1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/md5.h> 58 #include <sys/random.h> 59 #include <sys/refcount.h> 60 #include <sys/sdt.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_private.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 /* dummynet */ 97 #include <netinet/ip_dummynet.h> 98 #include <netinet/ip_fw.h> 99 #include <netpfil/ipfw/dn_heap.h> 100 #include <netpfil/ipfw/ip_fw_private.h> 101 #include <netpfil/ipfw/ip_dn_private.h> 102 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet/icmp6.h> 106 #include <netinet6/nd6.h> 107 #include <netinet6/ip6_var.h> 108 #include <netinet6/in6_pcb.h> 109 #include <netinet6/in6_fib.h> 110 #include <netinet6/scope6_var.h> 111 #endif /* INET6 */ 112 113 #include <netinet/sctp_header.h> 114 #include <netinet/sctp_crc32.h> 115 116 #include <machine/in_cksum.h> 117 #include <security/mac/mac_framework.h> 118 119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 120 121 SDT_PROVIDER_DEFINE(pf); 122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 123 "struct pf_kstate *"); 124 SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 130 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 131 "struct mbuf *"); 132 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 133 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 134 "int", "struct pf_keth_rule *", "char *"); 135 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 136 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 137 "int", "struct pf_keth_rule *"); 138 139 /* 140 * Global variables 141 */ 142 143 /* state tables */ 144 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 145 VNET_DEFINE(struct pf_kpalist, pf_pabuf); 146 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 147 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 148 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 149 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 150 VNET_DEFINE(struct pf_kstatus, pf_status); 151 152 VNET_DEFINE(u_int32_t, ticket_altqs_active); 153 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 154 VNET_DEFINE(int, altqs_inactive_open); 155 VNET_DEFINE(u_int32_t, ticket_pabuf); 156 157 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 158 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 159 VNET_DEFINE(u_char, pf_tcp_secret[16]); 160 #define V_pf_tcp_secret VNET(pf_tcp_secret) 161 VNET_DEFINE(int, pf_tcp_secret_init); 162 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 163 VNET_DEFINE(int, pf_tcp_iss_off); 164 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 165 VNET_DECLARE(int, pf_vnet_active); 166 #define V_pf_vnet_active VNET(pf_vnet_active) 167 168 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 169 #define V_pf_purge_idx VNET(pf_purge_idx) 170 171 #ifdef PF_WANT_32_TO_64_COUNTER 172 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 173 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 174 175 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 176 VNET_DEFINE(size_t, pf_allrulecount); 177 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 178 #endif 179 180 /* 181 * Queue for pf_intr() sends. 182 */ 183 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 184 struct pf_send_entry { 185 STAILQ_ENTRY(pf_send_entry) pfse_next; 186 struct mbuf *pfse_m; 187 enum { 188 PFSE_IP, 189 PFSE_IP6, 190 PFSE_ICMP, 191 PFSE_ICMP6, 192 } pfse_type; 193 struct { 194 int type; 195 int code; 196 int mtu; 197 } icmpopts; 198 }; 199 200 STAILQ_HEAD(pf_send_head, pf_send_entry); 201 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 202 #define V_pf_sendqueue VNET(pf_sendqueue) 203 204 static struct mtx_padalign pf_sendqueue_mtx; 205 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 206 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 207 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 208 209 /* 210 * Queue for pf_overload_task() tasks. 211 */ 212 struct pf_overload_entry { 213 SLIST_ENTRY(pf_overload_entry) next; 214 struct pf_addr addr; 215 sa_family_t af; 216 uint8_t dir; 217 struct pf_krule *rule; 218 }; 219 220 SLIST_HEAD(pf_overload_head, pf_overload_entry); 221 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 222 #define V_pf_overloadqueue VNET(pf_overloadqueue) 223 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 224 #define V_pf_overloadtask VNET(pf_overloadtask) 225 226 static struct mtx_padalign pf_overloadqueue_mtx; 227 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 228 "pf overload/flush queue", MTX_DEF); 229 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 230 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 231 232 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 233 struct mtx_padalign pf_unlnkdrules_mtx; 234 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 235 MTX_DEF); 236 237 struct sx pf_config_lock; 238 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 239 240 struct mtx_padalign pf_table_stats_lock; 241 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 242 MTX_DEF); 243 244 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 245 #define V_pf_sources_z VNET(pf_sources_z) 246 uma_zone_t pf_mtag_z; 247 VNET_DEFINE(uma_zone_t, pf_state_z); 248 VNET_DEFINE(uma_zone_t, pf_state_key_z); 249 250 VNET_DEFINE(struct unrhdr64, pf_stateid); 251 252 static void pf_src_tree_remove_state(struct pf_kstate *); 253 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 254 u_int32_t); 255 static void pf_add_threshold(struct pf_threshold *); 256 static int pf_check_threshold(struct pf_threshold *); 257 258 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 259 u_int16_t *, u_int16_t *, struct pf_addr *, 260 u_int16_t, u_int8_t, sa_family_t); 261 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 262 struct tcphdr *, struct pf_state_peer *); 263 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 264 struct pf_addr *, struct pf_addr *, u_int16_t, 265 u_int16_t *, u_int16_t *, u_int16_t *, 266 u_int16_t *, u_int8_t, sa_family_t); 267 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 268 sa_family_t, struct pf_krule *, int); 269 static void pf_detach_state(struct pf_kstate *); 270 static int pf_state_key_attach(struct pf_state_key *, 271 struct pf_state_key *, struct pf_kstate *); 272 static void pf_state_key_detach(struct pf_kstate *, int); 273 static int pf_state_key_ctor(void *, int, void *, int); 274 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 275 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 276 struct pf_krule *, struct mbuf **); 277 static int pf_dummynet_route(struct pf_pdesc *, 278 struct pf_kstate *, struct pf_krule *, 279 struct ifnet *, struct sockaddr *, struct mbuf **); 280 static int pf_test_eth_rule(int, struct pfi_kkif *, 281 struct mbuf **); 282 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 283 struct pfi_kkif *, struct mbuf *, int, 284 struct pf_pdesc *, struct pf_krule **, 285 struct pf_kruleset **, struct inpcb *); 286 static int pf_create_state(struct pf_krule *, struct pf_krule *, 287 struct pf_krule *, struct pf_pdesc *, 288 struct pf_ksrc_node *, struct pf_state_key *, 289 struct pf_state_key *, struct mbuf *, int, 290 u_int16_t, u_int16_t, int *, struct pfi_kkif *, 291 struct pf_kstate **, int, u_int16_t, u_int16_t, 292 int, struct pf_krule_slist *); 293 static int pf_test_fragment(struct pf_krule **, struct pfi_kkif *, 294 struct mbuf *, void *, struct pf_pdesc *, 295 struct pf_krule **, struct pf_kruleset **); 296 static int pf_tcp_track_full(struct pf_kstate **, 297 struct pfi_kkif *, struct mbuf *, int, 298 struct pf_pdesc *, u_short *, int *); 299 static int pf_tcp_track_sloppy(struct pf_kstate **, 300 struct pf_pdesc *, u_short *); 301 static int pf_test_state_tcp(struct pf_kstate **, 302 struct pfi_kkif *, struct mbuf *, int, 303 void *, struct pf_pdesc *, u_short *); 304 static int pf_test_state_udp(struct pf_kstate **, 305 struct pfi_kkif *, struct mbuf *, int, 306 void *, struct pf_pdesc *); 307 static int pf_test_state_icmp(struct pf_kstate **, 308 struct pfi_kkif *, struct mbuf *, int, 309 void *, struct pf_pdesc *, u_short *); 310 static int pf_test_state_sctp(struct pf_kstate **, 311 struct pfi_kkif *, struct mbuf *, int, 312 void *, struct pf_pdesc *, u_short *); 313 static int pf_test_state_other(struct pf_kstate **, 314 struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); 315 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 316 int, u_int16_t); 317 static int pf_check_proto_cksum(struct mbuf *, int, int, 318 u_int8_t, sa_family_t); 319 static void pf_print_state_parts(struct pf_kstate *, 320 struct pf_state_key *, struct pf_state_key *); 321 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, 322 bool, u_int8_t); 323 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 324 struct pf_state_key_cmp *, u_int); 325 static int pf_src_connlimit(struct pf_kstate **); 326 static void pf_overload_task(void *v, int pending); 327 static u_short pf_insert_src_node(struct pf_ksrc_node **, 328 struct pf_krule *, struct pf_addr *, sa_family_t); 329 static u_int pf_purge_expired_states(u_int, int); 330 static void pf_purge_unlinked_rules(void); 331 static int pf_mtag_uminit(void *, int, int); 332 static void pf_mtag_free(struct m_tag *); 333 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, 334 int, struct pf_state_key *); 335 #ifdef INET 336 static void pf_route(struct mbuf **, struct pf_krule *, 337 struct ifnet *, struct pf_kstate *, 338 struct pf_pdesc *, struct inpcb *); 339 #endif /* INET */ 340 #ifdef INET6 341 static void pf_change_a6(struct pf_addr *, u_int16_t *, 342 struct pf_addr *, u_int8_t); 343 static void pf_route6(struct mbuf **, struct pf_krule *, 344 struct ifnet *, struct pf_kstate *, 345 struct pf_pdesc *, struct inpcb *); 346 #endif /* INET6 */ 347 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 348 349 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 350 351 extern int pf_end_threads; 352 extern struct proc *pf_purge_proc; 353 354 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 355 356 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \ 357 do { \ 358 struct pf_state_key *nk; \ 359 if ((pd->dir) == PF_OUT) \ 360 nk = (_s)->key[PF_SK_STACK]; \ 361 else \ 362 nk = (_s)->key[PF_SK_WIRE]; \ 363 pf_packet_rework_nat(_m, _pd, _off, nk); \ 364 } while (0) 365 366 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 367 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 368 369 #define STATE_LOOKUP(i, k, s, pd) \ 370 do { \ 371 (s) = pf_find_state((i), (k), (pd->dir)); \ 372 SDT_PROBE5(pf, ip, state, lookup, i, k, (pd->dir), pd, (s)); \ 373 if ((s) == NULL) \ 374 return (PF_DROP); \ 375 if (PACKET_LOOPED(pd)) \ 376 return (PF_PASS); \ 377 } while (0) 378 379 #define BOUND_IFACE(r, k) \ 380 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 381 382 #define STATE_INC_COUNTERS(s) \ 383 do { \ 384 struct pf_krule_item *mrm; \ 385 counter_u64_add(s->rule.ptr->states_cur, 1); \ 386 counter_u64_add(s->rule.ptr->states_tot, 1); \ 387 if (s->anchor.ptr != NULL) { \ 388 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 389 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 390 } \ 391 if (s->nat_rule.ptr != NULL) { \ 392 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 393 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 394 } \ 395 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 396 counter_u64_add(mrm->r->states_cur, 1); \ 397 counter_u64_add(mrm->r->states_tot, 1); \ 398 } \ 399 } while (0) 400 401 #define STATE_DEC_COUNTERS(s) \ 402 do { \ 403 struct pf_krule_item *mrm; \ 404 if (s->nat_rule.ptr != NULL) \ 405 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 406 if (s->anchor.ptr != NULL) \ 407 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 408 counter_u64_add(s->rule.ptr->states_cur, -1); \ 409 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 410 counter_u64_add(mrm->r->states_cur, -1); \ 411 } while (0) 412 413 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 414 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 415 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 416 VNET_DEFINE(struct pf_idhash *, pf_idhash); 417 VNET_DEFINE(struct pf_srchash *, pf_srchash); 418 419 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 420 "pf(4)"); 421 422 u_long pf_hashmask; 423 u_long pf_srchashmask; 424 static u_long pf_hashsize; 425 static u_long pf_srchashsize; 426 u_long pf_ioctl_maxcount = 65535; 427 428 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 429 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 430 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 431 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 432 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 433 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 434 435 VNET_DEFINE(void *, pf_swi_cookie); 436 VNET_DEFINE(struct intr_event *, pf_swi_ie); 437 438 VNET_DEFINE(uint32_t, pf_hashseed); 439 #define V_pf_hashseed VNET(pf_hashseed) 440 441 static void 442 pf_sctp_checksum(struct mbuf *m, int off) 443 { 444 uint32_t sum = 0; 445 446 /* Zero out the checksum, to enable recalculation. */ 447 m_copyback(m, off + offsetof(struct sctphdr, checksum), 448 sizeof(sum), (caddr_t)&sum); 449 450 sum = sctp_calculate_cksum(m, off); 451 452 m_copyback(m, off + offsetof(struct sctphdr, checksum), 453 sizeof(sum), (caddr_t)&sum); 454 } 455 456 int 457 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 458 { 459 460 switch (af) { 461 #ifdef INET 462 case AF_INET: 463 if (a->addr32[0] > b->addr32[0]) 464 return (1); 465 if (a->addr32[0] < b->addr32[0]) 466 return (-1); 467 break; 468 #endif /* INET */ 469 #ifdef INET6 470 case AF_INET6: 471 if (a->addr32[3] > b->addr32[3]) 472 return (1); 473 if (a->addr32[3] < b->addr32[3]) 474 return (-1); 475 if (a->addr32[2] > b->addr32[2]) 476 return (1); 477 if (a->addr32[2] < b->addr32[2]) 478 return (-1); 479 if (a->addr32[1] > b->addr32[1]) 480 return (1); 481 if (a->addr32[1] < b->addr32[1]) 482 return (-1); 483 if (a->addr32[0] > b->addr32[0]) 484 return (1); 485 if (a->addr32[0] < b->addr32[0]) 486 return (-1); 487 break; 488 #endif /* INET6 */ 489 default: 490 panic("%s: unknown address family %u", __func__, af); 491 } 492 return (0); 493 } 494 495 static void 496 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, 497 struct pf_state_key *nk) 498 { 499 500 switch (pd->proto) { 501 case IPPROTO_TCP: { 502 struct tcphdr *th = &pd->hdr.tcp; 503 504 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 505 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, 506 &th->th_sum, &nk->addr[pd->sidx], 507 nk->port[pd->sidx], 0, pd->af); 508 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 509 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, 510 &th->th_sum, &nk->addr[pd->didx], 511 nk->port[pd->didx], 0, pd->af); 512 m_copyback(m, off, sizeof(*th), (caddr_t)th); 513 break; 514 } 515 case IPPROTO_UDP: { 516 struct udphdr *uh = &pd->hdr.udp; 517 518 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 519 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 520 &uh->uh_sum, &nk->addr[pd->sidx], 521 nk->port[pd->sidx], 1, pd->af); 522 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 523 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 524 &uh->uh_sum, &nk->addr[pd->didx], 525 nk->port[pd->didx], 1, pd->af); 526 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 527 break; 528 } 529 case IPPROTO_SCTP: { 530 struct sctphdr *sh = &pd->hdr.sctp; 531 uint16_t checksum = 0; 532 533 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 534 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum, 535 &checksum, &nk->addr[pd->sidx], 536 nk->port[pd->sidx], 1, pd->af); 537 } 538 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 539 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum, 540 &checksum, &nk->addr[pd->didx], 541 nk->port[pd->didx], 1, pd->af); 542 } 543 544 break; 545 } 546 case IPPROTO_ICMP: { 547 struct icmp *ih = &pd->hdr.icmp; 548 549 if (nk->port[pd->sidx] != ih->icmp_id) { 550 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 551 ih->icmp_cksum, ih->icmp_id, 552 nk->port[pd->sidx], 0); 553 ih->icmp_id = nk->port[pd->sidx]; 554 pd->sport = &ih->icmp_id; 555 556 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); 557 } 558 /* FALLTHROUGH */ 559 } 560 default: 561 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 562 switch (pd->af) { 563 case AF_INET: 564 pf_change_a(&pd->src->v4.s_addr, 565 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 566 0); 567 break; 568 case AF_INET6: 569 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 570 break; 571 } 572 } 573 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 574 switch (pd->af) { 575 case AF_INET: 576 pf_change_a(&pd->dst->v4.s_addr, 577 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 578 0); 579 break; 580 case AF_INET6: 581 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 582 break; 583 } 584 } 585 break; 586 } 587 } 588 589 static __inline uint32_t 590 pf_hashkey(struct pf_state_key *sk) 591 { 592 uint32_t h; 593 594 h = murmur3_32_hash32((uint32_t *)sk, 595 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 596 V_pf_hashseed); 597 598 return (h & pf_hashmask); 599 } 600 601 static __inline uint32_t 602 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 603 { 604 uint32_t h; 605 606 switch (af) { 607 case AF_INET: 608 h = murmur3_32_hash32((uint32_t *)&addr->v4, 609 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 610 break; 611 case AF_INET6: 612 h = murmur3_32_hash32((uint32_t *)&addr->v6, 613 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 614 break; 615 default: 616 panic("%s: unknown address family %u", __func__, af); 617 } 618 619 return (h & pf_srchashmask); 620 } 621 622 #ifdef ALTQ 623 static int 624 pf_state_hash(struct pf_kstate *s) 625 { 626 u_int32_t hv = (intptr_t)s / sizeof(*s); 627 628 hv ^= crc32(&s->src, sizeof(s->src)); 629 hv ^= crc32(&s->dst, sizeof(s->dst)); 630 if (hv == 0) 631 hv = 1; 632 return (hv); 633 } 634 #endif 635 636 static __inline void 637 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 638 { 639 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 640 s->dst.state = newstate; 641 if (which == PF_PEER_DST) 642 return; 643 if (s->src.state == newstate) 644 return; 645 if (s->creatorid == V_pf_status.hostid && 646 s->key[PF_SK_STACK] != NULL && 647 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 648 !(TCPS_HAVEESTABLISHED(s->src.state) || 649 s->src.state == TCPS_CLOSED) && 650 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 651 atomic_add_32(&V_pf_status.states_halfopen, -1); 652 653 s->src.state = newstate; 654 } 655 656 #ifdef INET6 657 void 658 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 659 { 660 switch (af) { 661 #ifdef INET 662 case AF_INET: 663 dst->addr32[0] = src->addr32[0]; 664 break; 665 #endif /* INET */ 666 case AF_INET6: 667 dst->addr32[0] = src->addr32[0]; 668 dst->addr32[1] = src->addr32[1]; 669 dst->addr32[2] = src->addr32[2]; 670 dst->addr32[3] = src->addr32[3]; 671 break; 672 } 673 } 674 #endif /* INET6 */ 675 676 static void 677 pf_init_threshold(struct pf_threshold *threshold, 678 u_int32_t limit, u_int32_t seconds) 679 { 680 threshold->limit = limit * PF_THRESHOLD_MULT; 681 threshold->seconds = seconds; 682 threshold->count = 0; 683 threshold->last = time_uptime; 684 } 685 686 static void 687 pf_add_threshold(struct pf_threshold *threshold) 688 { 689 u_int32_t t = time_uptime, diff = t - threshold->last; 690 691 if (diff >= threshold->seconds) 692 threshold->count = 0; 693 else 694 threshold->count -= threshold->count * diff / 695 threshold->seconds; 696 threshold->count += PF_THRESHOLD_MULT; 697 threshold->last = t; 698 } 699 700 static int 701 pf_check_threshold(struct pf_threshold *threshold) 702 { 703 return (threshold->count > threshold->limit); 704 } 705 706 static int 707 pf_src_connlimit(struct pf_kstate **state) 708 { 709 struct pf_overload_entry *pfoe; 710 int bad = 0; 711 712 PF_STATE_LOCK_ASSERT(*state); 713 /* 714 * XXXKS: The src node is accessed unlocked! 715 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node); 716 */ 717 718 (*state)->src_node->conn++; 719 (*state)->src.tcp_est = 1; 720 pf_add_threshold(&(*state)->src_node->conn_rate); 721 722 if ((*state)->rule.ptr->max_src_conn && 723 (*state)->rule.ptr->max_src_conn < 724 (*state)->src_node->conn) { 725 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 726 bad++; 727 } 728 729 if ((*state)->rule.ptr->max_src_conn_rate.limit && 730 pf_check_threshold(&(*state)->src_node->conn_rate)) { 731 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 732 bad++; 733 } 734 735 if (!bad) 736 return (0); 737 738 /* Kill this state. */ 739 (*state)->timeout = PFTM_PURGE; 740 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 741 742 if ((*state)->rule.ptr->overload_tbl == NULL) 743 return (1); 744 745 /* Schedule overloading and flushing task. */ 746 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 747 if (pfoe == NULL) 748 return (1); /* too bad :( */ 749 750 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 751 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 752 pfoe->rule = (*state)->rule.ptr; 753 pfoe->dir = (*state)->direction; 754 PF_OVERLOADQ_LOCK(); 755 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 756 PF_OVERLOADQ_UNLOCK(); 757 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 758 759 return (1); 760 } 761 762 static void 763 pf_overload_task(void *v, int pending) 764 { 765 struct pf_overload_head queue; 766 struct pfr_addr p; 767 struct pf_overload_entry *pfoe, *pfoe1; 768 uint32_t killed = 0; 769 770 CURVNET_SET((struct vnet *)v); 771 772 PF_OVERLOADQ_LOCK(); 773 queue = V_pf_overloadqueue; 774 SLIST_INIT(&V_pf_overloadqueue); 775 PF_OVERLOADQ_UNLOCK(); 776 777 bzero(&p, sizeof(p)); 778 SLIST_FOREACH(pfoe, &queue, next) { 779 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 780 if (V_pf_status.debug >= PF_DEBUG_MISC) { 781 printf("%s: blocking address ", __func__); 782 pf_print_host(&pfoe->addr, 0, pfoe->af); 783 printf("\n"); 784 } 785 786 p.pfra_af = pfoe->af; 787 switch (pfoe->af) { 788 #ifdef INET 789 case AF_INET: 790 p.pfra_net = 32; 791 p.pfra_ip4addr = pfoe->addr.v4; 792 break; 793 #endif 794 #ifdef INET6 795 case AF_INET6: 796 p.pfra_net = 128; 797 p.pfra_ip6addr = pfoe->addr.v6; 798 break; 799 #endif 800 } 801 802 PF_RULES_WLOCK(); 803 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 804 PF_RULES_WUNLOCK(); 805 } 806 807 /* 808 * Remove those entries, that don't need flushing. 809 */ 810 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 811 if (pfoe->rule->flush == 0) { 812 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 813 free(pfoe, M_PFTEMP); 814 } else 815 counter_u64_add( 816 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 817 818 /* If nothing to flush, return. */ 819 if (SLIST_EMPTY(&queue)) { 820 CURVNET_RESTORE(); 821 return; 822 } 823 824 for (int i = 0; i <= pf_hashmask; i++) { 825 struct pf_idhash *ih = &V_pf_idhash[i]; 826 struct pf_state_key *sk; 827 struct pf_kstate *s; 828 829 PF_HASHROW_LOCK(ih); 830 LIST_FOREACH(s, &ih->states, entry) { 831 sk = s->key[PF_SK_WIRE]; 832 SLIST_FOREACH(pfoe, &queue, next) 833 if (sk->af == pfoe->af && 834 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 835 pfoe->rule == s->rule.ptr) && 836 ((pfoe->dir == PF_OUT && 837 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 838 (pfoe->dir == PF_IN && 839 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 840 s->timeout = PFTM_PURGE; 841 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 842 killed++; 843 } 844 } 845 PF_HASHROW_UNLOCK(ih); 846 } 847 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 848 free(pfoe, M_PFTEMP); 849 if (V_pf_status.debug >= PF_DEBUG_MISC) 850 printf("%s: %u states killed", __func__, killed); 851 852 CURVNET_RESTORE(); 853 } 854 855 /* 856 * Can return locked on failure, so that we can consistently 857 * allocate and insert a new one. 858 */ 859 struct pf_ksrc_node * 860 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 861 struct pf_srchash **sh, bool returnlocked) 862 { 863 struct pf_ksrc_node *n; 864 865 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 866 867 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 868 PF_HASHROW_LOCK(*sh); 869 LIST_FOREACH(n, &(*sh)->nodes, entry) 870 if (n->rule.ptr == rule && n->af == af && 871 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 872 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 873 break; 874 875 if (n != NULL) { 876 n->states++; 877 PF_HASHROW_UNLOCK(*sh); 878 } else if (returnlocked == false) 879 PF_HASHROW_UNLOCK(*sh); 880 881 return (n); 882 } 883 884 static void 885 pf_free_src_node(struct pf_ksrc_node *sn) 886 { 887 888 for (int i = 0; i < 2; i++) { 889 counter_u64_free(sn->bytes[i]); 890 counter_u64_free(sn->packets[i]); 891 } 892 uma_zfree(V_pf_sources_z, sn); 893 } 894 895 static u_short 896 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, 897 struct pf_addr *src, sa_family_t af) 898 { 899 u_short reason = 0; 900 struct pf_srchash *sh = NULL; 901 902 KASSERT((rule->rule_flag & PFRULE_SRCTRACK || 903 rule->rpool.opts & PF_POOL_STICKYADDR), 904 ("%s for non-tracking rule %p", __func__, rule)); 905 906 if (*sn == NULL) 907 *sn = pf_find_src_node(src, rule, af, &sh, true); 908 909 if (*sn == NULL) { 910 PF_HASHROW_ASSERT(sh); 911 912 if (rule->max_src_nodes && 913 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) { 914 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 915 PF_HASHROW_UNLOCK(sh); 916 reason = PFRES_SRCLIMIT; 917 goto done; 918 } 919 920 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 921 if ((*sn) == NULL) { 922 PF_HASHROW_UNLOCK(sh); 923 reason = PFRES_MEMORY; 924 goto done; 925 } 926 927 for (int i = 0; i < 2; i++) { 928 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 929 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 930 931 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 932 pf_free_src_node(*sn); 933 PF_HASHROW_UNLOCK(sh); 934 reason = PFRES_MEMORY; 935 goto done; 936 } 937 } 938 939 pf_init_threshold(&(*sn)->conn_rate, 940 rule->max_src_conn_rate.limit, 941 rule->max_src_conn_rate.seconds); 942 943 MPASS((*sn)->lock == NULL); 944 (*sn)->lock = &sh->lock; 945 946 (*sn)->af = af; 947 (*sn)->rule.ptr = rule; 948 PF_ACPY(&(*sn)->addr, src, af); 949 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 950 (*sn)->creation = time_uptime; 951 (*sn)->ruletype = rule->action; 952 (*sn)->states = 1; 953 if ((*sn)->rule.ptr != NULL) 954 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 955 PF_HASHROW_UNLOCK(sh); 956 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 957 } else { 958 if (rule->max_src_states && 959 (*sn)->states >= rule->max_src_states) { 960 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 961 1); 962 reason = PFRES_SRCLIMIT; 963 goto done; 964 } 965 } 966 done: 967 return (reason); 968 } 969 970 void 971 pf_unlink_src_node(struct pf_ksrc_node *src) 972 { 973 PF_SRC_NODE_LOCK_ASSERT(src); 974 975 LIST_REMOVE(src, entry); 976 if (src->rule.ptr) 977 counter_u64_add(src->rule.ptr->src_nodes, -1); 978 } 979 980 u_int 981 pf_free_src_nodes(struct pf_ksrc_node_list *head) 982 { 983 struct pf_ksrc_node *sn, *tmp; 984 u_int count = 0; 985 986 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 987 pf_free_src_node(sn); 988 count++; 989 } 990 991 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 992 993 return (count); 994 } 995 996 void 997 pf_mtag_initialize(void) 998 { 999 1000 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1001 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1002 UMA_ALIGN_PTR, 0); 1003 } 1004 1005 /* Per-vnet data storage structures initialization. */ 1006 void 1007 pf_initialize(void) 1008 { 1009 struct pf_keyhash *kh; 1010 struct pf_idhash *ih; 1011 struct pf_srchash *sh; 1012 u_int i; 1013 1014 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 1015 pf_hashsize = PF_HASHSIZ; 1016 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 1017 pf_srchashsize = PF_SRCHASHSIZ; 1018 1019 V_pf_hashseed = arc4random(); 1020 1021 /* States and state keys storage. */ 1022 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1023 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1024 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1025 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1026 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1027 1028 V_pf_state_key_z = uma_zcreate("pf state keys", 1029 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1030 UMA_ALIGN_PTR, 0); 1031 1032 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 1033 M_PFHASH, M_NOWAIT | M_ZERO); 1034 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 1035 M_PFHASH, M_NOWAIT | M_ZERO); 1036 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1037 printf("pf: Unable to allocate memory for " 1038 "state_hashsize %lu.\n", pf_hashsize); 1039 1040 free(V_pf_keyhash, M_PFHASH); 1041 free(V_pf_idhash, M_PFHASH); 1042 1043 pf_hashsize = PF_HASHSIZ; 1044 V_pf_keyhash = mallocarray(pf_hashsize, 1045 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1046 V_pf_idhash = mallocarray(pf_hashsize, 1047 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1048 } 1049 1050 pf_hashmask = pf_hashsize - 1; 1051 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1052 i++, kh++, ih++) { 1053 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1054 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1055 } 1056 1057 /* Source nodes. */ 1058 V_pf_sources_z = uma_zcreate("pf source nodes", 1059 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1060 0); 1061 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1062 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1063 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1064 1065 V_pf_srchash = mallocarray(pf_srchashsize, 1066 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1067 if (V_pf_srchash == NULL) { 1068 printf("pf: Unable to allocate memory for " 1069 "source_hashsize %lu.\n", pf_srchashsize); 1070 1071 pf_srchashsize = PF_SRCHASHSIZ; 1072 V_pf_srchash = mallocarray(pf_srchashsize, 1073 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1074 } 1075 1076 pf_srchashmask = pf_srchashsize - 1; 1077 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 1078 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1079 1080 /* ALTQ */ 1081 TAILQ_INIT(&V_pf_altqs[0]); 1082 TAILQ_INIT(&V_pf_altqs[1]); 1083 TAILQ_INIT(&V_pf_altqs[2]); 1084 TAILQ_INIT(&V_pf_altqs[3]); 1085 TAILQ_INIT(&V_pf_pabuf); 1086 V_pf_altqs_active = &V_pf_altqs[0]; 1087 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1088 V_pf_altqs_inactive = &V_pf_altqs[2]; 1089 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1090 1091 /* Send & overload+flush queues. */ 1092 STAILQ_INIT(&V_pf_sendqueue); 1093 SLIST_INIT(&V_pf_overloadqueue); 1094 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1095 1096 /* Unlinked, but may be referenced rules. */ 1097 TAILQ_INIT(&V_pf_unlinked_rules); 1098 } 1099 1100 void 1101 pf_mtag_cleanup(void) 1102 { 1103 1104 uma_zdestroy(pf_mtag_z); 1105 } 1106 1107 void 1108 pf_cleanup(void) 1109 { 1110 struct pf_keyhash *kh; 1111 struct pf_idhash *ih; 1112 struct pf_srchash *sh; 1113 struct pf_send_entry *pfse, *next; 1114 u_int i; 1115 1116 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 1117 i++, kh++, ih++) { 1118 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1119 __func__)); 1120 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1121 __func__)); 1122 mtx_destroy(&kh->lock); 1123 mtx_destroy(&ih->lock); 1124 } 1125 free(V_pf_keyhash, M_PFHASH); 1126 free(V_pf_idhash, M_PFHASH); 1127 1128 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1129 KASSERT(LIST_EMPTY(&sh->nodes), 1130 ("%s: source node hash not empty", __func__)); 1131 mtx_destroy(&sh->lock); 1132 } 1133 free(V_pf_srchash, M_PFHASH); 1134 1135 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1136 m_freem(pfse->pfse_m); 1137 free(pfse, M_PFTEMP); 1138 } 1139 1140 uma_zdestroy(V_pf_sources_z); 1141 uma_zdestroy(V_pf_state_z); 1142 uma_zdestroy(V_pf_state_key_z); 1143 } 1144 1145 static int 1146 pf_mtag_uminit(void *mem, int size, int how) 1147 { 1148 struct m_tag *t; 1149 1150 t = (struct m_tag *)mem; 1151 t->m_tag_cookie = MTAG_ABI_COMPAT; 1152 t->m_tag_id = PACKET_TAG_PF; 1153 t->m_tag_len = sizeof(struct pf_mtag); 1154 t->m_tag_free = pf_mtag_free; 1155 1156 return (0); 1157 } 1158 1159 static void 1160 pf_mtag_free(struct m_tag *t) 1161 { 1162 1163 uma_zfree(pf_mtag_z, t); 1164 } 1165 1166 struct pf_mtag * 1167 pf_get_mtag(struct mbuf *m) 1168 { 1169 struct m_tag *mtag; 1170 1171 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1172 return ((struct pf_mtag *)(mtag + 1)); 1173 1174 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1175 if (mtag == NULL) 1176 return (NULL); 1177 bzero(mtag + 1, sizeof(struct pf_mtag)); 1178 m_tag_prepend(m, mtag); 1179 1180 return ((struct pf_mtag *)(mtag + 1)); 1181 } 1182 1183 static int 1184 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1185 struct pf_kstate *s) 1186 { 1187 struct pf_keyhash *khs, *khw, *kh; 1188 struct pf_state_key *sk, *cur; 1189 struct pf_kstate *si, *olds = NULL; 1190 int idx; 1191 1192 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1193 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1194 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1195 1196 /* 1197 * We need to lock hash slots of both keys. To avoid deadlock 1198 * we always lock the slot with lower address first. Unlock order 1199 * isn't important. 1200 * 1201 * We also need to lock ID hash slot before dropping key 1202 * locks. On success we return with ID hash slot locked. 1203 */ 1204 1205 if (skw == sks) { 1206 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1207 PF_HASHROW_LOCK(khs); 1208 } else { 1209 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1210 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1211 if (khs == khw) { 1212 PF_HASHROW_LOCK(khs); 1213 } else if (khs < khw) { 1214 PF_HASHROW_LOCK(khs); 1215 PF_HASHROW_LOCK(khw); 1216 } else { 1217 PF_HASHROW_LOCK(khw); 1218 PF_HASHROW_LOCK(khs); 1219 } 1220 } 1221 1222 #define KEYS_UNLOCK() do { \ 1223 if (khs != khw) { \ 1224 PF_HASHROW_UNLOCK(khs); \ 1225 PF_HASHROW_UNLOCK(khw); \ 1226 } else \ 1227 PF_HASHROW_UNLOCK(khs); \ 1228 } while (0) 1229 1230 /* 1231 * First run: start with wire key. 1232 */ 1233 sk = skw; 1234 kh = khw; 1235 idx = PF_SK_WIRE; 1236 1237 MPASS(s->lock == NULL); 1238 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1239 1240 keyattach: 1241 LIST_FOREACH(cur, &kh->keys, entry) 1242 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1243 break; 1244 1245 if (cur != NULL) { 1246 /* Key exists. Check for same kif, if none, add to key. */ 1247 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1248 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1249 1250 PF_HASHROW_LOCK(ih); 1251 if (si->kif == s->kif && 1252 si->direction == s->direction) { 1253 if (sk->proto == IPPROTO_TCP && 1254 si->src.state >= TCPS_FIN_WAIT_2 && 1255 si->dst.state >= TCPS_FIN_WAIT_2) { 1256 /* 1257 * New state matches an old >FIN_WAIT_2 1258 * state. We can't drop key hash locks, 1259 * thus we can't unlink it properly. 1260 * 1261 * As a workaround we drop it into 1262 * TCPS_CLOSED state, schedule purge 1263 * ASAP and push it into the very end 1264 * of the slot TAILQ, so that it won't 1265 * conflict with our new state. 1266 */ 1267 pf_set_protostate(si, PF_PEER_BOTH, 1268 TCPS_CLOSED); 1269 si->timeout = PFTM_PURGE; 1270 olds = si; 1271 } else { 1272 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1273 printf("pf: %s key attach " 1274 "failed on %s: ", 1275 (idx == PF_SK_WIRE) ? 1276 "wire" : "stack", 1277 s->kif->pfik_name); 1278 pf_print_state_parts(s, 1279 (idx == PF_SK_WIRE) ? 1280 sk : NULL, 1281 (idx == PF_SK_STACK) ? 1282 sk : NULL); 1283 printf(", existing: "); 1284 pf_print_state_parts(si, 1285 (idx == PF_SK_WIRE) ? 1286 sk : NULL, 1287 (idx == PF_SK_STACK) ? 1288 sk : NULL); 1289 printf("\n"); 1290 } 1291 PF_HASHROW_UNLOCK(ih); 1292 KEYS_UNLOCK(); 1293 uma_zfree(V_pf_state_key_z, sk); 1294 if (idx == PF_SK_STACK) 1295 pf_detach_state(s); 1296 return (EEXIST); /* collision! */ 1297 } 1298 } 1299 PF_HASHROW_UNLOCK(ih); 1300 } 1301 uma_zfree(V_pf_state_key_z, sk); 1302 s->key[idx] = cur; 1303 } else { 1304 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1305 s->key[idx] = sk; 1306 } 1307 1308 stateattach: 1309 /* List is sorted, if-bound states before floating. */ 1310 if (s->kif == V_pfi_all) 1311 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1312 else 1313 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1314 1315 if (olds) { 1316 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1317 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1318 key_list[idx]); 1319 olds = NULL; 1320 } 1321 1322 /* 1323 * Attach done. See how should we (or should not?) 1324 * attach a second key. 1325 */ 1326 if (sks == skw) { 1327 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1328 idx = PF_SK_STACK; 1329 sks = NULL; 1330 goto stateattach; 1331 } else if (sks != NULL) { 1332 /* 1333 * Continue attaching with stack key. 1334 */ 1335 sk = sks; 1336 kh = khs; 1337 idx = PF_SK_STACK; 1338 sks = NULL; 1339 goto keyattach; 1340 } 1341 1342 PF_STATE_LOCK(s); 1343 KEYS_UNLOCK(); 1344 1345 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1346 ("%s failure", __func__)); 1347 1348 return (0); 1349 #undef KEYS_UNLOCK 1350 } 1351 1352 static void 1353 pf_detach_state(struct pf_kstate *s) 1354 { 1355 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1356 struct pf_keyhash *kh; 1357 1358 if (sks != NULL) { 1359 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1360 PF_HASHROW_LOCK(kh); 1361 if (s->key[PF_SK_STACK] != NULL) 1362 pf_state_key_detach(s, PF_SK_STACK); 1363 /* 1364 * If both point to same key, then we are done. 1365 */ 1366 if (sks == s->key[PF_SK_WIRE]) { 1367 pf_state_key_detach(s, PF_SK_WIRE); 1368 PF_HASHROW_UNLOCK(kh); 1369 return; 1370 } 1371 PF_HASHROW_UNLOCK(kh); 1372 } 1373 1374 if (s->key[PF_SK_WIRE] != NULL) { 1375 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1376 PF_HASHROW_LOCK(kh); 1377 if (s->key[PF_SK_WIRE] != NULL) 1378 pf_state_key_detach(s, PF_SK_WIRE); 1379 PF_HASHROW_UNLOCK(kh); 1380 } 1381 } 1382 1383 static void 1384 pf_state_key_detach(struct pf_kstate *s, int idx) 1385 { 1386 struct pf_state_key *sk = s->key[idx]; 1387 #ifdef INVARIANTS 1388 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1389 1390 PF_HASHROW_ASSERT(kh); 1391 #endif 1392 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1393 s->key[idx] = NULL; 1394 1395 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1396 LIST_REMOVE(sk, entry); 1397 uma_zfree(V_pf_state_key_z, sk); 1398 } 1399 } 1400 1401 static int 1402 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1403 { 1404 struct pf_state_key *sk = mem; 1405 1406 bzero(sk, sizeof(struct pf_state_key_cmp)); 1407 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1408 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1409 1410 return (0); 1411 } 1412 1413 struct pf_state_key * 1414 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1415 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1416 { 1417 struct pf_state_key *sk; 1418 1419 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1420 if (sk == NULL) 1421 return (NULL); 1422 1423 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1424 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1425 sk->port[pd->sidx] = sport; 1426 sk->port[pd->didx] = dport; 1427 sk->proto = pd->proto; 1428 sk->af = pd->af; 1429 1430 return (sk); 1431 } 1432 1433 struct pf_state_key * 1434 pf_state_key_clone(struct pf_state_key *orig) 1435 { 1436 struct pf_state_key *sk; 1437 1438 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1439 if (sk == NULL) 1440 return (NULL); 1441 1442 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1443 1444 return (sk); 1445 } 1446 1447 int 1448 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1449 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1450 { 1451 struct pf_idhash *ih; 1452 struct pf_kstate *cur; 1453 int error; 1454 1455 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1456 ("%s: sks not pristine", __func__)); 1457 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1458 ("%s: skw not pristine", __func__)); 1459 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1460 1461 s->kif = kif; 1462 s->orig_kif = orig_kif; 1463 1464 if (s->id == 0 && s->creatorid == 0) { 1465 s->id = alloc_unr64(&V_pf_stateid); 1466 s->id = htobe64(s->id); 1467 s->creatorid = V_pf_status.hostid; 1468 } 1469 1470 /* Returns with ID locked on success. */ 1471 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1472 return (error); 1473 1474 ih = &V_pf_idhash[PF_IDHASH(s)]; 1475 PF_HASHROW_ASSERT(ih); 1476 LIST_FOREACH(cur, &ih->states, entry) 1477 if (cur->id == s->id && cur->creatorid == s->creatorid) 1478 break; 1479 1480 if (cur != NULL) { 1481 PF_HASHROW_UNLOCK(ih); 1482 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1483 printf("pf: state ID collision: " 1484 "id: %016llx creatorid: %08x\n", 1485 (unsigned long long)be64toh(s->id), 1486 ntohl(s->creatorid)); 1487 } 1488 pf_detach_state(s); 1489 return (EEXIST); 1490 } 1491 LIST_INSERT_HEAD(&ih->states, s, entry); 1492 /* One for keys, one for ID hash. */ 1493 refcount_init(&s->refs, 2); 1494 1495 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1496 if (V_pfsync_insert_state_ptr != NULL) 1497 V_pfsync_insert_state_ptr(s); 1498 1499 /* Returns locked. */ 1500 return (0); 1501 } 1502 1503 /* 1504 * Find state by ID: returns with locked row on success. 1505 */ 1506 struct pf_kstate * 1507 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1508 { 1509 struct pf_idhash *ih; 1510 struct pf_kstate *s; 1511 1512 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1513 1514 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1515 1516 PF_HASHROW_LOCK(ih); 1517 LIST_FOREACH(s, &ih->states, entry) 1518 if (s->id == id && s->creatorid == creatorid) 1519 break; 1520 1521 if (s == NULL) 1522 PF_HASHROW_UNLOCK(ih); 1523 1524 return (s); 1525 } 1526 1527 /* 1528 * Find state by key. 1529 * Returns with ID hash slot locked on success. 1530 */ 1531 static struct pf_kstate * 1532 pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) 1533 { 1534 struct pf_keyhash *kh; 1535 struct pf_state_key *sk; 1536 struct pf_kstate *s; 1537 int idx; 1538 1539 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1540 1541 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1542 1543 PF_HASHROW_LOCK(kh); 1544 LIST_FOREACH(sk, &kh->keys, entry) 1545 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1546 break; 1547 if (sk == NULL) { 1548 PF_HASHROW_UNLOCK(kh); 1549 return (NULL); 1550 } 1551 1552 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1553 1554 /* List is sorted, if-bound states before floating ones. */ 1555 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1556 if (s->kif == V_pfi_all || s->kif == kif) { 1557 PF_STATE_LOCK(s); 1558 PF_HASHROW_UNLOCK(kh); 1559 if (__predict_false(s->timeout >= PFTM_MAX)) { 1560 /* 1561 * State is either being processed by 1562 * pf_unlink_state() in an other thread, or 1563 * is scheduled for immediate expiry. 1564 */ 1565 PF_STATE_UNLOCK(s); 1566 return (NULL); 1567 } 1568 return (s); 1569 } 1570 PF_HASHROW_UNLOCK(kh); 1571 1572 return (NULL); 1573 } 1574 1575 /* 1576 * Returns with ID hash slot locked on success. 1577 */ 1578 struct pf_kstate * 1579 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1580 { 1581 struct pf_keyhash *kh; 1582 struct pf_state_key *sk; 1583 struct pf_kstate *s, *ret = NULL; 1584 int idx, inout = 0; 1585 1586 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1587 1588 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1589 1590 PF_HASHROW_LOCK(kh); 1591 LIST_FOREACH(sk, &kh->keys, entry) 1592 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1593 break; 1594 if (sk == NULL) { 1595 PF_HASHROW_UNLOCK(kh); 1596 return (NULL); 1597 } 1598 switch (dir) { 1599 case PF_IN: 1600 idx = PF_SK_WIRE; 1601 break; 1602 case PF_OUT: 1603 idx = PF_SK_STACK; 1604 break; 1605 case PF_INOUT: 1606 idx = PF_SK_WIRE; 1607 inout = 1; 1608 break; 1609 default: 1610 panic("%s: dir %u", __func__, dir); 1611 } 1612 second_run: 1613 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1614 if (more == NULL) { 1615 PF_STATE_LOCK(s); 1616 PF_HASHROW_UNLOCK(kh); 1617 return (s); 1618 } 1619 1620 if (ret) 1621 (*more)++; 1622 else { 1623 ret = s; 1624 PF_STATE_LOCK(s); 1625 } 1626 } 1627 if (inout == 1) { 1628 inout = 0; 1629 idx = PF_SK_STACK; 1630 goto second_run; 1631 } 1632 PF_HASHROW_UNLOCK(kh); 1633 1634 return (ret); 1635 } 1636 1637 /* 1638 * FIXME 1639 * This routine is inefficient -- locks the state only to unlock immediately on 1640 * return. 1641 * It is racy -- after the state is unlocked nothing stops other threads from 1642 * removing it. 1643 */ 1644 bool 1645 pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) 1646 { 1647 struct pf_kstate *s; 1648 1649 s = pf_find_state_all(key, dir, NULL); 1650 if (s != NULL) { 1651 PF_STATE_UNLOCK(s); 1652 return (true); 1653 } 1654 return (false); 1655 } 1656 1657 /* END state table stuff */ 1658 1659 static void 1660 pf_send(struct pf_send_entry *pfse) 1661 { 1662 1663 PF_SENDQ_LOCK(); 1664 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1665 PF_SENDQ_UNLOCK(); 1666 swi_sched(V_pf_swi_cookie, 0); 1667 } 1668 1669 static bool 1670 pf_isforlocal(struct mbuf *m, int af) 1671 { 1672 switch (af) { 1673 #ifdef INET 1674 case AF_INET: { 1675 struct ip *ip = mtod(m, struct ip *); 1676 1677 return (in_localip(ip->ip_dst)); 1678 } 1679 #endif 1680 #ifdef INET6 1681 case AF_INET6: { 1682 struct ip6_hdr *ip6; 1683 struct in6_ifaddr *ia; 1684 ip6 = mtod(m, struct ip6_hdr *); 1685 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 1686 if (ia == NULL) 1687 return (false); 1688 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 1689 } 1690 #endif 1691 default: 1692 panic("Unsupported af %d", af); 1693 } 1694 1695 return (false); 1696 } 1697 1698 void 1699 pf_intr(void *v) 1700 { 1701 struct epoch_tracker et; 1702 struct pf_send_head queue; 1703 struct pf_send_entry *pfse, *next; 1704 1705 CURVNET_SET((struct vnet *)v); 1706 1707 PF_SENDQ_LOCK(); 1708 queue = V_pf_sendqueue; 1709 STAILQ_INIT(&V_pf_sendqueue); 1710 PF_SENDQ_UNLOCK(); 1711 1712 NET_EPOCH_ENTER(et); 1713 1714 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1715 switch (pfse->pfse_type) { 1716 #ifdef INET 1717 case PFSE_IP: { 1718 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 1719 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1720 pfse->pfse_m->m_pkthdr.csum_flags |= 1721 CSUM_IP_VALID | CSUM_IP_CHECKED; 1722 ip_input(pfse->pfse_m); 1723 } else { 1724 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1725 NULL); 1726 } 1727 break; 1728 } 1729 case PFSE_ICMP: 1730 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1731 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1732 break; 1733 #endif /* INET */ 1734 #ifdef INET6 1735 case PFSE_IP6: 1736 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 1737 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 1738 ip6_input(pfse->pfse_m); 1739 } else { 1740 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 1741 NULL, NULL); 1742 } 1743 break; 1744 case PFSE_ICMP6: 1745 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1746 pfse->icmpopts.code, pfse->icmpopts.mtu); 1747 break; 1748 #endif /* INET6 */ 1749 default: 1750 panic("%s: unknown type", __func__); 1751 } 1752 free(pfse, M_PFTEMP); 1753 } 1754 NET_EPOCH_EXIT(et); 1755 CURVNET_RESTORE(); 1756 } 1757 1758 #define pf_purge_thread_period (hz / 10) 1759 1760 #ifdef PF_WANT_32_TO_64_COUNTER 1761 static void 1762 pf_status_counter_u64_periodic(void) 1763 { 1764 1765 PF_RULES_RASSERT(); 1766 1767 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 1768 return; 1769 } 1770 1771 for (int i = 0; i < FCNT_MAX; i++) { 1772 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 1773 } 1774 } 1775 1776 static void 1777 pf_kif_counter_u64_periodic(void) 1778 { 1779 struct pfi_kkif *kif; 1780 size_t r, run; 1781 1782 PF_RULES_RASSERT(); 1783 1784 if (__predict_false(V_pf_allkifcount == 0)) { 1785 return; 1786 } 1787 1788 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1789 return; 1790 } 1791 1792 run = V_pf_allkifcount / 10; 1793 if (run < 5) 1794 run = 5; 1795 1796 for (r = 0; r < run; r++) { 1797 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 1798 if (kif == NULL) { 1799 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1800 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 1801 break; 1802 } 1803 1804 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 1805 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 1806 1807 for (int i = 0; i < 2; i++) { 1808 for (int j = 0; j < 2; j++) { 1809 for (int k = 0; k < 2; k++) { 1810 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 1811 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 1812 } 1813 } 1814 } 1815 } 1816 } 1817 1818 static void 1819 pf_rule_counter_u64_periodic(void) 1820 { 1821 struct pf_krule *rule; 1822 size_t r, run; 1823 1824 PF_RULES_RASSERT(); 1825 1826 if (__predict_false(V_pf_allrulecount == 0)) { 1827 return; 1828 } 1829 1830 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 1831 return; 1832 } 1833 1834 run = V_pf_allrulecount / 10; 1835 if (run < 5) 1836 run = 5; 1837 1838 for (r = 0; r < run; r++) { 1839 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 1840 if (rule == NULL) { 1841 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1842 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 1843 break; 1844 } 1845 1846 LIST_REMOVE(V_pf_rulemarker, allrulelist); 1847 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 1848 1849 pf_counter_u64_periodic(&rule->evaluations); 1850 for (int i = 0; i < 2; i++) { 1851 pf_counter_u64_periodic(&rule->packets[i]); 1852 pf_counter_u64_periodic(&rule->bytes[i]); 1853 } 1854 } 1855 } 1856 1857 static void 1858 pf_counter_u64_periodic_main(void) 1859 { 1860 PF_RULES_RLOCK_TRACKER; 1861 1862 V_pf_counter_periodic_iter++; 1863 1864 PF_RULES_RLOCK(); 1865 pf_counter_u64_critical_enter(); 1866 pf_status_counter_u64_periodic(); 1867 pf_kif_counter_u64_periodic(); 1868 pf_rule_counter_u64_periodic(); 1869 pf_counter_u64_critical_exit(); 1870 PF_RULES_RUNLOCK(); 1871 } 1872 #else 1873 #define pf_counter_u64_periodic_main() do { } while (0) 1874 #endif 1875 1876 void 1877 pf_purge_thread(void *unused __unused) 1878 { 1879 VNET_ITERATOR_DECL(vnet_iter); 1880 1881 sx_xlock(&pf_end_lock); 1882 while (pf_end_threads == 0) { 1883 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 1884 1885 VNET_LIST_RLOCK(); 1886 VNET_FOREACH(vnet_iter) { 1887 CURVNET_SET(vnet_iter); 1888 1889 /* Wait until V_pf_default_rule is initialized. */ 1890 if (V_pf_vnet_active == 0) { 1891 CURVNET_RESTORE(); 1892 continue; 1893 } 1894 1895 pf_counter_u64_periodic_main(); 1896 1897 /* 1898 * Process 1/interval fraction of the state 1899 * table every run. 1900 */ 1901 V_pf_purge_idx = 1902 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1903 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1904 1905 /* 1906 * Purge other expired types every 1907 * PFTM_INTERVAL seconds. 1908 */ 1909 if (V_pf_purge_idx == 0) { 1910 /* 1911 * Order is important: 1912 * - states and src nodes reference rules 1913 * - states and rules reference kifs 1914 */ 1915 pf_purge_expired_fragments(); 1916 pf_purge_expired_src_nodes(); 1917 pf_purge_unlinked_rules(); 1918 pfi_kkif_purge(); 1919 } 1920 CURVNET_RESTORE(); 1921 } 1922 VNET_LIST_RUNLOCK(); 1923 } 1924 1925 pf_end_threads++; 1926 sx_xunlock(&pf_end_lock); 1927 kproc_exit(0); 1928 } 1929 1930 void 1931 pf_unload_vnet_purge(void) 1932 { 1933 1934 /* 1935 * To cleanse up all kifs and rules we need 1936 * two runs: first one clears reference flags, 1937 * then pf_purge_expired_states() doesn't 1938 * raise them, and then second run frees. 1939 */ 1940 pf_purge_unlinked_rules(); 1941 pfi_kkif_purge(); 1942 1943 /* 1944 * Now purge everything. 1945 */ 1946 pf_purge_expired_states(0, pf_hashmask); 1947 pf_purge_fragments(UINT_MAX); 1948 pf_purge_expired_src_nodes(); 1949 1950 /* 1951 * Now all kifs & rules should be unreferenced, 1952 * thus should be successfully freed. 1953 */ 1954 pf_purge_unlinked_rules(); 1955 pfi_kkif_purge(); 1956 } 1957 1958 u_int32_t 1959 pf_state_expires(const struct pf_kstate *state) 1960 { 1961 u_int32_t timeout; 1962 u_int32_t start; 1963 u_int32_t end; 1964 u_int32_t states; 1965 1966 /* handle all PFTM_* > PFTM_MAX here */ 1967 if (state->timeout == PFTM_PURGE) 1968 return (time_uptime); 1969 KASSERT(state->timeout != PFTM_UNLINKED, 1970 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1971 KASSERT((state->timeout < PFTM_MAX), 1972 ("pf_state_expires: timeout > PFTM_MAX")); 1973 timeout = state->rule.ptr->timeout[state->timeout]; 1974 if (!timeout) 1975 timeout = V_pf_default_rule.timeout[state->timeout]; 1976 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1977 if (start && state->rule.ptr != &V_pf_default_rule) { 1978 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1979 states = counter_u64_fetch(state->rule.ptr->states_cur); 1980 } else { 1981 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1982 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1983 states = V_pf_status.states; 1984 } 1985 if (end && states > start && start < end) { 1986 if (states < end) { 1987 timeout = (u_int64_t)timeout * (end - states) / 1988 (end - start); 1989 return (state->expire + timeout); 1990 } 1991 else 1992 return (time_uptime); 1993 } 1994 return (state->expire + timeout); 1995 } 1996 1997 void 1998 pf_purge_expired_src_nodes(void) 1999 { 2000 struct pf_ksrc_node_list freelist; 2001 struct pf_srchash *sh; 2002 struct pf_ksrc_node *cur, *next; 2003 int i; 2004 2005 LIST_INIT(&freelist); 2006 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 2007 PF_HASHROW_LOCK(sh); 2008 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2009 if (cur->states == 0 && cur->expire <= time_uptime) { 2010 pf_unlink_src_node(cur); 2011 LIST_INSERT_HEAD(&freelist, cur, entry); 2012 } else if (cur->rule.ptr != NULL) 2013 cur->rule.ptr->rule_ref |= PFRULE_REFS; 2014 PF_HASHROW_UNLOCK(sh); 2015 } 2016 2017 pf_free_src_nodes(&freelist); 2018 2019 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2020 } 2021 2022 static void 2023 pf_src_tree_remove_state(struct pf_kstate *s) 2024 { 2025 struct pf_ksrc_node *sn; 2026 uint32_t timeout; 2027 2028 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 2029 s->rule.ptr->timeout[PFTM_SRC_NODE] : 2030 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2031 2032 if (s->src_node != NULL) { 2033 sn = s->src_node; 2034 PF_SRC_NODE_LOCK(sn); 2035 if (s->src.tcp_est) 2036 --sn->conn; 2037 if (--sn->states == 0) 2038 sn->expire = time_uptime + timeout; 2039 PF_SRC_NODE_UNLOCK(sn); 2040 } 2041 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 2042 sn = s->nat_src_node; 2043 PF_SRC_NODE_LOCK(sn); 2044 if (--sn->states == 0) 2045 sn->expire = time_uptime + timeout; 2046 PF_SRC_NODE_UNLOCK(sn); 2047 } 2048 s->src_node = s->nat_src_node = NULL; 2049 } 2050 2051 /* 2052 * Unlink and potentilly free a state. Function may be 2053 * called with ID hash row locked, but always returns 2054 * unlocked, since it needs to go through key hash locking. 2055 */ 2056 int 2057 pf_unlink_state(struct pf_kstate *s) 2058 { 2059 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2060 2061 PF_HASHROW_ASSERT(ih); 2062 2063 if (s->timeout == PFTM_UNLINKED) { 2064 /* 2065 * State is being processed 2066 * by pf_unlink_state() in 2067 * an other thread. 2068 */ 2069 PF_HASHROW_UNLOCK(ih); 2070 return (0); /* XXXGL: undefined actually */ 2071 } 2072 2073 if (s->src.state == PF_TCPS_PROXY_DST) { 2074 /* XXX wire key the right one? */ 2075 pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, 2076 &s->key[PF_SK_WIRE]->addr[1], 2077 &s->key[PF_SK_WIRE]->addr[0], 2078 s->key[PF_SK_WIRE]->port[1], 2079 s->key[PF_SK_WIRE]->port[0], 2080 s->src.seqhi, s->src.seqlo + 1, 2081 TH_RST|TH_ACK, 0, 0, 0, true, s->tag, 0, s->act.rtableid); 2082 } 2083 2084 LIST_REMOVE(s, entry); 2085 pf_src_tree_remove_state(s); 2086 2087 if (V_pfsync_delete_state_ptr != NULL) 2088 V_pfsync_delete_state_ptr(s); 2089 2090 STATE_DEC_COUNTERS(s); 2091 2092 s->timeout = PFTM_UNLINKED; 2093 2094 /* Ensure we remove it from the list of halfopen states, if needed. */ 2095 if (s->key[PF_SK_STACK] != NULL && 2096 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2097 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2098 2099 PF_HASHROW_UNLOCK(ih); 2100 2101 pf_detach_state(s); 2102 /* pf_state_insert() initialises refs to 2 */ 2103 return (pf_release_staten(s, 2)); 2104 } 2105 2106 struct pf_kstate * 2107 pf_alloc_state(int flags) 2108 { 2109 2110 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2111 } 2112 2113 void 2114 pf_free_state(struct pf_kstate *cur) 2115 { 2116 struct pf_krule_item *ri; 2117 2118 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2119 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2120 cur->timeout)); 2121 2122 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2123 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2124 free(ri, M_PF_RULE_ITEM); 2125 } 2126 2127 pf_normalize_tcp_cleanup(cur); 2128 uma_zfree(V_pf_state_z, cur); 2129 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2130 } 2131 2132 /* 2133 * Called only from pf_purge_thread(), thus serialized. 2134 */ 2135 static u_int 2136 pf_purge_expired_states(u_int i, int maxcheck) 2137 { 2138 struct pf_idhash *ih; 2139 struct pf_kstate *s; 2140 struct pf_krule_item *mrm; 2141 2142 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2143 2144 /* 2145 * Go through hash and unlink states that expire now. 2146 */ 2147 while (maxcheck > 0) { 2148 ih = &V_pf_idhash[i]; 2149 2150 /* only take the lock if we expect to do work */ 2151 if (!LIST_EMPTY(&ih->states)) { 2152 relock: 2153 PF_HASHROW_LOCK(ih); 2154 LIST_FOREACH(s, &ih->states, entry) { 2155 if (pf_state_expires(s) <= time_uptime) { 2156 V_pf_status.states -= 2157 pf_unlink_state(s); 2158 goto relock; 2159 } 2160 s->rule.ptr->rule_ref |= PFRULE_REFS; 2161 if (s->nat_rule.ptr != NULL) 2162 s->nat_rule.ptr->rule_ref |= PFRULE_REFS; 2163 if (s->anchor.ptr != NULL) 2164 s->anchor.ptr->rule_ref |= PFRULE_REFS; 2165 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2166 SLIST_FOREACH(mrm, &s->match_rules, entry) 2167 mrm->r->rule_ref |= PFRULE_REFS; 2168 if (s->rt_kif) 2169 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2170 } 2171 PF_HASHROW_UNLOCK(ih); 2172 } 2173 2174 /* Return when we hit end of hash. */ 2175 if (++i > pf_hashmask) { 2176 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2177 return (0); 2178 } 2179 2180 maxcheck--; 2181 } 2182 2183 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2184 2185 return (i); 2186 } 2187 2188 static void 2189 pf_purge_unlinked_rules(void) 2190 { 2191 struct pf_krulequeue tmpq; 2192 struct pf_krule *r, *r1; 2193 2194 /* 2195 * If we have overloading task pending, then we'd 2196 * better skip purging this time. There is a tiny 2197 * probability that overloading task references 2198 * an already unlinked rule. 2199 */ 2200 PF_OVERLOADQ_LOCK(); 2201 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2202 PF_OVERLOADQ_UNLOCK(); 2203 return; 2204 } 2205 PF_OVERLOADQ_UNLOCK(); 2206 2207 /* 2208 * Do naive mark-and-sweep garbage collecting of old rules. 2209 * Reference flag is raised by pf_purge_expired_states() 2210 * and pf_purge_expired_src_nodes(). 2211 * 2212 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2213 * use a temporary queue. 2214 */ 2215 TAILQ_INIT(&tmpq); 2216 PF_UNLNKDRULES_LOCK(); 2217 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2218 if (!(r->rule_ref & PFRULE_REFS)) { 2219 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2220 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2221 } else 2222 r->rule_ref &= ~PFRULE_REFS; 2223 } 2224 PF_UNLNKDRULES_UNLOCK(); 2225 2226 if (!TAILQ_EMPTY(&tmpq)) { 2227 PF_CONFIG_LOCK(); 2228 PF_RULES_WLOCK(); 2229 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2230 TAILQ_REMOVE(&tmpq, r, entries); 2231 pf_free_rule(r); 2232 } 2233 PF_RULES_WUNLOCK(); 2234 PF_CONFIG_UNLOCK(); 2235 } 2236 } 2237 2238 void 2239 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2240 { 2241 switch (af) { 2242 #ifdef INET 2243 case AF_INET: { 2244 u_int32_t a = ntohl(addr->addr32[0]); 2245 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2246 (a>>8)&255, a&255); 2247 if (p) { 2248 p = ntohs(p); 2249 printf(":%u", p); 2250 } 2251 break; 2252 } 2253 #endif /* INET */ 2254 #ifdef INET6 2255 case AF_INET6: { 2256 u_int16_t b; 2257 u_int8_t i, curstart, curend, maxstart, maxend; 2258 curstart = curend = maxstart = maxend = 255; 2259 for (i = 0; i < 8; i++) { 2260 if (!addr->addr16[i]) { 2261 if (curstart == 255) 2262 curstart = i; 2263 curend = i; 2264 } else { 2265 if ((curend - curstart) > 2266 (maxend - maxstart)) { 2267 maxstart = curstart; 2268 maxend = curend; 2269 } 2270 curstart = curend = 255; 2271 } 2272 } 2273 if ((curend - curstart) > 2274 (maxend - maxstart)) { 2275 maxstart = curstart; 2276 maxend = curend; 2277 } 2278 for (i = 0; i < 8; i++) { 2279 if (i >= maxstart && i <= maxend) { 2280 if (i == 0) 2281 printf(":"); 2282 if (i == maxend) 2283 printf(":"); 2284 } else { 2285 b = ntohs(addr->addr16[i]); 2286 printf("%x", b); 2287 if (i < 7) 2288 printf(":"); 2289 } 2290 } 2291 if (p) { 2292 p = ntohs(p); 2293 printf("[%u]", p); 2294 } 2295 break; 2296 } 2297 #endif /* INET6 */ 2298 } 2299 } 2300 2301 void 2302 pf_print_state(struct pf_kstate *s) 2303 { 2304 pf_print_state_parts(s, NULL, NULL); 2305 } 2306 2307 static void 2308 pf_print_state_parts(struct pf_kstate *s, 2309 struct pf_state_key *skwp, struct pf_state_key *sksp) 2310 { 2311 struct pf_state_key *skw, *sks; 2312 u_int8_t proto, dir; 2313 2314 /* Do our best to fill these, but they're skipped if NULL */ 2315 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 2316 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 2317 proto = skw ? skw->proto : (sks ? sks->proto : 0); 2318 dir = s ? s->direction : 0; 2319 2320 switch (proto) { 2321 case IPPROTO_IPV4: 2322 printf("IPv4"); 2323 break; 2324 case IPPROTO_IPV6: 2325 printf("IPv6"); 2326 break; 2327 case IPPROTO_TCP: 2328 printf("TCP"); 2329 break; 2330 case IPPROTO_UDP: 2331 printf("UDP"); 2332 break; 2333 case IPPROTO_ICMP: 2334 printf("ICMP"); 2335 break; 2336 case IPPROTO_ICMPV6: 2337 printf("ICMPv6"); 2338 break; 2339 default: 2340 printf("%u", proto); 2341 break; 2342 } 2343 switch (dir) { 2344 case PF_IN: 2345 printf(" in"); 2346 break; 2347 case PF_OUT: 2348 printf(" out"); 2349 break; 2350 } 2351 if (skw) { 2352 printf(" wire: "); 2353 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 2354 printf(" "); 2355 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 2356 } 2357 if (sks) { 2358 printf(" stack: "); 2359 if (sks != skw) { 2360 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 2361 printf(" "); 2362 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 2363 } else 2364 printf("-"); 2365 } 2366 if (s) { 2367 if (proto == IPPROTO_TCP) { 2368 printf(" [lo=%u high=%u win=%u modulator=%u", 2369 s->src.seqlo, s->src.seqhi, 2370 s->src.max_win, s->src.seqdiff); 2371 if (s->src.wscale && s->dst.wscale) 2372 printf(" wscale=%u", 2373 s->src.wscale & PF_WSCALE_MASK); 2374 printf("]"); 2375 printf(" [lo=%u high=%u win=%u modulator=%u", 2376 s->dst.seqlo, s->dst.seqhi, 2377 s->dst.max_win, s->dst.seqdiff); 2378 if (s->src.wscale && s->dst.wscale) 2379 printf(" wscale=%u", 2380 s->dst.wscale & PF_WSCALE_MASK); 2381 printf("]"); 2382 } 2383 printf(" %u:%u", s->src.state, s->dst.state); 2384 } 2385 } 2386 2387 void 2388 pf_print_flags(u_int8_t f) 2389 { 2390 if (f) 2391 printf(" "); 2392 if (f & TH_FIN) 2393 printf("F"); 2394 if (f & TH_SYN) 2395 printf("S"); 2396 if (f & TH_RST) 2397 printf("R"); 2398 if (f & TH_PUSH) 2399 printf("P"); 2400 if (f & TH_ACK) 2401 printf("A"); 2402 if (f & TH_URG) 2403 printf("U"); 2404 if (f & TH_ECE) 2405 printf("E"); 2406 if (f & TH_CWR) 2407 printf("W"); 2408 } 2409 2410 #define PF_SET_SKIP_STEPS(i) \ 2411 do { \ 2412 while (head[i] != cur) { \ 2413 head[i]->skip[i].ptr = cur; \ 2414 head[i] = TAILQ_NEXT(head[i], entries); \ 2415 } \ 2416 } while (0) 2417 2418 void 2419 pf_calc_skip_steps(struct pf_krulequeue *rules) 2420 { 2421 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 2422 int i; 2423 2424 cur = TAILQ_FIRST(rules); 2425 prev = cur; 2426 for (i = 0; i < PF_SKIP_COUNT; ++i) 2427 head[i] = cur; 2428 while (cur != NULL) { 2429 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2430 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2431 if (cur->direction != prev->direction) 2432 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2433 if (cur->af != prev->af) 2434 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2435 if (cur->proto != prev->proto) 2436 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2437 if (cur->src.neg != prev->src.neg || 2438 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2439 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2440 if (cur->src.port[0] != prev->src.port[0] || 2441 cur->src.port[1] != prev->src.port[1] || 2442 cur->src.port_op != prev->src.port_op) 2443 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2444 if (cur->dst.neg != prev->dst.neg || 2445 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2446 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2447 if (cur->dst.port[0] != prev->dst.port[0] || 2448 cur->dst.port[1] != prev->dst.port[1] || 2449 cur->dst.port_op != prev->dst.port_op) 2450 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2451 2452 prev = cur; 2453 cur = TAILQ_NEXT(cur, entries); 2454 } 2455 for (i = 0; i < PF_SKIP_COUNT; ++i) 2456 PF_SET_SKIP_STEPS(i); 2457 } 2458 2459 int 2460 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2461 { 2462 if (aw1->type != aw2->type) 2463 return (1); 2464 switch (aw1->type) { 2465 case PF_ADDR_ADDRMASK: 2466 case PF_ADDR_RANGE: 2467 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2468 return (1); 2469 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2470 return (1); 2471 return (0); 2472 case PF_ADDR_DYNIFTL: 2473 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2474 case PF_ADDR_NOROUTE: 2475 case PF_ADDR_URPFFAILED: 2476 return (0); 2477 case PF_ADDR_TABLE: 2478 return (aw1->p.tbl != aw2->p.tbl); 2479 default: 2480 printf("invalid address type: %d\n", aw1->type); 2481 return (1); 2482 } 2483 } 2484 2485 /** 2486 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2487 * header isn't always a full checksum. In some cases (i.e. output) it's a 2488 * pseudo-header checksum, which is a partial checksum over src/dst IP 2489 * addresses, protocol number and length. 2490 * 2491 * That means we have the following cases: 2492 * * Input or forwarding: we don't have TSO, the checksum fields are full 2493 * checksums, we need to update the checksum whenever we change anything. 2494 * * Output (i.e. the checksum is a pseudo-header checksum): 2495 * x The field being updated is src/dst address or affects the length of 2496 * the packet. We need to update the pseudo-header checksum (note that this 2497 * checksum is not ones' complement). 2498 * x Some other field is being modified (e.g. src/dst port numbers): We 2499 * don't have to update anything. 2500 **/ 2501 u_int16_t 2502 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2503 { 2504 u_int32_t x; 2505 2506 x = cksum + old - new; 2507 x = (x + (x >> 16)) & 0xffff; 2508 2509 /* optimise: eliminate a branch when not udp */ 2510 if (udp && cksum == 0x0000) 2511 return cksum; 2512 if (udp && x == 0x0000) 2513 x = 0xffff; 2514 2515 return (u_int16_t)(x); 2516 } 2517 2518 static void 2519 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, 2520 u_int8_t udp) 2521 { 2522 u_int16_t old = htons(hi ? (*f << 8) : *f); 2523 u_int16_t new = htons(hi ? ( v << 8) : v); 2524 2525 if (*f == v) 2526 return; 2527 2528 *f = v; 2529 2530 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2531 return; 2532 2533 *cksum = pf_cksum_fixup(*cksum, old, new, udp); 2534 } 2535 2536 void 2537 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, 2538 bool hi, u_int8_t udp) 2539 { 2540 u_int8_t *fb = (u_int8_t *)f; 2541 u_int8_t *vb = (u_int8_t *)&v; 2542 2543 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2544 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2545 } 2546 2547 void 2548 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, 2549 bool hi, u_int8_t udp) 2550 { 2551 u_int8_t *fb = (u_int8_t *)f; 2552 u_int8_t *vb = (u_int8_t *)&v; 2553 2554 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2555 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2556 pf_patch_8(m, cksum, fb++, *vb++, hi, udp); 2557 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); 2558 } 2559 2560 u_int16_t 2561 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2562 u_int16_t new, u_int8_t udp) 2563 { 2564 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2565 return (cksum); 2566 2567 return (pf_cksum_fixup(cksum, old, new, udp)); 2568 } 2569 2570 static void 2571 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2572 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2573 sa_family_t af) 2574 { 2575 struct pf_addr ao; 2576 u_int16_t po = *p; 2577 2578 PF_ACPY(&ao, a, af); 2579 PF_ACPY(a, an, af); 2580 2581 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2582 *pc = ~*pc; 2583 2584 *p = pn; 2585 2586 switch (af) { 2587 #ifdef INET 2588 case AF_INET: 2589 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2590 ao.addr16[0], an->addr16[0], 0), 2591 ao.addr16[1], an->addr16[1], 0); 2592 *p = pn; 2593 2594 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2595 ao.addr16[0], an->addr16[0], u), 2596 ao.addr16[1], an->addr16[1], u); 2597 2598 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2599 break; 2600 #endif /* INET */ 2601 #ifdef INET6 2602 case AF_INET6: 2603 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2604 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2605 pf_cksum_fixup(pf_cksum_fixup(*pc, 2606 ao.addr16[0], an->addr16[0], u), 2607 ao.addr16[1], an->addr16[1], u), 2608 ao.addr16[2], an->addr16[2], u), 2609 ao.addr16[3], an->addr16[3], u), 2610 ao.addr16[4], an->addr16[4], u), 2611 ao.addr16[5], an->addr16[5], u), 2612 ao.addr16[6], an->addr16[6], u), 2613 ao.addr16[7], an->addr16[7], u); 2614 2615 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2616 break; 2617 #endif /* INET6 */ 2618 } 2619 2620 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2621 CSUM_DELAY_DATA_IPV6)) { 2622 *pc = ~*pc; 2623 if (! *pc) 2624 *pc = 0xffff; 2625 } 2626 } 2627 2628 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2629 void 2630 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2631 { 2632 u_int32_t ao; 2633 2634 memcpy(&ao, a, sizeof(ao)); 2635 memcpy(a, &an, sizeof(u_int32_t)); 2636 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2637 ao % 65536, an % 65536, u); 2638 } 2639 2640 void 2641 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2642 { 2643 u_int32_t ao; 2644 2645 memcpy(&ao, a, sizeof(ao)); 2646 memcpy(a, &an, sizeof(u_int32_t)); 2647 2648 *c = pf_proto_cksum_fixup(m, 2649 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2650 ao % 65536, an % 65536, udp); 2651 } 2652 2653 #ifdef INET6 2654 static void 2655 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2656 { 2657 struct pf_addr ao; 2658 2659 PF_ACPY(&ao, a, AF_INET6); 2660 PF_ACPY(a, an, AF_INET6); 2661 2662 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2663 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2664 pf_cksum_fixup(pf_cksum_fixup(*c, 2665 ao.addr16[0], an->addr16[0], u), 2666 ao.addr16[1], an->addr16[1], u), 2667 ao.addr16[2], an->addr16[2], u), 2668 ao.addr16[3], an->addr16[3], u), 2669 ao.addr16[4], an->addr16[4], u), 2670 ao.addr16[5], an->addr16[5], u), 2671 ao.addr16[6], an->addr16[6], u), 2672 ao.addr16[7], an->addr16[7], u); 2673 } 2674 #endif /* INET6 */ 2675 2676 static void 2677 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2678 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2679 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2680 { 2681 struct pf_addr oia, ooa; 2682 2683 PF_ACPY(&oia, ia, af); 2684 if (oa) 2685 PF_ACPY(&ooa, oa, af); 2686 2687 /* Change inner protocol port, fix inner protocol checksum. */ 2688 if (ip != NULL) { 2689 u_int16_t oip = *ip; 2690 u_int32_t opc; 2691 2692 if (pc != NULL) 2693 opc = *pc; 2694 *ip = np; 2695 if (pc != NULL) 2696 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2697 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2698 if (pc != NULL) 2699 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2700 } 2701 /* Change inner ip address, fix inner ip and icmp checksums. */ 2702 PF_ACPY(ia, na, af); 2703 switch (af) { 2704 #ifdef INET 2705 case AF_INET: { 2706 u_int32_t oh2c = *h2c; 2707 2708 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2709 oia.addr16[0], ia->addr16[0], 0), 2710 oia.addr16[1], ia->addr16[1], 0); 2711 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2712 oia.addr16[0], ia->addr16[0], 0), 2713 oia.addr16[1], ia->addr16[1], 0); 2714 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2715 break; 2716 } 2717 #endif /* INET */ 2718 #ifdef INET6 2719 case AF_INET6: 2720 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2721 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2722 pf_cksum_fixup(pf_cksum_fixup(*ic, 2723 oia.addr16[0], ia->addr16[0], u), 2724 oia.addr16[1], ia->addr16[1], u), 2725 oia.addr16[2], ia->addr16[2], u), 2726 oia.addr16[3], ia->addr16[3], u), 2727 oia.addr16[4], ia->addr16[4], u), 2728 oia.addr16[5], ia->addr16[5], u), 2729 oia.addr16[6], ia->addr16[6], u), 2730 oia.addr16[7], ia->addr16[7], u); 2731 break; 2732 #endif /* INET6 */ 2733 } 2734 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2735 if (oa) { 2736 PF_ACPY(oa, na, af); 2737 switch (af) { 2738 #ifdef INET 2739 case AF_INET: 2740 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2741 ooa.addr16[0], oa->addr16[0], 0), 2742 ooa.addr16[1], oa->addr16[1], 0); 2743 break; 2744 #endif /* INET */ 2745 #ifdef INET6 2746 case AF_INET6: 2747 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2748 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2749 pf_cksum_fixup(pf_cksum_fixup(*ic, 2750 ooa.addr16[0], oa->addr16[0], u), 2751 ooa.addr16[1], oa->addr16[1], u), 2752 ooa.addr16[2], oa->addr16[2], u), 2753 ooa.addr16[3], oa->addr16[3], u), 2754 ooa.addr16[4], oa->addr16[4], u), 2755 ooa.addr16[5], oa->addr16[5], u), 2756 ooa.addr16[6], oa->addr16[6], u), 2757 ooa.addr16[7], oa->addr16[7], u); 2758 break; 2759 #endif /* INET6 */ 2760 } 2761 } 2762 } 2763 2764 /* 2765 * Need to modulate the sequence numbers in the TCP SACK option 2766 * (credits to Krzysztof Pfaff for report and patch) 2767 */ 2768 static int 2769 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2770 struct tcphdr *th, struct pf_state_peer *dst) 2771 { 2772 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2773 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2774 int copyback = 0, i, olen; 2775 struct sackblk sack; 2776 2777 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2778 if (hlen < TCPOLEN_SACKLEN || 2779 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2780 return 0; 2781 2782 while (hlen >= TCPOLEN_SACKLEN) { 2783 size_t startoff = opt - opts; 2784 olen = opt[1]; 2785 switch (*opt) { 2786 case TCPOPT_EOL: /* FALLTHROUGH */ 2787 case TCPOPT_NOP: 2788 opt++; 2789 hlen--; 2790 break; 2791 case TCPOPT_SACK: 2792 if (olen > hlen) 2793 olen = hlen; 2794 if (olen >= TCPOLEN_SACKLEN) { 2795 for (i = 2; i + TCPOLEN_SACK <= olen; 2796 i += TCPOLEN_SACK) { 2797 memcpy(&sack, &opt[i], sizeof(sack)); 2798 pf_patch_32_unaligned(m, 2799 &th->th_sum, &sack.start, 2800 htonl(ntohl(sack.start) - dst->seqdiff), 2801 PF_ALGNMNT(startoff), 2802 0); 2803 pf_patch_32_unaligned(m, &th->th_sum, 2804 &sack.end, 2805 htonl(ntohl(sack.end) - dst->seqdiff), 2806 PF_ALGNMNT(startoff), 2807 0); 2808 memcpy(&opt[i], &sack, sizeof(sack)); 2809 } 2810 copyback = 1; 2811 } 2812 /* FALLTHROUGH */ 2813 default: 2814 if (olen < 2) 2815 olen = 2; 2816 hlen -= olen; 2817 opt += olen; 2818 } 2819 } 2820 2821 if (copyback) 2822 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2823 return (copyback); 2824 } 2825 2826 struct mbuf * 2827 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 2828 const struct pf_addr *saddr, const struct pf_addr *daddr, 2829 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2830 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 2831 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 2832 { 2833 struct mbuf *m; 2834 int len, tlen; 2835 #ifdef INET 2836 struct ip *h = NULL; 2837 #endif /* INET */ 2838 #ifdef INET6 2839 struct ip6_hdr *h6 = NULL; 2840 #endif /* INET6 */ 2841 struct tcphdr *th; 2842 char *opt; 2843 struct pf_mtag *pf_mtag; 2844 2845 len = 0; 2846 th = NULL; 2847 2848 /* maximum segment size tcp option */ 2849 tlen = sizeof(struct tcphdr); 2850 if (mss) 2851 tlen += 4; 2852 2853 switch (af) { 2854 #ifdef INET 2855 case AF_INET: 2856 len = sizeof(struct ip) + tlen; 2857 break; 2858 #endif /* INET */ 2859 #ifdef INET6 2860 case AF_INET6: 2861 len = sizeof(struct ip6_hdr) + tlen; 2862 break; 2863 #endif /* INET6 */ 2864 default: 2865 panic("%s: unsupported af %d", __func__, af); 2866 } 2867 2868 m = m_gethdr(M_NOWAIT, MT_DATA); 2869 if (m == NULL) 2870 return (NULL); 2871 2872 #ifdef MAC 2873 mac_netinet_firewall_send(m); 2874 #endif 2875 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2876 m_freem(m); 2877 return (NULL); 2878 } 2879 if (skip_firewall) 2880 m->m_flags |= M_SKIP_FIREWALL; 2881 pf_mtag->tag = mtag_tag; 2882 pf_mtag->flags = mtag_flags; 2883 2884 if (rtableid >= 0) 2885 M_SETFIB(m, rtableid); 2886 2887 #ifdef ALTQ 2888 if (r != NULL && r->qid) { 2889 pf_mtag->qid = r->qid; 2890 2891 /* add hints for ecn */ 2892 pf_mtag->hdr = mtod(m, struct ip *); 2893 } 2894 #endif /* ALTQ */ 2895 m->m_data += max_linkhdr; 2896 m->m_pkthdr.len = m->m_len = len; 2897 /* The rest of the stack assumes a rcvif, so provide one. 2898 * This is a locally generated packet, so .. close enough. */ 2899 m->m_pkthdr.rcvif = V_loif; 2900 bzero(m->m_data, len); 2901 switch (af) { 2902 #ifdef INET 2903 case AF_INET: 2904 h = mtod(m, struct ip *); 2905 2906 /* IP header fields included in the TCP checksum */ 2907 h->ip_p = IPPROTO_TCP; 2908 h->ip_len = htons(tlen); 2909 h->ip_src.s_addr = saddr->v4.s_addr; 2910 h->ip_dst.s_addr = daddr->v4.s_addr; 2911 2912 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2913 break; 2914 #endif /* INET */ 2915 #ifdef INET6 2916 case AF_INET6: 2917 h6 = mtod(m, struct ip6_hdr *); 2918 2919 /* IP header fields included in the TCP checksum */ 2920 h6->ip6_nxt = IPPROTO_TCP; 2921 h6->ip6_plen = htons(tlen); 2922 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2923 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2924 2925 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2926 break; 2927 #endif /* INET6 */ 2928 } 2929 2930 /* TCP header */ 2931 th->th_sport = sport; 2932 th->th_dport = dport; 2933 th->th_seq = htonl(seq); 2934 th->th_ack = htonl(ack); 2935 th->th_off = tlen >> 2; 2936 th->th_flags = tcp_flags; 2937 th->th_win = htons(win); 2938 2939 if (mss) { 2940 opt = (char *)(th + 1); 2941 opt[0] = TCPOPT_MAXSEG; 2942 opt[1] = 4; 2943 HTONS(mss); 2944 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2945 } 2946 2947 switch (af) { 2948 #ifdef INET 2949 case AF_INET: 2950 /* TCP checksum */ 2951 th->th_sum = in_cksum(m, len); 2952 2953 /* Finish the IP header */ 2954 h->ip_v = 4; 2955 h->ip_hl = sizeof(*h) >> 2; 2956 h->ip_tos = IPTOS_LOWDELAY; 2957 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2958 h->ip_len = htons(len); 2959 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2960 h->ip_sum = 0; 2961 break; 2962 #endif /* INET */ 2963 #ifdef INET6 2964 case AF_INET6: 2965 /* TCP checksum */ 2966 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2967 sizeof(struct ip6_hdr), tlen); 2968 2969 h6->ip6_vfc |= IPV6_VERSION; 2970 h6->ip6_hlim = IPV6_DEFHLIM; 2971 break; 2972 #endif /* INET6 */ 2973 } 2974 2975 return (m); 2976 } 2977 2978 static void 2979 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 2980 uint8_t ttl, int rtableid) 2981 { 2982 struct mbuf *m; 2983 #ifdef INET 2984 struct ip *h = NULL; 2985 #endif /* INET */ 2986 #ifdef INET6 2987 struct ip6_hdr *h6 = NULL; 2988 #endif /* INET6 */ 2989 struct sctphdr *hdr; 2990 struct sctp_chunkhdr *chunk; 2991 struct pf_send_entry *pfse; 2992 int off = 0; 2993 2994 MPASS(af == pd->af); 2995 2996 m = m_gethdr(M_NOWAIT, MT_DATA); 2997 if (m == NULL) 2998 return; 2999 3000 m->m_data += max_linkhdr; 3001 m->m_flags |= M_SKIP_FIREWALL; 3002 /* The rest of the stack assumes a rcvif, so provide one. 3003 * This is a locally generated packet, so .. close enough. */ 3004 m->m_pkthdr.rcvif = V_loif; 3005 3006 /* IPv4|6 header */ 3007 switch (af) { 3008 #ifdef INET 3009 case AF_INET: 3010 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 3011 3012 h = mtod(m, struct ip *); 3013 3014 /* IP header fields included in the TCP checksum */ 3015 3016 h->ip_p = IPPROTO_SCTP; 3017 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 3018 h->ip_ttl = ttl ? ttl : V_ip_defttl; 3019 h->ip_src = pd->dst->v4; 3020 h->ip_dst = pd->src->v4; 3021 3022 off += sizeof(struct ip); 3023 break; 3024 #endif /* INET */ 3025 #ifdef INET6 3026 case AF_INET6: 3027 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 3028 3029 h6 = mtod(m, struct ip6_hdr *); 3030 3031 /* IP header fields included in the TCP checksum */ 3032 h6->ip6_vfc |= IPV6_VERSION; 3033 h6->ip6_nxt = IPPROTO_SCTP; 3034 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 3035 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 3036 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 3037 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 3038 3039 off += sizeof(struct ip6_hdr); 3040 break; 3041 #endif /* INET6 */ 3042 } 3043 3044 /* SCTP header */ 3045 hdr = mtodo(m, off); 3046 3047 hdr->src_port = pd->hdr.sctp.dest_port; 3048 hdr->dest_port = pd->hdr.sctp.src_port; 3049 hdr->v_tag = pd->sctp_initiate_tag; 3050 hdr->checksum = 0; 3051 3052 /* Abort chunk. */ 3053 off += sizeof(struct sctphdr); 3054 chunk = mtodo(m, off); 3055 3056 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 3057 chunk->chunk_length = htons(sizeof(*chunk)); 3058 3059 /* SCTP checksum */ 3060 off += sizeof(*chunk); 3061 m->m_pkthdr.len = m->m_len = off; 3062 3063 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));; 3064 3065 if (rtableid >= 0) 3066 M_SETFIB(m, rtableid); 3067 3068 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3069 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3070 if (pfse == NULL) { 3071 m_freem(m); 3072 return; 3073 } 3074 3075 switch (af) { 3076 #ifdef INET 3077 case AF_INET: 3078 pfse->pfse_type = PFSE_IP; 3079 break; 3080 #endif /* INET */ 3081 #ifdef INET6 3082 case AF_INET6: 3083 pfse->pfse_type = PFSE_IP6; 3084 break; 3085 #endif /* INET6 */ 3086 } 3087 3088 pfse->pfse_m = m; 3089 pf_send(pfse); 3090 } 3091 3092 void 3093 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 3094 const struct pf_addr *saddr, const struct pf_addr *daddr, 3095 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3096 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3097 bool skip_firewall, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 3098 { 3099 struct pf_send_entry *pfse; 3100 struct mbuf *m; 3101 3102 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 3103 win, mss, ttl, skip_firewall, mtag_tag, mtag_flags, rtableid); 3104 if (m == NULL) 3105 return; 3106 3107 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3108 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3109 if (pfse == NULL) { 3110 m_freem(m); 3111 return; 3112 } 3113 3114 switch (af) { 3115 #ifdef INET 3116 case AF_INET: 3117 pfse->pfse_type = PFSE_IP; 3118 break; 3119 #endif /* INET */ 3120 #ifdef INET6 3121 case AF_INET6: 3122 pfse->pfse_type = PFSE_IP6; 3123 break; 3124 #endif /* INET6 */ 3125 } 3126 3127 pfse->pfse_m = m; 3128 pf_send(pfse); 3129 } 3130 3131 static void 3132 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 3133 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 3134 struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 3135 u_short *reason, int rtableid) 3136 { 3137 struct pf_addr * const saddr = pd->src; 3138 struct pf_addr * const daddr = pd->dst; 3139 sa_family_t af = pd->af; 3140 3141 /* undo NAT changes, if they have taken place */ 3142 if (nr != NULL) { 3143 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 3144 PF_ACPY(daddr, &sk->addr[pd->didx], af); 3145 if (pd->sport) 3146 *pd->sport = sk->port[pd->sidx]; 3147 if (pd->dport) 3148 *pd->dport = sk->port[pd->didx]; 3149 if (pd->proto_sum) 3150 *pd->proto_sum = bproto_sum; 3151 if (pd->ip_sum) 3152 *pd->ip_sum = bip_sum; 3153 m_copyback(m, off, hdrlen, pd->hdr.any); 3154 } 3155 if (pd->proto == IPPROTO_TCP && 3156 ((r->rule_flag & PFRULE_RETURNRST) || 3157 (r->rule_flag & PFRULE_RETURN)) && 3158 !(th->th_flags & TH_RST)) { 3159 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 3160 int len = 0; 3161 #ifdef INET 3162 struct ip *h4; 3163 #endif 3164 #ifdef INET6 3165 struct ip6_hdr *h6; 3166 #endif 3167 3168 switch (af) { 3169 #ifdef INET 3170 case AF_INET: 3171 h4 = mtod(m, struct ip *); 3172 len = ntohs(h4->ip_len) - off; 3173 break; 3174 #endif 3175 #ifdef INET6 3176 case AF_INET6: 3177 h6 = mtod(m, struct ip6_hdr *); 3178 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 3179 break; 3180 #endif 3181 } 3182 3183 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 3184 REASON_SET(reason, PFRES_PROTCKSUM); 3185 else { 3186 if (th->th_flags & TH_SYN) 3187 ack++; 3188 if (th->th_flags & TH_FIN) 3189 ack++; 3190 pf_send_tcp(r, af, pd->dst, 3191 pd->src, th->th_dport, th->th_sport, 3192 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 3193 r->return_ttl, true, 0, 0, rtableid); 3194 } 3195 } else if (pd->proto == IPPROTO_SCTP && 3196 (r->rule_flag & PFRULE_RETURN)) { 3197 pf_send_sctp_abort(af, pd, r->return_ttl, rtableid); 3198 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 3199 r->return_icmp) 3200 pf_send_icmp(m, r->return_icmp >> 8, 3201 r->return_icmp & 255, af, r, rtableid); 3202 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 3203 r->return_icmp6) 3204 pf_send_icmp(m, r->return_icmp6 >> 8, 3205 r->return_icmp6 & 255, af, r, rtableid); 3206 } 3207 3208 static int 3209 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 3210 { 3211 struct m_tag *mtag; 3212 u_int8_t mpcp; 3213 3214 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 3215 if (mtag == NULL) 3216 return (0); 3217 3218 if (prio == PF_PRIO_ZERO) 3219 prio = 0; 3220 3221 mpcp = *(uint8_t *)(mtag + 1); 3222 3223 return (mpcp == prio); 3224 } 3225 3226 static int 3227 pf_icmp_to_bandlim(uint8_t type) 3228 { 3229 switch (type) { 3230 case ICMP_ECHO: 3231 case ICMP_ECHOREPLY: 3232 return (BANDLIM_ICMP_ECHO); 3233 case ICMP_TSTAMP: 3234 case ICMP_TSTAMPREPLY: 3235 return (BANDLIM_ICMP_TSTAMP); 3236 case ICMP_UNREACH: 3237 default: 3238 return (BANDLIM_ICMP_UNREACH); 3239 } 3240 } 3241 3242 static void 3243 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 3244 struct pf_krule *r, int rtableid) 3245 { 3246 struct pf_send_entry *pfse; 3247 struct mbuf *m0; 3248 struct pf_mtag *pf_mtag; 3249 3250 /* ICMP packet rate limitation. */ 3251 #ifdef INET6 3252 if (af == AF_INET6) { 3253 if (icmp6_ratelimit(NULL, type, code)) 3254 return; 3255 } 3256 #endif 3257 #ifdef INET 3258 if (af == AF_INET) { 3259 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 3260 return; 3261 } 3262 #endif 3263 3264 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 3265 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 3266 if (pfse == NULL) 3267 return; 3268 3269 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 3270 free(pfse, M_PFTEMP); 3271 return; 3272 } 3273 3274 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 3275 free(pfse, M_PFTEMP); 3276 return; 3277 } 3278 /* XXX: revisit */ 3279 m0->m_flags |= M_SKIP_FIREWALL; 3280 3281 if (rtableid >= 0) 3282 M_SETFIB(m0, rtableid); 3283 3284 #ifdef ALTQ 3285 if (r->qid) { 3286 pf_mtag->qid = r->qid; 3287 /* add hints for ecn */ 3288 pf_mtag->hdr = mtod(m0, struct ip *); 3289 } 3290 #endif /* ALTQ */ 3291 3292 switch (af) { 3293 #ifdef INET 3294 case AF_INET: 3295 pfse->pfse_type = PFSE_ICMP; 3296 break; 3297 #endif /* INET */ 3298 #ifdef INET6 3299 case AF_INET6: 3300 pfse->pfse_type = PFSE_ICMP6; 3301 break; 3302 #endif /* INET6 */ 3303 } 3304 pfse->pfse_m = m0; 3305 pfse->icmpopts.type = type; 3306 pfse->icmpopts.code = code; 3307 pf_send(pfse); 3308 } 3309 3310 /* 3311 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 3312 * If n is 0, they match if they are equal. If n is != 0, they match if they 3313 * are different. 3314 */ 3315 int 3316 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 3317 struct pf_addr *b, sa_family_t af) 3318 { 3319 int match = 0; 3320 3321 switch (af) { 3322 #ifdef INET 3323 case AF_INET: 3324 if ((a->addr32[0] & m->addr32[0]) == 3325 (b->addr32[0] & m->addr32[0])) 3326 match++; 3327 break; 3328 #endif /* INET */ 3329 #ifdef INET6 3330 case AF_INET6: 3331 if (((a->addr32[0] & m->addr32[0]) == 3332 (b->addr32[0] & m->addr32[0])) && 3333 ((a->addr32[1] & m->addr32[1]) == 3334 (b->addr32[1] & m->addr32[1])) && 3335 ((a->addr32[2] & m->addr32[2]) == 3336 (b->addr32[2] & m->addr32[2])) && 3337 ((a->addr32[3] & m->addr32[3]) == 3338 (b->addr32[3] & m->addr32[3]))) 3339 match++; 3340 break; 3341 #endif /* INET6 */ 3342 } 3343 if (match) { 3344 if (n) 3345 return (0); 3346 else 3347 return (1); 3348 } else { 3349 if (n) 3350 return (1); 3351 else 3352 return (0); 3353 } 3354 } 3355 3356 /* 3357 * Return 1 if b <= a <= e, otherwise return 0. 3358 */ 3359 int 3360 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 3361 struct pf_addr *a, sa_family_t af) 3362 { 3363 switch (af) { 3364 #ifdef INET 3365 case AF_INET: 3366 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 3367 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 3368 return (0); 3369 break; 3370 #endif /* INET */ 3371 #ifdef INET6 3372 case AF_INET6: { 3373 int i; 3374 3375 /* check a >= b */ 3376 for (i = 0; i < 4; ++i) 3377 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 3378 break; 3379 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 3380 return (0); 3381 /* check a <= e */ 3382 for (i = 0; i < 4; ++i) 3383 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 3384 break; 3385 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 3386 return (0); 3387 break; 3388 } 3389 #endif /* INET6 */ 3390 } 3391 return (1); 3392 } 3393 3394 static int 3395 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 3396 { 3397 switch (op) { 3398 case PF_OP_IRG: 3399 return ((p > a1) && (p < a2)); 3400 case PF_OP_XRG: 3401 return ((p < a1) || (p > a2)); 3402 case PF_OP_RRG: 3403 return ((p >= a1) && (p <= a2)); 3404 case PF_OP_EQ: 3405 return (p == a1); 3406 case PF_OP_NE: 3407 return (p != a1); 3408 case PF_OP_LT: 3409 return (p < a1); 3410 case PF_OP_LE: 3411 return (p <= a1); 3412 case PF_OP_GT: 3413 return (p > a1); 3414 case PF_OP_GE: 3415 return (p >= a1); 3416 } 3417 return (0); /* never reached */ 3418 } 3419 3420 int 3421 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 3422 { 3423 NTOHS(a1); 3424 NTOHS(a2); 3425 NTOHS(p); 3426 return (pf_match(op, a1, a2, p)); 3427 } 3428 3429 static int 3430 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 3431 { 3432 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3433 return (0); 3434 return (pf_match(op, a1, a2, u)); 3435 } 3436 3437 static int 3438 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 3439 { 3440 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 3441 return (0); 3442 return (pf_match(op, a1, a2, g)); 3443 } 3444 3445 int 3446 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 3447 { 3448 if (*tag == -1) 3449 *tag = mtag; 3450 3451 return ((!r->match_tag_not && r->match_tag == *tag) || 3452 (r->match_tag_not && r->match_tag != *tag)); 3453 } 3454 3455 int 3456 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 3457 { 3458 3459 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 3460 3461 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 3462 return (ENOMEM); 3463 3464 pd->pf_mtag->tag = tag; 3465 3466 return (0); 3467 } 3468 3469 #define PF_ANCHOR_STACKSIZE 32 3470 struct pf_kanchor_stackframe { 3471 struct pf_kruleset *rs; 3472 struct pf_krule *r; /* XXX: + match bit */ 3473 struct pf_kanchor *child; 3474 }; 3475 3476 /* 3477 * XXX: We rely on malloc(9) returning pointer aligned addresses. 3478 */ 3479 #define PF_ANCHORSTACK_MATCH 0x00000001 3480 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 3481 3482 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3483 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 3484 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3485 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3486 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3487 } while (0) 3488 3489 void 3490 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3491 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3492 int *match) 3493 { 3494 struct pf_kanchor_stackframe *f; 3495 3496 PF_RULES_RASSERT(); 3497 3498 if (match) 3499 *match = 0; 3500 if (*depth >= PF_ANCHOR_STACKSIZE) { 3501 printf("%s: anchor stack overflow on %s\n", 3502 __func__, (*r)->anchor->name); 3503 *r = TAILQ_NEXT(*r, entries); 3504 return; 3505 } else if (*depth == 0 && a != NULL) 3506 *a = *r; 3507 f = stack + (*depth)++; 3508 f->rs = *rs; 3509 f->r = *r; 3510 if ((*r)->anchor_wildcard) { 3511 struct pf_kanchor_node *parent = &(*r)->anchor->children; 3512 3513 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { 3514 *r = NULL; 3515 return; 3516 } 3517 *rs = &f->child->ruleset; 3518 } else { 3519 f->child = NULL; 3520 *rs = &(*r)->anchor->ruleset; 3521 } 3522 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3523 } 3524 3525 int 3526 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, 3527 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, 3528 int *match) 3529 { 3530 struct pf_kanchor_stackframe *f; 3531 struct pf_krule *fr; 3532 int quick = 0; 3533 3534 PF_RULES_RASSERT(); 3535 3536 do { 3537 if (*depth <= 0) 3538 break; 3539 f = stack + *depth - 1; 3540 fr = PF_ANCHOR_RULE(f); 3541 if (f->child != NULL) { 3542 /* 3543 * This block traverses through 3544 * a wildcard anchor. 3545 */ 3546 if (match != NULL && *match) { 3547 /* 3548 * If any of "*" matched, then 3549 * "foo/ *" matched, mark frame 3550 * appropriately. 3551 */ 3552 PF_ANCHOR_SET_MATCH(f); 3553 *match = 0; 3554 } 3555 f->child = RB_NEXT(pf_kanchor_node, 3556 &fr->anchor->children, f->child); 3557 if (f->child != NULL) { 3558 *rs = &f->child->ruleset; 3559 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 3560 if (*r == NULL) 3561 continue; 3562 else 3563 break; 3564 } 3565 } 3566 (*depth)--; 3567 if (*depth == 0 && a != NULL) 3568 *a = NULL; 3569 *rs = f->rs; 3570 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 3571 quick = fr->quick; 3572 *r = TAILQ_NEXT(fr, entries); 3573 } while (*r == NULL); 3574 3575 return (quick); 3576 } 3577 3578 struct pf_keth_anchor_stackframe { 3579 struct pf_keth_ruleset *rs; 3580 struct pf_keth_rule *r; /* XXX: + match bit */ 3581 struct pf_keth_anchor *child; 3582 }; 3583 3584 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 3585 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 3586 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 3587 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 3588 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 3589 } while (0) 3590 3591 void 3592 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3593 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3594 struct pf_keth_rule **a, int *match) 3595 { 3596 struct pf_keth_anchor_stackframe *f; 3597 3598 NET_EPOCH_ASSERT(); 3599 3600 if (match) 3601 *match = 0; 3602 if (*depth >= PF_ANCHOR_STACKSIZE) { 3603 printf("%s: anchor stack overflow on %s\n", 3604 __func__, (*r)->anchor->name); 3605 *r = TAILQ_NEXT(*r, entries); 3606 return; 3607 } else if (*depth == 0 && a != NULL) 3608 *a = *r; 3609 f = stack + (*depth)++; 3610 f->rs = *rs; 3611 f->r = *r; 3612 if ((*r)->anchor_wildcard) { 3613 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 3614 3615 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 3616 *r = NULL; 3617 return; 3618 } 3619 *rs = &f->child->ruleset; 3620 } else { 3621 f->child = NULL; 3622 *rs = &(*r)->anchor->ruleset; 3623 } 3624 *r = TAILQ_FIRST((*rs)->active.rules); 3625 } 3626 3627 int 3628 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 3629 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 3630 struct pf_keth_rule **a, int *match) 3631 { 3632 struct pf_keth_anchor_stackframe *f; 3633 struct pf_keth_rule *fr; 3634 int quick = 0; 3635 3636 NET_EPOCH_ASSERT(); 3637 3638 do { 3639 if (*depth <= 0) 3640 break; 3641 f = stack + *depth - 1; 3642 fr = PF_ETH_ANCHOR_RULE(f); 3643 if (f->child != NULL) { 3644 /* 3645 * This block traverses through 3646 * a wildcard anchor. 3647 */ 3648 if (match != NULL && *match) { 3649 /* 3650 * If any of "*" matched, then 3651 * "foo/ *" matched, mark frame 3652 * appropriately. 3653 */ 3654 PF_ETH_ANCHOR_SET_MATCH(f); 3655 *match = 0; 3656 } 3657 f->child = RB_NEXT(pf_keth_anchor_node, 3658 &fr->anchor->children, f->child); 3659 if (f->child != NULL) { 3660 *rs = &f->child->ruleset; 3661 *r = TAILQ_FIRST((*rs)->active.rules); 3662 if (*r == NULL) 3663 continue; 3664 else 3665 break; 3666 } 3667 } 3668 (*depth)--; 3669 if (*depth == 0 && a != NULL) 3670 *a = NULL; 3671 *rs = f->rs; 3672 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 3673 quick = fr->quick; 3674 *r = TAILQ_NEXT(fr, entries); 3675 } while (*r == NULL); 3676 3677 return (quick); 3678 } 3679 3680 #ifdef INET6 3681 void 3682 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 3683 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 3684 { 3685 switch (af) { 3686 #ifdef INET 3687 case AF_INET: 3688 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3689 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3690 break; 3691 #endif /* INET */ 3692 case AF_INET6: 3693 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 3694 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 3695 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 3696 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 3697 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 3698 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 3699 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 3700 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 3701 break; 3702 } 3703 } 3704 3705 void 3706 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 3707 { 3708 switch (af) { 3709 #ifdef INET 3710 case AF_INET: 3711 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 3712 break; 3713 #endif /* INET */ 3714 case AF_INET6: 3715 if (addr->addr32[3] == 0xffffffff) { 3716 addr->addr32[3] = 0; 3717 if (addr->addr32[2] == 0xffffffff) { 3718 addr->addr32[2] = 0; 3719 if (addr->addr32[1] == 0xffffffff) { 3720 addr->addr32[1] = 0; 3721 addr->addr32[0] = 3722 htonl(ntohl(addr->addr32[0]) + 1); 3723 } else 3724 addr->addr32[1] = 3725 htonl(ntohl(addr->addr32[1]) + 1); 3726 } else 3727 addr->addr32[2] = 3728 htonl(ntohl(addr->addr32[2]) + 1); 3729 } else 3730 addr->addr32[3] = 3731 htonl(ntohl(addr->addr32[3]) + 1); 3732 break; 3733 } 3734 } 3735 #endif /* INET6 */ 3736 3737 void 3738 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 3739 { 3740 /* 3741 * Modern rules use the same flags in rules as they do in states. 3742 */ 3743 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 3744 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 3745 3746 /* 3747 * Old-style scrub rules have different flags which need to be translated. 3748 */ 3749 if (r->rule_flag & PFRULE_RANDOMID) 3750 a->flags |= PFSTATE_RANDOMID; 3751 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 3752 a->flags |= PFSTATE_SETTOS; 3753 a->set_tos = r->set_tos; 3754 } 3755 3756 if (r->qid) 3757 a->qid = r->qid; 3758 if (r->pqid) 3759 a->pqid = r->pqid; 3760 if (r->rtableid >= 0) 3761 a->rtableid = r->rtableid; 3762 a->log |= r->log; 3763 if (r->min_ttl) 3764 a->min_ttl = r->min_ttl; 3765 if (r->max_mss) 3766 a->max_mss = r->max_mss; 3767 if (r->dnpipe) 3768 a->dnpipe = r->dnpipe; 3769 if (r->dnrpipe) 3770 a->dnrpipe = r->dnrpipe; 3771 if (r->dnpipe || r->dnrpipe) { 3772 if (r->free_flags & PFRULE_DN_IS_PIPE) 3773 a->flags |= PFSTATE_DN_IS_PIPE; 3774 else 3775 a->flags &= ~PFSTATE_DN_IS_PIPE; 3776 } 3777 if (r->scrub_flags & PFSTATE_SETPRIO) { 3778 a->set_prio[0] = r->set_prio[0]; 3779 a->set_prio[1] = r->set_prio[1]; 3780 } 3781 } 3782 3783 int 3784 pf_socket_lookup(struct pf_pdesc *pd, struct mbuf *m) 3785 { 3786 struct pf_addr *saddr, *daddr; 3787 u_int16_t sport, dport; 3788 struct inpcbinfo *pi; 3789 struct inpcb *inp; 3790 3791 pd->lookup.uid = UID_MAX; 3792 pd->lookup.gid = GID_MAX; 3793 3794 switch (pd->proto) { 3795 case IPPROTO_TCP: 3796 sport = pd->hdr.tcp.th_sport; 3797 dport = pd->hdr.tcp.th_dport; 3798 pi = &V_tcbinfo; 3799 break; 3800 case IPPROTO_UDP: 3801 sport = pd->hdr.udp.uh_sport; 3802 dport = pd->hdr.udp.uh_dport; 3803 pi = &V_udbinfo; 3804 break; 3805 default: 3806 return (-1); 3807 } 3808 if (pd->dir == PF_IN) { 3809 saddr = pd->src; 3810 daddr = pd->dst; 3811 } else { 3812 u_int16_t p; 3813 3814 p = sport; 3815 sport = dport; 3816 dport = p; 3817 saddr = pd->dst; 3818 daddr = pd->src; 3819 } 3820 switch (pd->af) { 3821 #ifdef INET 3822 case AF_INET: 3823 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3824 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3825 if (inp == NULL) { 3826 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3827 daddr->v4, dport, INPLOOKUP_WILDCARD | 3828 INPLOOKUP_RLOCKPCB, NULL, m); 3829 if (inp == NULL) 3830 return (-1); 3831 } 3832 break; 3833 #endif /* INET */ 3834 #ifdef INET6 3835 case AF_INET6: 3836 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3837 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3838 if (inp == NULL) { 3839 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3840 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3841 INPLOOKUP_RLOCKPCB, NULL, m); 3842 if (inp == NULL) 3843 return (-1); 3844 } 3845 break; 3846 #endif /* INET6 */ 3847 3848 default: 3849 return (-1); 3850 } 3851 INP_RLOCK_ASSERT(inp); 3852 pd->lookup.uid = inp->inp_cred->cr_uid; 3853 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3854 INP_RUNLOCK(inp); 3855 3856 return (1); 3857 } 3858 3859 u_int8_t 3860 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3861 { 3862 int hlen; 3863 u_int8_t hdr[60]; 3864 u_int8_t *opt, optlen; 3865 u_int8_t wscale = 0; 3866 3867 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3868 if (hlen <= sizeof(struct tcphdr)) 3869 return (0); 3870 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3871 return (0); 3872 opt = hdr + sizeof(struct tcphdr); 3873 hlen -= sizeof(struct tcphdr); 3874 while (hlen >= 3) { 3875 switch (*opt) { 3876 case TCPOPT_EOL: 3877 case TCPOPT_NOP: 3878 ++opt; 3879 --hlen; 3880 break; 3881 case TCPOPT_WINDOW: 3882 wscale = opt[2]; 3883 if (wscale > TCP_MAX_WINSHIFT) 3884 wscale = TCP_MAX_WINSHIFT; 3885 wscale |= PF_WSCALE_FLAG; 3886 /* FALLTHROUGH */ 3887 default: 3888 optlen = opt[1]; 3889 if (optlen < 2) 3890 optlen = 2; 3891 hlen -= optlen; 3892 opt += optlen; 3893 break; 3894 } 3895 } 3896 return (wscale); 3897 } 3898 3899 u_int16_t 3900 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3901 { 3902 int hlen; 3903 u_int8_t hdr[60]; 3904 u_int8_t *opt, optlen; 3905 u_int16_t mss = V_tcp_mssdflt; 3906 3907 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3908 if (hlen <= sizeof(struct tcphdr)) 3909 return (0); 3910 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3911 return (0); 3912 opt = hdr + sizeof(struct tcphdr); 3913 hlen -= sizeof(struct tcphdr); 3914 while (hlen >= TCPOLEN_MAXSEG) { 3915 switch (*opt) { 3916 case TCPOPT_EOL: 3917 case TCPOPT_NOP: 3918 ++opt; 3919 --hlen; 3920 break; 3921 case TCPOPT_MAXSEG: 3922 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3923 NTOHS(mss); 3924 /* FALLTHROUGH */ 3925 default: 3926 optlen = opt[1]; 3927 if (optlen < 2) 3928 optlen = 2; 3929 hlen -= optlen; 3930 opt += optlen; 3931 break; 3932 } 3933 } 3934 return (mss); 3935 } 3936 3937 static u_int16_t 3938 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3939 { 3940 struct nhop_object *nh; 3941 #ifdef INET6 3942 struct in6_addr dst6; 3943 uint32_t scopeid; 3944 #endif /* INET6 */ 3945 int hlen = 0; 3946 uint16_t mss = 0; 3947 3948 NET_EPOCH_ASSERT(); 3949 3950 switch (af) { 3951 #ifdef INET 3952 case AF_INET: 3953 hlen = sizeof(struct ip); 3954 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3955 if (nh != NULL) 3956 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3957 break; 3958 #endif /* INET */ 3959 #ifdef INET6 3960 case AF_INET6: 3961 hlen = sizeof(struct ip6_hdr); 3962 in6_splitscope(&addr->v6, &dst6, &scopeid); 3963 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3964 if (nh != NULL) 3965 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3966 break; 3967 #endif /* INET6 */ 3968 } 3969 3970 mss = max(V_tcp_mssdflt, mss); 3971 mss = min(mss, offer); 3972 mss = max(mss, 64); /* sanity - at least max opt space */ 3973 return (mss); 3974 } 3975 3976 static u_int32_t 3977 pf_tcp_iss(struct pf_pdesc *pd) 3978 { 3979 MD5_CTX ctx; 3980 u_int32_t digest[4]; 3981 3982 if (V_pf_tcp_secret_init == 0) { 3983 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3984 MD5Init(&V_pf_tcp_secret_ctx); 3985 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3986 sizeof(V_pf_tcp_secret)); 3987 V_pf_tcp_secret_init = 1; 3988 } 3989 3990 ctx = V_pf_tcp_secret_ctx; 3991 3992 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); 3993 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); 3994 if (pd->af == AF_INET6) { 3995 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3996 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3997 } else { 3998 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3999 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 4000 } 4001 MD5Final((u_char *)digest, &ctx); 4002 V_pf_tcp_iss_off += 4096; 4003 #define ISN_RANDOM_INCREMENT (4096 - 1) 4004 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 4005 V_pf_tcp_iss_off); 4006 #undef ISN_RANDOM_INCREMENT 4007 } 4008 4009 static bool 4010 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 4011 { 4012 bool match = true; 4013 4014 /* Always matches if not set */ 4015 if (! r->isset) 4016 return (!r->neg); 4017 4018 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 4019 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 4020 match = false; 4021 break; 4022 } 4023 } 4024 4025 return (match ^ r->neg); 4026 } 4027 4028 static int 4029 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 4030 { 4031 if (*tag == -1) 4032 *tag = mtag; 4033 4034 return ((!r->match_tag_not && r->match_tag == *tag) || 4035 (r->match_tag_not && r->match_tag != *tag)); 4036 } 4037 4038 static void 4039 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 4040 { 4041 /* If we don't have the interface drop the packet. */ 4042 if (ifp == NULL) { 4043 m_freem(m); 4044 return; 4045 } 4046 4047 switch (ifp->if_type) { 4048 case IFT_ETHER: 4049 case IFT_XETHER: 4050 case IFT_L2VLAN: 4051 case IFT_BRIDGE: 4052 case IFT_IEEE8023ADLAG: 4053 break; 4054 default: 4055 m_freem(m); 4056 return; 4057 } 4058 4059 ifp->if_transmit(ifp, m); 4060 } 4061 4062 static int 4063 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 4064 { 4065 #ifdef INET 4066 struct ip ip; 4067 #endif 4068 #ifdef INET6 4069 struct ip6_hdr ip6; 4070 #endif 4071 struct mbuf *m = *m0; 4072 struct ether_header *e; 4073 struct pf_keth_rule *r, *rm, *a = NULL; 4074 struct pf_keth_ruleset *ruleset = NULL; 4075 struct pf_mtag *mtag; 4076 struct pf_keth_ruleq *rules; 4077 struct pf_addr *src = NULL, *dst = NULL; 4078 struct pfi_kkif *bridge_to; 4079 sa_family_t af = 0; 4080 uint16_t proto; 4081 int asd = 0, match = 0; 4082 int tag = -1; 4083 uint8_t action; 4084 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4085 4086 MPASS(kif->pfik_ifp->if_vnet == curvnet); 4087 NET_EPOCH_ASSERT(); 4088 4089 PF_RULES_RLOCK_TRACKER; 4090 4091 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 4092 4093 mtag = pf_find_mtag(m); 4094 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 4095 /* Dummynet re-injects packets after they've 4096 * completed their delay. We've already 4097 * processed them, so pass unconditionally. */ 4098 4099 /* But only once. We may see the packet multiple times (e.g. 4100 * PFIL_IN/PFIL_OUT). */ 4101 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4102 4103 return (PF_PASS); 4104 } 4105 4106 ruleset = V_pf_keth; 4107 rules = ck_pr_load_ptr(&ruleset->active.rules); 4108 r = TAILQ_FIRST(rules); 4109 rm = NULL; 4110 4111 e = mtod(m, struct ether_header *); 4112 proto = ntohs(e->ether_type); 4113 4114 switch (proto) { 4115 #ifdef INET 4116 case ETHERTYPE_IP: { 4117 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4118 sizeof(ip))) 4119 return (PF_DROP); 4120 4121 af = AF_INET; 4122 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 4123 (caddr_t)&ip); 4124 src = (struct pf_addr *)&ip.ip_src; 4125 dst = (struct pf_addr *)&ip.ip_dst; 4126 break; 4127 } 4128 #endif /* INET */ 4129 #ifdef INET6 4130 case ETHERTYPE_IPV6: { 4131 if (m_length(m, NULL) < (sizeof(struct ether_header) + 4132 sizeof(ip6))) 4133 return (PF_DROP); 4134 4135 af = AF_INET6; 4136 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 4137 (caddr_t)&ip6); 4138 src = (struct pf_addr *)&ip6.ip6_src; 4139 dst = (struct pf_addr *)&ip6.ip6_dst; 4140 break; 4141 } 4142 #endif /* INET6 */ 4143 } 4144 4145 PF_RULES_RLOCK(); 4146 4147 while (r != NULL) { 4148 counter_u64_add(r->evaluations, 1); 4149 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 4150 4151 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 4152 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4153 "kif"); 4154 r = r->skip[PFE_SKIP_IFP].ptr; 4155 } 4156 else if (r->direction && r->direction != dir) { 4157 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4158 "dir"); 4159 r = r->skip[PFE_SKIP_DIR].ptr; 4160 } 4161 else if (r->proto && r->proto != proto) { 4162 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4163 "proto"); 4164 r = r->skip[PFE_SKIP_PROTO].ptr; 4165 } 4166 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 4167 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4168 "src"); 4169 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 4170 } 4171 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 4172 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4173 "dst"); 4174 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 4175 } 4176 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 4177 r->ipsrc.neg, kif, M_GETFIB(m))) { 4178 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4179 "ip_src"); 4180 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 4181 } 4182 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 4183 r->ipdst.neg, kif, M_GETFIB(m))) { 4184 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4185 "ip_dst"); 4186 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 4187 } 4188 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 4189 mtag ? mtag->tag : 0)) { 4190 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 4191 "match_tag"); 4192 r = TAILQ_NEXT(r, entries); 4193 } 4194 else { 4195 if (r->tag) 4196 tag = r->tag; 4197 if (r->anchor == NULL) { 4198 /* Rule matches */ 4199 rm = r; 4200 4201 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 4202 4203 if (r->quick) 4204 break; 4205 4206 r = TAILQ_NEXT(r, entries); 4207 } else { 4208 pf_step_into_keth_anchor(anchor_stack, &asd, 4209 &ruleset, &r, &a, &match); 4210 } 4211 } 4212 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 4213 &ruleset, &r, &a, &match)) 4214 break; 4215 } 4216 4217 r = rm; 4218 4219 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 4220 4221 /* Default to pass. */ 4222 if (r == NULL) { 4223 PF_RULES_RUNLOCK(); 4224 return (PF_PASS); 4225 } 4226 4227 /* Execute action. */ 4228 counter_u64_add(r->packets[dir == PF_OUT], 1); 4229 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 4230 pf_update_timestamp(r); 4231 4232 /* Shortcut. Don't tag if we're just going to drop anyway. */ 4233 if (r->action == PF_DROP) { 4234 PF_RULES_RUNLOCK(); 4235 return (PF_DROP); 4236 } 4237 4238 if (tag > 0) { 4239 if (mtag == NULL) 4240 mtag = pf_get_mtag(m); 4241 if (mtag == NULL) { 4242 PF_RULES_RUNLOCK(); 4243 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4244 return (PF_DROP); 4245 } 4246 mtag->tag = tag; 4247 } 4248 4249 if (r->qid != 0) { 4250 if (mtag == NULL) 4251 mtag = pf_get_mtag(m); 4252 if (mtag == NULL) { 4253 PF_RULES_RUNLOCK(); 4254 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4255 return (PF_DROP); 4256 } 4257 mtag->qid = r->qid; 4258 } 4259 4260 action = r->action; 4261 bridge_to = r->bridge_to; 4262 4263 /* Dummynet */ 4264 if (r->dnpipe) { 4265 struct ip_fw_args dnflow; 4266 4267 /* Drop packet if dummynet is not loaded. */ 4268 if (ip_dn_io_ptr == NULL) { 4269 PF_RULES_RUNLOCK(); 4270 m_freem(m); 4271 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4272 return (PF_DROP); 4273 } 4274 if (mtag == NULL) 4275 mtag = pf_get_mtag(m); 4276 if (mtag == NULL) { 4277 PF_RULES_RUNLOCK(); 4278 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 4279 return (PF_DROP); 4280 } 4281 4282 bzero(&dnflow, sizeof(dnflow)); 4283 4284 /* We don't have port numbers here, so we set 0. That means 4285 * that we'll be somewhat limited in distinguishing flows (i.e. 4286 * only based on IP addresses, not based on port numbers), but 4287 * it's better than nothing. */ 4288 dnflow.f_id.dst_port = 0; 4289 dnflow.f_id.src_port = 0; 4290 dnflow.f_id.proto = 0; 4291 4292 dnflow.rule.info = r->dnpipe; 4293 dnflow.rule.info |= IPFW_IS_DUMMYNET; 4294 if (r->dnflags & PFRULE_DN_IS_PIPE) 4295 dnflow.rule.info |= IPFW_IS_PIPE; 4296 4297 dnflow.f_id.extra = dnflow.rule.info; 4298 4299 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 4300 dnflow.flags |= IPFW_ARGS_ETHER; 4301 dnflow.ifp = kif->pfik_ifp; 4302 4303 switch (af) { 4304 case AF_INET: 4305 dnflow.f_id.addr_type = 4; 4306 dnflow.f_id.src_ip = src->v4.s_addr; 4307 dnflow.f_id.dst_ip = dst->v4.s_addr; 4308 break; 4309 case AF_INET6: 4310 dnflow.flags |= IPFW_ARGS_IP6; 4311 dnflow.f_id.addr_type = 6; 4312 dnflow.f_id.src_ip6 = src->v6; 4313 dnflow.f_id.dst_ip6 = dst->v6; 4314 break; 4315 } 4316 4317 PF_RULES_RUNLOCK(); 4318 4319 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 4320 ip_dn_io_ptr(m0, &dnflow); 4321 if (*m0 != NULL) 4322 mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 4323 } else { 4324 PF_RULES_RUNLOCK(); 4325 } 4326 4327 if (action == PF_PASS && bridge_to) { 4328 pf_bridge_to(bridge_to->pfik_ifp, *m0); 4329 *m0 = NULL; /* We've eaten the packet. */ 4330 } 4331 4332 return (action); 4333 } 4334 4335 static int 4336 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, struct pfi_kkif *kif, 4337 struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, 4338 struct pf_kruleset **rsm, struct inpcb *inp) 4339 { 4340 struct pf_krule *nr = NULL; 4341 struct pf_addr * const saddr = pd->src; 4342 struct pf_addr * const daddr = pd->dst; 4343 sa_family_t af = pd->af; 4344 struct pf_krule *r, *a = NULL; 4345 struct pf_kruleset *ruleset = NULL; 4346 struct pf_krule_slist match_rules; 4347 struct pf_krule_item *ri; 4348 struct pf_ksrc_node *nsn = NULL; 4349 struct tcphdr *th = &pd->hdr.tcp; 4350 struct pf_state_key *sk = NULL, *nk = NULL; 4351 u_short reason; 4352 int rewrite = 0, hdrlen = 0; 4353 int tag = -1; 4354 int asd = 0; 4355 int match = 0; 4356 int state_icmp = 0; 4357 u_int16_t sport = 0, dport = 0; 4358 u_int16_t bproto_sum = 0, bip_sum = 0; 4359 u_int8_t icmptype = 0, icmpcode = 0; 4360 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 4361 4362 PF_RULES_RASSERT(); 4363 4364 if (inp != NULL) { 4365 INP_LOCK_ASSERT(inp); 4366 pd->lookup.uid = inp->inp_cred->cr_uid; 4367 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4368 pd->lookup.done = 1; 4369 } 4370 4371 switch (pd->proto) { 4372 case IPPROTO_TCP: 4373 sport = th->th_sport; 4374 dport = th->th_dport; 4375 hdrlen = sizeof(*th); 4376 break; 4377 case IPPROTO_UDP: 4378 sport = pd->hdr.udp.uh_sport; 4379 dport = pd->hdr.udp.uh_dport; 4380 hdrlen = sizeof(pd->hdr.udp); 4381 break; 4382 case IPPROTO_SCTP: 4383 sport = pd->hdr.sctp.src_port; 4384 dport = pd->hdr.sctp.dest_port; 4385 hdrlen = sizeof(pd->hdr.sctp); 4386 break; 4387 #ifdef INET 4388 case IPPROTO_ICMP: 4389 if (pd->af != AF_INET) 4390 break; 4391 sport = dport = pd->hdr.icmp.icmp_id; 4392 hdrlen = sizeof(pd->hdr.icmp); 4393 icmptype = pd->hdr.icmp.icmp_type; 4394 icmpcode = pd->hdr.icmp.icmp_code; 4395 4396 if (icmptype == ICMP_UNREACH || 4397 icmptype == ICMP_SOURCEQUENCH || 4398 icmptype == ICMP_REDIRECT || 4399 icmptype == ICMP_TIMXCEED || 4400 icmptype == ICMP_PARAMPROB) 4401 state_icmp++; 4402 break; 4403 #endif /* INET */ 4404 #ifdef INET6 4405 case IPPROTO_ICMPV6: 4406 if (af != AF_INET6) 4407 break; 4408 sport = dport = pd->hdr.icmp6.icmp6_id; 4409 hdrlen = sizeof(pd->hdr.icmp6); 4410 icmptype = pd->hdr.icmp6.icmp6_type; 4411 icmpcode = pd->hdr.icmp6.icmp6_code; 4412 4413 if (icmptype == ICMP6_DST_UNREACH || 4414 icmptype == ICMP6_PACKET_TOO_BIG || 4415 icmptype == ICMP6_TIME_EXCEEDED || 4416 icmptype == ICMP6_PARAM_PROB) 4417 state_icmp++; 4418 break; 4419 #endif /* INET6 */ 4420 default: 4421 sport = dport = hdrlen = 0; 4422 break; 4423 } 4424 4425 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 4426 4427 /* check packet for BINAT/NAT/RDR */ 4428 if ((nr = pf_get_translation(pd, m, off, kif, &nsn, &sk, 4429 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 4430 KASSERT(sk != NULL, ("%s: null sk", __func__)); 4431 KASSERT(nk != NULL, ("%s: null nk", __func__)); 4432 4433 if (nr->log) { 4434 PFLOG_PACKET(kif, m, af, PFRES_MATCH, nr, a, 4435 ruleset, pd, 1); 4436 } 4437 4438 if (pd->ip_sum) 4439 bip_sum = *pd->ip_sum; 4440 4441 switch (pd->proto) { 4442 case IPPROTO_TCP: 4443 bproto_sum = th->th_sum; 4444 pd->proto_sum = &th->th_sum; 4445 4446 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4447 nk->port[pd->sidx] != sport) { 4448 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 4449 &th->th_sum, &nk->addr[pd->sidx], 4450 nk->port[pd->sidx], 0, af); 4451 pd->sport = &th->th_sport; 4452 sport = th->th_sport; 4453 } 4454 4455 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4456 nk->port[pd->didx] != dport) { 4457 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 4458 &th->th_sum, &nk->addr[pd->didx], 4459 nk->port[pd->didx], 0, af); 4460 dport = th->th_dport; 4461 pd->dport = &th->th_dport; 4462 } 4463 rewrite++; 4464 break; 4465 case IPPROTO_UDP: 4466 bproto_sum = pd->hdr.udp.uh_sum; 4467 pd->proto_sum = &pd->hdr.udp.uh_sum; 4468 4469 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4470 nk->port[pd->sidx] != sport) { 4471 pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, 4472 pd->ip_sum, &pd->hdr.udp.uh_sum, 4473 &nk->addr[pd->sidx], 4474 nk->port[pd->sidx], 1, af); 4475 sport = pd->hdr.udp.uh_sport; 4476 pd->sport = &pd->hdr.udp.uh_sport; 4477 } 4478 4479 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4480 nk->port[pd->didx] != dport) { 4481 pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, 4482 pd->ip_sum, &pd->hdr.udp.uh_sum, 4483 &nk->addr[pd->didx], 4484 nk->port[pd->didx], 1, af); 4485 dport = pd->hdr.udp.uh_dport; 4486 pd->dport = &pd->hdr.udp.uh_dport; 4487 } 4488 rewrite++; 4489 break; 4490 case IPPROTO_SCTP: { 4491 uint16_t checksum = 0; 4492 4493 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 4494 nk->port[pd->sidx] != sport) { 4495 pf_change_ap(m, saddr, &pd->hdr.sctp.src_port, 4496 pd->ip_sum, &checksum, 4497 &nk->addr[pd->sidx], 4498 nk->port[pd->sidx], 1, af); 4499 } 4500 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 4501 nk->port[pd->didx] != dport) { 4502 pf_change_ap(m, daddr, &pd->hdr.sctp.dest_port, 4503 pd->ip_sum, &checksum, 4504 &nk->addr[pd->didx], 4505 nk->port[pd->didx], 1, af); 4506 } 4507 break; 4508 } 4509 #ifdef INET 4510 case IPPROTO_ICMP: 4511 nk->port[0] = nk->port[1]; 4512 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 4513 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 4514 nk->addr[pd->sidx].v4.s_addr, 0); 4515 4516 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 4517 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 4518 nk->addr[pd->didx].v4.s_addr, 0); 4519 4520 if (nk->port[1] != pd->hdr.icmp.icmp_id) { 4521 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 4522 pd->hdr.icmp.icmp_cksum, sport, 4523 nk->port[1], 0); 4524 pd->hdr.icmp.icmp_id = nk->port[1]; 4525 pd->sport = &pd->hdr.icmp.icmp_id; 4526 } 4527 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 4528 break; 4529 #endif /* INET */ 4530 #ifdef INET6 4531 case IPPROTO_ICMPV6: 4532 nk->port[0] = nk->port[1]; 4533 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 4534 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, 4535 &nk->addr[pd->sidx], 0); 4536 4537 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 4538 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, 4539 &nk->addr[pd->didx], 0); 4540 rewrite++; 4541 break; 4542 #endif /* INET */ 4543 default: 4544 switch (af) { 4545 #ifdef INET 4546 case AF_INET: 4547 if (PF_ANEQ(saddr, 4548 &nk->addr[pd->sidx], AF_INET)) 4549 pf_change_a(&saddr->v4.s_addr, 4550 pd->ip_sum, 4551 nk->addr[pd->sidx].v4.s_addr, 0); 4552 4553 if (PF_ANEQ(daddr, 4554 &nk->addr[pd->didx], AF_INET)) 4555 pf_change_a(&daddr->v4.s_addr, 4556 pd->ip_sum, 4557 nk->addr[pd->didx].v4.s_addr, 0); 4558 break; 4559 #endif /* INET */ 4560 #ifdef INET6 4561 case AF_INET6: 4562 if (PF_ANEQ(saddr, 4563 &nk->addr[pd->sidx], AF_INET6)) 4564 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 4565 4566 if (PF_ANEQ(daddr, 4567 &nk->addr[pd->didx], AF_INET6)) 4568 PF_ACPY(daddr, &nk->addr[pd->didx], af); 4569 break; 4570 #endif /* INET */ 4571 } 4572 break; 4573 } 4574 if (nr->natpass) 4575 r = NULL; 4576 pd->nat_rule = nr; 4577 } 4578 4579 SLIST_INIT(&match_rules); 4580 while (r != NULL) { 4581 pf_counter_u64_add(&r->evaluations, 1); 4582 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 4583 r = r->skip[PF_SKIP_IFP].ptr; 4584 else if (r->direction && r->direction != pd->dir) 4585 r = r->skip[PF_SKIP_DIR].ptr; 4586 else if (r->af && r->af != af) 4587 r = r->skip[PF_SKIP_AF].ptr; 4588 else if (r->proto && r->proto != pd->proto) 4589 r = r->skip[PF_SKIP_PROTO].ptr; 4590 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 4591 r->src.neg, kif, M_GETFIB(m))) 4592 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 4593 /* tcp/udp only. port_op always 0 in other cases */ 4594 else if (r->src.port_op && !pf_match_port(r->src.port_op, 4595 r->src.port[0], r->src.port[1], sport)) 4596 r = r->skip[PF_SKIP_SRC_PORT].ptr; 4597 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 4598 r->dst.neg, NULL, M_GETFIB(m))) 4599 r = r->skip[PF_SKIP_DST_ADDR].ptr; 4600 /* tcp/udp only. port_op always 0 in other cases */ 4601 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 4602 r->dst.port[0], r->dst.port[1], dport)) 4603 r = r->skip[PF_SKIP_DST_PORT].ptr; 4604 /* icmp only. type always 0 in other cases */ 4605 else if (r->type && r->type != icmptype + 1) 4606 r = TAILQ_NEXT(r, entries); 4607 /* icmp only. type always 0 in other cases */ 4608 else if (r->code && r->code != icmpcode + 1) 4609 r = TAILQ_NEXT(r, entries); 4610 else if (r->tos && !(r->tos == pd->tos)) 4611 r = TAILQ_NEXT(r, entries); 4612 else if (r->rule_flag & PFRULE_FRAGMENT) 4613 r = TAILQ_NEXT(r, entries); 4614 else if (pd->proto == IPPROTO_TCP && 4615 (r->flagset & th->th_flags) != r->flags) 4616 r = TAILQ_NEXT(r, entries); 4617 /* tcp/udp only. uid.op always 0 in other cases */ 4618 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 4619 pf_socket_lookup(pd, m), 1)) && 4620 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 4621 pd->lookup.uid)) 4622 r = TAILQ_NEXT(r, entries); 4623 /* tcp/udp only. gid.op always 0 in other cases */ 4624 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 4625 pf_socket_lookup(pd, m), 1)) && 4626 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 4627 pd->lookup.gid)) 4628 r = TAILQ_NEXT(r, entries); 4629 else if (r->prio && 4630 !pf_match_ieee8021q_pcp(r->prio, m)) 4631 r = TAILQ_NEXT(r, entries); 4632 else if (r->prob && 4633 r->prob <= arc4random()) 4634 r = TAILQ_NEXT(r, entries); 4635 else if (r->match_tag && !pf_match_tag(m, r, &tag, 4636 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 4637 r = TAILQ_NEXT(r, entries); 4638 else if (r->os_fingerprint != PF_OSFP_ANY && 4639 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 4640 pf_osfp_fingerprint(pd, m, off, th), 4641 r->os_fingerprint))) 4642 r = TAILQ_NEXT(r, entries); 4643 else { 4644 if (r->tag) 4645 tag = r->tag; 4646 if (r->anchor == NULL) { 4647 if (r->action == PF_MATCH) { 4648 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 4649 if (ri == NULL) { 4650 REASON_SET(&reason, PFRES_MEMORY); 4651 goto cleanup; 4652 } 4653 ri->r = r; 4654 SLIST_INSERT_HEAD(&match_rules, ri, entry); 4655 pf_counter_u64_critical_enter(); 4656 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 4657 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 4658 pf_counter_u64_critical_exit(); 4659 pf_rule_to_actions(r, &pd->act); 4660 if (r->log) 4661 PFLOG_PACKET(kif, m, af, 4662 PFRES_MATCH, r, 4663 a, ruleset, pd, 1); 4664 } else { 4665 match = 1; 4666 *rm = r; 4667 *am = a; 4668 *rsm = ruleset; 4669 } 4670 if ((*rm)->quick) 4671 break; 4672 r = TAILQ_NEXT(r, entries); 4673 } else 4674 pf_step_into_anchor(anchor_stack, &asd, 4675 &ruleset, PF_RULESET_FILTER, &r, &a, 4676 &match); 4677 } 4678 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 4679 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 4680 break; 4681 } 4682 r = *rm; 4683 a = *am; 4684 ruleset = *rsm; 4685 4686 REASON_SET(&reason, PFRES_MATCH); 4687 4688 /* apply actions for last matching pass/block rule */ 4689 pf_rule_to_actions(r, &pd->act); 4690 4691 if (r->log) { 4692 if (rewrite) 4693 m_copyback(m, off, hdrlen, pd->hdr.any); 4694 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 4695 } 4696 4697 if ((r->action == PF_DROP) && 4698 ((r->rule_flag & PFRULE_RETURNRST) || 4699 (r->rule_flag & PFRULE_RETURNICMP) || 4700 (r->rule_flag & PFRULE_RETURN))) { 4701 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 4702 bip_sum, hdrlen, &reason, r->rtableid); 4703 } 4704 4705 if (r->action == PF_DROP) 4706 goto cleanup; 4707 4708 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 4709 REASON_SET(&reason, PFRES_MEMORY); 4710 goto cleanup; 4711 } 4712 if (pd->act.rtableid >= 0) 4713 M_SETFIB(m, pd->act.rtableid); 4714 4715 if (!state_icmp && (r->keep_state || nr != NULL || 4716 (pd->flags & PFDESC_TCP_NORM))) { 4717 int action; 4718 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 4719 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 4720 hdrlen, &match_rules); 4721 if (action != PF_PASS) { 4722 if (action == PF_DROP && 4723 (r->rule_flag & PFRULE_RETURN)) 4724 pf_return(r, nr, pd, sk, off, m, th, kif, 4725 bproto_sum, bip_sum, hdrlen, &reason, 4726 pd->act.rtableid); 4727 return (action); 4728 } 4729 } else { 4730 uma_zfree(V_pf_state_key_z, sk); 4731 uma_zfree(V_pf_state_key_z, nk); 4732 } 4733 4734 /* copy back packet headers if we performed NAT operations */ 4735 if (rewrite) 4736 m_copyback(m, off, hdrlen, pd->hdr.any); 4737 4738 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 4739 pd->dir == PF_OUT && 4740 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 4741 /* 4742 * We want the state created, but we dont 4743 * want to send this in case a partner 4744 * firewall has to know about it to allow 4745 * replies through it. 4746 */ 4747 return (PF_DEFER); 4748 4749 return (PF_PASS); 4750 4751 cleanup: 4752 while ((ri = SLIST_FIRST(&match_rules))) { 4753 SLIST_REMOVE_HEAD(&match_rules, entry); 4754 free(ri, M_PF_RULE_ITEM); 4755 } 4756 4757 uma_zfree(V_pf_state_key_z, sk); 4758 uma_zfree(V_pf_state_key_z, nk); 4759 return (PF_DROP); 4760 } 4761 4762 static int 4763 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, 4764 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, 4765 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 4766 u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, 4767 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 4768 struct pf_krule_slist *match_rules) 4769 { 4770 struct pf_kstate *s = NULL; 4771 struct pf_ksrc_node *sn = NULL; 4772 struct tcphdr *th = &pd->hdr.tcp; 4773 u_int16_t mss = V_tcp_mssdflt; 4774 u_short reason, sn_reason; 4775 4776 /* check maximums */ 4777 if (r->max_states && 4778 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 4779 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 4780 REASON_SET(&reason, PFRES_MAXSTATES); 4781 goto csfailed; 4782 } 4783 /* src node for filter rule */ 4784 if ((r->rule_flag & PFRULE_SRCTRACK || 4785 r->rpool.opts & PF_POOL_STICKYADDR) && 4786 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) { 4787 REASON_SET(&reason, sn_reason); 4788 goto csfailed; 4789 } 4790 /* src node for translation rule */ 4791 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 4792 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], 4793 pd->af)) != 0 ) { 4794 REASON_SET(&reason, sn_reason); 4795 goto csfailed; 4796 } 4797 s = pf_alloc_state(M_NOWAIT); 4798 if (s == NULL) { 4799 REASON_SET(&reason, PFRES_MEMORY); 4800 goto csfailed; 4801 } 4802 s->rule.ptr = r; 4803 s->nat_rule.ptr = nr; 4804 s->anchor.ptr = a; 4805 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules)); 4806 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 4807 4808 STATE_INC_COUNTERS(s); 4809 if (r->allow_opts) 4810 s->state_flags |= PFSTATE_ALLOWOPTS; 4811 if (r->rule_flag & PFRULE_STATESLOPPY) 4812 s->state_flags |= PFSTATE_SLOPPY; 4813 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 4814 s->state_flags |= PFSTATE_SCRUB_TCP; 4815 4816 s->act.log = pd->act.log & PF_LOG_ALL; 4817 s->sync_state = PFSYNC_S_NONE; 4818 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 4819 4820 if (nr != NULL) 4821 s->act.log |= nr->log & PF_LOG_ALL; 4822 switch (pd->proto) { 4823 case IPPROTO_TCP: 4824 s->src.seqlo = ntohl(th->th_seq); 4825 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 4826 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 4827 r->keep_state == PF_STATE_MODULATE) { 4828 /* Generate sequence number modulator */ 4829 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 4830 0) 4831 s->src.seqdiff = 1; 4832 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 4833 htonl(s->src.seqlo + s->src.seqdiff), 0); 4834 *rewrite = 1; 4835 } else 4836 s->src.seqdiff = 0; 4837 if (th->th_flags & TH_SYN) { 4838 s->src.seqhi++; 4839 s->src.wscale = pf_get_wscale(m, off, 4840 th->th_off, pd->af); 4841 } 4842 s->src.max_win = MAX(ntohs(th->th_win), 1); 4843 if (s->src.wscale & PF_WSCALE_MASK) { 4844 /* Remove scale factor from initial window */ 4845 int win = s->src.max_win; 4846 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 4847 s->src.max_win = (win - 1) >> 4848 (s->src.wscale & PF_WSCALE_MASK); 4849 } 4850 if (th->th_flags & TH_FIN) 4851 s->src.seqhi++; 4852 s->dst.seqhi = 1; 4853 s->dst.max_win = 1; 4854 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 4855 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 4856 s->timeout = PFTM_TCP_FIRST_PACKET; 4857 atomic_add_32(&V_pf_status.states_halfopen, 1); 4858 break; 4859 case IPPROTO_UDP: 4860 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 4861 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 4862 s->timeout = PFTM_UDP_FIRST_PACKET; 4863 break; 4864 case IPPROTO_SCTP: 4865 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 4866 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 4867 s->timeout = PFTM_TCP_FIRST_PACKET; 4868 break; 4869 case IPPROTO_ICMP: 4870 #ifdef INET6 4871 case IPPROTO_ICMPV6: 4872 #endif 4873 s->timeout = PFTM_ICMP_FIRST_PACKET; 4874 break; 4875 default: 4876 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 4877 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 4878 s->timeout = PFTM_OTHER_FIRST_PACKET; 4879 } 4880 4881 if (r->rt) { 4882 /* pf_map_addr increases the reason counters */ 4883 if ((reason = pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, 4884 &sn)) != 0) { 4885 pf_src_tree_remove_state(s); 4886 s->timeout = PFTM_UNLINKED; 4887 STATE_DEC_COUNTERS(s); 4888 pf_free_state(s); 4889 goto csfailed; 4890 } 4891 s->rt_kif = r->rpool.cur->kif; 4892 s->rt = r->rt; 4893 } 4894 4895 s->creation = time_uptime; 4896 s->expire = time_uptime; 4897 4898 if (sn != NULL) 4899 s->src_node = sn; 4900 if (nsn != NULL) { 4901 /* XXX We only modify one side for now. */ 4902 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 4903 s->nat_src_node = nsn; 4904 } 4905 if (pd->proto == IPPROTO_TCP) { 4906 if (s->state_flags & PFSTATE_SCRUB_TCP && 4907 pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { 4908 REASON_SET(&reason, PFRES_MEMORY); 4909 pf_src_tree_remove_state(s); 4910 s->timeout = PFTM_UNLINKED; 4911 STATE_DEC_COUNTERS(s); 4912 pf_free_state(s); 4913 return (PF_DROP); 4914 } 4915 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 4916 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 4917 &s->src, &s->dst, rewrite)) { 4918 /* This really shouldn't happen!!! */ 4919 DPFPRINTF(PF_DEBUG_URGENT, 4920 ("pf_normalize_tcp_stateful failed on first " 4921 "pkt\n")); 4922 pf_src_tree_remove_state(s); 4923 s->timeout = PFTM_UNLINKED; 4924 STATE_DEC_COUNTERS(s); 4925 pf_free_state(s); 4926 return (PF_DROP); 4927 } 4928 } 4929 s->direction = pd->dir; 4930 4931 /* 4932 * sk/nk could already been setup by pf_get_translation(). 4933 */ 4934 if (nr == NULL) { 4935 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 4936 __func__, nr, sk, nk)); 4937 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 4938 if (sk == NULL) 4939 goto csfailed; 4940 nk = sk; 4941 } else 4942 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 4943 __func__, nr, sk, nk)); 4944 4945 /* Swap sk/nk for PF_OUT. */ 4946 if (pf_state_insert(BOUND_IFACE(r, kif), kif, 4947 (pd->dir == PF_IN) ? sk : nk, 4948 (pd->dir == PF_IN) ? nk : sk, s)) { 4949 REASON_SET(&reason, PFRES_STATEINS); 4950 pf_src_tree_remove_state(s); 4951 s->timeout = PFTM_UNLINKED; 4952 STATE_DEC_COUNTERS(s); 4953 pf_free_state(s); 4954 return (PF_DROP); 4955 } else 4956 *sm = s; 4957 4958 if (tag > 0) 4959 s->tag = tag; 4960 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 4961 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 4962 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 4963 /* undo NAT changes, if they have taken place */ 4964 if (nr != NULL) { 4965 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 4966 if (pd->dir == PF_OUT) 4967 skt = s->key[PF_SK_STACK]; 4968 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 4969 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 4970 if (pd->sport) 4971 *pd->sport = skt->port[pd->sidx]; 4972 if (pd->dport) 4973 *pd->dport = skt->port[pd->didx]; 4974 if (pd->proto_sum) 4975 *pd->proto_sum = bproto_sum; 4976 if (pd->ip_sum) 4977 *pd->ip_sum = bip_sum; 4978 m_copyback(m, off, hdrlen, pd->hdr.any); 4979 } 4980 s->src.seqhi = htonl(arc4random()); 4981 /* Find mss option */ 4982 int rtid = M_GETFIB(m); 4983 mss = pf_get_mss(m, off, th->th_off, pd->af); 4984 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 4985 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 4986 s->src.mss = mss; 4987 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 4988 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 4989 TH_SYN|TH_ACK, 0, s->src.mss, 0, true, 0, 0, 4990 pd->act.rtableid); 4991 REASON_SET(&reason, PFRES_SYNPROXY); 4992 return (PF_SYNPROXY_DROP); 4993 } 4994 4995 return (PF_PASS); 4996 4997 csfailed: 4998 uma_zfree(V_pf_state_key_z, sk); 4999 uma_zfree(V_pf_state_key_z, nk); 5000 5001 if (sn != NULL) { 5002 PF_SRC_NODE_LOCK(sn); 5003 if (--sn->states == 0 && sn->expire == 0) { 5004 pf_unlink_src_node(sn); 5005 uma_zfree(V_pf_sources_z, sn); 5006 counter_u64_add( 5007 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5008 } 5009 PF_SRC_NODE_UNLOCK(sn); 5010 } 5011 5012 if (nsn != sn && nsn != NULL) { 5013 PF_SRC_NODE_LOCK(nsn); 5014 if (--nsn->states == 0 && nsn->expire == 0) { 5015 pf_unlink_src_node(nsn); 5016 uma_zfree(V_pf_sources_z, nsn); 5017 counter_u64_add( 5018 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 5019 } 5020 PF_SRC_NODE_UNLOCK(nsn); 5021 } 5022 5023 return (PF_DROP); 5024 } 5025 5026 static int 5027 pf_test_fragment(struct pf_krule **rm, struct pfi_kkif *kif, 5028 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, 5029 struct pf_kruleset **rsm) 5030 { 5031 struct pf_krule *r, *a = NULL; 5032 struct pf_kruleset *ruleset = NULL; 5033 struct pf_krule_slist match_rules; 5034 struct pf_krule_item *ri; 5035 sa_family_t af = pd->af; 5036 u_short reason; 5037 int tag = -1; 5038 int asd = 0; 5039 int match = 0; 5040 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 5041 5042 PF_RULES_RASSERT(); 5043 5044 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 5045 SLIST_INIT(&match_rules); 5046 while (r != NULL) { 5047 pf_counter_u64_add(&r->evaluations, 1); 5048 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 5049 r = r->skip[PF_SKIP_IFP].ptr; 5050 else if (r->direction && r->direction != pd->dir) 5051 r = r->skip[PF_SKIP_DIR].ptr; 5052 else if (r->af && r->af != af) 5053 r = r->skip[PF_SKIP_AF].ptr; 5054 else if (r->proto && r->proto != pd->proto) 5055 r = r->skip[PF_SKIP_PROTO].ptr; 5056 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 5057 r->src.neg, kif, M_GETFIB(m))) 5058 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 5059 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 5060 r->dst.neg, NULL, M_GETFIB(m))) 5061 r = r->skip[PF_SKIP_DST_ADDR].ptr; 5062 else if (r->tos && !(r->tos == pd->tos)) 5063 r = TAILQ_NEXT(r, entries); 5064 else if (r->os_fingerprint != PF_OSFP_ANY) 5065 r = TAILQ_NEXT(r, entries); 5066 else if (pd->proto == IPPROTO_UDP && 5067 (r->src.port_op || r->dst.port_op)) 5068 r = TAILQ_NEXT(r, entries); 5069 else if (pd->proto == IPPROTO_TCP && 5070 (r->src.port_op || r->dst.port_op || r->flagset)) 5071 r = TAILQ_NEXT(r, entries); 5072 else if ((pd->proto == IPPROTO_ICMP || 5073 pd->proto == IPPROTO_ICMPV6) && 5074 (r->type || r->code)) 5075 r = TAILQ_NEXT(r, entries); 5076 else if (r->prio && 5077 !pf_match_ieee8021q_pcp(r->prio, m)) 5078 r = TAILQ_NEXT(r, entries); 5079 else if (r->prob && r->prob <= 5080 (arc4random() % (UINT_MAX - 1) + 1)) 5081 r = TAILQ_NEXT(r, entries); 5082 else if (r->match_tag && !pf_match_tag(m, r, &tag, 5083 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 5084 r = TAILQ_NEXT(r, entries); 5085 else { 5086 if (r->anchor == NULL) { 5087 if (r->action == PF_MATCH) { 5088 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5089 if (ri == NULL) { 5090 REASON_SET(&reason, PFRES_MEMORY); 5091 goto cleanup; 5092 } 5093 ri->r = r; 5094 SLIST_INSERT_HEAD(&match_rules, ri, entry); 5095 pf_counter_u64_critical_enter(); 5096 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5097 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5098 pf_counter_u64_critical_exit(); 5099 pf_rule_to_actions(r, &pd->act); 5100 if (r->log) 5101 PFLOG_PACKET(kif, m, af, 5102 PFRES_MATCH, r, 5103 a, ruleset, pd, 1); 5104 } else { 5105 match = 1; 5106 *rm = r; 5107 *am = a; 5108 *rsm = ruleset; 5109 } 5110 if ((*rm)->quick) 5111 break; 5112 r = TAILQ_NEXT(r, entries); 5113 } else 5114 pf_step_into_anchor(anchor_stack, &asd, 5115 &ruleset, PF_RULESET_FILTER, &r, &a, 5116 &match); 5117 } 5118 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 5119 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 5120 break; 5121 } 5122 r = *rm; 5123 a = *am; 5124 ruleset = *rsm; 5125 5126 REASON_SET(&reason, PFRES_MATCH); 5127 5128 /* apply actions for last matching pass/block rule */ 5129 pf_rule_to_actions(r, &pd->act); 5130 5131 if (r->log) 5132 PFLOG_PACKET(kif, m, af, reason, r, a, ruleset, pd, 1); 5133 5134 if (r->action != PF_PASS) 5135 return (PF_DROP); 5136 5137 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 5138 REASON_SET(&reason, PFRES_MEMORY); 5139 goto cleanup; 5140 } 5141 5142 return (PF_PASS); 5143 5144 cleanup: 5145 while ((ri = SLIST_FIRST(&match_rules))) { 5146 SLIST_REMOVE_HEAD(&match_rules, entry); 5147 free(ri, M_PF_RULE_ITEM); 5148 } 5149 5150 return (PF_DROP); 5151 } 5152 5153 static int 5154 pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, 5155 struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, 5156 int *copyback) 5157 { 5158 struct tcphdr *th = &pd->hdr.tcp; 5159 struct pf_state_peer *src, *dst; 5160 u_int16_t win = ntohs(th->th_win); 5161 u_int32_t ack, end, seq, orig_seq; 5162 u_int8_t sws, dws, psrc, pdst; 5163 int ackskew; 5164 5165 if (pd->dir == (*state)->direction) { 5166 src = &(*state)->src; 5167 dst = &(*state)->dst; 5168 psrc = PF_PEER_SRC; 5169 pdst = PF_PEER_DST; 5170 } else { 5171 src = &(*state)->dst; 5172 dst = &(*state)->src; 5173 psrc = PF_PEER_DST; 5174 pdst = PF_PEER_SRC; 5175 } 5176 5177 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 5178 sws = src->wscale & PF_WSCALE_MASK; 5179 dws = dst->wscale & PF_WSCALE_MASK; 5180 } else 5181 sws = dws = 0; 5182 5183 /* 5184 * Sequence tracking algorithm from Guido van Rooij's paper: 5185 * http://www.madison-gurkha.com/publications/tcp_filtering/ 5186 * tcp_filtering.ps 5187 */ 5188 5189 orig_seq = seq = ntohl(th->th_seq); 5190 if (src->seqlo == 0) { 5191 /* First packet from this end. Set its state */ 5192 5193 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 5194 src->scrub == NULL) { 5195 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 5196 REASON_SET(reason, PFRES_MEMORY); 5197 return (PF_DROP); 5198 } 5199 } 5200 5201 /* Deferred generation of sequence number modulator */ 5202 if (dst->seqdiff && !src->seqdiff) { 5203 /* use random iss for the TCP server */ 5204 while ((src->seqdiff = arc4random() - seq) == 0) 5205 ; 5206 ack = ntohl(th->th_ack) - dst->seqdiff; 5207 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5208 src->seqdiff), 0); 5209 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5210 *copyback = 1; 5211 } else { 5212 ack = ntohl(th->th_ack); 5213 } 5214 5215 end = seq + pd->p_len; 5216 if (th->th_flags & TH_SYN) { 5217 end++; 5218 if (dst->wscale & PF_WSCALE_FLAG) { 5219 src->wscale = pf_get_wscale(m, off, th->th_off, 5220 pd->af); 5221 if (src->wscale & PF_WSCALE_FLAG) { 5222 /* Remove scale factor from initial 5223 * window */ 5224 sws = src->wscale & PF_WSCALE_MASK; 5225 win = ((u_int32_t)win + (1 << sws) - 1) 5226 >> sws; 5227 dws = dst->wscale & PF_WSCALE_MASK; 5228 } else { 5229 /* fixup other window */ 5230 dst->max_win <<= dst->wscale & 5231 PF_WSCALE_MASK; 5232 /* in case of a retrans SYN|ACK */ 5233 dst->wscale = 0; 5234 } 5235 } 5236 } 5237 if (th->th_flags & TH_FIN) 5238 end++; 5239 5240 src->seqlo = seq; 5241 if (src->state < TCPS_SYN_SENT) 5242 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5243 5244 /* 5245 * May need to slide the window (seqhi may have been set by 5246 * the crappy stack check or if we picked up the connection 5247 * after establishment) 5248 */ 5249 if (src->seqhi == 1 || 5250 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 5251 src->seqhi = end + MAX(1, dst->max_win << dws); 5252 if (win > src->max_win) 5253 src->max_win = win; 5254 5255 } else { 5256 ack = ntohl(th->th_ack) - dst->seqdiff; 5257 if (src->seqdiff) { 5258 /* Modulate sequence numbers */ 5259 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 5260 src->seqdiff), 0); 5261 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 5262 *copyback = 1; 5263 } 5264 end = seq + pd->p_len; 5265 if (th->th_flags & TH_SYN) 5266 end++; 5267 if (th->th_flags & TH_FIN) 5268 end++; 5269 } 5270 5271 if ((th->th_flags & TH_ACK) == 0) { 5272 /* Let it pass through the ack skew check */ 5273 ack = dst->seqlo; 5274 } else if ((ack == 0 && 5275 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 5276 /* broken tcp stacks do not set ack */ 5277 (dst->state < TCPS_SYN_SENT)) { 5278 /* 5279 * Many stacks (ours included) will set the ACK number in an 5280 * FIN|ACK if the SYN times out -- no sequence to ACK. 5281 */ 5282 ack = dst->seqlo; 5283 } 5284 5285 if (seq == end) { 5286 /* Ease sequencing restrictions on no data packets */ 5287 seq = src->seqlo; 5288 end = seq; 5289 } 5290 5291 ackskew = dst->seqlo - ack; 5292 5293 /* 5294 * Need to demodulate the sequence numbers in any TCP SACK options 5295 * (Selective ACK). We could optionally validate the SACK values 5296 * against the current ACK window, either forwards or backwards, but 5297 * I'm not confident that SACK has been implemented properly 5298 * everywhere. It wouldn't surprise me if several stacks accidentally 5299 * SACK too far backwards of previously ACKed data. There really aren't 5300 * any security implications of bad SACKing unless the target stack 5301 * doesn't validate the option length correctly. Someone trying to 5302 * spoof into a TCP connection won't bother blindly sending SACK 5303 * options anyway. 5304 */ 5305 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 5306 if (pf_modulate_sack(m, off, pd, th, dst)) 5307 *copyback = 1; 5308 } 5309 5310 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 5311 if (SEQ_GEQ(src->seqhi, end) && 5312 /* Last octet inside other's window space */ 5313 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 5314 /* Retrans: not more than one window back */ 5315 (ackskew >= -MAXACKWINDOW) && 5316 /* Acking not more than one reassembled fragment backwards */ 5317 (ackskew <= (MAXACKWINDOW << sws)) && 5318 /* Acking not more than one window forward */ 5319 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 5320 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 5321 (pd->flags & PFDESC_IP_REAS) == 0)) { 5322 /* Require an exact/+1 sequence match on resets when possible */ 5323 5324 if (dst->scrub || src->scrub) { 5325 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5326 *state, src, dst, copyback)) 5327 return (PF_DROP); 5328 } 5329 5330 /* update max window */ 5331 if (src->max_win < win) 5332 src->max_win = win; 5333 /* synchronize sequencing */ 5334 if (SEQ_GT(end, src->seqlo)) 5335 src->seqlo = end; 5336 /* slide the window of what the other end can send */ 5337 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5338 dst->seqhi = ack + MAX((win << sws), 1); 5339 5340 /* update states */ 5341 if (th->th_flags & TH_SYN) 5342 if (src->state < TCPS_SYN_SENT) 5343 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5344 if (th->th_flags & TH_FIN) 5345 if (src->state < TCPS_CLOSING) 5346 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5347 if (th->th_flags & TH_ACK) { 5348 if (dst->state == TCPS_SYN_SENT) { 5349 pf_set_protostate(*state, pdst, 5350 TCPS_ESTABLISHED); 5351 if (src->state == TCPS_ESTABLISHED && 5352 (*state)->src_node != NULL && 5353 pf_src_connlimit(state)) { 5354 REASON_SET(reason, PFRES_SRCLIMIT); 5355 return (PF_DROP); 5356 } 5357 } else if (dst->state == TCPS_CLOSING) 5358 pf_set_protostate(*state, pdst, 5359 TCPS_FIN_WAIT_2); 5360 } 5361 if (th->th_flags & TH_RST) 5362 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5363 5364 /* update expire time */ 5365 (*state)->expire = time_uptime; 5366 if (src->state >= TCPS_FIN_WAIT_2 && 5367 dst->state >= TCPS_FIN_WAIT_2) 5368 (*state)->timeout = PFTM_TCP_CLOSED; 5369 else if (src->state >= TCPS_CLOSING && 5370 dst->state >= TCPS_CLOSING) 5371 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5372 else if (src->state < TCPS_ESTABLISHED || 5373 dst->state < TCPS_ESTABLISHED) 5374 (*state)->timeout = PFTM_TCP_OPENING; 5375 else if (src->state >= TCPS_CLOSING || 5376 dst->state >= TCPS_CLOSING) 5377 (*state)->timeout = PFTM_TCP_CLOSING; 5378 else 5379 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5380 5381 /* Fall through to PASS packet */ 5382 5383 } else if ((dst->state < TCPS_SYN_SENT || 5384 dst->state >= TCPS_FIN_WAIT_2 || 5385 src->state >= TCPS_FIN_WAIT_2) && 5386 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 5387 /* Within a window forward of the originating packet */ 5388 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 5389 /* Within a window backward of the originating packet */ 5390 5391 /* 5392 * This currently handles three situations: 5393 * 1) Stupid stacks will shotgun SYNs before their peer 5394 * replies. 5395 * 2) When PF catches an already established stream (the 5396 * firewall rebooted, the state table was flushed, routes 5397 * changed...) 5398 * 3) Packets get funky immediately after the connection 5399 * closes (this should catch Solaris spurious ACK|FINs 5400 * that web servers like to spew after a close) 5401 * 5402 * This must be a little more careful than the above code 5403 * since packet floods will also be caught here. We don't 5404 * update the TTL here to mitigate the damage of a packet 5405 * flood and so the same code can handle awkward establishment 5406 * and a loosened connection close. 5407 * In the establishment case, a correct peer response will 5408 * validate the connection, go through the normal state code 5409 * and keep updating the state TTL. 5410 */ 5411 5412 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5413 printf("pf: loose state match: "); 5414 pf_print_state(*state); 5415 pf_print_flags(th->th_flags); 5416 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5417 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 5418 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 5419 (unsigned long long)(*state)->packets[1], 5420 pd->dir == PF_IN ? "in" : "out", 5421 pd->dir == (*state)->direction ? "fwd" : "rev"); 5422 } 5423 5424 if (dst->scrub || src->scrub) { 5425 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 5426 *state, src, dst, copyback)) 5427 return (PF_DROP); 5428 } 5429 5430 /* update max window */ 5431 if (src->max_win < win) 5432 src->max_win = win; 5433 /* synchronize sequencing */ 5434 if (SEQ_GT(end, src->seqlo)) 5435 src->seqlo = end; 5436 /* slide the window of what the other end can send */ 5437 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 5438 dst->seqhi = ack + MAX((win << sws), 1); 5439 5440 /* 5441 * Cannot set dst->seqhi here since this could be a shotgunned 5442 * SYN and not an already established connection. 5443 */ 5444 5445 if (th->th_flags & TH_FIN) 5446 if (src->state < TCPS_CLOSING) 5447 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5448 if (th->th_flags & TH_RST) 5449 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5450 5451 /* Fall through to PASS packet */ 5452 5453 } else { 5454 if ((*state)->dst.state == TCPS_SYN_SENT && 5455 (*state)->src.state == TCPS_SYN_SENT) { 5456 /* Send RST for state mismatches during handshake */ 5457 if (!(th->th_flags & TH_RST)) 5458 pf_send_tcp((*state)->rule.ptr, pd->af, 5459 pd->dst, pd->src, th->th_dport, 5460 th->th_sport, ntohl(th->th_ack), 0, 5461 TH_RST, 0, 0, 5462 (*state)->rule.ptr->return_ttl, true, 0, 0, 5463 (*state)->act.rtableid); 5464 src->seqlo = 0; 5465 src->seqhi = 1; 5466 src->max_win = 1; 5467 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 5468 printf("pf: BAD state: "); 5469 pf_print_state(*state); 5470 pf_print_flags(th->th_flags); 5471 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 5472 "pkts=%llu:%llu dir=%s,%s\n", 5473 seq, orig_seq, ack, pd->p_len, ackskew, 5474 (unsigned long long)(*state)->packets[0], 5475 (unsigned long long)(*state)->packets[1], 5476 pd->dir == PF_IN ? "in" : "out", 5477 pd->dir == (*state)->direction ? "fwd" : "rev"); 5478 printf("pf: State failure on: %c %c %c %c | %c %c\n", 5479 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 5480 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 5481 ' ': '2', 5482 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 5483 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 5484 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 5485 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 5486 } 5487 REASON_SET(reason, PFRES_BADSTATE); 5488 return (PF_DROP); 5489 } 5490 5491 return (PF_PASS); 5492 } 5493 5494 static int 5495 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 5496 { 5497 struct tcphdr *th = &pd->hdr.tcp; 5498 struct pf_state_peer *src, *dst; 5499 u_int8_t psrc, pdst; 5500 5501 if (pd->dir == (*state)->direction) { 5502 src = &(*state)->src; 5503 dst = &(*state)->dst; 5504 psrc = PF_PEER_SRC; 5505 pdst = PF_PEER_DST; 5506 } else { 5507 src = &(*state)->dst; 5508 dst = &(*state)->src; 5509 psrc = PF_PEER_DST; 5510 pdst = PF_PEER_SRC; 5511 } 5512 5513 if (th->th_flags & TH_SYN) 5514 if (src->state < TCPS_SYN_SENT) 5515 pf_set_protostate(*state, psrc, TCPS_SYN_SENT); 5516 if (th->th_flags & TH_FIN) 5517 if (src->state < TCPS_CLOSING) 5518 pf_set_protostate(*state, psrc, TCPS_CLOSING); 5519 if (th->th_flags & TH_ACK) { 5520 if (dst->state == TCPS_SYN_SENT) { 5521 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); 5522 if (src->state == TCPS_ESTABLISHED && 5523 (*state)->src_node != NULL && 5524 pf_src_connlimit(state)) { 5525 REASON_SET(reason, PFRES_SRCLIMIT); 5526 return (PF_DROP); 5527 } 5528 } else if (dst->state == TCPS_CLOSING) { 5529 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); 5530 } else if (src->state == TCPS_SYN_SENT && 5531 dst->state < TCPS_SYN_SENT) { 5532 /* 5533 * Handle a special sloppy case where we only see one 5534 * half of the connection. If there is a ACK after 5535 * the initial SYN without ever seeing a packet from 5536 * the destination, set the connection to established. 5537 */ 5538 pf_set_protostate(*state, PF_PEER_BOTH, 5539 TCPS_ESTABLISHED); 5540 dst->state = src->state = TCPS_ESTABLISHED; 5541 if ((*state)->src_node != NULL && 5542 pf_src_connlimit(state)) { 5543 REASON_SET(reason, PFRES_SRCLIMIT); 5544 return (PF_DROP); 5545 } 5546 } else if (src->state == TCPS_CLOSING && 5547 dst->state == TCPS_ESTABLISHED && 5548 dst->seqlo == 0) { 5549 /* 5550 * Handle the closing of half connections where we 5551 * don't see the full bidirectional FIN/ACK+ACK 5552 * handshake. 5553 */ 5554 pf_set_protostate(*state, pdst, TCPS_CLOSING); 5555 } 5556 } 5557 if (th->th_flags & TH_RST) 5558 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); 5559 5560 /* update expire time */ 5561 (*state)->expire = time_uptime; 5562 if (src->state >= TCPS_FIN_WAIT_2 && 5563 dst->state >= TCPS_FIN_WAIT_2) 5564 (*state)->timeout = PFTM_TCP_CLOSED; 5565 else if (src->state >= TCPS_CLOSING && 5566 dst->state >= TCPS_CLOSING) 5567 (*state)->timeout = PFTM_TCP_FIN_WAIT; 5568 else if (src->state < TCPS_ESTABLISHED || 5569 dst->state < TCPS_ESTABLISHED) 5570 (*state)->timeout = PFTM_TCP_OPENING; 5571 else if (src->state >= TCPS_CLOSING || 5572 dst->state >= TCPS_CLOSING) 5573 (*state)->timeout = PFTM_TCP_CLOSING; 5574 else 5575 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5576 5577 return (PF_PASS); 5578 } 5579 5580 static int 5581 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) 5582 { 5583 struct pf_state_key *sk = (*state)->key[pd->didx]; 5584 struct tcphdr *th = &pd->hdr.tcp; 5585 5586 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 5587 if (pd->dir != (*state)->direction) { 5588 REASON_SET(reason, PFRES_SYNPROXY); 5589 return (PF_SYNPROXY_DROP); 5590 } 5591 if (th->th_flags & TH_SYN) { 5592 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 5593 REASON_SET(reason, PFRES_SYNPROXY); 5594 return (PF_DROP); 5595 } 5596 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5597 pd->src, th->th_dport, th->th_sport, 5598 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 5599 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, true, 0, 0, 5600 (*state)->act.rtableid); 5601 REASON_SET(reason, PFRES_SYNPROXY); 5602 return (PF_SYNPROXY_DROP); 5603 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 5604 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5605 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5606 REASON_SET(reason, PFRES_SYNPROXY); 5607 return (PF_DROP); 5608 } else if ((*state)->src_node != NULL && 5609 pf_src_connlimit(state)) { 5610 REASON_SET(reason, PFRES_SRCLIMIT); 5611 return (PF_DROP); 5612 } else 5613 pf_set_protostate(*state, PF_PEER_SRC, 5614 PF_TCPS_PROXY_DST); 5615 } 5616 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 5617 if (pd->dir == (*state)->direction) { 5618 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 5619 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 5620 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 5621 REASON_SET(reason, PFRES_SYNPROXY); 5622 return (PF_DROP); 5623 } 5624 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 5625 if ((*state)->dst.seqhi == 1) 5626 (*state)->dst.seqhi = htonl(arc4random()); 5627 pf_send_tcp((*state)->rule.ptr, pd->af, 5628 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5629 sk->port[pd->sidx], sk->port[pd->didx], 5630 (*state)->dst.seqhi, 0, TH_SYN, 0, 5631 (*state)->src.mss, 0, false, (*state)->tag, 0, 5632 (*state)->act.rtableid); 5633 REASON_SET(reason, PFRES_SYNPROXY); 5634 return (PF_SYNPROXY_DROP); 5635 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 5636 (TH_SYN|TH_ACK)) || 5637 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 5638 REASON_SET(reason, PFRES_SYNPROXY); 5639 return (PF_DROP); 5640 } else { 5641 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 5642 (*state)->dst.seqlo = ntohl(th->th_seq); 5643 pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, 5644 pd->src, th->th_dport, th->th_sport, 5645 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 5646 TH_ACK, (*state)->src.max_win, 0, 0, false, 5647 (*state)->tag, 0, (*state)->act.rtableid); 5648 pf_send_tcp((*state)->rule.ptr, pd->af, 5649 &sk->addr[pd->sidx], &sk->addr[pd->didx], 5650 sk->port[pd->sidx], sk->port[pd->didx], 5651 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 5652 TH_ACK, (*state)->dst.max_win, 0, 0, true, 0, 0, 5653 (*state)->act.rtableid); 5654 (*state)->src.seqdiff = (*state)->dst.seqhi - 5655 (*state)->src.seqlo; 5656 (*state)->dst.seqdiff = (*state)->src.seqhi - 5657 (*state)->dst.seqlo; 5658 (*state)->src.seqhi = (*state)->src.seqlo + 5659 (*state)->dst.max_win; 5660 (*state)->dst.seqhi = (*state)->dst.seqlo + 5661 (*state)->src.max_win; 5662 (*state)->src.wscale = (*state)->dst.wscale = 0; 5663 pf_set_protostate(*state, PF_PEER_BOTH, 5664 TCPS_ESTABLISHED); 5665 REASON_SET(reason, PFRES_SYNPROXY); 5666 return (PF_SYNPROXY_DROP); 5667 } 5668 } 5669 5670 return (PF_PASS); 5671 } 5672 5673 static int 5674 pf_test_state_tcp(struct pf_kstate **state, struct pfi_kkif *kif, 5675 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 5676 u_short *reason) 5677 { 5678 struct pf_state_key_cmp key; 5679 struct tcphdr *th = &pd->hdr.tcp; 5680 int copyback = 0; 5681 int action; 5682 struct pf_state_peer *src, *dst; 5683 5684 bzero(&key, sizeof(key)); 5685 key.af = pd->af; 5686 key.proto = IPPROTO_TCP; 5687 if (pd->dir == PF_IN) { /* wire side, straight */ 5688 PF_ACPY(&key.addr[0], pd->src, key.af); 5689 PF_ACPY(&key.addr[1], pd->dst, key.af); 5690 key.port[0] = th->th_sport; 5691 key.port[1] = th->th_dport; 5692 } else { /* stack side, reverse */ 5693 PF_ACPY(&key.addr[1], pd->src, key.af); 5694 PF_ACPY(&key.addr[0], pd->dst, key.af); 5695 key.port[1] = th->th_sport; 5696 key.port[0] = th->th_dport; 5697 } 5698 5699 STATE_LOOKUP(kif, &key, *state, pd); 5700 5701 if (pd->dir == (*state)->direction) { 5702 src = &(*state)->src; 5703 dst = &(*state)->dst; 5704 } else { 5705 src = &(*state)->dst; 5706 dst = &(*state)->src; 5707 } 5708 5709 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) 5710 return (action); 5711 5712 if (dst->state >= TCPS_FIN_WAIT_2 && 5713 src->state >= TCPS_FIN_WAIT_2 && 5714 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) || 5715 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && 5716 pf_syncookie_check(pd) && pd->dir == PF_IN))) { 5717 if (V_pf_status.debug >= PF_DEBUG_MISC) { 5718 printf("pf: state reuse "); 5719 pf_print_state(*state); 5720 pf_print_flags(th->th_flags); 5721 printf("\n"); 5722 } 5723 /* XXX make sure it's the same direction ?? */ 5724 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 5725 pf_unlink_state(*state); 5726 *state = NULL; 5727 return (PF_DROP); 5728 } 5729 5730 if ((*state)->state_flags & PFSTATE_SLOPPY) { 5731 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) 5732 return (PF_DROP); 5733 } else { 5734 if (pf_tcp_track_full(state, kif, m, off, pd, reason, 5735 ©back) == PF_DROP) 5736 return (PF_DROP); 5737 } 5738 5739 /* translate source/destination address, if necessary */ 5740 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5741 struct pf_state_key *nk = (*state)->key[pd->didx]; 5742 5743 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5744 nk->port[pd->sidx] != th->th_sport) 5745 pf_change_ap(m, pd->src, &th->th_sport, 5746 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 5747 nk->port[pd->sidx], 0, pd->af); 5748 5749 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5750 nk->port[pd->didx] != th->th_dport) 5751 pf_change_ap(m, pd->dst, &th->th_dport, 5752 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 5753 nk->port[pd->didx], 0, pd->af); 5754 copyback = 1; 5755 } 5756 5757 /* Copyback sequence modulation or stateful scrub changes if needed */ 5758 if (copyback) 5759 m_copyback(m, off, sizeof(*th), (caddr_t)th); 5760 5761 return (PF_PASS); 5762 } 5763 5764 static int 5765 pf_test_state_udp(struct pf_kstate **state, struct pfi_kkif *kif, 5766 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 5767 { 5768 struct pf_state_peer *src, *dst; 5769 struct pf_state_key_cmp key; 5770 struct udphdr *uh = &pd->hdr.udp; 5771 uint8_t psrc, pdst; 5772 5773 bzero(&key, sizeof(key)); 5774 key.af = pd->af; 5775 key.proto = IPPROTO_UDP; 5776 if (pd->dir == PF_IN) { /* wire side, straight */ 5777 PF_ACPY(&key.addr[0], pd->src, key.af); 5778 PF_ACPY(&key.addr[1], pd->dst, key.af); 5779 key.port[0] = uh->uh_sport; 5780 key.port[1] = uh->uh_dport; 5781 } else { /* stack side, reverse */ 5782 PF_ACPY(&key.addr[1], pd->src, key.af); 5783 PF_ACPY(&key.addr[0], pd->dst, key.af); 5784 key.port[1] = uh->uh_sport; 5785 key.port[0] = uh->uh_dport; 5786 } 5787 5788 STATE_LOOKUP(kif, &key, *state, pd); 5789 5790 if (pd->dir == (*state)->direction) { 5791 src = &(*state)->src; 5792 dst = &(*state)->dst; 5793 psrc = PF_PEER_SRC; 5794 pdst = PF_PEER_DST; 5795 } else { 5796 src = &(*state)->dst; 5797 dst = &(*state)->src; 5798 psrc = PF_PEER_DST; 5799 pdst = PF_PEER_SRC; 5800 } 5801 5802 /* update states */ 5803 if (src->state < PFUDPS_SINGLE) 5804 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 5805 if (dst->state == PFUDPS_SINGLE) 5806 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 5807 5808 /* update expire time */ 5809 (*state)->expire = time_uptime; 5810 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 5811 (*state)->timeout = PFTM_UDP_MULTIPLE; 5812 else 5813 (*state)->timeout = PFTM_UDP_SINGLE; 5814 5815 /* translate source/destination address, if necessary */ 5816 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5817 struct pf_state_key *nk = (*state)->key[pd->didx]; 5818 5819 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5820 nk->port[pd->sidx] != uh->uh_sport) 5821 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 5822 &uh->uh_sum, &nk->addr[pd->sidx], 5823 nk->port[pd->sidx], 1, pd->af); 5824 5825 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5826 nk->port[pd->didx] != uh->uh_dport) 5827 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 5828 &uh->uh_sum, &nk->addr[pd->didx], 5829 nk->port[pd->didx], 1, pd->af); 5830 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 5831 } 5832 5833 return (PF_PASS); 5834 } 5835 5836 static int 5837 pf_test_state_sctp(struct pf_kstate **state, struct pfi_kkif *kif, 5838 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5839 { 5840 struct pf_state_key_cmp key; 5841 struct pf_state_peer *src; //, *dst; 5842 struct sctphdr *sh = &pd->hdr.sctp; 5843 u_int8_t psrc; //, pdst; 5844 5845 bzero(&key, sizeof(key)); 5846 key.af = pd->af; 5847 key.proto = IPPROTO_SCTP; 5848 if (pd->dir == PF_IN) { /* wire side, straight */ 5849 PF_ACPY(&key.addr[0], pd->src, key.af); 5850 PF_ACPY(&key.addr[1], pd->dst, key.af); 5851 key.port[0] = sh->src_port; 5852 key.port[1] = sh->dest_port; 5853 } else { /* stack side, reverse */ 5854 PF_ACPY(&key.addr[1], pd->src, key.af); 5855 PF_ACPY(&key.addr[0], pd->dst, key.af); 5856 key.port[1] = sh->src_port; 5857 key.port[0] = sh->dest_port; 5858 } 5859 5860 STATE_LOOKUP(kif, &key, *state, pd); 5861 5862 if (pd->dir == (*state)->direction) { 5863 src = &(*state)->src; 5864 psrc = PF_PEER_SRC; 5865 } else { 5866 src = &(*state)->dst; 5867 psrc = PF_PEER_DST; 5868 } 5869 5870 /* Track state. */ 5871 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 5872 if (src->state < SCTP_COOKIE_WAIT) { 5873 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 5874 (*state)->timeout = PFTM_TCP_OPENING; 5875 } 5876 } 5877 if (pd->sctp_flags & PFDESC_SCTP_COOKIE) { 5878 if (src->state < SCTP_ESTABLISHED) { 5879 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 5880 (*state)->timeout = PFTM_TCP_ESTABLISHED; 5881 } 5882 } 5883 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT | 5884 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 5885 if (src->state < SCTP_SHUTDOWN_PENDING) { 5886 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 5887 (*state)->timeout = PFTM_TCP_CLOSING; 5888 } 5889 } 5890 5891 (*state)->expire = time_uptime; 5892 5893 /* translate source/destination address, if necessary */ 5894 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5895 uint16_t checksum = 0; 5896 struct pf_state_key *nk = (*state)->key[pd->didx]; 5897 5898 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 5899 nk->port[pd->sidx] != pd->hdr.sctp.src_port) { 5900 pf_change_ap(m, pd->src, &pd->hdr.sctp.src_port, 5901 pd->ip_sum, &checksum, &nk->addr[pd->sidx], 5902 nk->port[pd->sidx], 1, pd->af); 5903 } 5904 5905 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 5906 nk->port[pd->didx] != pd->hdr.sctp.dest_port) { 5907 pf_change_ap(m, pd->dst, &pd->hdr.sctp.dest_port, 5908 pd->ip_sum, &checksum, &nk->addr[pd->didx], 5909 nk->port[pd->didx], 1, pd->af); 5910 } 5911 } 5912 5913 return (PF_PASS); 5914 } 5915 5916 static int 5917 pf_test_state_icmp(struct pf_kstate **state, struct pfi_kkif *kif, 5918 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 5919 { 5920 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 5921 u_int16_t icmpid = 0, *icmpsum; 5922 u_int8_t icmptype, icmpcode; 5923 int state_icmp = 0; 5924 struct pf_state_key_cmp key; 5925 5926 bzero(&key, sizeof(key)); 5927 switch (pd->proto) { 5928 #ifdef INET 5929 case IPPROTO_ICMP: 5930 icmptype = pd->hdr.icmp.icmp_type; 5931 icmpcode = pd->hdr.icmp.icmp_code; 5932 icmpid = pd->hdr.icmp.icmp_id; 5933 icmpsum = &pd->hdr.icmp.icmp_cksum; 5934 5935 if (icmptype == ICMP_UNREACH || 5936 icmptype == ICMP_SOURCEQUENCH || 5937 icmptype == ICMP_REDIRECT || 5938 icmptype == ICMP_TIMXCEED || 5939 icmptype == ICMP_PARAMPROB) 5940 state_icmp++; 5941 break; 5942 #endif /* INET */ 5943 #ifdef INET6 5944 case IPPROTO_ICMPV6: 5945 icmptype = pd->hdr.icmp6.icmp6_type; 5946 icmpcode = pd->hdr.icmp6.icmp6_code; 5947 icmpid = pd->hdr.icmp6.icmp6_id; 5948 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 5949 5950 if (icmptype == ICMP6_DST_UNREACH || 5951 icmptype == ICMP6_PACKET_TOO_BIG || 5952 icmptype == ICMP6_TIME_EXCEEDED || 5953 icmptype == ICMP6_PARAM_PROB) 5954 state_icmp++; 5955 break; 5956 #endif /* INET6 */ 5957 } 5958 5959 if (!state_icmp) { 5960 /* 5961 * ICMP query/reply message not related to a TCP/UDP packet. 5962 * Search for an ICMP state. 5963 */ 5964 key.af = pd->af; 5965 key.proto = pd->proto; 5966 key.port[0] = key.port[1] = icmpid; 5967 if (pd->dir == PF_IN) { /* wire side, straight */ 5968 PF_ACPY(&key.addr[0], pd->src, key.af); 5969 PF_ACPY(&key.addr[1], pd->dst, key.af); 5970 } else { /* stack side, reverse */ 5971 PF_ACPY(&key.addr[1], pd->src, key.af); 5972 PF_ACPY(&key.addr[0], pd->dst, key.af); 5973 } 5974 5975 STATE_LOOKUP(kif, &key, *state, pd); 5976 5977 (*state)->expire = time_uptime; 5978 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 5979 5980 /* translate source/destination address, if necessary */ 5981 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5982 struct pf_state_key *nk = (*state)->key[pd->didx]; 5983 5984 switch (pd->af) { 5985 #ifdef INET 5986 case AF_INET: 5987 if (PF_ANEQ(pd->src, 5988 &nk->addr[pd->sidx], AF_INET)) 5989 pf_change_a(&saddr->v4.s_addr, 5990 pd->ip_sum, 5991 nk->addr[pd->sidx].v4.s_addr, 0); 5992 5993 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 5994 AF_INET)) 5995 pf_change_a(&daddr->v4.s_addr, 5996 pd->ip_sum, 5997 nk->addr[pd->didx].v4.s_addr, 0); 5998 5999 if (nk->port[0] != 6000 pd->hdr.icmp.icmp_id) { 6001 pd->hdr.icmp.icmp_cksum = 6002 pf_cksum_fixup( 6003 pd->hdr.icmp.icmp_cksum, icmpid, 6004 nk->port[pd->sidx], 0); 6005 pd->hdr.icmp.icmp_id = 6006 nk->port[pd->sidx]; 6007 } 6008 6009 m_copyback(m, off, ICMP_MINLEN, 6010 (caddr_t )&pd->hdr.icmp); 6011 break; 6012 #endif /* INET */ 6013 #ifdef INET6 6014 case AF_INET6: 6015 if (PF_ANEQ(pd->src, 6016 &nk->addr[pd->sidx], AF_INET6)) 6017 pf_change_a6(saddr, 6018 &pd->hdr.icmp6.icmp6_cksum, 6019 &nk->addr[pd->sidx], 0); 6020 6021 if (PF_ANEQ(pd->dst, 6022 &nk->addr[pd->didx], AF_INET6)) 6023 pf_change_a6(daddr, 6024 &pd->hdr.icmp6.icmp6_cksum, 6025 &nk->addr[pd->didx], 0); 6026 6027 m_copyback(m, off, sizeof(struct icmp6_hdr), 6028 (caddr_t )&pd->hdr.icmp6); 6029 break; 6030 #endif /* INET6 */ 6031 } 6032 } 6033 return (PF_PASS); 6034 6035 } else { 6036 /* 6037 * ICMP error message in response to a TCP/UDP packet. 6038 * Extract the inner TCP/UDP header and search for that state. 6039 */ 6040 6041 struct pf_pdesc pd2; 6042 bzero(&pd2, sizeof pd2); 6043 #ifdef INET 6044 struct ip h2; 6045 #endif /* INET */ 6046 #ifdef INET6 6047 struct ip6_hdr h2_6; 6048 int terminal = 0; 6049 #endif /* INET6 */ 6050 int ipoff2 = 0; 6051 int off2 = 0; 6052 6053 pd2.af = pd->af; 6054 /* Payload packet is from the opposite direction. */ 6055 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 6056 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 6057 switch (pd->af) { 6058 #ifdef INET 6059 case AF_INET: 6060 /* offset of h2 in mbuf chain */ 6061 ipoff2 = off + ICMP_MINLEN; 6062 6063 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 6064 NULL, reason, pd2.af)) { 6065 DPFPRINTF(PF_DEBUG_MISC, 6066 ("pf: ICMP error message too short " 6067 "(ip)\n")); 6068 return (PF_DROP); 6069 } 6070 /* 6071 * ICMP error messages don't refer to non-first 6072 * fragments 6073 */ 6074 if (h2.ip_off & htons(IP_OFFMASK)) { 6075 REASON_SET(reason, PFRES_FRAG); 6076 return (PF_DROP); 6077 } 6078 6079 /* offset of protocol header that follows h2 */ 6080 off2 = ipoff2 + (h2.ip_hl << 2); 6081 6082 pd2.proto = h2.ip_p; 6083 pd2.src = (struct pf_addr *)&h2.ip_src; 6084 pd2.dst = (struct pf_addr *)&h2.ip_dst; 6085 pd2.ip_sum = &h2.ip_sum; 6086 break; 6087 #endif /* INET */ 6088 #ifdef INET6 6089 case AF_INET6: 6090 ipoff2 = off + sizeof(struct icmp6_hdr); 6091 6092 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 6093 NULL, reason, pd2.af)) { 6094 DPFPRINTF(PF_DEBUG_MISC, 6095 ("pf: ICMP error message too short " 6096 "(ip6)\n")); 6097 return (PF_DROP); 6098 } 6099 pd2.proto = h2_6.ip6_nxt; 6100 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 6101 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 6102 pd2.ip_sum = NULL; 6103 off2 = ipoff2 + sizeof(h2_6); 6104 do { 6105 switch (pd2.proto) { 6106 case IPPROTO_FRAGMENT: 6107 /* 6108 * ICMPv6 error messages for 6109 * non-first fragments 6110 */ 6111 REASON_SET(reason, PFRES_FRAG); 6112 return (PF_DROP); 6113 case IPPROTO_AH: 6114 case IPPROTO_HOPOPTS: 6115 case IPPROTO_ROUTING: 6116 case IPPROTO_DSTOPTS: { 6117 /* get next header and header length */ 6118 struct ip6_ext opt6; 6119 6120 if (!pf_pull_hdr(m, off2, &opt6, 6121 sizeof(opt6), NULL, reason, 6122 pd2.af)) { 6123 DPFPRINTF(PF_DEBUG_MISC, 6124 ("pf: ICMPv6 short opt\n")); 6125 return (PF_DROP); 6126 } 6127 if (pd2.proto == IPPROTO_AH) 6128 off2 += (opt6.ip6e_len + 2) * 4; 6129 else 6130 off2 += (opt6.ip6e_len + 1) * 8; 6131 pd2.proto = opt6.ip6e_nxt; 6132 /* goto the next header */ 6133 break; 6134 } 6135 default: 6136 terminal++; 6137 break; 6138 } 6139 } while (!terminal); 6140 break; 6141 #endif /* INET6 */ 6142 } 6143 6144 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 6145 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6146 printf("pf: BAD ICMP %d:%d outer dst: ", 6147 icmptype, icmpcode); 6148 pf_print_host(pd->src, 0, pd->af); 6149 printf(" -> "); 6150 pf_print_host(pd->dst, 0, pd->af); 6151 printf(" inner src: "); 6152 pf_print_host(pd2.src, 0, pd2.af); 6153 printf(" -> "); 6154 pf_print_host(pd2.dst, 0, pd2.af); 6155 printf("\n"); 6156 } 6157 REASON_SET(reason, PFRES_BADSTATE); 6158 return (PF_DROP); 6159 } 6160 6161 switch (pd2.proto) { 6162 case IPPROTO_TCP: { 6163 struct tcphdr th; 6164 u_int32_t seq; 6165 struct pf_state_peer *src, *dst; 6166 u_int8_t dws; 6167 int copyback = 0; 6168 6169 /* 6170 * Only the first 8 bytes of the TCP header can be 6171 * expected. Don't access any TCP header fields after 6172 * th_seq, an ackskew test is not possible. 6173 */ 6174 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 6175 pd2.af)) { 6176 DPFPRINTF(PF_DEBUG_MISC, 6177 ("pf: ICMP error message too short " 6178 "(tcp)\n")); 6179 return (PF_DROP); 6180 } 6181 6182 key.af = pd2.af; 6183 key.proto = IPPROTO_TCP; 6184 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6185 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6186 key.port[pd2.sidx] = th.th_sport; 6187 key.port[pd2.didx] = th.th_dport; 6188 6189 STATE_LOOKUP(kif, &key, *state, pd); 6190 6191 if (pd->dir == (*state)->direction) { 6192 src = &(*state)->dst; 6193 dst = &(*state)->src; 6194 } else { 6195 src = &(*state)->src; 6196 dst = &(*state)->dst; 6197 } 6198 6199 if (src->wscale && dst->wscale) 6200 dws = dst->wscale & PF_WSCALE_MASK; 6201 else 6202 dws = 0; 6203 6204 /* Demodulate sequence number */ 6205 seq = ntohl(th.th_seq) - src->seqdiff; 6206 if (src->seqdiff) { 6207 pf_change_a(&th.th_seq, icmpsum, 6208 htonl(seq), 0); 6209 copyback = 1; 6210 } 6211 6212 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 6213 (!SEQ_GEQ(src->seqhi, seq) || 6214 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 6215 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6216 printf("pf: BAD ICMP %d:%d ", 6217 icmptype, icmpcode); 6218 pf_print_host(pd->src, 0, pd->af); 6219 printf(" -> "); 6220 pf_print_host(pd->dst, 0, pd->af); 6221 printf(" state: "); 6222 pf_print_state(*state); 6223 printf(" seq=%u\n", seq); 6224 } 6225 REASON_SET(reason, PFRES_BADSTATE); 6226 return (PF_DROP); 6227 } else { 6228 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6229 printf("pf: OK ICMP %d:%d ", 6230 icmptype, icmpcode); 6231 pf_print_host(pd->src, 0, pd->af); 6232 printf(" -> "); 6233 pf_print_host(pd->dst, 0, pd->af); 6234 printf(" state: "); 6235 pf_print_state(*state); 6236 printf(" seq=%u\n", seq); 6237 } 6238 } 6239 6240 /* translate source/destination address, if necessary */ 6241 if ((*state)->key[PF_SK_WIRE] != 6242 (*state)->key[PF_SK_STACK]) { 6243 struct pf_state_key *nk = 6244 (*state)->key[pd->didx]; 6245 6246 if (PF_ANEQ(pd2.src, 6247 &nk->addr[pd2.sidx], pd2.af) || 6248 nk->port[pd2.sidx] != th.th_sport) 6249 pf_change_icmp(pd2.src, &th.th_sport, 6250 daddr, &nk->addr[pd2.sidx], 6251 nk->port[pd2.sidx], NULL, 6252 pd2.ip_sum, icmpsum, 6253 pd->ip_sum, 0, pd2.af); 6254 6255 if (PF_ANEQ(pd2.dst, 6256 &nk->addr[pd2.didx], pd2.af) || 6257 nk->port[pd2.didx] != th.th_dport) 6258 pf_change_icmp(pd2.dst, &th.th_dport, 6259 saddr, &nk->addr[pd2.didx], 6260 nk->port[pd2.didx], NULL, 6261 pd2.ip_sum, icmpsum, 6262 pd->ip_sum, 0, pd2.af); 6263 copyback = 1; 6264 } 6265 6266 if (copyback) { 6267 switch (pd2.af) { 6268 #ifdef INET 6269 case AF_INET: 6270 m_copyback(m, off, ICMP_MINLEN, 6271 (caddr_t )&pd->hdr.icmp); 6272 m_copyback(m, ipoff2, sizeof(h2), 6273 (caddr_t )&h2); 6274 break; 6275 #endif /* INET */ 6276 #ifdef INET6 6277 case AF_INET6: 6278 m_copyback(m, off, 6279 sizeof(struct icmp6_hdr), 6280 (caddr_t )&pd->hdr.icmp6); 6281 m_copyback(m, ipoff2, sizeof(h2_6), 6282 (caddr_t )&h2_6); 6283 break; 6284 #endif /* INET6 */ 6285 } 6286 m_copyback(m, off2, 8, (caddr_t)&th); 6287 } 6288 6289 return (PF_PASS); 6290 break; 6291 } 6292 case IPPROTO_UDP: { 6293 struct udphdr uh; 6294 6295 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 6296 NULL, reason, pd2.af)) { 6297 DPFPRINTF(PF_DEBUG_MISC, 6298 ("pf: ICMP error message too short " 6299 "(udp)\n")); 6300 return (PF_DROP); 6301 } 6302 6303 key.af = pd2.af; 6304 key.proto = IPPROTO_UDP; 6305 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6306 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6307 key.port[pd2.sidx] = uh.uh_sport; 6308 key.port[pd2.didx] = uh.uh_dport; 6309 6310 STATE_LOOKUP(kif, &key, *state, pd); 6311 6312 /* translate source/destination address, if necessary */ 6313 if ((*state)->key[PF_SK_WIRE] != 6314 (*state)->key[PF_SK_STACK]) { 6315 struct pf_state_key *nk = 6316 (*state)->key[pd->didx]; 6317 6318 if (PF_ANEQ(pd2.src, 6319 &nk->addr[pd2.sidx], pd2.af) || 6320 nk->port[pd2.sidx] != uh.uh_sport) 6321 pf_change_icmp(pd2.src, &uh.uh_sport, 6322 daddr, &nk->addr[pd2.sidx], 6323 nk->port[pd2.sidx], &uh.uh_sum, 6324 pd2.ip_sum, icmpsum, 6325 pd->ip_sum, 1, pd2.af); 6326 6327 if (PF_ANEQ(pd2.dst, 6328 &nk->addr[pd2.didx], pd2.af) || 6329 nk->port[pd2.didx] != uh.uh_dport) 6330 pf_change_icmp(pd2.dst, &uh.uh_dport, 6331 saddr, &nk->addr[pd2.didx], 6332 nk->port[pd2.didx], &uh.uh_sum, 6333 pd2.ip_sum, icmpsum, 6334 pd->ip_sum, 1, pd2.af); 6335 6336 switch (pd2.af) { 6337 #ifdef INET 6338 case AF_INET: 6339 m_copyback(m, off, ICMP_MINLEN, 6340 (caddr_t )&pd->hdr.icmp); 6341 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6342 break; 6343 #endif /* INET */ 6344 #ifdef INET6 6345 case AF_INET6: 6346 m_copyback(m, off, 6347 sizeof(struct icmp6_hdr), 6348 (caddr_t )&pd->hdr.icmp6); 6349 m_copyback(m, ipoff2, sizeof(h2_6), 6350 (caddr_t )&h2_6); 6351 break; 6352 #endif /* INET6 */ 6353 } 6354 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 6355 } 6356 return (PF_PASS); 6357 break; 6358 } 6359 #ifdef INET 6360 case IPPROTO_ICMP: { 6361 struct icmp iih; 6362 6363 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 6364 NULL, reason, pd2.af)) { 6365 DPFPRINTF(PF_DEBUG_MISC, 6366 ("pf: ICMP error message too short i" 6367 "(icmp)\n")); 6368 return (PF_DROP); 6369 } 6370 6371 key.af = pd2.af; 6372 key.proto = IPPROTO_ICMP; 6373 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6374 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6375 key.port[0] = key.port[1] = iih.icmp_id; 6376 6377 STATE_LOOKUP(kif, &key, *state, pd); 6378 6379 /* translate source/destination address, if necessary */ 6380 if ((*state)->key[PF_SK_WIRE] != 6381 (*state)->key[PF_SK_STACK]) { 6382 struct pf_state_key *nk = 6383 (*state)->key[pd->didx]; 6384 6385 if (PF_ANEQ(pd2.src, 6386 &nk->addr[pd2.sidx], pd2.af) || 6387 nk->port[pd2.sidx] != iih.icmp_id) 6388 pf_change_icmp(pd2.src, &iih.icmp_id, 6389 daddr, &nk->addr[pd2.sidx], 6390 nk->port[pd2.sidx], NULL, 6391 pd2.ip_sum, icmpsum, 6392 pd->ip_sum, 0, AF_INET); 6393 6394 if (PF_ANEQ(pd2.dst, 6395 &nk->addr[pd2.didx], pd2.af) || 6396 nk->port[pd2.didx] != iih.icmp_id) 6397 pf_change_icmp(pd2.dst, &iih.icmp_id, 6398 saddr, &nk->addr[pd2.didx], 6399 nk->port[pd2.didx], NULL, 6400 pd2.ip_sum, icmpsum, 6401 pd->ip_sum, 0, AF_INET); 6402 6403 m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6404 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6405 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 6406 } 6407 return (PF_PASS); 6408 break; 6409 } 6410 #endif /* INET */ 6411 #ifdef INET6 6412 case IPPROTO_ICMPV6: { 6413 struct icmp6_hdr iih; 6414 6415 if (!pf_pull_hdr(m, off2, &iih, 6416 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 6417 DPFPRINTF(PF_DEBUG_MISC, 6418 ("pf: ICMP error message too short " 6419 "(icmp6)\n")); 6420 return (PF_DROP); 6421 } 6422 6423 key.af = pd2.af; 6424 key.proto = IPPROTO_ICMPV6; 6425 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6426 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6427 key.port[0] = key.port[1] = iih.icmp6_id; 6428 6429 STATE_LOOKUP(kif, &key, *state, pd); 6430 6431 /* translate source/destination address, if necessary */ 6432 if ((*state)->key[PF_SK_WIRE] != 6433 (*state)->key[PF_SK_STACK]) { 6434 struct pf_state_key *nk = 6435 (*state)->key[pd->didx]; 6436 6437 if (PF_ANEQ(pd2.src, 6438 &nk->addr[pd2.sidx], pd2.af) || 6439 nk->port[pd2.sidx] != iih.icmp6_id) 6440 pf_change_icmp(pd2.src, &iih.icmp6_id, 6441 daddr, &nk->addr[pd2.sidx], 6442 nk->port[pd2.sidx], NULL, 6443 pd2.ip_sum, icmpsum, 6444 pd->ip_sum, 0, AF_INET6); 6445 6446 if (PF_ANEQ(pd2.dst, 6447 &nk->addr[pd2.didx], pd2.af) || 6448 nk->port[pd2.didx] != iih.icmp6_id) 6449 pf_change_icmp(pd2.dst, &iih.icmp6_id, 6450 saddr, &nk->addr[pd2.didx], 6451 nk->port[pd2.didx], NULL, 6452 pd2.ip_sum, icmpsum, 6453 pd->ip_sum, 0, AF_INET6); 6454 6455 m_copyback(m, off, sizeof(struct icmp6_hdr), 6456 (caddr_t)&pd->hdr.icmp6); 6457 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 6458 m_copyback(m, off2, sizeof(struct icmp6_hdr), 6459 (caddr_t)&iih); 6460 } 6461 return (PF_PASS); 6462 break; 6463 } 6464 #endif /* INET6 */ 6465 default: { 6466 key.af = pd2.af; 6467 key.proto = pd2.proto; 6468 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 6469 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 6470 key.port[0] = key.port[1] = 0; 6471 6472 STATE_LOOKUP(kif, &key, *state, pd); 6473 6474 /* translate source/destination address, if necessary */ 6475 if ((*state)->key[PF_SK_WIRE] != 6476 (*state)->key[PF_SK_STACK]) { 6477 struct pf_state_key *nk = 6478 (*state)->key[pd->didx]; 6479 6480 if (PF_ANEQ(pd2.src, 6481 &nk->addr[pd2.sidx], pd2.af)) 6482 pf_change_icmp(pd2.src, NULL, daddr, 6483 &nk->addr[pd2.sidx], 0, NULL, 6484 pd2.ip_sum, icmpsum, 6485 pd->ip_sum, 0, pd2.af); 6486 6487 if (PF_ANEQ(pd2.dst, 6488 &nk->addr[pd2.didx], pd2.af)) 6489 pf_change_icmp(pd2.dst, NULL, saddr, 6490 &nk->addr[pd2.didx], 0, NULL, 6491 pd2.ip_sum, icmpsum, 6492 pd->ip_sum, 0, pd2.af); 6493 6494 switch (pd2.af) { 6495 #ifdef INET 6496 case AF_INET: 6497 m_copyback(m, off, ICMP_MINLEN, 6498 (caddr_t)&pd->hdr.icmp); 6499 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 6500 break; 6501 #endif /* INET */ 6502 #ifdef INET6 6503 case AF_INET6: 6504 m_copyback(m, off, 6505 sizeof(struct icmp6_hdr), 6506 (caddr_t )&pd->hdr.icmp6); 6507 m_copyback(m, ipoff2, sizeof(h2_6), 6508 (caddr_t )&h2_6); 6509 break; 6510 #endif /* INET6 */ 6511 } 6512 } 6513 return (PF_PASS); 6514 break; 6515 } 6516 } 6517 } 6518 } 6519 6520 static int 6521 pf_test_state_other(struct pf_kstate **state, struct pfi_kkif *kif, 6522 struct mbuf *m, struct pf_pdesc *pd) 6523 { 6524 struct pf_state_peer *src, *dst; 6525 struct pf_state_key_cmp key; 6526 uint8_t psrc, pdst; 6527 6528 bzero(&key, sizeof(key)); 6529 key.af = pd->af; 6530 key.proto = pd->proto; 6531 if (pd->dir == PF_IN) { 6532 PF_ACPY(&key.addr[0], pd->src, key.af); 6533 PF_ACPY(&key.addr[1], pd->dst, key.af); 6534 key.port[0] = key.port[1] = 0; 6535 } else { 6536 PF_ACPY(&key.addr[1], pd->src, key.af); 6537 PF_ACPY(&key.addr[0], pd->dst, key.af); 6538 key.port[1] = key.port[0] = 0; 6539 } 6540 6541 STATE_LOOKUP(kif, &key, *state, pd); 6542 6543 if (pd->dir == (*state)->direction) { 6544 src = &(*state)->src; 6545 dst = &(*state)->dst; 6546 psrc = PF_PEER_SRC; 6547 pdst = PF_PEER_DST; 6548 } else { 6549 src = &(*state)->dst; 6550 dst = &(*state)->src; 6551 psrc = PF_PEER_DST; 6552 pdst = PF_PEER_SRC; 6553 } 6554 6555 /* update states */ 6556 if (src->state < PFOTHERS_SINGLE) 6557 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 6558 if (dst->state == PFOTHERS_SINGLE) 6559 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 6560 6561 /* update expire time */ 6562 (*state)->expire = time_uptime; 6563 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 6564 (*state)->timeout = PFTM_OTHER_MULTIPLE; 6565 else 6566 (*state)->timeout = PFTM_OTHER_SINGLE; 6567 6568 /* translate source/destination address, if necessary */ 6569 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 6570 struct pf_state_key *nk = (*state)->key[pd->didx]; 6571 6572 KASSERT(nk, ("%s: nk is null", __func__)); 6573 KASSERT(pd, ("%s: pd is null", __func__)); 6574 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 6575 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 6576 switch (pd->af) { 6577 #ifdef INET 6578 case AF_INET: 6579 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6580 pf_change_a(&pd->src->v4.s_addr, 6581 pd->ip_sum, 6582 nk->addr[pd->sidx].v4.s_addr, 6583 0); 6584 6585 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6586 pf_change_a(&pd->dst->v4.s_addr, 6587 pd->ip_sum, 6588 nk->addr[pd->didx].v4.s_addr, 6589 0); 6590 6591 break; 6592 #endif /* INET */ 6593 #ifdef INET6 6594 case AF_INET6: 6595 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 6596 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6597 6598 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 6599 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6600 #endif /* INET6 */ 6601 } 6602 } 6603 return (PF_PASS); 6604 } 6605 6606 /* 6607 * ipoff and off are measured from the start of the mbuf chain. 6608 * h must be at "ipoff" on the mbuf chain. 6609 */ 6610 void * 6611 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 6612 u_short *actionp, u_short *reasonp, sa_family_t af) 6613 { 6614 switch (af) { 6615 #ifdef INET 6616 case AF_INET: { 6617 struct ip *h = mtod(m, struct ip *); 6618 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 6619 6620 if (fragoff) { 6621 if (fragoff >= len) 6622 ACTION_SET(actionp, PF_PASS); 6623 else { 6624 ACTION_SET(actionp, PF_DROP); 6625 REASON_SET(reasonp, PFRES_FRAG); 6626 } 6627 return (NULL); 6628 } 6629 if (m->m_pkthdr.len < off + len || 6630 ntohs(h->ip_len) < off + len) { 6631 ACTION_SET(actionp, PF_DROP); 6632 REASON_SET(reasonp, PFRES_SHORT); 6633 return (NULL); 6634 } 6635 break; 6636 } 6637 #endif /* INET */ 6638 #ifdef INET6 6639 case AF_INET6: { 6640 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 6641 6642 if (m->m_pkthdr.len < off + len || 6643 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 6644 (unsigned)(off + len)) { 6645 ACTION_SET(actionp, PF_DROP); 6646 REASON_SET(reasonp, PFRES_SHORT); 6647 return (NULL); 6648 } 6649 break; 6650 } 6651 #endif /* INET6 */ 6652 } 6653 m_copydata(m, off, len, p); 6654 return (p); 6655 } 6656 6657 int 6658 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 6659 int rtableid) 6660 { 6661 struct ifnet *ifp; 6662 6663 /* 6664 * Skip check for addresses with embedded interface scope, 6665 * as they would always match anyway. 6666 */ 6667 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 6668 return (1); 6669 6670 if (af != AF_INET && af != AF_INET6) 6671 return (0); 6672 6673 /* Skip checks for ipsec interfaces */ 6674 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 6675 return (1); 6676 6677 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 6678 6679 switch (af) { 6680 #ifdef INET6 6681 case AF_INET6: 6682 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 6683 ifp)); 6684 #endif 6685 #ifdef INET 6686 case AF_INET: 6687 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 6688 ifp)); 6689 #endif 6690 } 6691 6692 return (0); 6693 } 6694 6695 #ifdef INET 6696 static void 6697 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 6698 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6699 { 6700 struct mbuf *m0, *m1, *md; 6701 struct sockaddr_in dst; 6702 struct ip *ip; 6703 struct ifnet *ifp = NULL; 6704 struct pf_addr naddr; 6705 struct pf_ksrc_node *sn = NULL; 6706 int error = 0; 6707 uint16_t ip_len, ip_off; 6708 int r_rt, r_dir; 6709 6710 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6711 6712 if (s) { 6713 r_rt = s->rt; 6714 r_dir = s->direction; 6715 } else { 6716 r_rt = r->rt; 6717 r_dir = r->direction; 6718 } 6719 6720 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 6721 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 6722 __func__)); 6723 6724 if ((pd->pf_mtag == NULL && 6725 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6726 pd->pf_mtag->routed++ > 3) { 6727 m0 = *m; 6728 *m = NULL; 6729 goto bad_locked; 6730 } 6731 6732 if (r_rt == PF_DUPTO) { 6733 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 6734 if (s == NULL) { 6735 ifp = r->rpool.cur->kif ? 6736 r->rpool.cur->kif->pfik_ifp : NULL; 6737 } else { 6738 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6739 /* If pfsync'd */ 6740 if (ifp == NULL) 6741 ifp = r->rpool.cur->kif ? 6742 r->rpool.cur->kif->pfik_ifp : NULL; 6743 PF_STATE_UNLOCK(s); 6744 } 6745 if (ifp == oifp) { 6746 /* When the 2nd interface is not skipped */ 6747 return; 6748 } else { 6749 m0 = *m; 6750 *m = NULL; 6751 goto bad; 6752 } 6753 } else { 6754 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 6755 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6756 if (s) 6757 PF_STATE_UNLOCK(s); 6758 return; 6759 } 6760 } 6761 } else { 6762 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 6763 pf_dummynet(pd, s, r, m); 6764 if (s) 6765 PF_STATE_UNLOCK(s); 6766 return; 6767 } 6768 m0 = *m; 6769 } 6770 6771 ip = mtod(m0, struct ip *); 6772 6773 bzero(&dst, sizeof(dst)); 6774 dst.sin_family = AF_INET; 6775 dst.sin_len = sizeof(dst); 6776 dst.sin_addr = ip->ip_dst; 6777 6778 bzero(&naddr, sizeof(naddr)); 6779 6780 if (s == NULL) { 6781 if (TAILQ_EMPTY(&r->rpool.list)) { 6782 DPFPRINTF(PF_DEBUG_URGENT, 6783 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6784 goto bad_locked; 6785 } 6786 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 6787 &naddr, NULL, &sn); 6788 if (!PF_AZERO(&naddr, AF_INET)) 6789 dst.sin_addr.s_addr = naddr.v4.s_addr; 6790 ifp = r->rpool.cur->kif ? 6791 r->rpool.cur->kif->pfik_ifp : NULL; 6792 } else { 6793 if (!PF_AZERO(&s->rt_addr, AF_INET)) 6794 dst.sin_addr.s_addr = 6795 s->rt_addr.v4.s_addr; 6796 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6797 PF_STATE_UNLOCK(s); 6798 } 6799 /* If pfsync'd */ 6800 if (ifp == NULL) 6801 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 6802 if (ifp == NULL) 6803 goto bad; 6804 6805 if (pd->dir == PF_IN) { 6806 if (pf_test(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 6807 goto bad; 6808 else if (m0 == NULL) 6809 goto done; 6810 if (m0->m_len < sizeof(struct ip)) { 6811 DPFPRINTF(PF_DEBUG_URGENT, 6812 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 6813 goto bad; 6814 } 6815 ip = mtod(m0, struct ip *); 6816 } 6817 6818 if (ifp->if_flags & IFF_LOOPBACK) 6819 m0->m_flags |= M_SKIP_FIREWALL; 6820 6821 ip_len = ntohs(ip->ip_len); 6822 ip_off = ntohs(ip->ip_off); 6823 6824 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 6825 m0->m_pkthdr.csum_flags |= CSUM_IP; 6826 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 6827 in_delayed_cksum(m0); 6828 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 6829 } 6830 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 6831 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 6832 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 6833 } 6834 6835 /* 6836 * If small enough for interface, or the interface will take 6837 * care of the fragmentation for us, we can just send directly. 6838 */ 6839 if (ip_len <= ifp->if_mtu || 6840 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 6841 ip->ip_sum = 0; 6842 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 6843 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 6844 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 6845 } 6846 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 6847 6848 md = m0; 6849 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 6850 if (md != NULL) 6851 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL); 6852 goto done; 6853 } 6854 6855 /* Balk when DF bit is set or the interface didn't support TSO. */ 6856 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 6857 error = EMSGSIZE; 6858 KMOD_IPSTAT_INC(ips_cantfrag); 6859 if (r_rt != PF_DUPTO) { 6860 if (s && pd->nat_rule != NULL) 6861 PACKET_UNDO_NAT(m0, pd, 6862 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 6863 s); 6864 6865 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 6866 ifp->if_mtu); 6867 goto done; 6868 } else 6869 goto bad; 6870 } 6871 6872 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 6873 if (error) 6874 goto bad; 6875 6876 for (; m0; m0 = m1) { 6877 m1 = m0->m_nextpkt; 6878 m0->m_nextpkt = NULL; 6879 if (error == 0) { 6880 m_clrprotoflags(m0); 6881 md = m0; 6882 error = pf_dummynet_route(pd, s, r, ifp, 6883 sintosa(&dst), &md); 6884 if (md != NULL) 6885 error = (*ifp->if_output)(ifp, md, 6886 sintosa(&dst), NULL); 6887 } else 6888 m_freem(m0); 6889 } 6890 6891 if (error == 0) 6892 KMOD_IPSTAT_INC(ips_fragmented); 6893 6894 done: 6895 if (r_rt != PF_DUPTO) 6896 *m = NULL; 6897 return; 6898 6899 bad_locked: 6900 if (s) 6901 PF_STATE_UNLOCK(s); 6902 bad: 6903 m_freem(m0); 6904 goto done; 6905 } 6906 #endif /* INET */ 6907 6908 #ifdef INET6 6909 static void 6910 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp, 6911 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 6912 { 6913 struct mbuf *m0, *md; 6914 struct sockaddr_in6 dst; 6915 struct ip6_hdr *ip6; 6916 struct ifnet *ifp = NULL; 6917 struct pf_addr naddr; 6918 struct pf_ksrc_node *sn = NULL; 6919 int r_rt, r_dir; 6920 6921 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 6922 6923 if (s) { 6924 r_rt = s->rt; 6925 r_dir = s->direction; 6926 } else { 6927 r_rt = r->rt; 6928 r_dir = r->direction; 6929 } 6930 6931 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 6932 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 6933 __func__)); 6934 6935 if ((pd->pf_mtag == NULL && 6936 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 6937 pd->pf_mtag->routed++ > 3) { 6938 m0 = *m; 6939 *m = NULL; 6940 goto bad_locked; 6941 } 6942 6943 if (r_rt == PF_DUPTO) { 6944 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 6945 if (s == NULL) { 6946 ifp = r->rpool.cur->kif ? 6947 r->rpool.cur->kif->pfik_ifp : NULL; 6948 } else { 6949 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 6950 /* If pfsync'd */ 6951 if (ifp == NULL) 6952 ifp = r->rpool.cur->kif ? 6953 r->rpool.cur->kif->pfik_ifp : NULL; 6954 PF_STATE_UNLOCK(s); 6955 } 6956 if (ifp == oifp) { 6957 /* When the 2nd interface is not skipped */ 6958 return; 6959 } else { 6960 m0 = *m; 6961 *m = NULL; 6962 goto bad; 6963 } 6964 } else { 6965 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 6966 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { 6967 if (s) 6968 PF_STATE_UNLOCK(s); 6969 return; 6970 } 6971 } 6972 } else { 6973 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) { 6974 pf_dummynet(pd, s, r, m); 6975 if (s) 6976 PF_STATE_UNLOCK(s); 6977 return; 6978 } 6979 m0 = *m; 6980 } 6981 6982 ip6 = mtod(m0, struct ip6_hdr *); 6983 6984 bzero(&dst, sizeof(dst)); 6985 dst.sin6_family = AF_INET6; 6986 dst.sin6_len = sizeof(dst); 6987 dst.sin6_addr = ip6->ip6_dst; 6988 6989 bzero(&naddr, sizeof(naddr)); 6990 6991 if (s == NULL) { 6992 if (TAILQ_EMPTY(&r->rpool.list)) { 6993 DPFPRINTF(PF_DEBUG_URGENT, 6994 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 6995 goto bad_locked; 6996 } 6997 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 6998 &naddr, NULL, &sn); 6999 if (!PF_AZERO(&naddr, AF_INET6)) 7000 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7001 &naddr, AF_INET6); 7002 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 7003 } else { 7004 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 7005 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 7006 &s->rt_addr, AF_INET6); 7007 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 7008 } 7009 7010 if (s) 7011 PF_STATE_UNLOCK(s); 7012 7013 /* If pfsync'd */ 7014 if (ifp == NULL) 7015 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 7016 if (ifp == NULL) 7017 goto bad; 7018 7019 if (pd->dir == PF_IN) { 7020 if (pf_test6(PF_OUT, 0, ifp, &m0, inp, &pd->act) != PF_PASS) 7021 goto bad; 7022 else if (m0 == NULL) 7023 goto done; 7024 if (m0->m_len < sizeof(struct ip6_hdr)) { 7025 DPFPRINTF(PF_DEBUG_URGENT, 7026 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 7027 __func__)); 7028 goto bad; 7029 } 7030 ip6 = mtod(m0, struct ip6_hdr *); 7031 } 7032 7033 if (ifp->if_flags & IFF_LOOPBACK) 7034 m0->m_flags |= M_SKIP_FIREWALL; 7035 7036 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 7037 ~ifp->if_hwassist) { 7038 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 7039 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 7040 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 7041 } 7042 7043 /* 7044 * If the packet is too large for the outgoing interface, 7045 * send back an icmp6 error. 7046 */ 7047 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 7048 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 7049 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 7050 md = m0; 7051 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 7052 if (md != NULL) 7053 nd6_output_ifp(ifp, ifp, md, &dst, NULL); 7054 } 7055 else { 7056 in6_ifstat_inc(ifp, ifs6_in_toobig); 7057 if (r_rt != PF_DUPTO) { 7058 if (s && pd->nat_rule != NULL) 7059 PACKET_UNDO_NAT(m0, pd, 7060 ((caddr_t)ip6 - m0->m_data) + 7061 sizeof(struct ip6_hdr), s); 7062 7063 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 7064 } else 7065 goto bad; 7066 } 7067 7068 done: 7069 if (r_rt != PF_DUPTO) 7070 *m = NULL; 7071 return; 7072 7073 bad_locked: 7074 if (s) 7075 PF_STATE_UNLOCK(s); 7076 bad: 7077 m_freem(m0); 7078 goto done; 7079 } 7080 #endif /* INET6 */ 7081 7082 /* 7083 * FreeBSD supports cksum offloads for the following drivers. 7084 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 7085 * 7086 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 7087 * network driver performed cksum including pseudo header, need to verify 7088 * csum_data 7089 * CSUM_DATA_VALID : 7090 * network driver performed cksum, needs to additional pseudo header 7091 * cksum computation with partial csum_data(i.e. lack of H/W support for 7092 * pseudo header, for instance sk(4) and possibly gem(4)) 7093 * 7094 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 7095 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 7096 * TCP/UDP layer. 7097 * Also, set csum_data to 0xffff to force cksum validation. 7098 */ 7099 static int 7100 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 7101 { 7102 u_int16_t sum = 0; 7103 int hw_assist = 0; 7104 struct ip *ip; 7105 7106 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 7107 return (1); 7108 if (m->m_pkthdr.len < off + len) 7109 return (1); 7110 7111 switch (p) { 7112 case IPPROTO_TCP: 7113 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7114 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7115 sum = m->m_pkthdr.csum_data; 7116 } else { 7117 ip = mtod(m, struct ip *); 7118 sum = in_pseudo(ip->ip_src.s_addr, 7119 ip->ip_dst.s_addr, htonl((u_short)len + 7120 m->m_pkthdr.csum_data + IPPROTO_TCP)); 7121 } 7122 sum ^= 0xffff; 7123 ++hw_assist; 7124 } 7125 break; 7126 case IPPROTO_UDP: 7127 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 7128 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 7129 sum = m->m_pkthdr.csum_data; 7130 } else { 7131 ip = mtod(m, struct ip *); 7132 sum = in_pseudo(ip->ip_src.s_addr, 7133 ip->ip_dst.s_addr, htonl((u_short)len + 7134 m->m_pkthdr.csum_data + IPPROTO_UDP)); 7135 } 7136 sum ^= 0xffff; 7137 ++hw_assist; 7138 } 7139 break; 7140 case IPPROTO_ICMP: 7141 #ifdef INET6 7142 case IPPROTO_ICMPV6: 7143 #endif /* INET6 */ 7144 break; 7145 default: 7146 return (1); 7147 } 7148 7149 if (!hw_assist) { 7150 switch (af) { 7151 case AF_INET: 7152 if (p == IPPROTO_ICMP) { 7153 if (m->m_len < off) 7154 return (1); 7155 m->m_data += off; 7156 m->m_len -= off; 7157 sum = in_cksum(m, len); 7158 m->m_data -= off; 7159 m->m_len += off; 7160 } else { 7161 if (m->m_len < sizeof(struct ip)) 7162 return (1); 7163 sum = in4_cksum(m, p, off, len); 7164 } 7165 break; 7166 #ifdef INET6 7167 case AF_INET6: 7168 if (m->m_len < sizeof(struct ip6_hdr)) 7169 return (1); 7170 sum = in6_cksum(m, p, off, len); 7171 break; 7172 #endif /* INET6 */ 7173 default: 7174 return (1); 7175 } 7176 } 7177 if (sum) { 7178 switch (p) { 7179 case IPPROTO_TCP: 7180 { 7181 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 7182 break; 7183 } 7184 case IPPROTO_UDP: 7185 { 7186 KMOD_UDPSTAT_INC(udps_badsum); 7187 break; 7188 } 7189 #ifdef INET 7190 case IPPROTO_ICMP: 7191 { 7192 KMOD_ICMPSTAT_INC(icps_checksum); 7193 break; 7194 } 7195 #endif 7196 #ifdef INET6 7197 case IPPROTO_ICMPV6: 7198 { 7199 KMOD_ICMP6STAT_INC(icp6s_checksum); 7200 break; 7201 } 7202 #endif /* INET6 */ 7203 } 7204 return (1); 7205 } else { 7206 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 7207 m->m_pkthdr.csum_flags |= 7208 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 7209 m->m_pkthdr.csum_data = 0xffff; 7210 } 7211 } 7212 return (0); 7213 } 7214 7215 static bool 7216 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 7217 const struct pf_kstate *s, struct ip_fw_args *dnflow) 7218 { 7219 int dndir = r->direction; 7220 7221 if (s && dndir == PF_INOUT) { 7222 dndir = s->direction; 7223 } else if (dndir == PF_INOUT) { 7224 /* Assume primary direction. Happens when we've set dnpipe in 7225 * the ethernet level code. */ 7226 dndir = pd->dir; 7227 } 7228 7229 memset(dnflow, 0, sizeof(*dnflow)); 7230 7231 if (pd->dport != NULL) 7232 dnflow->f_id.dst_port = ntohs(*pd->dport); 7233 if (pd->sport != NULL) 7234 dnflow->f_id.src_port = ntohs(*pd->sport); 7235 7236 if (pd->dir == PF_IN) 7237 dnflow->flags |= IPFW_ARGS_IN; 7238 else 7239 dnflow->flags |= IPFW_ARGS_OUT; 7240 7241 if (pd->dir != dndir && pd->act.dnrpipe) { 7242 dnflow->rule.info = pd->act.dnrpipe; 7243 } 7244 else if (pd->dir == dndir && pd->act.dnpipe) { 7245 dnflow->rule.info = pd->act.dnpipe; 7246 } 7247 else { 7248 return (false); 7249 } 7250 7251 dnflow->rule.info |= IPFW_IS_DUMMYNET; 7252 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 7253 dnflow->rule.info |= IPFW_IS_PIPE; 7254 7255 dnflow->f_id.proto = pd->proto; 7256 dnflow->f_id.extra = dnflow->rule.info; 7257 switch (pd->af) { 7258 case AF_INET: 7259 dnflow->f_id.addr_type = 4; 7260 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 7261 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 7262 break; 7263 case AF_INET6: 7264 dnflow->flags |= IPFW_ARGS_IP6; 7265 dnflow->f_id.addr_type = 6; 7266 dnflow->f_id.src_ip6 = pd->src->v6; 7267 dnflow->f_id.dst_ip6 = pd->dst->v6; 7268 break; 7269 default: 7270 panic("Invalid AF"); 7271 break; 7272 } 7273 7274 return (true); 7275 } 7276 7277 int 7278 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7279 struct inpcb *inp) 7280 { 7281 struct pfi_kkif *kif; 7282 struct mbuf *m = *m0; 7283 7284 M_ASSERTPKTHDR(m); 7285 MPASS(ifp->if_vnet == curvnet); 7286 NET_EPOCH_ASSERT(); 7287 7288 if (!V_pf_status.running) 7289 return (PF_PASS); 7290 7291 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7292 7293 if (kif == NULL) { 7294 DPFPRINTF(PF_DEBUG_URGENT, 7295 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 7296 return (PF_DROP); 7297 } 7298 if (kif->pfik_flags & PFI_IFLAG_SKIP) 7299 return (PF_PASS); 7300 7301 if (m->m_flags & M_SKIP_FIREWALL) 7302 return (PF_PASS); 7303 7304 /* Stateless! */ 7305 return (pf_test_eth_rule(dir, kif, m0)); 7306 } 7307 7308 static int 7309 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 7310 struct pf_krule *r, struct mbuf **m0) 7311 { 7312 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 7313 } 7314 7315 static int 7316 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 7317 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa, 7318 struct mbuf **m0) 7319 { 7320 NET_EPOCH_ASSERT(); 7321 7322 if (pd->act.dnpipe || pd->act.dnrpipe) { 7323 struct ip_fw_args dnflow; 7324 if (ip_dn_io_ptr == NULL) { 7325 m_freem(*m0); 7326 *m0 = NULL; 7327 return (ENOMEM); 7328 } 7329 7330 if (pd->pf_mtag == NULL && 7331 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 7332 m_freem(*m0); 7333 *m0 = NULL; 7334 return (ENOMEM); 7335 } 7336 7337 if (ifp != NULL) { 7338 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 7339 7340 pd->pf_mtag->if_index = ifp->if_index; 7341 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 7342 7343 MPASS(sa != NULL); 7344 7345 if (pd->af == AF_INET) 7346 memcpy(&pd->pf_mtag->dst, sa, 7347 sizeof(struct sockaddr_in)); 7348 else 7349 memcpy(&pd->pf_mtag->dst, sa, 7350 sizeof(struct sockaddr_in6)); 7351 } 7352 7353 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 7354 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 7355 ip_dn_io_ptr(m0, &dnflow); 7356 if (*m0 != NULL) { 7357 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7358 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7359 } 7360 } 7361 } 7362 7363 return (0); 7364 } 7365 7366 #ifdef INET 7367 int 7368 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 7369 struct inpcb *inp, struct pf_rule_actions *default_actions) 7370 { 7371 struct pfi_kkif *kif; 7372 u_short action, reason = 0; 7373 struct mbuf *m = *m0; 7374 struct ip *h = NULL; 7375 struct m_tag *ipfwtag; 7376 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7377 struct pf_kstate *s = NULL; 7378 struct pf_kruleset *ruleset = NULL; 7379 struct pf_pdesc pd; 7380 int off, dirndx, use_2nd_queue = 0; 7381 uint16_t tag; 7382 uint8_t rt; 7383 7384 PF_RULES_RLOCK_TRACKER; 7385 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7386 M_ASSERTPKTHDR(m); 7387 7388 if (!V_pf_status.running) 7389 return (PF_PASS); 7390 7391 PF_RULES_RLOCK(); 7392 7393 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7394 7395 if (__predict_false(kif == NULL)) { 7396 DPFPRINTF(PF_DEBUG_URGENT, 7397 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 7398 PF_RULES_RUNLOCK(); 7399 return (PF_DROP); 7400 } 7401 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7402 PF_RULES_RUNLOCK(); 7403 return (PF_PASS); 7404 } 7405 7406 if (m->m_flags & M_SKIP_FIREWALL) { 7407 PF_RULES_RUNLOCK(); 7408 return (PF_PASS); 7409 } 7410 7411 memset(&pd, 0, sizeof(pd)); 7412 if (default_actions != NULL) 7413 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7414 pd.pf_mtag = pf_find_mtag(m); 7415 7416 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7417 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7418 7419 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7420 pd.pf_mtag->if_idxgen); 7421 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7422 PF_RULES_RUNLOCK(); 7423 m_freem(*m0); 7424 *m0 = NULL; 7425 return (PF_PASS); 7426 } 7427 PF_RULES_RUNLOCK(); 7428 (ifp->if_output)(ifp, m, sintosa(&pd.pf_mtag->dst), NULL); 7429 *m0 = NULL; 7430 return (PF_PASS); 7431 } 7432 7433 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7434 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7435 pd.act.flags = pd.pf_mtag->dnflags; 7436 } 7437 7438 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7439 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7440 /* Dummynet re-injects packets after they've 7441 * completed their delay. We've already 7442 * processed them, so pass unconditionally. */ 7443 7444 /* But only once. We may see the packet multiple times (e.g. 7445 * PFIL_IN/PFIL_OUT). */ 7446 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7447 PF_RULES_RUNLOCK(); 7448 7449 return (PF_PASS); 7450 } 7451 7452 pd.sport = pd.dport = NULL; 7453 pd.proto_sum = NULL; 7454 pd.dir = dir; 7455 pd.sidx = (dir == PF_IN) ? 0 : 1; 7456 pd.didx = (dir == PF_IN) ? 1 : 0; 7457 pd.af = AF_INET; 7458 pd.act.rtableid = -1; 7459 7460 if (__predict_false(ip_divert_ptr != NULL) && 7461 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 7462 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 7463 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 7464 if (pd.pf_mtag == NULL && 7465 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7466 action = PF_DROP; 7467 goto done; 7468 } 7469 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 7470 m_tag_delete(m, ipfwtag); 7471 } 7472 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 7473 m->m_flags |= M_FASTFWD_OURS; 7474 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7475 } 7476 } else if (pf_normalize_ip(m0, kif, &reason, &pd) != PF_PASS) { 7477 /* We do IP header normalization and packet reassembly here */ 7478 action = PF_DROP; 7479 goto done; 7480 } 7481 m = *m0; /* pf_normalize messes with m0 */ 7482 h = mtod(m, struct ip *); 7483 7484 off = h->ip_hl << 2; 7485 if (off < (int)sizeof(struct ip)) { 7486 action = PF_DROP; 7487 REASON_SET(&reason, PFRES_SHORT); 7488 pd.act.log = PF_LOG_FORCE; 7489 goto done; 7490 } 7491 7492 pd.src = (struct pf_addr *)&h->ip_src; 7493 pd.dst = (struct pf_addr *)&h->ip_dst; 7494 pd.ip_sum = &h->ip_sum; 7495 pd.proto = h->ip_p; 7496 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 7497 pd.tot_len = ntohs(h->ip_len); 7498 7499 /* handle fragments that didn't get reassembled by normalization */ 7500 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 7501 action = pf_test_fragment(&r, kif, m, h, &pd, &a, &ruleset); 7502 goto done; 7503 } 7504 7505 switch (h->ip_p) { 7506 case IPPROTO_TCP: { 7507 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 7508 &action, &reason, AF_INET)) { 7509 if (action != PF_PASS) 7510 pd.act.log = PF_LOG_FORCE; 7511 goto done; 7512 } 7513 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 7514 7515 pd.sport = &pd.hdr.tcp.th_sport; 7516 pd.dport = &pd.hdr.tcp.th_dport; 7517 7518 /* Respond to SYN with a syncookie. */ 7519 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 7520 pd.dir == PF_IN && pf_synflood_check(&pd)) { 7521 pf_syncookie_send(m, off, &pd); 7522 action = PF_DROP; 7523 break; 7524 } 7525 7526 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) 7527 use_2nd_queue = 1; 7528 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 7529 if (action == PF_DROP) 7530 goto done; 7531 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 7532 if (action == PF_PASS) { 7533 if (V_pfsync_update_state_ptr != NULL) 7534 V_pfsync_update_state_ptr(s); 7535 r = s->rule.ptr; 7536 a = s->anchor.ptr; 7537 } else if (s == NULL) { 7538 /* Validate remote SYN|ACK, re-create original SYN if 7539 * valid. */ 7540 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == 7541 TH_ACK && pf_syncookie_validate(&pd) && 7542 pd.dir == PF_IN) { 7543 struct mbuf *msyn; 7544 7545 msyn = pf_syncookie_recreate_syn(h->ip_ttl, 7546 off,&pd); 7547 if (msyn == NULL) { 7548 action = PF_DROP; 7549 break; 7550 } 7551 7552 action = pf_test(dir, pflags, ifp, &msyn, inp, &pd.act); 7553 m_freem(msyn); 7554 7555 if (action == PF_PASS) { 7556 action = pf_test_state_tcp(&s, kif, m, 7557 off, h, &pd, &reason); 7558 if (action != PF_PASS || s == NULL) { 7559 action = PF_DROP; 7560 break; 7561 } 7562 7563 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) 7564 - 1; 7565 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) 7566 - 1; 7567 pf_set_protostate(s, PF_PEER_SRC, 7568 PF_TCPS_PROXY_DST); 7569 7570 action = pf_synproxy(&pd, &s, &reason); 7571 if (action != PF_PASS) 7572 break; 7573 } 7574 break; 7575 } 7576 else { 7577 action = pf_test_rule(&r, &s, kif, m, off, 7578 &pd, &a, &ruleset, inp); 7579 } 7580 } 7581 break; 7582 } 7583 7584 case IPPROTO_UDP: { 7585 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 7586 &action, &reason, AF_INET)) { 7587 if (action != PF_PASS) 7588 pd.act.log = PF_LOG_FORCE; 7589 goto done; 7590 } 7591 pd.sport = &pd.hdr.udp.uh_sport; 7592 pd.dport = &pd.hdr.udp.uh_dport; 7593 if (pd.hdr.udp.uh_dport == 0 || 7594 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 7595 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 7596 action = PF_DROP; 7597 REASON_SET(&reason, PFRES_SHORT); 7598 goto done; 7599 } 7600 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 7601 if (action == PF_PASS) { 7602 if (V_pfsync_update_state_ptr != NULL) 7603 V_pfsync_update_state_ptr(s); 7604 r = s->rule.ptr; 7605 a = s->anchor.ptr; 7606 } else if (s == NULL) 7607 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7608 &a, &ruleset, inp); 7609 break; 7610 } 7611 7612 case IPPROTO_SCTP: { 7613 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 7614 &action, &reason, AF_INET)) { 7615 if (action != PF_PASS) 7616 pd.act.log |= PF_LOG_FORCE; 7617 goto done; 7618 } 7619 pd.sport = &pd.hdr.sctp.src_port; 7620 pd.dport = &pd.hdr.sctp.dest_port; 7621 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 7622 action = PF_DROP; 7623 REASON_SET(&reason, PFRES_SHORT); 7624 goto done; 7625 } 7626 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 7627 if (action == PF_DROP) 7628 goto done; 7629 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 7630 &reason); 7631 if (action == PF_PASS) { 7632 if (V_pfsync_update_state_ptr != NULL) 7633 V_pfsync_update_state_ptr(s); 7634 r = s->rule.ptr; 7635 a = s->anchor.ptr; 7636 } else { 7637 action = pf_test_rule(&r, &s, kif, m, off, 7638 &pd, &a, &ruleset, inp); 7639 } 7640 break; 7641 } 7642 7643 case IPPROTO_ICMP: { 7644 if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, 7645 &action, &reason, AF_INET)) { 7646 if (action != PF_PASS) 7647 pd.act.log = PF_LOG_FORCE; 7648 goto done; 7649 } 7650 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 7651 if (action == PF_PASS) { 7652 if (V_pfsync_update_state_ptr != NULL) 7653 V_pfsync_update_state_ptr(s); 7654 r = s->rule.ptr; 7655 a = s->anchor.ptr; 7656 } else if (s == NULL) 7657 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7658 &a, &ruleset, inp); 7659 break; 7660 } 7661 7662 #ifdef INET6 7663 case IPPROTO_ICMPV6: { 7664 action = PF_DROP; 7665 DPFPRINTF(PF_DEBUG_MISC, 7666 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 7667 goto done; 7668 } 7669 #endif 7670 7671 default: 7672 action = pf_test_state_other(&s, kif, m, &pd); 7673 if (action == PF_PASS) { 7674 if (V_pfsync_update_state_ptr != NULL) 7675 V_pfsync_update_state_ptr(s); 7676 r = s->rule.ptr; 7677 a = s->anchor.ptr; 7678 } else if (s == NULL) 7679 action = pf_test_rule(&r, &s, kif, m, off, &pd, 7680 &a, &ruleset, inp); 7681 break; 7682 } 7683 7684 done: 7685 PF_RULES_RUNLOCK(); 7686 if (action == PF_PASS && h->ip_hl > 5 && 7687 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 7688 action = PF_DROP; 7689 REASON_SET(&reason, PFRES_IPOPTIONS); 7690 pd.act.log = PF_LOG_FORCE; 7691 DPFPRINTF(PF_DEBUG_MISC, 7692 ("pf: dropping packet with ip options\n")); 7693 } 7694 7695 if (s) { 7696 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 7697 tag = s->tag; 7698 rt = s->rt; 7699 } else { 7700 tag = r->tag; 7701 rt = r->rt; 7702 } 7703 7704 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 7705 action = PF_DROP; 7706 REASON_SET(&reason, PFRES_MEMORY); 7707 } 7708 7709 pf_scrub_ip(&m, &pd); 7710 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 7711 pf_normalize_mss(m, off, &pd); 7712 7713 if (pd.act.rtableid >= 0) 7714 M_SETFIB(m, pd.act.rtableid); 7715 7716 if (pd.act.flags & PFSTATE_SETPRIO) { 7717 if (pd.tos & IPTOS_LOWDELAY) 7718 use_2nd_queue = 1; 7719 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 7720 action = PF_DROP; 7721 REASON_SET(&reason, PFRES_MEMORY); 7722 pd.act.log = PF_LOG_FORCE; 7723 DPFPRINTF(PF_DEBUG_MISC, 7724 ("pf: failed to allocate 802.1q mtag\n")); 7725 } 7726 } 7727 7728 #ifdef ALTQ 7729 if (action == PF_PASS && pd.act.qid) { 7730 if (pd.pf_mtag == NULL && 7731 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7732 action = PF_DROP; 7733 REASON_SET(&reason, PFRES_MEMORY); 7734 } else { 7735 if (s != NULL) 7736 pd.pf_mtag->qid_hash = pf_state_hash(s); 7737 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 7738 pd.pf_mtag->qid = pd.act.pqid; 7739 else 7740 pd.pf_mtag->qid = pd.act.qid; 7741 /* Add hints for ecn. */ 7742 pd.pf_mtag->hdr = h; 7743 } 7744 } 7745 #endif /* ALTQ */ 7746 7747 /* 7748 * connections redirected to loopback should not match sockets 7749 * bound specifically to loopback due to security implications, 7750 * see tcp_input() and in_pcblookup_listen(). 7751 */ 7752 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 7753 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 7754 (s->nat_rule.ptr->action == PF_RDR || 7755 s->nat_rule.ptr->action == PF_BINAT) && 7756 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 7757 m->m_flags |= M_SKIP_FIREWALL; 7758 7759 if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && 7760 r->divert.port && !PACKET_LOOPED(&pd)) { 7761 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 7762 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 7763 if (ipfwtag != NULL) { 7764 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 7765 ntohs(r->divert.port); 7766 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 7767 7768 if (s) 7769 PF_STATE_UNLOCK(s); 7770 7771 m_tag_prepend(m, ipfwtag); 7772 if (m->m_flags & M_FASTFWD_OURS) { 7773 if (pd.pf_mtag == NULL && 7774 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 7775 action = PF_DROP; 7776 REASON_SET(&reason, PFRES_MEMORY); 7777 pd.act.log = PF_LOG_FORCE; 7778 DPFPRINTF(PF_DEBUG_MISC, 7779 ("pf: failed to allocate tag\n")); 7780 } else { 7781 pd.pf_mtag->flags |= 7782 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 7783 m->m_flags &= ~M_FASTFWD_OURS; 7784 } 7785 } 7786 ip_divert_ptr(*m0, dir == PF_IN); 7787 *m0 = NULL; 7788 7789 return (action); 7790 } else { 7791 /* XXX: ipfw has the same behaviour! */ 7792 action = PF_DROP; 7793 REASON_SET(&reason, PFRES_MEMORY); 7794 pd.act.log = PF_LOG_FORCE; 7795 DPFPRINTF(PF_DEBUG_MISC, 7796 ("pf: failed to allocate divert tag\n")); 7797 } 7798 } 7799 7800 if (pd.act.log) { 7801 struct pf_krule *lr; 7802 struct pf_krule_item *ri; 7803 7804 if (s != NULL && s->nat_rule.ptr != NULL && 7805 s->nat_rule.ptr->log & PF_LOG_ALL) 7806 lr = s->nat_rule.ptr; 7807 else 7808 lr = r; 7809 7810 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 7811 PFLOG_PACKET(kif, m, AF_INET, reason, lr, a, ruleset, 7812 &pd, (s == NULL)); 7813 if (s) { 7814 SLIST_FOREACH(ri, &s->match_rules, entry) 7815 if (ri->r->log & PF_LOG_ALL) 7816 PFLOG_PACKET(kif, m, AF_INET, reason, 7817 ri->r, a, ruleset, &pd, 0); 7818 } 7819 } 7820 7821 pf_counter_u64_critical_enter(); 7822 pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], 7823 pd.tot_len); 7824 pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 7825 1); 7826 7827 if (action == PF_PASS || r->action == PF_DROP) { 7828 dirndx = (dir == PF_OUT); 7829 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 7830 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 7831 pf_update_timestamp(r); 7832 7833 if (a != NULL) { 7834 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 7835 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 7836 } 7837 if (s != NULL) { 7838 struct pf_krule_item *ri; 7839 7840 if (s->nat_rule.ptr != NULL) { 7841 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 7842 1); 7843 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 7844 pd.tot_len); 7845 } 7846 if (s->src_node != NULL) { 7847 counter_u64_add(s->src_node->packets[dirndx], 7848 1); 7849 counter_u64_add(s->src_node->bytes[dirndx], 7850 pd.tot_len); 7851 } 7852 if (s->nat_src_node != NULL) { 7853 counter_u64_add(s->nat_src_node->packets[dirndx], 7854 1); 7855 counter_u64_add(s->nat_src_node->bytes[dirndx], 7856 pd.tot_len); 7857 } 7858 dirndx = (dir == s->direction) ? 0 : 1; 7859 s->packets[dirndx]++; 7860 s->bytes[dirndx] += pd.tot_len; 7861 SLIST_FOREACH(ri, &s->match_rules, entry) { 7862 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 7863 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd.tot_len); 7864 } 7865 } 7866 tr = r; 7867 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 7868 if (nr != NULL && r == &V_pf_default_rule) 7869 tr = nr; 7870 if (tr->src.addr.type == PF_ADDR_TABLE) 7871 pfr_update_stats(tr->src.addr.p.tbl, 7872 (s == NULL) ? pd.src : 7873 &s->key[(s->direction == PF_IN)]-> 7874 addr[(s->direction == PF_OUT)], 7875 pd.af, pd.tot_len, dir == PF_OUT, 7876 r->action == PF_PASS, tr->src.neg); 7877 if (tr->dst.addr.type == PF_ADDR_TABLE) 7878 pfr_update_stats(tr->dst.addr.p.tbl, 7879 (s == NULL) ? pd.dst : 7880 &s->key[(s->direction == PF_IN)]-> 7881 addr[(s->direction == PF_IN)], 7882 pd.af, pd.tot_len, dir == PF_OUT, 7883 r->action == PF_PASS, tr->dst.neg); 7884 } 7885 pf_counter_u64_critical_exit(); 7886 7887 switch (action) { 7888 case PF_SYNPROXY_DROP: 7889 m_freem(*m0); 7890 case PF_DEFER: 7891 *m0 = NULL; 7892 action = PF_PASS; 7893 break; 7894 case PF_DROP: 7895 m_freem(*m0); 7896 *m0 = NULL; 7897 break; 7898 default: 7899 /* pf_route() returns unlocked. */ 7900 if (rt) { 7901 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp); 7902 return (action); 7903 } 7904 if (pf_dummynet(&pd, s, r, m0) != 0) { 7905 action = PF_DROP; 7906 REASON_SET(&reason, PFRES_MEMORY); 7907 } 7908 break; 7909 } 7910 7911 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 7912 7913 if (s) 7914 PF_STATE_UNLOCK(s); 7915 7916 return (action); 7917 } 7918 #endif /* INET */ 7919 7920 #ifdef INET6 7921 int 7922 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp, 7923 struct pf_rule_actions *default_actions) 7924 { 7925 struct pfi_kkif *kif; 7926 u_short action, reason = 0; 7927 struct mbuf *m = *m0, *n = NULL; 7928 struct m_tag *mtag; 7929 struct ip6_hdr *h = NULL; 7930 struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 7931 struct pf_kstate *s = NULL; 7932 struct pf_kruleset *ruleset = NULL; 7933 struct pf_pdesc pd; 7934 int off, terminal = 0, dirndx, rh_cnt = 0, use_2nd_queue = 0; 7935 uint16_t tag; 7936 uint8_t rt; 7937 7938 PF_RULES_RLOCK_TRACKER; 7939 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 7940 M_ASSERTPKTHDR(m); 7941 7942 if (!V_pf_status.running) 7943 return (PF_PASS); 7944 7945 PF_RULES_RLOCK(); 7946 7947 kif = (struct pfi_kkif *)ifp->if_pf_kif; 7948 if (__predict_false(kif == NULL)) { 7949 DPFPRINTF(PF_DEBUG_URGENT, 7950 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 7951 PF_RULES_RUNLOCK(); 7952 return (PF_DROP); 7953 } 7954 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 7955 PF_RULES_RUNLOCK(); 7956 return (PF_PASS); 7957 } 7958 7959 if (m->m_flags & M_SKIP_FIREWALL) { 7960 PF_RULES_RUNLOCK(); 7961 return (PF_PASS); 7962 } 7963 7964 memset(&pd, 0, sizeof(pd)); 7965 if (default_actions != NULL) 7966 memcpy(&pd.act, default_actions, sizeof(pd.act)); 7967 pd.pf_mtag = pf_find_mtag(m); 7968 7969 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 7970 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 7971 7972 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 7973 pd.pf_mtag->if_idxgen); 7974 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 7975 PF_RULES_RUNLOCK(); 7976 m_freem(*m0); 7977 *m0 = NULL; 7978 return (PF_PASS); 7979 } 7980 PF_RULES_RUNLOCK(); 7981 nd6_output_ifp(ifp, ifp, m, 7982 (struct sockaddr_in6 *)&pd.pf_mtag->dst, NULL); 7983 *m0 = NULL; 7984 return (PF_PASS); 7985 } 7986 7987 if (pd.pf_mtag && pd.pf_mtag->dnpipe) { 7988 pd.act.dnpipe = pd.pf_mtag->dnpipe; 7989 pd.act.flags = pd.pf_mtag->dnflags; 7990 } 7991 7992 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 7993 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 7994 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 7995 /* Dummynet re-injects packets after they've 7996 * completed their delay. We've already 7997 * processed them, so pass unconditionally. */ 7998 PF_RULES_RUNLOCK(); 7999 return (PF_PASS); 8000 } 8001 8002 pd.sport = pd.dport = NULL; 8003 pd.ip_sum = NULL; 8004 pd.proto_sum = NULL; 8005 pd.dir = dir; 8006 pd.sidx = (dir == PF_IN) ? 0 : 1; 8007 pd.didx = (dir == PF_IN) ? 1 : 0; 8008 pd.af = AF_INET6; 8009 pd.act.rtableid = -1; 8010 8011 /* We do IP header normalization and packet reassembly here */ 8012 if (pf_normalize_ip6(m0, kif, &reason, &pd) != PF_PASS) { 8013 action = PF_DROP; 8014 goto done; 8015 } 8016 m = *m0; /* pf_normalize messes with m0 */ 8017 h = mtod(m, struct ip6_hdr *); 8018 8019 /* 8020 * we do not support jumbogram. if we keep going, zero ip6_plen 8021 * will do something bad, so drop the packet for now. 8022 */ 8023 if (htons(h->ip6_plen) == 0) { 8024 action = PF_DROP; 8025 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 8026 goto done; 8027 } 8028 8029 pd.src = (struct pf_addr *)&h->ip6_src; 8030 pd.dst = (struct pf_addr *)&h->ip6_dst; 8031 pd.tos = IPV6_DSCP(h); 8032 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8033 8034 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 8035 pd.proto = h->ip6_nxt; 8036 do { 8037 switch (pd.proto) { 8038 case IPPROTO_FRAGMENT: 8039 action = pf_test_fragment(&r, kif, m, h, &pd, &a, 8040 &ruleset); 8041 if (action == PF_DROP) 8042 REASON_SET(&reason, PFRES_FRAG); 8043 goto done; 8044 case IPPROTO_ROUTING: { 8045 struct ip6_rthdr rthdr; 8046 8047 if (rh_cnt++) { 8048 DPFPRINTF(PF_DEBUG_MISC, 8049 ("pf: IPv6 more than one rthdr\n")); 8050 action = PF_DROP; 8051 REASON_SET(&reason, PFRES_IPOPTIONS); 8052 pd.act.log = PF_LOG_FORCE; 8053 goto done; 8054 } 8055 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 8056 &reason, pd.af)) { 8057 DPFPRINTF(PF_DEBUG_MISC, 8058 ("pf: IPv6 short rthdr\n")); 8059 action = PF_DROP; 8060 REASON_SET(&reason, PFRES_SHORT); 8061 pd.act.log = PF_LOG_FORCE; 8062 goto done; 8063 } 8064 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 8065 DPFPRINTF(PF_DEBUG_MISC, 8066 ("pf: IPv6 rthdr0\n")); 8067 action = PF_DROP; 8068 REASON_SET(&reason, PFRES_IPOPTIONS); 8069 pd.act.log = PF_LOG_FORCE; 8070 goto done; 8071 } 8072 /* FALLTHROUGH */ 8073 } 8074 case IPPROTO_AH: 8075 case IPPROTO_HOPOPTS: 8076 case IPPROTO_DSTOPTS: { 8077 /* get next header and header length */ 8078 struct ip6_ext opt6; 8079 8080 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 8081 NULL, &reason, pd.af)) { 8082 DPFPRINTF(PF_DEBUG_MISC, 8083 ("pf: IPv6 short opt\n")); 8084 action = PF_DROP; 8085 pd.act.log = PF_LOG_FORCE; 8086 goto done; 8087 } 8088 if (pd.proto == IPPROTO_AH) 8089 off += (opt6.ip6e_len + 2) * 4; 8090 else 8091 off += (opt6.ip6e_len + 1) * 8; 8092 pd.proto = opt6.ip6e_nxt; 8093 /* goto the next header */ 8094 break; 8095 } 8096 default: 8097 terminal++; 8098 break; 8099 } 8100 } while (!terminal); 8101 8102 /* if there's no routing header, use unmodified mbuf for checksumming */ 8103 if (!n) 8104 n = m; 8105 8106 switch (pd.proto) { 8107 case IPPROTO_TCP: { 8108 if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), 8109 &action, &reason, AF_INET6)) { 8110 if (action != PF_PASS) 8111 pd.act.log |= PF_LOG_FORCE; 8112 goto done; 8113 } 8114 pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); 8115 pd.sport = &pd.hdr.tcp.th_sport; 8116 pd.dport = &pd.hdr.tcp.th_dport; 8117 action = pf_normalize_tcp(kif, m, 0, off, h, &pd); 8118 if (action == PF_DROP) 8119 goto done; 8120 action = pf_test_state_tcp(&s, kif, m, off, h, &pd, &reason); 8121 if (action == PF_PASS) { 8122 if (V_pfsync_update_state_ptr != NULL) 8123 V_pfsync_update_state_ptr(s); 8124 r = s->rule.ptr; 8125 a = s->anchor.ptr; 8126 } else if (s == NULL) 8127 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8128 &a, &ruleset, inp); 8129 break; 8130 } 8131 8132 case IPPROTO_UDP: { 8133 if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), 8134 &action, &reason, AF_INET6)) { 8135 if (action != PF_PASS) 8136 pd.act.log |= PF_LOG_FORCE; 8137 goto done; 8138 } 8139 pd.sport = &pd.hdr.udp.uh_sport; 8140 pd.dport = &pd.hdr.udp.uh_dport; 8141 if (pd.hdr.udp.uh_dport == 0 || 8142 ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || 8143 ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { 8144 action = PF_DROP; 8145 REASON_SET(&reason, PFRES_SHORT); 8146 goto done; 8147 } 8148 action = pf_test_state_udp(&s, kif, m, off, h, &pd); 8149 if (action == PF_PASS) { 8150 if (V_pfsync_update_state_ptr != NULL) 8151 V_pfsync_update_state_ptr(s); 8152 r = s->rule.ptr; 8153 a = s->anchor.ptr; 8154 } else if (s == NULL) 8155 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8156 &a, &ruleset, inp); 8157 break; 8158 } 8159 8160 case IPPROTO_SCTP: { 8161 if (!pf_pull_hdr(m, off, &pd.hdr.sctp, sizeof(pd.hdr.sctp), 8162 &action, &reason, AF_INET6)) { 8163 if (action != PF_PASS) 8164 pd.act.log |= PF_LOG_FORCE; 8165 goto done; 8166 } 8167 pd.sport = &pd.hdr.sctp.src_port; 8168 pd.dport = &pd.hdr.sctp.dest_port; 8169 if (pd.hdr.sctp.src_port == 0 || pd.hdr.sctp.dest_port == 0) { 8170 action = PF_DROP; 8171 REASON_SET(&reason, PFRES_SHORT); 8172 goto done; 8173 } 8174 action = pf_normalize_sctp(dir, kif, m, 0, off, h, &pd); 8175 if (action == PF_DROP) 8176 goto done; 8177 action = pf_test_state_sctp(&s, kif, m, off, h, &pd, 8178 &reason); 8179 if (action == PF_PASS) { 8180 if (V_pfsync_update_state_ptr != NULL) 8181 V_pfsync_update_state_ptr(s); 8182 r = s->rule.ptr; 8183 a = s->anchor.ptr; 8184 } else { 8185 action = pf_test_rule(&r, &s, kif, m, off, 8186 &pd, &a, &ruleset, inp); 8187 } 8188 break; 8189 } 8190 8191 case IPPROTO_ICMP: { 8192 action = PF_DROP; 8193 DPFPRINTF(PF_DEBUG_MISC, 8194 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 8195 goto done; 8196 } 8197 8198 case IPPROTO_ICMPV6: { 8199 if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), 8200 &action, &reason, AF_INET6)) { 8201 if (action != PF_PASS) 8202 pd.act.log |= PF_LOG_FORCE; 8203 goto done; 8204 } 8205 action = pf_test_state_icmp(&s, kif, m, off, h, &pd, &reason); 8206 if (action == PF_PASS) { 8207 if (V_pfsync_update_state_ptr != NULL) 8208 V_pfsync_update_state_ptr(s); 8209 r = s->rule.ptr; 8210 a = s->anchor.ptr; 8211 } else if (s == NULL) 8212 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8213 &a, &ruleset, inp); 8214 break; 8215 } 8216 8217 default: 8218 action = pf_test_state_other(&s, kif, m, &pd); 8219 if (action == PF_PASS) { 8220 if (V_pfsync_update_state_ptr != NULL) 8221 V_pfsync_update_state_ptr(s); 8222 r = s->rule.ptr; 8223 a = s->anchor.ptr; 8224 } else if (s == NULL) 8225 action = pf_test_rule(&r, &s, kif, m, off, &pd, 8226 &a, &ruleset, inp); 8227 break; 8228 } 8229 8230 done: 8231 PF_RULES_RUNLOCK(); 8232 if (n != m) { 8233 m_freem(n); 8234 n = NULL; 8235 } 8236 8237 /* handle dangerous IPv6 extension headers. */ 8238 if (action == PF_PASS && rh_cnt && 8239 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 8240 action = PF_DROP; 8241 REASON_SET(&reason, PFRES_IPOPTIONS); 8242 pd.act.log = r->log; 8243 DPFPRINTF(PF_DEBUG_MISC, 8244 ("pf: dropping packet with dangerous v6 headers\n")); 8245 } 8246 8247 if (s) { 8248 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 8249 tag = s->tag; 8250 rt = s->rt; 8251 } else { 8252 tag = r->tag; 8253 rt = r->rt; 8254 } 8255 8256 if (tag > 0 && pf_tag_packet(m, &pd, tag)) { 8257 action = PF_DROP; 8258 REASON_SET(&reason, PFRES_MEMORY); 8259 } 8260 8261 pf_scrub_ip6(&m, &pd); 8262 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 8263 pf_normalize_mss(m, off, &pd); 8264 8265 if (pd.act.rtableid >= 0) 8266 M_SETFIB(m, pd.act.rtableid); 8267 8268 if (pd.act.flags & PFSTATE_SETPRIO) { 8269 if (pd.tos & IPTOS_LOWDELAY) 8270 use_2nd_queue = 1; 8271 if (vlan_set_pcp(m, pd.act.set_prio[use_2nd_queue])) { 8272 action = PF_DROP; 8273 REASON_SET(&reason, PFRES_MEMORY); 8274 pd.act.log = PF_LOG_FORCE; 8275 DPFPRINTF(PF_DEBUG_MISC, 8276 ("pf: failed to allocate 802.1q mtag\n")); 8277 } 8278 } 8279 8280 #ifdef ALTQ 8281 if (action == PF_PASS && pd.act.qid) { 8282 if (pd.pf_mtag == NULL && 8283 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 8284 action = PF_DROP; 8285 REASON_SET(&reason, PFRES_MEMORY); 8286 } else { 8287 if (s != NULL) 8288 pd.pf_mtag->qid_hash = pf_state_hash(s); 8289 if (pd.tos & IPTOS_LOWDELAY) 8290 pd.pf_mtag->qid = pd.act.pqid; 8291 else 8292 pd.pf_mtag->qid = pd.act.qid; 8293 /* Add hints for ecn. */ 8294 pd.pf_mtag->hdr = h; 8295 } 8296 } 8297 #endif /* ALTQ */ 8298 8299 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 8300 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 8301 (s->nat_rule.ptr->action == PF_RDR || 8302 s->nat_rule.ptr->action == PF_BINAT) && 8303 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 8304 m->m_flags |= M_SKIP_FIREWALL; 8305 8306 /* XXX: Anybody working on it?! */ 8307 if (r->divert.port) 8308 printf("pf: divert(9) is not supported for IPv6\n"); 8309 8310 if (pd.act.log) { 8311 struct pf_krule *lr; 8312 struct pf_krule_item *ri; 8313 8314 if (s != NULL && s->nat_rule.ptr != NULL && 8315 s->nat_rule.ptr->log & PF_LOG_ALL) 8316 lr = s->nat_rule.ptr; 8317 else 8318 lr = r; 8319 8320 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 8321 PFLOG_PACKET(kif, m, AF_INET6, reason, lr, a, ruleset, 8322 &pd, (s == NULL)); 8323 if (s) { 8324 SLIST_FOREACH(ri, &s->match_rules, entry) 8325 if (ri->r->log & PF_LOG_ALL) 8326 PFLOG_PACKET(kif, m, AF_INET6, reason, 8327 ri->r, a, ruleset, &pd, 0); 8328 } 8329 } 8330 8331 pf_counter_u64_critical_enter(); 8332 pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], 8333 pd.tot_len); 8334 pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 8335 1); 8336 8337 if (action == PF_PASS || r->action == PF_DROP) { 8338 dirndx = (dir == PF_OUT); 8339 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 8340 pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); 8341 if (a != NULL) { 8342 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 8343 pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); 8344 } 8345 if (s != NULL) { 8346 if (s->nat_rule.ptr != NULL) { 8347 pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 8348 1); 8349 pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], 8350 pd.tot_len); 8351 } 8352 if (s->src_node != NULL) { 8353 counter_u64_add(s->src_node->packets[dirndx], 8354 1); 8355 counter_u64_add(s->src_node->bytes[dirndx], 8356 pd.tot_len); 8357 } 8358 if (s->nat_src_node != NULL) { 8359 counter_u64_add(s->nat_src_node->packets[dirndx], 8360 1); 8361 counter_u64_add(s->nat_src_node->bytes[dirndx], 8362 pd.tot_len); 8363 } 8364 dirndx = (dir == s->direction) ? 0 : 1; 8365 s->packets[dirndx]++; 8366 s->bytes[dirndx] += pd.tot_len; 8367 } 8368 tr = r; 8369 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 8370 if (nr != NULL && r == &V_pf_default_rule) 8371 tr = nr; 8372 if (tr->src.addr.type == PF_ADDR_TABLE) 8373 pfr_update_stats(tr->src.addr.p.tbl, 8374 (s == NULL) ? pd.src : 8375 &s->key[(s->direction == PF_IN)]->addr[0], 8376 pd.af, pd.tot_len, dir == PF_OUT, 8377 r->action == PF_PASS, tr->src.neg); 8378 if (tr->dst.addr.type == PF_ADDR_TABLE) 8379 pfr_update_stats(tr->dst.addr.p.tbl, 8380 (s == NULL) ? pd.dst : 8381 &s->key[(s->direction == PF_IN)]->addr[1], 8382 pd.af, pd.tot_len, dir == PF_OUT, 8383 r->action == PF_PASS, tr->dst.neg); 8384 } 8385 pf_counter_u64_critical_exit(); 8386 8387 switch (action) { 8388 case PF_SYNPROXY_DROP: 8389 m_freem(*m0); 8390 case PF_DEFER: 8391 *m0 = NULL; 8392 action = PF_PASS; 8393 break; 8394 case PF_DROP: 8395 m_freem(*m0); 8396 *m0 = NULL; 8397 break; 8398 default: 8399 /* pf_route6() returns unlocked. */ 8400 if (rt) { 8401 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp); 8402 return (action); 8403 } 8404 if (pf_dummynet(&pd, s, r, m0) != 0) { 8405 action = PF_DROP; 8406 REASON_SET(&reason, PFRES_MEMORY); 8407 } 8408 break; 8409 } 8410 8411 if (s) 8412 PF_STATE_UNLOCK(s); 8413 8414 /* If reassembled packet passed, create new fragments. */ 8415 if (action == PF_PASS && *m0 && dir == PF_OUT && 8416 (mtag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 8417 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD); 8418 8419 SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); 8420 8421 return (action); 8422 } 8423 #endif /* INET6 */ 8424