> 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 94 #include <netpfil/ipfw/ip_fw_private.h> /* XXX: only for DIR_IN/DIR_OUT */ 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #include <machine/in_cksum.h> 107 #include <security/mac/mac_framework.h> 108 109 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 110 111 /* 112 * Global variables 113 */ 114 115 /* state tables */ 116 VNET_DEFINE(struct pf_altqqueue, pf_altqs[2]); 117 VNET_DEFINE(struct pf_palist, pf_pabuf); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 120 VNET_DEFINE(struct pf_kstatus, pf_status); 121 122 VNET_DEFINE(u_int32_t, ticket_altqs_active); 123 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 124 VNET_DEFINE(int, altqs_inactive_open); 125 VNET_DEFINE(u_int32_t, ticket_pabuf); 126 127 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 128 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 129 VNET_DEFINE(u_char, pf_tcp_secret[16]); 130 #define V_pf_tcp_secret VNET(pf_tcp_secret) 131 VNET_DEFINE(int, pf_tcp_secret_init); 132 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 133 VNET_DEFINE(int, pf_tcp_iss_off); 134 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 135 VNET_DECLARE(int, pf_vnet_active); 136 #define V_pf_vnet_active VNET(pf_vnet_active) 137 138 static VNET_DEFINE(uint32_t, pf_purge_idx); 139 #define V_pf_purge_idx VNET(pf_purge_idx) 140 141 /* 142 * Queue for pf_intr() sends. 143 */ 144 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 145 struct pf_send_entry { 146 STAILQ_ENTRY(pf_send_entry) pfse_next; 147 struct mbuf *pfse_m; 148 enum { 149 PFSE_IP, 150 PFSE_IP6, 151 PFSE_ICMP, 152 PFSE_ICMP6, 153 } pfse_type; 154 struct { 155 int type; 156 int code; 157 int mtu; 158 } icmpopts; 159 }; 160 161 STAILQ_HEAD(pf_send_head, pf_send_entry); 162 static VNET_DEFINE(struct pf_send_head, pf_sendqueue); 163 #define V_pf_sendqueue VNET(pf_sendqueue) 164 165 static struct mtx pf_sendqueue_mtx; 166 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 167 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 168 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 169 170 /* 171 * Queue for pf_overload_task() tasks. 172 */ 173 struct pf_overload_entry { 174 SLIST_ENTRY(pf_overload_entry) next; 175 struct pf_addr addr; 176 sa_family_t af; 177 uint8_t dir; 178 struct pf_rule *rule; 179 }; 180 181 SLIST_HEAD(pf_overload_head, pf_overload_entry); 182 static VNET_DEFINE(struct pf_overload_head, pf_overloadqueue); 183 #define V_pf_overloadqueue VNET(pf_overloadqueue) 184 static VNET_DEFINE(struct task, pf_overloadtask); 185 #define V_pf_overloadtask VNET(pf_overloadtask) 186 187 static struct mtx pf_overloadqueue_mtx; 188 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 189 "pf overload/flush queue", MTX_DEF); 190 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 191 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 192 193 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 194 struct mtx pf_unlnkdrules_mtx; 195 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 196 MTX_DEF); 197 198 static VNET_DEFINE(uma_zone_t, pf_sources_z); 199 #define V_pf_sources_z VNET(pf_sources_z) 200 uma_zone_t pf_mtag_z; 201 VNET_DEFINE(uma_zone_t, pf_state_z); 202 VNET_DEFINE(uma_zone_t, pf_state_key_z); 203 204 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 205 #define PFID_CPUBITS 8 206 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 207 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 208 #define PFID_MAXID (~PFID_CPUMASK) 209 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 210 211 static void pf_src_tree_remove_state(struct pf_state *); 212 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 213 u_int32_t); 214 static void pf_add_threshold(struct pf_threshold *); 215 static int pf_check_threshold(struct pf_threshold *); 216 217 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 218 u_int16_t *, u_int16_t *, struct pf_addr *, 219 u_int16_t, u_int8_t, sa_family_t); 220 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 221 struct tcphdr *, struct pf_state_peer *); 222 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 223 struct pf_addr *, struct pf_addr *, u_int16_t, 224 u_int16_t *, u_int16_t *, u_int16_t *, 225 u_int16_t *, u_int8_t, sa_family_t); 226 static void pf_send_tcp(struct mbuf *, 227 const struct pf_rule *, sa_family_t, 228 const struct pf_addr *, const struct pf_addr *, 229 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 230 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 231 u_int16_t, struct ifnet *); 232 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 233 sa_family_t, struct pf_rule *); 234 static void pf_detach_state(struct pf_state *); 235 static int pf_state_key_attach(struct pf_state_key *, 236 struct pf_state_key *, struct pf_state *); 237 static void pf_state_key_detach(struct pf_state *, int); 238 static int pf_state_key_ctor(void *, int, void *, int); 239 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 240 static int pf_test_rule(struct pf_rule **, struct pf_state **, 241 int, struct pfi_kif *, struct mbuf *, int, 242 struct pf_pdesc *, struct pf_rule **, 243 struct pf_ruleset **, struct inpcb *); 244 static int pf_create_state(struct pf_rule *, struct pf_rule *, 245 struct pf_rule *, struct pf_pdesc *, 246 struct pf_src_node *, struct pf_state_key *, 247 struct pf_state_key *, struct mbuf *, int, 248 u_int16_t, u_int16_t, int *, struct pfi_kif *, 249 struct pf_state **, int, u_int16_t, u_int16_t, 250 int); 251 static int pf_test_fragment(struct pf_rule **, int, 252 struct pfi_kif *, struct mbuf *, void *, 253 struct pf_pdesc *, struct pf_rule **, 254 struct pf_ruleset **); 255 static int pf_tcp_track_full(struct pf_state_peer *, 256 struct pf_state_peer *, struct pf_state **, 257 struct pfi_kif *, struct mbuf *, int, 258 struct pf_pdesc *, u_short *, int *); 259 static int pf_tcp_track_sloppy(struct pf_state_peer *, 260 struct pf_state_peer *, struct pf_state **, 261 struct pf_pdesc *, u_short *); 262 static int pf_test_state_tcp(struct pf_state **, int, 263 struct pfi_kif *, struct mbuf *, int, 264 void *, struct pf_pdesc *, u_short *); 265 static int pf_test_state_udp(struct pf_state **, int, 266 struct pfi_kif *, struct mbuf *, int, 267 void *, struct pf_pdesc *); 268 static int pf_test_state_icmp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_other(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 273 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 274 sa_family_t); 275 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 276 sa_family_t); 277 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 278 int, u_int16_t); 279 static int pf_check_proto_cksum(struct mbuf *, int, int, 280 u_int8_t, sa_family_t); 281 static void pf_print_state_parts(struct pf_state *, 282 struct pf_state_key *, struct pf_state_key *); 283 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 284 struct pf_addr_wrap *); 285 static struct pf_state *pf_find_state(struct pfi_kif *, 286 struct pf_state_key_cmp *, u_int); 287 static int pf_src_connlimit(struct pf_state **); 288 static void pf_overload_task(void *v, int pending); 289 static int pf_insert_src_node(struct pf_src_node **, 290 struct pf_rule *, struct pf_addr *, sa_family_t); 291 static u_int pf_purge_expired_states(u_int, int); 292 static void pf_purge_unlinked_rules(void); 293 static int pf_mtag_uminit(void *, int, int); 294 static void pf_mtag_free(struct m_tag *); 295 #ifdef INET 296 static void pf_route(struct mbuf **, struct pf_rule *, int, 297 struct ifnet *, struct pf_state *, 298 struct pf_pdesc *); 299 #endif /* INET */ 300 #ifdef INET6 301 static void pf_change_a6(struct pf_addr *, u_int16_t *, 302 struct pf_addr *, u_int8_t); 303 static void pf_route6(struct mbuf **, struct pf_rule *, int, 304 struct ifnet *, struct pf_state *, 305 struct pf_pdesc *); 306 #endif /* INET6 */ 307 308 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 309 310 extern int pf_end_threads; 311 extern struct proc *pf_purge_proc; 312 313 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 314 315 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 316 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 317 318 #define STATE_LOOKUP(i, k, d, s, pd) \ 319 do { \ 320 (s) = pf_find_state((i), (k), (d)); \ 321 if ((s) == NULL) \ 322 return (PF_DROP); \ 323 if (PACKET_LOOPED(pd)) \ 324 return (PF_PASS); \ 325 if ((d) == PF_OUT && \ 326 (((s)->rule.ptr->rt == PF_ROUTETO && \ 327 (s)->rule.ptr->direction == PF_OUT) || \ 328 ((s)->rule.ptr->rt == PF_REPLYTO && \ 329 (s)->rule.ptr->direction == PF_IN)) && \ 330 (s)->rt_kif != NULL && \ 331 (s)->rt_kif != (i)) \ 332 return (PF_PASS); \ 333 } while (0) 334 335 #define BOUND_IFACE(r, k) \ 336 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 337 338 #define STATE_INC_COUNTERS(s) \ 339 do { \ 340 counter_u64_add(s->rule.ptr->states_cur, 1); \ 341 counter_u64_add(s->rule.ptr->states_tot, 1); \ 342 if (s->anchor.ptr != NULL) { \ 343 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 344 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 345 } \ 346 if (s->nat_rule.ptr != NULL) { \ 347 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 348 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 349 } \ 350 } while (0) 351 352 #define STATE_DEC_COUNTERS(s) \ 353 do { \ 354 if (s->nat_rule.ptr != NULL) \ 355 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 356 if (s->anchor.ptr != NULL) \ 357 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 358 counter_u64_add(s->rule.ptr->states_cur, -1); \ 359 } while (0) 360 361 static MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 362 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 363 VNET_DEFINE(struct pf_idhash *, pf_idhash); 364 VNET_DEFINE(struct pf_srchash *, pf_srchash); 365 366 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 367 368 u_long pf_hashmask; 369 u_long pf_srchashmask; 370 static u_long pf_hashsize; 371 static u_long pf_srchashsize; 372 u_long pf_ioctl_maxcount = 65535; 373 374 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 375 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 376 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 377 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 378 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 379 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 380 381 VNET_DEFINE(void *, pf_swi_cookie); 382 383 VNET_DEFINE(uint32_t, pf_hashseed); 384 #define V_pf_hashseed VNET(pf_hashseed) 385 386 int 387 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 388 { 389 390 switch (af) { 391 #ifdef INET 392 case AF_INET: 393 if (a->addr32[0] > b->addr32[0]) 394 return (1); 395 if (a->addr32[0] < b->addr32[0]) 396 return (-1); 397 break; 398 #endif /* INET */ 399 #ifdef INET6 400 case AF_INET6: 401 if (a->addr32[3] > b->addr32[3]) 402 return (1); 403 if (a->addr32[3] < b->addr32[3]) 404 return (-1); 405 if (a->addr32[2] > b->addr32[2]) 406 return (1); 407 if (a->addr32[2] < b->addr32[2]) 408 return (-1); 409 if (a->addr32[1] > b->addr32[1]) 410 return (1); 411 if (a->addr32[1] < b->addr32[1]) 412 return (-1); 413 if (a->addr32[0] > b->addr32[0]) 414 return (1); 415 if (a->addr32[0] < b->addr32[0]) 416 return (-1); 417 break; 418 #endif /* INET6 */ 419 default: 420 panic("%s: unknown address family %u", __func__, af); 421 } 422 return (0); 423 } 424 425 static __inline uint32_t 426 pf_hashkey(struct pf_state_key *sk) 427 { 428 uint32_t h; 429 430 h = murmur3_32_hash32((uint32_t *)sk, 431 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 432 V_pf_hashseed); 433 434 return (h & pf_hashmask); 435 } 436 437 static __inline uint32_t 438 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 439 { 440 uint32_t h; 441 442 switch (af) { 443 case AF_INET: 444 h = murmur3_32_hash32((uint32_t *)&addr->v4, 445 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 446 break; 447 case AF_INET6: 448 h = murmur3_32_hash32((uint32_t *)&addr->v6, 449 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 450 break; 451 default: 452 panic("%s: unknown address family %u", __func__, af); 453 } 454 455 return (h & pf_srchashmask); 456 } 457 458 #ifdef ALTQ 459 static int 460 pf_state_hash(struct pf_state *s) 461 { 462 u_int32_t hv = (intptr_t)s / sizeof(*s); 463 464 hv ^= crc32(&s->src, sizeof(s->src)); 465 hv ^= crc32(&s->dst, sizeof(s->dst)); 466 if (hv == 0) 467 hv = 1; 468 return (hv); 469 } 470 #endif 471 472 #ifdef INET6 473 void 474 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 475 { 476 switch (af) { 477 #ifdef INET 478 case AF_INET: 479 dst->addr32[0] = src->addr32[0]; 480 break; 481 #endif /* INET */ 482 case AF_INET6: 483 dst->addr32[0] = src->addr32[0]; 484 dst->addr32[1] = src->addr32[1]; 485 dst->addr32[2] = src->addr32[2]; 486 dst->addr32[3] = src->addr32[3]; 487 break; 488 } 489 } 490 #endif /* INET6 */ 491 492 static void 493 pf_init_threshold(struct pf_threshold *threshold, 494 u_int32_t limit, u_int32_t seconds) 495 { 496 threshold->limit = limit * PF_THRESHOLD_MULT; 497 threshold->seconds = seconds; 498 threshold->count = 0; 499 threshold->last = time_uptime; 500 } 501 502 static void 503 pf_add_threshold(struct pf_threshold *threshold) 504 { 505 u_int32_t t = time_uptime, diff = t - threshold->last; 506 507 if (diff >= threshold->seconds) 508 threshold->count = 0; 509 else 510 threshold->count -= threshold->count * diff / 511 threshold->seconds; 512 threshold->count += PF_THRESHOLD_MULT; 513 threshold->last = t; 514 } 515 516 static int 517 pf_check_threshold(struct pf_threshold *threshold) 518 { 519 return (threshold->count > threshold->limit); 520 } 521 522 static int 523 pf_src_connlimit(struct pf_state **state) 524 { 525 struct pf_overload_entry *pfoe; 526 int bad = 0; 527 528 PF_STATE_LOCK_ASSERT(*state); 529 530 (*state)->src_node->conn++; 531 (*state)->src.tcp_est = 1; 532 pf_add_threshold(&(*state)->src_node->conn_rate); 533 534 if ((*state)->rule.ptr->max_src_conn && 535 (*state)->rule.ptr->max_src_conn < 536 (*state)->src_node->conn) { 537 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 538 bad++; 539 } 540 541 if ((*state)->rule.ptr->max_src_conn_rate.limit && 542 pf_check_threshold(&(*state)->src_node->conn_rate)) { 543 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 544 bad++; 545 } 546 547 if (!bad) 548 return (0); 549 550 /* Kill this state. */ 551 (*state)->timeout = PFTM_PURGE; 552 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 553 554 if ((*state)->rule.ptr->overload_tbl == NULL) 555 return (1); 556 557 /* Schedule overloading and flushing task. */ 558 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 559 if (pfoe == NULL) 560 return (1); /* too bad :( */ 561 562 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 563 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 564 pfoe->rule = (*state)->rule.ptr; 565 pfoe->dir = (*state)->direction; 566 PF_OVERLOADQ_LOCK(); 567 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 568 PF_OVERLOADQ_UNLOCK(); 569 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 570 571 return (1); 572 } 573 574 static void 575 pf_overload_task(void *v, int pending) 576 { 577 struct pf_overload_head queue; 578 struct pfr_addr p; 579 struct pf_overload_entry *pfoe, *pfoe1; 580 uint32_t killed = 0; 581 582 CURVNET_SET((struct vnet *)v); 583 584 PF_OVERLOADQ_LOCK(); 585 queue = V_pf_overloadqueue; 586 SLIST_INIT(&V_pf_overloadqueue); 587 PF_OVERLOADQ_UNLOCK(); 588 589 bzero(&p, sizeof(p)); 590 SLIST_FOREACH(pfoe, &queue, next) { 591 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 592 if (V_pf_status.debug >= PF_DEBUG_MISC) { 593 printf("%s: blocking address ", __func__); 594 pf_print_host(&pfoe->addr, 0, pfoe->af); 595 printf("\n"); 596 } 597 598 p.pfra_af = pfoe->af; 599 switch (pfoe->af) { 600 #ifdef INET 601 case AF_INET: 602 p.pfra_net = 32; 603 p.pfra_ip4addr = pfoe->addr.v4; 604 break; 605 #endif 606 #ifdef INET6 607 case AF_INET6: 608 p.pfra_net = 128; 609 p.pfra_ip6addr = pfoe->addr.v6; 610 break; 611 #endif 612 } 613 614 PF_RULES_WLOCK(); 615 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 616 PF_RULES_WUNLOCK(); 617 } 618 619 /* 620 * Remove those entries, that don't need flushing. 621 */ 622 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 623 if (pfoe->rule->flush == 0) { 624 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 625 free(pfoe, M_PFTEMP); 626 } else 627 counter_u64_add( 628 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 629 630 /* If nothing to flush, return. */ 631 if (SLIST_EMPTY(&queue)) { 632 CURVNET_RESTORE(); 633 return; 634 } 635 636 for (int i = 0; i <= pf_hashmask; i++) { 637 struct pf_idhash *ih = &V_pf_idhash[i]; 638 struct pf_state_key *sk; 639 struct pf_state *s; 640 641 PF_HASHROW_LOCK(ih); 642 LIST_FOREACH(s, &ih->states, entry) { 643 sk = s->key[PF_SK_WIRE]; 644 SLIST_FOREACH(pfoe, &queue, next) 645 if (sk->af == pfoe->af && 646 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 647 pfoe->rule == s->rule.ptr) && 648 ((pfoe->dir == PF_OUT && 649 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 650 (pfoe->dir == PF_IN && 651 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 652 s->timeout = PFTM_PURGE; 653 s->src.state = s->dst.state = TCPS_CLOSED; 654 killed++; 655 } 656 } 657 PF_HASHROW_UNLOCK(ih); 658 } 659 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 660 free(pfoe, M_PFTEMP); 661 if (V_pf_status.debug >= PF_DEBUG_MISC) 662 printf("%s: %u states killed", __func__, killed); 663 664 CURVNET_RESTORE(); 665 } 666 667 /* 668 * Can return locked on failure, so that we can consistently 669 * allocate and insert a new one. 670 */ 671 struct pf_src_node * 672 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 673 int returnlocked) 674 { 675 struct pf_srchash *sh; 676 struct pf_src_node *n; 677 678 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 679 680 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 681 PF_HASHROW_LOCK(sh); 682 LIST_FOREACH(n, &sh->nodes, entry) 683 if (n->rule.ptr == rule && n->af == af && 684 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 685 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 686 break; 687 if (n != NULL) { 688 n->states++; 689 PF_HASHROW_UNLOCK(sh); 690 } else if (returnlocked == 0) 691 PF_HASHROW_UNLOCK(sh); 692 693 return (n); 694 } 695 696 static int 697 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 698 struct pf_addr *src, sa_family_t af) 699 { 700 701 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 702 rule->rpool.opts & PF_POOL_STICKYADDR), 703 ("%s for non-tracking rule %p", __func__, rule)); 704 705 if (*sn == NULL) 706 *sn = pf_find_src_node(src, rule, af, 1); 707 708 if (*sn == NULL) { 709 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 710 711 PF_HASHROW_ASSERT(sh); 712 713 if (!rule->max_src_nodes || 714 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 715 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 716 else 717 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 718 1); 719 if ((*sn) == NULL) { 720 PF_HASHROW_UNLOCK(sh); 721 return (-1); 722 } 723 724 pf_init_threshold(&(*sn)->conn_rate, 725 rule->max_src_conn_rate.limit, 726 rule->max_src_conn_rate.seconds); 727 728 (*sn)->af = af; 729 (*sn)->rule.ptr = rule; 730 PF_ACPY(&(*sn)->addr, src, af); 731 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 732 (*sn)->creation = time_uptime; 733 (*sn)->ruletype = rule->action; 734 (*sn)->states = 1; 735 if ((*sn)->rule.ptr != NULL) 736 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 737 PF_HASHROW_UNLOCK(sh); 738 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 739 } else { 740 if (rule->max_src_states && 741 (*sn)->states >= rule->max_src_states) { 742 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 743 1); 744 return (-1); 745 } 746 } 747 return (0); 748 } 749 750 void 751 pf_unlink_src_node(struct pf_src_node *src) 752 { 753 754 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 755 LIST_REMOVE(src, entry); 756 if (src->rule.ptr) 757 counter_u64_add(src->rule.ptr->src_nodes, -1); 758 } 759 760 u_int 761 pf_free_src_nodes(struct pf_src_node_list *head) 762 { 763 struct pf_src_node *sn, *tmp; 764 u_int count = 0; 765 766 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 767 uma_zfree(V_pf_sources_z, sn); 768 count++; 769 } 770 771 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 772 773 return (count); 774 } 775 776 void 777 pf_mtag_initialize() 778 { 779 780 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 781 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 782 UMA_ALIGN_PTR, 0); 783 } 784 785 /* Per-vnet data storage structures initialization. */ 786 void 787 pf_initialize() 788 { 789 struct pf_keyhash *kh; 790 struct pf_idhash *ih; 791 struct pf_srchash *sh; 792 u_int i; 793 794 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 795 pf_hashsize = PF_HASHSIZ; 796 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 797 pf_srchashsize = PF_SRCHASHSIZ; 798 799 V_pf_hashseed = arc4random(); 800 801 /* States and state keys storage. */ 802 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 803 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 804 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 805 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 806 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 807 808 V_pf_state_key_z = uma_zcreate("pf state keys", 809 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 810 UMA_ALIGN_PTR, 0); 811 812 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 813 M_PFHASH, M_NOWAIT | M_ZERO); 814 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 815 M_PFHASH, M_NOWAIT | M_ZERO); 816 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 817 printf("pf: Unable to allocate memory for " 818 "state_hashsize %lu.\n", pf_hashsize); 819 820 free(V_pf_keyhash, M_PFHASH); 821 free(V_pf_idhash, M_PFHASH); 822 823 pf_hashsize = PF_HASHSIZ; 824 V_pf_keyhash = mallocarray(pf_hashsize, 825 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 826 V_pf_idhash = mallocarray(pf_hashsize, 827 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 828 } 829 830 pf_hashmask = pf_hashsize - 1; 831 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 832 i++, kh++, ih++) { 833 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 834 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 835 } 836 837 /* Source nodes. */ 838 V_pf_sources_z = uma_zcreate("pf source nodes", 839 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 840 0); 841 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 842 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 843 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 844 845 V_pf_srchash = mallocarray(pf_srchashsize, 846 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 847 if (V_pf_srchash == NULL) { 848 printf("pf: Unable to allocate memory for " 849 "source_hashsize %lu.\n", pf_srchashsize); 850 851 pf_srchashsize = PF_SRCHASHSIZ; 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 854 } 855 856 pf_srchashmask = pf_srchashsize - 1; 857 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 858 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 859 860 /* ALTQ */ 861 TAILQ_INIT(&V_pf_altqs[0]); 862 TAILQ_INIT(&V_pf_altqs[1]); 863 TAILQ_INIT(&V_pf_pabuf); 864 V_pf_altqs_active = &V_pf_altqs[0]; 865 V_pf_altqs_inactive = &V_pf_altqs[1]; 866 867 /* Send & overload+flush queues. */ 868 STAILQ_INIT(&V_pf_sendqueue); 869 SLIST_INIT(&V_pf_overloadqueue); 870 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 871 872 /* Unlinked, but may be referenced rules. */ 873 TAILQ_INIT(&V_pf_unlinked_rules); 874 } 875 876 void 877 pf_mtag_cleanup() 878 { 879 880 uma_zdestroy(pf_mtag_z); 881 } 882 883 void 884 pf_cleanup() 885 { 886 struct pf_keyhash *kh; 887 struct pf_idhash *ih; 888 struct pf_srchash *sh; 889 struct pf_send_entry *pfse, *next; 890 u_int i; 891 892 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 893 i++, kh++, ih++) { 894 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 895 __func__)); 896 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 897 __func__)); 898 mtx_destroy(&kh->lock); 899 mtx_destroy(&ih->lock); 900 } 901 free(V_pf_keyhash, M_PFHASH); 902 free(V_pf_idhash, M_PFHASH); 903 904 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 905 KASSERT(LIST_EMPTY(&sh->nodes), 906 ("%s: source node hash not empty", __func__)); 907 mtx_destroy(&sh->lock); 908 } 909 free(V_pf_srchash, M_PFHASH); 910 911 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 912 m_freem(pfse->pfse_m); 913 free(pfse, M_PFTEMP); 914 } 915 916 uma_zdestroy(V_pf_sources_z); 917 uma_zdestroy(V_pf_state_z); 918 uma_zdestroy(V_pf_state_key_z); 919 } 920 921 static int 922 pf_mtag_uminit(void *mem, int size, int how) 923 { 924 struct m_tag *t; 925 926 t = (struct m_tag *)mem; 927 t->m_tag_cookie = MTAG_ABI_COMPAT; 928 t->m_tag_id = PACKET_TAG_PF; 929 t->m_tag_len = sizeof(struct pf_mtag); 930 t->m_tag_free = pf_mtag_free; 931 932 return (0); 933 } 934 935 static void 936 pf_mtag_free(struct m_tag *t) 937 { 938 939 uma_zfree(pf_mtag_z, t); 940 } 941 942 struct pf_mtag * 943 pf_get_mtag(struct mbuf *m) 944 { 945 struct m_tag *mtag; 946 947 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 948 return ((struct pf_mtag *)(mtag + 1)); 949 950 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 951 if (mtag == NULL) 952 return (NULL); 953 bzero(mtag + 1, sizeof(struct pf_mtag)); 954 m_tag_prepend(m, mtag); 955 956 return ((struct pf_mtag *)(mtag + 1)); 957 } 958 959 static int 960 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 961 struct pf_state *s) 962 { 963 struct pf_keyhash *khs, *khw, *kh; 964 struct pf_state_key *sk, *cur; 965 struct pf_state *si, *olds = NULL; 966 int idx; 967 968 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 969 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 970 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 971 972 /* 973 * We need to lock hash slots of both keys. To avoid deadlock 974 * we always lock the slot with lower address first. Unlock order 975 * isn't important. 976 * 977 * We also need to lock ID hash slot before dropping key 978 * locks. On success we return with ID hash slot locked. 979 */ 980 981 if (skw == sks) { 982 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 983 PF_HASHROW_LOCK(khs); 984 } else { 985 khs = &V_pf_keyhash[pf_hashkey(sks)]; 986 khw = &V_pf_keyhash[pf_hashkey(skw)]; 987 if (khs == khw) { 988 PF_HASHROW_LOCK(khs); 989 } else if (khs < khw) { 990 PF_HASHROW_LOCK(khs); 991 PF_HASHROW_LOCK(khw); 992 } else { 993 PF_HASHROW_LOCK(khw); 994 PF_HASHROW_LOCK(khs); 995 } 996 } 997 998 #define KEYS_UNLOCK() do { \ 999 if (khs != khw) { \ 1000 PF_HASHROW_UNLOCK(khs); \ 1001 PF_HASHROW_UNLOCK(khw); \ 1002 } else \ 1003 PF_HASHROW_UNLOCK(khs); \ 1004 } while (0) 1005 1006 /* 1007 * First run: start with wire key. 1008 */ 1009 sk = skw; 1010 kh = khw; 1011 idx = PF_SK_WIRE; 1012 1013 keyattach: 1014 LIST_FOREACH(cur, &kh->keys, entry) 1015 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1016 break; 1017 1018 if (cur != NULL) { 1019 /* Key exists. Check for same kif, if none, add to key. */ 1020 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1021 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1022 1023 PF_HASHROW_LOCK(ih); 1024 if (si->kif == s->kif && 1025 si->direction == s->direction) { 1026 if (sk->proto == IPPROTO_TCP && 1027 si->src.state >= TCPS_FIN_WAIT_2 && 1028 si->dst.state >= TCPS_FIN_WAIT_2) { 1029 /* 1030 * New state matches an old >FIN_WAIT_2 1031 * state. We can't drop key hash locks, 1032 * thus we can't unlink it properly. 1033 * 1034 * As a workaround we drop it into 1035 * TCPS_CLOSED state, schedule purge 1036 * ASAP and push it into the very end 1037 * of the slot TAILQ, so that it won't 1038 * conflict with our new state. 1039 */ 1040 si->src.state = si->dst.state = 1041 TCPS_CLOSED; 1042 si->timeout = PFTM_PURGE; 1043 olds = si; 1044 } else { 1045 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1046 printf("pf: %s key attach " 1047 "failed on %s: ", 1048 (idx == PF_SK_WIRE) ? 1049 "wire" : "stack", 1050 s->kif->pfik_name); 1051 pf_print_state_parts(s, 1052 (idx == PF_SK_WIRE) ? 1053 sk : NULL, 1054 (idx == PF_SK_STACK) ? 1055 sk : NULL); 1056 printf(", existing: "); 1057 pf_print_state_parts(si, 1058 (idx == PF_SK_WIRE) ? 1059 sk : NULL, 1060 (idx == PF_SK_STACK) ? 1061 sk : NULL); 1062 printf("\n"); 1063 } 1064 PF_HASHROW_UNLOCK(ih); 1065 KEYS_UNLOCK(); 1066 uma_zfree(V_pf_state_key_z, sk); 1067 if (idx == PF_SK_STACK) 1068 pf_detach_state(s); 1069 return (EEXIST); /* collision! */ 1070 } 1071 } 1072 PF_HASHROW_UNLOCK(ih); 1073 } 1074 uma_zfree(V_pf_state_key_z, sk); 1075 s->key[idx] = cur; 1076 } else { 1077 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1078 s->key[idx] = sk; 1079 } 1080 1081 stateattach: 1082 /* List is sorted, if-bound states before floating. */ 1083 if (s->kif == V_pfi_all) 1084 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1085 else 1086 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1087 1088 if (olds) { 1089 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1090 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1091 key_list[idx]); 1092 olds = NULL; 1093 } 1094 1095 /* 1096 * Attach done. See how should we (or should not?) 1097 * attach a second key. 1098 */ 1099 if (sks == skw) { 1100 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1101 idx = PF_SK_STACK; 1102 sks = NULL; 1103 goto stateattach; 1104 } else if (sks != NULL) { 1105 /* 1106 * Continue attaching with stack key. 1107 */ 1108 sk = sks; 1109 kh = khs; 1110 idx = PF_SK_STACK; 1111 sks = NULL; 1112 goto keyattach; 1113 } 1114 1115 PF_STATE_LOCK(s); 1116 KEYS_UNLOCK(); 1117 1118 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1119 ("%s failure", __func__)); 1120 1121 return (0); 1122 #undef KEYS_UNLOCK 1123 } 1124 1125 static void 1126 pf_detach_state(struct pf_state *s) 1127 { 1128 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1129 struct pf_keyhash *kh; 1130 1131 if (sks != NULL) { 1132 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1133 PF_HASHROW_LOCK(kh); 1134 if (s->key[PF_SK_STACK] != NULL) 1135 pf_state_key_detach(s, PF_SK_STACK); 1136 /* 1137 * If both point to same key, then we are done. 1138 */ 1139 if (sks == s->key[PF_SK_WIRE]) { 1140 pf_state_key_detach(s, PF_SK_WIRE); 1141 PF_HASHROW_UNLOCK(kh); 1142 return; 1143 } 1144 PF_HASHROW_UNLOCK(kh); 1145 } 1146 1147 if (s->key[PF_SK_WIRE] != NULL) { 1148 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1149 PF_HASHROW_LOCK(kh); 1150 if (s->key[PF_SK_WIRE] != NULL) 1151 pf_state_key_detach(s, PF_SK_WIRE); 1152 PF_HASHROW_UNLOCK(kh); 1153 } 1154 } 1155 1156 static void 1157 pf_state_key_detach(struct pf_state *s, int idx) 1158 { 1159 struct pf_state_key *sk = s->key[idx]; 1160 #ifdef INVARIANTS 1161 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1162 1163 PF_HASHROW_ASSERT(kh); 1164 #endif 1165 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1166 s->key[idx] = NULL; 1167 1168 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1169 LIST_REMOVE(sk, entry); 1170 uma_zfree(V_pf_state_key_z, sk); 1171 } 1172 } 1173 1174 static int 1175 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1176 { 1177 struct pf_state_key *sk = mem; 1178 1179 bzero(sk, sizeof(struct pf_state_key_cmp)); 1180 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1181 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1182 1183 return (0); 1184 } 1185 1186 struct pf_state_key * 1187 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1188 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1189 { 1190 struct pf_state_key *sk; 1191 1192 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1193 if (sk == NULL) 1194 return (NULL); 1195 1196 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1197 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1198 sk->port[pd->sidx] = sport; 1199 sk->port[pd->didx] = dport; 1200 sk->proto = pd->proto; 1201 sk->af = pd->af; 1202 1203 return (sk); 1204 } 1205 1206 struct pf_state_key * 1207 pf_state_key_clone(struct pf_state_key *orig) 1208 { 1209 struct pf_state_key *sk; 1210 1211 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1212 if (sk == NULL) 1213 return (NULL); 1214 1215 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1216 1217 return (sk); 1218 } 1219 1220 int 1221 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1222 struct pf_state_key *sks, struct pf_state *s) 1223 { 1224 struct pf_idhash *ih; 1225 struct pf_state *cur; 1226 int error; 1227 1228 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1229 ("%s: sks not pristine", __func__)); 1230 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1231 ("%s: skw not pristine", __func__)); 1232 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1233 1234 s->kif = kif; 1235 1236 if (s->id == 0 && s->creatorid == 0) { 1237 /* XXX: should be atomic, but probability of collision low */ 1238 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1239 V_pf_stateid[curcpu] = 1; 1240 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1241 s->id = htobe64(s->id); 1242 s->creatorid = V_pf_status.hostid; 1243 } 1244 1245 /* Returns with ID locked on success. */ 1246 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1247 return (error); 1248 1249 ih = &V_pf_idhash[PF_IDHASH(s)]; 1250 PF_HASHROW_ASSERT(ih); 1251 LIST_FOREACH(cur, &ih->states, entry) 1252 if (cur->id == s->id && cur->creatorid == s->creatorid) 1253 break; 1254 1255 if (cur != NULL) { 1256 PF_HASHROW_UNLOCK(ih); 1257 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1258 printf("pf: state ID collision: " 1259 "id: %016llx creatorid: %08x\n", 1260 (unsigned long long)be64toh(s->id), 1261 ntohl(s->creatorid)); 1262 } 1263 pf_detach_state(s); 1264 return (EEXIST); 1265 } 1266 LIST_INSERT_HEAD(&ih->states, s, entry); 1267 /* One for keys, one for ID hash. */ 1268 refcount_init(&s->refs, 2); 1269 1270 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1271 if (pfsync_insert_state_ptr != NULL) 1272 pfsync_insert_state_ptr(s); 1273 1274 /* Returns locked. */ 1275 return (0); 1276 } 1277 1278 /* 1279 * Find state by ID: returns with locked row on success. 1280 */ 1281 struct pf_state * 1282 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1283 { 1284 struct pf_idhash *ih; 1285 struct pf_state *s; 1286 1287 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1288 1289 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1290 1291 PF_HASHROW_LOCK(ih); 1292 LIST_FOREACH(s, &ih->states, entry) 1293 if (s->id == id && s->creatorid == creatorid) 1294 break; 1295 1296 if (s == NULL) 1297 PF_HASHROW_UNLOCK(ih); 1298 1299 return (s); 1300 } 1301 1302 /* 1303 * Find state by key. 1304 * Returns with ID hash slot locked on success. 1305 */ 1306 static struct pf_state * 1307 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1308 { 1309 struct pf_keyhash *kh; 1310 struct pf_state_key *sk; 1311 struct pf_state *s; 1312 int idx; 1313 1314 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1315 1316 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1317 1318 PF_HASHROW_LOCK(kh); 1319 LIST_FOREACH(sk, &kh->keys, entry) 1320 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1321 break; 1322 if (sk == NULL) { 1323 PF_HASHROW_UNLOCK(kh); 1324 return (NULL); 1325 } 1326 1327 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1328 1329 /* List is sorted, if-bound states before floating ones. */ 1330 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1331 if (s->kif == V_pfi_all || s->kif == kif) { 1332 PF_STATE_LOCK(s); 1333 PF_HASHROW_UNLOCK(kh); 1334 if (s->timeout >= PFTM_MAX) { 1335 /* 1336 * State is either being processed by 1337 * pf_unlink_state() in an other thread, or 1338 * is scheduled for immediate expiry. 1339 */ 1340 PF_STATE_UNLOCK(s); 1341 return (NULL); 1342 } 1343 return (s); 1344 } 1345 PF_HASHROW_UNLOCK(kh); 1346 1347 return (NULL); 1348 } 1349 1350 struct pf_state * 1351 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1352 { 1353 struct pf_keyhash *kh; 1354 struct pf_state_key *sk; 1355 struct pf_state *s, *ret = NULL; 1356 int idx, inout = 0; 1357 1358 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1359 1360 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1361 1362 PF_HASHROW_LOCK(kh); 1363 LIST_FOREACH(sk, &kh->keys, entry) 1364 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1365 break; 1366 if (sk == NULL) { 1367 PF_HASHROW_UNLOCK(kh); 1368 return (NULL); 1369 } 1370 switch (dir) { 1371 case PF_IN: 1372 idx = PF_SK_WIRE; 1373 break; 1374 case PF_OUT: 1375 idx = PF_SK_STACK; 1376 break; 1377 case PF_INOUT: 1378 idx = PF_SK_WIRE; 1379 inout = 1; 1380 break; 1381 default: 1382 panic("%s: dir %u", __func__, dir); 1383 } 1384 second_run: 1385 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1386 if (more == NULL) { 1387 PF_HASHROW_UNLOCK(kh); 1388 return (s); 1389 } 1390 1391 if (ret) 1392 (*more)++; 1393 else 1394 ret = s; 1395 } 1396 if (inout == 1) { 1397 inout = 0; 1398 idx = PF_SK_STACK; 1399 goto second_run; 1400 } 1401 PF_HASHROW_UNLOCK(kh); 1402 1403 return (ret); 1404 } 1405 1406 /* END state table stuff */ 1407 1408 static void 1409 pf_send(struct pf_send_entry *pfse) 1410 { 1411 1412 PF_SENDQ_LOCK(); 1413 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1414 PF_SENDQ_UNLOCK(); 1415 swi_sched(V_pf_swi_cookie, 0); 1416 } 1417 1418 void 1419 pf_intr(void *v) 1420 { 1421 struct pf_send_head queue; 1422 struct pf_send_entry *pfse, *next; 1423 1424 CURVNET_SET((struct vnet *)v); 1425 1426 PF_SENDQ_LOCK(); 1427 queue = V_pf_sendqueue; 1428 STAILQ_INIT(&V_pf_sendqueue); 1429 PF_SENDQ_UNLOCK(); 1430 1431 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1432 switch (pfse->pfse_type) { 1433 #ifdef INET 1434 case PFSE_IP: 1435 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1436 break; 1437 case PFSE_ICMP: 1438 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1439 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1440 break; 1441 #endif /* INET */ 1442 #ifdef INET6 1443 case PFSE_IP6: 1444 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1445 NULL); 1446 break; 1447 case PFSE_ICMP6: 1448 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1449 pfse->icmpopts.code, pfse->icmpopts.mtu); 1450 break; 1451 #endif /* INET6 */ 1452 default: 1453 panic("%s: unknown type", __func__); 1454 } 1455 free(pfse, M_PFTEMP); 1456 } 1457 CURVNET_RESTORE(); 1458 } 1459 1460 void 1461 pf_purge_thread(void *unused __unused) 1462 { 1463 VNET_ITERATOR_DECL(vnet_iter); 1464 1465 sx_xlock(&pf_end_lock); 1466 while (pf_end_threads == 0) { 1467 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1468 1469 VNET_LIST_RLOCK(); 1470 VNET_FOREACH(vnet_iter) { 1471 CURVNET_SET(vnet_iter); 1472 1473 1474 /* Wait until V_pf_default_rule is initialized. */ 1475 if (V_pf_vnet_active == 0) { 1476 CURVNET_RESTORE(); 1477 continue; 1478 } 1479 1480 /* 1481 * Process 1/interval fraction of the state 1482 * table every run. 1483 */ 1484 V_pf_purge_idx = 1485 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1486 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1487 1488 /* 1489 * Purge other expired types every 1490 * PFTM_INTERVAL seconds. 1491 */ 1492 if (V_pf_purge_idx == 0) { 1493 /* 1494 * Order is important: 1495 * - states and src nodes reference rules 1496 * - states and rules reference kifs 1497 */ 1498 pf_purge_expired_fragments(); 1499 pf_purge_expired_src_nodes(); 1500 pf_purge_unlinked_rules(); 1501 pfi_kif_purge(); 1502 } 1503 CURVNET_RESTORE(); 1504 } 1505 VNET_LIST_RUNLOCK(); 1506 } 1507 1508 pf_end_threads++; 1509 sx_xunlock(&pf_end_lock); 1510 kproc_exit(0); 1511 } 1512 1513 void 1514 pf_unload_vnet_purge(void) 1515 { 1516 1517 /* 1518 * To cleanse up all kifs and rules we need 1519 * two runs: first one clears reference flags, 1520 * then pf_purge_expired_states() doesn't 1521 * raise them, and then second run frees. 1522 */ 1523 pf_purge_unlinked_rules(); 1524 pfi_kif_purge(); 1525 1526 /* 1527 * Now purge everything. 1528 */ 1529 pf_purge_expired_states(0, pf_hashmask); 1530 pf_purge_fragments(UINT_MAX); 1531 pf_purge_expired_src_nodes(); 1532 1533 /* 1534 * Now all kifs & rules should be unreferenced, 1535 * thus should be successfully freed. 1536 */ 1537 pf_purge_unlinked_rules(); 1538 pfi_kif_purge(); 1539 } 1540 1541 1542 u_int32_t 1543 pf_state_expires(const struct pf_state *state) 1544 { 1545 u_int32_t timeout; 1546 u_int32_t start; 1547 u_int32_t end; 1548 u_int32_t states; 1549 1550 /* handle all PFTM_* > PFTM_MAX here */ 1551 if (state->timeout == PFTM_PURGE) 1552 return (time_uptime); 1553 KASSERT(state->timeout != PFTM_UNLINKED, 1554 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1555 KASSERT((state->timeout < PFTM_MAX), 1556 ("pf_state_expires: timeout > PFTM_MAX")); 1557 timeout = state->rule.ptr->timeout[state->timeout]; 1558 if (!timeout) 1559 timeout = V_pf_default_rule.timeout[state->timeout]; 1560 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1561 if (start) { 1562 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1563 states = counter_u64_fetch(state->rule.ptr->states_cur); 1564 } else { 1565 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1566 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1567 states = V_pf_status.states; 1568 } 1569 if (end && states > start && start < end) { 1570 if (states < end) 1571 return (state->expire + timeout * (end - states) / 1572 (end - start)); 1573 else 1574 return (time_uptime); 1575 } 1576 return (state->expire + timeout); 1577 } 1578 1579 void 1580 pf_purge_expired_src_nodes() 1581 { 1582 struct pf_src_node_list freelist; 1583 struct pf_srchash *sh; 1584 struct pf_src_node *cur, *next; 1585 int i; 1586 1587 LIST_INIT(&freelist); 1588 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1589 PF_HASHROW_LOCK(sh); 1590 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1591 if (cur->states == 0 && cur->expire <= time_uptime) { 1592 pf_unlink_src_node(cur); 1593 LIST_INSERT_HEAD(&freelist, cur, entry); 1594 } else if (cur->rule.ptr != NULL) 1595 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1596 PF_HASHROW_UNLOCK(sh); 1597 } 1598 1599 pf_free_src_nodes(&freelist); 1600 1601 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1602 } 1603 1604 static void 1605 pf_src_tree_remove_state(struct pf_state *s) 1606 { 1607 struct pf_src_node *sn; 1608 struct pf_srchash *sh; 1609 uint32_t timeout; 1610 1611 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1612 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1613 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1614 1615 if (s->src_node != NULL) { 1616 sn = s->src_node; 1617 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1618 PF_HASHROW_LOCK(sh); 1619 if (s->src.tcp_est) 1620 --sn->conn; 1621 if (--sn->states == 0) 1622 sn->expire = time_uptime + timeout; 1623 PF_HASHROW_UNLOCK(sh); 1624 } 1625 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1626 sn = s->nat_src_node; 1627 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1628 PF_HASHROW_LOCK(sh); 1629 if (--sn->states == 0) 1630 sn->expire = time_uptime + timeout; 1631 PF_HASHROW_UNLOCK(sh); 1632 } 1633 s->src_node = s->nat_src_node = NULL; 1634 } 1635 1636 /* 1637 * Unlink and potentilly free a state. Function may be 1638 * called with ID hash row locked, but always returns 1639 * unlocked, since it needs to go through key hash locking. 1640 */ 1641 int 1642 pf_unlink_state(struct pf_state *s, u_int flags) 1643 { 1644 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1645 1646 if ((flags & PF_ENTER_LOCKED) == 0) 1647 PF_HASHROW_LOCK(ih); 1648 else 1649 PF_HASHROW_ASSERT(ih); 1650 1651 if (s->timeout == PFTM_UNLINKED) { 1652 /* 1653 * State is being processed 1654 * by pf_unlink_state() in 1655 * an other thread. 1656 */ 1657 PF_HASHROW_UNLOCK(ih); 1658 return (0); /* XXXGL: undefined actually */ 1659 } 1660 1661 if (s->src.state == PF_TCPS_PROXY_DST) { 1662 /* XXX wire key the right one? */ 1663 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1664 &s->key[PF_SK_WIRE]->addr[1], 1665 &s->key[PF_SK_WIRE]->addr[0], 1666 s->key[PF_SK_WIRE]->port[1], 1667 s->key[PF_SK_WIRE]->port[0], 1668 s->src.seqhi, s->src.seqlo + 1, 1669 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1670 } 1671 1672 LIST_REMOVE(s, entry); 1673 pf_src_tree_remove_state(s); 1674 1675 if (pfsync_delete_state_ptr != NULL) 1676 pfsync_delete_state_ptr(s); 1677 1678 STATE_DEC_COUNTERS(s); 1679 1680 s->timeout = PFTM_UNLINKED; 1681 1682 PF_HASHROW_UNLOCK(ih); 1683 1684 pf_detach_state(s); 1685 /* pf_state_insert() initialises refs to 2, so we can never release the 1686 * last reference here, only in pf_release_state(). */ 1687 (void)refcount_release(&s->refs); 1688 1689 return (pf_release_state(s)); 1690 } 1691 1692 void 1693 pf_free_state(struct pf_state *cur) 1694 { 1695 1696 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1697 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1698 cur->timeout)); 1699 1700 pf_normalize_tcp_cleanup(cur); 1701 uma_zfree(V_pf_state_z, cur); 1702 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1703 } 1704 1705 /* 1706 * Called only from pf_purge_thread(), thus serialized. 1707 */ 1708 static u_int 1709 pf_purge_expired_states(u_int i, int maxcheck) 1710 { 1711 struct pf_idhash *ih; 1712 struct pf_state *s; 1713 1714 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1715 1716 /* 1717 * Go through hash and unlink states that expire now. 1718 */ 1719 while (maxcheck > 0) { 1720 1721 ih = &V_pf_idhash[i]; 1722 relock: 1723 PF_HASHROW_LOCK(ih); 1724 LIST_FOREACH(s, &ih->states, entry) { 1725 if (pf_state_expires(s) <= time_uptime) { 1726 V_pf_status.states -= 1727 pf_unlink_state(s, PF_ENTER_LOCKED); 1728 goto relock; 1729 } 1730 s->rule.ptr->rule_flag |= PFRULE_REFS; 1731 if (s->nat_rule.ptr != NULL) 1732 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1733 if (s->anchor.ptr != NULL) 1734 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1735 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1736 if (s->rt_kif) 1737 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1738 } 1739 PF_HASHROW_UNLOCK(ih); 1740 1741 /* Return when we hit end of hash. */ 1742 if (++i > pf_hashmask) { 1743 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1744 return (0); 1745 } 1746 1747 maxcheck--; 1748 } 1749 1750 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1751 1752 return (i); 1753 } 1754 1755 static void 1756 pf_purge_unlinked_rules() 1757 { 1758 struct pf_rulequeue tmpq; 1759 struct pf_rule *r, *r1; 1760 1761 /* 1762 * If we have overloading task pending, then we'd 1763 * better skip purging this time. There is a tiny 1764 * probability that overloading task references 1765 * an already unlinked rule. 1766 */ 1767 PF_OVERLOADQ_LOCK(); 1768 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1769 PF_OVERLOADQ_UNLOCK(); 1770 return; 1771 } 1772 PF_OVERLOADQ_UNLOCK(); 1773 1774 /* 1775 * Do naive mark-and-sweep garbage collecting of old rules. 1776 * Reference flag is raised by pf_purge_expired_states() 1777 * and pf_purge_expired_src_nodes(). 1778 * 1779 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1780 * use a temporary queue. 1781 */ 1782 TAILQ_INIT(&tmpq); 1783 PF_UNLNKDRULES_LOCK(); 1784 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1785 if (!(r->rule_flag & PFRULE_REFS)) { 1786 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1787 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1788 } else 1789 r->rule_flag &= ~PFRULE_REFS; 1790 } 1791 PF_UNLNKDRULES_UNLOCK(); 1792 1793 if (!TAILQ_EMPTY(&tmpq)) { 1794 PF_RULES_WLOCK(); 1795 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1796 TAILQ_REMOVE(&tmpq, r, entries); 1797 pf_free_rule(r); 1798 } 1799 PF_RULES_WUNLOCK(); 1800 } 1801 } 1802 1803 void 1804 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1805 { 1806 switch (af) { 1807 #ifdef INET 1808 case AF_INET: { 1809 u_int32_t a = ntohl(addr->addr32[0]); 1810 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1811 (a>>8)&255, a&255); 1812 if (p) { 1813 p = ntohs(p); 1814 printf(":%u", p); 1815 } 1816 break; 1817 } 1818 #endif /* INET */ 1819 #ifdef INET6 1820 case AF_INET6: { 1821 u_int16_t b; 1822 u_int8_t i, curstart, curend, maxstart, maxend; 1823 curstart = curend = maxstart = maxend = 255; 1824 for (i = 0; i < 8; i++) { 1825 if (!addr->addr16[i]) { 1826 if (curstart == 255) 1827 curstart = i; 1828 curend = i; 1829 } else { 1830 if ((curend - curstart) > 1831 (maxend - maxstart)) { 1832 maxstart = curstart; 1833 maxend = curend; 1834 } 1835 curstart = curend = 255; 1836 } 1837 } 1838 if ((curend - curstart) > 1839 (maxend - maxstart)) { 1840 maxstart = curstart; 1841 maxend = curend; 1842 } 1843 for (i = 0; i < 8; i++) { 1844 if (i >= maxstart && i <= maxend) { 1845 if (i == 0) 1846 printf(":"); 1847 if (i == maxend) 1848 printf(":"); 1849 } else { 1850 b = ntohs(addr->addr16[i]); 1851 printf("%x", b); 1852 if (i < 7) 1853 printf(":"); 1854 } 1855 } 1856 if (p) { 1857 p = ntohs(p); 1858 printf("[%u]", p); 1859 } 1860 break; 1861 } 1862 #endif /* INET6 */ 1863 } 1864 } 1865 1866 void 1867 pf_print_state(struct pf_state *s) 1868 { 1869 pf_print_state_parts(s, NULL, NULL); 1870 } 1871 1872 static void 1873 pf_print_state_parts(struct pf_state *s, 1874 struct pf_state_key *skwp, struct pf_state_key *sksp) 1875 { 1876 struct pf_state_key *skw, *sks; 1877 u_int8_t proto, dir; 1878 1879 /* Do our best to fill these, but they're skipped if NULL */ 1880 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1881 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1882 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1883 dir = s ? s->direction : 0; 1884 1885 switch (proto) { 1886 case IPPROTO_IPV4: 1887 printf("IPv4"); 1888 break; 1889 case IPPROTO_IPV6: 1890 printf("IPv6"); 1891 break; 1892 case IPPROTO_TCP: 1893 printf("TCP"); 1894 break; 1895 case IPPROTO_UDP: 1896 printf("UDP"); 1897 break; 1898 case IPPROTO_ICMP: 1899 printf("ICMP"); 1900 break; 1901 case IPPROTO_ICMPV6: 1902 printf("ICMPv6"); 1903 break; 1904 default: 1905 printf("%u", proto); 1906 break; 1907 } 1908 switch (dir) { 1909 case PF_IN: 1910 printf(" in"); 1911 break; 1912 case PF_OUT: 1913 printf(" out"); 1914 break; 1915 } 1916 if (skw) { 1917 printf(" wire: "); 1918 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1919 printf(" "); 1920 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1921 } 1922 if (sks) { 1923 printf(" stack: "); 1924 if (sks != skw) { 1925 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1926 printf(" "); 1927 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1928 } else 1929 printf("-"); 1930 } 1931 if (s) { 1932 if (proto == IPPROTO_TCP) { 1933 printf(" [lo=%u high=%u win=%u modulator=%u", 1934 s->src.seqlo, s->src.seqhi, 1935 s->src.max_win, s->src.seqdiff); 1936 if (s->src.wscale && s->dst.wscale) 1937 printf(" wscale=%u", 1938 s->src.wscale & PF_WSCALE_MASK); 1939 printf("]"); 1940 printf(" [lo=%u high=%u win=%u modulator=%u", 1941 s->dst.seqlo, s->dst.seqhi, 1942 s->dst.max_win, s->dst.seqdiff); 1943 if (s->src.wscale && s->dst.wscale) 1944 printf(" wscale=%u", 1945 s->dst.wscale & PF_WSCALE_MASK); 1946 printf("]"); 1947 } 1948 printf(" %u:%u", s->src.state, s->dst.state); 1949 } 1950 } 1951 1952 void 1953 pf_print_flags(u_int8_t f) 1954 { 1955 if (f) 1956 printf(" "); 1957 if (f & TH_FIN) 1958 printf("F"); 1959 if (f & TH_SYN) 1960 printf("S"); 1961 if (f & TH_RST) 1962 printf("R"); 1963 if (f & TH_PUSH) 1964 printf("P"); 1965 if (f & TH_ACK) 1966 printf("A"); 1967 if (f & TH_URG) 1968 printf("U"); 1969 if (f & TH_ECE) 1970 printf("E"); 1971 if (f & TH_CWR) 1972 printf("W"); 1973 } 1974 1975 #define PF_SET_SKIP_STEPS(i) \ 1976 do { \ 1977 while (head[i] != cur) { \ 1978 head[i]->skip[i].ptr = cur; \ 1979 head[i] = TAILQ_NEXT(head[i], entries); \ 1980 } \ 1981 } while (0) 1982 1983 void 1984 pf_calc_skip_steps(struct pf_rulequeue *rules) 1985 { 1986 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1987 int i; 1988 1989 cur = TAILQ_FIRST(rules); 1990 prev = cur; 1991 for (i = 0; i < PF_SKIP_COUNT; ++i) 1992 head[i] = cur; 1993 while (cur != NULL) { 1994 1995 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 1996 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 1997 if (cur->direction != prev->direction) 1998 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 1999 if (cur->af != prev->af) 2000 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2001 if (cur->proto != prev->proto) 2002 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2003 if (cur->src.neg != prev->src.neg || 2004 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2005 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2006 if (cur->src.port[0] != prev->src.port[0] || 2007 cur->src.port[1] != prev->src.port[1] || 2008 cur->src.port_op != prev->src.port_op) 2009 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2010 if (cur->dst.neg != prev->dst.neg || 2011 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2012 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2013 if (cur->dst.port[0] != prev->dst.port[0] || 2014 cur->dst.port[1] != prev->dst.port[1] || 2015 cur->dst.port_op != prev->dst.port_op) 2016 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2017 2018 prev = cur; 2019 cur = TAILQ_NEXT(cur, entries); 2020 } 2021 for (i = 0; i < PF_SKIP_COUNT; ++i) 2022 PF_SET_SKIP_STEPS(i); 2023 } 2024 2025 static int 2026 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2027 { 2028 if (aw1->type != aw2->type) 2029 return (1); 2030 switch (aw1->type) { 2031 case PF_ADDR_ADDRMASK: 2032 case PF_ADDR_RANGE: 2033 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2034 return (1); 2035 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2036 return (1); 2037 return (0); 2038 case PF_ADDR_DYNIFTL: 2039 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2040 case PF_ADDR_NOROUTE: 2041 case PF_ADDR_URPFFAILED: 2042 return (0); 2043 case PF_ADDR_TABLE: 2044 return (aw1->p.tbl != aw2->p.tbl); 2045 default: 2046 printf("invalid address type: %d\n", aw1->type); 2047 return (1); 2048 } 2049 } 2050 2051 /** 2052 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2053 * header isn't always a full checksum. In some cases (i.e. output) it's a 2054 * pseudo-header checksum, which is a partial checksum over src/dst IP 2055 * addresses, protocol number and length. 2056 * 2057 * That means we have the following cases: 2058 * * Input or forwarding: we don't have TSO, the checksum fields are full 2059 * checksums, we need to update the checksum whenever we change anything. 2060 * * Output (i.e. the checksum is a pseudo-header checksum): 2061 * x The field being updated is src/dst address or affects the length of 2062 * the packet. We need to update the pseudo-header checksum (note that this 2063 * checksum is not ones' complement). 2064 * x Some other field is being modified (e.g. src/dst port numbers): We 2065 * don't have to update anything. 2066 **/ 2067 u_int16_t 2068 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2069 { 2070 u_int32_t l; 2071 2072 if (udp && !cksum) 2073 return (0x0000); 2074 l = cksum + old - new; 2075 l = (l >> 16) + (l & 65535); 2076 l = l & 65535; 2077 if (udp && !l) 2078 return (0xFFFF); 2079 return (l); 2080 } 2081 2082 u_int16_t 2083 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2084 u_int16_t new, u_int8_t udp) 2085 { 2086 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2087 return (cksum); 2088 2089 return (pf_cksum_fixup(cksum, old, new, udp)); 2090 } 2091 2092 static void 2093 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2094 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2095 sa_family_t af) 2096 { 2097 struct pf_addr ao; 2098 u_int16_t po = *p; 2099 2100 PF_ACPY(&ao, a, af); 2101 PF_ACPY(a, an, af); 2102 2103 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2104 *pc = ~*pc; 2105 2106 *p = pn; 2107 2108 switch (af) { 2109 #ifdef INET 2110 case AF_INET: 2111 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2112 ao.addr16[0], an->addr16[0], 0), 2113 ao.addr16[1], an->addr16[1], 0); 2114 *p = pn; 2115 2116 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2117 ao.addr16[0], an->addr16[0], u), 2118 ao.addr16[1], an->addr16[1], u); 2119 2120 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2121 break; 2122 #endif /* INET */ 2123 #ifdef INET6 2124 case AF_INET6: 2125 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2126 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2127 pf_cksum_fixup(pf_cksum_fixup(*pc, 2128 ao.addr16[0], an->addr16[0], u), 2129 ao.addr16[1], an->addr16[1], u), 2130 ao.addr16[2], an->addr16[2], u), 2131 ao.addr16[3], an->addr16[3], u), 2132 ao.addr16[4], an->addr16[4], u), 2133 ao.addr16[5], an->addr16[5], u), 2134 ao.addr16[6], an->addr16[6], u), 2135 ao.addr16[7], an->addr16[7], u); 2136 2137 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2138 break; 2139 #endif /* INET6 */ 2140 } 2141 2142 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2143 CSUM_DELAY_DATA_IPV6)) { 2144 *pc = ~*pc; 2145 if (! *pc) 2146 *pc = 0xffff; 2147 } 2148 } 2149 2150 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2151 void 2152 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2153 { 2154 u_int32_t ao; 2155 2156 memcpy(&ao, a, sizeof(ao)); 2157 memcpy(a, &an, sizeof(u_int32_t)); 2158 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2159 ao % 65536, an % 65536, u); 2160 } 2161 2162 void 2163 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2164 { 2165 u_int32_t ao; 2166 2167 memcpy(&ao, a, sizeof(ao)); 2168 memcpy(a, &an, sizeof(u_int32_t)); 2169 2170 *c = pf_proto_cksum_fixup(m, 2171 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2172 ao % 65536, an % 65536, udp); 2173 } 2174 2175 #ifdef INET6 2176 static void 2177 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2178 { 2179 struct pf_addr ao; 2180 2181 PF_ACPY(&ao, a, AF_INET6); 2182 PF_ACPY(a, an, AF_INET6); 2183 2184 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2185 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2186 pf_cksum_fixup(pf_cksum_fixup(*c, 2187 ao.addr16[0], an->addr16[0], u), 2188 ao.addr16[1], an->addr16[1], u), 2189 ao.addr16[2], an->addr16[2], u), 2190 ao.addr16[3], an->addr16[3], u), 2191 ao.addr16[4], an->addr16[4], u), 2192 ao.addr16[5], an->addr16[5], u), 2193 ao.addr16[6], an->addr16[6], u), 2194 ao.addr16[7], an->addr16[7], u); 2195 } 2196 #endif /* INET6 */ 2197 2198 static void 2199 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2200 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2201 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2202 { 2203 struct pf_addr oia, ooa; 2204 2205 PF_ACPY(&oia, ia, af); 2206 if (oa) 2207 PF_ACPY(&ooa, oa, af); 2208 2209 /* Change inner protocol port, fix inner protocol checksum. */ 2210 if (ip != NULL) { 2211 u_int16_t oip = *ip; 2212 u_int32_t opc; 2213 2214 if (pc != NULL) 2215 opc = *pc; 2216 *ip = np; 2217 if (pc != NULL) 2218 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2219 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2220 if (pc != NULL) 2221 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2222 } 2223 /* Change inner ip address, fix inner ip and icmp checksums. */ 2224 PF_ACPY(ia, na, af); 2225 switch (af) { 2226 #ifdef INET 2227 case AF_INET: { 2228 u_int32_t oh2c = *h2c; 2229 2230 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2231 oia.addr16[0], ia->addr16[0], 0), 2232 oia.addr16[1], ia->addr16[1], 0); 2233 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2234 oia.addr16[0], ia->addr16[0], 0), 2235 oia.addr16[1], ia->addr16[1], 0); 2236 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2237 break; 2238 } 2239 #endif /* INET */ 2240 #ifdef INET6 2241 case AF_INET6: 2242 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2243 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2244 pf_cksum_fixup(pf_cksum_fixup(*ic, 2245 oia.addr16[0], ia->addr16[0], u), 2246 oia.addr16[1], ia->addr16[1], u), 2247 oia.addr16[2], ia->addr16[2], u), 2248 oia.addr16[3], ia->addr16[3], u), 2249 oia.addr16[4], ia->addr16[4], u), 2250 oia.addr16[5], ia->addr16[5], u), 2251 oia.addr16[6], ia->addr16[6], u), 2252 oia.addr16[7], ia->addr16[7], u); 2253 break; 2254 #endif /* INET6 */ 2255 } 2256 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2257 if (oa) { 2258 PF_ACPY(oa, na, af); 2259 switch (af) { 2260 #ifdef INET 2261 case AF_INET: 2262 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2263 ooa.addr16[0], oa->addr16[0], 0), 2264 ooa.addr16[1], oa->addr16[1], 0); 2265 break; 2266 #endif /* INET */ 2267 #ifdef INET6 2268 case AF_INET6: 2269 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2270 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2271 pf_cksum_fixup(pf_cksum_fixup(*ic, 2272 ooa.addr16[0], oa->addr16[0], u), 2273 ooa.addr16[1], oa->addr16[1], u), 2274 ooa.addr16[2], oa->addr16[2], u), 2275 ooa.addr16[3], oa->addr16[3], u), 2276 ooa.addr16[4], oa->addr16[4], u), 2277 ooa.addr16[5], oa->addr16[5], u), 2278 ooa.addr16[6], oa->addr16[6], u), 2279 ooa.addr16[7], oa->addr16[7], u); 2280 break; 2281 #endif /* INET6 */ 2282 } 2283 } 2284 } 2285 2286 2287 /* 2288 * Need to modulate the sequence numbers in the TCP SACK option 2289 * (credits to Krzysztof Pfaff for report and patch) 2290 */ 2291 static int 2292 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2293 struct tcphdr *th, struct pf_state_peer *dst) 2294 { 2295 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2296 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2297 int copyback = 0, i, olen; 2298 struct sackblk sack; 2299 2300 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2301 if (hlen < TCPOLEN_SACKLEN || 2302 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2303 return 0; 2304 2305 while (hlen >= TCPOLEN_SACKLEN) { 2306 olen = opt[1]; 2307 switch (*opt) { 2308 case TCPOPT_EOL: /* FALLTHROUGH */ 2309 case TCPOPT_NOP: 2310 opt++; 2311 hlen--; 2312 break; 2313 case TCPOPT_SACK: 2314 if (olen > hlen) 2315 olen = hlen; 2316 if (olen >= TCPOLEN_SACKLEN) { 2317 for (i = 2; i + TCPOLEN_SACK <= olen; 2318 i += TCPOLEN_SACK) { 2319 memcpy(&sack, &opt[i], sizeof(sack)); 2320 pf_change_proto_a(m, &sack.start, &th->th_sum, 2321 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2322 pf_change_proto_a(m, &sack.end, &th->th_sum, 2323 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2324 memcpy(&opt[i], &sack, sizeof(sack)); 2325 } 2326 copyback = 1; 2327 } 2328 /* FALLTHROUGH */ 2329 default: 2330 if (olen < 2) 2331 olen = 2; 2332 hlen -= olen; 2333 opt += olen; 2334 } 2335 } 2336 2337 if (copyback) 2338 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2339 return (copyback); 2340 } 2341 2342 static void 2343 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2344 const struct pf_addr *saddr, const struct pf_addr *daddr, 2345 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2346 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2347 u_int16_t rtag, struct ifnet *ifp) 2348 { 2349 struct pf_send_entry *pfse; 2350 struct mbuf *m; 2351 int len, tlen; 2352 #ifdef INET 2353 struct ip *h = NULL; 2354 #endif /* INET */ 2355 #ifdef INET6 2356 struct ip6_hdr *h6 = NULL; 2357 #endif /* INET6 */ 2358 struct tcphdr *th; 2359 char *opt; 2360 struct pf_mtag *pf_mtag; 2361 2362 len = 0; 2363 th = NULL; 2364 2365 /* maximum segment size tcp option */ 2366 tlen = sizeof(struct tcphdr); 2367 if (mss) 2368 tlen += 4; 2369 2370 switch (af) { 2371 #ifdef INET 2372 case AF_INET: 2373 len = sizeof(struct ip) + tlen; 2374 break; 2375 #endif /* INET */ 2376 #ifdef INET6 2377 case AF_INET6: 2378 len = sizeof(struct ip6_hdr) + tlen; 2379 break; 2380 #endif /* INET6 */ 2381 default: 2382 panic("%s: unsupported af %d", __func__, af); 2383 } 2384 2385 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2386 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2387 if (pfse == NULL) 2388 return; 2389 m = m_gethdr(M_NOWAIT, MT_DATA); 2390 if (m == NULL) { 2391 free(pfse, M_PFTEMP); 2392 return; 2393 } 2394 #ifdef MAC 2395 mac_netinet_firewall_send(m); 2396 #endif 2397 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2398 free(pfse, M_PFTEMP); 2399 m_freem(m); 2400 return; 2401 } 2402 if (tag) 2403 m->m_flags |= M_SKIP_FIREWALL; 2404 pf_mtag->tag = rtag; 2405 2406 if (r != NULL && r->rtableid >= 0) 2407 M_SETFIB(m, r->rtableid); 2408 2409 #ifdef ALTQ 2410 if (r != NULL && r->qid) { 2411 pf_mtag->qid = r->qid; 2412 2413 /* add hints for ecn */ 2414 pf_mtag->hdr = mtod(m, struct ip *); 2415 } 2416 #endif /* ALTQ */ 2417 m->m_data += max_linkhdr; 2418 m->m_pkthdr.len = m->m_len = len; 2419 m->m_pkthdr.rcvif = NULL; 2420 bzero(m->m_data, len); 2421 switch (af) { 2422 #ifdef INET 2423 case AF_INET: 2424 h = mtod(m, struct ip *); 2425 2426 /* IP header fields included in the TCP checksum */ 2427 h->ip_p = IPPROTO_TCP; 2428 h->ip_len = htons(tlen); 2429 h->ip_src.s_addr = saddr->v4.s_addr; 2430 h->ip_dst.s_addr = daddr->v4.s_addr; 2431 2432 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2433 break; 2434 #endif /* INET */ 2435 #ifdef INET6 2436 case AF_INET6: 2437 h6 = mtod(m, struct ip6_hdr *); 2438 2439 /* IP header fields included in the TCP checksum */ 2440 h6->ip6_nxt = IPPROTO_TCP; 2441 h6->ip6_plen = htons(tlen); 2442 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2443 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2444 2445 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2446 break; 2447 #endif /* INET6 */ 2448 } 2449 2450 /* TCP header */ 2451 th->th_sport = sport; 2452 th->th_dport = dport; 2453 th->th_seq = htonl(seq); 2454 th->th_ack = htonl(ack); 2455 th->th_off = tlen >> 2; 2456 th->th_flags = flags; 2457 th->th_win = htons(win); 2458 2459 if (mss) { 2460 opt = (char *)(th + 1); 2461 opt[0] = TCPOPT_MAXSEG; 2462 opt[1] = 4; 2463 HTONS(mss); 2464 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2465 } 2466 2467 switch (af) { 2468 #ifdef INET 2469 case AF_INET: 2470 /* TCP checksum */ 2471 th->th_sum = in_cksum(m, len); 2472 2473 /* Finish the IP header */ 2474 h->ip_v = 4; 2475 h->ip_hl = sizeof(*h) >> 2; 2476 h->ip_tos = IPTOS_LOWDELAY; 2477 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2478 h->ip_len = htons(len); 2479 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2480 h->ip_sum = 0; 2481 2482 pfse->pfse_type = PFSE_IP; 2483 break; 2484 #endif /* INET */ 2485 #ifdef INET6 2486 case AF_INET6: 2487 /* TCP checksum */ 2488 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2489 sizeof(struct ip6_hdr), tlen); 2490 2491 h6->ip6_vfc |= IPV6_VERSION; 2492 h6->ip6_hlim = IPV6_DEFHLIM; 2493 2494 pfse->pfse_type = PFSE_IP6; 2495 break; 2496 #endif /* INET6 */ 2497 } 2498 pfse->pfse_m = m; 2499 pf_send(pfse); 2500 } 2501 2502 static int 2503 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2504 { 2505 struct m_tag *mtag; 2506 2507 KASSERT(prio <= PF_PRIO_MAX, 2508 ("%s with invalid pcp", __func__)); 2509 2510 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2511 if (mtag == NULL) { 2512 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2513 sizeof(uint8_t), M_NOWAIT); 2514 if (mtag == NULL) 2515 return (ENOMEM); 2516 m_tag_prepend(m, mtag); 2517 } 2518 2519 *(uint8_t *)(mtag + 1) = prio; 2520 return (0); 2521 } 2522 2523 static int 2524 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2525 { 2526 struct m_tag *mtag; 2527 u_int8_t mpcp; 2528 2529 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2530 if (mtag == NULL) 2531 return (0); 2532 2533 if (prio == PF_PRIO_ZERO) 2534 prio = 0; 2535 2536 mpcp = *(uint8_t *)(mtag + 1); 2537 2538 return (mpcp == prio); 2539 } 2540 2541 static void 2542 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2543 struct pf_rule *r) 2544 { 2545 struct pf_send_entry *pfse; 2546 struct mbuf *m0; 2547 struct pf_mtag *pf_mtag; 2548 2549 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2550 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2551 if (pfse == NULL) 2552 return; 2553 2554 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2555 free(pfse, M_PFTEMP); 2556 return; 2557 } 2558 2559 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2560 free(pfse, M_PFTEMP); 2561 return; 2562 } 2563 /* XXX: revisit */ 2564 m0->m_flags |= M_SKIP_FIREWALL; 2565 2566 if (r->rtableid >= 0) 2567 M_SETFIB(m0, r->rtableid); 2568 2569 #ifdef ALTQ 2570 if (r->qid) { 2571 pf_mtag->qid = r->qid; 2572 /* add hints for ecn */ 2573 pf_mtag->hdr = mtod(m0, struct ip *); 2574 } 2575 #endif /* ALTQ */ 2576 2577 switch (af) { 2578 #ifdef INET 2579 case AF_INET: 2580 pfse->pfse_type = PFSE_ICMP; 2581 break; 2582 #endif /* INET */ 2583 #ifdef INET6 2584 case AF_INET6: 2585 pfse->pfse_type = PFSE_ICMP6; 2586 break; 2587 #endif /* INET6 */ 2588 } 2589 pfse->pfse_m = m0; 2590 pfse->icmpopts.type = type; 2591 pfse->icmpopts.code = code; 2592 pf_send(pfse); 2593 } 2594 2595 /* 2596 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2597 * If n is 0, they match if they are equal. If n is != 0, they match if they 2598 * are different. 2599 */ 2600 int 2601 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2602 struct pf_addr *b, sa_family_t af) 2603 { 2604 int match = 0; 2605 2606 switch (af) { 2607 #ifdef INET 2608 case AF_INET: 2609 if ((a->addr32[0] & m->addr32[0]) == 2610 (b->addr32[0] & m->addr32[0])) 2611 match++; 2612 break; 2613 #endif /* INET */ 2614 #ifdef INET6 2615 case AF_INET6: 2616 if (((a->addr32[0] & m->addr32[0]) == 2617 (b->addr32[0] & m->addr32[0])) && 2618 ((a->addr32[1] & m->addr32[1]) == 2619 (b->addr32[1] & m->addr32[1])) && 2620 ((a->addr32[2] & m->addr32[2]) == 2621 (b->addr32[2] & m->addr32[2])) && 2622 ((a->addr32[3] & m->addr32[3]) == 2623 (b->addr32[3] & m->addr32[3]))) 2624 match++; 2625 break; 2626 #endif /* INET6 */ 2627 } 2628 if (match) { 2629 if (n) 2630 return (0); 2631 else 2632 return (1); 2633 } else { 2634 if (n) 2635 return (1); 2636 else 2637 return (0); 2638 } 2639 } 2640 2641 /* 2642 * Return 1 if b <= a <= e, otherwise return 0. 2643 */ 2644 int 2645 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2646 struct pf_addr *a, sa_family_t af) 2647 { 2648 switch (af) { 2649 #ifdef INET 2650 case AF_INET: 2651 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2652 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2653 return (0); 2654 break; 2655 #endif /* INET */ 2656 #ifdef INET6 2657 case AF_INET6: { 2658 int i; 2659 2660 /* check a >= b */ 2661 for (i = 0; i < 4; ++i) 2662 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2663 break; 2664 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2665 return (0); 2666 /* check a <= e */ 2667 for (i = 0; i < 4; ++i) 2668 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2669 break; 2670 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2671 return (0); 2672 break; 2673 } 2674 #endif /* INET6 */ 2675 } 2676 return (1); 2677 } 2678 2679 static int 2680 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2681 { 2682 switch (op) { 2683 case PF_OP_IRG: 2684 return ((p > a1) && (p < a2)); 2685 case PF_OP_XRG: 2686 return ((p < a1) || (p > a2)); 2687 case PF_OP_RRG: 2688 return ((p >= a1) && (p <= a2)); 2689 case PF_OP_EQ: 2690 return (p == a1); 2691 case PF_OP_NE: 2692 return (p != a1); 2693 case PF_OP_LT: 2694 return (p < a1); 2695 case PF_OP_LE: 2696 return (p <= a1); 2697 case PF_OP_GT: 2698 return (p > a1); 2699 case PF_OP_GE: 2700 return (p >= a1); 2701 } 2702 return (0); /* never reached */ 2703 } 2704 2705 int 2706 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2707 { 2708 NTOHS(a1); 2709 NTOHS(a2); 2710 NTOHS(p); 2711 return (pf_match(op, a1, a2, p)); 2712 } 2713 2714 static int 2715 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2716 { 2717 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2718 return (0); 2719 return (pf_match(op, a1, a2, u)); 2720 } 2721 2722 static int 2723 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2724 { 2725 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2726 return (0); 2727 return (pf_match(op, a1, a2, g)); 2728 } 2729 2730 int 2731 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2732 { 2733 if (*tag == -1) 2734 *tag = mtag; 2735 2736 return ((!r->match_tag_not && r->match_tag == *tag) || 2737 (r->match_tag_not && r->match_tag != *tag)); 2738 } 2739 2740 int 2741 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2742 { 2743 2744 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2745 2746 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2747 return (ENOMEM); 2748 2749 pd->pf_mtag->tag = tag; 2750 2751 return (0); 2752 } 2753 2754 #define PF_ANCHOR_STACKSIZE 32 2755 struct pf_anchor_stackframe { 2756 struct pf_ruleset *rs; 2757 struct pf_rule *r; /* XXX: + match bit */ 2758 struct pf_anchor *child; 2759 }; 2760 2761 /* 2762 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2763 */ 2764 #define PF_ANCHORSTACK_MATCH 0x00000001 2765 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2766 2767 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2768 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2769 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2770 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2771 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2772 } while (0) 2773 2774 void 2775 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2776 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2777 int *match) 2778 { 2779 struct pf_anchor_stackframe *f; 2780 2781 PF_RULES_RASSERT(); 2782 2783 if (match) 2784 *match = 0; 2785 if (*depth >= PF_ANCHOR_STACKSIZE) { 2786 printf("%s: anchor stack overflow on %s\n", 2787 __func__, (*r)->anchor->name); 2788 *r = TAILQ_NEXT(*r, entries); 2789 return; 2790 } else if (*depth == 0 && a != NULL) 2791 *a = *r; 2792 f = stack + (*depth)++; 2793 f->rs = *rs; 2794 f->r = *r; 2795 if ((*r)->anchor_wildcard) { 2796 struct pf_anchor_node *parent = &(*r)->anchor->children; 2797 2798 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2799 *r = NULL; 2800 return; 2801 } 2802 *rs = &f->child->ruleset; 2803 } else { 2804 f->child = NULL; 2805 *rs = &(*r)->anchor->ruleset; 2806 } 2807 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2808 } 2809 2810 int 2811 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2812 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2813 int *match) 2814 { 2815 struct pf_anchor_stackframe *f; 2816 struct pf_rule *fr; 2817 int quick = 0; 2818 2819 PF_RULES_RASSERT(); 2820 2821 do { 2822 if (*depth <= 0) 2823 break; 2824 f = stack + *depth - 1; 2825 fr = PF_ANCHOR_RULE(f); 2826 if (f->child != NULL) { 2827 struct pf_anchor_node *parent; 2828 2829 /* 2830 * This block traverses through 2831 * a wildcard anchor. 2832 */ 2833 parent = &fr->anchor->children; 2834 if (match != NULL && *match) { 2835 /* 2836 * If any of "*" matched, then 2837 * "foo/ *" matched, mark frame 2838 * appropriately. 2839 */ 2840 PF_ANCHOR_SET_MATCH(f); 2841 *match = 0; 2842 } 2843 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2844 if (f->child != NULL) { 2845 *rs = &f->child->ruleset; 2846 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2847 if (*r == NULL) 2848 continue; 2849 else 2850 break; 2851 } 2852 } 2853 (*depth)--; 2854 if (*depth == 0 && a != NULL) 2855 *a = NULL; 2856 *rs = f->rs; 2857 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2858 quick = fr->quick; 2859 *r = TAILQ_NEXT(fr, entries); 2860 } while (*r == NULL); 2861 2862 return (quick); 2863 } 2864 2865 #ifdef INET6 2866 void 2867 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2868 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2869 { 2870 switch (af) { 2871 #ifdef INET 2872 case AF_INET: 2873 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2874 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2875 break; 2876 #endif /* INET */ 2877 case AF_INET6: 2878 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2879 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2880 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2881 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2882 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2883 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2884 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2885 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2886 break; 2887 } 2888 } 2889 2890 void 2891 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2892 { 2893 switch (af) { 2894 #ifdef INET 2895 case AF_INET: 2896 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2897 break; 2898 #endif /* INET */ 2899 case AF_INET6: 2900 if (addr->addr32[3] == 0xffffffff) { 2901 addr->addr32[3] = 0; 2902 if (addr->addr32[2] == 0xffffffff) { 2903 addr->addr32[2] = 0; 2904 if (addr->addr32[1] == 0xffffffff) { 2905 addr->addr32[1] = 0; 2906 addr->addr32[0] = 2907 htonl(ntohl(addr->addr32[0]) + 1); 2908 } else 2909 addr->addr32[1] = 2910 htonl(ntohl(addr->addr32[1]) + 1); 2911 } else 2912 addr->addr32[2] = 2913 htonl(ntohl(addr->addr32[2]) + 1); 2914 } else 2915 addr->addr32[3] = 2916 htonl(ntohl(addr->addr32[3]) + 1); 2917 break; 2918 } 2919 } 2920 #endif /* INET6 */ 2921 2922 int 2923 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 2924 { 2925 struct pf_addr *saddr, *daddr; 2926 u_int16_t sport, dport; 2927 struct inpcbinfo *pi; 2928 struct inpcb *inp; 2929 2930 pd->lookup.uid = UID_MAX; 2931 pd->lookup.gid = GID_MAX; 2932 2933 switch (pd->proto) { 2934 case IPPROTO_TCP: 2935 if (pd->hdr.tcp == NULL) 2936 return (-1); 2937 sport = pd->hdr.tcp->th_sport; 2938 dport = pd->hdr.tcp->th_dport; 2939 pi = &V_tcbinfo; 2940 break; 2941 case IPPROTO_UDP: 2942 if (pd->hdr.udp == NULL) 2943 return (-1); 2944 sport = pd->hdr.udp->uh_sport; 2945 dport = pd->hdr.udp->uh_dport; 2946 pi = &V_udbinfo; 2947 break; 2948 default: 2949 return (-1); 2950 } 2951 if (direction == PF_IN) { 2952 saddr = pd->src; 2953 daddr = pd->dst; 2954 } else { 2955 u_int16_t p; 2956 2957 p = sport; 2958 sport = dport; 2959 dport = p; 2960 saddr = pd->dst; 2961 daddr = pd->src; 2962 } 2963 switch (pd->af) { 2964 #ifdef INET 2965 case AF_INET: 2966 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 2967 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2968 if (inp == NULL) { 2969 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 2970 daddr->v4, dport, INPLOOKUP_WILDCARD | 2971 INPLOOKUP_RLOCKPCB, NULL, m); 2972 if (inp == NULL) 2973 return (-1); 2974 } 2975 break; 2976 #endif /* INET */ 2977 #ifdef INET6 2978 case AF_INET6: 2979 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 2980 dport, INPLOOKUP_RLOCKPCB, NULL, m); 2981 if (inp == NULL) { 2982 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 2983 &daddr->v6, dport, INPLOOKUP_WILDCARD | 2984 INPLOOKUP_RLOCKPCB, NULL, m); 2985 if (inp == NULL) 2986 return (-1); 2987 } 2988 break; 2989 #endif /* INET6 */ 2990 2991 default: 2992 return (-1); 2993 } 2994 INP_RLOCK_ASSERT(inp); 2995 pd->lookup.uid = inp->inp_cred->cr_uid; 2996 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 2997 INP_RUNLOCK(inp); 2998 2999 return (1); 3000 } 3001 3002 static u_int8_t 3003 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3004 { 3005 int hlen; 3006 u_int8_t hdr[60]; 3007 u_int8_t *opt, optlen; 3008 u_int8_t wscale = 0; 3009 3010 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3011 if (hlen <= sizeof(struct tcphdr)) 3012 return (0); 3013 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3014 return (0); 3015 opt = hdr + sizeof(struct tcphdr); 3016 hlen -= sizeof(struct tcphdr); 3017 while (hlen >= 3) { 3018 switch (*opt) { 3019 case TCPOPT_EOL: 3020 case TCPOPT_NOP: 3021 ++opt; 3022 --hlen; 3023 break; 3024 case TCPOPT_WINDOW: 3025 wscale = opt[2]; 3026 if (wscale > TCP_MAX_WINSHIFT) 3027 wscale = TCP_MAX_WINSHIFT; 3028 wscale |= PF_WSCALE_FLAG; 3029 /* FALLTHROUGH */ 3030 default: 3031 optlen = opt[1]; 3032 if (optlen < 2) 3033 optlen = 2; 3034 hlen -= optlen; 3035 opt += optlen; 3036 break; 3037 } 3038 } 3039 return (wscale); 3040 } 3041 3042 static u_int16_t 3043 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3044 { 3045 int hlen; 3046 u_int8_t hdr[60]; 3047 u_int8_t *opt, optlen; 3048 u_int16_t mss = V_tcp_mssdflt; 3049 3050 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3051 if (hlen <= sizeof(struct tcphdr)) 3052 return (0); 3053 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3054 return (0); 3055 opt = hdr + sizeof(struct tcphdr); 3056 hlen -= sizeof(struct tcphdr); 3057 while (hlen >= TCPOLEN_MAXSEG) { 3058 switch (*opt) { 3059 case TCPOPT_EOL: 3060 case TCPOPT_NOP: 3061 ++opt; 3062 --hlen; 3063 break; 3064 case TCPOPT_MAXSEG: 3065 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3066 NTOHS(mss); 3067 /* FALLTHROUGH */ 3068 default: 3069 optlen = opt[1]; 3070 if (optlen < 2) 3071 optlen = 2; 3072 hlen -= optlen; 3073 opt += optlen; 3074 break; 3075 } 3076 } 3077 return (mss); 3078 } 3079 3080 static u_int16_t 3081 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3082 { 3083 #ifdef INET 3084 struct nhop4_basic nh4; 3085 #endif /* INET */ 3086 #ifdef INET6 3087 struct nhop6_basic nh6; 3088 struct in6_addr dst6; 3089 uint32_t scopeid; 3090 #endif /* INET6 */ 3091 int hlen = 0; 3092 uint16_t mss = 0; 3093 3094 switch (af) { 3095 #ifdef INET 3096 case AF_INET: 3097 hlen = sizeof(struct ip); 3098 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3099 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3100 break; 3101 #endif /* INET */ 3102 #ifdef INET6 3103 case AF_INET6: 3104 hlen = sizeof(struct ip6_hdr); 3105 in6_splitscope(&addr->v6, &dst6, &scopeid); 3106 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3107 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3108 break; 3109 #endif /* INET6 */ 3110 } 3111 3112 mss = max(V_tcp_mssdflt, mss); 3113 mss = min(mss, offer); 3114 mss = max(mss, 64); /* sanity - at least max opt space */ 3115 return (mss); 3116 } 3117 3118 static u_int32_t 3119 pf_tcp_iss(struct pf_pdesc *pd) 3120 { 3121 MD5_CTX ctx; 3122 u_int32_t digest[4]; 3123 3124 if (V_pf_tcp_secret_init == 0) { 3125 read_random(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3126 MD5Init(&V_pf_tcp_secret_ctx); 3127 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3128 sizeof(V_pf_tcp_secret)); 3129 V_pf_tcp_secret_init = 1; 3130 } 3131 3132 ctx = V_pf_tcp_secret_ctx; 3133 3134 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3135 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3136 if (pd->af == AF_INET6) { 3137 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3138 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3139 } else { 3140 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3141 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3142 } 3143 MD5Final((u_char *)digest, &ctx); 3144 V_pf_tcp_iss_off += 4096; 3145 #define ISN_RANDOM_INCREMENT (4096 - 1) 3146 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3147 V_pf_tcp_iss_off); 3148 #undef ISN_RANDOM_INCREMENT 3149 } 3150 3151 static int 3152 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3153 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3154 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3155 { 3156 struct pf_rule *nr = NULL; 3157 struct pf_addr * const saddr = pd->src; 3158 struct pf_addr * const daddr = pd->dst; 3159 sa_family_t af = pd->af; 3160 struct pf_rule *r, *a = NULL; 3161 struct pf_ruleset *ruleset = NULL; 3162 struct pf_src_node *nsn = NULL; 3163 struct tcphdr *th = pd->hdr.tcp; 3164 struct pf_state_key *sk = NULL, *nk = NULL; 3165 u_short reason; 3166 int rewrite = 0, hdrlen = 0; 3167 int tag = -1, rtableid = -1; 3168 int asd = 0; 3169 int match = 0; 3170 int state_icmp = 0; 3171 u_int16_t sport = 0, dport = 0; 3172 u_int16_t bproto_sum = 0, bip_sum = 0; 3173 u_int8_t icmptype = 0, icmpcode = 0; 3174 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3175 3176 PF_RULES_RASSERT(); 3177 3178 if (inp != NULL) { 3179 INP_LOCK_ASSERT(inp); 3180 pd->lookup.uid = inp->inp_cred->cr_uid; 3181 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3182 pd->lookup.done = 1; 3183 } 3184 3185 switch (pd->proto) { 3186 case IPPROTO_TCP: 3187 sport = th->th_sport; 3188 dport = th->th_dport; 3189 hdrlen = sizeof(*th); 3190 break; 3191 case IPPROTO_UDP: 3192 sport = pd->hdr.udp->uh_sport; 3193 dport = pd->hdr.udp->uh_dport; 3194 hdrlen = sizeof(*pd->hdr.udp); 3195 break; 3196 #ifdef INET 3197 case IPPROTO_ICMP: 3198 if (pd->af != AF_INET) 3199 break; 3200 sport = dport = pd->hdr.icmp->icmp_id; 3201 hdrlen = sizeof(*pd->hdr.icmp); 3202 icmptype = pd->hdr.icmp->icmp_type; 3203 icmpcode = pd->hdr.icmp->icmp_code; 3204 3205 if (icmptype == ICMP_UNREACH || 3206 icmptype == ICMP_SOURCEQUENCH || 3207 icmptype == ICMP_REDIRECT || 3208 icmptype == ICMP_TIMXCEED || 3209 icmptype == ICMP_PARAMPROB) 3210 state_icmp++; 3211 break; 3212 #endif /* INET */ 3213 #ifdef INET6 3214 case IPPROTO_ICMPV6: 3215 if (af != AF_INET6) 3216 break; 3217 sport = dport = pd->hdr.icmp6->icmp6_id; 3218 hdrlen = sizeof(*pd->hdr.icmp6); 3219 icmptype = pd->hdr.icmp6->icmp6_type; 3220 icmpcode = pd->hdr.icmp6->icmp6_code; 3221 3222 if (icmptype == ICMP6_DST_UNREACH || 3223 icmptype == ICMP6_PACKET_TOO_BIG || 3224 icmptype == ICMP6_TIME_EXCEEDED || 3225 icmptype == ICMP6_PARAM_PROB) 3226 state_icmp++; 3227 break; 3228 #endif /* INET6 */ 3229 default: 3230 sport = dport = hdrlen = 0; 3231 break; 3232 } 3233 3234 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3235 3236 /* check packet for BINAT/NAT/RDR */ 3237 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3238 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3239 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3240 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3241 3242 if (pd->ip_sum) 3243 bip_sum = *pd->ip_sum; 3244 3245 switch (pd->proto) { 3246 case IPPROTO_TCP: 3247 bproto_sum = th->th_sum; 3248 pd->proto_sum = &th->th_sum; 3249 3250 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3251 nk->port[pd->sidx] != sport) { 3252 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3253 &th->th_sum, &nk->addr[pd->sidx], 3254 nk->port[pd->sidx], 0, af); 3255 pd->sport = &th->th_sport; 3256 sport = th->th_sport; 3257 } 3258 3259 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3260 nk->port[pd->didx] != dport) { 3261 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3262 &th->th_sum, &nk->addr[pd->didx], 3263 nk->port[pd->didx], 0, af); 3264 dport = th->th_dport; 3265 pd->dport = &th->th_dport; 3266 } 3267 rewrite++; 3268 break; 3269 case IPPROTO_UDP: 3270 bproto_sum = pd->hdr.udp->uh_sum; 3271 pd->proto_sum = &pd->hdr.udp->uh_sum; 3272 3273 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3274 nk->port[pd->sidx] != sport) { 3275 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3276 pd->ip_sum, &pd->hdr.udp->uh_sum, 3277 &nk->addr[pd->sidx], 3278 nk->port[pd->sidx], 1, af); 3279 sport = pd->hdr.udp->uh_sport; 3280 pd->sport = &pd->hdr.udp->uh_sport; 3281 } 3282 3283 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3284 nk->port[pd->didx] != dport) { 3285 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3286 pd->ip_sum, &pd->hdr.udp->uh_sum, 3287 &nk->addr[pd->didx], 3288 nk->port[pd->didx], 1, af); 3289 dport = pd->hdr.udp->uh_dport; 3290 pd->dport = &pd->hdr.udp->uh_dport; 3291 } 3292 rewrite++; 3293 break; 3294 #ifdef INET 3295 case IPPROTO_ICMP: 3296 nk->port[0] = nk->port[1]; 3297 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3298 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3299 nk->addr[pd->sidx].v4.s_addr, 0); 3300 3301 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3302 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3303 nk->addr[pd->didx].v4.s_addr, 0); 3304 3305 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3306 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3307 pd->hdr.icmp->icmp_cksum, sport, 3308 nk->port[1], 0); 3309 pd->hdr.icmp->icmp_id = nk->port[1]; 3310 pd->sport = &pd->hdr.icmp->icmp_id; 3311 } 3312 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3313 break; 3314 #endif /* INET */ 3315 #ifdef INET6 3316 case IPPROTO_ICMPV6: 3317 nk->port[0] = nk->port[1]; 3318 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3319 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3320 &nk->addr[pd->sidx], 0); 3321 3322 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3323 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3324 &nk->addr[pd->didx], 0); 3325 rewrite++; 3326 break; 3327 #endif /* INET */ 3328 default: 3329 switch (af) { 3330 #ifdef INET 3331 case AF_INET: 3332 if (PF_ANEQ(saddr, 3333 &nk->addr[pd->sidx], AF_INET)) 3334 pf_change_a(&saddr->v4.s_addr, 3335 pd->ip_sum, 3336 nk->addr[pd->sidx].v4.s_addr, 0); 3337 3338 if (PF_ANEQ(daddr, 3339 &nk->addr[pd->didx], AF_INET)) 3340 pf_change_a(&daddr->v4.s_addr, 3341 pd->ip_sum, 3342 nk->addr[pd->didx].v4.s_addr, 0); 3343 break; 3344 #endif /* INET */ 3345 #ifdef INET6 3346 case AF_INET6: 3347 if (PF_ANEQ(saddr, 3348 &nk->addr[pd->sidx], AF_INET6)) 3349 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3350 3351 if (PF_ANEQ(daddr, 3352 &nk->addr[pd->didx], AF_INET6)) 3353 PF_ACPY(saddr, &nk->addr[pd->didx], af); 3354 break; 3355 #endif /* INET */ 3356 } 3357 break; 3358 } 3359 if (nr->natpass) 3360 r = NULL; 3361 pd->nat_rule = nr; 3362 } 3363 3364 while (r != NULL) { 3365 r->evaluations++; 3366 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3367 r = r->skip[PF_SKIP_IFP].ptr; 3368 else if (r->direction && r->direction != direction) 3369 r = r->skip[PF_SKIP_DIR].ptr; 3370 else if (r->af && r->af != af) 3371 r = r->skip[PF_SKIP_AF].ptr; 3372 else if (r->proto && r->proto != pd->proto) 3373 r = r->skip[PF_SKIP_PROTO].ptr; 3374 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3375 r->src.neg, kif, M_GETFIB(m))) 3376 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3377 /* tcp/udp only. port_op always 0 in other cases */ 3378 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3379 r->src.port[0], r->src.port[1], sport)) 3380 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3381 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3382 r->dst.neg, NULL, M_GETFIB(m))) 3383 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3384 /* tcp/udp only. port_op always 0 in other cases */ 3385 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3386 r->dst.port[0], r->dst.port[1], dport)) 3387 r = r->skip[PF_SKIP_DST_PORT].ptr; 3388 /* icmp only. type always 0 in other cases */ 3389 else if (r->type && r->type != icmptype + 1) 3390 r = TAILQ_NEXT(r, entries); 3391 /* icmp only. type always 0 in other cases */ 3392 else if (r->code && r->code != icmpcode + 1) 3393 r = TAILQ_NEXT(r, entries); 3394 else if (r->tos && !(r->tos == pd->tos)) 3395 r = TAILQ_NEXT(r, entries); 3396 else if (r->rule_flag & PFRULE_FRAGMENT) 3397 r = TAILQ_NEXT(r, entries); 3398 else if (pd->proto == IPPROTO_TCP && 3399 (r->flagset & th->th_flags) != r->flags) 3400 r = TAILQ_NEXT(r, entries); 3401 /* tcp/udp only. uid.op always 0 in other cases */ 3402 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3403 pf_socket_lookup(direction, pd, m), 1)) && 3404 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3405 pd->lookup.uid)) 3406 r = TAILQ_NEXT(r, entries); 3407 /* tcp/udp only. gid.op always 0 in other cases */ 3408 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3409 pf_socket_lookup(direction, pd, m), 1)) && 3410 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3411 pd->lookup.gid)) 3412 r = TAILQ_NEXT(r, entries); 3413 else if (r->prio && 3414 !pf_match_ieee8021q_pcp(r->prio, m)) 3415 r = TAILQ_NEXT(r, entries); 3416 else if (r->prob && 3417 r->prob <= arc4random()) 3418 r = TAILQ_NEXT(r, entries); 3419 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3420 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3421 r = TAILQ_NEXT(r, entries); 3422 else if (r->os_fingerprint != PF_OSFP_ANY && 3423 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3424 pf_osfp_fingerprint(pd, m, off, th), 3425 r->os_fingerprint))) 3426 r = TAILQ_NEXT(r, entries); 3427 else { 3428 if (r->tag) 3429 tag = r->tag; 3430 if (r->rtableid >= 0) 3431 rtableid = r->rtableid; 3432 if (r->anchor == NULL) { 3433 match = 1; 3434 *rm = r; 3435 *am = a; 3436 *rsm = ruleset; 3437 if ((*rm)->quick) 3438 break; 3439 r = TAILQ_NEXT(r, entries); 3440 } else 3441 pf_step_into_anchor(anchor_stack, &asd, 3442 &ruleset, PF_RULESET_FILTER, &r, &a, 3443 &match); 3444 } 3445 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3446 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3447 break; 3448 } 3449 r = *rm; 3450 a = *am; 3451 ruleset = *rsm; 3452 3453 REASON_SET(&reason, PFRES_MATCH); 3454 3455 if (r->log || (nr != NULL && nr->log)) { 3456 if (rewrite) 3457 m_copyback(m, off, hdrlen, pd->hdr.any); 3458 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3459 ruleset, pd, 1); 3460 } 3461 3462 if ((r->action == PF_DROP) && 3463 ((r->rule_flag & PFRULE_RETURNRST) || 3464 (r->rule_flag & PFRULE_RETURNICMP) || 3465 (r->rule_flag & PFRULE_RETURN))) { 3466 /* undo NAT changes, if they have taken place */ 3467 if (nr != NULL) { 3468 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3469 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3470 if (pd->sport) 3471 *pd->sport = sk->port[pd->sidx]; 3472 if (pd->dport) 3473 *pd->dport = sk->port[pd->didx]; 3474 if (pd->proto_sum) 3475 *pd->proto_sum = bproto_sum; 3476 if (pd->ip_sum) 3477 *pd->ip_sum = bip_sum; 3478 m_copyback(m, off, hdrlen, pd->hdr.any); 3479 } 3480 if (pd->proto == IPPROTO_TCP && 3481 ((r->rule_flag & PFRULE_RETURNRST) || 3482 (r->rule_flag & PFRULE_RETURN)) && 3483 !(th->th_flags & TH_RST)) { 3484 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3485 int len = 0; 3486 #ifdef INET 3487 struct ip *h4; 3488 #endif 3489 #ifdef INET6 3490 struct ip6_hdr *h6; 3491 #endif 3492 3493 switch (af) { 3494 #ifdef INET 3495 case AF_INET: 3496 h4 = mtod(m, struct ip *); 3497 len = ntohs(h4->ip_len) - off; 3498 break; 3499 #endif 3500 #ifdef INET6 3501 case AF_INET6: 3502 h6 = mtod(m, struct ip6_hdr *); 3503 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3504 break; 3505 #endif 3506 } 3507 3508 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3509 REASON_SET(&reason, PFRES_PROTCKSUM); 3510 else { 3511 if (th->th_flags & TH_SYN) 3512 ack++; 3513 if (th->th_flags & TH_FIN) 3514 ack++; 3515 pf_send_tcp(m, r, af, pd->dst, 3516 pd->src, th->th_dport, th->th_sport, 3517 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3518 r->return_ttl, 1, 0, kif->pfik_ifp); 3519 } 3520 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3521 r->return_icmp) 3522 pf_send_icmp(m, r->return_icmp >> 8, 3523 r->return_icmp & 255, af, r); 3524 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3525 r->return_icmp6) 3526 pf_send_icmp(m, r->return_icmp6 >> 8, 3527 r->return_icmp6 & 255, af, r); 3528 } 3529 3530 if (r->action == PF_DROP) 3531 goto cleanup; 3532 3533 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3534 REASON_SET(&reason, PFRES_MEMORY); 3535 goto cleanup; 3536 } 3537 if (rtableid >= 0) 3538 M_SETFIB(m, rtableid); 3539 3540 if (!state_icmp && (r->keep_state || nr != NULL || 3541 (pd->flags & PFDESC_TCP_NORM))) { 3542 int action; 3543 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3544 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3545 hdrlen); 3546 if (action != PF_PASS) 3547 return (action); 3548 } else { 3549 if (sk != NULL) 3550 uma_zfree(V_pf_state_key_z, sk); 3551 if (nk != NULL) 3552 uma_zfree(V_pf_state_key_z, nk); 3553 } 3554 3555 /* copy back packet headers if we performed NAT operations */ 3556 if (rewrite) 3557 m_copyback(m, off, hdrlen, pd->hdr.any); 3558 3559 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3560 direction == PF_OUT && 3561 pfsync_defer_ptr != NULL && pfsync_defer_ptr(*sm, m)) 3562 /* 3563 * We want the state created, but we dont 3564 * want to send this in case a partner 3565 * firewall has to know about it to allow 3566 * replies through it. 3567 */ 3568 return (PF_DEFER); 3569 3570 return (PF_PASS); 3571 3572 cleanup: 3573 if (sk != NULL) 3574 uma_zfree(V_pf_state_key_z, sk); 3575 if (nk != NULL) 3576 uma_zfree(V_pf_state_key_z, nk); 3577 return (PF_DROP); 3578 } 3579 3580 static int 3581 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3582 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3583 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3584 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3585 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3586 { 3587 struct pf_state *s = NULL; 3588 struct pf_src_node *sn = NULL; 3589 struct tcphdr *th = pd->hdr.tcp; 3590 u_int16_t mss = V_tcp_mssdflt; 3591 u_short reason; 3592 3593 /* check maximums */ 3594 if (r->max_states && 3595 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3596 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3597 REASON_SET(&reason, PFRES_MAXSTATES); 3598 goto csfailed; 3599 } 3600 /* src node for filter rule */ 3601 if ((r->rule_flag & PFRULE_SRCTRACK || 3602 r->rpool.opts & PF_POOL_STICKYADDR) && 3603 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3604 REASON_SET(&reason, PFRES_SRCLIMIT); 3605 goto csfailed; 3606 } 3607 /* src node for translation rule */ 3608 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3609 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3610 REASON_SET(&reason, PFRES_SRCLIMIT); 3611 goto csfailed; 3612 } 3613 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3614 if (s == NULL) { 3615 REASON_SET(&reason, PFRES_MEMORY); 3616 goto csfailed; 3617 } 3618 s->rule.ptr = r; 3619 s->nat_rule.ptr = nr; 3620 s->anchor.ptr = a; 3621 STATE_INC_COUNTERS(s); 3622 if (r->allow_opts) 3623 s->state_flags |= PFSTATE_ALLOWOPTS; 3624 if (r->rule_flag & PFRULE_STATESLOPPY) 3625 s->state_flags |= PFSTATE_SLOPPY; 3626 s->log = r->log & PF_LOG_ALL; 3627 s->sync_state = PFSYNC_S_NONE; 3628 if (nr != NULL) 3629 s->log |= nr->log & PF_LOG_ALL; 3630 switch (pd->proto) { 3631 case IPPROTO_TCP: 3632 s->src.seqlo = ntohl(th->th_seq); 3633 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3634 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3635 r->keep_state == PF_STATE_MODULATE) { 3636 /* Generate sequence number modulator */ 3637 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3638 0) 3639 s->src.seqdiff = 1; 3640 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3641 htonl(s->src.seqlo + s->src.seqdiff), 0); 3642 *rewrite = 1; 3643 } else 3644 s->src.seqdiff = 0; 3645 if (th->th_flags & TH_SYN) { 3646 s->src.seqhi++; 3647 s->src.wscale = pf_get_wscale(m, off, 3648 th->th_off, pd->af); 3649 } 3650 s->src.max_win = MAX(ntohs(th->th_win), 1); 3651 if (s->src.wscale & PF_WSCALE_MASK) { 3652 /* Remove scale factor from initial window */ 3653 int win = s->src.max_win; 3654 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3655 s->src.max_win = (win - 1) >> 3656 (s->src.wscale & PF_WSCALE_MASK); 3657 } 3658 if (th->th_flags & TH_FIN) 3659 s->src.seqhi++; 3660 s->dst.seqhi = 1; 3661 s->dst.max_win = 1; 3662 s->src.state = TCPS_SYN_SENT; 3663 s->dst.state = TCPS_CLOSED; 3664 s->timeout = PFTM_TCP_FIRST_PACKET; 3665 break; 3666 case IPPROTO_UDP: 3667 s->src.state = PFUDPS_SINGLE; 3668 s->dst.state = PFUDPS_NO_TRAFFIC; 3669 s->timeout = PFTM_UDP_FIRST_PACKET; 3670 break; 3671 case IPPROTO_ICMP: 3672 #ifdef INET6 3673 case IPPROTO_ICMPV6: 3674 #endif 3675 s->timeout = PFTM_ICMP_FIRST_PACKET; 3676 break; 3677 default: 3678 s->src.state = PFOTHERS_SINGLE; 3679 s->dst.state = PFOTHERS_NO_TRAFFIC; 3680 s->timeout = PFTM_OTHER_FIRST_PACKET; 3681 } 3682 3683 if (r->rt) { 3684 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3685 REASON_SET(&reason, PFRES_MAPFAILED); 3686 pf_src_tree_remove_state(s); 3687 STATE_DEC_COUNTERS(s); 3688 uma_zfree(V_pf_state_z, s); 3689 goto csfailed; 3690 } 3691 s->rt_kif = r->rpool.cur->kif; 3692 } 3693 3694 s->creation = time_uptime; 3695 s->expire = time_uptime; 3696 3697 if (sn != NULL) 3698 s->src_node = sn; 3699 if (nsn != NULL) { 3700 /* XXX We only modify one side for now. */ 3701 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3702 s->nat_src_node = nsn; 3703 } 3704 if (pd->proto == IPPROTO_TCP) { 3705 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3706 off, pd, th, &s->src, &s->dst)) { 3707 REASON_SET(&reason, PFRES_MEMORY); 3708 pf_src_tree_remove_state(s); 3709 STATE_DEC_COUNTERS(s); 3710 uma_zfree(V_pf_state_z, s); 3711 return (PF_DROP); 3712 } 3713 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3714 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3715 &s->src, &s->dst, rewrite)) { 3716 /* This really shouldn't happen!!! */ 3717 DPFPRINTF(PF_DEBUG_URGENT, 3718 ("pf_normalize_tcp_stateful failed on first pkt")); 3719 pf_normalize_tcp_cleanup(s); 3720 pf_src_tree_remove_state(s); 3721 STATE_DEC_COUNTERS(s); 3722 uma_zfree(V_pf_state_z, s); 3723 return (PF_DROP); 3724 } 3725 } 3726 s->direction = pd->dir; 3727 3728 /* 3729 * sk/nk could already been setup by pf_get_translation(). 3730 */ 3731 if (nr == NULL) { 3732 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3733 __func__, nr, sk, nk)); 3734 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3735 if (sk == NULL) 3736 goto csfailed; 3737 nk = sk; 3738 } else 3739 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3740 __func__, nr, sk, nk)); 3741 3742 /* Swap sk/nk for PF_OUT. */ 3743 if (pf_state_insert(BOUND_IFACE(r, kif), 3744 (pd->dir == PF_IN) ? sk : nk, 3745 (pd->dir == PF_IN) ? nk : sk, s)) { 3746 if (pd->proto == IPPROTO_TCP) 3747 pf_normalize_tcp_cleanup(s); 3748 REASON_SET(&reason, PFRES_STATEINS); 3749 pf_src_tree_remove_state(s); 3750 STATE_DEC_COUNTERS(s); 3751 uma_zfree(V_pf_state_z, s); 3752 return (PF_DROP); 3753 } else 3754 *sm = s; 3755 3756 if (tag > 0) 3757 s->tag = tag; 3758 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3759 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3760 s->src.state = PF_TCPS_PROXY_SRC; 3761 /* undo NAT changes, if they have taken place */ 3762 if (nr != NULL) { 3763 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3764 if (pd->dir == PF_OUT) 3765 skt = s->key[PF_SK_STACK]; 3766 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3767 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3768 if (pd->sport) 3769 *pd->sport = skt->port[pd->sidx]; 3770 if (pd->dport) 3771 *pd->dport = skt->port[pd->didx]; 3772 if (pd->proto_sum) 3773 *pd->proto_sum = bproto_sum; 3774 if (pd->ip_sum) 3775 *pd->ip_sum = bip_sum; 3776 m_copyback(m, off, hdrlen, pd->hdr.any); 3777 } 3778 s->src.seqhi = htonl(arc4random()); 3779 /* Find mss option */ 3780 int rtid = M_GETFIB(m); 3781 mss = pf_get_mss(m, off, th->th_off, pd->af); 3782 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3783 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3784 s->src.mss = mss; 3785 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3786 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3787 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3788 REASON_SET(&reason, PFRES_SYNPROXY); 3789 return (PF_SYNPROXY_DROP); 3790 } 3791 3792 return (PF_PASS); 3793 3794 csfailed: 3795 if (sk != NULL) 3796 uma_zfree(V_pf_state_key_z, sk); 3797 if (nk != NULL) 3798 uma_zfree(V_pf_state_key_z, nk); 3799 3800 if (sn != NULL) { 3801 struct pf_srchash *sh; 3802 3803 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3804 PF_HASHROW_LOCK(sh); 3805 if (--sn->states == 0 && sn->expire == 0) { 3806 pf_unlink_src_node(sn); 3807 uma_zfree(V_pf_sources_z, sn); 3808 counter_u64_add( 3809 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3810 } 3811 PF_HASHROW_UNLOCK(sh); 3812 } 3813 3814 if (nsn != sn && nsn != NULL) { 3815 struct pf_srchash *sh; 3816 3817 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3818 PF_HASHROW_LOCK(sh); 3819 if (--nsn->states == 0 && nsn->expire == 0) { 3820 pf_unlink_src_node(nsn); 3821 uma_zfree(V_pf_sources_z, nsn); 3822 counter_u64_add( 3823 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3824 } 3825 PF_HASHROW_UNLOCK(sh); 3826 } 3827 3828 return (PF_DROP); 3829 } 3830 3831 static int 3832 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3833 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3834 struct pf_ruleset **rsm) 3835 { 3836 struct pf_rule *r, *a = NULL; 3837 struct pf_ruleset *ruleset = NULL; 3838 sa_family_t af = pd->af; 3839 u_short reason; 3840 int tag = -1; 3841 int asd = 0; 3842 int match = 0; 3843 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3844 3845 PF_RULES_RASSERT(); 3846 3847 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3848 while (r != NULL) { 3849 r->evaluations++; 3850 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3851 r = r->skip[PF_SKIP_IFP].ptr; 3852 else if (r->direction && r->direction != direction) 3853 r = r->skip[PF_SKIP_DIR].ptr; 3854 else if (r->af && r->af != af) 3855 r = r->skip[PF_SKIP_AF].ptr; 3856 else if (r->proto && r->proto != pd->proto) 3857 r = r->skip[PF_SKIP_PROTO].ptr; 3858 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3859 r->src.neg, kif, M_GETFIB(m))) 3860 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3861 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3862 r->dst.neg, NULL, M_GETFIB(m))) 3863 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3864 else if (r->tos && !(r->tos == pd->tos)) 3865 r = TAILQ_NEXT(r, entries); 3866 else if (r->os_fingerprint != PF_OSFP_ANY) 3867 r = TAILQ_NEXT(r, entries); 3868 else if (pd->proto == IPPROTO_UDP && 3869 (r->src.port_op || r->dst.port_op)) 3870 r = TAILQ_NEXT(r, entries); 3871 else if (pd->proto == IPPROTO_TCP && 3872 (r->src.port_op || r->dst.port_op || r->flagset)) 3873 r = TAILQ_NEXT(r, entries); 3874 else if ((pd->proto == IPPROTO_ICMP || 3875 pd->proto == IPPROTO_ICMPV6) && 3876 (r->type || r->code)) 3877 r = TAILQ_NEXT(r, entries); 3878 else if (r->prio && 3879 !pf_match_ieee8021q_pcp(r->prio, m)) 3880 r = TAILQ_NEXT(r, entries); 3881 else if (r->prob && r->prob <= 3882 (arc4random() % (UINT_MAX - 1) + 1)) 3883 r = TAILQ_NEXT(r, entries); 3884 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3885 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3886 r = TAILQ_NEXT(r, entries); 3887 else { 3888 if (r->anchor == NULL) { 3889 match = 1; 3890 *rm = r; 3891 *am = a; 3892 *rsm = ruleset; 3893 if ((*rm)->quick) 3894 break; 3895 r = TAILQ_NEXT(r, entries); 3896 } else 3897 pf_step_into_anchor(anchor_stack, &asd, 3898 &ruleset, PF_RULESET_FILTER, &r, &a, 3899 &match); 3900 } 3901 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3902 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3903 break; 3904 } 3905 r = *rm; 3906 a = *am; 3907 ruleset = *rsm; 3908 3909 REASON_SET(&reason, PFRES_MATCH); 3910 3911 if (r->log) 3912 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3913 1); 3914 3915 if (r->action != PF_PASS) 3916 return (PF_DROP); 3917 3918 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3919 REASON_SET(&reason, PFRES_MEMORY); 3920 return (PF_DROP); 3921 } 3922 3923 return (PF_PASS); 3924 } 3925 3926 static int 3927 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3928 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3929 struct pf_pdesc *pd, u_short *reason, int *copyback) 3930 { 3931 struct tcphdr *th = pd->hdr.tcp; 3932 u_int16_t win = ntohs(th->th_win); 3933 u_int32_t ack, end, seq, orig_seq; 3934 u_int8_t sws, dws; 3935 int ackskew; 3936 3937 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3938 sws = src->wscale & PF_WSCALE_MASK; 3939 dws = dst->wscale & PF_WSCALE_MASK; 3940 } else 3941 sws = dws = 0; 3942 3943 /* 3944 * Sequence tracking algorithm from Guido van Rooij's paper: 3945 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3946 * tcp_filtering.ps 3947 */ 3948 3949 orig_seq = seq = ntohl(th->th_seq); 3950 if (src->seqlo == 0) { 3951 /* First packet from this end. Set its state */ 3952 3953 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3954 src->scrub == NULL) { 3955 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3956 REASON_SET(reason, PFRES_MEMORY); 3957 return (PF_DROP); 3958 } 3959 } 3960 3961 /* Deferred generation of sequence number modulator */ 3962 if (dst->seqdiff && !src->seqdiff) { 3963 /* use random iss for the TCP server */ 3964 while ((src->seqdiff = arc4random() - seq) == 0) 3965 ; 3966 ack = ntohl(th->th_ack) - dst->seqdiff; 3967 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3968 src->seqdiff), 0); 3969 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 3970 *copyback = 1; 3971 } else { 3972 ack = ntohl(th->th_ack); 3973 } 3974 3975 end = seq + pd->p_len; 3976 if (th->th_flags & TH_SYN) { 3977 end++; 3978 if (dst->wscale & PF_WSCALE_FLAG) { 3979 src->wscale = pf_get_wscale(m, off, th->th_off, 3980 pd->af); 3981 if (src->wscale & PF_WSCALE_FLAG) { 3982 /* Remove scale factor from initial 3983 * window */ 3984 sws = src->wscale & PF_WSCALE_MASK; 3985 win = ((u_int32_t)win + (1 << sws) - 1) 3986 >> sws; 3987 dws = dst->wscale & PF_WSCALE_MASK; 3988 } else { 3989 /* fixup other window */ 3990 dst->max_win <<= dst->wscale & 3991 PF_WSCALE_MASK; 3992 /* in case of a retrans SYN|ACK */ 3993 dst->wscale = 0; 3994 } 3995 } 3996 } 3997 if (th->th_flags & TH_FIN) 3998 end++; 3999 4000 src->seqlo = seq; 4001 if (src->state < TCPS_SYN_SENT) 4002 src->state = TCPS_SYN_SENT; 4003 4004 /* 4005 * May need to slide the window (seqhi may have been set by 4006 * the crappy stack check or if we picked up the connection 4007 * after establishment) 4008 */ 4009 if (src->seqhi == 1 || 4010 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4011 src->seqhi = end + MAX(1, dst->max_win << dws); 4012 if (win > src->max_win) 4013 src->max_win = win; 4014 4015 } else { 4016 ack = ntohl(th->th_ack) - dst->seqdiff; 4017 if (src->seqdiff) { 4018 /* Modulate sequence numbers */ 4019 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4020 src->seqdiff), 0); 4021 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4022 *copyback = 1; 4023 } 4024 end = seq + pd->p_len; 4025 if (th->th_flags & TH_SYN) 4026 end++; 4027 if (th->th_flags & TH_FIN) 4028 end++; 4029 } 4030 4031 if ((th->th_flags & TH_ACK) == 0) { 4032 /* Let it pass through the ack skew check */ 4033 ack = dst->seqlo; 4034 } else if ((ack == 0 && 4035 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4036 /* broken tcp stacks do not set ack */ 4037 (dst->state < TCPS_SYN_SENT)) { 4038 /* 4039 * Many stacks (ours included) will set the ACK number in an 4040 * FIN|ACK if the SYN times out -- no sequence to ACK. 4041 */ 4042 ack = dst->seqlo; 4043 } 4044 4045 if (seq == end) { 4046 /* Ease sequencing restrictions on no data packets */ 4047 seq = src->seqlo; 4048 end = seq; 4049 } 4050 4051 ackskew = dst->seqlo - ack; 4052 4053 4054 /* 4055 * Need to demodulate the sequence numbers in any TCP SACK options 4056 * (Selective ACK). We could optionally validate the SACK values 4057 * against the current ACK window, either forwards or backwards, but 4058 * I'm not confident that SACK has been implemented properly 4059 * everywhere. It wouldn't surprise me if several stacks accidentally 4060 * SACK too far backwards of previously ACKed data. There really aren't 4061 * any security implications of bad SACKing unless the target stack 4062 * doesn't validate the option length correctly. Someone trying to 4063 * spoof into a TCP connection won't bother blindly sending SACK 4064 * options anyway. 4065 */ 4066 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4067 if (pf_modulate_sack(m, off, pd, th, dst)) 4068 *copyback = 1; 4069 } 4070 4071 4072 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4073 if (SEQ_GEQ(src->seqhi, end) && 4074 /* Last octet inside other's window space */ 4075 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4076 /* Retrans: not more than one window back */ 4077 (ackskew >= -MAXACKWINDOW) && 4078 /* Acking not more than one reassembled fragment backwards */ 4079 (ackskew <= (MAXACKWINDOW << sws)) && 4080 /* Acking not more than one window forward */ 4081 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4082 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4083 (pd->flags & PFDESC_IP_REAS) == 0)) { 4084 /* Require an exact/+1 sequence match on resets when possible */ 4085 4086 if (dst->scrub || src->scrub) { 4087 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4088 *state, src, dst, copyback)) 4089 return (PF_DROP); 4090 } 4091 4092 /* update max window */ 4093 if (src->max_win < win) 4094 src->max_win = win; 4095 /* synchronize sequencing */ 4096 if (SEQ_GT(end, src->seqlo)) 4097 src->seqlo = end; 4098 /* slide the window of what the other end can send */ 4099 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4100 dst->seqhi = ack + MAX((win << sws), 1); 4101 4102 4103 /* update states */ 4104 if (th->th_flags & TH_SYN) 4105 if (src->state < TCPS_SYN_SENT) 4106 src->state = TCPS_SYN_SENT; 4107 if (th->th_flags & TH_FIN) 4108 if (src->state < TCPS_CLOSING) 4109 src->state = TCPS_CLOSING; 4110 if (th->th_flags & TH_ACK) { 4111 if (dst->state == TCPS_SYN_SENT) { 4112 dst->state = TCPS_ESTABLISHED; 4113 if (src->state == TCPS_ESTABLISHED && 4114 (*state)->src_node != NULL && 4115 pf_src_connlimit(state)) { 4116 REASON_SET(reason, PFRES_SRCLIMIT); 4117 return (PF_DROP); 4118 } 4119 } else if (dst->state == TCPS_CLOSING) 4120 dst->state = TCPS_FIN_WAIT_2; 4121 } 4122 if (th->th_flags & TH_RST) 4123 src->state = dst->state = TCPS_TIME_WAIT; 4124 4125 /* update expire time */ 4126 (*state)->expire = time_uptime; 4127 if (src->state >= TCPS_FIN_WAIT_2 && 4128 dst->state >= TCPS_FIN_WAIT_2) 4129 (*state)->timeout = PFTM_TCP_CLOSED; 4130 else if (src->state >= TCPS_CLOSING && 4131 dst->state >= TCPS_CLOSING) 4132 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4133 else if (src->state < TCPS_ESTABLISHED || 4134 dst->state < TCPS_ESTABLISHED) 4135 (*state)->timeout = PFTM_TCP_OPENING; 4136 else if (src->state >= TCPS_CLOSING || 4137 dst->state >= TCPS_CLOSING) 4138 (*state)->timeout = PFTM_TCP_CLOSING; 4139 else 4140 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4141 4142 /* Fall through to PASS packet */ 4143 4144 } else if ((dst->state < TCPS_SYN_SENT || 4145 dst->state >= TCPS_FIN_WAIT_2 || 4146 src->state >= TCPS_FIN_WAIT_2) && 4147 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4148 /* Within a window forward of the originating packet */ 4149 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4150 /* Within a window backward of the originating packet */ 4151 4152 /* 4153 * This currently handles three situations: 4154 * 1) Stupid stacks will shotgun SYNs before their peer 4155 * replies. 4156 * 2) When PF catches an already established stream (the 4157 * firewall rebooted, the state table was flushed, routes 4158 * changed...) 4159 * 3) Packets get funky immediately after the connection 4160 * closes (this should catch Solaris spurious ACK|FINs 4161 * that web servers like to spew after a close) 4162 * 4163 * This must be a little more careful than the above code 4164 * since packet floods will also be caught here. We don't 4165 * update the TTL here to mitigate the damage of a packet 4166 * flood and so the same code can handle awkward establishment 4167 * and a loosened connection close. 4168 * In the establishment case, a correct peer response will 4169 * validate the connection, go through the normal state code 4170 * and keep updating the state TTL. 4171 */ 4172 4173 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4174 printf("pf: loose state match: "); 4175 pf_print_state(*state); 4176 pf_print_flags(th->th_flags); 4177 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4178 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4179 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4180 (unsigned long long)(*state)->packets[1], 4181 pd->dir == PF_IN ? "in" : "out", 4182 pd->dir == (*state)->direction ? "fwd" : "rev"); 4183 } 4184 4185 if (dst->scrub || src->scrub) { 4186 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4187 *state, src, dst, copyback)) 4188 return (PF_DROP); 4189 } 4190 4191 /* update max window */ 4192 if (src->max_win < win) 4193 src->max_win = win; 4194 /* synchronize sequencing */ 4195 if (SEQ_GT(end, src->seqlo)) 4196 src->seqlo = end; 4197 /* slide the window of what the other end can send */ 4198 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4199 dst->seqhi = ack + MAX((win << sws), 1); 4200 4201 /* 4202 * Cannot set dst->seqhi here since this could be a shotgunned 4203 * SYN and not an already established connection. 4204 */ 4205 4206 if (th->th_flags & TH_FIN) 4207 if (src->state < TCPS_CLOSING) 4208 src->state = TCPS_CLOSING; 4209 if (th->th_flags & TH_RST) 4210 src->state = dst->state = TCPS_TIME_WAIT; 4211 4212 /* Fall through to PASS packet */ 4213 4214 } else { 4215 if ((*state)->dst.state == TCPS_SYN_SENT && 4216 (*state)->src.state == TCPS_SYN_SENT) { 4217 /* Send RST for state mismatches during handshake */ 4218 if (!(th->th_flags & TH_RST)) 4219 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4220 pd->dst, pd->src, th->th_dport, 4221 th->th_sport, ntohl(th->th_ack), 0, 4222 TH_RST, 0, 0, 4223 (*state)->rule.ptr->return_ttl, 1, 0, 4224 kif->pfik_ifp); 4225 src->seqlo = 0; 4226 src->seqhi = 1; 4227 src->max_win = 1; 4228 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4229 printf("pf: BAD state: "); 4230 pf_print_state(*state); 4231 pf_print_flags(th->th_flags); 4232 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4233 "pkts=%llu:%llu dir=%s,%s\n", 4234 seq, orig_seq, ack, pd->p_len, ackskew, 4235 (unsigned long long)(*state)->packets[0], 4236 (unsigned long long)(*state)->packets[1], 4237 pd->dir == PF_IN ? "in" : "out", 4238 pd->dir == (*state)->direction ? "fwd" : "rev"); 4239 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4240 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4241 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4242 ' ': '2', 4243 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4244 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4245 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4246 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4247 } 4248 REASON_SET(reason, PFRES_BADSTATE); 4249 return (PF_DROP); 4250 } 4251 4252 return (PF_PASS); 4253 } 4254 4255 static int 4256 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4257 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4258 { 4259 struct tcphdr *th = pd->hdr.tcp; 4260 4261 if (th->th_flags & TH_SYN) 4262 if (src->state < TCPS_SYN_SENT) 4263 src->state = TCPS_SYN_SENT; 4264 if (th->th_flags & TH_FIN) 4265 if (src->state < TCPS_CLOSING) 4266 src->state = TCPS_CLOSING; 4267 if (th->th_flags & TH_ACK) { 4268 if (dst->state == TCPS_SYN_SENT) { 4269 dst->state = TCPS_ESTABLISHED; 4270 if (src->state == TCPS_ESTABLISHED && 4271 (*state)->src_node != NULL && 4272 pf_src_connlimit(state)) { 4273 REASON_SET(reason, PFRES_SRCLIMIT); 4274 return (PF_DROP); 4275 } 4276 } else if (dst->state == TCPS_CLOSING) { 4277 dst->state = TCPS_FIN_WAIT_2; 4278 } else if (src->state == TCPS_SYN_SENT && 4279 dst->state < TCPS_SYN_SENT) { 4280 /* 4281 * Handle a special sloppy case where we only see one 4282 * half of the connection. If there is a ACK after 4283 * the initial SYN without ever seeing a packet from 4284 * the destination, set the connection to established. 4285 */ 4286 dst->state = src->state = TCPS_ESTABLISHED; 4287 if ((*state)->src_node != NULL && 4288 pf_src_connlimit(state)) { 4289 REASON_SET(reason, PFRES_SRCLIMIT); 4290 return (PF_DROP); 4291 } 4292 } else if (src->state == TCPS_CLOSING && 4293 dst->state == TCPS_ESTABLISHED && 4294 dst->seqlo == 0) { 4295 /* 4296 * Handle the closing of half connections where we 4297 * don't see the full bidirectional FIN/ACK+ACK 4298 * handshake. 4299 */ 4300 dst->state = TCPS_CLOSING; 4301 } 4302 } 4303 if (th->th_flags & TH_RST) 4304 src->state = dst->state = TCPS_TIME_WAIT; 4305 4306 /* update expire time */ 4307 (*state)->expire = time_uptime; 4308 if (src->state >= TCPS_FIN_WAIT_2 && 4309 dst->state >= TCPS_FIN_WAIT_2) 4310 (*state)->timeout = PFTM_TCP_CLOSED; 4311 else if (src->state >= TCPS_CLOSING && 4312 dst->state >= TCPS_CLOSING) 4313 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4314 else if (src->state < TCPS_ESTABLISHED || 4315 dst->state < TCPS_ESTABLISHED) 4316 (*state)->timeout = PFTM_TCP_OPENING; 4317 else if (src->state >= TCPS_CLOSING || 4318 dst->state >= TCPS_CLOSING) 4319 (*state)->timeout = PFTM_TCP_CLOSING; 4320 else 4321 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4322 4323 return (PF_PASS); 4324 } 4325 4326 static int 4327 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4328 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4329 u_short *reason) 4330 { 4331 struct pf_state_key_cmp key; 4332 struct tcphdr *th = pd->hdr.tcp; 4333 int copyback = 0; 4334 struct pf_state_peer *src, *dst; 4335 struct pf_state_key *sk; 4336 4337 bzero(&key, sizeof(key)); 4338 key.af = pd->af; 4339 key.proto = IPPROTO_TCP; 4340 if (direction == PF_IN) { /* wire side, straight */ 4341 PF_ACPY(&key.addr[0], pd->src, key.af); 4342 PF_ACPY(&key.addr[1], pd->dst, key.af); 4343 key.port[0] = th->th_sport; 4344 key.port[1] = th->th_dport; 4345 } else { /* stack side, reverse */ 4346 PF_ACPY(&key.addr[1], pd->src, key.af); 4347 PF_ACPY(&key.addr[0], pd->dst, key.af); 4348 key.port[1] = th->th_sport; 4349 key.port[0] = th->th_dport; 4350 } 4351 4352 STATE_LOOKUP(kif, &key, direction, *state, pd); 4353 4354 if (direction == (*state)->direction) { 4355 src = &(*state)->src; 4356 dst = &(*state)->dst; 4357 } else { 4358 src = &(*state)->dst; 4359 dst = &(*state)->src; 4360 } 4361 4362 sk = (*state)->key[pd->didx]; 4363 4364 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4365 if (direction != (*state)->direction) { 4366 REASON_SET(reason, PFRES_SYNPROXY); 4367 return (PF_SYNPROXY_DROP); 4368 } 4369 if (th->th_flags & TH_SYN) { 4370 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4371 REASON_SET(reason, PFRES_SYNPROXY); 4372 return (PF_DROP); 4373 } 4374 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4375 pd->src, th->th_dport, th->th_sport, 4376 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4377 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4378 REASON_SET(reason, PFRES_SYNPROXY); 4379 return (PF_SYNPROXY_DROP); 4380 } else if (!(th->th_flags & TH_ACK) || 4381 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4382 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4383 REASON_SET(reason, PFRES_SYNPROXY); 4384 return (PF_DROP); 4385 } else if ((*state)->src_node != NULL && 4386 pf_src_connlimit(state)) { 4387 REASON_SET(reason, PFRES_SRCLIMIT); 4388 return (PF_DROP); 4389 } else 4390 (*state)->src.state = PF_TCPS_PROXY_DST; 4391 } 4392 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4393 if (direction == (*state)->direction) { 4394 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4395 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4396 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4397 REASON_SET(reason, PFRES_SYNPROXY); 4398 return (PF_DROP); 4399 } 4400 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4401 if ((*state)->dst.seqhi == 1) 4402 (*state)->dst.seqhi = htonl(arc4random()); 4403 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4404 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4405 sk->port[pd->sidx], sk->port[pd->didx], 4406 (*state)->dst.seqhi, 0, TH_SYN, 0, 4407 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4408 REASON_SET(reason, PFRES_SYNPROXY); 4409 return (PF_SYNPROXY_DROP); 4410 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4411 (TH_SYN|TH_ACK)) || 4412 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4413 REASON_SET(reason, PFRES_SYNPROXY); 4414 return (PF_DROP); 4415 } else { 4416 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4417 (*state)->dst.seqlo = ntohl(th->th_seq); 4418 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4419 pd->src, th->th_dport, th->th_sport, 4420 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4421 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4422 (*state)->tag, NULL); 4423 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4424 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4425 sk->port[pd->sidx], sk->port[pd->didx], 4426 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4427 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4428 (*state)->src.seqdiff = (*state)->dst.seqhi - 4429 (*state)->src.seqlo; 4430 (*state)->dst.seqdiff = (*state)->src.seqhi - 4431 (*state)->dst.seqlo; 4432 (*state)->src.seqhi = (*state)->src.seqlo + 4433 (*state)->dst.max_win; 4434 (*state)->dst.seqhi = (*state)->dst.seqlo + 4435 (*state)->src.max_win; 4436 (*state)->src.wscale = (*state)->dst.wscale = 0; 4437 (*state)->src.state = (*state)->dst.state = 4438 TCPS_ESTABLISHED; 4439 REASON_SET(reason, PFRES_SYNPROXY); 4440 return (PF_SYNPROXY_DROP); 4441 } 4442 } 4443 4444 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4445 dst->state >= TCPS_FIN_WAIT_2 && 4446 src->state >= TCPS_FIN_WAIT_2) { 4447 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4448 printf("pf: state reuse "); 4449 pf_print_state(*state); 4450 pf_print_flags(th->th_flags); 4451 printf("\n"); 4452 } 4453 /* XXX make sure it's the same direction ?? */ 4454 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4455 pf_unlink_state(*state, PF_ENTER_LOCKED); 4456 *state = NULL; 4457 return (PF_DROP); 4458 } 4459 4460 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4461 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4462 return (PF_DROP); 4463 } else { 4464 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4465 ©back) == PF_DROP) 4466 return (PF_DROP); 4467 } 4468 4469 /* translate source/destination address, if necessary */ 4470 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4471 struct pf_state_key *nk = (*state)->key[pd->didx]; 4472 4473 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4474 nk->port[pd->sidx] != th->th_sport) 4475 pf_change_ap(m, pd->src, &th->th_sport, 4476 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4477 nk->port[pd->sidx], 0, pd->af); 4478 4479 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4480 nk->port[pd->didx] != th->th_dport) 4481 pf_change_ap(m, pd->dst, &th->th_dport, 4482 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4483 nk->port[pd->didx], 0, pd->af); 4484 copyback = 1; 4485 } 4486 4487 /* Copyback sequence modulation or stateful scrub changes if needed */ 4488 if (copyback) 4489 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4490 4491 return (PF_PASS); 4492 } 4493 4494 static int 4495 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4496 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4497 { 4498 struct pf_state_peer *src, *dst; 4499 struct pf_state_key_cmp key; 4500 struct udphdr *uh = pd->hdr.udp; 4501 4502 bzero(&key, sizeof(key)); 4503 key.af = pd->af; 4504 key.proto = IPPROTO_UDP; 4505 if (direction == PF_IN) { /* wire side, straight */ 4506 PF_ACPY(&key.addr[0], pd->src, key.af); 4507 PF_ACPY(&key.addr[1], pd->dst, key.af); 4508 key.port[0] = uh->uh_sport; 4509 key.port[1] = uh->uh_dport; 4510 } else { /* stack side, reverse */ 4511 PF_ACPY(&key.addr[1], pd->src, key.af); 4512 PF_ACPY(&key.addr[0], pd->dst, key.af); 4513 key.port[1] = uh->uh_sport; 4514 key.port[0] = uh->uh_dport; 4515 } 4516 4517 STATE_LOOKUP(kif, &key, direction, *state, pd); 4518 4519 if (direction == (*state)->direction) { 4520 src = &(*state)->src; 4521 dst = &(*state)->dst; 4522 } else { 4523 src = &(*state)->dst; 4524 dst = &(*state)->src; 4525 } 4526 4527 /* update states */ 4528 if (src->state < PFUDPS_SINGLE) 4529 src->state = PFUDPS_SINGLE; 4530 if (dst->state == PFUDPS_SINGLE) 4531 dst->state = PFUDPS_MULTIPLE; 4532 4533 /* update expire time */ 4534 (*state)->expire = time_uptime; 4535 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4536 (*state)->timeout = PFTM_UDP_MULTIPLE; 4537 else 4538 (*state)->timeout = PFTM_UDP_SINGLE; 4539 4540 /* translate source/destination address, if necessary */ 4541 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4542 struct pf_state_key *nk = (*state)->key[pd->didx]; 4543 4544 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4545 nk->port[pd->sidx] != uh->uh_sport) 4546 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4547 &uh->uh_sum, &nk->addr[pd->sidx], 4548 nk->port[pd->sidx], 1, pd->af); 4549 4550 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4551 nk->port[pd->didx] != uh->uh_dport) 4552 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4553 &uh->uh_sum, &nk->addr[pd->didx], 4554 nk->port[pd->didx], 1, pd->af); 4555 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4556 } 4557 4558 return (PF_PASS); 4559 } 4560 4561 static int 4562 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4563 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4564 { 4565 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4566 u_int16_t icmpid = 0, *icmpsum; 4567 u_int8_t icmptype; 4568 int state_icmp = 0; 4569 struct pf_state_key_cmp key; 4570 4571 bzero(&key, sizeof(key)); 4572 switch (pd->proto) { 4573 #ifdef INET 4574 case IPPROTO_ICMP: 4575 icmptype = pd->hdr.icmp->icmp_type; 4576 icmpid = pd->hdr.icmp->icmp_id; 4577 icmpsum = &pd->hdr.icmp->icmp_cksum; 4578 4579 if (icmptype == ICMP_UNREACH || 4580 icmptype == ICMP_SOURCEQUENCH || 4581 icmptype == ICMP_REDIRECT || 4582 icmptype == ICMP_TIMXCEED || 4583 icmptype == ICMP_PARAMPROB) 4584 state_icmp++; 4585 break; 4586 #endif /* INET */ 4587 #ifdef INET6 4588 case IPPROTO_ICMPV6: 4589 icmptype = pd->hdr.icmp6->icmp6_type; 4590 icmpid = pd->hdr.icmp6->icmp6_id; 4591 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4592 4593 if (icmptype == ICMP6_DST_UNREACH || 4594 icmptype == ICMP6_PACKET_TOO_BIG || 4595 icmptype == ICMP6_TIME_EXCEEDED || 4596 icmptype == ICMP6_PARAM_PROB) 4597 state_icmp++; 4598 break; 4599 #endif /* INET6 */ 4600 } 4601 4602 if (!state_icmp) { 4603 4604 /* 4605 * ICMP query/reply message not related to a TCP/UDP packet. 4606 * Search for an ICMP state. 4607 */ 4608 key.af = pd->af; 4609 key.proto = pd->proto; 4610 key.port[0] = key.port[1] = icmpid; 4611 if (direction == PF_IN) { /* wire side, straight */ 4612 PF_ACPY(&key.addr[0], pd->src, key.af); 4613 PF_ACPY(&key.addr[1], pd->dst, key.af); 4614 } else { /* stack side, reverse */ 4615 PF_ACPY(&key.addr[1], pd->src, key.af); 4616 PF_ACPY(&key.addr[0], pd->dst, key.af); 4617 } 4618 4619 STATE_LOOKUP(kif, &key, direction, *state, pd); 4620 4621 (*state)->expire = time_uptime; 4622 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4623 4624 /* translate source/destination address, if necessary */ 4625 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4626 struct pf_state_key *nk = (*state)->key[pd->didx]; 4627 4628 switch (pd->af) { 4629 #ifdef INET 4630 case AF_INET: 4631 if (PF_ANEQ(pd->src, 4632 &nk->addr[pd->sidx], AF_INET)) 4633 pf_change_a(&saddr->v4.s_addr, 4634 pd->ip_sum, 4635 nk->addr[pd->sidx].v4.s_addr, 0); 4636 4637 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4638 AF_INET)) 4639 pf_change_a(&daddr->v4.s_addr, 4640 pd->ip_sum, 4641 nk->addr[pd->didx].v4.s_addr, 0); 4642 4643 if (nk->port[0] != 4644 pd->hdr.icmp->icmp_id) { 4645 pd->hdr.icmp->icmp_cksum = 4646 pf_cksum_fixup( 4647 pd->hdr.icmp->icmp_cksum, icmpid, 4648 nk->port[pd->sidx], 0); 4649 pd->hdr.icmp->icmp_id = 4650 nk->port[pd->sidx]; 4651 } 4652 4653 m_copyback(m, off, ICMP_MINLEN, 4654 (caddr_t )pd->hdr.icmp); 4655 break; 4656 #endif /* INET */ 4657 #ifdef INET6 4658 case AF_INET6: 4659 if (PF_ANEQ(pd->src, 4660 &nk->addr[pd->sidx], AF_INET6)) 4661 pf_change_a6(saddr, 4662 &pd->hdr.icmp6->icmp6_cksum, 4663 &nk->addr[pd->sidx], 0); 4664 4665 if (PF_ANEQ(pd->dst, 4666 &nk->addr[pd->didx], AF_INET6)) 4667 pf_change_a6(daddr, 4668 &pd->hdr.icmp6->icmp6_cksum, 4669 &nk->addr[pd->didx], 0); 4670 4671 m_copyback(m, off, sizeof(struct icmp6_hdr), 4672 (caddr_t )pd->hdr.icmp6); 4673 break; 4674 #endif /* INET6 */ 4675 } 4676 } 4677 return (PF_PASS); 4678 4679 } else { 4680 /* 4681 * ICMP error message in response to a TCP/UDP packet. 4682 * Extract the inner TCP/UDP header and search for that state. 4683 */ 4684 4685 struct pf_pdesc pd2; 4686 bzero(&pd2, sizeof pd2); 4687 #ifdef INET 4688 struct ip h2; 4689 #endif /* INET */ 4690 #ifdef INET6 4691 struct ip6_hdr h2_6; 4692 int terminal = 0; 4693 #endif /* INET6 */ 4694 int ipoff2 = 0; 4695 int off2 = 0; 4696 4697 pd2.af = pd->af; 4698 /* Payload packet is from the opposite direction. */ 4699 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4700 pd2.didx = (direction == PF_IN) ? 0 : 1; 4701 switch (pd->af) { 4702 #ifdef INET 4703 case AF_INET: 4704 /* offset of h2 in mbuf chain */ 4705 ipoff2 = off + ICMP_MINLEN; 4706 4707 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4708 NULL, reason, pd2.af)) { 4709 DPFPRINTF(PF_DEBUG_MISC, 4710 ("pf: ICMP error message too short " 4711 "(ip)\n")); 4712 return (PF_DROP); 4713 } 4714 /* 4715 * ICMP error messages don't refer to non-first 4716 * fragments 4717 */ 4718 if (h2.ip_off & htons(IP_OFFMASK)) { 4719 REASON_SET(reason, PFRES_FRAG); 4720 return (PF_DROP); 4721 } 4722 4723 /* offset of protocol header that follows h2 */ 4724 off2 = ipoff2 + (h2.ip_hl << 2); 4725 4726 pd2.proto = h2.ip_p; 4727 pd2.src = (struct pf_addr *)&h2.ip_src; 4728 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4729 pd2.ip_sum = &h2.ip_sum; 4730 break; 4731 #endif /* INET */ 4732 #ifdef INET6 4733 case AF_INET6: 4734 ipoff2 = off + sizeof(struct icmp6_hdr); 4735 4736 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4737 NULL, reason, pd2.af)) { 4738 DPFPRINTF(PF_DEBUG_MISC, 4739 ("pf: ICMP error message too short " 4740 "(ip6)\n")); 4741 return (PF_DROP); 4742 } 4743 pd2.proto = h2_6.ip6_nxt; 4744 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4745 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4746 pd2.ip_sum = NULL; 4747 off2 = ipoff2 + sizeof(h2_6); 4748 do { 4749 switch (pd2.proto) { 4750 case IPPROTO_FRAGMENT: 4751 /* 4752 * ICMPv6 error messages for 4753 * non-first fragments 4754 */ 4755 REASON_SET(reason, PFRES_FRAG); 4756 return (PF_DROP); 4757 case IPPROTO_AH: 4758 case IPPROTO_HOPOPTS: 4759 case IPPROTO_ROUTING: 4760 case IPPROTO_DSTOPTS: { 4761 /* get next header and header length */ 4762 struct ip6_ext opt6; 4763 4764 if (!pf_pull_hdr(m, off2, &opt6, 4765 sizeof(opt6), NULL, reason, 4766 pd2.af)) { 4767 DPFPRINTF(PF_DEBUG_MISC, 4768 ("pf: ICMPv6 short opt\n")); 4769 return (PF_DROP); 4770 } 4771 if (pd2.proto == IPPROTO_AH) 4772 off2 += (opt6.ip6e_len + 2) * 4; 4773 else 4774 off2 += (opt6.ip6e_len + 1) * 8; 4775 pd2.proto = opt6.ip6e_nxt; 4776 /* goto the next header */ 4777 break; 4778 } 4779 default: 4780 terminal++; 4781 break; 4782 } 4783 } while (!terminal); 4784 break; 4785 #endif /* INET6 */ 4786 } 4787 4788 switch (pd2.proto) { 4789 case IPPROTO_TCP: { 4790 struct tcphdr th; 4791 u_int32_t seq; 4792 struct pf_state_peer *src, *dst; 4793 u_int8_t dws; 4794 int copyback = 0; 4795 4796 /* 4797 * Only the first 8 bytes of the TCP header can be 4798 * expected. Don't access any TCP header fields after 4799 * th_seq, an ackskew test is not possible. 4800 */ 4801 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4802 pd2.af)) { 4803 DPFPRINTF(PF_DEBUG_MISC, 4804 ("pf: ICMP error message too short " 4805 "(tcp)\n")); 4806 return (PF_DROP); 4807 } 4808 4809 key.af = pd2.af; 4810 key.proto = IPPROTO_TCP; 4811 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4812 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4813 key.port[pd2.sidx] = th.th_sport; 4814 key.port[pd2.didx] = th.th_dport; 4815 4816 STATE_LOOKUP(kif, &key, direction, *state, pd); 4817 4818 if (direction == (*state)->direction) { 4819 src = &(*state)->dst; 4820 dst = &(*state)->src; 4821 } else { 4822 src = &(*state)->src; 4823 dst = &(*state)->dst; 4824 } 4825 4826 if (src->wscale && dst->wscale) 4827 dws = dst->wscale & PF_WSCALE_MASK; 4828 else 4829 dws = 0; 4830 4831 /* Demodulate sequence number */ 4832 seq = ntohl(th.th_seq) - src->seqdiff; 4833 if (src->seqdiff) { 4834 pf_change_a(&th.th_seq, icmpsum, 4835 htonl(seq), 0); 4836 copyback = 1; 4837 } 4838 4839 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4840 (!SEQ_GEQ(src->seqhi, seq) || 4841 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4842 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4843 printf("pf: BAD ICMP %d:%d ", 4844 icmptype, pd->hdr.icmp->icmp_code); 4845 pf_print_host(pd->src, 0, pd->af); 4846 printf(" -> "); 4847 pf_print_host(pd->dst, 0, pd->af); 4848 printf(" state: "); 4849 pf_print_state(*state); 4850 printf(" seq=%u\n", seq); 4851 } 4852 REASON_SET(reason, PFRES_BADSTATE); 4853 return (PF_DROP); 4854 } else { 4855 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4856 printf("pf: OK ICMP %d:%d ", 4857 icmptype, pd->hdr.icmp->icmp_code); 4858 pf_print_host(pd->src, 0, pd->af); 4859 printf(" -> "); 4860 pf_print_host(pd->dst, 0, pd->af); 4861 printf(" state: "); 4862 pf_print_state(*state); 4863 printf(" seq=%u\n", seq); 4864 } 4865 } 4866 4867 /* translate source/destination address, if necessary */ 4868 if ((*state)->key[PF_SK_WIRE] != 4869 (*state)->key[PF_SK_STACK]) { 4870 struct pf_state_key *nk = 4871 (*state)->key[pd->didx]; 4872 4873 if (PF_ANEQ(pd2.src, 4874 &nk->addr[pd2.sidx], pd2.af) || 4875 nk->port[pd2.sidx] != th.th_sport) 4876 pf_change_icmp(pd2.src, &th.th_sport, 4877 daddr, &nk->addr[pd2.sidx], 4878 nk->port[pd2.sidx], NULL, 4879 pd2.ip_sum, icmpsum, 4880 pd->ip_sum, 0, pd2.af); 4881 4882 if (PF_ANEQ(pd2.dst, 4883 &nk->addr[pd2.didx], pd2.af) || 4884 nk->port[pd2.didx] != th.th_dport) 4885 pf_change_icmp(pd2.dst, &th.th_dport, 4886 saddr, &nk->addr[pd2.didx], 4887 nk->port[pd2.didx], NULL, 4888 pd2.ip_sum, icmpsum, 4889 pd->ip_sum, 0, pd2.af); 4890 copyback = 1; 4891 } 4892 4893 if (copyback) { 4894 switch (pd2.af) { 4895 #ifdef INET 4896 case AF_INET: 4897 m_copyback(m, off, ICMP_MINLEN, 4898 (caddr_t )pd->hdr.icmp); 4899 m_copyback(m, ipoff2, sizeof(h2), 4900 (caddr_t )&h2); 4901 break; 4902 #endif /* INET */ 4903 #ifdef INET6 4904 case AF_INET6: 4905 m_copyback(m, off, 4906 sizeof(struct icmp6_hdr), 4907 (caddr_t )pd->hdr.icmp6); 4908 m_copyback(m, ipoff2, sizeof(h2_6), 4909 (caddr_t )&h2_6); 4910 break; 4911 #endif /* INET6 */ 4912 } 4913 m_copyback(m, off2, 8, (caddr_t)&th); 4914 } 4915 4916 return (PF_PASS); 4917 break; 4918 } 4919 case IPPROTO_UDP: { 4920 struct udphdr uh; 4921 4922 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4923 NULL, reason, pd2.af)) { 4924 DPFPRINTF(PF_DEBUG_MISC, 4925 ("pf: ICMP error message too short " 4926 "(udp)\n")); 4927 return (PF_DROP); 4928 } 4929 4930 key.af = pd2.af; 4931 key.proto = IPPROTO_UDP; 4932 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4933 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4934 key.port[pd2.sidx] = uh.uh_sport; 4935 key.port[pd2.didx] = uh.uh_dport; 4936 4937 STATE_LOOKUP(kif, &key, direction, *state, pd); 4938 4939 /* translate source/destination address, if necessary */ 4940 if ((*state)->key[PF_SK_WIRE] != 4941 (*state)->key[PF_SK_STACK]) { 4942 struct pf_state_key *nk = 4943 (*state)->key[pd->didx]; 4944 4945 if (PF_ANEQ(pd2.src, 4946 &nk->addr[pd2.sidx], pd2.af) || 4947 nk->port[pd2.sidx] != uh.uh_sport) 4948 pf_change_icmp(pd2.src, &uh.uh_sport, 4949 daddr, &nk->addr[pd2.sidx], 4950 nk->port[pd2.sidx], &uh.uh_sum, 4951 pd2.ip_sum, icmpsum, 4952 pd->ip_sum, 1, pd2.af); 4953 4954 if (PF_ANEQ(pd2.dst, 4955 &nk->addr[pd2.didx], pd2.af) || 4956 nk->port[pd2.didx] != uh.uh_dport) 4957 pf_change_icmp(pd2.dst, &uh.uh_dport, 4958 saddr, &nk->addr[pd2.didx], 4959 nk->port[pd2.didx], &uh.uh_sum, 4960 pd2.ip_sum, icmpsum, 4961 pd->ip_sum, 1, pd2.af); 4962 4963 switch (pd2.af) { 4964 #ifdef INET 4965 case AF_INET: 4966 m_copyback(m, off, ICMP_MINLEN, 4967 (caddr_t )pd->hdr.icmp); 4968 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 4969 break; 4970 #endif /* INET */ 4971 #ifdef INET6 4972 case AF_INET6: 4973 m_copyback(m, off, 4974 sizeof(struct icmp6_hdr), 4975 (caddr_t )pd->hdr.icmp6); 4976 m_copyback(m, ipoff2, sizeof(h2_6), 4977 (caddr_t )&h2_6); 4978 break; 4979 #endif /* INET6 */ 4980 } 4981 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 4982 } 4983 return (PF_PASS); 4984 break; 4985 } 4986 #ifdef INET 4987 case IPPROTO_ICMP: { 4988 struct icmp iih; 4989 4990 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 4991 NULL, reason, pd2.af)) { 4992 DPFPRINTF(PF_DEBUG_MISC, 4993 ("pf: ICMP error message too short i" 4994 "(icmp)\n")); 4995 return (PF_DROP); 4996 } 4997 4998 key.af = pd2.af; 4999 key.proto = IPPROTO_ICMP; 5000 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5001 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5002 key.port[0] = key.port[1] = iih.icmp_id; 5003 5004 STATE_LOOKUP(kif, &key, direction, *state, pd); 5005 5006 /* translate source/destination address, if necessary */ 5007 if ((*state)->key[PF_SK_WIRE] != 5008 (*state)->key[PF_SK_STACK]) { 5009 struct pf_state_key *nk = 5010 (*state)->key[pd->didx]; 5011 5012 if (PF_ANEQ(pd2.src, 5013 &nk->addr[pd2.sidx], pd2.af) || 5014 nk->port[pd2.sidx] != iih.icmp_id) 5015 pf_change_icmp(pd2.src, &iih.icmp_id, 5016 daddr, &nk->addr[pd2.sidx], 5017 nk->port[pd2.sidx], NULL, 5018 pd2.ip_sum, icmpsum, 5019 pd->ip_sum, 0, AF_INET); 5020 5021 if (PF_ANEQ(pd2.dst, 5022 &nk->addr[pd2.didx], pd2.af) || 5023 nk->port[pd2.didx] != iih.icmp_id) 5024 pf_change_icmp(pd2.dst, &iih.icmp_id, 5025 saddr, &nk->addr[pd2.didx], 5026 nk->port[pd2.didx], NULL, 5027 pd2.ip_sum, icmpsum, 5028 pd->ip_sum, 0, AF_INET); 5029 5030 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5031 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5032 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5033 } 5034 return (PF_PASS); 5035 break; 5036 } 5037 #endif /* INET */ 5038 #ifdef INET6 5039 case IPPROTO_ICMPV6: { 5040 struct icmp6_hdr iih; 5041 5042 if (!pf_pull_hdr(m, off2, &iih, 5043 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5044 DPFPRINTF(PF_DEBUG_MISC, 5045 ("pf: ICMP error message too short " 5046 "(icmp6)\n")); 5047 return (PF_DROP); 5048 } 5049 5050 key.af = pd2.af; 5051 key.proto = IPPROTO_ICMPV6; 5052 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5053 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5054 key.port[0] = key.port[1] = iih.icmp6_id; 5055 5056 STATE_LOOKUP(kif, &key, direction, *state, pd); 5057 5058 /* translate source/destination address, if necessary */ 5059 if ((*state)->key[PF_SK_WIRE] != 5060 (*state)->key[PF_SK_STACK]) { 5061 struct pf_state_key *nk = 5062 (*state)->key[pd->didx]; 5063 5064 if (PF_ANEQ(pd2.src, 5065 &nk->addr[pd2.sidx], pd2.af) || 5066 nk->port[pd2.sidx] != iih.icmp6_id) 5067 pf_change_icmp(pd2.src, &iih.icmp6_id, 5068 daddr, &nk->addr[pd2.sidx], 5069 nk->port[pd2.sidx], NULL, 5070 pd2.ip_sum, icmpsum, 5071 pd->ip_sum, 0, AF_INET6); 5072 5073 if (PF_ANEQ(pd2.dst, 5074 &nk->addr[pd2.didx], pd2.af) || 5075 nk->port[pd2.didx] != iih.icmp6_id) 5076 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5077 saddr, &nk->addr[pd2.didx], 5078 nk->port[pd2.didx], NULL, 5079 pd2.ip_sum, icmpsum, 5080 pd->ip_sum, 0, AF_INET6); 5081 5082 m_copyback(m, off, sizeof(struct icmp6_hdr), 5083 (caddr_t)pd->hdr.icmp6); 5084 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5085 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5086 (caddr_t)&iih); 5087 } 5088 return (PF_PASS); 5089 break; 5090 } 5091 #endif /* INET6 */ 5092 default: { 5093 key.af = pd2.af; 5094 key.proto = pd2.proto; 5095 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5096 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5097 key.port[0] = key.port[1] = 0; 5098 5099 STATE_LOOKUP(kif, &key, direction, *state, pd); 5100 5101 /* translate source/destination address, if necessary */ 5102 if ((*state)->key[PF_SK_WIRE] != 5103 (*state)->key[PF_SK_STACK]) { 5104 struct pf_state_key *nk = 5105 (*state)->key[pd->didx]; 5106 5107 if (PF_ANEQ(pd2.src, 5108 &nk->addr[pd2.sidx], pd2.af)) 5109 pf_change_icmp(pd2.src, NULL, daddr, 5110 &nk->addr[pd2.sidx], 0, NULL, 5111 pd2.ip_sum, icmpsum, 5112 pd->ip_sum, 0, pd2.af); 5113 5114 if (PF_ANEQ(pd2.dst, 5115 &nk->addr[pd2.didx], pd2.af)) 5116 pf_change_icmp(pd2.dst, NULL, saddr, 5117 &nk->addr[pd2.didx], 0, NULL, 5118 pd2.ip_sum, icmpsum, 5119 pd->ip_sum, 0, pd2.af); 5120 5121 switch (pd2.af) { 5122 #ifdef INET 5123 case AF_INET: 5124 m_copyback(m, off, ICMP_MINLEN, 5125 (caddr_t)pd->hdr.icmp); 5126 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5127 break; 5128 #endif /* INET */ 5129 #ifdef INET6 5130 case AF_INET6: 5131 m_copyback(m, off, 5132 sizeof(struct icmp6_hdr), 5133 (caddr_t )pd->hdr.icmp6); 5134 m_copyback(m, ipoff2, sizeof(h2_6), 5135 (caddr_t )&h2_6); 5136 break; 5137 #endif /* INET6 */ 5138 } 5139 } 5140 return (PF_PASS); 5141 break; 5142 } 5143 } 5144 } 5145 } 5146 5147 static int 5148 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5149 struct mbuf *m, struct pf_pdesc *pd) 5150 { 5151 struct pf_state_peer *src, *dst; 5152 struct pf_state_key_cmp key; 5153 5154 bzero(&key, sizeof(key)); 5155 key.af = pd->af; 5156 key.proto = pd->proto; 5157 if (direction == PF_IN) { 5158 PF_ACPY(&key.addr[0], pd->src, key.af); 5159 PF_ACPY(&key.addr[1], pd->dst, key.af); 5160 key.port[0] = key.port[1] = 0; 5161 } else { 5162 PF_ACPY(&key.addr[1], pd->src, key.af); 5163 PF_ACPY(&key.addr[0], pd->dst, key.af); 5164 key.port[1] = key.port[0] = 0; 5165 } 5166 5167 STATE_LOOKUP(kif, &key, direction, *state, pd); 5168 5169 if (direction == (*state)->direction) { 5170 src = &(*state)->src; 5171 dst = &(*state)->dst; 5172 } else { 5173 src = &(*state)->dst; 5174 dst = &(*state)->src; 5175 } 5176 5177 /* update states */ 5178 if (src->state < PFOTHERS_SINGLE) 5179 src->state = PFOTHERS_SINGLE; 5180 if (dst->state == PFOTHERS_SINGLE) 5181 dst->state = PFOTHERS_MULTIPLE; 5182 5183 /* update expire time */ 5184 (*state)->expire = time_uptime; 5185 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5186 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5187 else 5188 (*state)->timeout = PFTM_OTHER_SINGLE; 5189 5190 /* translate source/destination address, if necessary */ 5191 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5192 struct pf_state_key *nk = (*state)->key[pd->didx]; 5193 5194 KASSERT(nk, ("%s: nk is null", __func__)); 5195 KASSERT(pd, ("%s: pd is null", __func__)); 5196 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5197 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5198 switch (pd->af) { 5199 #ifdef INET 5200 case AF_INET: 5201 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5202 pf_change_a(&pd->src->v4.s_addr, 5203 pd->ip_sum, 5204 nk->addr[pd->sidx].v4.s_addr, 5205 0); 5206 5207 5208 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5209 pf_change_a(&pd->dst->v4.s_addr, 5210 pd->ip_sum, 5211 nk->addr[pd->didx].v4.s_addr, 5212 0); 5213 5214 break; 5215 #endif /* INET */ 5216 #ifdef INET6 5217 case AF_INET6: 5218 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5219 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5220 5221 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5222 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5223 #endif /* INET6 */ 5224 } 5225 } 5226 return (PF_PASS); 5227 } 5228 5229 /* 5230 * ipoff and off are measured from the start of the mbuf chain. 5231 * h must be at "ipoff" on the mbuf chain. 5232 */ 5233 void * 5234 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5235 u_short *actionp, u_short *reasonp, sa_family_t af) 5236 { 5237 switch (af) { 5238 #ifdef INET 5239 case AF_INET: { 5240 struct ip *h = mtod(m, struct ip *); 5241 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5242 5243 if (fragoff) { 5244 if (fragoff >= len) 5245 ACTION_SET(actionp, PF_PASS); 5246 else { 5247 ACTION_SET(actionp, PF_DROP); 5248 REASON_SET(reasonp, PFRES_FRAG); 5249 } 5250 return (NULL); 5251 } 5252 if (m->m_pkthdr.len < off + len || 5253 ntohs(h->ip_len) < off + len) { 5254 ACTION_SET(actionp, PF_DROP); 5255 REASON_SET(reasonp, PFRES_SHORT); 5256 return (NULL); 5257 } 5258 break; 5259 } 5260 #endif /* INET */ 5261 #ifdef INET6 5262 case AF_INET6: { 5263 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5264 5265 if (m->m_pkthdr.len < off + len || 5266 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5267 (unsigned)(off + len)) { 5268 ACTION_SET(actionp, PF_DROP); 5269 REASON_SET(reasonp, PFRES_SHORT); 5270 return (NULL); 5271 } 5272 break; 5273 } 5274 #endif /* INET6 */ 5275 } 5276 m_copydata(m, off, len, p); 5277 return (p); 5278 } 5279 5280 #ifdef RADIX_MPATH 5281 static int 5282 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5283 int rtableid) 5284 { 5285 struct radix_node_head *rnh; 5286 struct sockaddr_in *dst; 5287 int ret = 1; 5288 int check_mpath; 5289 #ifdef INET6 5290 struct sockaddr_in6 *dst6; 5291 struct route_in6 ro; 5292 #else 5293 struct route ro; 5294 #endif 5295 struct radix_node *rn; 5296 struct rtentry *rt; 5297 struct ifnet *ifp; 5298 5299 check_mpath = 0; 5300 /* XXX: stick to table 0 for now */ 5301 rnh = rt_tables_get_rnh(0, af); 5302 if (rnh != NULL && rn_mpath_capable(rnh)) 5303 check_mpath = 1; 5304 bzero(&ro, sizeof(ro)); 5305 switch (af) { 5306 case AF_INET: 5307 dst = satosin(&ro.ro_dst); 5308 dst->sin_family = AF_INET; 5309 dst->sin_len = sizeof(*dst); 5310 dst->sin_addr = addr->v4; 5311 break; 5312 #ifdef INET6 5313 case AF_INET6: 5314 /* 5315 * Skip check for addresses with embedded interface scope, 5316 * as they would always match anyway. 5317 */ 5318 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5319 goto out; 5320 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5321 dst6->sin6_family = AF_INET6; 5322 dst6->sin6_len = sizeof(*dst6); 5323 dst6->sin6_addr = addr->v6; 5324 break; 5325 #endif /* INET6 */ 5326 default: 5327 return (0); 5328 } 5329 5330 /* Skip checks for ipsec interfaces */ 5331 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5332 goto out; 5333 5334 switch (af) { 5335 #ifdef INET6 5336 case AF_INET6: 5337 in6_rtalloc_ign(&ro, 0, rtableid); 5338 break; 5339 #endif 5340 #ifdef INET 5341 case AF_INET: 5342 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5343 break; 5344 #endif 5345 } 5346 5347 if (ro.ro_rt != NULL) { 5348 /* No interface given, this is a no-route check */ 5349 if (kif == NULL) 5350 goto out; 5351 5352 if (kif->pfik_ifp == NULL) { 5353 ret = 0; 5354 goto out; 5355 } 5356 5357 /* Perform uRPF check if passed input interface */ 5358 ret = 0; 5359 rn = (struct radix_node *)ro.ro_rt; 5360 do { 5361 rt = (struct rtentry *)rn; 5362 ifp = rt->rt_ifp; 5363 5364 if (kif->pfik_ifp == ifp) 5365 ret = 1; 5366 rn = rn_mpath_next(rn); 5367 } while (check_mpath == 1 && rn != NULL && ret == 0); 5368 } else 5369 ret = 0; 5370 out: 5371 if (ro.ro_rt != NULL) 5372 RTFREE(ro.ro_rt); 5373 return (ret); 5374 } 5375 #endif 5376 5377 int 5378 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5379 int rtableid) 5380 { 5381 #ifdef INET 5382 struct nhop4_basic nh4; 5383 #endif 5384 #ifdef INET6 5385 struct nhop6_basic nh6; 5386 #endif 5387 struct ifnet *ifp; 5388 #ifdef RADIX_MPATH 5389 struct radix_node_head *rnh; 5390 5391 /* XXX: stick to table 0 for now */ 5392 rnh = rt_tables_get_rnh(0, af); 5393 if (rnh != NULL && rn_mpath_capable(rnh)) 5394 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5395 #endif 5396 /* 5397 * Skip check for addresses with embedded interface scope, 5398 * as they would always match anyway. 5399 */ 5400 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5401 return (1); 5402 5403 if (af != AF_INET && af != AF_INET6) 5404 return (0); 5405 5406 /* Skip checks for ipsec interfaces */ 5407 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5408 return (1); 5409 5410 ifp = NULL; 5411 5412 switch (af) { 5413 #ifdef INET6 5414 case AF_INET6: 5415 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5416 return (0); 5417 ifp = nh6.nh_ifp; 5418 break; 5419 #endif 5420 #ifdef INET 5421 case AF_INET: 5422 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5423 return (0); 5424 ifp = nh4.nh_ifp; 5425 break; 5426 #endif 5427 } 5428 5429 /* No interface given, this is a no-route check */ 5430 if (kif == NULL) 5431 return (1); 5432 5433 if (kif->pfik_ifp == NULL) 5434 return (0); 5435 5436 /* Perform uRPF check if passed input interface */ 5437 if (kif->pfik_ifp == ifp) 5438 return (1); 5439 return (0); 5440 } 5441 5442 #ifdef INET 5443 static void 5444 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5445 struct pf_state *s, struct pf_pdesc *pd) 5446 { 5447 struct mbuf *m0, *m1; 5448 struct sockaddr_in dst; 5449 struct ip *ip; 5450 struct ifnet *ifp = NULL; 5451 struct pf_addr naddr; 5452 struct pf_src_node *sn = NULL; 5453 int error = 0; 5454 uint16_t ip_len, ip_off; 5455 5456 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5457 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5458 __func__)); 5459 5460 if ((pd->pf_mtag == NULL && 5461 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5462 pd->pf_mtag->routed++ > 3) { 5463 m0 = *m; 5464 *m = NULL; 5465 goto bad_locked; 5466 } 5467 5468 if (r->rt == PF_DUPTO) { 5469 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5470 if (s) 5471 PF_STATE_UNLOCK(s); 5472 return; 5473 } 5474 } else { 5475 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5476 if (s) 5477 PF_STATE_UNLOCK(s); 5478 return; 5479 } 5480 m0 = *m; 5481 } 5482 5483 ip = mtod(m0, struct ip *); 5484 5485 bzero(&dst, sizeof(dst)); 5486 dst.sin_family = AF_INET; 5487 dst.sin_len = sizeof(dst); 5488 dst.sin_addr = ip->ip_dst; 5489 5490 if (TAILQ_EMPTY(&r->rpool.list)) { 5491 DPFPRINTF(PF_DEBUG_URGENT, 5492 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5493 goto bad_locked; 5494 } 5495 if (s == NULL) { 5496 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5497 &naddr, NULL, &sn); 5498 if (!PF_AZERO(&naddr, AF_INET)) 5499 dst.sin_addr.s_addr = naddr.v4.s_addr; 5500 ifp = r->rpool.cur->kif ? 5501 r->rpool.cur->kif->pfik_ifp : NULL; 5502 } else { 5503 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5504 dst.sin_addr.s_addr = 5505 s->rt_addr.v4.s_addr; 5506 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5507 PF_STATE_UNLOCK(s); 5508 } 5509 if (ifp == NULL) 5510 goto bad; 5511 5512 if (oifp != ifp) { 5513 if (pf_test(PF_OUT, 0, ifp, &m0, NULL) != PF_PASS) 5514 goto bad; 5515 else if (m0 == NULL) 5516 goto done; 5517 if (m0->m_len < sizeof(struct ip)) { 5518 DPFPRINTF(PF_DEBUG_URGENT, 5519 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5520 goto bad; 5521 } 5522 ip = mtod(m0, struct ip *); 5523 } 5524 5525 if (ifp->if_flags & IFF_LOOPBACK) 5526 m0->m_flags |= M_SKIP_FIREWALL; 5527 5528 ip_len = ntohs(ip->ip_len); 5529 ip_off = ntohs(ip->ip_off); 5530 5531 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5532 m0->m_pkthdr.csum_flags |= CSUM_IP; 5533 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5534 in_delayed_cksum(m0); 5535 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5536 } 5537 #ifdef SCTP 5538 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5539 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5540 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5541 } 5542 #endif 5543 5544 /* 5545 * If small enough for interface, or the interface will take 5546 * care of the fragmentation for us, we can just send directly. 5547 */ 5548 if (ip_len <= ifp->if_mtu || 5549 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5550 ip->ip_sum = 0; 5551 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5552 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5553 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5554 } 5555 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5556 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5557 goto done; 5558 } 5559 5560 /* Balk when DF bit is set or the interface didn't support TSO. */ 5561 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5562 error = EMSGSIZE; 5563 KMOD_IPSTAT_INC(ips_cantfrag); 5564 if (r->rt != PF_DUPTO) { 5565 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5566 ifp->if_mtu); 5567 goto done; 5568 } else 5569 goto bad; 5570 } 5571 5572 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5573 if (error) 5574 goto bad; 5575 5576 for (; m0; m0 = m1) { 5577 m1 = m0->m_nextpkt; 5578 m0->m_nextpkt = NULL; 5579 if (error == 0) { 5580 m_clrprotoflags(m0); 5581 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5582 } else 5583 m_freem(m0); 5584 } 5585 5586 if (error == 0) 5587 KMOD_IPSTAT_INC(ips_fragmented); 5588 5589 done: 5590 if (r->rt != PF_DUPTO) 5591 *m = NULL; 5592 return; 5593 5594 bad_locked: 5595 if (s) 5596 PF_STATE_UNLOCK(s); 5597 bad: 5598 m_freem(m0); 5599 goto done; 5600 } 5601 #endif /* INET */ 5602 5603 #ifdef INET6 5604 static void 5605 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5606 struct pf_state *s, struct pf_pdesc *pd) 5607 { 5608 struct mbuf *m0; 5609 struct sockaddr_in6 dst; 5610 struct ip6_hdr *ip6; 5611 struct ifnet *ifp = NULL; 5612 struct pf_addr naddr; 5613 struct pf_src_node *sn = NULL; 5614 5615 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5616 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5617 __func__)); 5618 5619 if ((pd->pf_mtag == NULL && 5620 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5621 pd->pf_mtag->routed++ > 3) { 5622 m0 = *m; 5623 *m = NULL; 5624 goto bad_locked; 5625 } 5626 5627 if (r->rt == PF_DUPTO) { 5628 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5629 if (s) 5630 PF_STATE_UNLOCK(s); 5631 return; 5632 } 5633 } else { 5634 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5635 if (s) 5636 PF_STATE_UNLOCK(s); 5637 return; 5638 } 5639 m0 = *m; 5640 } 5641 5642 ip6 = mtod(m0, struct ip6_hdr *); 5643 5644 bzero(&dst, sizeof(dst)); 5645 dst.sin6_family = AF_INET6; 5646 dst.sin6_len = sizeof(dst); 5647 dst.sin6_addr = ip6->ip6_dst; 5648 5649 if (TAILQ_EMPTY(&r->rpool.list)) { 5650 DPFPRINTF(PF_DEBUG_URGENT, 5651 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5652 goto bad_locked; 5653 } 5654 if (s == NULL) { 5655 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5656 &naddr, NULL, &sn); 5657 if (!PF_AZERO(&naddr, AF_INET6)) 5658 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5659 &naddr, AF_INET6); 5660 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5661 } else { 5662 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5663 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5664 &s->rt_addr, AF_INET6); 5665 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5666 } 5667 5668 if (s) 5669 PF_STATE_UNLOCK(s); 5670 5671 if (ifp == NULL) 5672 goto bad; 5673 5674 if (oifp != ifp) { 5675 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, NULL) != PF_PASS) 5676 goto bad; 5677 else if (m0 == NULL) 5678 goto done; 5679 if (m0->m_len < sizeof(struct ip6_hdr)) { 5680 DPFPRINTF(PF_DEBUG_URGENT, 5681 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5682 __func__)); 5683 goto bad; 5684 } 5685 ip6 = mtod(m0, struct ip6_hdr *); 5686 } 5687 5688 if (ifp->if_flags & IFF_LOOPBACK) 5689 m0->m_flags |= M_SKIP_FIREWALL; 5690 5691 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5692 ~ifp->if_hwassist) { 5693 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5694 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5695 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5696 } 5697 5698 /* 5699 * If the packet is too large for the outgoing interface, 5700 * send back an icmp6 error. 5701 */ 5702 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5703 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5704 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5705 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5706 else { 5707 in6_ifstat_inc(ifp, ifs6_in_toobig); 5708 if (r->rt != PF_DUPTO) 5709 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5710 else 5711 goto bad; 5712 } 5713 5714 done: 5715 if (r->rt != PF_DUPTO) 5716 *m = NULL; 5717 return; 5718 5719 bad_locked: 5720 if (s) 5721 PF_STATE_UNLOCK(s); 5722 bad: 5723 m_freem(m0); 5724 goto done; 5725 } 5726 #endif /* INET6 */ 5727 5728 /* 5729 * FreeBSD supports cksum offloads for the following drivers. 5730 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5731 * 5732 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5733 * network driver performed cksum including pseudo header, need to verify 5734 * csum_data 5735 * CSUM_DATA_VALID : 5736 * network driver performed cksum, needs to additional pseudo header 5737 * cksum computation with partial csum_data(i.e. lack of H/W support for 5738 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5739 * 5740 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5741 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5742 * TCP/UDP layer. 5743 * Also, set csum_data to 0xffff to force cksum validation. 5744 */ 5745 static int 5746 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5747 { 5748 u_int16_t sum = 0; 5749 int hw_assist = 0; 5750 struct ip *ip; 5751 5752 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5753 return (1); 5754 if (m->m_pkthdr.len < off + len) 5755 return (1); 5756 5757 switch (p) { 5758 case IPPROTO_TCP: 5759 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5760 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5761 sum = m->m_pkthdr.csum_data; 5762 } else { 5763 ip = mtod(m, struct ip *); 5764 sum = in_pseudo(ip->ip_src.s_addr, 5765 ip->ip_dst.s_addr, htonl((u_short)len + 5766 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5767 } 5768 sum ^= 0xffff; 5769 ++hw_assist; 5770 } 5771 break; 5772 case IPPROTO_UDP: 5773 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5774 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5775 sum = m->m_pkthdr.csum_data; 5776 } else { 5777 ip = mtod(m, struct ip *); 5778 sum = in_pseudo(ip->ip_src.s_addr, 5779 ip->ip_dst.s_addr, htonl((u_short)len + 5780 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5781 } 5782 sum ^= 0xffff; 5783 ++hw_assist; 5784 } 5785 break; 5786 case IPPROTO_ICMP: 5787 #ifdef INET6 5788 case IPPROTO_ICMPV6: 5789 #endif /* INET6 */ 5790 break; 5791 default: 5792 return (1); 5793 } 5794 5795 if (!hw_assist) { 5796 switch (af) { 5797 case AF_INET: 5798 if (p == IPPROTO_ICMP) { 5799 if (m->m_len < off) 5800 return (1); 5801 m->m_data += off; 5802 m->m_len -= off; 5803 sum = in_cksum(m, len); 5804 m->m_data -= off; 5805 m->m_len += off; 5806 } else { 5807 if (m->m_len < sizeof(struct ip)) 5808 return (1); 5809 sum = in4_cksum(m, p, off, len); 5810 } 5811 break; 5812 #ifdef INET6 5813 case AF_INET6: 5814 if (m->m_len < sizeof(struct ip6_hdr)) 5815 return (1); 5816 sum = in6_cksum(m, p, off, len); 5817 break; 5818 #endif /* INET6 */ 5819 default: 5820 return (1); 5821 } 5822 } 5823 if (sum) { 5824 switch (p) { 5825 case IPPROTO_TCP: 5826 { 5827 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5828 break; 5829 } 5830 case IPPROTO_UDP: 5831 { 5832 KMOD_UDPSTAT_INC(udps_badsum); 5833 break; 5834 } 5835 #ifdef INET 5836 case IPPROTO_ICMP: 5837 { 5838 KMOD_ICMPSTAT_INC(icps_checksum); 5839 break; 5840 } 5841 #endif 5842 #ifdef INET6 5843 case IPPROTO_ICMPV6: 5844 { 5845 KMOD_ICMP6STAT_INC(icp6s_checksum); 5846 break; 5847 } 5848 #endif /* INET6 */ 5849 } 5850 return (1); 5851 } else { 5852 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5853 m->m_pkthdr.csum_flags |= 5854 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5855 m->m_pkthdr.csum_data = 0xffff; 5856 } 5857 } 5858 return (0); 5859 } 5860 5861 5862 #ifdef INET 5863 int 5864 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5865 { 5866 struct pfi_kif *kif; 5867 u_short action, reason = 0, log = 0; 5868 struct mbuf *m = *m0; 5869 struct ip *h = NULL; 5870 struct m_tag *ipfwtag; 5871 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5872 struct pf_state *s = NULL; 5873 struct pf_ruleset *ruleset = NULL; 5874 struct pf_pdesc pd; 5875 int off, dirndx, pqid = 0; 5876 5877 M_ASSERTPKTHDR(m); 5878 5879 if (!V_pf_status.running) 5880 return (PF_PASS); 5881 5882 memset(&pd, 0, sizeof(pd)); 5883 5884 kif = (struct pfi_kif *)ifp->if_pf_kif; 5885 5886 if (kif == NULL) { 5887 DPFPRINTF(PF_DEBUG_URGENT, 5888 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5889 return (PF_DROP); 5890 } 5891 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5892 return (PF_PASS); 5893 5894 if (m->m_flags & M_SKIP_FIREWALL) 5895 return (PF_PASS); 5896 5897 pd.pf_mtag = pf_find_mtag(m); 5898 5899 PF_RULES_RLOCK(); 5900 5901 if (ip_divert_ptr != NULL && 5902 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5903 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5904 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5905 if (pd.pf_mtag == NULL && 5906 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5907 action = PF_DROP; 5908 goto done; 5909 } 5910 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5911 m_tag_delete(m, ipfwtag); 5912 } 5913 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5914 m->m_flags |= M_FASTFWD_OURS; 5915 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5916 } 5917 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5918 /* We do IP header normalization and packet reassembly here */ 5919 action = PF_DROP; 5920 goto done; 5921 } 5922 m = *m0; /* pf_normalize messes with m0 */ 5923 h = mtod(m, struct ip *); 5924 5925 off = h->ip_hl << 2; 5926 if (off < (int)sizeof(struct ip)) { 5927 action = PF_DROP; 5928 REASON_SET(&reason, PFRES_SHORT); 5929 log = 1; 5930 goto done; 5931 } 5932 5933 pd.src = (struct pf_addr *)&h->ip_src; 5934 pd.dst = (struct pf_addr *)&h->ip_dst; 5935 pd.sport = pd.dport = NULL; 5936 pd.ip_sum = &h->ip_sum; 5937 pd.proto_sum = NULL; 5938 pd.proto = h->ip_p; 5939 pd.dir = dir; 5940 pd.sidx = (dir == PF_IN) ? 0 : 1; 5941 pd.didx = (dir == PF_IN) ? 1 : 0; 5942 pd.af = AF_INET; 5943 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5944 pd.tot_len = ntohs(h->ip_len); 5945 5946 /* handle fragments that didn't get reassembled by normalization */ 5947 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5948 action = pf_test_fragment(&r, dir, kif, m, h, 5949 &pd, &a, &ruleset); 5950 goto done; 5951 } 5952 5953 switch (h->ip_p) { 5954 5955 case IPPROTO_TCP: { 5956 struct tcphdr th; 5957 5958 pd.hdr.tcp = &th; 5959 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5960 &action, &reason, AF_INET)) { 5961 log = action != PF_PASS; 5962 goto done; 5963 } 5964 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5965 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5966 pqid = 1; 5967 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5968 if (action == PF_DROP) 5969 goto done; 5970 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5971 &reason); 5972 if (action == PF_PASS) { 5973 if (pfsync_update_state_ptr != NULL) 5974 pfsync_update_state_ptr(s); 5975 r = s->rule.ptr; 5976 a = s->anchor.ptr; 5977 log = s->log; 5978 } else if (s == NULL) 5979 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5980 &a, &ruleset, inp); 5981 break; 5982 } 5983 5984 case IPPROTO_UDP: { 5985 struct udphdr uh; 5986 5987 pd.hdr.udp = &uh; 5988 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5989 &action, &reason, AF_INET)) { 5990 log = action != PF_PASS; 5991 goto done; 5992 } 5993 if (uh.uh_dport == 0 || 5994 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5995 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5996 action = PF_DROP; 5997 REASON_SET(&reason, PFRES_SHORT); 5998 goto done; 5999 } 6000 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6001 if (action == PF_PASS) { 6002 if (pfsync_update_state_ptr != NULL) 6003 pfsync_update_state_ptr(s); 6004 r = s->rule.ptr; 6005 a = s->anchor.ptr; 6006 log = s->log; 6007 } else if (s == NULL) 6008 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6009 &a, &ruleset, inp); 6010 break; 6011 } 6012 6013 case IPPROTO_ICMP: { 6014 struct icmp ih; 6015 6016 pd.hdr.icmp = &ih; 6017 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6018 &action, &reason, AF_INET)) { 6019 log = action != PF_PASS; 6020 goto done; 6021 } 6022 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6023 &reason); 6024 if (action == PF_PASS) { 6025 if (pfsync_update_state_ptr != NULL) 6026 pfsync_update_state_ptr(s); 6027 r = s->rule.ptr; 6028 a = s->anchor.ptr; 6029 log = s->log; 6030 } else if (s == NULL) 6031 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6032 &a, &ruleset, inp); 6033 break; 6034 } 6035 6036 #ifdef INET6 6037 case IPPROTO_ICMPV6: { 6038 action = PF_DROP; 6039 DPFPRINTF(PF_DEBUG_MISC, 6040 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6041 goto done; 6042 } 6043 #endif 6044 6045 default: 6046 action = pf_test_state_other(&s, dir, kif, m, &pd); 6047 if (action == PF_PASS) { 6048 if (pfsync_update_state_ptr != NULL) 6049 pfsync_update_state_ptr(s); 6050 r = s->rule.ptr; 6051 a = s->anchor.ptr; 6052 log = s->log; 6053 } else if (s == NULL) 6054 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6055 &a, &ruleset, inp); 6056 break; 6057 } 6058 6059 done: 6060 PF_RULES_RUNLOCK(); 6061 if (action == PF_PASS && h->ip_hl > 5 && 6062 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6063 action = PF_DROP; 6064 REASON_SET(&reason, PFRES_IPOPTIONS); 6065 log = r->log; 6066 DPFPRINTF(PF_DEBUG_MISC, 6067 ("pf: dropping packet with ip options\n")); 6068 } 6069 6070 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6071 action = PF_DROP; 6072 REASON_SET(&reason, PFRES_MEMORY); 6073 } 6074 if (r->rtableid >= 0) 6075 M_SETFIB(m, r->rtableid); 6076 6077 if (r->scrub_flags & PFSTATE_SETPRIO) { 6078 if (pd.tos & IPTOS_LOWDELAY) 6079 pqid = 1; 6080 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6081 action = PF_DROP; 6082 REASON_SET(&reason, PFRES_MEMORY); 6083 log = 1; 6084 DPFPRINTF(PF_DEBUG_MISC, 6085 ("pf: failed to allocate 802.1q mtag\n")); 6086 } 6087 } 6088 6089 #ifdef ALTQ 6090 if (action == PF_PASS && r->qid) { 6091 if (pd.pf_mtag == NULL && 6092 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6093 action = PF_DROP; 6094 REASON_SET(&reason, PFRES_MEMORY); 6095 } else { 6096 if (s != NULL) 6097 pd.pf_mtag->qid_hash = pf_state_hash(s); 6098 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6099 pd.pf_mtag->qid = r->pqid; 6100 else 6101 pd.pf_mtag->qid = r->qid; 6102 /* Add hints for ecn. */ 6103 pd.pf_mtag->hdr = h; 6104 } 6105 6106 } 6107 #endif /* ALTQ */ 6108 6109 /* 6110 * connections redirected to loopback should not match sockets 6111 * bound specifically to loopback due to security implications, 6112 * see tcp_input() and in_pcblookup_listen(). 6113 */ 6114 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6115 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6116 (s->nat_rule.ptr->action == PF_RDR || 6117 s->nat_rule.ptr->action == PF_BINAT) && 6118 (ntohl(pd.dst->v4.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 6119 m->m_flags |= M_SKIP_FIREWALL; 6120 6121 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6122 !PACKET_LOOPED(&pd)) { 6123 6124 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6125 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6126 if (ipfwtag != NULL) { 6127 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6128 ntohs(r->divert.port); 6129 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6130 6131 if (s) 6132 PF_STATE_UNLOCK(s); 6133 6134 m_tag_prepend(m, ipfwtag); 6135 if (m->m_flags & M_FASTFWD_OURS) { 6136 if (pd.pf_mtag == NULL && 6137 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6138 action = PF_DROP; 6139 REASON_SET(&reason, PFRES_MEMORY); 6140 log = 1; 6141 DPFPRINTF(PF_DEBUG_MISC, 6142 ("pf: failed to allocate tag\n")); 6143 } else { 6144 pd.pf_mtag->flags |= 6145 PF_FASTFWD_OURS_PRESENT; 6146 m->m_flags &= ~M_FASTFWD_OURS; 6147 } 6148 } 6149 ip_divert_ptr(*m0, dir == PF_IN ? DIR_IN : DIR_OUT); 6150 *m0 = NULL; 6151 6152 return (action); 6153 } else { 6154 /* XXX: ipfw has the same behaviour! */ 6155 action = PF_DROP; 6156 REASON_SET(&reason, PFRES_MEMORY); 6157 log = 1; 6158 DPFPRINTF(PF_DEBUG_MISC, 6159 ("pf: failed to allocate divert tag\n")); 6160 } 6161 } 6162 6163 if (log) { 6164 struct pf_rule *lr; 6165 6166 if (s != NULL && s->nat_rule.ptr != NULL && 6167 s->nat_rule.ptr->log & PF_LOG_ALL) 6168 lr = s->nat_rule.ptr; 6169 else 6170 lr = r; 6171 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6172 (s == NULL)); 6173 } 6174 6175 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6176 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6177 6178 if (action == PF_PASS || r->action == PF_DROP) { 6179 dirndx = (dir == PF_OUT); 6180 r->packets[dirndx]++; 6181 r->bytes[dirndx] += pd.tot_len; 6182 if (a != NULL) { 6183 a->packets[dirndx]++; 6184 a->bytes[dirndx] += pd.tot_len; 6185 } 6186 if (s != NULL) { 6187 if (s->nat_rule.ptr != NULL) { 6188 s->nat_rule.ptr->packets[dirndx]++; 6189 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6190 } 6191 if (s->src_node != NULL) { 6192 s->src_node->packets[dirndx]++; 6193 s->src_node->bytes[dirndx] += pd.tot_len; 6194 } 6195 if (s->nat_src_node != NULL) { 6196 s->nat_src_node->packets[dirndx]++; 6197 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6198 } 6199 dirndx = (dir == s->direction) ? 0 : 1; 6200 s->packets[dirndx]++; 6201 s->bytes[dirndx] += pd.tot_len; 6202 } 6203 tr = r; 6204 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6205 if (nr != NULL && r == &V_pf_default_rule) 6206 tr = nr; 6207 if (tr->src.addr.type == PF_ADDR_TABLE) 6208 pfr_update_stats(tr->src.addr.p.tbl, 6209 (s == NULL) ? pd.src : 6210 &s->key[(s->direction == PF_IN)]-> 6211 addr[(s->direction == PF_OUT)], 6212 pd.af, pd.tot_len, dir == PF_OUT, 6213 r->action == PF_PASS, tr->src.neg); 6214 if (tr->dst.addr.type == PF_ADDR_TABLE) 6215 pfr_update_stats(tr->dst.addr.p.tbl, 6216 (s == NULL) ? pd.dst : 6217 &s->key[(s->direction == PF_IN)]-> 6218 addr[(s->direction == PF_IN)], 6219 pd.af, pd.tot_len, dir == PF_OUT, 6220 r->action == PF_PASS, tr->dst.neg); 6221 } 6222 6223 switch (action) { 6224 case PF_SYNPROXY_DROP: 6225 m_freem(*m0); 6226 case PF_DEFER: 6227 *m0 = NULL; 6228 action = PF_PASS; 6229 break; 6230 case PF_DROP: 6231 m_freem(*m0); 6232 *m0 = NULL; 6233 break; 6234 default: 6235 /* pf_route() returns unlocked. */ 6236 if (r->rt) { 6237 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd); 6238 return (action); 6239 } 6240 break; 6241 } 6242 if (s) 6243 PF_STATE_UNLOCK(s); 6244 6245 return (action); 6246 } 6247 #endif /* INET */ 6248 6249 #ifdef INET6 6250 int 6251 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6252 { 6253 struct pfi_kif *kif; 6254 u_short action, reason = 0, log = 0; 6255 struct mbuf *m = *m0, *n = NULL; 6256 struct m_tag *mtag; 6257 struct ip6_hdr *h = NULL; 6258 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6259 struct pf_state *s = NULL; 6260 struct pf_ruleset *ruleset = NULL; 6261 struct pf_pdesc pd; 6262 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6263 6264 M_ASSERTPKTHDR(m); 6265 6266 if (!V_pf_status.running) 6267 return (PF_PASS); 6268 6269 memset(&pd, 0, sizeof(pd)); 6270 pd.pf_mtag = pf_find_mtag(m); 6271 6272 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6273 return (PF_PASS); 6274 6275 kif = (struct pfi_kif *)ifp->if_pf_kif; 6276 if (kif == NULL) { 6277 DPFPRINTF(PF_DEBUG_URGENT, 6278 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6279 return (PF_DROP); 6280 } 6281 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6282 return (PF_PASS); 6283 6284 if (m->m_flags & M_SKIP_FIREWALL) 6285 return (PF_PASS); 6286 6287 PF_RULES_RLOCK(); 6288 6289 /* We do IP header normalization and packet reassembly here */ 6290 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6291 action = PF_DROP; 6292 goto done; 6293 } 6294 m = *m0; /* pf_normalize messes with m0 */ 6295 h = mtod(m, struct ip6_hdr *); 6296 6297 #if 1 6298 /* 6299 * we do not support jumbogram yet. if we keep going, zero ip6_plen 6300 * will do something bad, so drop the packet for now. 6301 */ 6302 if (htons(h->ip6_plen) == 0) { 6303 action = PF_DROP; 6304 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6305 goto done; 6306 } 6307 #endif 6308 6309 pd.src = (struct pf_addr *)&h->ip6_src; 6310 pd.dst = (struct pf_addr *)&h->ip6_dst; 6311 pd.sport = pd.dport = NULL; 6312 pd.ip_sum = NULL; 6313 pd.proto_sum = NULL; 6314 pd.dir = dir; 6315 pd.sidx = (dir == PF_IN) ? 0 : 1; 6316 pd.didx = (dir == PF_IN) ? 1 : 0; 6317 pd.af = AF_INET6; 6318 pd.tos = 0; 6319 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6320 6321 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6322 pd.proto = h->ip6_nxt; 6323 do { 6324 switch (pd.proto) { 6325 case IPPROTO_FRAGMENT: 6326 action = pf_test_fragment(&r, dir, kif, m, h, 6327 &pd, &a, &ruleset); 6328 if (action == PF_DROP) 6329 REASON_SET(&reason, PFRES_FRAG); 6330 goto done; 6331 case IPPROTO_ROUTING: { 6332 struct ip6_rthdr rthdr; 6333 6334 if (rh_cnt++) { 6335 DPFPRINTF(PF_DEBUG_MISC, 6336 ("pf: IPv6 more than one rthdr\n")); 6337 action = PF_DROP; 6338 REASON_SET(&reason, PFRES_IPOPTIONS); 6339 log = 1; 6340 goto done; 6341 } 6342 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6343 &reason, pd.af)) { 6344 DPFPRINTF(PF_DEBUG_MISC, 6345 ("pf: IPv6 short rthdr\n")); 6346 action = PF_DROP; 6347 REASON_SET(&reason, PFRES_SHORT); 6348 log = 1; 6349 goto done; 6350 } 6351 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6352 DPFPRINTF(PF_DEBUG_MISC, 6353 ("pf: IPv6 rthdr0\n")); 6354 action = PF_DROP; 6355 REASON_SET(&reason, PFRES_IPOPTIONS); 6356 log = 1; 6357 goto done; 6358 } 6359 /* FALLTHROUGH */ 6360 } 6361 case IPPROTO_AH: 6362 case IPPROTO_HOPOPTS: 6363 case IPPROTO_DSTOPTS: { 6364 /* get next header and header length */ 6365 struct ip6_ext opt6; 6366 6367 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6368 NULL, &reason, pd.af)) { 6369 DPFPRINTF(PF_DEBUG_MISC, 6370 ("pf: IPv6 short opt\n")); 6371 action = PF_DROP; 6372 log = 1; 6373 goto done; 6374 } 6375 if (pd.proto == IPPROTO_AH) 6376 off += (opt6.ip6e_len + 2) * 4; 6377 else 6378 off += (opt6.ip6e_len + 1) * 8; 6379 pd.proto = opt6.ip6e_nxt; 6380 /* goto the next header */ 6381 break; 6382 } 6383 default: 6384 terminal++; 6385 break; 6386 } 6387 } while (!terminal); 6388 6389 /* if there's no routing header, use unmodified mbuf for checksumming */ 6390 if (!n) 6391 n = m; 6392 6393 switch (pd.proto) { 6394 6395 case IPPROTO_TCP: { 6396 struct tcphdr th; 6397 6398 pd.hdr.tcp = &th; 6399 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6400 &action, &reason, AF_INET6)) { 6401 log = action != PF_PASS; 6402 goto done; 6403 } 6404 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6405 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6406 if (action == PF_DROP) 6407 goto done; 6408 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6409 &reason); 6410 if (action == PF_PASS) { 6411 if (pfsync_update_state_ptr != NULL) 6412 pfsync_update_state_ptr(s); 6413 r = s->rule.ptr; 6414 a = s->anchor.ptr; 6415 log = s->log; 6416 } else if (s == NULL) 6417 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6418 &a, &ruleset, inp); 6419 break; 6420 } 6421 6422 case IPPROTO_UDP: { 6423 struct udphdr uh; 6424 6425 pd.hdr.udp = &uh; 6426 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6427 &action, &reason, AF_INET6)) { 6428 log = action != PF_PASS; 6429 goto done; 6430 } 6431 if (uh.uh_dport == 0 || 6432 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6433 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6434 action = PF_DROP; 6435 REASON_SET(&reason, PFRES_SHORT); 6436 goto done; 6437 } 6438 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6439 if (action == PF_PASS) { 6440 if (pfsync_update_state_ptr != NULL) 6441 pfsync_update_state_ptr(s); 6442 r = s->rule.ptr; 6443 a = s->anchor.ptr; 6444 log = s->log; 6445 } else if (s == NULL) 6446 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6447 &a, &ruleset, inp); 6448 break; 6449 } 6450 6451 case IPPROTO_ICMP: { 6452 action = PF_DROP; 6453 DPFPRINTF(PF_DEBUG_MISC, 6454 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6455 goto done; 6456 } 6457 6458 case IPPROTO_ICMPV6: { 6459 struct icmp6_hdr ih; 6460 6461 pd.hdr.icmp6 = &ih; 6462 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6463 &action, &reason, AF_INET6)) { 6464 log = action != PF_PASS; 6465 goto done; 6466 } 6467 action = pf_test_state_icmp(&s, dir, kif, 6468 m, off, h, &pd, &reason); 6469 if (action == PF_PASS) { 6470 if (pfsync_update_state_ptr != NULL) 6471 pfsync_update_state_ptr(s); 6472 r = s->rule.ptr; 6473 a = s->anchor.ptr; 6474 log = s->log; 6475 } else if (s == NULL) 6476 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6477 &a, &ruleset, inp); 6478 break; 6479 } 6480 6481 default: 6482 action = pf_test_state_other(&s, dir, kif, m, &pd); 6483 if (action == PF_PASS) { 6484 if (pfsync_update_state_ptr != NULL) 6485 pfsync_update_state_ptr(s); 6486 r = s->rule.ptr; 6487 a = s->anchor.ptr; 6488 log = s->log; 6489 } else if (s == NULL) 6490 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6491 &a, &ruleset, inp); 6492 break; 6493 } 6494 6495 done: 6496 PF_RULES_RUNLOCK(); 6497 if (n != m) { 6498 m_freem(n); 6499 n = NULL; 6500 } 6501 6502 /* handle dangerous IPv6 extension headers. */ 6503 if (action == PF_PASS && rh_cnt && 6504 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6505 action = PF_DROP; 6506 REASON_SET(&reason, PFRES_IPOPTIONS); 6507 log = r->log; 6508 DPFPRINTF(PF_DEBUG_MISC, 6509 ("pf: dropping packet with dangerous v6 headers\n")); 6510 } 6511 6512 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6513 action = PF_DROP; 6514 REASON_SET(&reason, PFRES_MEMORY); 6515 } 6516 if (r->rtableid >= 0) 6517 M_SETFIB(m, r->rtableid); 6518 6519 if (r->scrub_flags & PFSTATE_SETPRIO) { 6520 if (pd.tos & IPTOS_LOWDELAY) 6521 pqid = 1; 6522 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6523 action = PF_DROP; 6524 REASON_SET(&reason, PFRES_MEMORY); 6525 log = 1; 6526 DPFPRINTF(PF_DEBUG_MISC, 6527 ("pf: failed to allocate 802.1q mtag\n")); 6528 } 6529 } 6530 6531 #ifdef ALTQ 6532 if (action == PF_PASS && r->qid) { 6533 if (pd.pf_mtag == NULL && 6534 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6535 action = PF_DROP; 6536 REASON_SET(&reason, PFRES_MEMORY); 6537 } else { 6538 if (s != NULL) 6539 pd.pf_mtag->qid_hash = pf_state_hash(s); 6540 if (pd.tos & IPTOS_LOWDELAY) 6541 pd.pf_mtag->qid = r->pqid; 6542 else 6543 pd.pf_mtag->qid = r->qid; 6544 /* Add hints for ecn. */ 6545 pd.pf_mtag->hdr = h; 6546 } 6547 } 6548 #endif /* ALTQ */ 6549 6550 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6551 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6552 (s->nat_rule.ptr->action == PF_RDR || 6553 s->nat_rule.ptr->action == PF_BINAT) && 6554 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6555 m->m_flags |= M_SKIP_FIREWALL; 6556 6557 /* XXX: Anybody working on it?! */ 6558 if (r->divert.port) 6559 printf("pf: divert(9) is not supported for IPv6\n"); 6560 6561 if (log) { 6562 struct pf_rule *lr; 6563 6564 if (s != NULL && s->nat_rule.ptr != NULL && 6565 s->nat_rule.ptr->log & PF_LOG_ALL) 6566 lr = s->nat_rule.ptr; 6567 else 6568 lr = r; 6569 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6570 &pd, (s == NULL)); 6571 } 6572 6573 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6574 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6575 6576 if (action == PF_PASS || r->action == PF_DROP) { 6577 dirndx = (dir == PF_OUT); 6578 r->packets[dirndx]++; 6579 r->bytes[dirndx] += pd.tot_len; 6580 if (a != NULL) { 6581 a->packets[dirndx]++; 6582 a->bytes[dirndx] += pd.tot_len; 6583 } 6584 if (s != NULL) { 6585 if (s->nat_rule.ptr != NULL) { 6586 s->nat_rule.ptr->packets[dirndx]++; 6587 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6588 } 6589 if (s->src_node != NULL) { 6590 s->src_node->packets[dirndx]++; 6591 s->src_node->bytes[dirndx] += pd.tot_len; 6592 } 6593 if (s->nat_src_node != NULL) { 6594 s->nat_src_node->packets[dirndx]++; 6595 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6596 } 6597 dirndx = (dir == s->direction) ? 0 : 1; 6598 s->packets[dirndx]++; 6599 s->bytes[dirndx] += pd.tot_len; 6600 } 6601 tr = r; 6602 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6603 if (nr != NULL && r == &V_pf_default_rule) 6604 tr = nr; 6605 if (tr->src.addr.type == PF_ADDR_TABLE) 6606 pfr_update_stats(tr->src.addr.p.tbl, 6607 (s == NULL) ? pd.src : 6608 &s->key[(s->direction == PF_IN)]->addr[0], 6609 pd.af, pd.tot_len, dir == PF_OUT, 6610 r->action == PF_PASS, tr->src.neg); 6611 if (tr->dst.addr.type == PF_ADDR_TABLE) 6612 pfr_update_stats(tr->dst.addr.p.tbl, 6613 (s == NULL) ? pd.dst : 6614 &s->key[(s->direction == PF_IN)]->addr[1], 6615 pd.af, pd.tot_len, dir == PF_OUT, 6616 r->action == PF_PASS, tr->dst.neg); 6617 } 6618 6619 switch (action) { 6620 case PF_SYNPROXY_DROP: 6621 m_freem(*m0); 6622 case PF_DEFER: 6623 *m0 = NULL; 6624 action = PF_PASS; 6625 break; 6626 case PF_DROP: 6627 m_freem(*m0); 6628 *m0 = NULL; 6629 break; 6630 default: 6631 /* pf_route6() returns unlocked. */ 6632 if (r->rt) { 6633 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd); 6634 return (action); 6635 } 6636 break; 6637 } 6638 6639 if (s) 6640 PF_STATE_UNLOCK(s); 6641 6642 /* If reassembled packet passed, create new fragments. */ 6643 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6644 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6645 action = pf_refragment6(ifp, m0, mtag); 6646 6647 return (action); 6648 } 6649 #endif /* INET6 */ 6650